xref: /illumos-gate/usr/src/uts/intel/io/vmm/sys/vmm_kernel.h (revision c093b3ec6d35e1fe023174ed7f6ca6b90690d526)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 /*
29  * This file and its contents are supplied under the terms of the
30  * Common Development and Distribution License ("CDDL"), version 1.0.
31  * You may only use this file in accordance with the terms of version
32  * 1.0 of the CDDL.
33  *
34  * A full copy of the text of the CDDL should have accompanied this
35  * source.  A copy of the CDDL is also available via the Internet at
36  * http://www.illumos.org/license/CDDL.
37  *
38  * Copyright 2015 Pluribus Networks Inc.
39  * Copyright 2019 Joyent, Inc.
40  * Copyright 2023 Oxide Computer Company
41  * Copyright 2021 OmniOS Community Edition (OmniOSce) Association.
42  */
43 
44 #ifndef _VMM_KERNEL_H_
45 #define	_VMM_KERNEL_H_
46 
47 #include <sys/sdt.h>
48 #include <x86/segments.h>
49 #include <sys/vmm.h>
50 #include <sys/vmm_data.h>
51 #include <sys/linker_set.h>
52 
53 SDT_PROVIDER_DECLARE(vmm);
54 
55 struct vm;
56 struct vm_exception;
57 struct seg_desc;
58 struct vm_exit;
59 struct vie;
60 struct vm_run;
61 struct vhpet;
62 struct vioapic;
63 struct vlapic;
64 struct vmspace;
65 struct vm_client;
66 struct vm_object;
67 struct vm_guest_paging;
68 struct vmm_data_req;
69 
70 /* Return values for architecture-specific calculation of the TSC multiplier */
71 typedef enum {
72 	FR_VALID,			/* valid multiplier, scaling needed */
73 	FR_SCALING_NOT_NEEDED,		/* scaling not required */
74 	FR_SCALING_NOT_SUPPORTED,	/* scaling not supported by platform */
75 	FR_OUT_OF_RANGE,		/* freq ratio out of supported range */
76 } freqratio_res_t;
77 
78 typedef int	(*vmm_init_func_t)(void);
79 typedef int	(*vmm_cleanup_func_t)(void);
80 typedef void	(*vmm_resume_func_t)(void);
81 typedef void *	(*vmi_init_func_t)(struct vm *vm);
82 typedef int	(*vmi_run_func_t)(void *vmi, int vcpu, uint64_t rip);
83 typedef void	(*vmi_cleanup_func_t)(void *vmi);
84 typedef int	(*vmi_get_register_t)(void *vmi, int vcpu, int num,
85     uint64_t *retval);
86 typedef int	(*vmi_set_register_t)(void *vmi, int vcpu, int num,
87     uint64_t val);
88 typedef int	(*vmi_get_desc_t)(void *vmi, int vcpu, int num,
89     struct seg_desc *desc);
90 typedef int	(*vmi_set_desc_t)(void *vmi, int vcpu, int num,
91     const struct seg_desc *desc);
92 typedef int	(*vmi_get_cap_t)(void *vmi, int vcpu, int num, int *retval);
93 typedef int	(*vmi_set_cap_t)(void *vmi, int vcpu, int num, int val);
94 typedef struct vlapic *(*vmi_vlapic_init)(void *vmi, int vcpu);
95 typedef void	(*vmi_vlapic_cleanup)(void *vmi, struct vlapic *vlapic);
96 typedef void	(*vmi_savectx)(void *vmi, int vcpu);
97 typedef void	(*vmi_restorectx)(void *vmi, int vcpu);
98 typedef void	(*vmi_pause_t)(void *vmi, int vcpu);
99 
100 typedef int	(*vmi_get_msr_t)(void *vmi, int vcpu, uint32_t msr,
101     uint64_t *valp);
102 typedef int	(*vmi_set_msr_t)(void *vmi, int vcpu, uint32_t msr,
103     uint64_t val);
104 typedef freqratio_res_t	(*vmi_freqratio_t)(uint64_t guest_hz,
105     uint64_t host_hz, uint64_t *mult);
106 
107 struct vmm_ops {
108 	vmm_init_func_t		init;		/* module wide initialization */
109 	vmm_cleanup_func_t	cleanup;
110 	vmm_resume_func_t	resume;
111 
112 	vmi_init_func_t		vminit;		/* vm-specific initialization */
113 	vmi_run_func_t		vmrun;
114 	vmi_cleanup_func_t	vmcleanup;
115 	vmi_get_register_t	vmgetreg;
116 	vmi_set_register_t	vmsetreg;
117 	vmi_get_desc_t		vmgetdesc;
118 	vmi_set_desc_t		vmsetdesc;
119 	vmi_get_cap_t		vmgetcap;
120 	vmi_set_cap_t		vmsetcap;
121 	vmi_vlapic_init		vlapic_init;
122 	vmi_vlapic_cleanup	vlapic_cleanup;
123 	vmi_pause_t		vmpause;
124 
125 	vmi_savectx		vmsavectx;
126 	vmi_restorectx		vmrestorectx;
127 
128 	vmi_get_msr_t		vmgetmsr;
129 	vmi_set_msr_t		vmsetmsr;
130 
131 	vmi_freqratio_t		vmfreqratio;
132 	uint32_t		fr_intsize;
133 	uint32_t		fr_fracsize;
134 };
135 
136 extern struct vmm_ops vmm_ops_intel;
137 extern struct vmm_ops vmm_ops_amd;
138 
139 int vm_create(uint64_t flags, struct vm **retvm);
140 void vm_destroy(struct vm *vm);
141 int vm_reinit(struct vm *vm, uint64_t);
142 uint16_t vm_get_maxcpus(struct vm *vm);
143 void vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
144     uint16_t *threads, uint16_t *maxcpus);
145 int vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
146     uint16_t threads, uint16_t maxcpus);
147 
148 int vm_pause_instance(struct vm *);
149 int vm_resume_instance(struct vm *);
150 bool vm_is_paused(struct vm *);
151 
152 /*
153  * APIs that race against hardware.
154  */
155 int vm_track_dirty_pages(struct vm *, uint64_t, size_t, uint8_t *);
156 
157 /*
158  * APIs that modify the guest memory map require all vcpus to be frozen.
159  */
160 int vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t off,
161     size_t len, int prot, int flags);
162 int vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len);
163 int vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem);
164 void vm_free_memseg(struct vm *vm, int ident);
165 int vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa);
166 int vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len);
167 int vm_assign_pptdev(struct vm *vm, int pptfd);
168 int vm_unassign_pptdev(struct vm *vm, int pptfd);
169 
170 /*
171  * APIs that inspect the guest memory map require only a *single* vcpu to
172  * be frozen. This acts like a read lock on the guest memory map since any
173  * modification requires *all* vcpus to be frozen.
174  */
175 int vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
176     vm_ooffset_t *segoff, size_t *len, int *prot, int *flags);
177 int vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
178     struct vm_object **objptr);
179 vm_paddr_t vmm_sysmem_maxaddr(struct vm *vm);
180 bool vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa);
181 
182 int vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval);
183 int vm_set_register(struct vm *vm, int vcpu, int reg, uint64_t val);
184 int vm_get_seg_desc(struct vm *vm, int vcpu, int reg,
185     struct seg_desc *ret_desc);
186 int vm_set_seg_desc(struct vm *vm, int vcpu, int reg,
187     const struct seg_desc *desc);
188 int vm_get_run_state(struct vm *vm, int vcpuid, uint32_t *state,
189     uint8_t *sipi_vec);
190 int vm_set_run_state(struct vm *vm, int vcpuid, uint32_t state,
191     uint8_t sipi_vec);
192 int vm_get_fpu(struct vm *vm, int vcpuid, void *buf, size_t len);
193 int vm_set_fpu(struct vm *vm, int vcpuid, void *buf, size_t len);
194 int vm_run(struct vm *vm, int vcpuid, const struct vm_entry *);
195 int vm_suspend(struct vm *, enum vm_suspend_how, int);
196 int vm_inject_nmi(struct vm *vm, int vcpu);
197 bool vm_nmi_pending(struct vm *vm, int vcpuid);
198 void vm_nmi_clear(struct vm *vm, int vcpuid);
199 int vm_inject_extint(struct vm *vm, int vcpu);
200 bool vm_extint_pending(struct vm *vm, int vcpuid);
201 void vm_extint_clear(struct vm *vm, int vcpuid);
202 int vm_inject_init(struct vm *vm, int vcpuid);
203 int vm_inject_sipi(struct vm *vm, int vcpuid, uint8_t vec);
204 struct vlapic *vm_lapic(struct vm *vm, int cpu);
205 struct vioapic *vm_ioapic(struct vm *vm);
206 struct vhpet *vm_hpet(struct vm *vm);
207 int vm_get_capability(struct vm *vm, int vcpu, int type, int *val);
208 int vm_set_capability(struct vm *vm, int vcpu, int type, int val);
209 int vm_get_x2apic_state(struct vm *vm, int vcpu, enum x2apic_state *state);
210 int vm_set_x2apic_state(struct vm *vm, int vcpu, enum x2apic_state state);
211 int vm_apicid2vcpuid(struct vm *vm, int apicid);
212 int vm_activate_cpu(struct vm *vm, int vcpu);
213 int vm_suspend_cpu(struct vm *vm, int vcpu);
214 int vm_resume_cpu(struct vm *vm, int vcpu);
215 struct vm_exit *vm_exitinfo(struct vm *vm, int vcpuid);
216 struct vie *vm_vie_ctx(struct vm *vm, int vcpuid);
217 void vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip);
218 void vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip);
219 void vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip);
220 void vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip);
221 void vm_exit_run_state(struct vm *vm, int vcpuid, uint64_t rip);
222 int vm_service_mmio_read(struct vm *vm, int cpuid, uint64_t gpa, uint64_t *rval,
223     int rsize);
224 int vm_service_mmio_write(struct vm *vm, int cpuid, uint64_t gpa, uint64_t wval,
225     int wsize);
226 
227 #ifdef _SYS__CPUSET_H_
228 cpuset_t vm_active_cpus(struct vm *vm);
229 cpuset_t vm_debug_cpus(struct vm *vm);
230 #endif	/* _SYS__CPUSET_H_ */
231 
232 bool vcpu_entry_bailout_checks(struct vm *vm, int vcpuid, uint64_t rip);
233 bool vcpu_run_state_pending(struct vm *vm, int vcpuid);
234 int vcpu_arch_reset(struct vm *vm, int vcpuid, bool init_only);
235 int vm_vcpu_barrier(struct vm *, int);
236 
237 /*
238  * Return true if device indicated by bus/slot/func is supposed to be a
239  * pci passthrough device.
240  *
241  * Return false otherwise.
242  */
243 bool vmm_is_pptdev(int bus, int slot, int func);
244 
245 void *vm_iommu_domain(struct vm *vm);
246 
247 enum vcpu_state {
248 	VCPU_IDLE,
249 	VCPU_FROZEN,
250 	VCPU_RUNNING,
251 	VCPU_SLEEPING,
252 };
253 
254 int vcpu_set_state(struct vm *vm, int vcpu, enum vcpu_state state,
255     bool from_idle);
256 enum vcpu_state vcpu_get_state(struct vm *vm, int vcpu, int *hostcpu);
257 void vcpu_block_run(struct vm *, int);
258 void vcpu_unblock_run(struct vm *, int);
259 
260 uint64_t vcpu_tsc_offset(struct vm *vm, int vcpuid, bool phys_adj);
261 hrtime_t vm_normalize_hrtime(struct vm *, hrtime_t);
262 hrtime_t vm_denormalize_hrtime(struct vm *, hrtime_t);
263 uint64_t vm_get_freq_multiplier(struct vm *);
264 
265 static __inline bool
266 vcpu_is_running(struct vm *vm, int vcpu, int *hostcpu)
267 {
268 	return (vcpu_get_state(vm, vcpu, hostcpu) == VCPU_RUNNING);
269 }
270 
271 #ifdef _SYS_THREAD_H
272 static __inline int
273 vcpu_should_yield(struct vm *vm, int vcpu)
274 {
275 
276 	if (curthread->t_astflag)
277 		return (1);
278 	else if (CPU->cpu_runrun)
279 		return (1);
280 	else
281 		return (0);
282 }
283 #endif /* _SYS_THREAD_H */
284 
285 typedef enum vcpu_notify {
286 	VCPU_NOTIFY_NONE,
287 	VCPU_NOTIFY_APIC,	/* Posted intr notification (if possible) */
288 	VCPU_NOTIFY_EXIT,	/* IPI to cause VM exit */
289 } vcpu_notify_t;
290 
291 void *vcpu_stats(struct vm *vm, int vcpu);
292 void vcpu_notify_event(struct vm *vm, int vcpuid);
293 void vcpu_notify_event_type(struct vm *vm, int vcpuid, vcpu_notify_t);
294 struct vmspace *vm_get_vmspace(struct vm *vm);
295 struct vm_client *vm_get_vmclient(struct vm *vm, int vcpuid);
296 struct vatpic *vm_atpic(struct vm *vm);
297 struct vatpit *vm_atpit(struct vm *vm);
298 struct vpmtmr *vm_pmtmr(struct vm *vm);
299 struct vrtc *vm_rtc(struct vm *vm);
300 
301 /*
302  * Inject exception 'vector' into the guest vcpu. This function returns 0 on
303  * success and non-zero on failure.
304  *
305  * Wrapper functions like 'vm_inject_gp()' should be preferred to calling
306  * this function directly because they enforce the trap-like or fault-like
307  * behavior of an exception.
308  *
309  * This function should only be called in the context of the thread that is
310  * executing this vcpu.
311  */
312 int vm_inject_exception(struct vm *vm, int vcpuid, uint8_t vector,
313     bool err_valid, uint32_t errcode, bool restart_instruction);
314 
315 /*
316  * This function is called after a VM-exit that occurred during exception or
317  * interrupt delivery through the IDT. The format of 'intinfo' is described
318  * in Figure 15-1, "EXITINTINFO for All Intercepts", APM, Vol 2.
319  *
320  * If a VM-exit handler completes the event delivery successfully then it
321  * should call vm_exit_intinfo() to extinguish the pending event. For e.g.,
322  * if the task switch emulation is triggered via a task gate then it should
323  * call this function with 'intinfo=0' to indicate that the external event
324  * is not pending anymore.
325  *
326  * Return value is 0 on success and non-zero on failure.
327  */
328 int vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t intinfo);
329 
330 /*
331  * This function is called before every VM-entry to retrieve a pending
332  * event that should be injected into the guest. This function combines
333  * nested events into a double or triple fault.
334  *
335  * Returns false if there are no events that need to be injected into the guest.
336  */
337 bool vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *info);
338 
339 int vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2);
340 
341 enum vm_reg_name vm_segment_name(int seg_encoding);
342 
343 struct vm_copyinfo {
344 	uint64_t	gpa;
345 	size_t		len;
346 	int		prot;
347 	void		*hva;
348 	void		*cookie;
349 };
350 
351 /*
352  * Set up 'copyinfo[]' to copy to/from guest linear address space starting
353  * at 'gla' and 'len' bytes long. The 'prot' should be set to PROT_READ for
354  * a copyin or PROT_WRITE for a copyout.
355  *
356  * retval	is_fault	Interpretation
357  *   0		   0		Success
358  *   0		   1		An exception was injected into the guest
359  * EFAULT	  N/A		Unrecoverable error
360  *
361  * The 'copyinfo[]' can be passed to 'vm_copyin()' or 'vm_copyout()' only if
362  * the return value is 0. The 'copyinfo[]' resources should be freed by calling
363  * 'vm_copy_teardown()' after the copy is done.
364  */
365 int vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
366     uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
367     uint_t num_copyinfo, int *is_fault);
368 void vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo,
369     uint_t num_copyinfo);
370 void vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo,
371     void *kaddr, size_t len);
372 void vm_copyout(struct vm *vm, int vcpuid, const void *kaddr,
373     struct vm_copyinfo *copyinfo, size_t len);
374 
375 int vcpu_trace_exceptions(struct vm *vm, int vcpuid);
376 int vcpu_trap_wbinvd(struct vm *vm, int vcpuid);
377 
378 void vm_inject_ud(struct vm *vm, int vcpuid);
379 void vm_inject_gp(struct vm *vm, int vcpuid);
380 void vm_inject_ac(struct vm *vm, int vcpuid, uint32_t errcode);
381 void vm_inject_ss(struct vm *vm, int vcpuid, uint32_t errcode);
382 void vm_inject_pf(struct vm *vm, int vcpuid, uint32_t errcode, uint64_t cr2);
383 
384 /*
385  * Both SVM and VMX have complex logic for injecting events such as exceptions
386  * or interrupts into the guest.  Within those two backends, the progress of
387  * event injection is tracked by event_inject_state, hopefully making it easier
388  * to reason about.
389  */
390 enum event_inject_state {
391 	EIS_CAN_INJECT	= 0, /* exception/interrupt can be injected */
392 	EIS_EV_EXISTING	= 1, /* blocked by existing event */
393 	EIS_EV_INJECTED	= 2, /* blocked by injected event */
394 	EIS_GI_BLOCK	= 3, /* blocked by guest interruptability */
395 
396 	/*
397 	 * Flag to request an immediate exit from VM context after event
398 	 * injection in order to perform more processing
399 	 */
400 	EIS_REQ_EXIT	= (1 << 15),
401 };
402 
403 /* Possible result codes for MSR access emulation */
404 typedef enum vm_msr_result {
405 	VMR_OK		= 0, /* succesfully emulated */
406 	VMR_GP		= 1, /* #GP should be injected */
407 	VMR_UNHANLDED	= 2, /* handle in userspace, kernel cannot emulate */
408 } vm_msr_result_t;
409 
410 enum vm_cpuid_capability {
411 	VCC_NONE,
412 	VCC_NO_EXECUTE,
413 	VCC_FFXSR,
414 	VCC_TCE,
415 	VCC_LAST
416 };
417 
418 /* Possible flags and entry count limit definited in sys/vmm.h */
419 typedef struct vcpu_cpuid_config {
420 	uint32_t		vcc_flags;
421 	uint32_t		vcc_nent;
422 	struct vcpu_cpuid_entry	*vcc_entries;
423 } vcpu_cpuid_config_t;
424 
425 vcpu_cpuid_config_t *vm_cpuid_config(struct vm *, int);
426 int vm_get_cpuid(struct vm *, int, vcpu_cpuid_config_t *);
427 int vm_set_cpuid(struct vm *, int, const vcpu_cpuid_config_t *);
428 void vcpu_emulate_cpuid(struct vm *, int, uint64_t *, uint64_t *, uint64_t *,
429     uint64_t *);
430 void legacy_emulate_cpuid(struct vm *, int, uint32_t *, uint32_t *, uint32_t *,
431     uint32_t *);
432 void vcpu_cpuid_init(vcpu_cpuid_config_t *);
433 void vcpu_cpuid_cleanup(vcpu_cpuid_config_t *);
434 
435 bool vm_cpuid_capability(struct vm *, int, enum vm_cpuid_capability);
436 bool validate_guest_xcr0(uint64_t, uint64_t);
437 
438 void vmm_sol_glue_init(void);
439 void vmm_sol_glue_cleanup(void);
440 
441 void *vmm_contig_alloc(size_t);
442 void vmm_contig_free(void *, size_t);
443 
444 int vmm_mod_load(void);
445 int vmm_mod_unload(void);
446 
447 bool vmm_check_iommu(void);
448 
449 void vmm_call_trap(uint64_t);
450 
451 uint64_t vmm_host_tsc_delta(void);
452 
453 /*
454  * Because of tangled headers, this is not exposed directly via the vmm_drv
455  * interface, but rather mirrored as vmm_drv_iop_cb_t in vmm_drv.h.
456  */
457 typedef int (*ioport_handler_t)(void *, bool, uint16_t, uint8_t, uint32_t *);
458 
459 int vm_ioport_access(struct vm *vm, int vcpuid, bool in, uint16_t port,
460     uint8_t bytes, uint32_t *val);
461 
462 int vm_ioport_attach(struct vm *vm, uint16_t port, ioport_handler_t func,
463     void *arg, void **cookie);
464 int vm_ioport_detach(struct vm *vm, void **cookie, ioport_handler_t *old_func,
465     void **old_arg);
466 
467 int vm_ioport_hook(struct vm *, uint16_t, ioport_handler_t, void *, void **);
468 void vm_ioport_unhook(struct vm *, void **);
469 
470 enum vcpu_ustate {
471 	VU_INIT = 0,	/* initialized but has not yet attempted to run */
472 	VU_RUN,		/* running in guest context */
473 	VU_IDLE,	/* idle (HLTed, wait-for-SIPI, etc) */
474 	VU_EMU_KERN,	/* emulation performed in-kernel */
475 	VU_EMU_USER,	/* emulation performed in userspace */
476 	VU_SCHED,	/* off-cpu for interrupt, preempt, lock contention */
477 	VU_MAX
478 };
479 
480 void vcpu_ustate_change(struct vm *, int, enum vcpu_ustate);
481 
482 typedef struct vmm_kstats {
483 	kstat_named_t	vk_name;
484 } vmm_kstats_t;
485 
486 typedef struct vmm_vcpu_kstats {
487 	kstat_named_t	vvk_vcpu;
488 	kstat_named_t	vvk_time_init;
489 	kstat_named_t	vvk_time_run;
490 	kstat_named_t	vvk_time_idle;
491 	kstat_named_t	vvk_time_emu_kern;
492 	kstat_named_t	vvk_time_emu_user;
493 	kstat_named_t	vvk_time_sched;
494 } vmm_vcpu_kstats_t;
495 
496 #define	VMM_KSTAT_CLASS	"misc"
497 
498 int vmm_kstat_update_vcpu(struct kstat *, int);
499 
500 typedef struct vmm_data_req {
501 	uint16_t	vdr_class;
502 	uint16_t	vdr_version;
503 	uint32_t	vdr_flags;
504 	uint32_t	vdr_len;
505 	void		*vdr_data;
506 	uint32_t	*vdr_result_len;
507 } vmm_data_req_t;
508 
509 typedef int (*vmm_data_writef_t)(void *, const vmm_data_req_t *);
510 typedef int (*vmm_data_readf_t)(void *, const vmm_data_req_t *);
511 typedef int (*vmm_data_vcpu_writef_t)(struct vm *, int, const vmm_data_req_t *);
512 typedef int (*vmm_data_vcpu_readf_t)(struct vm *, int, const vmm_data_req_t *);
513 
514 typedef struct vmm_data_version_entry {
515 	uint16_t		vdve_class;
516 	uint16_t		vdve_version;
517 
518 	/*
519 	 * If these handlers accept/emit a single item of a fixed length, it
520 	 * should be specified in vdve_len_expect.  The vmm-data logic will then
521 	 * ensure that requests possess at least that specified length before
522 	 * calling into the defined handlers.
523 	 */
524 	uint16_t		vdve_len_expect;
525 
526 	/*
527 	 * For handlers which deal with (potentially) multiple items of a fixed
528 	 * length, vdve_len_per_item is used to hint (via the VDC_VERSION class)
529 	 * to userspace what that item size is.  Although not strictly mutually
530 	 * exclusive with vdve_len_expect, it is nonsensical to set them both.
531 	 */
532 	uint16_t		vdve_len_per_item;
533 
534 	/*
535 	 * A vmm-data handler is expected to provide read/write functions which
536 	 * are either VM-wide (via vdve_readf and vdve_writef) or per-vCPU
537 	 * (via vdve_vcpu_readf and vdve_vcpu_writef).  Providing both is not
538 	 * allowed (but is not currently checked at compile time).
539 	 */
540 
541 	/* VM-wide handlers */
542 	vmm_data_readf_t	vdve_readf;
543 	vmm_data_writef_t	vdve_writef;
544 
545 	/* Per-vCPU handlers */
546 	vmm_data_vcpu_readf_t	vdve_vcpu_readf;
547 	vmm_data_vcpu_writef_t	vdve_vcpu_writef;
548 
549 	/*
550 	 * The vdve_vcpu_readf/writef handlers can rely on vcpuid to be within
551 	 * the [0, VM_MAXCPU) bounds.  If they also can handle vcpuid == -1 (for
552 	 * VM-wide data), then they can opt into such cases by setting
553 	 * vdve_vcpu_wildcard to true.
554 	 *
555 	 * At a later time, it would make sense to improve the logic so a
556 	 * vmm-data class could define both the VM-wide and per-vCPU handlers,
557 	 * letting the incoming vcpuid determine which would be called.  Until
558 	 * then, vdve_vcpu_wildcard is the stopgap.
559 	 */
560 	bool			vdve_vcpu_wildcard;
561 } vmm_data_version_entry_t;
562 
563 #define	VMM_DATA_VERSION(sym)	SET_ENTRY(vmm_data_version_entries, sym)
564 
565 int vmm_data_read(struct vm *, int, const vmm_data_req_t *);
566 int vmm_data_write(struct vm *, int, const vmm_data_req_t *);
567 
568 /*
569  * TSC Scaling
570  */
571 uint64_t vmm_calc_freq_multiplier(uint64_t guest_hz, uint64_t host_hz,
572     uint32_t frac);
573 
574 /* represents a multiplier for a guest in which no scaling is required */
575 #define	VM_TSCM_NOSCALE	0
576 
577 #endif /* _VMM_KERNEL_H_ */
578