xref: /illumos-gate/usr/src/uts/intel/io/vmm/vmm_sol_dev.c (revision 8b0687e22a8de32264ac01083e07099701686911)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 /* This file is dual-licensed; see usr/src/contrib/bhyve/LICENSE */
12 
13 /*
14  * Copyright 2015 Pluribus Networks Inc.
15  * Copyright 2019 Joyent, Inc.
16  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
17  * Copyright 2023 Oxide Computer Company
18  */
19 
20 #include <sys/types.h>
21 #include <sys/conf.h>
22 #include <sys/cpuvar.h>
23 #include <sys/ioccom.h>
24 #include <sys/stat.h>
25 #include <sys/vmsystm.h>
26 #include <sys/ddi.h>
27 #include <sys/mkdev.h>
28 #include <sys/sunddi.h>
29 #include <sys/fs/dv_node.h>
30 #include <sys/cpuset.h>
31 #include <sys/id_space.h>
32 #include <sys/fs/sdev_plugin.h>
33 #include <sys/smt.h>
34 #include <sys/kstat.h>
35 
36 #include <sys/kernel.h>
37 #include <sys/hma.h>
38 #include <sys/x86_archext.h>
39 #include <x86/apicreg.h>
40 
41 #include <sys/vmm.h>
42 #include <sys/vmm_kernel.h>
43 #include <sys/vmm_instruction_emul.h>
44 #include <sys/vmm_dev.h>
45 #include <sys/vmm_impl.h>
46 #include <sys/vmm_drv.h>
47 #include <sys/vmm_vm.h>
48 #include <sys/vmm_reservoir.h>
49 
50 #include <vm/seg_dev.h>
51 
52 #include "io/ppt.h"
53 #include "io/vatpic.h"
54 #include "io/vioapic.h"
55 #include "io/vrtc.h"
56 #include "io/vhpet.h"
57 #include "io/vpmtmr.h"
58 #include "vmm_lapic.h"
59 #include "vmm_stat.h"
60 #include "vmm_util.h"
61 
62 /*
63  * Locking details:
64  *
65  * Driver-wide data (vmmdev_*) , including HMA and sdev registration, is
66  * protected by vmmdev_mtx.  The list of vmm_softc_t instances and related data
67  * (vmm_*) are protected by vmm_mtx.  Actions requiring both locks must acquire
68  * vmmdev_mtx before vmm_mtx.  The sdev plugin functions must not attempt to
69  * acquire vmmdev_mtx, as they could deadlock with plugin unregistration.
70  */
71 
72 static kmutex_t		vmmdev_mtx;
73 static dev_info_t	*vmmdev_dip;
74 static hma_reg_t	*vmmdev_hma_reg;
75 static uint_t		vmmdev_hma_ref;
76 static sdev_plugin_hdl_t vmmdev_sdev_hdl;
77 
78 static kmutex_t		vmm_mtx;
79 static list_t		vmm_list;
80 static id_space_t	*vmm_minors;
81 static void		*vmm_statep;
82 
83 /*
84  * Until device emulation in bhyve had been adequately scrutinized and tested,
85  * there was (justified) concern that unusual or corrupt device state payloads
86  * could crash the host when loaded via the vmm-data interface.
87  *
88  * Now that those concerns have been mitigated, this protection is loosened to
89  * default-allow, but the switch is left in place, in case there is a need to
90  * once again clamp down on vmm-data writes.
91  */
92 int		vmm_allow_state_writes = 1;
93 
94 static const char *vmmdev_hvm_name = "bhyve";
95 
96 /* For sdev plugin (/dev) */
97 #define	VMM_SDEV_ROOT "/dev/vmm"
98 
99 /* From uts/intel/io/vmm/intel/vmx.c */
100 extern int vmx_x86_supported(const char **);
101 
102 /* Holds and hooks from drivers external to vmm */
103 struct vmm_hold {
104 	list_node_t	vmh_node;
105 	vmm_softc_t	*vmh_sc;
106 	boolean_t	vmh_release_req;
107 	uint_t		vmh_ioport_hook_cnt;
108 };
109 
110 struct vmm_lease {
111 	list_node_t		vml_node;
112 	struct vm		*vml_vm;
113 	vm_client_t		*vml_vmclient;
114 	boolean_t		vml_expired;
115 	boolean_t		vml_break_deferred;
116 	boolean_t		(*vml_expire_func)(void *);
117 	void			*vml_expire_arg;
118 	struct vmm_hold		*vml_hold;
119 };
120 
121 /* Options for vmm_destroy_locked */
122 typedef enum vmm_destroy_opts {
123 	VDO_DEFAULT		= 0,
124 	/*
125 	 * Indicate that zone-specific-data associated with this VM not be
126 	 * cleaned up as part of the destroy.  Skipping ZSD clean-up is
127 	 * necessary when VM is being destroyed as part of zone destruction,
128 	 * when said ZSD is already being cleaned up.
129 	 */
130 	VDO_NO_CLEAN_ZSD	= (1 << 0),
131 	/*
132 	 * Attempt to wait for VM destruction to complete.  This is opt-in,
133 	 * since there are many normal conditions which could lead to
134 	 * destruction being stalled pending other clean-up.
135 	 */
136 	VDO_ATTEMPT_WAIT	= (1 << 1),
137 } vmm_destroy_opts_t;
138 
139 static void vmm_hma_release(void);
140 static int vmm_destroy_locked(vmm_softc_t *, vmm_destroy_opts_t, bool *);
141 static int vmm_drv_block_hook(vmm_softc_t *, boolean_t);
142 static void vmm_lease_block(vmm_softc_t *);
143 static void vmm_lease_unblock(vmm_softc_t *);
144 static int vmm_kstat_alloc(vmm_softc_t *, minor_t, const cred_t *);
145 static void vmm_kstat_init(vmm_softc_t *);
146 static void vmm_kstat_fini(vmm_softc_t *);
147 
148 /*
149  * The 'devmem' hack:
150  *
151  * On native FreeBSD, bhyve consumers are allowed to create 'devmem' segments
152  * in the vm which appear with their own name related to the vm under /dev.
153  * Since this would be a hassle from an sdev perspective and would require a
154  * new cdev interface (or complicate the existing one), we choose to implement
155  * this in a different manner.  Direct access to the underlying vm memory
156  * segments is exposed by placing them in a range of offsets beyond the normal
157  * guest memory space.  Userspace can query the appropriate offset to mmap()
158  * for a given segment-id with the VM_DEVMEM_GETOFFSET ioctl.
159  */
160 
161 static vmm_devmem_entry_t *
162 vmmdev_devmem_find(vmm_softc_t *sc, int segid)
163 {
164 	vmm_devmem_entry_t *ent = NULL;
165 	list_t *dl = &sc->vmm_devmem_list;
166 
167 	for (ent = list_head(dl); ent != NULL; ent = list_next(dl, ent)) {
168 		if (ent->vde_segid == segid) {
169 			return (ent);
170 		}
171 	}
172 	return (NULL);
173 }
174 
175 static int
176 vmmdev_get_memseg(vmm_softc_t *sc, struct vm_memseg *mseg)
177 {
178 	int error;
179 	bool sysmem;
180 
181 	error = vm_get_memseg(sc->vmm_vm, mseg->segid, &mseg->len, &sysmem,
182 	    NULL);
183 	if (error || mseg->len == 0)
184 		return (error);
185 
186 	if (!sysmem) {
187 		vmm_devmem_entry_t *de;
188 
189 		de = vmmdev_devmem_find(sc, mseg->segid);
190 		if (de != NULL) {
191 			(void) strlcpy(mseg->name, de->vde_name,
192 			    sizeof (mseg->name));
193 		}
194 	} else {
195 		bzero(mseg->name, sizeof (mseg->name));
196 	}
197 
198 	return (error);
199 }
200 
201 static int
202 vmmdev_devmem_create(vmm_softc_t *sc, struct vm_memseg *mseg, const char *name)
203 {
204 	off_t map_offset;
205 	vmm_devmem_entry_t *entry;
206 
207 	if (list_is_empty(&sc->vmm_devmem_list)) {
208 		map_offset = VM_DEVMEM_START;
209 	} else {
210 		entry = list_tail(&sc->vmm_devmem_list);
211 		map_offset = entry->vde_off + entry->vde_len;
212 		if (map_offset < entry->vde_off) {
213 			/* Do not tolerate overflow */
214 			return (ERANGE);
215 		}
216 		/*
217 		 * XXXJOY: We could choose to search the list for duplicate
218 		 * names and toss an error.  Since we're using the offset
219 		 * method for now, it does not make much of a difference.
220 		 */
221 	}
222 
223 	entry = kmem_zalloc(sizeof (*entry), KM_SLEEP);
224 	entry->vde_segid = mseg->segid;
225 	entry->vde_len = mseg->len;
226 	entry->vde_off = map_offset;
227 	(void) strlcpy(entry->vde_name, name, sizeof (entry->vde_name));
228 	list_insert_tail(&sc->vmm_devmem_list, entry);
229 
230 	return (0);
231 }
232 
233 static boolean_t
234 vmmdev_devmem_segid(vmm_softc_t *sc, off_t off, off_t len, int *segidp,
235     off_t *map_offp)
236 {
237 	list_t *dl = &sc->vmm_devmem_list;
238 	vmm_devmem_entry_t *de = NULL;
239 	const off_t map_end = off + len;
240 
241 	VERIFY(off >= VM_DEVMEM_START);
242 
243 	if (map_end < off) {
244 		/* No match on overflow */
245 		return (B_FALSE);
246 	}
247 
248 	for (de = list_head(dl); de != NULL; de = list_next(dl, de)) {
249 		const off_t item_end = de->vde_off + de->vde_len;
250 
251 		if (de->vde_off <= off && item_end >= map_end) {
252 			*segidp = de->vde_segid;
253 			*map_offp = off - de->vde_off;
254 			return (B_TRUE);
255 		}
256 	}
257 	return (B_FALSE);
258 }
259 
260 /*
261  * When an instance is being destroyed, the devmem list of named memory objects
262  * can be torn down, as no new mappings are allowed.
263  */
264 static void
265 vmmdev_devmem_purge(vmm_softc_t *sc)
266 {
267 	vmm_devmem_entry_t *entry;
268 
269 	while ((entry = list_remove_head(&sc->vmm_devmem_list)) != NULL) {
270 		kmem_free(entry, sizeof (*entry));
271 	}
272 }
273 
274 static int
275 vmmdev_alloc_memseg(vmm_softc_t *sc, struct vm_memseg *mseg)
276 {
277 	int error;
278 	bool sysmem = true;
279 
280 	if (VM_MEMSEG_NAME(mseg)) {
281 		sysmem = false;
282 	}
283 	error = vm_alloc_memseg(sc->vmm_vm, mseg->segid, mseg->len, sysmem);
284 
285 	if (error == 0) {
286 		/*
287 		 * Rather than create a whole fresh device from which userspace
288 		 * can mmap this segment, instead make it available at an
289 		 * offset above where the main guest memory resides.
290 		 */
291 		error = vmmdev_devmem_create(sc, mseg, mseg->name);
292 		if (error != 0) {
293 			vm_free_memseg(sc->vmm_vm, mseg->segid);
294 		}
295 	}
296 	return (error);
297 }
298 
299 /*
300  * Resource Locking and Exclusion
301  *
302  * Much of bhyve depends on key portions of VM state, such as the guest memory
303  * map, to remain unchanged while the guest is running.  As ported from
304  * FreeBSD, the initial strategy for this resource exclusion hinged on gating
305  * access to the instance vCPUs.  Threads acting on a single vCPU, like those
306  * performing the work of actually running the guest in VMX/SVM, would lock
307  * only that vCPU during ioctl() entry.  For ioctls which would change VM-wide
308  * state, all of the vCPUs would be first locked, ensuring that the
309  * operation(s) could complete without any other threads stumbling into
310  * intermediate states.
311  *
312  * This approach is largely effective for bhyve.  Common operations, such as
313  * running the vCPUs, steer clear of lock contention.  The model begins to
314  * break down for operations which do not occur in the context of a specific
315  * vCPU.  LAPIC MSI delivery, for example, may be initiated from a worker
316  * thread in the bhyve process.  In order to properly protect those vCPU-less
317  * operations from encountering invalid states, additional locking is required.
318  * This was solved by forcing those operations to lock the VM_MAXCPU-1 vCPU.
319  * It does mean that class of operations will be serialized on locking the
320  * specific vCPU and that instances sized at VM_MAXCPU will potentially see
321  * undue contention on the VM_MAXCPU-1 vCPU.
322  *
323  * In order to address the shortcomings of this model, the concept of a
324  * read/write lock has been added to bhyve.  Operations which change
325  * fundamental aspects of a VM (such as the memory map) must acquire the write
326  * lock, which also implies locking all of the vCPUs and waiting for all read
327  * lock holders to release.  While it increases the cost and waiting time for
328  * those few operations, it allows most hot-path operations on the VM (which
329  * depend on its configuration remaining stable) to occur with minimal locking.
330  *
331  * Consumers of the Driver API (see below) are a special case when it comes to
332  * this locking, since they may hold a read lock via the drv_lease mechanism
333  * for an extended period of time.  Rather than forcing those consumers to
334  * continuously poll for a write lock attempt, the lease system forces them to
335  * provide a release callback to trigger their clean-up (and potential later
336  * reacquisition) of the read lock.
337  */
338 
339 static void
340 vcpu_lock_one(vmm_softc_t *sc, int vcpu)
341 {
342 	ASSERT(vcpu >= 0 && vcpu < VM_MAXCPU);
343 
344 	/*
345 	 * Since this state transition is utilizing from_idle=true, it should
346 	 * not fail, but rather block until it can be successful.
347 	 */
348 	VERIFY0(vcpu_set_state(sc->vmm_vm, vcpu, VCPU_FROZEN, true));
349 }
350 
351 static void
352 vcpu_unlock_one(vmm_softc_t *sc, int vcpu)
353 {
354 	ASSERT(vcpu >= 0 && vcpu < VM_MAXCPU);
355 
356 	VERIFY3U(vcpu_get_state(sc->vmm_vm, vcpu, NULL), ==, VCPU_FROZEN);
357 	VERIFY0(vcpu_set_state(sc->vmm_vm, vcpu, VCPU_IDLE, false));
358 }
359 
360 static void
361 vmm_read_lock(vmm_softc_t *sc)
362 {
363 	rw_enter(&sc->vmm_rwlock, RW_READER);
364 }
365 
366 static void
367 vmm_read_unlock(vmm_softc_t *sc)
368 {
369 	rw_exit(&sc->vmm_rwlock);
370 }
371 
372 static void
373 vmm_write_lock(vmm_softc_t *sc)
374 {
375 	int maxcpus;
376 
377 	/* First lock all the vCPUs */
378 	maxcpus = vm_get_maxcpus(sc->vmm_vm);
379 	for (int vcpu = 0; vcpu < maxcpus; vcpu++) {
380 		vcpu_lock_one(sc, vcpu);
381 	}
382 
383 	/*
384 	 * Block vmm_drv leases from being acquired or held while the VM write
385 	 * lock is held.
386 	 */
387 	vmm_lease_block(sc);
388 
389 	rw_enter(&sc->vmm_rwlock, RW_WRITER);
390 	/*
391 	 * For now, the 'maxcpus' value for an instance is fixed at the
392 	 * compile-time constant of VM_MAXCPU at creation.  If this changes in
393 	 * the future, allowing for dynamic vCPU resource sizing, acquisition
394 	 * of the write lock will need to be wary of such changes.
395 	 */
396 	VERIFY(maxcpus == vm_get_maxcpus(sc->vmm_vm));
397 }
398 
399 static void
400 vmm_write_unlock(vmm_softc_t *sc)
401 {
402 	int maxcpus;
403 
404 	/* Allow vmm_drv leases to be acquired once write lock is dropped */
405 	vmm_lease_unblock(sc);
406 
407 	/*
408 	 * The VM write lock _must_ be released from the same thread it was
409 	 * acquired in, unlike the read lock.
410 	 */
411 	VERIFY(rw_write_held(&sc->vmm_rwlock));
412 	rw_exit(&sc->vmm_rwlock);
413 
414 	/* Unlock all the vCPUs */
415 	maxcpus = vm_get_maxcpus(sc->vmm_vm);
416 	for (int vcpu = 0; vcpu < maxcpus; vcpu++) {
417 		vcpu_unlock_one(sc, vcpu);
418 	}
419 }
420 
421 static int
422 vmmdev_do_ioctl(vmm_softc_t *sc, int cmd, intptr_t arg, int md,
423     cred_t *credp, int *rvalp)
424 {
425 	int error = 0, vcpu = -1;
426 	void *datap = (void *)arg;
427 	enum vm_lock_type {
428 		LOCK_NONE = 0,
429 		LOCK_VCPU,
430 		LOCK_READ_HOLD,
431 		LOCK_WRITE_HOLD
432 	} lock_type = LOCK_NONE;
433 
434 	/* Acquire any exclusion resources needed for the operation. */
435 	switch (cmd) {
436 	case VM_RUN:
437 	case VM_GET_REGISTER:
438 	case VM_SET_REGISTER:
439 	case VM_GET_SEGMENT_DESCRIPTOR:
440 	case VM_SET_SEGMENT_DESCRIPTOR:
441 	case VM_GET_REGISTER_SET:
442 	case VM_SET_REGISTER_SET:
443 	case VM_INJECT_EXCEPTION:
444 	case VM_GET_CAPABILITY:
445 	case VM_SET_CAPABILITY:
446 	case VM_PPTDEV_MSI:
447 	case VM_PPTDEV_MSIX:
448 	case VM_SET_X2APIC_STATE:
449 	case VM_GLA2GPA:
450 	case VM_GLA2GPA_NOFAULT:
451 	case VM_ACTIVATE_CPU:
452 	case VM_SET_INTINFO:
453 	case VM_GET_INTINFO:
454 	case VM_RESTART_INSTRUCTION:
455 	case VM_SET_KERNEMU_DEV:
456 	case VM_GET_KERNEMU_DEV:
457 	case VM_RESET_CPU:
458 	case VM_GET_RUN_STATE:
459 	case VM_SET_RUN_STATE:
460 	case VM_GET_FPU:
461 	case VM_SET_FPU:
462 	case VM_GET_CPUID:
463 	case VM_SET_CPUID:
464 	case VM_LEGACY_CPUID:
465 		/*
466 		 * Copy in the ID of the vCPU chosen for this operation.
467 		 * Since a nefarious caller could update their struct between
468 		 * this locking and when the rest of the ioctl data is copied
469 		 * in, it is _critical_ that this local 'vcpu' variable be used
470 		 * rather than the in-struct one when performing the ioctl.
471 		 */
472 		if (ddi_copyin(datap, &vcpu, sizeof (vcpu), md)) {
473 			return (EFAULT);
474 		}
475 		if (vcpu < 0 || vcpu >= vm_get_maxcpus(sc->vmm_vm)) {
476 			return (EINVAL);
477 		}
478 		vcpu_lock_one(sc, vcpu);
479 		lock_type = LOCK_VCPU;
480 		break;
481 
482 	case VM_REINIT:
483 	case VM_BIND_PPTDEV:
484 	case VM_UNBIND_PPTDEV:
485 	case VM_MAP_PPTDEV_MMIO:
486 	case VM_UNMAP_PPTDEV_MMIO:
487 	case VM_ALLOC_MEMSEG:
488 	case VM_MMAP_MEMSEG:
489 	case VM_MUNMAP_MEMSEG:
490 	case VM_WRLOCK_CYCLE:
491 	case VM_PMTMR_LOCATE:
492 	case VM_PAUSE:
493 	case VM_RESUME:
494 		vmm_write_lock(sc);
495 		lock_type = LOCK_WRITE_HOLD;
496 		break;
497 
498 	case VM_GET_MEMSEG:
499 	case VM_MMAP_GETNEXT:
500 	case VM_LAPIC_IRQ:
501 	case VM_INJECT_NMI:
502 	case VM_IOAPIC_ASSERT_IRQ:
503 	case VM_IOAPIC_DEASSERT_IRQ:
504 	case VM_IOAPIC_PULSE_IRQ:
505 	case VM_LAPIC_MSI:
506 	case VM_LAPIC_LOCAL_IRQ:
507 	case VM_GET_X2APIC_STATE:
508 	case VM_RTC_READ:
509 	case VM_RTC_WRITE:
510 	case VM_RTC_SETTIME:
511 	case VM_RTC_GETTIME:
512 	case VM_PPTDEV_DISABLE_MSIX:
513 	case VM_DEVMEM_GETOFFSET:
514 	case VM_TRACK_DIRTY_PAGES:
515 	case VM_NPT_OPERATION:
516 		vmm_read_lock(sc);
517 		lock_type = LOCK_READ_HOLD;
518 		break;
519 
520 	case VM_DATA_READ:
521 	case VM_DATA_WRITE:
522 		if (ddi_copyin(datap, &vcpu, sizeof (vcpu), md)) {
523 			return (EFAULT);
524 		}
525 		if (vcpu == -1) {
526 			/* Access data for VM-wide devices */
527 			vmm_write_lock(sc);
528 			lock_type = LOCK_WRITE_HOLD;
529 		} else if (vcpu >= 0 && vcpu < vm_get_maxcpus(sc->vmm_vm)) {
530 			/* Access data associated with a specific vCPU */
531 			vcpu_lock_one(sc, vcpu);
532 			lock_type = LOCK_VCPU;
533 		} else {
534 			return (EINVAL);
535 		}
536 		break;
537 
538 	case VM_GET_GPA_PMAP:
539 	case VM_IOAPIC_PINCOUNT:
540 	case VM_SUSPEND:
541 	case VM_DESC_FPU_AREA:
542 	case VM_SET_AUTODESTRUCT:
543 	case VM_DESTROY_SELF:
544 	case VM_DESTROY_PENDING:
545 	case VM_VCPU_BARRIER:
546 	default:
547 		break;
548 	}
549 
550 	/* Execute the primary logic for the ioctl. */
551 	switch (cmd) {
552 	case VM_RUN: {
553 		struct vm_entry entry;
554 
555 		if (ddi_copyin(datap, &entry, sizeof (entry), md)) {
556 			error = EFAULT;
557 			break;
558 		}
559 
560 		if (!(curthread->t_schedflag & TS_VCPU))
561 			smt_mark_as_vcpu();
562 
563 		error = vm_run(sc->vmm_vm, vcpu, &entry);
564 
565 		/*
566 		 * Unexpected states in vm_run() are expressed through positive
567 		 * errno-oriented return values.  VM states which expect further
568 		 * processing in userspace (necessary context via exitinfo) are
569 		 * expressed through negative return values.  For the time being
570 		 * a return value of 0 is not expected from vm_run().
571 		 */
572 		ASSERT(error != 0);
573 		if (error < 0) {
574 			const struct vm_exit *vme;
575 			void *outp = entry.exit_data;
576 
577 			error = 0;
578 			vme = vm_exitinfo(sc->vmm_vm, vcpu);
579 			if (ddi_copyout(vme, outp, sizeof (*vme), md)) {
580 				error = EFAULT;
581 			}
582 		}
583 		break;
584 	}
585 	case VM_SUSPEND: {
586 		struct vm_suspend vmsuspend;
587 
588 		if (ddi_copyin(datap, &vmsuspend, sizeof (vmsuspend), md)) {
589 			error = EFAULT;
590 			break;
591 		}
592 		error = vm_suspend(sc->vmm_vm, vmsuspend.how, vmsuspend.source);
593 		break;
594 	}
595 	case VM_REINIT: {
596 		struct vm_reinit reinit;
597 
598 		if (ddi_copyin(datap, &reinit, sizeof (reinit), md)) {
599 			error = EFAULT;
600 			break;
601 		}
602 		if ((error = vmm_drv_block_hook(sc, B_TRUE)) != 0) {
603 			/*
604 			 * The VM instance should be free of driver-attached
605 			 * hooks during the reinitialization process.
606 			 */
607 			break;
608 		}
609 		error = vm_reinit(sc->vmm_vm, reinit.flags);
610 		(void) vmm_drv_block_hook(sc, B_FALSE);
611 		break;
612 	}
613 	case VM_STAT_DESC: {
614 		struct vm_stat_desc statdesc;
615 
616 		if (ddi_copyin(datap, &statdesc, sizeof (statdesc), md)) {
617 			error = EFAULT;
618 			break;
619 		}
620 		error = vmm_stat_desc_copy(statdesc.index, statdesc.desc,
621 		    sizeof (statdesc.desc));
622 		if (error == 0 &&
623 		    ddi_copyout(&statdesc, datap, sizeof (statdesc), md)) {
624 			error = EFAULT;
625 			break;
626 		}
627 		break;
628 	}
629 	case VM_STATS_IOC: {
630 		struct vm_stats vmstats;
631 
632 		if (ddi_copyin(datap, &vmstats, sizeof (vmstats), md)) {
633 			error = EFAULT;
634 			break;
635 		}
636 		hrt2tv(gethrtime(), &vmstats.tv);
637 		error = vmm_stat_copy(sc->vmm_vm, vmstats.cpuid, vmstats.index,
638 		    nitems(vmstats.statbuf),
639 		    &vmstats.num_entries, vmstats.statbuf);
640 		if (error == 0 &&
641 		    ddi_copyout(&vmstats, datap, sizeof (vmstats), md)) {
642 			error = EFAULT;
643 			break;
644 		}
645 		break;
646 	}
647 
648 	case VM_PPTDEV_MSI: {
649 		struct vm_pptdev_msi pptmsi;
650 
651 		if (ddi_copyin(datap, &pptmsi, sizeof (pptmsi), md)) {
652 			error = EFAULT;
653 			break;
654 		}
655 		error = ppt_setup_msi(sc->vmm_vm, pptmsi.vcpu, pptmsi.pptfd,
656 		    pptmsi.addr, pptmsi.msg, pptmsi.numvec);
657 		break;
658 	}
659 	case VM_PPTDEV_MSIX: {
660 		struct vm_pptdev_msix pptmsix;
661 
662 		if (ddi_copyin(datap, &pptmsix, sizeof (pptmsix), md)) {
663 			error = EFAULT;
664 			break;
665 		}
666 		error = ppt_setup_msix(sc->vmm_vm, pptmsix.vcpu, pptmsix.pptfd,
667 		    pptmsix.idx, pptmsix.addr, pptmsix.msg,
668 		    pptmsix.vector_control);
669 		break;
670 	}
671 	case VM_PPTDEV_DISABLE_MSIX: {
672 		struct vm_pptdev pptdev;
673 
674 		if (ddi_copyin(datap, &pptdev, sizeof (pptdev), md)) {
675 			error = EFAULT;
676 			break;
677 		}
678 		error = ppt_disable_msix(sc->vmm_vm, pptdev.pptfd);
679 		break;
680 	}
681 	case VM_MAP_PPTDEV_MMIO: {
682 		struct vm_pptdev_mmio pptmmio;
683 
684 		if (ddi_copyin(datap, &pptmmio, sizeof (pptmmio), md)) {
685 			error = EFAULT;
686 			break;
687 		}
688 		error = ppt_map_mmio(sc->vmm_vm, pptmmio.pptfd, pptmmio.gpa,
689 		    pptmmio.len, pptmmio.hpa);
690 		break;
691 	}
692 	case VM_UNMAP_PPTDEV_MMIO: {
693 		struct vm_pptdev_mmio pptmmio;
694 
695 		if (ddi_copyin(datap, &pptmmio, sizeof (pptmmio), md)) {
696 			error = EFAULT;
697 			break;
698 		}
699 		error = ppt_unmap_mmio(sc->vmm_vm, pptmmio.pptfd, pptmmio.gpa,
700 		    pptmmio.len);
701 		break;
702 	}
703 	case VM_BIND_PPTDEV: {
704 		struct vm_pptdev pptdev;
705 
706 		if (ddi_copyin(datap, &pptdev, sizeof (pptdev), md)) {
707 			error = EFAULT;
708 			break;
709 		}
710 		error = vm_assign_pptdev(sc->vmm_vm, pptdev.pptfd);
711 		break;
712 	}
713 	case VM_UNBIND_PPTDEV: {
714 		struct vm_pptdev pptdev;
715 
716 		if (ddi_copyin(datap, &pptdev, sizeof (pptdev), md)) {
717 			error = EFAULT;
718 			break;
719 		}
720 		error = vm_unassign_pptdev(sc->vmm_vm, pptdev.pptfd);
721 		break;
722 	}
723 	case VM_GET_PPTDEV_LIMITS: {
724 		struct vm_pptdev_limits pptlimits;
725 
726 		if (ddi_copyin(datap, &pptlimits, sizeof (pptlimits), md)) {
727 			error = EFAULT;
728 			break;
729 		}
730 		error = ppt_get_limits(sc->vmm_vm, pptlimits.pptfd,
731 		    &pptlimits.msi_limit, &pptlimits.msix_limit);
732 		if (error == 0 &&
733 		    ddi_copyout(&pptlimits, datap, sizeof (pptlimits), md)) {
734 			error = EFAULT;
735 			break;
736 		}
737 		break;
738 	}
739 	case VM_INJECT_EXCEPTION: {
740 		struct vm_exception vmexc;
741 		if (ddi_copyin(datap, &vmexc, sizeof (vmexc), md)) {
742 			error = EFAULT;
743 			break;
744 		}
745 		error = vm_inject_exception(sc->vmm_vm, vcpu, vmexc.vector,
746 		    vmexc.error_code_valid != 0, vmexc.error_code,
747 		    vmexc.restart_instruction != 0);
748 		break;
749 	}
750 	case VM_INJECT_NMI: {
751 		struct vm_nmi vmnmi;
752 
753 		if (ddi_copyin(datap, &vmnmi, sizeof (vmnmi), md)) {
754 			error = EFAULT;
755 			break;
756 		}
757 		error = vm_inject_nmi(sc->vmm_vm, vmnmi.cpuid);
758 		break;
759 	}
760 	case VM_LAPIC_IRQ: {
761 		struct vm_lapic_irq vmirq;
762 
763 		if (ddi_copyin(datap, &vmirq, sizeof (vmirq), md)) {
764 			error = EFAULT;
765 			break;
766 		}
767 		error = lapic_intr_edge(sc->vmm_vm, vmirq.cpuid, vmirq.vector);
768 		break;
769 	}
770 	case VM_LAPIC_LOCAL_IRQ: {
771 		struct vm_lapic_irq vmirq;
772 
773 		if (ddi_copyin(datap, &vmirq, sizeof (vmirq), md)) {
774 			error = EFAULT;
775 			break;
776 		}
777 		error = lapic_set_local_intr(sc->vmm_vm, vmirq.cpuid,
778 		    vmirq.vector);
779 		break;
780 	}
781 	case VM_LAPIC_MSI: {
782 		struct vm_lapic_msi vmmsi;
783 
784 		if (ddi_copyin(datap, &vmmsi, sizeof (vmmsi), md)) {
785 			error = EFAULT;
786 			break;
787 		}
788 		error = lapic_intr_msi(sc->vmm_vm, vmmsi.addr, vmmsi.msg);
789 		break;
790 	}
791 
792 	case VM_IOAPIC_ASSERT_IRQ: {
793 		struct vm_ioapic_irq ioapic_irq;
794 
795 		if (ddi_copyin(datap, &ioapic_irq, sizeof (ioapic_irq), md)) {
796 			error = EFAULT;
797 			break;
798 		}
799 		error = vioapic_assert_irq(sc->vmm_vm, ioapic_irq.irq);
800 		break;
801 	}
802 	case VM_IOAPIC_DEASSERT_IRQ: {
803 		struct vm_ioapic_irq ioapic_irq;
804 
805 		if (ddi_copyin(datap, &ioapic_irq, sizeof (ioapic_irq), md)) {
806 			error = EFAULT;
807 			break;
808 		}
809 		error = vioapic_deassert_irq(sc->vmm_vm, ioapic_irq.irq);
810 		break;
811 	}
812 	case VM_IOAPIC_PULSE_IRQ: {
813 		struct vm_ioapic_irq ioapic_irq;
814 
815 		if (ddi_copyin(datap, &ioapic_irq, sizeof (ioapic_irq), md)) {
816 			error = EFAULT;
817 			break;
818 		}
819 		error = vioapic_pulse_irq(sc->vmm_vm, ioapic_irq.irq);
820 		break;
821 	}
822 	case VM_IOAPIC_PINCOUNT: {
823 		int pincount;
824 
825 		pincount = vioapic_pincount(sc->vmm_vm);
826 		if (ddi_copyout(&pincount, datap, sizeof (int), md)) {
827 			error = EFAULT;
828 			break;
829 		}
830 		break;
831 	}
832 	case VM_DESC_FPU_AREA: {
833 		struct vm_fpu_desc desc;
834 		void *buf = NULL;
835 
836 		if (ddi_copyin(datap, &desc, sizeof (desc), md)) {
837 			error = EFAULT;
838 			break;
839 		}
840 		if (desc.vfd_num_entries > 64) {
841 			error = EINVAL;
842 			break;
843 		}
844 		const size_t buf_sz = sizeof (struct vm_fpu_desc_entry) *
845 		    desc.vfd_num_entries;
846 		if (buf_sz != 0) {
847 			buf = kmem_zalloc(buf_sz, KM_SLEEP);
848 		}
849 
850 		/*
851 		 * For now, we are depending on vm_fpu_desc_entry and
852 		 * hma_xsave_state_desc_t having the same format.
853 		 */
854 		CTASSERT(sizeof (struct vm_fpu_desc_entry) ==
855 		    sizeof (hma_xsave_state_desc_t));
856 
857 		size_t req_size;
858 		const uint_t max_entries = hma_fpu_describe_xsave_state(
859 		    (hma_xsave_state_desc_t *)buf,
860 		    desc.vfd_num_entries,
861 		    &req_size);
862 
863 		desc.vfd_req_size = req_size;
864 		desc.vfd_num_entries = max_entries;
865 		if (buf_sz != 0) {
866 			if (ddi_copyout(buf, desc.vfd_entry_data, buf_sz, md)) {
867 				error = EFAULT;
868 			}
869 			kmem_free(buf, buf_sz);
870 		}
871 
872 		if (error == 0) {
873 			if (ddi_copyout(&desc, datap, sizeof (desc), md)) {
874 				error = EFAULT;
875 			}
876 		}
877 		break;
878 	}
879 	case VM_SET_AUTODESTRUCT: {
880 		/*
881 		 * Since this has to do with controlling the lifetime of the
882 		 * greater vmm_softc_t, the flag is protected by vmm_mtx, rather
883 		 * than the vcpu-centric or rwlock exclusion mechanisms.
884 		 */
885 		mutex_enter(&vmm_mtx);
886 		if (arg != 0) {
887 			sc->vmm_flags |= VMM_AUTODESTROY;
888 		} else {
889 			sc->vmm_flags &= ~VMM_AUTODESTROY;
890 		}
891 		mutex_exit(&vmm_mtx);
892 		break;
893 	}
894 	case VM_DESTROY_SELF: {
895 		bool hma_release = false;
896 
897 		/*
898 		 * Just like VMM_DESTROY_VM, but on the instance file descriptor
899 		 * itself, rather than having to perform a racy name lookup as
900 		 * part of the destroy process.
901 		 *
902 		 * Since vmm_destroy_locked() performs vCPU lock acquisition in
903 		 * order to kick the vCPUs out of guest context as part of any
904 		 * destruction, we do not need to worry about it ourself using
905 		 * the `lock_type` logic here.
906 		 */
907 		mutex_enter(&vmm_mtx);
908 		VERIFY0(vmm_destroy_locked(sc, VDO_DEFAULT, &hma_release));
909 		mutex_exit(&vmm_mtx);
910 		if (hma_release) {
911 			vmm_hma_release();
912 		}
913 		break;
914 	}
915 	case VM_DESTROY_PENDING: {
916 		/*
917 		 * If we have made it this far, then destruction of the instance
918 		 * has not been initiated.
919 		 */
920 		*rvalp = 0;
921 		break;
922 	}
923 
924 	case VM_ISA_ASSERT_IRQ: {
925 		struct vm_isa_irq isa_irq;
926 
927 		if (ddi_copyin(datap, &isa_irq, sizeof (isa_irq), md)) {
928 			error = EFAULT;
929 			break;
930 		}
931 		error = vatpic_assert_irq(sc->vmm_vm, isa_irq.atpic_irq);
932 		if (error == 0 && isa_irq.ioapic_irq != -1) {
933 			error = vioapic_assert_irq(sc->vmm_vm,
934 			    isa_irq.ioapic_irq);
935 		}
936 		break;
937 	}
938 	case VM_ISA_DEASSERT_IRQ: {
939 		struct vm_isa_irq isa_irq;
940 
941 		if (ddi_copyin(datap, &isa_irq, sizeof (isa_irq), md)) {
942 			error = EFAULT;
943 			break;
944 		}
945 		error = vatpic_deassert_irq(sc->vmm_vm, isa_irq.atpic_irq);
946 		if (error == 0 && isa_irq.ioapic_irq != -1) {
947 			error = vioapic_deassert_irq(sc->vmm_vm,
948 			    isa_irq.ioapic_irq);
949 		}
950 		break;
951 	}
952 	case VM_ISA_PULSE_IRQ: {
953 		struct vm_isa_irq isa_irq;
954 
955 		if (ddi_copyin(datap, &isa_irq, sizeof (isa_irq), md)) {
956 			error = EFAULT;
957 			break;
958 		}
959 		error = vatpic_pulse_irq(sc->vmm_vm, isa_irq.atpic_irq);
960 		if (error == 0 && isa_irq.ioapic_irq != -1) {
961 			error = vioapic_pulse_irq(sc->vmm_vm,
962 			    isa_irq.ioapic_irq);
963 		}
964 		break;
965 	}
966 	case VM_ISA_SET_IRQ_TRIGGER: {
967 		struct vm_isa_irq_trigger isa_irq_trigger;
968 
969 		if (ddi_copyin(datap, &isa_irq_trigger,
970 		    sizeof (isa_irq_trigger), md)) {
971 			error = EFAULT;
972 			break;
973 		}
974 		error = vatpic_set_irq_trigger(sc->vmm_vm,
975 		    isa_irq_trigger.atpic_irq, isa_irq_trigger.trigger);
976 		break;
977 	}
978 
979 	case VM_MMAP_GETNEXT: {
980 		struct vm_memmap mm;
981 
982 		if (ddi_copyin(datap, &mm, sizeof (mm), md)) {
983 			error = EFAULT;
984 			break;
985 		}
986 		error = vm_mmap_getnext(sc->vmm_vm, &mm.gpa, &mm.segid,
987 		    &mm.segoff, &mm.len, &mm.prot, &mm.flags);
988 		if (error == 0 && ddi_copyout(&mm, datap, sizeof (mm), md)) {
989 			error = EFAULT;
990 			break;
991 		}
992 		break;
993 	}
994 	case VM_MMAP_MEMSEG: {
995 		struct vm_memmap mm;
996 
997 		if (ddi_copyin(datap, &mm, sizeof (mm), md)) {
998 			error = EFAULT;
999 			break;
1000 		}
1001 		error = vm_mmap_memseg(sc->vmm_vm, mm.gpa, mm.segid, mm.segoff,
1002 		    mm.len, mm.prot, mm.flags);
1003 		break;
1004 	}
1005 	case VM_MUNMAP_MEMSEG: {
1006 		struct vm_munmap mu;
1007 
1008 		if (ddi_copyin(datap, &mu, sizeof (mu), md)) {
1009 			error = EFAULT;
1010 			break;
1011 		}
1012 		error = vm_munmap_memseg(sc->vmm_vm, mu.gpa, mu.len);
1013 		break;
1014 	}
1015 	case VM_ALLOC_MEMSEG: {
1016 		struct vm_memseg vmseg;
1017 
1018 		if (ddi_copyin(datap, &vmseg, sizeof (vmseg), md)) {
1019 			error = EFAULT;
1020 			break;
1021 		}
1022 		error = vmmdev_alloc_memseg(sc, &vmseg);
1023 		break;
1024 	}
1025 	case VM_GET_MEMSEG: {
1026 		struct vm_memseg vmseg;
1027 
1028 		if (ddi_copyin(datap, &vmseg, sizeof (vmseg), md)) {
1029 			error = EFAULT;
1030 			break;
1031 		}
1032 		error = vmmdev_get_memseg(sc, &vmseg);
1033 		if (error == 0 &&
1034 		    ddi_copyout(&vmseg, datap, sizeof (vmseg), md)) {
1035 			error = EFAULT;
1036 			break;
1037 		}
1038 		break;
1039 	}
1040 	case VM_GET_REGISTER: {
1041 		struct vm_register vmreg;
1042 
1043 		if (ddi_copyin(datap, &vmreg, sizeof (vmreg), md)) {
1044 			error = EFAULT;
1045 			break;
1046 		}
1047 		error = vm_get_register(sc->vmm_vm, vcpu, vmreg.regnum,
1048 		    &vmreg.regval);
1049 		if (error == 0 &&
1050 		    ddi_copyout(&vmreg, datap, sizeof (vmreg), md)) {
1051 			error = EFAULT;
1052 			break;
1053 		}
1054 		break;
1055 	}
1056 	case VM_SET_REGISTER: {
1057 		struct vm_register vmreg;
1058 
1059 		if (ddi_copyin(datap, &vmreg, sizeof (vmreg), md)) {
1060 			error = EFAULT;
1061 			break;
1062 		}
1063 		error = vm_set_register(sc->vmm_vm, vcpu, vmreg.regnum,
1064 		    vmreg.regval);
1065 		break;
1066 	}
1067 	case VM_SET_SEGMENT_DESCRIPTOR: {
1068 		struct vm_seg_desc vmsegd;
1069 
1070 		if (ddi_copyin(datap, &vmsegd, sizeof (vmsegd), md)) {
1071 			error = EFAULT;
1072 			break;
1073 		}
1074 		error = vm_set_seg_desc(sc->vmm_vm, vcpu, vmsegd.regnum,
1075 		    &vmsegd.desc);
1076 		break;
1077 	}
1078 	case VM_GET_SEGMENT_DESCRIPTOR: {
1079 		struct vm_seg_desc vmsegd;
1080 
1081 		if (ddi_copyin(datap, &vmsegd, sizeof (vmsegd), md)) {
1082 			error = EFAULT;
1083 			break;
1084 		}
1085 		error = vm_get_seg_desc(sc->vmm_vm, vcpu, vmsegd.regnum,
1086 		    &vmsegd.desc);
1087 		if (error == 0 &&
1088 		    ddi_copyout(&vmsegd, datap, sizeof (vmsegd), md)) {
1089 			error = EFAULT;
1090 			break;
1091 		}
1092 		break;
1093 	}
1094 	case VM_GET_REGISTER_SET: {
1095 		struct vm_register_set vrs;
1096 		int regnums[VM_REG_LAST];
1097 		uint64_t regvals[VM_REG_LAST];
1098 
1099 		if (ddi_copyin(datap, &vrs, sizeof (vrs), md)) {
1100 			error = EFAULT;
1101 			break;
1102 		}
1103 		if (vrs.count > VM_REG_LAST || vrs.count == 0) {
1104 			error = EINVAL;
1105 			break;
1106 		}
1107 		if (ddi_copyin(vrs.regnums, regnums,
1108 		    sizeof (int) * vrs.count, md)) {
1109 			error = EFAULT;
1110 			break;
1111 		}
1112 
1113 		error = 0;
1114 		for (uint_t i = 0; i < vrs.count && error == 0; i++) {
1115 			if (regnums[i] < 0) {
1116 				error = EINVAL;
1117 				break;
1118 			}
1119 			error = vm_get_register(sc->vmm_vm, vcpu, regnums[i],
1120 			    &regvals[i]);
1121 		}
1122 		if (error == 0 && ddi_copyout(regvals, vrs.regvals,
1123 		    sizeof (uint64_t) * vrs.count, md)) {
1124 			error = EFAULT;
1125 		}
1126 		break;
1127 	}
1128 	case VM_SET_REGISTER_SET: {
1129 		struct vm_register_set vrs;
1130 		int regnums[VM_REG_LAST];
1131 		uint64_t regvals[VM_REG_LAST];
1132 
1133 		if (ddi_copyin(datap, &vrs, sizeof (vrs), md)) {
1134 			error = EFAULT;
1135 			break;
1136 		}
1137 		if (vrs.count > VM_REG_LAST || vrs.count == 0) {
1138 			error = EINVAL;
1139 			break;
1140 		}
1141 		if (ddi_copyin(vrs.regnums, regnums,
1142 		    sizeof (int) * vrs.count, md)) {
1143 			error = EFAULT;
1144 			break;
1145 		}
1146 		if (ddi_copyin(vrs.regvals, regvals,
1147 		    sizeof (uint64_t) * vrs.count, md)) {
1148 			error = EFAULT;
1149 			break;
1150 		}
1151 
1152 		error = 0;
1153 		for (uint_t i = 0; i < vrs.count && error == 0; i++) {
1154 			/*
1155 			 * Setting registers in a set is not atomic, since a
1156 			 * failure in the middle of the set will cause a
1157 			 * bail-out and inconsistent register state.  Callers
1158 			 * should be wary of this.
1159 			 */
1160 			if (regnums[i] < 0) {
1161 				error = EINVAL;
1162 				break;
1163 			}
1164 			error = vm_set_register(sc->vmm_vm, vcpu, regnums[i],
1165 			    regvals[i]);
1166 		}
1167 		break;
1168 	}
1169 	case VM_RESET_CPU: {
1170 		struct vm_vcpu_reset vvr;
1171 
1172 		if (ddi_copyin(datap, &vvr, sizeof (vvr), md)) {
1173 			error = EFAULT;
1174 			break;
1175 		}
1176 		if (vvr.kind != VRK_RESET && vvr.kind != VRK_INIT) {
1177 			error = EINVAL;
1178 		}
1179 
1180 		error = vcpu_arch_reset(sc->vmm_vm, vcpu, vvr.kind == VRK_INIT);
1181 		break;
1182 	}
1183 	case VM_GET_RUN_STATE: {
1184 		struct vm_run_state vrs;
1185 
1186 		bzero(&vrs, sizeof (vrs));
1187 		error = vm_get_run_state(sc->vmm_vm, vcpu, &vrs.state,
1188 		    &vrs.sipi_vector);
1189 		if (error == 0) {
1190 			if (ddi_copyout(&vrs, datap, sizeof (vrs), md)) {
1191 				error = EFAULT;
1192 				break;
1193 			}
1194 		}
1195 		break;
1196 	}
1197 	case VM_SET_RUN_STATE: {
1198 		struct vm_run_state vrs;
1199 
1200 		if (ddi_copyin(datap, &vrs, sizeof (vrs), md)) {
1201 			error = EFAULT;
1202 			break;
1203 		}
1204 		error = vm_set_run_state(sc->vmm_vm, vcpu, vrs.state,
1205 		    vrs.sipi_vector);
1206 		break;
1207 	}
1208 	case VM_GET_FPU: {
1209 		struct vm_fpu_state req;
1210 		const size_t max_len = (PAGESIZE * 2);
1211 		void *kbuf;
1212 
1213 		if (ddi_copyin(datap, &req, sizeof (req), md)) {
1214 			error = EFAULT;
1215 			break;
1216 		}
1217 		if (req.len > max_len || req.len == 0) {
1218 			error = EINVAL;
1219 			break;
1220 		}
1221 		kbuf = kmem_zalloc(req.len, KM_SLEEP);
1222 		error = vm_get_fpu(sc->vmm_vm, vcpu, kbuf, req.len);
1223 		if (error == 0) {
1224 			if (ddi_copyout(kbuf, req.buf, req.len, md)) {
1225 				error = EFAULT;
1226 			}
1227 		}
1228 		kmem_free(kbuf, req.len);
1229 		break;
1230 	}
1231 	case VM_SET_FPU: {
1232 		struct vm_fpu_state req;
1233 		const size_t max_len = (PAGESIZE * 2);
1234 		void *kbuf;
1235 
1236 		if (ddi_copyin(datap, &req, sizeof (req), md)) {
1237 			error = EFAULT;
1238 			break;
1239 		}
1240 		if (req.len > max_len || req.len == 0) {
1241 			error = EINVAL;
1242 			break;
1243 		}
1244 		kbuf = kmem_alloc(req.len, KM_SLEEP);
1245 		if (ddi_copyin(req.buf, kbuf, req.len, md)) {
1246 			error = EFAULT;
1247 		} else {
1248 			error = vm_set_fpu(sc->vmm_vm, vcpu, kbuf, req.len);
1249 		}
1250 		kmem_free(kbuf, req.len);
1251 		break;
1252 	}
1253 	case VM_GET_CPUID: {
1254 		struct vm_vcpu_cpuid_config cfg;
1255 		struct vcpu_cpuid_entry *entries = NULL;
1256 
1257 		if (ddi_copyin(datap, &cfg, sizeof (cfg), md)) {
1258 			error = EFAULT;
1259 			break;
1260 		}
1261 		if (cfg.vvcc_nent > VMM_MAX_CPUID_ENTRIES) {
1262 			error = EINVAL;
1263 			break;
1264 		}
1265 
1266 		const size_t entries_size =
1267 		    cfg.vvcc_nent * sizeof (struct vcpu_cpuid_entry);
1268 		if (entries_size != 0) {
1269 			entries = kmem_zalloc(entries_size, KM_SLEEP);
1270 		}
1271 
1272 		vcpu_cpuid_config_t vm_cfg = {
1273 			.vcc_nent = cfg.vvcc_nent,
1274 			.vcc_entries = entries,
1275 		};
1276 		error = vm_get_cpuid(sc->vmm_vm, vcpu, &vm_cfg);
1277 
1278 		/*
1279 		 * Only attempt to copy out the resultant entries if we were
1280 		 * able to query them from the instance.  The flags and number
1281 		 * of entries are emitted regardless.
1282 		 */
1283 		cfg.vvcc_flags = vm_cfg.vcc_flags;
1284 		cfg.vvcc_nent = vm_cfg.vcc_nent;
1285 		if (entries != NULL) {
1286 			if (error == 0 && ddi_copyout(entries, cfg.vvcc_entries,
1287 			    entries_size, md) != 0) {
1288 				error = EFAULT;
1289 			}
1290 
1291 			kmem_free(entries, entries_size);
1292 		}
1293 
1294 		if (ddi_copyout(&cfg, datap, sizeof (cfg), md) != 0) {
1295 			error = EFAULT;
1296 		}
1297 		break;
1298 	}
1299 	case VM_SET_CPUID: {
1300 		struct vm_vcpu_cpuid_config cfg;
1301 		struct vcpu_cpuid_entry *entries = NULL;
1302 		size_t entries_size = 0;
1303 
1304 		if (ddi_copyin(datap, &cfg, sizeof (cfg), md)) {
1305 			error = EFAULT;
1306 			break;
1307 		}
1308 		if (cfg.vvcc_nent > VMM_MAX_CPUID_ENTRIES) {
1309 			error = EFBIG;
1310 			break;
1311 		}
1312 		if ((cfg.vvcc_flags & VCC_FLAG_LEGACY_HANDLING) != 0) {
1313 			/*
1314 			 * If we are being instructed to use "legacy" handling,
1315 			 * then no entries should be provided, since the static
1316 			 * in-kernel masking will be used.
1317 			 */
1318 			if (cfg.vvcc_nent != 0) {
1319 				error = EINVAL;
1320 				break;
1321 			}
1322 		} else if (cfg.vvcc_nent != 0) {
1323 			entries_size =
1324 			    cfg.vvcc_nent * sizeof (struct vcpu_cpuid_entry);
1325 			entries = kmem_alloc(entries_size, KM_SLEEP);
1326 
1327 			if (ddi_copyin(cfg.vvcc_entries, entries, entries_size,
1328 			    md) != 0) {
1329 				error = EFAULT;
1330 				kmem_free(entries, entries_size);
1331 				break;
1332 			}
1333 		}
1334 
1335 		vcpu_cpuid_config_t vm_cfg = {
1336 			.vcc_flags = cfg.vvcc_flags,
1337 			.vcc_nent = cfg.vvcc_nent,
1338 			.vcc_entries = entries,
1339 		};
1340 		error = vm_set_cpuid(sc->vmm_vm, vcpu, &vm_cfg);
1341 
1342 		if (entries != NULL) {
1343 			kmem_free(entries, entries_size);
1344 		}
1345 		break;
1346 	}
1347 	case VM_LEGACY_CPUID: {
1348 		struct vm_legacy_cpuid vlc;
1349 		if (ddi_copyin(datap, &vlc, sizeof (vlc), md)) {
1350 			error = EFAULT;
1351 			break;
1352 		}
1353 		vlc.vlc_vcpuid = vcpu;
1354 
1355 		legacy_emulate_cpuid(sc->vmm_vm, vcpu, &vlc.vlc_eax,
1356 		    &vlc.vlc_ebx, &vlc.vlc_ecx, &vlc.vlc_edx);
1357 
1358 		if (ddi_copyout(&vlc, datap, sizeof (vlc), md)) {
1359 			error = EFAULT;
1360 			break;
1361 		}
1362 		break;
1363 	}
1364 
1365 	case VM_SET_KERNEMU_DEV:
1366 	case VM_GET_KERNEMU_DEV: {
1367 		struct vm_readwrite_kernemu_device kemu;
1368 		size_t size = 0;
1369 
1370 		if (ddi_copyin(datap, &kemu, sizeof (kemu), md)) {
1371 			error = EFAULT;
1372 			break;
1373 		}
1374 
1375 		if (kemu.access_width > 3) {
1376 			error = EINVAL;
1377 			break;
1378 		}
1379 		size = (1 << kemu.access_width);
1380 		ASSERT(size >= 1 && size <= 8);
1381 
1382 		if (cmd == VM_SET_KERNEMU_DEV) {
1383 			error = vm_service_mmio_write(sc->vmm_vm, vcpu,
1384 			    kemu.gpa, kemu.value, size);
1385 		} else {
1386 			error = vm_service_mmio_read(sc->vmm_vm, vcpu,
1387 			    kemu.gpa, &kemu.value, size);
1388 		}
1389 
1390 		if (error == 0) {
1391 			if (ddi_copyout(&kemu, datap, sizeof (kemu), md)) {
1392 				error = EFAULT;
1393 				break;
1394 			}
1395 		}
1396 		break;
1397 	}
1398 
1399 	case VM_GET_CAPABILITY: {
1400 		struct vm_capability vmcap;
1401 
1402 		if (ddi_copyin(datap, &vmcap, sizeof (vmcap), md)) {
1403 			error = EFAULT;
1404 			break;
1405 		}
1406 		error = vm_get_capability(sc->vmm_vm, vcpu, vmcap.captype,
1407 		    &vmcap.capval);
1408 		if (error == 0 &&
1409 		    ddi_copyout(&vmcap, datap, sizeof (vmcap), md)) {
1410 			error = EFAULT;
1411 			break;
1412 		}
1413 		break;
1414 	}
1415 	case VM_SET_CAPABILITY: {
1416 		struct vm_capability vmcap;
1417 
1418 		if (ddi_copyin(datap, &vmcap, sizeof (vmcap), md)) {
1419 			error = EFAULT;
1420 			break;
1421 		}
1422 		error = vm_set_capability(sc->vmm_vm, vcpu, vmcap.captype,
1423 		    vmcap.capval);
1424 		break;
1425 	}
1426 	case VM_SET_X2APIC_STATE: {
1427 		struct vm_x2apic x2apic;
1428 
1429 		if (ddi_copyin(datap, &x2apic, sizeof (x2apic), md)) {
1430 			error = EFAULT;
1431 			break;
1432 		}
1433 		error = vm_set_x2apic_state(sc->vmm_vm, vcpu, x2apic.state);
1434 		break;
1435 	}
1436 	case VM_GET_X2APIC_STATE: {
1437 		struct vm_x2apic x2apic;
1438 
1439 		if (ddi_copyin(datap, &x2apic, sizeof (x2apic), md)) {
1440 			error = EFAULT;
1441 			break;
1442 		}
1443 		error = vm_get_x2apic_state(sc->vmm_vm, x2apic.cpuid,
1444 		    &x2apic.state);
1445 		if (error == 0 &&
1446 		    ddi_copyout(&x2apic, datap, sizeof (x2apic), md)) {
1447 			error = EFAULT;
1448 			break;
1449 		}
1450 		break;
1451 	}
1452 	case VM_GET_GPA_PMAP: {
1453 		/*
1454 		 * Until there is a necessity to leak EPT/RVI PTE values to
1455 		 * userspace, this will remain unimplemented
1456 		 */
1457 		error = EINVAL;
1458 		break;
1459 	}
1460 	case VM_GET_HPET_CAPABILITIES: {
1461 		struct vm_hpet_cap hpetcap;
1462 
1463 		error = vhpet_getcap(&hpetcap);
1464 		if (error == 0 &&
1465 		    ddi_copyout(&hpetcap, datap, sizeof (hpetcap), md)) {
1466 			error = EFAULT;
1467 			break;
1468 		}
1469 		break;
1470 	}
1471 	case VM_GLA2GPA: {
1472 		struct vm_gla2gpa gg;
1473 
1474 		if (ddi_copyin(datap, &gg, sizeof (gg), md)) {
1475 			error = EFAULT;
1476 			break;
1477 		}
1478 		gg.vcpuid = vcpu;
1479 		error = vm_gla2gpa(sc->vmm_vm, vcpu, &gg.paging, gg.gla,
1480 		    gg.prot, &gg.gpa, &gg.fault);
1481 		if (error == 0 && ddi_copyout(&gg, datap, sizeof (gg), md)) {
1482 			error = EFAULT;
1483 			break;
1484 		}
1485 		break;
1486 	}
1487 	case VM_GLA2GPA_NOFAULT: {
1488 		struct vm_gla2gpa gg;
1489 
1490 		if (ddi_copyin(datap, &gg, sizeof (gg), md)) {
1491 			error = EFAULT;
1492 			break;
1493 		}
1494 		gg.vcpuid = vcpu;
1495 		error = vm_gla2gpa_nofault(sc->vmm_vm, vcpu, &gg.paging,
1496 		    gg.gla, gg.prot, &gg.gpa, &gg.fault);
1497 		if (error == 0 && ddi_copyout(&gg, datap, sizeof (gg), md)) {
1498 			error = EFAULT;
1499 			break;
1500 		}
1501 		break;
1502 	}
1503 
1504 	case VM_ACTIVATE_CPU:
1505 		error = vm_activate_cpu(sc->vmm_vm, vcpu);
1506 		break;
1507 
1508 	case VM_SUSPEND_CPU:
1509 		if (ddi_copyin(datap, &vcpu, sizeof (vcpu), md)) {
1510 			error = EFAULT;
1511 		} else {
1512 			error = vm_suspend_cpu(sc->vmm_vm, vcpu);
1513 		}
1514 		break;
1515 
1516 	case VM_RESUME_CPU:
1517 		if (ddi_copyin(datap, &vcpu, sizeof (vcpu), md)) {
1518 			error = EFAULT;
1519 		} else {
1520 			error = vm_resume_cpu(sc->vmm_vm, vcpu);
1521 		}
1522 		break;
1523 
1524 	case VM_VCPU_BARRIER:
1525 		vcpu = arg;
1526 		error = vm_vcpu_barrier(sc->vmm_vm, vcpu);
1527 		break;
1528 
1529 	case VM_GET_CPUS: {
1530 		struct vm_cpuset vm_cpuset;
1531 		cpuset_t tempset;
1532 		void *srcp = &tempset;
1533 		int size;
1534 
1535 		if (ddi_copyin(datap, &vm_cpuset, sizeof (vm_cpuset), md)) {
1536 			error = EFAULT;
1537 			break;
1538 		}
1539 
1540 		/* Be more generous about sizing since our cpuset_t is large. */
1541 		size = vm_cpuset.cpusetsize;
1542 		if (size <= 0 || size > sizeof (cpuset_t)) {
1543 			error = ERANGE;
1544 		}
1545 		/*
1546 		 * If they want a ulong_t or less, make sure they receive the
1547 		 * low bits with all the useful information.
1548 		 */
1549 		if (size <= sizeof (tempset.cpub[0])) {
1550 			srcp = &tempset.cpub[0];
1551 		}
1552 
1553 		if (vm_cpuset.which == VM_ACTIVE_CPUS) {
1554 			tempset = vm_active_cpus(sc->vmm_vm);
1555 		} else if (vm_cpuset.which == VM_DEBUG_CPUS) {
1556 			tempset = vm_debug_cpus(sc->vmm_vm);
1557 		} else {
1558 			error = EINVAL;
1559 		}
1560 
1561 		ASSERT(size > 0 && size <= sizeof (tempset));
1562 		if (error == 0 &&
1563 		    ddi_copyout(srcp, vm_cpuset.cpus, size, md)) {
1564 			error = EFAULT;
1565 			break;
1566 		}
1567 		break;
1568 	}
1569 	case VM_SET_INTINFO: {
1570 		struct vm_intinfo vmii;
1571 
1572 		if (ddi_copyin(datap, &vmii, sizeof (vmii), md)) {
1573 			error = EFAULT;
1574 			break;
1575 		}
1576 		error = vm_exit_intinfo(sc->vmm_vm, vcpu, vmii.info1);
1577 		break;
1578 	}
1579 	case VM_GET_INTINFO: {
1580 		struct vm_intinfo vmii;
1581 
1582 		vmii.vcpuid = vcpu;
1583 		error = vm_get_intinfo(sc->vmm_vm, vcpu, &vmii.info1,
1584 		    &vmii.info2);
1585 		if (error == 0 &&
1586 		    ddi_copyout(&vmii, datap, sizeof (vmii), md)) {
1587 			error = EFAULT;
1588 			break;
1589 		}
1590 		break;
1591 	}
1592 	case VM_RTC_WRITE: {
1593 		struct vm_rtc_data rtcdata;
1594 
1595 		if (ddi_copyin(datap, &rtcdata, sizeof (rtcdata), md)) {
1596 			error = EFAULT;
1597 			break;
1598 		}
1599 		error = vrtc_nvram_write(sc->vmm_vm, rtcdata.offset,
1600 		    rtcdata.value);
1601 		break;
1602 	}
1603 	case VM_RTC_READ: {
1604 		struct vm_rtc_data rtcdata;
1605 
1606 		if (ddi_copyin(datap, &rtcdata, sizeof (rtcdata), md)) {
1607 			error = EFAULT;
1608 			break;
1609 		}
1610 		error = vrtc_nvram_read(sc->vmm_vm, rtcdata.offset,
1611 		    &rtcdata.value);
1612 		if (error == 0 &&
1613 		    ddi_copyout(&rtcdata, datap, sizeof (rtcdata), md)) {
1614 			error = EFAULT;
1615 			break;
1616 		}
1617 		break;
1618 	}
1619 	case VM_RTC_SETTIME: {
1620 		timespec_t ts;
1621 
1622 		if (ddi_copyin(datap, &ts, sizeof (ts), md)) {
1623 			error = EFAULT;
1624 			break;
1625 		}
1626 		error = vrtc_set_time(sc->vmm_vm, &ts);
1627 		break;
1628 	}
1629 	case VM_RTC_GETTIME: {
1630 		timespec_t ts;
1631 
1632 		vrtc_get_time(sc->vmm_vm, &ts);
1633 		if (ddi_copyout(&ts, datap, sizeof (ts), md)) {
1634 			error = EFAULT;
1635 			break;
1636 		}
1637 		break;
1638 	}
1639 
1640 	case VM_PMTMR_LOCATE: {
1641 		uint16_t port = arg;
1642 		error = vpmtmr_set_location(sc->vmm_vm, port);
1643 		break;
1644 	}
1645 
1646 	case VM_RESTART_INSTRUCTION:
1647 		error = vm_restart_instruction(sc->vmm_vm, vcpu);
1648 		break;
1649 
1650 	case VM_SET_TOPOLOGY: {
1651 		struct vm_cpu_topology topo;
1652 
1653 		if (ddi_copyin(datap, &topo, sizeof (topo), md) != 0) {
1654 			error = EFAULT;
1655 			break;
1656 		}
1657 		error = vm_set_topology(sc->vmm_vm, topo.sockets, topo.cores,
1658 		    topo.threads, topo.maxcpus);
1659 		break;
1660 	}
1661 	case VM_GET_TOPOLOGY: {
1662 		struct vm_cpu_topology topo;
1663 
1664 		vm_get_topology(sc->vmm_vm, &topo.sockets, &topo.cores,
1665 		    &topo.threads, &topo.maxcpus);
1666 		if (ddi_copyout(&topo, datap, sizeof (topo), md) != 0) {
1667 			error = EFAULT;
1668 			break;
1669 		}
1670 		break;
1671 	}
1672 	case VM_DEVMEM_GETOFFSET: {
1673 		struct vm_devmem_offset vdo;
1674 		vmm_devmem_entry_t *de;
1675 
1676 		if (ddi_copyin(datap, &vdo, sizeof (vdo), md) != 0) {
1677 			error = EFAULT;
1678 			break;
1679 		}
1680 
1681 		de = vmmdev_devmem_find(sc, vdo.segid);
1682 		if (de != NULL) {
1683 			vdo.offset = de->vde_off;
1684 			if (ddi_copyout(&vdo, datap, sizeof (vdo), md) != 0) {
1685 				error = EFAULT;
1686 			}
1687 		} else {
1688 			error = ENOENT;
1689 		}
1690 		break;
1691 	}
1692 	case VM_TRACK_DIRTY_PAGES: {
1693 		const size_t max_track_region_len = 8 * PAGESIZE * 8 * PAGESIZE;
1694 		struct vmm_dirty_tracker tracker;
1695 		uint8_t *bitmap;
1696 		size_t len;
1697 
1698 		if (ddi_copyin(datap, &tracker, sizeof (tracker), md) != 0) {
1699 			error = EFAULT;
1700 			break;
1701 		}
1702 		if ((tracker.vdt_start_gpa & PAGEOFFSET) != 0) {
1703 			error = EINVAL;
1704 			break;
1705 		}
1706 		if (tracker.vdt_len == 0) {
1707 			break;
1708 		}
1709 		if ((tracker.vdt_len & PAGEOFFSET) != 0) {
1710 			error = EINVAL;
1711 			break;
1712 		}
1713 		if (tracker.vdt_len > max_track_region_len) {
1714 			error = EINVAL;
1715 			break;
1716 		}
1717 		len = roundup(tracker.vdt_len / PAGESIZE, 8) / 8;
1718 		bitmap = kmem_zalloc(len, KM_SLEEP);
1719 		error = vm_track_dirty_pages(sc->vmm_vm, tracker.vdt_start_gpa,
1720 		    tracker.vdt_len, bitmap);
1721 		if (error == 0 &&
1722 		    ddi_copyout(bitmap, tracker.vdt_pfns, len, md) != 0) {
1723 			error = EFAULT;
1724 		}
1725 		kmem_free(bitmap, len);
1726 
1727 		break;
1728 	}
1729 	case VM_NPT_OPERATION: {
1730 		struct vm_npt_operation vno;
1731 		uint8_t *bitmap = NULL;
1732 		uint64_t bitmap_size = 0;
1733 
1734 		if (ddi_copyin(datap, &vno, sizeof (vno), md) != 0) {
1735 			error = EFAULT;
1736 			break;
1737 		}
1738 		if ((vno.vno_gpa & PAGEOFFSET) != 0 ||
1739 		    (vno.vno_len & PAGEOFFSET) != 0) {
1740 			error = EINVAL;
1741 			break;
1742 		}
1743 		if ((UINT64_MAX - vno.vno_len) < vno.vno_gpa) {
1744 			error = EOVERFLOW;
1745 			break;
1746 		}
1747 
1748 		/*
1749 		 * Allocate a bitmap for the operation if it is specified as
1750 		 * part of the input or output.
1751 		 */
1752 		if ((vno.vno_operation &
1753 		    (VNO_FLAG_BITMAP_IN | VNO_FLAG_BITMAP_OUT)) != 0) {
1754 			/*
1755 			 * Operations expecting data to be copied in or out
1756 			 * should not have zero length.
1757 			 */
1758 			if (vno.vno_len == 0) {
1759 				error = EINVAL;
1760 				break;
1761 			}
1762 
1763 			/*
1764 			 * Maximum bitmap size of 8 pages results in 1 GiB of
1765 			 * coverage.
1766 			 */
1767 			const uint64_t max_bitmap_size = 8 * PAGESIZE;
1768 
1769 			bitmap_size = roundup(vno.vno_len / PAGESIZE, 8) / 8;
1770 			if (bitmap_size > max_bitmap_size) {
1771 				error = E2BIG;
1772 				break;
1773 			}
1774 			bitmap = kmem_zalloc(bitmap_size, KM_SLEEP);
1775 		}
1776 
1777 		if ((vno.vno_operation & VNO_FLAG_BITMAP_IN) != 0) {
1778 			ASSERT(bitmap != NULL);
1779 			if (ddi_copyin(vno.vno_bitmap, bitmap, bitmap_size,
1780 			    md) != 0) {
1781 				error = EFAULT;
1782 			}
1783 		}
1784 
1785 		if (error == 0) {
1786 			error = vm_npt_do_operation(sc->vmm_vm, vno.vno_gpa,
1787 			    vno.vno_len, vno.vno_operation, bitmap, rvalp);
1788 		}
1789 
1790 		if ((vno.vno_operation & VNO_FLAG_BITMAP_OUT) != 0 &&
1791 		    error == 0) {
1792 			ASSERT(bitmap != NULL);
1793 			if (ddi_copyout(bitmap, vno.vno_bitmap, bitmap_size,
1794 			    md) != 0) {
1795 				error = EFAULT;
1796 			}
1797 		}
1798 
1799 		if (bitmap != NULL) {
1800 			kmem_free(bitmap, bitmap_size);
1801 		}
1802 
1803 		break;
1804 	}
1805 	case VM_WRLOCK_CYCLE: {
1806 		/*
1807 		 * Present a test mechanism to acquire/release the write lock
1808 		 * on the VM without any other effects.
1809 		 */
1810 		break;
1811 	}
1812 	case VM_DATA_READ: {
1813 		struct vm_data_xfer vdx;
1814 
1815 		if (ddi_copyin(datap, &vdx, sizeof (vdx), md) != 0) {
1816 			error = EFAULT;
1817 			break;
1818 		}
1819 		if ((vdx.vdx_flags & ~VDX_FLAGS_VALID) != 0) {
1820 			error = EINVAL;
1821 			break;
1822 		}
1823 		if (vdx.vdx_len > VM_DATA_XFER_LIMIT) {
1824 			error = EFBIG;
1825 			break;
1826 		}
1827 
1828 		const size_t len = vdx.vdx_len;
1829 		void *buf = NULL;
1830 		if (len != 0) {
1831 			const void *udata = vdx.vdx_data;
1832 
1833 			buf = kmem_alloc(len, KM_SLEEP);
1834 			if ((vdx.vdx_flags & VDX_FLAG_READ_COPYIN) == 0) {
1835 				bzero(buf, len);
1836 			} else if (ddi_copyin(udata, buf, len, md) != 0) {
1837 				kmem_free(buf, len);
1838 				error = EFAULT;
1839 				break;
1840 			}
1841 		}
1842 
1843 		vdx.vdx_result_len = 0;
1844 		vmm_data_req_t req = {
1845 			.vdr_class = vdx.vdx_class,
1846 			.vdr_version = vdx.vdx_version,
1847 			.vdr_flags = vdx.vdx_flags,
1848 			.vdr_len = len,
1849 			.vdr_data = buf,
1850 			.vdr_result_len = &vdx.vdx_result_len,
1851 		};
1852 		error = vmm_data_read(sc->vmm_vm, vdx.vdx_vcpuid, &req);
1853 
1854 		if (error == 0 && buf != NULL) {
1855 			if (ddi_copyout(buf, vdx.vdx_data, len, md) != 0) {
1856 				error = EFAULT;
1857 			}
1858 		}
1859 
1860 		/*
1861 		 * Copy out the transfer request so that the value of
1862 		 * vdx_result_len can be made available, regardless of any
1863 		 * error(s) which may have occurred.
1864 		 */
1865 		if (ddi_copyout(&vdx, datap, sizeof (vdx), md) != 0) {
1866 			error = (error != 0) ? error : EFAULT;
1867 		}
1868 
1869 		if (buf != NULL) {
1870 			kmem_free(buf, len);
1871 		}
1872 		break;
1873 	}
1874 	case VM_DATA_WRITE: {
1875 		struct vm_data_xfer vdx;
1876 
1877 		if (ddi_copyin(datap, &vdx, sizeof (vdx), md) != 0) {
1878 			error = EFAULT;
1879 			break;
1880 		}
1881 		if ((vdx.vdx_flags & ~VDX_FLAGS_VALID) != 0) {
1882 			error = EINVAL;
1883 			break;
1884 		}
1885 		if (vdx.vdx_len > VM_DATA_XFER_LIMIT) {
1886 			error = EFBIG;
1887 			break;
1888 		}
1889 
1890 		const size_t len = vdx.vdx_len;
1891 		void *buf = NULL;
1892 		if (len != 0) {
1893 			buf = kmem_alloc(len, KM_SLEEP);
1894 			if (ddi_copyin(vdx.vdx_data, buf, len, md) != 0) {
1895 				kmem_free(buf, len);
1896 				error = EFAULT;
1897 				break;
1898 			}
1899 		}
1900 
1901 		vdx.vdx_result_len = 0;
1902 		vmm_data_req_t req = {
1903 			.vdr_class = vdx.vdx_class,
1904 			.vdr_version = vdx.vdx_version,
1905 			.vdr_flags = vdx.vdx_flags,
1906 			.vdr_len = len,
1907 			.vdr_data = buf,
1908 			.vdr_result_len = &vdx.vdx_result_len,
1909 		};
1910 		if (vmm_allow_state_writes != 0) {
1911 			error = vmm_data_write(sc->vmm_vm, vdx.vdx_vcpuid,
1912 			    &req);
1913 		} else {
1914 			/*
1915 			 * Reject the write if somone has thrown the switch back
1916 			 * into the "disallow" position.
1917 			 */
1918 			error = EPERM;
1919 		}
1920 
1921 		if (error == 0 && buf != NULL &&
1922 		    (vdx.vdx_flags & VDX_FLAG_WRITE_COPYOUT) != 0) {
1923 			if (ddi_copyout(buf, vdx.vdx_data, len, md) != 0) {
1924 				error = EFAULT;
1925 			}
1926 		}
1927 
1928 		/*
1929 		 * Copy out the transfer request so that the value of
1930 		 * vdx_result_len can be made available, regardless of any
1931 		 * error(s) which may have occurred.
1932 		 */
1933 		if (ddi_copyout(&vdx, datap, sizeof (vdx), md) != 0) {
1934 			error = (error != 0) ? error : EFAULT;
1935 		}
1936 
1937 		if (buf != NULL) {
1938 			kmem_free(buf, len);
1939 		}
1940 		break;
1941 	}
1942 
1943 	case VM_PAUSE: {
1944 		error = vm_pause_instance(sc->vmm_vm);
1945 		break;
1946 	}
1947 	case VM_RESUME: {
1948 		error = vm_resume_instance(sc->vmm_vm);
1949 		break;
1950 	}
1951 
1952 	default:
1953 		error = ENOTTY;
1954 		break;
1955 	}
1956 
1957 	/* Release exclusion resources */
1958 	switch (lock_type) {
1959 	case LOCK_NONE:
1960 		break;
1961 	case LOCK_VCPU:
1962 		vcpu_unlock_one(sc, vcpu);
1963 		break;
1964 	case LOCK_READ_HOLD:
1965 		vmm_read_unlock(sc);
1966 		break;
1967 	case LOCK_WRITE_HOLD:
1968 		vmm_write_unlock(sc);
1969 		break;
1970 	default:
1971 		panic("unexpected lock type");
1972 		break;
1973 	}
1974 
1975 	return (error);
1976 }
1977 
1978 static vmm_softc_t *
1979 vmm_lookup(const char *name)
1980 {
1981 	list_t *vml = &vmm_list;
1982 	vmm_softc_t *sc;
1983 
1984 	ASSERT(MUTEX_HELD(&vmm_mtx));
1985 
1986 	for (sc = list_head(vml); sc != NULL; sc = list_next(vml, sc)) {
1987 		if (strcmp(sc->vmm_name, name) == 0) {
1988 			break;
1989 		}
1990 	}
1991 
1992 	return (sc);
1993 }
1994 
1995 /*
1996  * Acquire an HMA registration if not already held.
1997  */
1998 static boolean_t
1999 vmm_hma_acquire(void)
2000 {
2001 	ASSERT(MUTEX_NOT_HELD(&vmm_mtx));
2002 
2003 	mutex_enter(&vmmdev_mtx);
2004 
2005 	if (vmmdev_hma_reg == NULL) {
2006 		VERIFY3U(vmmdev_hma_ref, ==, 0);
2007 		vmmdev_hma_reg = hma_register(vmmdev_hvm_name);
2008 		if (vmmdev_hma_reg == NULL) {
2009 			cmn_err(CE_WARN, "%s HMA registration failed.",
2010 			    vmmdev_hvm_name);
2011 			mutex_exit(&vmmdev_mtx);
2012 			return (B_FALSE);
2013 		}
2014 	}
2015 
2016 	vmmdev_hma_ref++;
2017 
2018 	mutex_exit(&vmmdev_mtx);
2019 
2020 	return (B_TRUE);
2021 }
2022 
2023 /*
2024  * Release the HMA registration if held and there are no remaining VMs.
2025  */
2026 static void
2027 vmm_hma_release(void)
2028 {
2029 	ASSERT(MUTEX_NOT_HELD(&vmm_mtx));
2030 
2031 	mutex_enter(&vmmdev_mtx);
2032 
2033 	VERIFY3U(vmmdev_hma_ref, !=, 0);
2034 
2035 	vmmdev_hma_ref--;
2036 
2037 	if (vmmdev_hma_ref == 0) {
2038 		VERIFY(vmmdev_hma_reg != NULL);
2039 		hma_unregister(vmmdev_hma_reg);
2040 		vmmdev_hma_reg = NULL;
2041 	}
2042 	mutex_exit(&vmmdev_mtx);
2043 }
2044 
2045 static int
2046 vmmdev_do_vm_create(const struct vm_create_req *req, cred_t *cr)
2047 {
2048 	vmm_softc_t	*sc = NULL;
2049 	minor_t		minor;
2050 	int		error = ENOMEM;
2051 	size_t		len;
2052 	const char	*name = req->name;
2053 
2054 	len = strnlen(name, VM_MAX_NAMELEN);
2055 	if (len == 0) {
2056 		return (EINVAL);
2057 	}
2058 	if (len >= VM_MAX_NAMELEN) {
2059 		return (ENAMETOOLONG);
2060 	}
2061 	if (strchr(name, '/') != NULL) {
2062 		return (EINVAL);
2063 	}
2064 
2065 	if (!vmm_hma_acquire())
2066 		return (ENXIO);
2067 
2068 	mutex_enter(&vmm_mtx);
2069 
2070 	/* Look for duplicate names */
2071 	if (vmm_lookup(name) != NULL) {
2072 		mutex_exit(&vmm_mtx);
2073 		vmm_hma_release();
2074 		return (EEXIST);
2075 	}
2076 
2077 	/* Allow only one instance per non-global zone. */
2078 	if (!INGLOBALZONE(curproc)) {
2079 		for (sc = list_head(&vmm_list); sc != NULL;
2080 		    sc = list_next(&vmm_list, sc)) {
2081 			if (sc->vmm_zone == curzone) {
2082 				mutex_exit(&vmm_mtx);
2083 				vmm_hma_release();
2084 				return (EINVAL);
2085 			}
2086 		}
2087 	}
2088 
2089 	minor = id_alloc(vmm_minors);
2090 	if (ddi_soft_state_zalloc(vmm_statep, minor) != DDI_SUCCESS) {
2091 		goto fail;
2092 	} else if ((sc = ddi_get_soft_state(vmm_statep, minor)) == NULL) {
2093 		ddi_soft_state_free(vmm_statep, minor);
2094 		goto fail;
2095 	} else if (ddi_create_minor_node(vmmdev_dip, name, S_IFCHR, minor,
2096 	    DDI_PSEUDO, 0) != DDI_SUCCESS) {
2097 		goto fail;
2098 	}
2099 
2100 	if (vmm_kstat_alloc(sc, minor, cr) != 0) {
2101 		goto fail;
2102 	}
2103 
2104 	error = vm_create(req->flags, &sc->vmm_vm);
2105 	if (error == 0) {
2106 		/* Complete VM intialization and report success. */
2107 		(void) strlcpy(sc->vmm_name, name, sizeof (sc->vmm_name));
2108 		sc->vmm_minor = minor;
2109 		list_create(&sc->vmm_devmem_list, sizeof (vmm_devmem_entry_t),
2110 		    offsetof(vmm_devmem_entry_t, vde_node));
2111 
2112 		list_create(&sc->vmm_holds, sizeof (vmm_hold_t),
2113 		    offsetof(vmm_hold_t, vmh_node));
2114 		cv_init(&sc->vmm_cv, NULL, CV_DEFAULT, NULL);
2115 
2116 		mutex_init(&sc->vmm_lease_lock, NULL, MUTEX_DEFAULT, NULL);
2117 		list_create(&sc->vmm_lease_list, sizeof (vmm_lease_t),
2118 		    offsetof(vmm_lease_t, vml_node));
2119 		cv_init(&sc->vmm_lease_cv, NULL, CV_DEFAULT, NULL);
2120 		rw_init(&sc->vmm_rwlock, NULL, RW_DEFAULT, NULL);
2121 
2122 		sc->vmm_zone = crgetzone(cr);
2123 		zone_hold(sc->vmm_zone);
2124 		vmm_zsd_add_vm(sc);
2125 		vmm_kstat_init(sc);
2126 
2127 		list_insert_tail(&vmm_list, sc);
2128 		mutex_exit(&vmm_mtx);
2129 		return (0);
2130 	}
2131 
2132 	vmm_kstat_fini(sc);
2133 	ddi_remove_minor_node(vmmdev_dip, name);
2134 fail:
2135 	id_free(vmm_minors, minor);
2136 	if (sc != NULL) {
2137 		ddi_soft_state_free(vmm_statep, minor);
2138 	}
2139 	mutex_exit(&vmm_mtx);
2140 	vmm_hma_release();
2141 
2142 	return (error);
2143 }
2144 
2145 /*
2146  * Bhyve 'Driver' Interface
2147  *
2148  * While many devices are emulated in the bhyve userspace process, there are
2149  * others with performance constraints which require that they run mostly or
2150  * entirely in-kernel.  For those not integrated directly into bhyve, an API is
2151  * needed so they can query/manipulate the portions of VM state needed to
2152  * fulfill their purpose.
2153  *
2154  * This includes:
2155  * - Translating guest-physical addresses to host-virtual pointers
2156  * - Injecting MSIs
2157  * - Hooking IO port addresses
2158  *
2159  * The vmm_drv interface exists to provide that functionality to its consumers.
2160  * (At this time, 'viona' is the only user)
2161  */
2162 int
2163 vmm_drv_hold(file_t *fp, cred_t *cr, vmm_hold_t **holdp)
2164 {
2165 	vnode_t *vp = fp->f_vnode;
2166 	const dev_t dev = vp->v_rdev;
2167 	vmm_softc_t *sc;
2168 	vmm_hold_t *hold;
2169 	int err = 0;
2170 
2171 	if (vp->v_type != VCHR) {
2172 		return (ENXIO);
2173 	}
2174 	const major_t major = getmajor(dev);
2175 	const minor_t minor = getminor(dev);
2176 
2177 	mutex_enter(&vmmdev_mtx);
2178 	if (vmmdev_dip == NULL || major != ddi_driver_major(vmmdev_dip)) {
2179 		mutex_exit(&vmmdev_mtx);
2180 		return (ENOENT);
2181 	}
2182 	mutex_enter(&vmm_mtx);
2183 	mutex_exit(&vmmdev_mtx);
2184 
2185 	if ((sc = ddi_get_soft_state(vmm_statep, minor)) == NULL) {
2186 		err = ENOENT;
2187 		goto out;
2188 	}
2189 	/* XXXJOY: check cred permissions against instance */
2190 
2191 	if ((sc->vmm_flags & VMM_DESTROY) != 0) {
2192 		err = EBUSY;
2193 		goto out;
2194 	}
2195 
2196 	hold = kmem_zalloc(sizeof (*hold), KM_SLEEP);
2197 	hold->vmh_sc = sc;
2198 	hold->vmh_release_req = B_FALSE;
2199 
2200 	list_insert_tail(&sc->vmm_holds, hold);
2201 	sc->vmm_flags |= VMM_HELD;
2202 	*holdp = hold;
2203 
2204 out:
2205 	mutex_exit(&vmm_mtx);
2206 	return (err);
2207 }
2208 
2209 void
2210 vmm_drv_rele(vmm_hold_t *hold)
2211 {
2212 	vmm_softc_t *sc;
2213 	bool hma_release = false;
2214 
2215 	ASSERT(hold != NULL);
2216 	ASSERT(hold->vmh_sc != NULL);
2217 	VERIFY(hold->vmh_ioport_hook_cnt == 0);
2218 
2219 	mutex_enter(&vmm_mtx);
2220 	sc = hold->vmh_sc;
2221 	list_remove(&sc->vmm_holds, hold);
2222 	kmem_free(hold, sizeof (*hold));
2223 
2224 	if (list_is_empty(&sc->vmm_holds)) {
2225 		sc->vmm_flags &= ~VMM_HELD;
2226 
2227 		/*
2228 		 * Since outstanding holds would prevent instance destruction
2229 		 * from completing, attempt to finish it now if it was already
2230 		 * set in motion.
2231 		 */
2232 		if ((sc->vmm_flags & VMM_DESTROY) != 0) {
2233 			VERIFY0(vmm_destroy_locked(sc, VDO_DEFAULT,
2234 			    &hma_release));
2235 		}
2236 	}
2237 	mutex_exit(&vmm_mtx);
2238 
2239 	if (hma_release) {
2240 		vmm_hma_release();
2241 	}
2242 }
2243 
2244 boolean_t
2245 vmm_drv_release_reqd(vmm_hold_t *hold)
2246 {
2247 	ASSERT(hold != NULL);
2248 
2249 	return (hold->vmh_release_req);
2250 }
2251 
2252 vmm_lease_t *
2253 vmm_drv_lease_sign(vmm_hold_t *hold, boolean_t (*expiref)(void *), void *arg)
2254 {
2255 	vmm_softc_t *sc = hold->vmh_sc;
2256 	vmm_lease_t *lease;
2257 
2258 	ASSERT3P(expiref, !=, NULL);
2259 
2260 	if (hold->vmh_release_req) {
2261 		return (NULL);
2262 	}
2263 
2264 	lease = kmem_alloc(sizeof (*lease), KM_SLEEP);
2265 	list_link_init(&lease->vml_node);
2266 	lease->vml_expire_func = expiref;
2267 	lease->vml_expire_arg = arg;
2268 	lease->vml_expired = B_FALSE;
2269 	lease->vml_break_deferred = B_FALSE;
2270 	lease->vml_hold = hold;
2271 	/* cache the VM pointer for one less pointer chase */
2272 	lease->vml_vm = sc->vmm_vm;
2273 	lease->vml_vmclient = vmspace_client_alloc(vm_get_vmspace(sc->vmm_vm));
2274 
2275 	mutex_enter(&sc->vmm_lease_lock);
2276 	while (sc->vmm_lease_blocker != 0) {
2277 		cv_wait(&sc->vmm_lease_cv, &sc->vmm_lease_lock);
2278 	}
2279 	list_insert_tail(&sc->vmm_lease_list, lease);
2280 	vmm_read_lock(sc);
2281 	mutex_exit(&sc->vmm_lease_lock);
2282 
2283 	return (lease);
2284 }
2285 
2286 static void
2287 vmm_lease_break_locked(vmm_softc_t *sc, vmm_lease_t *lease)
2288 {
2289 	ASSERT(MUTEX_HELD(&sc->vmm_lease_lock));
2290 
2291 	list_remove(&sc->vmm_lease_list, lease);
2292 	vmm_read_unlock(sc);
2293 	vmc_destroy(lease->vml_vmclient);
2294 	kmem_free(lease, sizeof (*lease));
2295 }
2296 
2297 static void
2298 vmm_lease_block(vmm_softc_t *sc)
2299 {
2300 	mutex_enter(&sc->vmm_lease_lock);
2301 	VERIFY3U(sc->vmm_lease_blocker, !=, UINT_MAX);
2302 	sc->vmm_lease_blocker++;
2303 	if (sc->vmm_lease_blocker == 1) {
2304 		list_t *list = &sc->vmm_lease_list;
2305 		vmm_lease_t *lease = list_head(list);
2306 
2307 		while (lease != NULL) {
2308 			void *arg = lease->vml_expire_arg;
2309 			boolean_t (*expiref)(void *) = lease->vml_expire_func;
2310 			boolean_t sync_break = B_FALSE;
2311 
2312 			/*
2313 			 * Since the lease expiration notification may
2314 			 * need to take locks which would deadlock with
2315 			 * vmm_lease_lock, drop it across the call.
2316 			 *
2317 			 * We are the only one allowed to manipulate
2318 			 * vmm_lease_list right now, so it is safe to
2319 			 * continue iterating through it after
2320 			 * reacquiring the lock.
2321 			 */
2322 			lease->vml_expired = B_TRUE;
2323 			mutex_exit(&sc->vmm_lease_lock);
2324 			sync_break = expiref(arg);
2325 			mutex_enter(&sc->vmm_lease_lock);
2326 
2327 			if (sync_break) {
2328 				vmm_lease_t *next;
2329 
2330 				/*
2331 				 * These leases which are synchronously broken
2332 				 * result in vmm_read_unlock() calls from a
2333 				 * different thread than the corresponding
2334 				 * vmm_read_lock().  This is acceptable, given
2335 				 * that the rwlock underpinning the whole
2336 				 * mechanism tolerates the behavior.  This
2337 				 * flexibility is _only_ afforded to VM read
2338 				 * lock (RW_READER) holders.
2339 				 */
2340 				next = list_next(list, lease);
2341 				vmm_lease_break_locked(sc, lease);
2342 				lease = next;
2343 			} else {
2344 				lease = list_next(list, lease);
2345 			}
2346 		}
2347 
2348 		/* Process leases which were not broken synchronously. */
2349 		while (!list_is_empty(list)) {
2350 			/*
2351 			 * Although the nested loops are quadratic, the number
2352 			 * of leases is small.
2353 			 */
2354 			lease = list_head(list);
2355 			while (lease != NULL) {
2356 				vmm_lease_t *next = list_next(list, lease);
2357 				if (lease->vml_break_deferred) {
2358 					vmm_lease_break_locked(sc, lease);
2359 				}
2360 				lease = next;
2361 			}
2362 			if (list_is_empty(list)) {
2363 				break;
2364 			}
2365 			cv_wait(&sc->vmm_lease_cv, &sc->vmm_lease_lock);
2366 		}
2367 		/* Wake anyone else waiting for the lease list to be empty  */
2368 		cv_broadcast(&sc->vmm_lease_cv);
2369 	} else {
2370 		list_t *list = &sc->vmm_lease_list;
2371 
2372 		/*
2373 		 * Some other thread beat us to the duty of lease cleanup.
2374 		 * Wait until that is complete.
2375 		 */
2376 		while (!list_is_empty(list)) {
2377 			cv_wait(&sc->vmm_lease_cv, &sc->vmm_lease_lock);
2378 		}
2379 	}
2380 	mutex_exit(&sc->vmm_lease_lock);
2381 }
2382 
2383 static void
2384 vmm_lease_unblock(vmm_softc_t *sc)
2385 {
2386 	mutex_enter(&sc->vmm_lease_lock);
2387 	VERIFY3U(sc->vmm_lease_blocker, !=, 0);
2388 	sc->vmm_lease_blocker--;
2389 	if (sc->vmm_lease_blocker == 0) {
2390 		cv_broadcast(&sc->vmm_lease_cv);
2391 	}
2392 	mutex_exit(&sc->vmm_lease_lock);
2393 }
2394 
2395 void
2396 vmm_drv_lease_break(vmm_hold_t *hold, vmm_lease_t *lease)
2397 {
2398 	vmm_softc_t *sc = hold->vmh_sc;
2399 
2400 	VERIFY3P(hold, ==, lease->vml_hold);
2401 	VERIFY(!lease->vml_break_deferred);
2402 
2403 	mutex_enter(&sc->vmm_lease_lock);
2404 	if (sc->vmm_lease_blocker == 0) {
2405 		vmm_lease_break_locked(sc, lease);
2406 	} else {
2407 		/*
2408 		 * Defer the lease-breaking to whichever thread is currently
2409 		 * cleaning up all leases as part of a vmm_lease_block() call.
2410 		 */
2411 		lease->vml_break_deferred = B_TRUE;
2412 		cv_broadcast(&sc->vmm_lease_cv);
2413 	}
2414 	mutex_exit(&sc->vmm_lease_lock);
2415 }
2416 
2417 boolean_t
2418 vmm_drv_lease_expired(vmm_lease_t *lease)
2419 {
2420 	return (lease->vml_expired);
2421 }
2422 
2423 vmm_page_t *
2424 vmm_drv_page_hold(vmm_lease_t *lease, uintptr_t gpa, int prot)
2425 {
2426 	ASSERT(lease != NULL);
2427 	ASSERT0(gpa & PAGEOFFSET);
2428 
2429 	return ((vmm_page_t *)vmc_hold(lease->vml_vmclient, gpa, prot));
2430 }
2431 
2432 
2433 /* Ensure that flags mirrored by vmm_drv interface properly match up */
2434 CTASSERT(VMPF_DEFER_DIRTY == VPF_DEFER_DIRTY);
2435 
2436 vmm_page_t *
2437 vmm_drv_page_hold_ext(vmm_lease_t *lease, uintptr_t gpa, int prot, int flags)
2438 {
2439 	ASSERT(lease != NULL);
2440 	ASSERT0(gpa & PAGEOFFSET);
2441 
2442 	vmm_page_t *page =
2443 	    (vmm_page_t *)vmc_hold_ext(lease->vml_vmclient, gpa, prot, flags);
2444 	return (page);
2445 }
2446 
2447 void
2448 vmm_drv_page_release(vmm_page_t *vmmp)
2449 {
2450 	(void) vmp_release((vm_page_t *)vmmp);
2451 }
2452 
2453 void
2454 vmm_drv_page_release_chain(vmm_page_t *vmmp)
2455 {
2456 	(void) vmp_release_chain((vm_page_t *)vmmp);
2457 }
2458 
2459 const void *
2460 vmm_drv_page_readable(const vmm_page_t *vmmp)
2461 {
2462 	return (vmp_get_readable((const vm_page_t *)vmmp));
2463 }
2464 
2465 void *
2466 vmm_drv_page_writable(const vmm_page_t *vmmp)
2467 {
2468 	return (vmp_get_writable((const vm_page_t *)vmmp));
2469 }
2470 
2471 void
2472 vmm_drv_page_mark_dirty(vmm_page_t *vmmp)
2473 {
2474 	return (vmp_mark_dirty((vm_page_t *)vmmp));
2475 }
2476 
2477 void
2478 vmm_drv_page_chain(vmm_page_t *vmmp, vmm_page_t *to_chain)
2479 {
2480 	vmp_chain((vm_page_t *)vmmp, (vm_page_t *)to_chain);
2481 }
2482 
2483 vmm_page_t *
2484 vmm_drv_page_next(const vmm_page_t *vmmp)
2485 {
2486 	return ((vmm_page_t *)vmp_next((vm_page_t *)vmmp));
2487 }
2488 
2489 int
2490 vmm_drv_msi(vmm_lease_t *lease, uint64_t addr, uint64_t msg)
2491 {
2492 	ASSERT(lease != NULL);
2493 
2494 	return (lapic_intr_msi(lease->vml_vm, addr, msg));
2495 }
2496 
2497 int
2498 vmm_drv_ioport_hook(vmm_hold_t *hold, uint16_t ioport, vmm_drv_iop_cb_t func,
2499     void *arg, void **cookie)
2500 {
2501 	vmm_softc_t *sc;
2502 	int err;
2503 
2504 	ASSERT(hold != NULL);
2505 	ASSERT(cookie != NULL);
2506 
2507 	sc = hold->vmh_sc;
2508 	mutex_enter(&vmm_mtx);
2509 	/* Confirm that hook installation is not blocked */
2510 	if ((sc->vmm_flags & VMM_BLOCK_HOOK) != 0) {
2511 		mutex_exit(&vmm_mtx);
2512 		return (EBUSY);
2513 	}
2514 	/*
2515 	 * Optimistically record an installed hook which will prevent a block
2516 	 * from being asserted while the mutex is dropped.
2517 	 */
2518 	hold->vmh_ioport_hook_cnt++;
2519 	mutex_exit(&vmm_mtx);
2520 
2521 	vmm_write_lock(sc);
2522 	err = vm_ioport_hook(sc->vmm_vm, ioport, (ioport_handler_t)func,
2523 	    arg, cookie);
2524 	vmm_write_unlock(sc);
2525 
2526 	if (err != 0) {
2527 		mutex_enter(&vmm_mtx);
2528 		/* Walk back optimism about the hook installation */
2529 		hold->vmh_ioport_hook_cnt--;
2530 		mutex_exit(&vmm_mtx);
2531 	}
2532 	return (err);
2533 }
2534 
2535 void
2536 vmm_drv_ioport_unhook(vmm_hold_t *hold, void **cookie)
2537 {
2538 	vmm_softc_t *sc;
2539 
2540 	ASSERT(hold != NULL);
2541 	ASSERT(cookie != NULL);
2542 	ASSERT(hold->vmh_ioport_hook_cnt != 0);
2543 
2544 	sc = hold->vmh_sc;
2545 	vmm_write_lock(sc);
2546 	vm_ioport_unhook(sc->vmm_vm, cookie);
2547 	vmm_write_unlock(sc);
2548 
2549 	mutex_enter(&vmm_mtx);
2550 	hold->vmh_ioport_hook_cnt--;
2551 	mutex_exit(&vmm_mtx);
2552 }
2553 
2554 static void
2555 vmm_drv_purge(vmm_softc_t *sc)
2556 {
2557 	ASSERT(MUTEX_HELD(&vmm_mtx));
2558 
2559 	if ((sc->vmm_flags & VMM_HELD) != 0) {
2560 		vmm_hold_t *hold;
2561 
2562 		for (hold = list_head(&sc->vmm_holds); hold != NULL;
2563 		    hold = list_next(&sc->vmm_holds, hold)) {
2564 			hold->vmh_release_req = B_TRUE;
2565 		}
2566 
2567 		/*
2568 		 * Require that all leases on the instance be broken, now that
2569 		 * all associated holds have been marked as needing release.
2570 		 *
2571 		 * Dropping vmm_mtx is not strictly necessary, but if any of the
2572 		 * lessees are slow to respond, it would be nice to leave it
2573 		 * available for other parties.
2574 		 */
2575 		mutex_exit(&vmm_mtx);
2576 		vmm_lease_block(sc);
2577 		vmm_lease_unblock(sc);
2578 		mutex_enter(&vmm_mtx);
2579 	}
2580 }
2581 
2582 static int
2583 vmm_drv_block_hook(vmm_softc_t *sc, boolean_t enable_block)
2584 {
2585 	int err = 0;
2586 
2587 	mutex_enter(&vmm_mtx);
2588 	if (!enable_block) {
2589 		VERIFY((sc->vmm_flags & VMM_BLOCK_HOOK) != 0);
2590 
2591 		sc->vmm_flags &= ~VMM_BLOCK_HOOK;
2592 		goto done;
2593 	}
2594 
2595 	/* If any holds have hooks installed, the block is a failure */
2596 	if (!list_is_empty(&sc->vmm_holds)) {
2597 		vmm_hold_t *hold;
2598 
2599 		for (hold = list_head(&sc->vmm_holds); hold != NULL;
2600 		    hold = list_next(&sc->vmm_holds, hold)) {
2601 			if (hold->vmh_ioport_hook_cnt != 0) {
2602 				err = EBUSY;
2603 				goto done;
2604 			}
2605 		}
2606 	}
2607 	sc->vmm_flags |= VMM_BLOCK_HOOK;
2608 
2609 done:
2610 	mutex_exit(&vmm_mtx);
2611 	return (err);
2612 }
2613 
2614 
2615 static void
2616 vmm_destroy_begin(vmm_softc_t *sc, vmm_destroy_opts_t opts)
2617 {
2618 	ASSERT(MUTEX_HELD(&vmm_mtx));
2619 	ASSERT0(sc->vmm_flags & VMM_DESTROY);
2620 
2621 	sc->vmm_flags |= VMM_DESTROY;
2622 
2623 	/*
2624 	 * Lock and unlock all of the vCPUs to ensure that they are kicked out
2625 	 * of guest context, being unable to return now that the instance is
2626 	 * marked for destruction.
2627 	 */
2628 	const int maxcpus = vm_get_maxcpus(sc->vmm_vm);
2629 	for (int vcpu = 0; vcpu < maxcpus; vcpu++) {
2630 		vcpu_lock_one(sc, vcpu);
2631 		vcpu_unlock_one(sc, vcpu);
2632 	}
2633 
2634 	vmmdev_devmem_purge(sc);
2635 	if ((opts & VDO_NO_CLEAN_ZSD) == 0) {
2636 		/*
2637 		 * The ZSD should be cleaned up now, unless destruction of the
2638 		 * instance was initated by destruction of the containing zone,
2639 		 * in which case the ZSD has already been removed.
2640 		 */
2641 		vmm_zsd_rem_vm(sc);
2642 	}
2643 	zone_rele(sc->vmm_zone);
2644 
2645 	vmm_drv_purge(sc);
2646 }
2647 
2648 static bool
2649 vmm_destroy_ready(vmm_softc_t *sc)
2650 {
2651 	ASSERT(MUTEX_HELD(&vmm_mtx));
2652 
2653 	if ((sc->vmm_flags & (VMM_HELD | VMM_IS_OPEN)) == 0) {
2654 		VERIFY(list_is_empty(&sc->vmm_holds));
2655 		return (true);
2656 	}
2657 
2658 	return (false);
2659 }
2660 
2661 static void
2662 vmm_destroy_finish(vmm_softc_t *sc)
2663 {
2664 	ASSERT(MUTEX_HELD(&vmm_mtx));
2665 	ASSERT(vmm_destroy_ready(sc));
2666 
2667 	list_remove(&vmm_list, sc);
2668 	vmm_kstat_fini(sc);
2669 	vm_destroy(sc->vmm_vm);
2670 	ddi_remove_minor_node(vmmdev_dip, sc->vmm_name);
2671 	(void) devfs_clean(ddi_get_parent(vmmdev_dip), NULL, DV_CLEAN_FORCE);
2672 
2673 	const minor_t minor = sc->vmm_minor;
2674 	ddi_soft_state_free(vmm_statep, minor);
2675 	id_free(vmm_minors, minor);
2676 }
2677 
2678 /*
2679  * Initiate or attempt to finish destruction of a VMM instance.
2680  *
2681  * This is called from several contexts:
2682  * - An explicit destroy ioctl is made
2683  * - A vmm_drv consumer releases its hold (being the last on the instance)
2684  * - The vmm device is closed, and auto-destruct is enabled
2685  */
2686 static int
2687 vmm_destroy_locked(vmm_softc_t *sc, vmm_destroy_opts_t opts,
2688     bool *hma_release)
2689 {
2690 	ASSERT(MUTEX_HELD(&vmm_mtx));
2691 
2692 	*hma_release = false;
2693 
2694 	/*
2695 	 * When instance destruction begins, it is so marked such that any
2696 	 * further requests to operate the instance will fail.
2697 	 */
2698 	if ((sc->vmm_flags & VMM_DESTROY) == 0) {
2699 		vmm_destroy_begin(sc, opts);
2700 	}
2701 
2702 	if (vmm_destroy_ready(sc)) {
2703 
2704 		/*
2705 		 * Notify anyone waiting for the destruction to finish.  They
2706 		 * must be clear before we can safely tear down the softc.
2707 		 */
2708 		if (sc->vmm_destroy_waiters != 0) {
2709 			cv_broadcast(&sc->vmm_cv);
2710 			while (sc->vmm_destroy_waiters != 0) {
2711 				cv_wait(&sc->vmm_cv, &vmm_mtx);
2712 			}
2713 		}
2714 
2715 		/*
2716 		 * Finish destruction of instance.  After this point, the softc
2717 		 * is freed and cannot be accessed again.
2718 		 *
2719 		 * With destruction complete, the HMA hold can be released
2720 		 */
2721 		vmm_destroy_finish(sc);
2722 		*hma_release = true;
2723 		return (0);
2724 	} else if ((opts & VDO_ATTEMPT_WAIT) != 0) {
2725 		int err = 0;
2726 
2727 		sc->vmm_destroy_waiters++;
2728 		while (!vmm_destroy_ready(sc) && err == 0) {
2729 			if (cv_wait_sig(&sc->vmm_cv, &vmm_mtx) <= 0) {
2730 				err = EINTR;
2731 			}
2732 		}
2733 		sc->vmm_destroy_waiters--;
2734 
2735 		if (sc->vmm_destroy_waiters == 0) {
2736 			/*
2737 			 * If we were the last waiter, it could be that VM
2738 			 * destruction is waiting on _us_ to proceed with the
2739 			 * final clean-up.
2740 			 */
2741 			cv_signal(&sc->vmm_cv);
2742 		}
2743 		return (err);
2744 	} else {
2745 		/*
2746 		 * Since the instance is not ready for destruction, and the
2747 		 * caller did not ask to wait, consider it a success for now.
2748 		 */
2749 		return (0);
2750 	}
2751 }
2752 
2753 void
2754 vmm_zone_vm_destroy(vmm_softc_t *sc)
2755 {
2756 	bool hma_release = false;
2757 	int err;
2758 
2759 	mutex_enter(&vmm_mtx);
2760 	err = vmm_destroy_locked(sc, VDO_NO_CLEAN_ZSD, &hma_release);
2761 	mutex_exit(&vmm_mtx);
2762 
2763 	VERIFY0(err);
2764 
2765 	if (hma_release) {
2766 		vmm_hma_release();
2767 	}
2768 }
2769 
2770 static int
2771 vmmdev_do_vm_destroy(const struct vm_destroy_req *req, cred_t *cr)
2772 {
2773 	vmm_softc_t *sc;
2774 	bool hma_release = false;
2775 	int err;
2776 
2777 	if (crgetuid(cr) != 0) {
2778 		return (EPERM);
2779 	}
2780 
2781 	mutex_enter(&vmm_mtx);
2782 	sc = vmm_lookup(req->name);
2783 	if (sc == NULL) {
2784 		mutex_exit(&vmm_mtx);
2785 		return (ENOENT);
2786 	}
2787 	/*
2788 	 * We don't check this in vmm_lookup() since that function is also used
2789 	 * for validation during create and currently vmm names must be unique.
2790 	 */
2791 	if (!INGLOBALZONE(curproc) && sc->vmm_zone != curzone) {
2792 		mutex_exit(&vmm_mtx);
2793 		return (EPERM);
2794 	}
2795 
2796 	err = vmm_destroy_locked(sc, VDO_ATTEMPT_WAIT, &hma_release);
2797 	mutex_exit(&vmm_mtx);
2798 
2799 	if (hma_release) {
2800 		vmm_hma_release();
2801 	}
2802 
2803 	return (err);
2804 }
2805 
2806 #define	VCPU_NAME_BUFLEN	32
2807 
2808 static int
2809 vmm_kstat_alloc(vmm_softc_t *sc, minor_t minor, const cred_t *cr)
2810 {
2811 	zoneid_t zid = crgetzoneid(cr);
2812 	int instance = minor;
2813 	kstat_t *ksp;
2814 
2815 	ASSERT3P(sc->vmm_kstat_vm, ==, NULL);
2816 
2817 	ksp = kstat_create_zone(VMM_MODULE_NAME, instance, "vm",
2818 	    VMM_KSTAT_CLASS, KSTAT_TYPE_NAMED,
2819 	    sizeof (vmm_kstats_t) / sizeof (kstat_named_t), 0, zid);
2820 
2821 	if (ksp == NULL) {
2822 		return (-1);
2823 	}
2824 	sc->vmm_kstat_vm = ksp;
2825 
2826 	for (uint_t i = 0; i < VM_MAXCPU; i++) {
2827 		char namebuf[VCPU_NAME_BUFLEN];
2828 
2829 		ASSERT3P(sc->vmm_kstat_vcpu[i], ==, NULL);
2830 
2831 		(void) snprintf(namebuf, VCPU_NAME_BUFLEN, "vcpu%u", i);
2832 		ksp = kstat_create_zone(VMM_MODULE_NAME, instance, namebuf,
2833 		    VMM_KSTAT_CLASS, KSTAT_TYPE_NAMED,
2834 		    sizeof (vmm_vcpu_kstats_t) / sizeof (kstat_named_t),
2835 		    0, zid);
2836 		if (ksp == NULL) {
2837 			goto fail;
2838 		}
2839 
2840 		sc->vmm_kstat_vcpu[i] = ksp;
2841 	}
2842 
2843 	/*
2844 	 * If this instance is associated with a non-global zone, make its
2845 	 * kstats visible from the GZ.
2846 	 */
2847 	if (zid != GLOBAL_ZONEID) {
2848 		kstat_zone_add(sc->vmm_kstat_vm, GLOBAL_ZONEID);
2849 		for (uint_t i = 0; i < VM_MAXCPU; i++) {
2850 			kstat_zone_add(sc->vmm_kstat_vcpu[i], GLOBAL_ZONEID);
2851 		}
2852 	}
2853 
2854 	return (0);
2855 
2856 fail:
2857 	for (uint_t i = 0; i < VM_MAXCPU; i++) {
2858 		if (sc->vmm_kstat_vcpu[i] != NULL) {
2859 			kstat_delete(sc->vmm_kstat_vcpu[i]);
2860 			sc->vmm_kstat_vcpu[i] = NULL;
2861 		} else {
2862 			break;
2863 		}
2864 	}
2865 	kstat_delete(sc->vmm_kstat_vm);
2866 	sc->vmm_kstat_vm = NULL;
2867 	return (-1);
2868 }
2869 
2870 static void
2871 vmm_kstat_init(vmm_softc_t *sc)
2872 {
2873 	kstat_t *ksp;
2874 
2875 	ASSERT3P(sc->vmm_vm, !=, NULL);
2876 	ASSERT3P(sc->vmm_kstat_vm, !=, NULL);
2877 
2878 	ksp = sc->vmm_kstat_vm;
2879 	vmm_kstats_t *vk = ksp->ks_data;
2880 	ksp->ks_private = sc->vmm_vm;
2881 	kstat_named_init(&vk->vk_name, "vm_name", KSTAT_DATA_STRING);
2882 	kstat_named_setstr(&vk->vk_name, sc->vmm_name);
2883 
2884 	for (uint_t i = 0; i < VM_MAXCPU; i++) {
2885 		ASSERT3P(sc->vmm_kstat_vcpu[i], !=, NULL);
2886 
2887 		ksp = sc->vmm_kstat_vcpu[i];
2888 		vmm_vcpu_kstats_t *vvk = ksp->ks_data;
2889 
2890 		kstat_named_init(&vvk->vvk_vcpu, "vcpu", KSTAT_DATA_UINT32);
2891 		vvk->vvk_vcpu.value.ui32 = i;
2892 		kstat_named_init(&vvk->vvk_time_init, "time_init",
2893 		    KSTAT_DATA_UINT64);
2894 		kstat_named_init(&vvk->vvk_time_run, "time_run",
2895 		    KSTAT_DATA_UINT64);
2896 		kstat_named_init(&vvk->vvk_time_idle, "time_idle",
2897 		    KSTAT_DATA_UINT64);
2898 		kstat_named_init(&vvk->vvk_time_emu_kern, "time_emu_kern",
2899 		    KSTAT_DATA_UINT64);
2900 		kstat_named_init(&vvk->vvk_time_emu_user, "time_emu_user",
2901 		    KSTAT_DATA_UINT64);
2902 		kstat_named_init(&vvk->vvk_time_sched, "time_sched",
2903 		    KSTAT_DATA_UINT64);
2904 		ksp->ks_private = sc->vmm_vm;
2905 		ksp->ks_update = vmm_kstat_update_vcpu;
2906 	}
2907 
2908 	kstat_install(sc->vmm_kstat_vm);
2909 	for (uint_t i = 0; i < VM_MAXCPU; i++) {
2910 		kstat_install(sc->vmm_kstat_vcpu[i]);
2911 	}
2912 }
2913 
2914 static void
2915 vmm_kstat_fini(vmm_softc_t *sc)
2916 {
2917 	ASSERT(sc->vmm_kstat_vm != NULL);
2918 
2919 	kstat_delete(sc->vmm_kstat_vm);
2920 	sc->vmm_kstat_vm = NULL;
2921 
2922 	for (uint_t i = 0; i < VM_MAXCPU; i++) {
2923 		ASSERT3P(sc->vmm_kstat_vcpu[i], !=, NULL);
2924 
2925 		kstat_delete(sc->vmm_kstat_vcpu[i]);
2926 		sc->vmm_kstat_vcpu[i] = NULL;
2927 	}
2928 }
2929 
2930 static int
2931 vmm_open(dev_t *devp, int flag, int otyp, cred_t *credp)
2932 {
2933 	minor_t		minor;
2934 	vmm_softc_t	*sc;
2935 
2936 	/*
2937 	 * Forbid running bhyve in a 32-bit process until it has been tested and
2938 	 * verified to be safe.
2939 	 */
2940 	if (curproc->p_model != DATAMODEL_LP64) {
2941 		return (EFBIG);
2942 	}
2943 
2944 	minor = getminor(*devp);
2945 	if (minor == VMM_CTL_MINOR) {
2946 		/*
2947 		 * Master control device must be opened exclusively.
2948 		 */
2949 		if ((flag & FEXCL) != FEXCL || otyp != OTYP_CHR) {
2950 			return (EINVAL);
2951 		}
2952 
2953 		return (0);
2954 	}
2955 
2956 	mutex_enter(&vmm_mtx);
2957 	sc = ddi_get_soft_state(vmm_statep, minor);
2958 	if (sc == NULL) {
2959 		mutex_exit(&vmm_mtx);
2960 		return (ENXIO);
2961 	}
2962 
2963 	sc->vmm_flags |= VMM_IS_OPEN;
2964 	mutex_exit(&vmm_mtx);
2965 
2966 	return (0);
2967 }
2968 
2969 static int
2970 vmm_close(dev_t dev, int flag, int otyp, cred_t *credp)
2971 {
2972 	const minor_t minor = getminor(dev);
2973 	vmm_softc_t *sc;
2974 	bool hma_release = false;
2975 
2976 	if (minor == VMM_CTL_MINOR) {
2977 		return (0);
2978 	}
2979 
2980 	mutex_enter(&vmm_mtx);
2981 	sc = ddi_get_soft_state(vmm_statep, minor);
2982 	if (sc == NULL) {
2983 		mutex_exit(&vmm_mtx);
2984 		return (ENXIO);
2985 	}
2986 
2987 	VERIFY3U(sc->vmm_flags & VMM_IS_OPEN, !=, 0);
2988 	sc->vmm_flags &= ~VMM_IS_OPEN;
2989 
2990 	/*
2991 	 * If instance was marked for auto-destruction begin that now.  Instance
2992 	 * destruction may have been initated already, so try to make progress
2993 	 * in that case, since closure of the device is one of its requirements.
2994 	 */
2995 	if ((sc->vmm_flags & VMM_DESTROY) != 0 ||
2996 	    (sc->vmm_flags & VMM_AUTODESTROY) != 0) {
2997 		VERIFY0(vmm_destroy_locked(sc, VDO_DEFAULT, &hma_release));
2998 	}
2999 	mutex_exit(&vmm_mtx);
3000 
3001 	if (hma_release) {
3002 		vmm_hma_release();
3003 	}
3004 
3005 	return (0);
3006 }
3007 
3008 static int
3009 vmm_is_supported(intptr_t arg)
3010 {
3011 	int r;
3012 	const char *msg;
3013 
3014 	if (vmm_is_intel()) {
3015 		r = vmx_x86_supported(&msg);
3016 	} else if (vmm_is_svm()) {
3017 		/*
3018 		 * HMA already ensured that the features necessary for SVM
3019 		 * operation were present and online during vmm_attach().
3020 		 */
3021 		r = 0;
3022 	} else {
3023 		r = ENXIO;
3024 		msg = "Unsupported CPU vendor";
3025 	}
3026 
3027 	if (r != 0 && arg != (intptr_t)NULL) {
3028 		if (copyoutstr(msg, (char *)arg, strlen(msg) + 1, NULL) != 0)
3029 			return (EFAULT);
3030 	}
3031 	return (r);
3032 }
3033 
3034 static int
3035 vmm_ctl_ioctl(int cmd, intptr_t arg, int md, cred_t *cr, int *rvalp)
3036 {
3037 	void *argp = (void *)arg;
3038 
3039 	switch (cmd) {
3040 	case VMM_CREATE_VM: {
3041 		struct vm_create_req req;
3042 
3043 		if ((md & FWRITE) == 0) {
3044 			return (EPERM);
3045 		}
3046 		if (ddi_copyin(argp, &req, sizeof (req), md) != 0) {
3047 			return (EFAULT);
3048 		}
3049 		return (vmmdev_do_vm_create(&req, cr));
3050 	}
3051 	case VMM_DESTROY_VM: {
3052 		struct vm_destroy_req req;
3053 
3054 		if ((md & FWRITE) == 0) {
3055 			return (EPERM);
3056 		}
3057 		if (ddi_copyin(argp, &req, sizeof (req), md) != 0) {
3058 			return (EFAULT);
3059 		}
3060 		return (vmmdev_do_vm_destroy(&req, cr));
3061 	}
3062 	case VMM_VM_SUPPORTED:
3063 		return (vmm_is_supported(arg));
3064 	case VMM_CHECK_IOMMU:
3065 		if (!vmm_check_iommu()) {
3066 			return (ENXIO);
3067 		}
3068 		return (0);
3069 	case VMM_RESV_QUERY:
3070 	case VMM_RESV_SET_TARGET:
3071 		return (vmmr_ioctl(cmd, arg, md, cr, rvalp));
3072 	default:
3073 		break;
3074 	}
3075 	/* No other actions are legal on ctl device */
3076 	return (ENOTTY);
3077 }
3078 
3079 static int
3080 vmm_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
3081     int *rvalp)
3082 {
3083 	vmm_softc_t	*sc;
3084 	minor_t		minor;
3085 
3086 	/*
3087 	 * Forbid running bhyve in a 32-bit process until it has been tested and
3088 	 * verified to be safe.
3089 	 */
3090 	if (curproc->p_model != DATAMODEL_LP64) {
3091 		return (EFBIG);
3092 	}
3093 
3094 	/* The structs in bhyve ioctls assume a 64-bit datamodel */
3095 	if (ddi_model_convert_from(mode & FMODELS) != DDI_MODEL_NONE) {
3096 		return (ENOTSUP);
3097 	}
3098 
3099 	/*
3100 	 * Regardless of minor (vmmctl or instance), we respond to queries of
3101 	 * the interface version.
3102 	 */
3103 	if (cmd == VMM_INTERFACE_VERSION) {
3104 		*rvalp = VMM_CURRENT_INTERFACE_VERSION;
3105 		return (0);
3106 	}
3107 
3108 	minor = getminor(dev);
3109 
3110 	if (minor == VMM_CTL_MINOR) {
3111 		return (vmm_ctl_ioctl(cmd, arg, mode, credp, rvalp));
3112 	}
3113 
3114 	sc = ddi_get_soft_state(vmm_statep, minor);
3115 	ASSERT(sc != NULL);
3116 
3117 	/*
3118 	 * Turn away any ioctls against an instance when it is being destroyed.
3119 	 * (Except for the ioctl inquiring about that destroy-in-progress.)
3120 	 */
3121 	if ((sc->vmm_flags & VMM_DESTROY) != 0) {
3122 		if (cmd == VM_DESTROY_PENDING) {
3123 			*rvalp = 1;
3124 			return (0);
3125 		}
3126 		return (ENXIO);
3127 	}
3128 
3129 	return (vmmdev_do_ioctl(sc, cmd, arg, mode, credp, rvalp));
3130 }
3131 
3132 static int
3133 vmm_segmap(dev_t dev, off_t off, struct as *as, caddr_t *addrp, off_t len,
3134     unsigned int prot, unsigned int maxprot, unsigned int flags, cred_t *credp)
3135 {
3136 	vmm_softc_t *sc;
3137 	const minor_t minor = getminor(dev);
3138 	int err;
3139 
3140 	if (minor == VMM_CTL_MINOR) {
3141 		return (ENODEV);
3142 	}
3143 	if (off < 0 || (off + len) <= 0) {
3144 		return (EINVAL);
3145 	}
3146 	if ((prot & PROT_USER) == 0) {
3147 		return (EACCES);
3148 	}
3149 
3150 	sc = ddi_get_soft_state(vmm_statep, minor);
3151 	ASSERT(sc);
3152 
3153 	if (sc->vmm_flags & VMM_DESTROY)
3154 		return (ENXIO);
3155 
3156 	/* Grab read lock on the VM to prevent any changes to the memory map */
3157 	vmm_read_lock(sc);
3158 
3159 	if (off >= VM_DEVMEM_START) {
3160 		int segid;
3161 		off_t segoff;
3162 
3163 		/* Mapping a devmem "device" */
3164 		if (!vmmdev_devmem_segid(sc, off, len, &segid, &segoff)) {
3165 			err = ENODEV;
3166 		} else {
3167 			err = vm_segmap_obj(sc->vmm_vm, segid, segoff, len, as,
3168 			    addrp, prot, maxprot, flags);
3169 		}
3170 	} else {
3171 		/* Mapping a part of the guest physical space */
3172 		err = vm_segmap_space(sc->vmm_vm, off, as, addrp, len, prot,
3173 		    maxprot, flags);
3174 	}
3175 
3176 	vmm_read_unlock(sc);
3177 	return (err);
3178 }
3179 
3180 static sdev_plugin_validate_t
3181 vmm_sdev_validate(sdev_ctx_t ctx)
3182 {
3183 	const char *name = sdev_ctx_name(ctx);
3184 	vmm_softc_t *sc;
3185 	sdev_plugin_validate_t ret;
3186 	minor_t minor;
3187 
3188 	if (sdev_ctx_vtype(ctx) != VCHR)
3189 		return (SDEV_VTOR_INVALID);
3190 
3191 	VERIFY3S(sdev_ctx_minor(ctx, &minor), ==, 0);
3192 
3193 	mutex_enter(&vmm_mtx);
3194 	if ((sc = vmm_lookup(name)) == NULL)
3195 		ret = SDEV_VTOR_INVALID;
3196 	else if (sc->vmm_minor != minor)
3197 		ret = SDEV_VTOR_STALE;
3198 	else
3199 		ret = SDEV_VTOR_VALID;
3200 	mutex_exit(&vmm_mtx);
3201 
3202 	return (ret);
3203 }
3204 
3205 static int
3206 vmm_sdev_filldir(sdev_ctx_t ctx)
3207 {
3208 	vmm_softc_t *sc;
3209 	int ret;
3210 
3211 	if (strcmp(sdev_ctx_path(ctx), VMM_SDEV_ROOT) != 0) {
3212 		cmn_err(CE_WARN, "%s: bad path '%s' != '%s'\n", __func__,
3213 		    sdev_ctx_path(ctx), VMM_SDEV_ROOT);
3214 		return (EINVAL);
3215 	}
3216 
3217 	mutex_enter(&vmm_mtx);
3218 	ASSERT(vmmdev_dip != NULL);
3219 	for (sc = list_head(&vmm_list); sc != NULL;
3220 	    sc = list_next(&vmm_list, sc)) {
3221 		if (INGLOBALZONE(curproc) || sc->vmm_zone == curzone) {
3222 			ret = sdev_plugin_mknod(ctx, sc->vmm_name,
3223 			    S_IFCHR | 0600,
3224 			    makedevice(ddi_driver_major(vmmdev_dip),
3225 			    sc->vmm_minor));
3226 		} else {
3227 			continue;
3228 		}
3229 		if (ret != 0 && ret != EEXIST)
3230 			goto out;
3231 	}
3232 
3233 	ret = 0;
3234 
3235 out:
3236 	mutex_exit(&vmm_mtx);
3237 	return (ret);
3238 }
3239 
3240 /* ARGSUSED */
3241 static void
3242 vmm_sdev_inactive(sdev_ctx_t ctx)
3243 {
3244 }
3245 
3246 static sdev_plugin_ops_t vmm_sdev_ops = {
3247 	.spo_version = SDEV_PLUGIN_VERSION,
3248 	.spo_flags = SDEV_PLUGIN_SUBDIR,
3249 	.spo_validate = vmm_sdev_validate,
3250 	.spo_filldir = vmm_sdev_filldir,
3251 	.spo_inactive = vmm_sdev_inactive
3252 };
3253 
3254 /* ARGSUSED */
3255 static int
3256 vmm_info(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **result)
3257 {
3258 	int error;
3259 
3260 	switch (cmd) {
3261 	case DDI_INFO_DEVT2DEVINFO:
3262 		*result = (void *)vmmdev_dip;
3263 		error = DDI_SUCCESS;
3264 		break;
3265 	case DDI_INFO_DEVT2INSTANCE:
3266 		*result = (void *)0;
3267 		error = DDI_SUCCESS;
3268 		break;
3269 	default:
3270 		error = DDI_FAILURE;
3271 		break;
3272 	}
3273 	return (error);
3274 }
3275 
3276 static int
3277 vmm_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3278 {
3279 	sdev_plugin_hdl_t sph;
3280 	hma_reg_t *reg = NULL;
3281 	boolean_t vmm_loaded = B_FALSE;
3282 
3283 	if (cmd != DDI_ATTACH) {
3284 		return (DDI_FAILURE);
3285 	}
3286 
3287 	mutex_enter(&vmmdev_mtx);
3288 	/* Ensure we are not already attached. */
3289 	if (vmmdev_dip != NULL) {
3290 		mutex_exit(&vmmdev_mtx);
3291 		return (DDI_FAILURE);
3292 	}
3293 
3294 	vmm_sol_glue_init();
3295 
3296 	/*
3297 	 * Perform temporary HMA registration to determine if the system
3298 	 * is capable.
3299 	 */
3300 	if ((reg = hma_register(vmmdev_hvm_name)) == NULL) {
3301 		goto fail;
3302 	} else if (vmm_mod_load() != 0) {
3303 		goto fail;
3304 	}
3305 	vmm_loaded = B_TRUE;
3306 	hma_unregister(reg);
3307 	reg = NULL;
3308 
3309 	/* Create control node.  Other nodes will be created on demand. */
3310 	if (ddi_create_minor_node(dip, "ctl", S_IFCHR,
3311 	    VMM_CTL_MINOR, DDI_PSEUDO, 0) != 0) {
3312 		goto fail;
3313 	}
3314 
3315 	sph = sdev_plugin_register(VMM_MODULE_NAME, &vmm_sdev_ops, NULL);
3316 	if (sph == (sdev_plugin_hdl_t)NULL) {
3317 		ddi_remove_minor_node(dip, NULL);
3318 		goto fail;
3319 	}
3320 
3321 	ddi_report_dev(dip);
3322 	vmmdev_sdev_hdl = sph;
3323 	vmmdev_dip = dip;
3324 	mutex_exit(&vmmdev_mtx);
3325 	return (DDI_SUCCESS);
3326 
3327 fail:
3328 	if (vmm_loaded) {
3329 		VERIFY0(vmm_mod_unload());
3330 	}
3331 	if (reg != NULL) {
3332 		hma_unregister(reg);
3333 	}
3334 	vmm_sol_glue_cleanup();
3335 	mutex_exit(&vmmdev_mtx);
3336 	return (DDI_FAILURE);
3337 }
3338 
3339 static int
3340 vmm_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3341 {
3342 	if (cmd != DDI_DETACH) {
3343 		return (DDI_FAILURE);
3344 	}
3345 
3346 	/*
3347 	 * Ensure that all resources have been cleaned up.
3348 	 *
3349 	 * To prevent a deadlock with iommu_cleanup() we'll fail the detach if
3350 	 * vmmdev_mtx is already held. We can't wait for vmmdev_mtx with our
3351 	 * devinfo locked as iommu_cleanup() tries to recursively lock each
3352 	 * devinfo, including our own, while holding vmmdev_mtx.
3353 	 */
3354 	if (mutex_tryenter(&vmmdev_mtx) == 0)
3355 		return (DDI_FAILURE);
3356 
3357 	mutex_enter(&vmm_mtx);
3358 	if (!list_is_empty(&vmm_list)) {
3359 		mutex_exit(&vmm_mtx);
3360 		mutex_exit(&vmmdev_mtx);
3361 		return (DDI_FAILURE);
3362 	}
3363 	mutex_exit(&vmm_mtx);
3364 
3365 	if (!vmmr_is_empty()) {
3366 		mutex_exit(&vmmdev_mtx);
3367 		return (DDI_FAILURE);
3368 	}
3369 
3370 	VERIFY(vmmdev_sdev_hdl != (sdev_plugin_hdl_t)NULL);
3371 	if (sdev_plugin_unregister(vmmdev_sdev_hdl) != 0) {
3372 		mutex_exit(&vmmdev_mtx);
3373 		return (DDI_FAILURE);
3374 	}
3375 	vmmdev_sdev_hdl = (sdev_plugin_hdl_t)NULL;
3376 
3377 	/* Remove the control node. */
3378 	ddi_remove_minor_node(dip, "ctl");
3379 	vmmdev_dip = NULL;
3380 
3381 	VERIFY0(vmm_mod_unload());
3382 	VERIFY3U(vmmdev_hma_reg, ==, NULL);
3383 	vmm_sol_glue_cleanup();
3384 
3385 	mutex_exit(&vmmdev_mtx);
3386 
3387 	return (DDI_SUCCESS);
3388 }
3389 
3390 static struct cb_ops vmm_cb_ops = {
3391 	vmm_open,
3392 	vmm_close,
3393 	nodev,		/* strategy */
3394 	nodev,		/* print */
3395 	nodev,		/* dump */
3396 	nodev,		/* read */
3397 	nodev,		/* write */
3398 	vmm_ioctl,
3399 	nodev,		/* devmap */
3400 	nodev,		/* mmap */
3401 	vmm_segmap,
3402 	nochpoll,	/* poll */
3403 	ddi_prop_op,
3404 	NULL,
3405 	D_NEW | D_MP | D_DEVMAP
3406 };
3407 
3408 static struct dev_ops vmm_ops = {
3409 	DEVO_REV,
3410 	0,
3411 	vmm_info,
3412 	nulldev,	/* identify */
3413 	nulldev,	/* probe */
3414 	vmm_attach,
3415 	vmm_detach,
3416 	nodev,		/* reset */
3417 	&vmm_cb_ops,
3418 	(struct bus_ops *)NULL
3419 };
3420 
3421 static struct modldrv modldrv = {
3422 	&mod_driverops,
3423 	"bhyve vmm",
3424 	&vmm_ops
3425 };
3426 
3427 static struct modlinkage modlinkage = {
3428 	MODREV_1,
3429 	&modldrv,
3430 	NULL
3431 };
3432 
3433 int
3434 _init(void)
3435 {
3436 	int	error;
3437 
3438 	sysinit();
3439 
3440 	mutex_init(&vmmdev_mtx, NULL, MUTEX_DRIVER, NULL);
3441 	mutex_init(&vmm_mtx, NULL, MUTEX_DRIVER, NULL);
3442 	list_create(&vmm_list, sizeof (vmm_softc_t),
3443 	    offsetof(vmm_softc_t, vmm_node));
3444 	vmm_minors = id_space_create("vmm_minors", VMM_CTL_MINOR + 1, MAXMIN32);
3445 
3446 	error = ddi_soft_state_init(&vmm_statep, sizeof (vmm_softc_t), 0);
3447 	if (error) {
3448 		return (error);
3449 	}
3450 
3451 	error = vmmr_init();
3452 	if (error) {
3453 		ddi_soft_state_fini(&vmm_statep);
3454 		return (error);
3455 	}
3456 
3457 	vmm_zsd_init();
3458 
3459 	error = mod_install(&modlinkage);
3460 	if (error) {
3461 		ddi_soft_state_fini(&vmm_statep);
3462 		vmm_zsd_fini();
3463 		vmmr_fini();
3464 	}
3465 
3466 	return (error);
3467 }
3468 
3469 int
3470 _fini(void)
3471 {
3472 	int	error;
3473 
3474 	error = mod_remove(&modlinkage);
3475 	if (error) {
3476 		return (error);
3477 	}
3478 
3479 	vmm_zsd_fini();
3480 	vmmr_fini();
3481 
3482 	ddi_soft_state_fini(&vmm_statep);
3483 
3484 	return (0);
3485 }
3486 
3487 int
3488 _info(struct modinfo *modinfop)
3489 {
3490 	return (mod_info(&modlinkage, modinfop));
3491 }
3492