xref: /illumos-gate/usr/src/uts/sun4v/sys/vdsk_common.h (revision 0bb073995ac5a95bd35f2dd790df1ea3d8c2d507)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #ifndef	_VDSK_COMMON_H
28 #define	_VDSK_COMMON_H
29 
30 #ifdef __cplusplus
31 extern "C" {
32 #endif
33 
34 /*
35  * This header file contains the private LDoms Virtual Disk (vDisk) definitions
36  * common to both the server (vds) and the client (vdc)
37  */
38 
39 #include <sys/efi_partition.h>
40 #include <sys/machparam.h>
41 #include <sys/vtoc.h>
42 
43 #include <sys/ldc.h>
44 #include <sys/vio_common.h>
45 #include <sys/vio_mailbox.h>
46 
47 /*
48  * vDisk definitions
49  */
50 
51 /*
52  * The number of Descriptor Ring entries
53  *
54  * Constraints:
55  * 	- overall DRing size must be greater than 8K (MMU_PAGESIZE)
56  *	- overall DRing size should be 8K aligned (desirable but not enforced)
57  *	- DRing entry must be 8 byte aligned
58  */
59 #define	VD_DRING_LEN		512
60 
61 /*
62  *
63  */
64 #define	VD_DRING_ENTRY_SZ	(sizeof (vd_dring_entry_t) + 		\
65 		(sizeof (ldc_mem_cookie_t) * (VD_MAX_COOKIES - 1)))
66 
67 /*
68  * The maximum block size we can transmit using one Descriptor Ring entry
69  *
70  * Currently no FS uses more than 128K and it doesn't look like they
71  * will either as there is no perf gain to be had by larger values.
72  * ( see ZFS comment at definition of SPA_MAXBLOCKSIZE ).
73  *
74  * We choose 256K to give us some headroom.
75  */
76 #define	VD_MAX_BLOCK_SIZE	(256 * 1024)
77 
78 #define	VD_MAX_COOKIES		((VD_MAX_BLOCK_SIZE / PAGESIZE) + 1)
79 #define	VD_USEC_TIMEOUT		20000
80 #define	VD_LDC_IDS_PROP		"ldc-ids"
81 #define	VD_LDC_MTU		256
82 
83 /*
84  * Flags used by ioctl routines to indicate if a copyin/copyout is needed
85  */
86 #define	VD_COPYOUT		0x1
87 #define	VD_COPYIN		0x2
88 
89 /*
90  * vDisk operations on physical devices
91  */
92 #define	VD_OP_BREAD		0x01	/* Block Read */
93 #define	VD_OP_BWRITE		0x02	/* Block Write */
94 #define	VD_OP_FLUSH		0x03	/* Flush disk write cache contents */
95 #define	VD_OP_GET_WCE		0x04	/* Get disk W$ status */
96 #define	VD_OP_SET_WCE		0x05	/* Enable/Disable disk W$ */
97 #define	VD_OP_GET_VTOC		0x06	/* Get VTOC */
98 #define	VD_OP_SET_VTOC		0x07	/* Set VTOC */
99 #define	VD_OP_GET_DISKGEOM	0x08	/* Get disk geometry */
100 #define	VD_OP_SET_DISKGEOM	0x09	/* Set disk geometry */
101 #define	VD_OP_SCSICMD		0x0a	/* SCSI control command */
102 #define	VD_OP_GET_DEVID		0x0b	/* Get device id */
103 #define	VD_OP_GET_EFI 		0x0c	/* Get EFI */
104 #define	VD_OP_SET_EFI 		0x0d	/* Set EFI */
105 #define	VD_OP_RESET		0x0e	/* Reset disk */
106 #define	VD_OP_GET_ACCESS	0x0f	/* Get disk access */
107 #define	VD_OP_SET_ACCESS	0x10	/* Set disk access */
108 #define	VD_OP_GET_CAPACITY	0x11	/* Get disk capacity */
109 #define	VD_OP_MASK		0xFF	/* mask of all possible operations */
110 #define	VD_OP_COUNT		0x11	/* Number of operations */
111 
112 /*
113  * Status for the VD_OP_GET_ACCESS operation
114  */
115 #define	VD_ACCESS_DENIED	0x00	/* access is not allowed */
116 #define	VD_ACCESS_ALLOWED	0x01	/* access is allowed */
117 
118 /*
119  * Flags for the VD_OP_SET_ACCESS operation
120  */
121 #define	VD_ACCESS_SET_CLEAR	0x00	/* clear exclusive access rights */
122 #define	VD_ACCESS_SET_EXCLUSIVE	0x01	/* set exclusive access rights */
123 #define	VD_ACCESS_SET_PREEMPT	0x02	/* forcefully set access rights */
124 #define	VD_ACCESS_SET_PRESERVE	0x04	/* preserve access rights */
125 
126 /*
127  * This is a mask of all the basic operations supported by all
128  * disk types (v1.0).
129  */
130 #define	VD_OP_MASK_READ			\
131 	((1 << VD_OP_BREAD) |			\
132 	(1 << VD_OP_GET_WCE) |			\
133 	(1 << VD_OP_GET_VTOC) |			\
134 	(1 << VD_OP_GET_DISKGEOM) |		\
135 	(1 << VD_OP_GET_DEVID) |		\
136 	(1 << VD_OP_GET_EFI))
137 
138 #define	VD_OP_MASK_WRITE			\
139 	((1 << VD_OP_BWRITE) |			\
140 	(1 << VD_OP_FLUSH) |			\
141 	(1 << VD_OP_SET_WCE) |			\
142 	(1 << VD_OP_SET_VTOC) |			\
143 	(1 << VD_OP_SET_DISKGEOM) |		\
144 	(1 << VD_OP_SET_EFI))
145 
146 /*
147  * Mask for additional operations provided for SCSI disks (v1.1)
148  */
149 #define	VD_OP_MASK_SCSI				\
150 	((1 << VD_OP_SCSICMD) |			\
151 	(1 << VD_OP_RESET) |			\
152 	(1 << VD_OP_GET_ACCESS) |		\
153 	(1 << VD_OP_SET_ACCESS))
154 
155 /*
156  * macro to check if the operation 'op' is supported by checking the list
157  * of operations supported which is exported by the vDisk server.
158  */
159 #define	VD_OP_SUPPORTED(ops_bitmask, op)	((ops_bitmask) & (1 << (op)))
160 
161 /*
162  * Slice for absolute disk transaction.
163  */
164 #define	VD_SLICE_NONE		0xFF
165 
166 /*
167  * EFI disks do not have a slice 7. Actually that slice is used to represent
168  * the whole disk.
169  */
170 #define	VD_EFI_WD_SLICE	7
171 
172 /*
173  * Definitions of the various ways vds can export disk support to vdc.
174  */
175 typedef enum vd_disk_type {
176 	VD_DISK_TYPE_UNK = 0,		/* Unknown device type */
177 	VD_DISK_TYPE_SLICE,		/* slice in block device */
178 	VD_DISK_TYPE_DISK		/* entire disk (slice 2) */
179 } vd_disk_type_t;
180 
181 /*
182  * Definitions of the various disk label that vDisk supports.
183  */
184 typedef enum vd_disk_label {
185 	VD_DISK_LABEL_UNK = 0,		/* Unknown disk label */
186 	VD_DISK_LABEL_VTOC,		/* VTOC disk label */
187 	VD_DISK_LABEL_EFI		/* EFI disk label */
188 } vd_disk_label_t;
189 
190 /*
191  * vDisk Descriptor payload
192  */
193 typedef struct vd_dring_payload {
194 	uint64_t	req_id;		/* The request ID being processed */
195 	uint8_t		operation;	/* operation for server to perform */
196 	uint8_t		slice;		/* The disk slice being accessed */
197 	uint16_t	resv1;		/* padding */
198 	uint32_t	status;		/* "errno" of server operation */
199 	uint64_t	addr;		/* LP64	diskaddr_t (block I/O) */
200 	uint64_t	nbytes;		/* LP64 size_t */
201 	uint32_t	ncookies;	/* Number of cookies used */
202 	uint32_t	resv2;		/* padding */
203 
204 	ldc_mem_cookie_t	cookie[1];	/* variable sized array */
205 } vd_dring_payload_t;
206 
207 
208 /*
209  * vDisk Descriptor entry
210  */
211 typedef struct vd_dring_entry {
212 	vio_dring_entry_hdr_t		hdr;		/* common header */
213 	vd_dring_payload_t		payload;	/* disk specific data */
214 } vd_dring_entry_t;
215 
216 /*
217  * vDisk logical partition
218  */
219 typedef struct vd_slice {
220 	daddr_t	start;		/* block number of slice start */
221 	daddr_t nblocks;	/* number of blocks in the slice */
222 } vd_slice_t;
223 
224 
225 /*
226  * vDisk control operation structures
227  */
228 
229 /*
230  * vDisk geometry definition (VD_OP_GET_DISKGEOM and VD_OP_SET_DISKGEOM)
231  */
232 typedef struct vd_geom {
233 	uint16_t	ncyl;		/* number of data cylinders */
234 	uint16_t	acyl;		/* number of alternate cylinders */
235 	uint16_t	bcyl;		/* cyl offset for fixed head area */
236 	uint16_t	nhead;		/* number of heads */
237 	uint16_t	nsect;		/* number of data sectors per track */
238 	uint16_t	intrlv;		/* interleave factor */
239 	uint16_t	apc;		/* alternates per cyl (SCSI only) */
240 	uint16_t	rpm;		/* revolutions per minute */
241 	uint16_t	pcyl;		/* number of physical cylinders */
242 	uint16_t	write_reinstruct;	/* # sectors to skip, writes */
243 	uint16_t	read_reinstruct;	/* # sectors to skip, reads */
244 } vd_geom_t;
245 
246 
247 /*
248  * vDisk partition definition
249  */
250 typedef struct vd_partition {
251 	uint16_t	id_tag;		/* ID tag of partition */
252 	uint16_t	perm;		/* permission flags for partition */
253 	uint32_t	reserved;	/* padding */
254 	uint64_t	start;		/* block number of partition start */
255 	uint64_t	nblocks;	/* number of blocks in partition */
256 } vd_partition_t;
257 
258 /*
259  * vDisk VTOC definition (VD_OP_GET_VTOC and VD_OP_SET_VTOC)
260  */
261 #define	VD_VOLNAME_LEN		8	/* length of volume_name field */
262 #define	VD_ASCIILABEL_LEN	128	/* length of ascii_label field */
263 typedef struct vd_vtoc {
264 	char		volume_name[VD_VOLNAME_LEN];	/* volume name */
265 	uint16_t	sector_size;		/* sector size in bytes */
266 	uint16_t	num_partitions;		/* number of partitions */
267 	char		ascii_label[VD_ASCIILABEL_LEN];	/* ASCII label */
268 	vd_partition_t	partition[V_NUMPAR];	/* partition headers */
269 } vd_vtoc_t;
270 
271 
272 /*
273  * vDisk EFI definition (VD_OP_GET_EFI and VD_OP_SET_EFI)
274  */
275 typedef struct vd_efi {
276 	uint64_t	lba;		/* lba of the request */
277 	uint64_t	length;		/* length of data */
278 	char		data[1];	/* data of the request */
279 } vd_efi_t;
280 
281 
282 /*
283  * vDisk DEVID definition (VD_OP_GET_DEVID)
284  */
285 #define	VD_DEVID_SIZE(l)	(sizeof (vd_devid_t) - 1 + l)
286 #define	VD_DEVID_DEFAULT_LEN	128
287 
288 typedef struct vd_devid {
289 	uint16_t	reserved;	/* padding */
290 	uint16_t	type;		/* type of device id */
291 	uint32_t	length;		/* length the device id */
292 	char		id[1];		/* device id */
293 } vd_devid_t;
294 
295 /*
296  * vDisk CAPACITY definition (VD_OP_GET_CAPACITY)
297  */
298 typedef struct vd_capacity {
299 	uint32_t	vdisk_block_size;	/* block size in bytes */
300 	uint32_t	reserved;		/* reserved */
301 	uint64_t	vdisk_size;		/* disk size in blocks */
302 } vd_capacity_t;
303 
304 /* Identifier for unknown disk size */
305 #define	VD_SIZE_UNKNOWN		-1
306 
307 /*
308  * vDisk SCSI definition (VD_OP_SCSICMD)
309  */
310 typedef struct vd_scsi {
311 	uint8_t		cmd_status;	/* command completion status */
312 	uint8_t		sense_status;	/* sense command completion status */
313 	uint8_t		task_attribute;	/* task attribute */
314 	uint8_t		task_priority;	/* task priority */
315 	uint8_t		crn;		/* command reference number */
316 	uint8_t		reserved;	/* reserved */
317 	uint16_t	timeout;	/* command timeout */
318 	uint64_t	options;	/* options */
319 	uint64_t	cdb_len;	/* CDB data length */
320 	uint64_t	sense_len;	/* sense request length */
321 	uint64_t	datain_len;	/* data in buffer length */
322 	uint64_t	dataout_len;	/* data out buffer length */
323 	char		data[1];	/* data (CDB, sense, data in/out */
324 } vd_scsi_t;
325 
326 /* Minimum size of the vd_scsi structure */
327 #define	VD_SCSI_SIZE	(sizeof (vd_scsi_t) - sizeof (uint64_t))
328 
329 /*
330  * Macros to access data buffers in a vd_scsi structure. When using these
331  * macros, the vd_scsi structure needs to be populated with the sizes of
332  * data buffers allocated in the structure.
333  */
334 #define	VD_SCSI_DATA_CDB(vscsi)		\
335 	((union scsi_cdb *)(uintptr_t)((vscsi)->data))
336 
337 #define	VD_SCSI_DATA_SENSE(vscsi) 	\
338 	((struct scsi_extended_sense *)(uintptr_t)((vscsi)->data + \
339 	    P2ROUNDUP((vscsi)->cdb_len, sizeof (uint64_t))))
340 
341 #define	VD_SCSI_DATA_IN(vscsi)		\
342 	((uintptr_t)((vscsi)->data +	\
343 	    P2ROUNDUP((vscsi)->cdb_len, sizeof (uint64_t)) + 	\
344 	    P2ROUNDUP((vscsi)->sense_len, sizeof (uint64_t))))
345 
346 #define	VD_SCSI_DATA_OUT(vscsi)		\
347 	((uintptr_t)((vscsi)->data +	\
348 	    P2ROUNDUP((vscsi)->cdb_len, sizeof (uint64_t)) + 	\
349 	    P2ROUNDUP((vscsi)->sense_len, sizeof (uint64_t)) + 	\
350 	    P2ROUNDUP((vscsi)->datain_len, sizeof (uint64_t))))
351 
352 /* vDisk SCSI task attribute */
353 #define	VD_SCSI_TASK_SIMPLE	0x01	/* simple task */
354 #define	VD_SCSI_TASK_ORDERED	0x02	/* ordered task */
355 #define	VD_SCSI_TASK_HQUEUE	0x03	/* head of queue task */
356 #define	VD_SCSI_TASK_ACA	0x04	/* ACA task */
357 
358 /* vDisk SCSI options */
359 #define	VD_SCSI_OPT_CRN		0x01	/* request has a CRN */
360 #define	VD_SCSI_OPT_NORETRY	0x02	/* do not attempt any retry */
361 
362 /*
363  * Copy the contents of a vd_geom_t to the contents of a dk_geom struct
364  */
365 #define	VD_GEOM2DK_GEOM(vd_geom, dk_geom)				\
366 {									\
367 	bzero((dk_geom), sizeof (*(dk_geom)));				\
368 	(dk_geom)->dkg_ncyl		= (vd_geom)->ncyl;		\
369 	(dk_geom)->dkg_acyl		= (vd_geom)->acyl;		\
370 	(dk_geom)->dkg_bcyl		= (vd_geom)->bcyl;		\
371 	(dk_geom)->dkg_nhead		= (vd_geom)->nhead;		\
372 	(dk_geom)->dkg_nsect		= (vd_geom)->nsect;		\
373 	(dk_geom)->dkg_intrlv		= (vd_geom)->intrlv;		\
374 	(dk_geom)->dkg_apc		= (vd_geom)->apc;		\
375 	(dk_geom)->dkg_rpm		= (vd_geom)->rpm;		\
376 	(dk_geom)->dkg_pcyl		= (vd_geom)->pcyl;		\
377 	(dk_geom)->dkg_write_reinstruct	= (vd_geom)->write_reinstruct;	\
378 	(dk_geom)->dkg_read_reinstruct	= (vd_geom)->read_reinstruct;	\
379 }
380 
381 /*
382  * Copy the contents of a vd_vtoc_t to the contents of a vtoc struct
383  */
384 #define	VD_VTOC2VTOC(vd_vtoc, vtoc)					\
385 {									\
386 	bzero((vtoc), sizeof (*(vtoc)));				\
387 	bcopy((vd_vtoc)->volume_name, (vtoc)->v_volume,			\
388 	    MIN(sizeof ((vd_vtoc)->volume_name),			\
389 		sizeof ((vtoc)->v_volume)));				\
390 	bcopy((vd_vtoc)->ascii_label, (vtoc)->v_asciilabel,		\
391 	    MIN(sizeof ((vd_vtoc)->ascii_label),			\
392 		sizeof ((vtoc)->v_asciilabel)));			\
393 	(vtoc)->v_sanity	= VTOC_SANE;				\
394 	(vtoc)->v_version	= V_VERSION;				\
395 	(vtoc)->v_sectorsz	= (vd_vtoc)->sector_size;		\
396 	(vtoc)->v_nparts	= (vd_vtoc)->num_partitions;		\
397 	for (int i = 0; i < (vd_vtoc)->num_partitions; i++) {		\
398 		(vtoc)->v_part[i].p_tag	= (vd_vtoc)->partition[i].id_tag; \
399 		(vtoc)->v_part[i].p_flag = (vd_vtoc)->partition[i].perm; \
400 		(vtoc)->v_part[i].p_start = (vd_vtoc)->partition[i].start; \
401 		(vtoc)->v_part[i].p_size = (vd_vtoc)->partition[i].nblocks; \
402 	}								\
403 }
404 
405 /*
406  * Copy the contents of a dk_geom struct to the contents of a vd_geom_t
407  */
408 #define	DK_GEOM2VD_GEOM(dk_geom, vd_geom)				\
409 {									\
410 	bzero((vd_geom), sizeof (*(vd_geom)));				\
411 	(vd_geom)->ncyl			= (dk_geom)->dkg_ncyl;		\
412 	(vd_geom)->acyl			= (dk_geom)->dkg_acyl;		\
413 	(vd_geom)->bcyl			= (dk_geom)->dkg_bcyl;		\
414 	(vd_geom)->nhead		= (dk_geom)->dkg_nhead;		\
415 	(vd_geom)->nsect		= (dk_geom)->dkg_nsect;		\
416 	(vd_geom)->intrlv		= (dk_geom)->dkg_intrlv;	\
417 	(vd_geom)->apc			= (dk_geom)->dkg_apc;		\
418 	(vd_geom)->rpm			= (dk_geom)->dkg_rpm;		\
419 	(vd_geom)->pcyl			= (dk_geom)->dkg_pcyl;		\
420 	(vd_geom)->write_reinstruct	= (dk_geom)->dkg_write_reinstruct; \
421 	(vd_geom)->read_reinstruct	= (dk_geom)->dkg_read_reinstruct; \
422 }
423 
424 /*
425  * Copy the contents of a vtoc struct to the contents of a vd_vtoc_t
426  */
427 #define	VTOC2VD_VTOC(vtoc, vd_vtoc)					\
428 {									\
429 	bzero((vd_vtoc), sizeof (*(vd_vtoc)));				\
430 	bcopy((vtoc)->v_volume, (vd_vtoc)->volume_name,			\
431 	    MIN(sizeof ((vtoc)->v_volume),				\
432 		sizeof ((vd_vtoc)->volume_name)));			\
433 	bcopy((vtoc)->v_asciilabel, (vd_vtoc)->ascii_label,		\
434 	    MIN(sizeof ((vtoc)->v_asciilabel),				\
435 		sizeof ((vd_vtoc)->ascii_label)));			\
436 	(vd_vtoc)->sector_size			= (vtoc)->v_sectorsz;	\
437 	(vd_vtoc)->num_partitions		= (vtoc)->v_nparts;	\
438 	for (int i = 0; i < (vtoc)->v_nparts; i++) {			\
439 		(vd_vtoc)->partition[i].id_tag	= (vtoc)->v_part[i].p_tag; \
440 		(vd_vtoc)->partition[i].perm	= (vtoc)->v_part[i].p_flag; \
441 		(vd_vtoc)->partition[i].start	= (vtoc)->v_part[i].p_start; \
442 		(vd_vtoc)->partition[i].nblocks	= (vtoc)->v_part[i].p_size; \
443 	}								\
444 }
445 
446 /*
447  * Copy the contents of a vd_efi_t to the contents of a dk_efi_t.
448  * Note that (dk_efi)->dki_data and (vd_efi)->data should be correctly
449  * initialized prior to using this macro.
450  */
451 #define	VD_EFI2DK_EFI(vd_efi, dk_efi)					\
452 {									\
453 	(dk_efi)->dki_lba	= (vd_efi)->lba;			\
454 	(dk_efi)->dki_length	= (vd_efi)->length;			\
455 	bcopy((vd_efi)->data, (dk_efi)->dki_data, (dk_efi)->dki_length); \
456 }
457 
458 /*
459  * Copy the contents of dk_efi_t to the contents of vd_efi_t.
460  * Note that (dk_efi)->dki_data and (vd_efi)->data should be correctly
461  * initialized prior to using this macro.
462  */
463 #define	DK_EFI2VD_EFI(dk_efi, vd_efi)					\
464 {									\
465 	(vd_efi)->lba		= (dk_efi)->dki_lba;			\
466 	(vd_efi)->length	= (dk_efi)->dki_length;			\
467 	bcopy((dk_efi)->dki_data, (vd_efi)->data, (vd_efi)->length);	\
468 }
469 
470 #define	VD_MEDIATYPE2DK_MEDIATYPE(mt)					\
471 	((mt) == VD_MEDIA_FIXED ? DK_FIXED_DISK :			\
472 	    (mt) == VD_MEDIA_CD ? DK_CDROM :				\
473 	    (mt) == VD_MEDIA_DVD ? DK_DVDROM :				\
474 	    DK_UNKNOWN)
475 
476 #define	DK_MEDIATYPE2VD_MEDIATYPE(mt)					\
477 	((mt) == DK_REMOVABLE_DISK ? VD_MEDIA_FIXED :			\
478 	    (mt) == DK_MO_ERASABLE ? VD_MEDIA_FIXED :			\
479 	    (mt) == DK_MO_WRITEONCE ? VD_MEDIA_FIXED :			\
480 	    (mt) == DK_AS_MO ? VD_MEDIA_FIXED :				\
481 	    (mt) == DK_CDROM ? VD_MEDIA_CD :				\
482 	    (mt) == DK_CDR ? VD_MEDIA_CD :				\
483 	    (mt) == DK_CDRW ? VD_MEDIA_CD :				\
484 	    (mt) == DK_DVDROM ? VD_MEDIA_DVD :				\
485 	    (mt) == DK_DVDR ? VD_MEDIA_DVD :				\
486 	    (mt) == DK_DVDRAM ? VD_MEDIA_DVD :				\
487 	    (mt) == DK_FIXED_DISK ? VD_MEDIA_FIXED :			\
488 	    (mt) == DK_FLOPPY ? VD_MEDIA_FIXED :			\
489 	    (mt) == DK_ZIP ? VD_MEDIA_FIXED :				\
490 	    (mt) == DK_JAZ ? VD_MEDIA_FIXED :				\
491 	    VD_MEDIA_FIXED)
492 
493 /*
494  * Hooks for EFI support
495  */
496 
497 /*
498  * The EFI alloc_and_read() function will use some ioctls to get EFI data
499  * but the device reference we will use is different depending if the command
500  * is issued from the vDisk server side (vds) or from the vDisk client side
501  * (vdc). The vd_efi_dev structure is filled by vdc/vds to indicate the ioctl
502  * function to call back and to provide information about the virtual disk.
503  */
504 typedef int (*vd_efi_ioctl_func)(void *, int, uintptr_t);
505 
506 typedef	struct vd_efi_dev {
507 	void *vdisk;			/* opaque pointer to the vdisk */
508 	size_t block_size;		/* vdisk block size */
509 	size_t disk_size;		/* vdisk size in blocks */
510 	vd_efi_ioctl_func vdisk_ioctl;	/* vdisk ioctl function */
511 } vd_efi_dev_t;
512 
513 #define	VD_EFI_DEV_SET(efi_dev, vdsk, ioctl)		\
514 	(efi_dev).vdisk = vdsk;				\
515 	(efi_dev).vdisk_ioctl = ioctl;			\
516 	(efi_dev).block_size = (vdsk)->block_size;	\
517 	(efi_dev).disk_size = (vdsk)->vdisk_size;
518 
519 
520 int vd_efi_alloc_and_read(vd_efi_dev_t *dev, efi_gpt_t **gpt, efi_gpe_t **gpe);
521 void vd_efi_free(vd_efi_dev_t *dev, efi_gpt_t *gpt, efi_gpe_t *gpe);
522 
523 /*
524  * Macros to update the I/O statistics kstat consumed by iostat(1m).
525  */
526 
527 /*
528  * Given a pointer to the instance private data of a vDisk driver (vd),
529  * the type of operation and the number of bytes read/written, this macro
530  * updates the I/O statistics in the kstat.
531  */
532 #define	VD_UPDATE_IO_STATS(vd, op, len)					\
533 	{								\
534 		ASSERT((vd) != NULL);					\
535 		ASSERT(MUTEX_HELD(&(vd)->lock));			\
536 		ASSERT(((op) == VD_OP_BREAD) || ((op) == VD_OP_BWRITE));\
537 		if ((vd)->io_stats != NULL) { 				\
538 			kstat_io_t *kip = KSTAT_IO_PTR((vd)->io_stats);	\
539 			if ((op) == VD_OP_BREAD) {			\
540 				kip->reads++;				\
541 				kip->nread += (len);			\
542 			} else {					\
543 				kip->writes++;				\
544 				kip->nwritten += (len);			\
545 			}						\
546 		}							\
547 	}
548 
549 /*
550  * These wrapper macros take a pointer to the I/O statistics kstat and
551  * update the queue length statistics. These are 'safe' wrappers which
552  * check to see if the kstat was created when the vDisk instance was
553  * added (i.e. is not NULL).
554  */
555 #define	VD_KSTAT_WAITQ_ENTER(vd)					\
556 	if ((vd)->io_stats != NULL) {					\
557 		ASSERT(MUTEX_HELD(&(vd)->lock));			\
558 		kstat_waitq_enter(KSTAT_IO_PTR((vd)->io_stats));	\
559 	}
560 
561 #define	VD_KSTAT_WAITQ_EXIT(vd)						\
562 	if ((vd)->io_stats != NULL) {					\
563 		ASSERT(MUTEX_HELD(&(vd)->lock));			\
564 		kstat_waitq_exit(KSTAT_IO_PTR((vd)->io_stats));		\
565 	}
566 
567 #define	VD_KSTAT_WAITQ_TO_RUNQ(vd)					\
568 	if ((vd)->io_stats != NULL) {					\
569 		ASSERT(MUTEX_HELD(&(vd)->lock));			\
570 		kstat_waitq_to_runq(KSTAT_IO_PTR((vd)->io_stats));	\
571 	}
572 
573 #define	VD_KSTAT_RUNQ_ENTER(vd)						\
574 	if ((vd)->io_stats != NULL) {					\
575 		ASSERT(MUTEX_HELD(&(vd)->lock));			\
576 		kstat_runq_enter(KSTAT_IO_PTR((vd)->io_stats));		\
577 	}
578 
579 #define	VD_KSTAT_RUNQ_EXIT(vd)						\
580 	if ((vd)->io_stats != NULL) {					\
581 		ASSERT(MUTEX_HELD(&(vd)->lock));			\
582 		kstat_runq_exit(KSTAT_IO_PTR((vd)->io_stats));		\
583 	}
584 
585 /*
586  * Given a pointer to the instance private data of a vDisk driver (vd) and
587  * the name of the error stats entry we wish to update, increment that value
588  */
589 #define	VD_UPDATE_ERR_STATS(vd, stat_entry)				\
590 {									\
591 	ASSERT((vd) != NULL);						\
592 	ASSERT(MUTEX_HELD(&(vd)->lock));				\
593 	if ((vd)->err_stats != NULL) {					\
594 		vd_err_stats_t	*stp;					\
595 		stp = (vd_err_stats_t *)(vd)->err_stats->ks_data;	\
596 		stp->stat_entry.value.ui32++;				\
597 	}								\
598 }
599 
600 /* Structure to record vDisk error statistics */
601 typedef struct vd_err_stats {
602 	struct kstat_named	vd_softerrs;	/* Softerrs */
603 	struct kstat_named	vd_transerrs;	/* Transport errs */
604 	struct kstat_named	vd_protoerrs;	/* VIO Protocol errs */
605 	struct kstat_named	vd_vid;		/* Vendor ID */
606 	struct kstat_named	vd_pid;		/* Product ID */
607 	struct kstat_named	vd_capacity;	/* Capacity of the disk */
608 } vd_err_stats_t;
609 
610 
611 #ifdef	__cplusplus
612 }
613 #endif
614 
615 #endif	/* _VDSK_COMMON_H */
616