xref: /linux/arch/arm/include/asm/pgtable-3level.h (revision 564eb714f5f09ac733c26860d5f0831f213fbdf1)
1 /*
2  * arch/arm/include/asm/pgtable-3level.h
3  *
4  * Copyright (C) 2011 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  */
20 #ifndef _ASM_PGTABLE_3LEVEL_H
21 #define _ASM_PGTABLE_3LEVEL_H
22 
23 /*
24  * With LPAE, there are 3 levels of page tables. Each level has 512 entries of
25  * 8 bytes each, occupying a 4K page. The first level table covers a range of
26  * 512GB, each entry representing 1GB. Since we are limited to 4GB input
27  * address range, only 4 entries in the PGD are used.
28  *
29  * There are enough spare bits in a page table entry for the kernel specific
30  * state.
31  */
32 #define PTRS_PER_PTE		512
33 #define PTRS_PER_PMD		512
34 #define PTRS_PER_PGD		4
35 
36 #define PTE_HWTABLE_PTRS	(0)
37 #define PTE_HWTABLE_OFF		(0)
38 #define PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(u64))
39 
40 /*
41  * PGDIR_SHIFT determines the size a top-level page table entry can map.
42  */
43 #define PGDIR_SHIFT		30
44 
45 /*
46  * PMD_SHIFT determines the size a middle-level page table entry can map.
47  */
48 #define PMD_SHIFT		21
49 
50 #define PMD_SIZE		(1UL << PMD_SHIFT)
51 #define PMD_MASK		(~((1 << PMD_SHIFT) - 1))
52 #define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
53 #define PGDIR_MASK		(~((1 << PGDIR_SHIFT) - 1))
54 
55 /*
56  * section address mask and size definitions.
57  */
58 #define SECTION_SHIFT		21
59 #define SECTION_SIZE		(1UL << SECTION_SHIFT)
60 #define SECTION_MASK		(~((1 << SECTION_SHIFT) - 1))
61 
62 #define USER_PTRS_PER_PGD	(PAGE_OFFSET / PGDIR_SIZE)
63 
64 /*
65  * Hugetlb definitions.
66  */
67 #define HPAGE_SHIFT		PMD_SHIFT
68 #define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
69 #define HPAGE_MASK		(~(HPAGE_SIZE - 1))
70 #define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
71 
72 /*
73  * "Linux" PTE definitions for LPAE.
74  *
75  * These bits overlap with the hardware bits but the naming is preserved for
76  * consistency with the classic page table format.
77  */
78 #define L_PTE_VALID		(_AT(pteval_t, 1) << 0)		/* Valid */
79 #define L_PTE_PRESENT		(_AT(pteval_t, 3) << 0)		/* Present */
80 #define L_PTE_FILE		(_AT(pteval_t, 1) << 2)		/* only when !PRESENT */
81 #define L_PTE_USER		(_AT(pteval_t, 1) << 6)		/* AP[1] */
82 #define L_PTE_RDONLY		(_AT(pteval_t, 1) << 7)		/* AP[2] */
83 #define L_PTE_SHARED		(_AT(pteval_t, 3) << 8)		/* SH[1:0], inner shareable */
84 #define L_PTE_YOUNG		(_AT(pteval_t, 1) << 10)	/* AF */
85 #define L_PTE_XN		(_AT(pteval_t, 1) << 54)	/* XN */
86 #define L_PTE_DIRTY		(_AT(pteval_t, 1) << 55)	/* unused */
87 #define L_PTE_SPECIAL		(_AT(pteval_t, 1) << 56)	/* unused */
88 #define L_PTE_NONE		(_AT(pteval_t, 1) << 57)	/* PROT_NONE */
89 
90 #define PMD_SECT_VALID		(_AT(pmdval_t, 1) << 0)
91 #define PMD_SECT_DIRTY		(_AT(pmdval_t, 1) << 55)
92 #define PMD_SECT_SPLITTING	(_AT(pmdval_t, 1) << 56)
93 #define PMD_SECT_NONE		(_AT(pmdval_t, 1) << 57)
94 
95 /*
96  * To be used in assembly code with the upper page attributes.
97  */
98 #define L_PTE_XN_HIGH		(1 << (54 - 32))
99 #define L_PTE_DIRTY_HIGH	(1 << (55 - 32))
100 
101 /*
102  * AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers).
103  */
104 #define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0) << 2)	/* strongly ordered */
105 #define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 1) << 2)	/* normal non-cacheable */
106 #define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 2) << 2)	/* normal inner write-through */
107 #define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 3) << 2)	/* normal inner write-back */
108 #define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 7) << 2)	/* normal inner write-alloc */
109 #define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 4) << 2)	/* device */
110 #define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 4) << 2)	/* device */
111 #define L_PTE_MT_DEV_WC		(_AT(pteval_t, 1) << 2)	/* normal non-cacheable */
112 #define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 3) << 2)	/* normal inner write-back */
113 #define L_PTE_MT_MASK		(_AT(pteval_t, 7) << 2)
114 
115 /*
116  * Software PGD flags.
117  */
118 #define L_PGD_SWAPPER		(_AT(pgdval_t, 1) << 55)	/* swapper_pg_dir entry */
119 
120 /*
121  * 2nd stage PTE definitions for LPAE.
122  */
123 #define L_PTE_S2_MT_UNCACHED	 (_AT(pteval_t, 0x5) << 2) /* MemAttr[3:0] */
124 #define L_PTE_S2_MT_WRITETHROUGH (_AT(pteval_t, 0xa) << 2) /* MemAttr[3:0] */
125 #define L_PTE_S2_MT_WRITEBACK	 (_AT(pteval_t, 0xf) << 2) /* MemAttr[3:0] */
126 #define L_PTE_S2_RDONLY		 (_AT(pteval_t, 1) << 6)   /* HAP[1]   */
127 #define L_PTE_S2_RDWR		 (_AT(pteval_t, 3) << 6)   /* HAP[2:1] */
128 
129 #define L_PMD_S2_RDWR		 (_AT(pmdval_t, 3) << 6)   /* HAP[2:1] */
130 
131 /*
132  * Hyp-mode PL2 PTE definitions for LPAE.
133  */
134 #define L_PTE_HYP		L_PTE_USER
135 
136 #ifndef __ASSEMBLY__
137 
138 #define pud_none(pud)		(!pud_val(pud))
139 #define pud_bad(pud)		(!(pud_val(pud) & 2))
140 #define pud_present(pud)	(pud_val(pud))
141 #define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
142 						 PMD_TYPE_TABLE)
143 #define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
144 						 PMD_TYPE_SECT)
145 
146 #define pud_clear(pudp)			\
147 	do {				\
148 		*pudp = __pud(0);	\
149 		clean_pmd_entry(pudp);	\
150 	} while (0)
151 
152 #define set_pud(pudp, pud)		\
153 	do {				\
154 		*pudp = pud;		\
155 		flush_pmd_entry(pudp);	\
156 	} while (0)
157 
158 static inline pmd_t *pud_page_vaddr(pud_t pud)
159 {
160 	return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK);
161 }
162 
163 /* Find an entry in the second-level page table.. */
164 #define pmd_index(addr)		(((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
165 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
166 {
167 	return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(addr);
168 }
169 
170 #define pmd_bad(pmd)		(!(pmd_val(pmd) & 2))
171 
172 #define copy_pmd(pmdpd,pmdps)		\
173 	do {				\
174 		*pmdpd = *pmdps;	\
175 		flush_pmd_entry(pmdpd);	\
176 	} while (0)
177 
178 #define pmd_clear(pmdp)			\
179 	do {				\
180 		*pmdp = __pmd(0);	\
181 		clean_pmd_entry(pmdp);	\
182 	} while (0)
183 
184 /*
185  * For 3 levels of paging the PTE_EXT_NG bit will be set for user address ptes
186  * that are written to a page table but not for ptes created with mk_pte.
187  *
188  * In hugetlb_no_page, a new huge pte (new_pte) is generated and passed to
189  * hugetlb_cow, where it is compared with an entry in a page table.
190  * This comparison test fails erroneously leading ultimately to a memory leak.
191  *
192  * To correct this behaviour, we mask off PTE_EXT_NG for any pte that is
193  * present before running the comparison.
194  */
195 #define __HAVE_ARCH_PTE_SAME
196 #define pte_same(pte_a,pte_b)	((pte_present(pte_a) ? pte_val(pte_a) & ~PTE_EXT_NG	\
197 					: pte_val(pte_a))				\
198 				== (pte_present(pte_b) ? pte_val(pte_b) & ~PTE_EXT_NG	\
199 					: pte_val(pte_b)))
200 
201 #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,__pte(pte_val(pte)|(ext)))
202 
203 #define pte_huge(pte)		(pte_val(pte) && !(pte_val(pte) & PTE_TABLE_BIT))
204 #define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
205 
206 #define pmd_young(pmd)		(pmd_val(pmd) & PMD_SECT_AF)
207 
208 #define __HAVE_ARCH_PMD_WRITE
209 #define pmd_write(pmd)		(!(pmd_val(pmd) & PMD_SECT_RDONLY))
210 
211 #define pmd_hugewillfault(pmd)	(!pmd_young(pmd) || !pmd_write(pmd))
212 #define pmd_thp_or_huge(pmd)	(pmd_huge(pmd) || pmd_trans_huge(pmd))
213 
214 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
215 #define pmd_trans_huge(pmd)	(pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT))
216 #define pmd_trans_splitting(pmd) (pmd_val(pmd) & PMD_SECT_SPLITTING)
217 #endif
218 
219 #define PMD_BIT_FUNC(fn,op) \
220 static inline pmd_t pmd_##fn(pmd_t pmd) { pmd_val(pmd) op; return pmd; }
221 
222 PMD_BIT_FUNC(wrprotect,	|= PMD_SECT_RDONLY);
223 PMD_BIT_FUNC(mkold,	&= ~PMD_SECT_AF);
224 PMD_BIT_FUNC(mksplitting, |= PMD_SECT_SPLITTING);
225 PMD_BIT_FUNC(mkwrite,   &= ~PMD_SECT_RDONLY);
226 PMD_BIT_FUNC(mkdirty,   |= PMD_SECT_DIRTY);
227 PMD_BIT_FUNC(mkyoung,   |= PMD_SECT_AF);
228 
229 #define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
230 
231 #define pmd_pfn(pmd)		(((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT)
232 #define pfn_pmd(pfn,prot)	(__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
233 #define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
234 
235 /* represent a notpresent pmd by zero, this is used by pmdp_invalidate */
236 #define pmd_mknotpresent(pmd)	(__pmd(0))
237 
238 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
239 {
240 	const pmdval_t mask = PMD_SECT_USER | PMD_SECT_XN | PMD_SECT_RDONLY |
241 				PMD_SECT_VALID | PMD_SECT_NONE;
242 	pmd_val(pmd) = (pmd_val(pmd) & ~mask) | (pgprot_val(newprot) & mask);
243 	return pmd;
244 }
245 
246 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
247 			      pmd_t *pmdp, pmd_t pmd)
248 {
249 	BUG_ON(addr >= TASK_SIZE);
250 
251 	/* create a faulting entry if PROT_NONE protected */
252 	if (pmd_val(pmd) & PMD_SECT_NONE)
253 		pmd_val(pmd) &= ~PMD_SECT_VALID;
254 
255 	*pmdp = __pmd(pmd_val(pmd) | PMD_SECT_nG);
256 	flush_pmd_entry(pmdp);
257 }
258 
259 static inline int has_transparent_hugepage(void)
260 {
261 	return 1;
262 }
263 
264 #endif /* __ASSEMBLY__ */
265 
266 #endif /* _ASM_PGTABLE_3LEVEL_H */
267