xref: /linux/arch/alpha/kernel/process.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  *  linux/arch/alpha/kernel/process.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the architecture-dependent parts of process handling.
9  */
10 
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/time.h>
22 #include <linux/major.h>
23 #include <linux/stat.h>
24 #include <linux/vt.h>
25 #include <linux/mman.h>
26 #include <linux/elfcore.h>
27 #include <linux/reboot.h>
28 #include <linux/tty.h>
29 #include <linux/console.h>
30 #include <linux/slab.h>
31 #include <linux/rcupdate.h>
32 
33 #include <asm/reg.h>
34 #include <asm/uaccess.h>
35 #include <asm/io.h>
36 #include <asm/pgtable.h>
37 #include <asm/hwrpb.h>
38 #include <asm/fpu.h>
39 
40 #include "proto.h"
41 #include "pci_impl.h"
42 
43 /*
44  * Power off function, if any
45  */
46 void (*pm_power_off)(void) = machine_power_off;
47 EXPORT_SYMBOL(pm_power_off);
48 
49 void
50 cpu_idle(void)
51 {
52 	set_thread_flag(TIF_POLLING_NRFLAG);
53 
54 	while (1) {
55 		/* FIXME -- EV6 and LCA45 know how to power down
56 		   the CPU.  */
57 
58 		rcu_idle_enter();
59 		while (!need_resched())
60 			cpu_relax();
61 
62 		rcu_idle_exit();
63 		schedule_preempt_disabled();
64 	}
65 }
66 
67 
68 struct halt_info {
69 	int mode;
70 	char *restart_cmd;
71 };
72 
73 static void
74 common_shutdown_1(void *generic_ptr)
75 {
76 	struct halt_info *how = (struct halt_info *)generic_ptr;
77 	struct percpu_struct *cpup;
78 	unsigned long *pflags, flags;
79 	int cpuid = smp_processor_id();
80 
81 	/* No point in taking interrupts anymore. */
82 	local_irq_disable();
83 
84 	cpup = (struct percpu_struct *)
85 			((unsigned long)hwrpb + hwrpb->processor_offset
86 			 + hwrpb->processor_size * cpuid);
87 	pflags = &cpup->flags;
88 	flags = *pflags;
89 
90 	/* Clear reason to "default"; clear "bootstrap in progress". */
91 	flags &= ~0x00ff0001UL;
92 
93 #ifdef CONFIG_SMP
94 	/* Secondaries halt here. */
95 	if (cpuid != boot_cpuid) {
96 		flags |= 0x00040000UL; /* "remain halted" */
97 		*pflags = flags;
98 		set_cpu_present(cpuid, false);
99 		set_cpu_possible(cpuid, false);
100 		halt();
101 	}
102 #endif
103 
104 	if (how->mode == LINUX_REBOOT_CMD_RESTART) {
105 		if (!how->restart_cmd) {
106 			flags |= 0x00020000UL; /* "cold bootstrap" */
107 		} else {
108 			/* For SRM, we could probably set environment
109 			   variables to get this to work.  We'd have to
110 			   delay this until after srm_paging_stop unless
111 			   we ever got srm_fixup working.
112 
113 			   At the moment, SRM will use the last boot device,
114 			   but the file and flags will be the defaults, when
115 			   doing a "warm" bootstrap.  */
116 			flags |= 0x00030000UL; /* "warm bootstrap" */
117 		}
118 	} else {
119 		flags |= 0x00040000UL; /* "remain halted" */
120 	}
121 	*pflags = flags;
122 
123 #ifdef CONFIG_SMP
124 	/* Wait for the secondaries to halt. */
125 	set_cpu_present(boot_cpuid, false);
126 	set_cpu_possible(boot_cpuid, false);
127 	while (cpumask_weight(cpu_present_mask))
128 		barrier();
129 #endif
130 
131 	/* If booted from SRM, reset some of the original environment. */
132 	if (alpha_using_srm) {
133 #ifdef CONFIG_DUMMY_CONSOLE
134 		/* If we've gotten here after SysRq-b, leave interrupt
135 		   context before taking over the console. */
136 		if (in_interrupt())
137 			irq_exit();
138 		/* This has the effect of resetting the VGA video origin.  */
139 		take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
140 #endif
141 		pci_restore_srm_config();
142 		set_hae(srm_hae);
143 	}
144 
145 	if (alpha_mv.kill_arch)
146 		alpha_mv.kill_arch(how->mode);
147 
148 	if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
149 		/* Unfortunately, since MILO doesn't currently understand
150 		   the hwrpb bits above, we can't reliably halt the
151 		   processor and keep it halted.  So just loop.  */
152 		return;
153 	}
154 
155 	if (alpha_using_srm)
156 		srm_paging_stop();
157 
158 	halt();
159 }
160 
161 static void
162 common_shutdown(int mode, char *restart_cmd)
163 {
164 	struct halt_info args;
165 	args.mode = mode;
166 	args.restart_cmd = restart_cmd;
167 	on_each_cpu(common_shutdown_1, &args, 0);
168 }
169 
170 void
171 machine_restart(char *restart_cmd)
172 {
173 	common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
174 }
175 
176 
177 void
178 machine_halt(void)
179 {
180 	common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
181 }
182 
183 
184 void
185 machine_power_off(void)
186 {
187 	common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
188 }
189 
190 
191 /* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
192    saved in the context it's used.  */
193 
194 void
195 show_regs(struct pt_regs *regs)
196 {
197 	dik_show_regs(regs, NULL);
198 }
199 
200 /*
201  * Re-start a thread when doing execve()
202  */
203 void
204 start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
205 {
206 	regs->pc = pc;
207 	regs->ps = 8;
208 	wrusp(sp);
209 }
210 EXPORT_SYMBOL(start_thread);
211 
212 /*
213  * Free current thread data structures etc..
214  */
215 void
216 exit_thread(void)
217 {
218 }
219 
220 void
221 flush_thread(void)
222 {
223 	/* Arrange for each exec'ed process to start off with a clean slate
224 	   with respect to the FPU.  This is all exceptions disabled.  */
225 	current_thread_info()->ieee_state = 0;
226 	wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
227 
228 	/* Clean slate for TLS.  */
229 	current_thread_info()->pcb.unique = 0;
230 }
231 
232 void
233 release_thread(struct task_struct *dead_task)
234 {
235 }
236 
237 /*
238  * "alpha_clone()".. By the time we get here, the
239  * non-volatile registers have also been saved on the
240  * stack. We do some ugly pointer stuff here.. (see
241  * also copy_thread)
242  *
243  * Notice that "fork()" is implemented in terms of clone,
244  * with parameters (SIGCHLD, 0).
245  */
246 int
247 alpha_clone(unsigned long clone_flags, unsigned long usp,
248 	    int __user *parent_tid, int __user *child_tid,
249 	    unsigned long tls_value, struct pt_regs *regs)
250 {
251 	if (!usp)
252 		usp = rdusp();
253 
254 	return do_fork(clone_flags, usp, regs, 0, parent_tid, child_tid);
255 }
256 
257 int
258 alpha_vfork(struct pt_regs *regs)
259 {
260 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(),
261 		       regs, 0, NULL, NULL);
262 }
263 
264 /*
265  * Copy an alpha thread..
266  *
267  * Note the "stack_offset" stuff: when returning to kernel mode, we need
268  * to have some extra stack-space for the kernel stack that still exists
269  * after the "ret_from_fork".  When returning to user mode, we only want
270  * the space needed by the syscall stack frame (ie "struct pt_regs").
271  * Use the passed "regs" pointer to determine how much space we need
272  * for a kernel fork().
273  */
274 
275 int
276 copy_thread(unsigned long clone_flags, unsigned long usp,
277 	    unsigned long unused,
278 	    struct task_struct * p, struct pt_regs * regs)
279 {
280 	extern void ret_from_fork(void);
281 
282 	struct thread_info *childti = task_thread_info(p);
283 	struct pt_regs * childregs;
284 	struct switch_stack * childstack, *stack;
285 	unsigned long stack_offset, settls;
286 
287 	stack_offset = PAGE_SIZE - sizeof(struct pt_regs);
288 	if (!(regs->ps & 8))
289 		stack_offset = (PAGE_SIZE-1) & (unsigned long) regs;
290 	childregs = (struct pt_regs *)
291 	  (stack_offset + PAGE_SIZE + task_stack_page(p));
292 
293 	*childregs = *regs;
294 	settls = regs->r20;
295 	childregs->r0 = 0;
296 	childregs->r19 = 0;
297 	childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */
298 	regs->r20 = 0;
299 	stack = ((struct switch_stack *) regs) - 1;
300 	childstack = ((struct switch_stack *) childregs) - 1;
301 	*childstack = *stack;
302 	childstack->r26 = (unsigned long) ret_from_fork;
303 	childti->pcb.usp = usp;
304 	childti->pcb.ksp = (unsigned long) childstack;
305 	childti->pcb.flags = 1;	/* set FEN, clear everything else */
306 
307 	/* Set a new TLS for the child thread?  Peek back into the
308 	   syscall arguments that we saved on syscall entry.  Oops,
309 	   except we'd have clobbered it with the parent/child set
310 	   of r20.  Read the saved copy.  */
311 	/* Note: if CLONE_SETTLS is not set, then we must inherit the
312 	   value from the parent, which will have been set by the block
313 	   copy in dup_task_struct.  This is non-intuitive, but is
314 	   required for proper operation in the case of a threaded
315 	   application calling fork.  */
316 	if (clone_flags & CLONE_SETTLS)
317 		childti->pcb.unique = settls;
318 
319 	return 0;
320 }
321 
322 /*
323  * Fill in the user structure for a ELF core dump.
324  */
325 void
326 dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
327 {
328 	/* switch stack follows right below pt_regs: */
329 	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
330 
331 	dest[ 0] = pt->r0;
332 	dest[ 1] = pt->r1;
333 	dest[ 2] = pt->r2;
334 	dest[ 3] = pt->r3;
335 	dest[ 4] = pt->r4;
336 	dest[ 5] = pt->r5;
337 	dest[ 6] = pt->r6;
338 	dest[ 7] = pt->r7;
339 	dest[ 8] = pt->r8;
340 	dest[ 9] = sw->r9;
341 	dest[10] = sw->r10;
342 	dest[11] = sw->r11;
343 	dest[12] = sw->r12;
344 	dest[13] = sw->r13;
345 	dest[14] = sw->r14;
346 	dest[15] = sw->r15;
347 	dest[16] = pt->r16;
348 	dest[17] = pt->r17;
349 	dest[18] = pt->r18;
350 	dest[19] = pt->r19;
351 	dest[20] = pt->r20;
352 	dest[21] = pt->r21;
353 	dest[22] = pt->r22;
354 	dest[23] = pt->r23;
355 	dest[24] = pt->r24;
356 	dest[25] = pt->r25;
357 	dest[26] = pt->r26;
358 	dest[27] = pt->r27;
359 	dest[28] = pt->r28;
360 	dest[29] = pt->gp;
361 	dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
362 	dest[31] = pt->pc;
363 
364 	/* Once upon a time this was the PS value.  Which is stupid
365 	   since that is always 8 for usermode.  Usurped for the more
366 	   useful value of the thread's UNIQUE field.  */
367 	dest[32] = ti->pcb.unique;
368 }
369 EXPORT_SYMBOL(dump_elf_thread);
370 
371 int
372 dump_elf_task(elf_greg_t *dest, struct task_struct *task)
373 {
374 	dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
375 	return 1;
376 }
377 EXPORT_SYMBOL(dump_elf_task);
378 
379 int
380 dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
381 {
382 	struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
383 	memcpy(dest, sw->fp, 32 * 8);
384 	return 1;
385 }
386 EXPORT_SYMBOL(dump_elf_task_fp);
387 
388 /*
389  * sys_execve() executes a new program.
390  */
391 asmlinkage int
392 do_sys_execve(const char __user *ufilename,
393 	      const char __user *const __user *argv,
394 	      const char __user *const __user *envp, struct pt_regs *regs)
395 {
396 	int error;
397 	char *filename;
398 
399 	filename = getname(ufilename);
400 	error = PTR_ERR(filename);
401 	if (IS_ERR(filename))
402 		goto out;
403 	error = do_execve(filename, argv, envp, regs);
404 	putname(filename);
405 out:
406 	return error;
407 }
408 
409 /*
410  * Return saved PC of a blocked thread.  This assumes the frame
411  * pointer is the 6th saved long on the kernel stack and that the
412  * saved return address is the first long in the frame.  This all
413  * holds provided the thread blocked through a call to schedule() ($15
414  * is the frame pointer in schedule() and $15 is saved at offset 48 by
415  * entry.S:do_switch_stack).
416  *
417  * Under heavy swap load I've seen this lose in an ugly way.  So do
418  * some extra sanity checking on the ranges we expect these pointers
419  * to be in so that we can fail gracefully.  This is just for ps after
420  * all.  -- r~
421  */
422 
423 unsigned long
424 thread_saved_pc(struct task_struct *t)
425 {
426 	unsigned long base = (unsigned long)task_stack_page(t);
427 	unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
428 
429 	if (sp > base && sp+6*8 < base + 16*1024) {
430 		fp = ((unsigned long*)sp)[6];
431 		if (fp > sp && fp < base + 16*1024)
432 			return *(unsigned long *)fp;
433 	}
434 
435 	return 0;
436 }
437 
438 unsigned long
439 get_wchan(struct task_struct *p)
440 {
441 	unsigned long schedule_frame;
442 	unsigned long pc;
443 	if (!p || p == current || p->state == TASK_RUNNING)
444 		return 0;
445 	/*
446 	 * This one depends on the frame size of schedule().  Do a
447 	 * "disass schedule" in gdb to find the frame size.  Also, the
448 	 * code assumes that sleep_on() follows immediately after
449 	 * interruptible_sleep_on() and that add_timer() follows
450 	 * immediately after interruptible_sleep().  Ugly, isn't it?
451 	 * Maybe adding a wchan field to task_struct would be better,
452 	 * after all...
453 	 */
454 
455 	pc = thread_saved_pc(p);
456 	if (in_sched_functions(pc)) {
457 		schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
458 		return ((unsigned long *)schedule_frame)[12];
459 	}
460 	return pc;
461 }
462 
463 int kernel_execve(const char *path, const char *const argv[], const char *const envp[])
464 {
465 	/* Avoid the HAE being gratuitously wrong, which would cause us
466 	   to do the whole turn off interrupts thing and restore it.  */
467 	struct pt_regs regs = {.hae = alpha_mv.hae_cache};
468 	int err = do_execve(path, argv, envp, &regs);
469 	if (!err) {
470 		struct pt_regs *p = current_pt_regs();
471 		/* copy regs to normal position and off to userland we go... */
472 		*p = regs;
473 		__asm__ __volatile__ (
474 			"mov	%0, $sp;"
475 			"br	$31, ret_from_sys_call"
476 			: : "r"(p));
477 	}
478 	return err;
479 }
480 EXPORT_SYMBOL(kernel_execve);
481