xref: /illumos-gate/usr/src/uts/sun4u/cherrystone/os/cherrystone.c (revision b6805bf78d2bbbeeaea8909a05623587b42d58b3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/param.h>
28 #include <sys/systm.h>
29 #include <sys/sunddi.h>
30 #include <sys/esunddi.h>
31 #include <sys/sunndi.h>
32 #include <sys/ddi.h>
33 #include <sys/modctl.h>
34 #include <sys/sysmacros.h>
35 #include <sys/note.h>
36 
37 #include <sys/platform_module.h>
38 #include <sys/errno.h>
39 #include <sys/i2c/clients/i2c_client.h>
40 #include <sys/cherrystone.h>
41 #include <sys/machsystm.h>
42 #include <sys/promif.h>
43 #include <vm/page.h>
44 #include <sys/memnode.h>
45 #include <vm/vm_dep.h>
46 
47 /* Cherrystone Keyswitch Information */
48 #define	CHERRY_KEY_POLL_PORT	3
49 #define	CHERRY_KEY_POLL_BIT	2
50 #define	CHERRY_KEY_POLL_INTVL	10
51 
52 #define	SHARED_PCF8584_PATH "/pci@9,700000/ebus@1/i2c@1,2e/nvram@4,a4"
53 static dev_info_t *shared_pcf8584_dip;
54 static kmutex_t cherry_pcf8584_mutex;
55 
56 static	boolean_t	key_locked_bit;
57 static	clock_t		keypoll_timeout_hz;
58 
59 /*
60  * Table that maps memory slices to a specific memnode.
61  */
62 int slice_to_memnode[CHERRYSTONE_MAX_SLICE];
63 
64 /*
65  * For software memory interleaving support.
66  */
67 static void update_mem_bounds(int, int, int, uint64_t, uint64_t);
68 
69 static uint64_t
70 slice_table[CHERRYSTONE_SBD_SLOTS][CHERRYSTONE_CPUS_PER_BOARD]
71 		[CHERRYSTONE_BANKS_PER_MC][2];
72 
73 #define	SLICE_PA	0
74 #define	SLICE_SPAN	1
75 
76 /* Function prototypes */
77 int (*p2get_mem_unum)(int, uint64_t, char *, int, int *);
78 
79 int (*cherry_ssc050_get_port_bit) (dev_info_t *, int, int, uint8_t *, int);
80 extern	void (*abort_seq_handler)();
81 
82 static	int cherry_dev_search(dev_info_t *, void *);
83 static	void keyswitch_poll(void *);
84 static	void cherry_abort_seq_handler(char *msg);
85 
86 /* Function definitions from this point forward. */
87 
88 int
89 set_platform_tsb_spares()
90 {
91 	return (0);
92 }
93 
94 void
95 startup_platform(void)
96 {
97 	/*
98 	 * Disable an active h/w watchdog timer
99 	 * upon exit to OBP.
100 	 */
101 	extern int disable_watchdog_on_exit;
102 	disable_watchdog_on_exit = 1;
103 
104 	mutex_init(&cherry_pcf8584_mutex, NULL, NULL, NULL);
105 }
106 
107 #pragma weak mmu_init_large_pages
108 
109 void
110 set_platform_defaults(void)
111 {
112 	extern void mmu_init_large_pages(size_t);
113 
114 	if ((mmu_page_sizes == max_mmu_page_sizes) &&
115 	    (mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
116 		if (&mmu_init_large_pages)
117 			mmu_init_large_pages(mmu_ism_pagesize);
118 	}
119 }
120 
121 void
122 load_platform_modules(void)
123 {
124 	if (modload("drv", "pmc") < 0) {
125 		cmn_err(CE_NOTE, "pmc driver failed to load");
126 	}
127 }
128 
129 void
130 load_platform_drivers(void)
131 {
132 	char		**drv;
133 	dev_info_t	*i2cnexus_dip;
134 	dev_info_t	*keysw_dip = NULL;
135 
136 	static char	*boot_time_drivers[] = {
137 		"todds1287",
138 		"mc-us3",
139 		"ssc050",
140 		NULL
141 	};
142 
143 	for (drv = boot_time_drivers; *drv; drv++) {
144 		if (i_ddi_attach_hw_nodes(*drv) != DDI_SUCCESS)
145 			cmn_err(CE_WARN, "Failed to install \"%s\" driver.",
146 			    *drv);
147 	}
148 
149 	/*
150 	 * mc-us3 and ssc050 must stay loaded for plat_get_mem_unum()
151 	 * and keyswitch_poll()
152 	 */
153 	(void) ddi_hold_driver(ddi_name_to_major("mc-us3"));
154 	(void) ddi_hold_driver(ddi_name_to_major("ssc050"));
155 
156 	/* Gain access into the ssc050_get_port function */
157 	cherry_ssc050_get_port_bit = (int (*) (dev_info_t *, int, int,
158 	    uint8_t *, int)) modgetsymvalue("ssc050_get_port_bit", 0);
159 	if (cherry_ssc050_get_port_bit == NULL) {
160 		cmn_err(CE_WARN, "cannot find ssc050_get_port_bit");
161 		return;
162 	}
163 
164 	e_ddi_walk_driver("i2c-ssc050", cherry_dev_search, (void *)&keysw_dip);
165 	ASSERT(keysw_dip != NULL);
166 
167 	/*
168 	 * prevent detach of i2c-ssc050
169 	 */
170 	e_ddi_hold_devi(keysw_dip);
171 
172 	keypoll_timeout_hz = drv_usectohz(10 * MICROSEC);
173 	keyswitch_poll(keysw_dip);
174 	abort_seq_handler = cherry_abort_seq_handler;
175 
176 	/*
177 	 * Figure out which pcf8584_dip is shared with OBP for the nvram
178 	 * device, so the lock can be acquired.
179 	 */
180 
181 	i2cnexus_dip = e_ddi_hold_devi_by_path(SHARED_PCF8584_PATH, 0);
182 
183 	ASSERT(i2cnexus_dip != NULL);
184 	shared_pcf8584_dip = ddi_get_parent(i2cnexus_dip);
185 
186 	ndi_hold_devi(shared_pcf8584_dip);
187 	ndi_rele_devi(i2cnexus_dip);
188 }
189 
190 static int
191 cherry_dev_search(dev_info_t *dip, void *arg)
192 {
193 	int		*dev_regs; /* Info about where the device is. */
194 	uint_t		len;
195 	int		err;
196 
197 	if (strcmp(ddi_binding_name(dip), "i2c-ssc050") != 0)
198 		return (DDI_WALK_CONTINUE);
199 
200 	err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
201 	    DDI_PROP_DONTPASS, "reg", &dev_regs, &len);
202 	if (err != DDI_PROP_SUCCESS) {
203 		return (DDI_WALK_CONTINUE);
204 	}
205 	/*
206 	 * regs[0] contains the bus number and regs[1]
207 	 * contains the device address of the i2c device.
208 	 * 0x82 is the device address of the i2c device
209 	 * from which  the key switch position is read.
210 	 */
211 	if (dev_regs[0] == 0 && dev_regs[1] == 0x82) {
212 		*((dev_info_t **)arg) = dip;
213 		ddi_prop_free(dev_regs);
214 		return (DDI_WALK_TERMINATE);
215 	}
216 	ddi_prop_free(dev_regs);
217 	return (DDI_WALK_CONTINUE);
218 }
219 
220 static void
221 keyswitch_poll(void *arg)
222 {
223 	dev_info_t	*dip = arg;
224 	uchar_t	port_byte;
225 	int	port = CHERRY_KEY_POLL_PORT;
226 	int	bit = CHERRY_KEY_POLL_BIT;
227 	int	err;
228 
229 	err = cherry_ssc050_get_port_bit(dip, port, bit,
230 	    &port_byte, I2C_NOSLEEP);
231 	if (err != 0) {
232 		cmn_err(CE_WARN, "keyswitch polling disabled: "
233 		    "errno=%d while reading ssc050", err);
234 		return;
235 	}
236 
237 	key_locked_bit = (boolean_t)((port_byte & 0x1));
238 	(void) timeout(keyswitch_poll, (caddr_t)dip, keypoll_timeout_hz);
239 }
240 
241 static void
242 cherry_abort_seq_handler(char *msg)
243 {
244 	if (key_locked_bit == 0)
245 		cmn_err(CE_CONT, "KEY in LOCKED position, "
246 		    "ignoring debug enter sequence");
247 	else  {
248 		debug_enter(msg);
249 	}
250 }
251 
252 
253 /*ARGSUSED*/
254 int
255 plat_cpu_poweron(struct cpu *cp)
256 {
257 	return (ENOTSUP);	/* not supported on this platform */
258 }
259 
260 /*ARGSUSED*/
261 int
262 plat_cpu_poweroff(struct cpu *cp)
263 {
264 	return (ENOTSUP);	/* not supported on this platform */
265 }
266 
267 /*
268  * Given a pfn, return the board and beginning/end of the page's
269  * memory controller's address range.
270  */
271 static int
272 plat_discover_slice(pfn_t pfn, pfn_t *first, pfn_t *last)
273 {
274 	int bd, cpu, bank;
275 
276 	for (bd = 0; bd < CHERRYSTONE_SBD_SLOTS; bd++) {
277 		for (cpu = 0; cpu < CHERRYSTONE_CPUS_PER_BOARD; cpu++) {
278 			for (bank = 0; bank < CHERRYSTONE_BANKS_PER_MC;
279 			    bank++) {
280 				uint64_t *slice = slice_table[bd][cpu][bank];
281 				uint64_t base = btop(slice[SLICE_PA]);
282 				uint64_t len = btop(slice[SLICE_SPAN]);
283 				if (len && pfn >= base && pfn < (base + len)) {
284 					*first = base;
285 					*last = base + len - 1;
286 					return (bd);
287 				}
288 			}
289 		}
290 	}
291 	panic("plat_discover_slice: no slice for pfn 0x%lx\n", pfn);
292 	/* NOTREACHED */
293 }
294 
295 /*ARGSUSED*/
296 void
297 plat_freelist_process(int mnode)
298 {}
299 
300 /*
301  * Called for each board/cpu/PA range detected in plat_fill_mc().
302  */
303 static void
304 update_mem_bounds(int boardid, int cpuid, int bankid,
305 	uint64_t base, uint64_t size)
306 {
307 	uint64_t	end;
308 	int		mnode;
309 
310 	slice_table[boardid][cpuid][bankid][SLICE_PA] = base;
311 	slice_table[boardid][cpuid][bankid][SLICE_SPAN] = size;
312 
313 	end = base + size - 1;
314 
315 	/*
316 	 * First see if this board already has a memnode associated
317 	 * with it.  If not, see if this slice has a memnode.  This
318 	 * covers the cases where a single slice covers multiple
319 	 * boards (cross-board interleaving) and where a single
320 	 * board has multiple slices (1+GB DIMMs).
321 	 */
322 	if ((mnode = plat_lgrphand_to_mem_node(boardid)) == -1) {
323 		if ((mnode = slice_to_memnode[PA_2_SLICE(base)]) == -1)
324 			mnode = mem_node_alloc();
325 
326 		ASSERT(mnode >= 0);
327 		ASSERT(mnode < MAX_MEM_NODES);
328 		plat_assign_lgrphand_to_mem_node(boardid, mnode);
329 	}
330 
331 	base = P2ALIGN(base, (1ul << PA_SLICE_SHIFT));
332 
333 	while (base < end) {
334 		slice_to_memnode[PA_2_SLICE(base)] = mnode;
335 		base += (1ul << PA_SLICE_SHIFT);
336 	}
337 }
338 
339 /*
340  * Dynamically detect memory slices in the system by decoding
341  * the cpu memory decoder registers at boot time.
342  */
343 void
344 plat_fill_mc(pnode_t nodeid)
345 {
346 	uint64_t	mc_addr, saf_addr;
347 	uint64_t	mc_decode[CHERRYSTONE_BANKS_PER_MC];
348 	uint64_t	base, size;
349 	uint64_t	saf_mask;
350 	uint64_t	offset;
351 	uint32_t	regs[4];
352 	int		len;
353 	int		local_mc;
354 	int		portid;
355 	int		boardid;
356 	int		cpuid;
357 	int		i;
358 
359 	if ((prom_getprop(nodeid, "portid", (caddr_t)&portid) < 0) ||
360 	    (portid == -1))
361 		return;
362 
363 	/*
364 	 * Decode the board number from the MC portid.  Assumes
365 	 * portid == safari agentid.
366 	 */
367 	boardid = CHERRYSTONE_GETSLOT(portid);
368 	cpuid = CHERRYSTONE_GETSID(portid);
369 
370 	/*
371 	 * The "reg" property returns 4 32-bit values. The first two are
372 	 * combined to form a 64-bit address.  The second two are for a
373 	 * 64-bit size, but we don't actually need to look at that value.
374 	 */
375 	len = prom_getproplen(nodeid, "reg");
376 	if (len != (sizeof (uint32_t) * 4)) {
377 		prom_printf("Warning: malformed 'reg' property\n");
378 		return;
379 	}
380 	if (prom_getprop(nodeid, "reg", (caddr_t)regs) < 0)
381 		return;
382 	mc_addr = ((uint64_t)regs[0]) << 32;
383 	mc_addr |= (uint64_t)regs[1];
384 
385 	/*
386 	 * Figure out whether the memory controller we are examining
387 	 * belongs to this CPU or a different one.
388 	 */
389 	saf_addr = lddsafaddr(8);
390 	saf_mask = (uint64_t)SAF_MASK;
391 	if ((mc_addr & saf_mask) == saf_addr)
392 		local_mc = 1;
393 	else
394 		local_mc = 0;
395 
396 	for (i = 0; i < CHERRYSTONE_BANKS_PER_MC; i++) {
397 		/*
398 		 * Memory decode masks are at offsets 0x10 - 0x28.
399 		 */
400 		offset = 0x10 + (i << 3);
401 
402 		/*
403 		 * If the memory controller is local to this CPU, we use
404 		 * the special ASI to read the decode registers.
405 		 * Otherwise, we load the values from a magic address in
406 		 * I/O space.
407 		 */
408 		if (local_mc)
409 			mc_decode[i] = lddmcdecode(offset);
410 		else
411 			mc_decode[i] = lddphysio(mc_addr | offset);
412 
413 		/*
414 		 * If the upper bit is set, we have a valid mask
415 		 */
416 		if ((int64_t)mc_decode[i] < 0) {
417 			/*
418 			 * The memory decode register is a bitmask field,
419 			 * so we can decode that into both a base and
420 			 * a span.
421 			 */
422 			base = MC_BASE(mc_decode[i]) << PHYS2UM_SHIFT;
423 			size = MC_UK2SPAN(mc_decode[i]);
424 			update_mem_bounds(boardid, cpuid, i, base, size);
425 		}
426 	}
427 }
428 
429 /*
430  * This routine is run midway through the boot process.  By the time we get
431  * here, we know about all the active CPU boards in the system, and we have
432  * extracted information about each board's memory from the memory
433  * controllers.  We have also figured out which ranges of memory will be
434  * assigned to which memnodes, so we walk the slice table to build the table
435  * of memnodes.
436  */
437 /* ARGSUSED */
438 void
439 plat_build_mem_nodes(prom_memlist_t *list, size_t  nelems)
440 {
441 	int	slice;
442 	pfn_t	basepfn;
443 	pgcnt_t npgs;
444 
445 	mem_node_pfn_shift = PFN_SLICE_SHIFT;
446 	mem_node_physalign = (1ull << PA_SLICE_SHIFT);
447 	npgs = 1ull << PFN_SLICE_SHIFT;
448 
449 	for (slice = 0; slice < CHERRYSTONE_MAX_SLICE; slice++) {
450 		if (slice_to_memnode[slice] == -1)
451 			continue;
452 		basepfn = (uint64_t)slice << PFN_SLICE_SHIFT;
453 		mem_node_add_slice(basepfn, basepfn + npgs - 1);
454 	}
455 }
456 
457 
458 
459 /*
460  * Cherrystone support for lgroups.
461  *
462  * On Cherrystone, an lgroup platform handle == slot number.
463  *
464  * Mappings between lgroup handles and memnodes are managed
465  * in addition to mappings between memory slices and memnodes
466  * to support cross-board interleaving as well as multiple
467  * slices per board (e.g. >1GB DIMMs). The initial mapping
468  * of memnodes to lgroup handles is determined at boot time.
469  */
470 
471 int
472 plat_pfn_to_mem_node(pfn_t pfn)
473 {
474 	return (slice_to_memnode[PFN_2_SLICE(pfn)]);
475 }
476 
477 /*
478  * Return the platform handle for the lgroup containing the given CPU
479  *
480  * For Cherrystone, lgroup platform handle == slot/board number
481  */
482 lgrp_handle_t
483 plat_lgrp_cpu_to_hand(processorid_t id)
484 {
485 	return (CHERRYSTONE_GETSLOT(id));
486 }
487 
488 /*
489  * Platform specific lgroup initialization
490  */
491 void
492 plat_lgrp_init(void)
493 {
494 	int i;
495 
496 	/*
497 	 * Initialize lookup tables to invalid values so we catch
498 	 * any illegal use of them.
499 	 */
500 	for (i = 0; i < CHERRYSTONE_MAX_SLICE; i++) {
501 		slice_to_memnode[i] = -1;
502 	}
503 }
504 
505 /*
506  * Return latency between "from" and "to" lgroups
507  *
508  * This latency number can only be used for relative comparison
509  * between lgroups on the running system, cannot be used across platforms,
510  * and may not reflect the actual latency.  It is platform and implementation
511  * specific, so platform gets to decide its value.  It would be nice if the
512  * number was at least proportional to make comparisons more meaningful though.
513  * NOTE: The numbers below are supposed to be load latencies for uncached
514  * memory divided by 10.
515  */
516 int
517 plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
518 {
519 	/*
520 	 * Return min remote latency when there are more than two lgroups
521 	 * (root and child) and getting latency between two different lgroups
522 	 * or root is involved
523 	 */
524 	if (lgrp_optimizations() && (from != to ||
525 	    from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
526 		return (21);
527 	else
528 		return (19);
529 }
530 
531 /*
532  * No platform drivers on this platform
533  */
534 char *platform_module_list[] = {
535 	(char *)0
536 };
537 
538 /*ARGSUSED*/
539 void
540 plat_tod_fault(enum tod_fault_type tod_bad)
541 {
542 }
543 
544 /*ARGSUSED*/
545 int
546 plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
547     int flt_in_memory, ushort_t flt_status, char *buf, int buflen, int *lenp)
548 {
549 	if (flt_in_memory && (p2get_mem_unum != NULL))
550 		return (p2get_mem_unum(synd_code, P2ALIGN(flt_addr, 8),
551 		    buf, buflen, lenp));
552 	else
553 		return (ENOTSUP);
554 }
555 
556 /*
557  * This platform hook gets called from mc_add_mem_unum_label() in the mc-us3
558  * driver giving each platform the opportunity to add platform
559  * specific label information to the unum for ECC error logging purposes.
560  */
561 void
562 plat_add_mem_unum_label(char *unum, int mcid, int bank, int dimm)
563 {
564 	_NOTE(ARGUNUSED(bank, dimm))
565 
566 	char board = CHERRYSTONE_GETSLOT_LABEL(mcid);
567 	char old_unum[UNUM_NAMLEN];
568 
569 	(void) strcpy(old_unum, unum);
570 	(void) snprintf(unum, UNUM_NAMLEN, "Slot %c: %s", board, old_unum);
571 }
572 
573 int
574 plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
575 {
576 	char board = CHERRYSTONE_GETSLOT_LABEL(cpuid);
577 
578 	if (snprintf(buf, buflen, "Slot %c", board) >= buflen) {
579 		return (ENOSPC);
580 	} else {
581 		*lenp = strlen(buf);
582 		return (0);
583 	}
584 }
585 
586 /*
587  * Cherrystone's BBC pcf8584 controller is used by both OBP and the OS's i2c
588  * drivers.  The 'eeprom' command executes OBP code to handle property requests.
589  * If eeprom didn't do this, or if the controllers were partitioned so that all
590  * devices on a given controller were driven by either OBP or the OS, this
591  * wouldn't be necessary.
592  *
593  * Note that getprop doesn't have the same issue as it reads from cached
594  * memory in OBP.
595  */
596 
597 /*
598  * Common locking enter code
599  */
600 void
601 plat_setprop_enter(void)
602 {
603 	mutex_enter(&cherry_pcf8584_mutex);
604 }
605 
606 /*
607  * Common locking exit code
608  */
609 void
610 plat_setprop_exit(void)
611 {
612 	mutex_exit(&cherry_pcf8584_mutex);
613 }
614 
615 /*
616  * Called by pcf8584 driver
617  */
618 void
619 plat_shared_i2c_enter(dev_info_t *i2cnexus_dip)
620 {
621 	if (i2cnexus_dip == shared_pcf8584_dip) {
622 		plat_setprop_enter();
623 	}
624 }
625 
626 /*
627  * Called by pcf8584 driver
628  */
629 void
630 plat_shared_i2c_exit(dev_info_t *i2cnexus_dip)
631 {
632 	if (i2cnexus_dip == shared_pcf8584_dip) {
633 		plat_setprop_exit();
634 	}
635 }
636