xref: /linux/arch/alpha/lib/ev6-copy_user.S (revision ab520be8cd5d56867fc95cfbc34b90880faf1f9d)
1/*
2 * arch/alpha/lib/ev6-copy_user.S
3 *
4 * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com>
5 *
6 * Copy to/from user space, handling exceptions as we go..  This
7 * isn't exactly pretty.
8 *
9 * This is essentially the same as "memcpy()", but with a few twists.
10 * Notably, we have to make sure that $0 is always up-to-date and
11 * contains the right "bytes left to copy" value (and that it is updated
12 * only _after_ a successful copy). There is also some rather minor
13 * exception setup stuff..
14 *
15 * NOTE! This is not directly C-callable, because the calling semantics are
16 * different:
17 *
18 * Inputs:
19 *	length in $0
20 *	destination address in $6
21 *	source address in $7
22 *	return address in $28
23 *
24 * Outputs:
25 *	bytes left to copy in $0
26 *
27 * Clobbers:
28 *	$1,$2,$3,$4,$5,$6,$7
29 *
30 * Much of the information about 21264 scheduling/coding comes from:
31 *	Compiler Writer's Guide for the Alpha 21264
32 *	abbreviated as 'CWG' in other comments here
33 *	ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
34 * Scheduling notation:
35 *	E	- either cluster
36 *	U	- upper subcluster; U0 - subcluster U0; U1 - subcluster U1
37 *	L	- lower subcluster; L0 - subcluster L0; L1 - subcluster L1
38 */
39
40#include <asm/export.h>
41/* Allow an exception for an insn; exit if we get one.  */
42#define EXI(x,y...)			\
43	99: x,##y;			\
44	.section __ex_table,"a";	\
45	.long 99b - .;			\
46	lda $31, $exitin-99b($31);	\
47	.previous
48
49#define EXO(x,y...)			\
50	99: x,##y;			\
51	.section __ex_table,"a";	\
52	.long 99b - .;			\
53	lda $31, $exitout-99b($31);	\
54	.previous
55
56	.set noat
57	.align 4
58	.globl __copy_user
59	.ent __copy_user
60				# Pipeline info: Slotting & Comments
61__copy_user:
62	.prologue 0
63	subq $0, 32, $1		# .. E  .. ..	: Is this going to be a small copy?
64	beq $0, $zerolength	# U  .. .. ..	: U L U L
65
66	and $6,7,$3		# .. .. .. E	: is leading dest misalignment
67	ble $1, $onebyteloop	# .. .. U  ..	: 1st branch : small amount of data
68	beq $3, $destaligned	# .. U  .. ..	: 2nd (one cycle fetcher stall)
69	subq $3, 8, $3		# E  .. .. ..	: L U U L : trip counter
70/*
71 * The fetcher stall also hides the 1 cycle cross-cluster stall for $3 (L --> U)
72 * This loop aligns the destination a byte at a time
73 * We know we have at least one trip through this loop
74 */
75$aligndest:
76	EXI( ldbu $1,0($7) )	# .. .. .. L	: Keep loads separate from stores
77	addq $6,1,$6		# .. .. E  ..	: Section 3.8 in the CWG
78	addq $3,1,$3		# .. E  .. ..	:
79	nop			# E  .. .. ..	: U L U L
80
81/*
82 * the -1 is to compensate for the inc($6) done in a previous quadpack
83 * which allows us zero dependencies within either quadpack in the loop
84 */
85	EXO( stb $1,-1($6) )	# .. .. .. L	:
86	addq $7,1,$7		# .. .. E  ..	: Section 3.8 in the CWG
87	subq $0,1,$0		# .. E  .. ..	:
88	bne $3, $aligndest	# U  .. .. ..	: U L U L
89
90/*
91 * If we fell through into here, we have a minimum of 33 - 7 bytes
92 * If we arrived via branch, we have a minimum of 32 bytes
93 */
94$destaligned:
95	and $7,7,$1		# .. .. .. E	: Check _current_ source alignment
96	bic $0,7,$4		# .. .. E  ..	: number bytes as a quadword loop
97	EXI( ldq_u $3,0($7) )	# .. L  .. ..	: Forward fetch for fallthrough code
98	beq $1,$quadaligned	# U  .. .. ..	: U L U L
99
100/*
101 * In the worst case, we've just executed an ldq_u here from 0($7)
102 * and we'll repeat it once if we take the branch
103 */
104
105/* Misaligned quadword loop - not unrolled.  Leave it that way. */
106$misquad:
107	EXI( ldq_u $2,8($7) )	# .. .. .. L	:
108	subq $4,8,$4		# .. .. E  ..	:
109	extql $3,$7,$3		# .. U  .. ..	:
110	extqh $2,$7,$1		# U  .. .. ..	: U U L L
111
112	bis $3,$1,$1		# .. .. .. E	:
113	EXO( stq $1,0($6) )	# .. .. L  ..	:
114	addq $7,8,$7		# .. E  .. ..	:
115	subq $0,8,$0		# E  .. .. ..	: U L L U
116
117	addq $6,8,$6		# .. .. .. E	:
118	bis $2,$2,$3		# .. .. E  ..	:
119	nop			# .. E  .. ..	:
120	bne $4,$misquad		# U  .. .. ..	: U L U L
121
122	nop			# .. .. .. E
123	nop			# .. .. E  ..
124	nop			# .. E  .. ..
125	beq $0,$zerolength	# U  .. .. ..	: U L U L
126
127/* We know we have at least one trip through the byte loop */
128	EXI ( ldbu $2,0($7) )	# .. .. .. L	: No loads in the same quad
129	addq $6,1,$6		# .. .. E  ..	: as the store (Section 3.8 in CWG)
130	nop			# .. E  .. ..	:
131	br $31, $dirtyentry	# L0 .. .. ..	: L U U L
132/* Do the trailing byte loop load, then hop into the store part of the loop */
133
134/*
135 * A minimum of (33 - 7) bytes to do a quad at a time.
136 * Based upon the usage context, it's worth the effort to unroll this loop
137 * $0 - number of bytes to be moved
138 * $4 - number of bytes to move as quadwords
139 * $6 is current destination address
140 * $7 is current source address
141 */
142$quadaligned:
143	subq	$4, 32, $2	# .. .. .. E	: do not unroll for small stuff
144	nop			# .. .. E  ..
145	nop			# .. E  .. ..
146	blt	$2, $onequad	# U  .. .. ..	: U L U L
147
148/*
149 * There is a significant assumption here that the source and destination
150 * addresses differ by more than 32 bytes.  In this particular case, a
151 * sparsity of registers further bounds this to be a minimum of 8 bytes.
152 * But if this isn't met, then the output result will be incorrect.
153 * Furthermore, due to a lack of available registers, we really can't
154 * unroll this to be an 8x loop (which would enable us to use the wh64
155 * instruction memory hint instruction).
156 */
157$unroll4:
158	EXI( ldq $1,0($7) )	# .. .. .. L
159	EXI( ldq $2,8($7) )	# .. .. L  ..
160	subq	$4,32,$4	# .. E  .. ..
161	nop			# E  .. .. ..	: U U L L
162
163	addq	$7,16,$7	# .. .. .. E
164	EXO( stq $1,0($6) )	# .. .. L  ..
165	EXO( stq $2,8($6) )	# .. L  .. ..
166	subq	$0,16,$0	# E  .. .. ..	: U L L U
167
168	addq	$6,16,$6	# .. .. .. E
169	EXI( ldq $1,0($7) )	# .. .. L  ..
170	EXI( ldq $2,8($7) )	# .. L  .. ..
171	subq	$4, 32, $3	# E  .. .. ..	: U U L L : is there enough for another trip?
172
173	EXO( stq $1,0($6) )	# .. .. .. L
174	EXO( stq $2,8($6) )	# .. .. L  ..
175	subq	$0,16,$0	# .. E  .. ..
176	addq	$7,16,$7	# E  .. .. ..	: U L L U
177
178	nop			# .. .. .. E
179	nop			# .. .. E  ..
180	addq	$6,16,$6	# .. E  .. ..
181	bgt	$3,$unroll4	# U  .. .. ..	: U L U L
182
183	nop
184	nop
185	nop
186	beq	$4, $noquads
187
188$onequad:
189	EXI( ldq $1,0($7) )
190	subq	$4,8,$4
191	addq	$7,8,$7
192	nop
193
194	EXO( stq $1,0($6) )
195	subq	$0,8,$0
196	addq	$6,8,$6
197	bne	$4,$onequad
198
199$noquads:
200	nop
201	nop
202	nop
203	beq $0,$zerolength
204
205/*
206 * For small copies (or the tail of a larger copy), do a very simple byte loop.
207 * There's no point in doing a lot of complex alignment calculations to try to
208 * to quadword stuff for a small amount of data.
209 *	$0 - remaining number of bytes left to copy
210 *	$6 - current dest addr
211 *	$7 - current source addr
212 */
213
214$onebyteloop:
215	EXI ( ldbu $2,0($7) )	# .. .. .. L	: No loads in the same quad
216	addq $6,1,$6		# .. .. E  ..	: as the store (Section 3.8 in CWG)
217	nop			# .. E  .. ..	:
218	nop			# E  .. .. ..	: U L U L
219
220$dirtyentry:
221/*
222 * the -1 is to compensate for the inc($6) done in a previous quadpack
223 * which allows us zero dependencies within either quadpack in the loop
224 */
225	EXO ( stb $2,-1($6) )	# .. .. .. L	:
226	addq $7,1,$7		# .. .. E  ..	: quadpack as the load
227	subq $0,1,$0		# .. E  .. ..	: change count _after_ copy
228	bgt $0,$onebyteloop	# U  .. .. ..	: U L U L
229
230$zerolength:
231$exitin:
232$exitout:			# Destination for exception recovery(?)
233	nop			# .. .. .. E
234	nop			# .. .. E  ..
235	nop			# .. E  .. ..
236	ret $31,($28),1		# L0 .. .. ..	: L U L U
237
238	.end __copy_user
239	EXPORT_SYMBOL(__copy_user)
240