xref: /illumos-gate/usr/src/uts/intel/io/vmm/intel/vmx.c (revision 4c2bdae20e15dfc656ce2c87808008f4da4fc3f0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  * Copyright (c) 2018 Joyent, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 /*
32  * This file and its contents are supplied under the terms of the
33  * Common Development and Distribution License ("CDDL"), version 1.0.
34  * You may only use this file in accordance with the terms of version
35  * 1.0 of the CDDL.
36  *
37  * A full copy of the text of the CDDL should have accompanied this
38  * source.  A copy of the CDDL is also available via the Internet at
39  * http://www.illumos.org/license/CDDL.
40  *
41  * Copyright 2015 Pluribus Networks Inc.
42  * Copyright 2018 Joyent, Inc.
43  * Copyright 2022 Oxide Computer Company
44  * Copyright 2022 MNX Cloud, Inc.
45  */
46 
47 #include <sys/cdefs.h>
48 __FBSDID("$FreeBSD$");
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/kernel.h>
53 #include <sys/kmem.h>
54 #include <sys/pcpu.h>
55 #include <sys/proc.h>
56 #include <sys/sysctl.h>
57 
58 #include <sys/x86_archext.h>
59 #include <sys/smp_impldefs.h>
60 #include <sys/smt.h>
61 #include <sys/hma.h>
62 #include <sys/trap.h>
63 #include <sys/archsystm.h>
64 
65 #include <machine/psl.h>
66 #include <machine/cpufunc.h>
67 #include <machine/md_var.h>
68 #include <machine/reg.h>
69 #include <machine/segments.h>
70 #include <machine/specialreg.h>
71 #include <machine/vmparam.h>
72 #include <sys/vmm_vm.h>
73 #include <sys/vmm_kernel.h>
74 
75 #include <machine/vmm.h>
76 #include <machine/vmm_dev.h>
77 #include <sys/vmm_instruction_emul.h>
78 #include "vmm_lapic.h"
79 #include "vmm_host.h"
80 #include "vmm_ioport.h"
81 #include "vmm_stat.h"
82 #include "vatpic.h"
83 #include "vlapic.h"
84 #include "vlapic_priv.h"
85 
86 #include "vmcs.h"
87 #include "vmx.h"
88 #include "vmx_msr.h"
89 #include "vmx_controls.h"
90 
91 #define	PINBASED_CTLS_ONE_SETTING					\
92 	(PINBASED_EXTINT_EXITING	|				\
93 	PINBASED_NMI_EXITING		|				\
94 	PINBASED_VIRTUAL_NMI)
95 #define	PINBASED_CTLS_ZERO_SETTING	0
96 
97 #define	PROCBASED_CTLS_WINDOW_SETTING					\
98 	(PROCBASED_INT_WINDOW_EXITING	|				\
99 	PROCBASED_NMI_WINDOW_EXITING)
100 
101 /*
102  * Distinct from FreeBSD bhyve, we consider several additional proc-based
103  * controls necessary:
104  * - TSC offsetting
105  * - HLT exiting
106  */
107 #define	PROCBASED_CTLS_ONE_SETTING					\
108 	(PROCBASED_SECONDARY_CONTROLS	|				\
109 	PROCBASED_TSC_OFFSET		|				\
110 	PROCBASED_HLT_EXITING		|				\
111 	PROCBASED_MWAIT_EXITING		|				\
112 	PROCBASED_MONITOR_EXITING	|				\
113 	PROCBASED_IO_EXITING		|				\
114 	PROCBASED_MSR_BITMAPS		|				\
115 	PROCBASED_CTLS_WINDOW_SETTING	|				\
116 	PROCBASED_CR8_LOAD_EXITING	|				\
117 	PROCBASED_CR8_STORE_EXITING)
118 
119 #define	PROCBASED_CTLS_ZERO_SETTING	\
120 	(PROCBASED_CR3_LOAD_EXITING |	\
121 	PROCBASED_CR3_STORE_EXITING |	\
122 	PROCBASED_IO_BITMAPS)
123 
124 /*
125  * EPT and Unrestricted Guest are considered necessities.  The latter is not a
126  * requirement on FreeBSD, where grub2-bhyve is used to load guests directly
127  * without a bootrom starting in real mode.
128  */
129 #define	PROCBASED_CTLS2_ONE_SETTING		\
130 	(PROCBASED2_ENABLE_EPT |		\
131 	PROCBASED2_UNRESTRICTED_GUEST)
132 #define	PROCBASED_CTLS2_ZERO_SETTING	0
133 
134 #define	VM_EXIT_CTLS_ONE_SETTING					\
135 	(VM_EXIT_SAVE_DEBUG_CONTROLS		|			\
136 	VM_EXIT_HOST_LMA			|			\
137 	VM_EXIT_LOAD_PAT			|			\
138 	VM_EXIT_SAVE_EFER			|			\
139 	VM_EXIT_LOAD_EFER			|			\
140 	VM_EXIT_ACKNOWLEDGE_INTERRUPT)
141 
142 #define	VM_EXIT_CTLS_ZERO_SETTING	0
143 
144 #define	VM_ENTRY_CTLS_ONE_SETTING					\
145 	(VM_ENTRY_LOAD_DEBUG_CONTROLS		|			\
146 	VM_ENTRY_LOAD_EFER)
147 
148 #define	VM_ENTRY_CTLS_ZERO_SETTING					\
149 	(VM_ENTRY_INTO_SMM			|			\
150 	VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
151 
152 /*
153  * Cover the EPT capabilities used by bhyve at present:
154  * - 4-level page walks
155  * - write-back memory type
156  * - INVEPT operations (all types)
157  * - INVVPID operations (single-context only)
158  */
159 #define	EPT_CAPS_REQUIRED			\
160 	(IA32_VMX_EPT_VPID_PWL4 |		\
161 	IA32_VMX_EPT_VPID_TYPE_WB |		\
162 	IA32_VMX_EPT_VPID_INVEPT |		\
163 	IA32_VMX_EPT_VPID_INVEPT_SINGLE |	\
164 	IA32_VMX_EPT_VPID_INVEPT_ALL |		\
165 	IA32_VMX_EPT_VPID_INVVPID |		\
166 	IA32_VMX_EPT_VPID_INVVPID_SINGLE)
167 
168 #define	HANDLED		1
169 #define	UNHANDLED	0
170 
171 SYSCTL_DECL(_hw_vmm);
172 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
173     NULL);
174 
175 /*
176  * TSC scaling related constants
177  */
178 #define	INTEL_TSCM_INT_SIZE	16
179 #define	INTEL_TSCM_FRAC_SIZE	48
180 
181 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
182 static uint32_t exit_ctls, entry_ctls;
183 
184 static uint64_t cr0_ones_mask, cr0_zeros_mask;
185 
186 static uint64_t cr4_ones_mask, cr4_zeros_mask;
187 
188 static int vmx_initialized;
189 
190 /*
191  * Optional capabilities
192  */
193 
194 /* PAUSE triggers a VM-exit */
195 static int cap_pause_exit;
196 
197 /* WBINVD triggers a VM-exit */
198 static int cap_wbinvd_exit;
199 
200 /* Monitor trap flag */
201 static int cap_monitor_trap;
202 
203 /* Guests are allowed to use INVPCID */
204 static int cap_invpcid;
205 
206 /* Extra capabilities (VMX_CAP_*) beyond the minimum */
207 static enum vmx_caps vmx_capabilities;
208 
209 /* APICv posted interrupt vector */
210 static int pirvec = -1;
211 
212 static uint_t vpid_alloc_failed;
213 
214 int guest_l1d_flush;
215 int guest_l1d_flush_sw;
216 
217 /* MSR save region is composed of an array of 'struct msr_entry' */
218 struct msr_entry {
219 	uint32_t	index;
220 	uint32_t	reserved;
221 	uint64_t	val;
222 };
223 
224 static struct msr_entry msr_load_list[1] __aligned(16);
225 
226 /*
227  * The definitions of SDT probes for VMX.
228  */
229 
230 /* BEGIN CSTYLED */
231 SDT_PROBE_DEFINE3(vmm, vmx, exit, entry,
232     "struct vmx *", "int", "struct vm_exit *");
233 
234 SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch,
235     "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *");
236 
237 SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess,
238     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
239 
240 SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr,
241     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
242 
243 SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr,
244     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t");
245 
246 SDT_PROBE_DEFINE3(vmm, vmx, exit, halt,
247     "struct vmx *", "int", "struct vm_exit *");
248 
249 SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap,
250     "struct vmx *", "int", "struct vm_exit *");
251 
252 SDT_PROBE_DEFINE3(vmm, vmx, exit, pause,
253     "struct vmx *", "int", "struct vm_exit *");
254 
255 SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow,
256     "struct vmx *", "int", "struct vm_exit *");
257 
258 SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt,
259     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
260 
261 SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow,
262     "struct vmx *", "int", "struct vm_exit *");
263 
264 SDT_PROBE_DEFINE3(vmm, vmx, exit, inout,
265     "struct vmx *", "int", "struct vm_exit *");
266 
267 SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid,
268     "struct vmx *", "int", "struct vm_exit *");
269 
270 SDT_PROBE_DEFINE5(vmm, vmx, exit, exception,
271     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int");
272 
273 SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault,
274     "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t");
275 
276 SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault,
277     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
278 
279 SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi,
280     "struct vmx *", "int", "struct vm_exit *");
281 
282 SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess,
283     "struct vmx *", "int", "struct vm_exit *");
284 
285 SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite,
286     "struct vmx *", "int", "struct vm_exit *", "struct vlapic *");
287 
288 SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv,
289     "struct vmx *", "int", "struct vm_exit *");
290 
291 SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor,
292     "struct vmx *", "int", "struct vm_exit *");
293 
294 SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait,
295     "struct vmx *", "int", "struct vm_exit *");
296 
297 SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn,
298     "struct vmx *", "int", "struct vm_exit *");
299 
300 SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown,
301     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
302 
303 SDT_PROBE_DEFINE4(vmm, vmx, exit, return,
304     "struct vmx *", "int", "struct vm_exit *", "int");
305 /* END CSTYLED */
306 
307 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
308 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
309 static void vmx_apply_tsc_adjust(struct vmx *, int);
310 static void vmx_apicv_sync_tmr(struct vlapic *vlapic);
311 static void vmx_tpr_shadow_enter(struct vlapic *vlapic);
312 static void vmx_tpr_shadow_exit(struct vlapic *vlapic);
313 
314 static void
315 vmx_allow_x2apic_msrs(struct vmx *vmx, int vcpuid)
316 {
317 	/*
318 	 * Allow readonly access to the following x2APIC MSRs from the guest.
319 	 */
320 	guest_msr_ro(vmx, vcpuid, MSR_APIC_ID);
321 	guest_msr_ro(vmx, vcpuid, MSR_APIC_VERSION);
322 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LDR);
323 	guest_msr_ro(vmx, vcpuid, MSR_APIC_SVR);
324 
325 	for (uint_t i = 0; i < 8; i++) {
326 		guest_msr_ro(vmx, vcpuid, MSR_APIC_ISR0 + i);
327 		guest_msr_ro(vmx, vcpuid, MSR_APIC_TMR0 + i);
328 		guest_msr_ro(vmx, vcpuid, MSR_APIC_IRR0 + i);
329 	}
330 
331 	guest_msr_ro(vmx, vcpuid, MSR_APIC_ESR);
332 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_TIMER);
333 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_THERMAL);
334 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_PCINT);
335 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_LINT0);
336 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_LINT1);
337 	guest_msr_ro(vmx, vcpuid, MSR_APIC_LVT_ERROR);
338 	guest_msr_ro(vmx, vcpuid, MSR_APIC_ICR_TIMER);
339 	guest_msr_ro(vmx, vcpuid, MSR_APIC_DCR_TIMER);
340 	guest_msr_ro(vmx, vcpuid, MSR_APIC_ICR);
341 
342 	/*
343 	 * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
344 	 *
345 	 * These registers get special treatment described in the section
346 	 * "Virtualizing MSR-Based APIC Accesses".
347 	 */
348 	guest_msr_rw(vmx, vcpuid, MSR_APIC_TPR);
349 	guest_msr_rw(vmx, vcpuid, MSR_APIC_EOI);
350 	guest_msr_rw(vmx, vcpuid, MSR_APIC_SELF_IPI);
351 }
352 
353 static ulong_t
354 vmx_fix_cr0(ulong_t cr0)
355 {
356 	return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
357 }
358 
359 /*
360  * Given a live (VMCS-active) cr0 value, and its shadow counterpart, calculate
361  * the value observable from the guest.
362  */
363 static ulong_t
364 vmx_unshadow_cr0(uint64_t cr0, uint64_t shadow)
365 {
366 	return ((cr0 & ~cr0_ones_mask) |
367 	    (shadow & (cr0_zeros_mask | cr0_ones_mask)));
368 }
369 
370 static ulong_t
371 vmx_fix_cr4(ulong_t cr4)
372 {
373 	return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
374 }
375 
376 /*
377  * Given a live (VMCS-active) cr4 value, and its shadow counterpart, calculate
378  * the value observable from the guest.
379  */
380 static ulong_t
381 vmx_unshadow_cr4(uint64_t cr4, uint64_t shadow)
382 {
383 	return ((cr4 & ~cr4_ones_mask) |
384 	    (shadow & (cr4_zeros_mask | cr4_ones_mask)));
385 }
386 
387 static void
388 vpid_free(int vpid)
389 {
390 	if (vpid < 0 || vpid > 0xffff)
391 		panic("vpid_free: invalid vpid %d", vpid);
392 
393 	/*
394 	 * VPIDs [0,VM_MAXCPU] are special and are not allocated from
395 	 * the unit number allocator.
396 	 */
397 
398 	if (vpid > VM_MAXCPU)
399 		hma_vmx_vpid_free((uint16_t)vpid);
400 }
401 
402 static void
403 vpid_alloc(uint16_t *vpid, int num)
404 {
405 	int i, x;
406 
407 	if (num <= 0 || num > VM_MAXCPU)
408 		panic("invalid number of vpids requested: %d", num);
409 
410 	/*
411 	 * If the "enable vpid" execution control is not enabled then the
412 	 * VPID is required to be 0 for all vcpus.
413 	 */
414 	if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
415 		for (i = 0; i < num; i++)
416 			vpid[i] = 0;
417 		return;
418 	}
419 
420 	/*
421 	 * Allocate a unique VPID for each vcpu from the unit number allocator.
422 	 */
423 	for (i = 0; i < num; i++) {
424 		uint16_t tmp;
425 
426 		tmp = hma_vmx_vpid_alloc();
427 		x = (tmp == 0) ? -1 : tmp;
428 
429 		if (x == -1)
430 			break;
431 		else
432 			vpid[i] = x;
433 	}
434 
435 	if (i < num) {
436 		atomic_add_int(&vpid_alloc_failed, 1);
437 
438 		/*
439 		 * If the unit number allocator does not have enough unique
440 		 * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
441 		 *
442 		 * These VPIDs are not be unique across VMs but this does not
443 		 * affect correctness because the combined mappings are also
444 		 * tagged with the EP4TA which is unique for each VM.
445 		 *
446 		 * It is still sub-optimal because the invvpid will invalidate
447 		 * combined mappings for a particular VPID across all EP4TAs.
448 		 */
449 		while (i-- > 0)
450 			vpid_free(vpid[i]);
451 
452 		for (i = 0; i < num; i++)
453 			vpid[i] = i + 1;
454 	}
455 }
456 
457 static int
458 vmx_cleanup(void)
459 {
460 	/* This is taken care of by the hma registration */
461 	return (0);
462 }
463 
464 static void
465 vmx_restore(void)
466 {
467 	/* No-op on illumos */
468 }
469 
470 static int
471 vmx_init(void)
472 {
473 	int error;
474 	uint64_t fixed0, fixed1;
475 	uint32_t tmp;
476 	enum vmx_caps avail_caps = VMX_CAP_NONE;
477 
478 	/* Check support for primary processor-based VM-execution controls */
479 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
480 	    MSR_VMX_TRUE_PROCBASED_CTLS,
481 	    PROCBASED_CTLS_ONE_SETTING,
482 	    PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
483 	if (error) {
484 		printf("vmx_init: processor does not support desired primary "
485 		    "processor-based controls\n");
486 		return (error);
487 	}
488 
489 	/*
490 	 * Clear interrupt-window/NMI-window exiting from the default proc-based
491 	 * controls. They are set and cleared based on runtime vCPU events.
492 	 */
493 	procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
494 
495 	/* Check support for secondary processor-based VM-execution controls */
496 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
497 	    MSR_VMX_PROCBASED_CTLS2,
498 	    PROCBASED_CTLS2_ONE_SETTING,
499 	    PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
500 	if (error) {
501 		printf("vmx_init: processor does not support desired secondary "
502 		    "processor-based controls\n");
503 		return (error);
504 	}
505 
506 	/* Check support for VPID */
507 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
508 	    MSR_VMX_PROCBASED_CTLS2,
509 	    PROCBASED2_ENABLE_VPID,
510 	    0, &tmp);
511 	if (error == 0)
512 		procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
513 
514 	/* Check support for pin-based VM-execution controls */
515 	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
516 	    MSR_VMX_TRUE_PINBASED_CTLS,
517 	    PINBASED_CTLS_ONE_SETTING,
518 	    PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
519 	if (error) {
520 		printf("vmx_init: processor does not support desired "
521 		    "pin-based controls\n");
522 		return (error);
523 	}
524 
525 	/* Check support for VM-exit controls */
526 	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
527 	    VM_EXIT_CTLS_ONE_SETTING,
528 	    VM_EXIT_CTLS_ZERO_SETTING,
529 	    &exit_ctls);
530 	if (error) {
531 		printf("vmx_init: processor does not support desired "
532 		    "exit controls\n");
533 		return (error);
534 	}
535 
536 	/* Check support for VM-entry controls */
537 	error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
538 	    VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
539 	    &entry_ctls);
540 	if (error) {
541 		printf("vmx_init: processor does not support desired "
542 		    "entry controls\n");
543 		return (error);
544 	}
545 
546 	/*
547 	 * Check support for optional features by testing them
548 	 * as individual bits
549 	 */
550 	cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
551 	    MSR_VMX_PROCBASED_CTLS,
552 	    PROCBASED_MTF, 0,
553 	    &tmp) == 0);
554 
555 	cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
556 	    MSR_VMX_TRUE_PROCBASED_CTLS,
557 	    PROCBASED_PAUSE_EXITING, 0,
558 	    &tmp) == 0);
559 
560 	cap_wbinvd_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
561 	    MSR_VMX_PROCBASED_CTLS2,
562 	    PROCBASED2_WBINVD_EXITING, 0,
563 	    &tmp) == 0);
564 
565 	cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
566 	    MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
567 	    &tmp) == 0);
568 
569 	/*
570 	 * Check for APIC virtualization capabilities:
571 	 * - TPR shadowing
572 	 * - Full APICv (with or without x2APIC support)
573 	 * - Posted interrupt handling
574 	 */
575 	if (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, MSR_VMX_TRUE_PROCBASED_CTLS,
576 	    PROCBASED_USE_TPR_SHADOW, 0, &tmp) == 0) {
577 		avail_caps |= VMX_CAP_TPR_SHADOW;
578 
579 		const uint32_t apicv_bits =
580 		    PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
581 		    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
582 		    PROCBASED2_VIRTUALIZE_X2APIC_MODE |
583 		    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY;
584 		if (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
585 		    MSR_VMX_PROCBASED_CTLS2, apicv_bits, 0, &tmp) == 0) {
586 			avail_caps |= VMX_CAP_APICV;
587 
588 			/*
589 			 * It may make sense in the future to differentiate
590 			 * hardware (or software) configurations with APICv but
591 			 * no support for accelerating x2APIC mode.
592 			 */
593 			avail_caps |= VMX_CAP_APICV_X2APIC;
594 
595 			error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
596 			    MSR_VMX_TRUE_PINBASED_CTLS,
597 			    PINBASED_POSTED_INTERRUPT, 0, &tmp);
598 			if (error == 0) {
599 				/*
600 				 * If the PSM-provided interfaces for requesting
601 				 * and using a PIR IPI vector are present, use
602 				 * them for posted interrupts.
603 				 */
604 				if (psm_get_pir_ipivect != NULL &&
605 				    psm_send_pir_ipi != NULL) {
606 					pirvec = psm_get_pir_ipivect();
607 					avail_caps |= VMX_CAP_APICV_PIR;
608 				}
609 			}
610 		}
611 	}
612 
613 	/*
614 	 * Check for necessary EPT capabilities
615 	 *
616 	 * TODO: Properly handle when IA32_VMX_EPT_VPID_HW_AD is missing and the
617 	 * hypervisor intends to utilize dirty page tracking.
618 	 */
619 	uint64_t ept_caps = rdmsr(MSR_IA32_VMX_EPT_VPID_CAP);
620 	if ((ept_caps & EPT_CAPS_REQUIRED) != EPT_CAPS_REQUIRED) {
621 		cmn_err(CE_WARN, "!Inadequate EPT capabilities: %lx", ept_caps);
622 		return (EINVAL);
623 	}
624 
625 #ifdef __FreeBSD__
626 	guest_l1d_flush = (cpu_ia32_arch_caps &
627 	    IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0;
628 	TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush);
629 
630 	/*
631 	 * L1D cache flush is enabled.  Use IA32_FLUSH_CMD MSR when
632 	 * available.  Otherwise fall back to the software flush
633 	 * method which loads enough data from the kernel text to
634 	 * flush existing L1D content, both on VMX entry and on NMI
635 	 * return.
636 	 */
637 	if (guest_l1d_flush) {
638 		if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) {
639 			guest_l1d_flush_sw = 1;
640 			TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw",
641 			    &guest_l1d_flush_sw);
642 		}
643 		if (guest_l1d_flush_sw) {
644 			if (nmi_flush_l1d_sw <= 1)
645 				nmi_flush_l1d_sw = 1;
646 		} else {
647 			msr_load_list[0].index = MSR_IA32_FLUSH_CMD;
648 			msr_load_list[0].val = IA32_FLUSH_CMD_L1D;
649 		}
650 	}
651 #else
652 	/* L1D flushing is taken care of by smt_acquire() and friends */
653 	guest_l1d_flush = 0;
654 #endif /* __FreeBSD__ */
655 
656 	/*
657 	 * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
658 	 */
659 	fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
660 	fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
661 	cr0_ones_mask = fixed0 & fixed1;
662 	cr0_zeros_mask = ~fixed0 & ~fixed1;
663 
664 	/*
665 	 * Since Unrestricted Guest was already verified present, CR0_PE and
666 	 * CR0_PG are allowed to be set to zero in VMX non-root operation
667 	 */
668 	cr0_ones_mask &= ~(CR0_PG | CR0_PE);
669 
670 	/*
671 	 * Do not allow the guest to set CR0_NW or CR0_CD.
672 	 */
673 	cr0_zeros_mask |= (CR0_NW | CR0_CD);
674 
675 	fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
676 	fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
677 	cr4_ones_mask = fixed0 & fixed1;
678 	cr4_zeros_mask = ~fixed0 & ~fixed1;
679 
680 	vmx_msr_init();
681 
682 	vmx_capabilities = avail_caps;
683 	vmx_initialized = 1;
684 
685 	return (0);
686 }
687 
688 static void
689 vmx_trigger_hostintr(int vector)
690 {
691 	VERIFY(vector >= 32 && vector <= 255);
692 	vmx_call_isr(vector - 32);
693 }
694 
695 static void *
696 vmx_vminit(struct vm *vm)
697 {
698 	uint16_t vpid[VM_MAXCPU];
699 	int i, error, datasel;
700 	struct vmx *vmx;
701 	uint32_t exc_bitmap;
702 	uint16_t maxcpus;
703 	uint32_t proc_ctls, proc2_ctls, pin_ctls;
704 	uint64_t apic_access_pa = UINT64_MAX;
705 
706 	vmx = kmem_zalloc(sizeof (struct vmx), KM_SLEEP);
707 	VERIFY3U((uintptr_t)vmx & PAGE_MASK, ==, 0);
708 
709 	vmx->vm = vm;
710 	vmx->eptp = vmspace_table_root(vm_get_vmspace(vm));
711 
712 	/*
713 	 * Clean up EP4TA-tagged guest-physical and combined mappings
714 	 *
715 	 * VMX transitions are not required to invalidate any guest physical
716 	 * mappings. So, it may be possible for stale guest physical mappings
717 	 * to be present in the processor TLBs.
718 	 *
719 	 * Combined mappings for this EP4TA are also invalidated for all VPIDs.
720 	 */
721 	hma_vmx_invept_allcpus((uintptr_t)vmx->eptp);
722 
723 	vmx_msr_bitmap_initialize(vmx);
724 
725 	vpid_alloc(vpid, VM_MAXCPU);
726 
727 	/* Grab the established defaults */
728 	proc_ctls = procbased_ctls;
729 	proc2_ctls = procbased_ctls2;
730 	pin_ctls = pinbased_ctls;
731 	/* For now, default to the available capabilities */
732 	vmx->vmx_caps = vmx_capabilities;
733 
734 	if (vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW)) {
735 		proc_ctls |= PROCBASED_USE_TPR_SHADOW;
736 		proc_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
737 		proc_ctls &= ~PROCBASED_CR8_STORE_EXITING;
738 	}
739 	if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
740 		ASSERT(vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW));
741 
742 		proc2_ctls |= (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
743 		    PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
744 		    PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
745 
746 		/*
747 		 * Allocate a page of memory to back the APIC access address for
748 		 * when APICv features are in use.  Guest MMIO accesses should
749 		 * never actually reach this page, but rather be intercepted.
750 		 */
751 		vmx->apic_access_page = kmem_zalloc(PAGESIZE, KM_SLEEP);
752 		VERIFY3U((uintptr_t)vmx->apic_access_page & PAGEOFFSET, ==, 0);
753 		apic_access_pa = vtophys(vmx->apic_access_page);
754 
755 		error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
756 		    apic_access_pa);
757 		/* XXX this should really return an error to the caller */
758 		KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
759 	}
760 	if (vmx_cap_en(vmx, VMX_CAP_APICV_PIR)) {
761 		ASSERT(vmx_cap_en(vmx, VMX_CAP_APICV));
762 
763 		pin_ctls |= PINBASED_POSTED_INTERRUPT;
764 	}
765 
766 	/* Reflect any enabled defaults in the cap set */
767 	int cap_defaults = 0;
768 	if ((proc_ctls & PROCBASED_HLT_EXITING) != 0) {
769 		cap_defaults |= (1 << VM_CAP_HALT_EXIT);
770 	}
771 	if ((proc_ctls & PROCBASED_PAUSE_EXITING) != 0) {
772 		cap_defaults |= (1 << VM_CAP_PAUSE_EXIT);
773 	}
774 	if ((proc_ctls & PROCBASED_MTF) != 0) {
775 		cap_defaults |= (1 << VM_CAP_MTRAP_EXIT);
776 	}
777 	if ((proc2_ctls & PROCBASED2_ENABLE_INVPCID) != 0) {
778 		cap_defaults |= (1 << VM_CAP_ENABLE_INVPCID);
779 	}
780 
781 	maxcpus = vm_get_maxcpus(vm);
782 	datasel = vmm_get_host_datasel();
783 	for (i = 0; i < maxcpus; i++) {
784 		/*
785 		 * Cache physical address lookups for various components which
786 		 * may be required inside the critical_enter() section implied
787 		 * by VMPTRLD() below.
788 		 */
789 		vm_paddr_t msr_bitmap_pa = vtophys(vmx->msr_bitmap[i]);
790 		vm_paddr_t apic_page_pa = vtophys(&vmx->apic_page[i]);
791 		vm_paddr_t pir_desc_pa = vtophys(&vmx->pir_desc[i]);
792 
793 		vmx->vmcs_pa[i] = (uintptr_t)vtophys(&vmx->vmcs[i]);
794 		vmcs_initialize(&vmx->vmcs[i], vmx->vmcs_pa[i]);
795 
796 		vmx_msr_guest_init(vmx, i);
797 
798 		vmcs_load(vmx->vmcs_pa[i]);
799 
800 		vmcs_write(VMCS_HOST_IA32_PAT, vmm_get_host_pat());
801 		vmcs_write(VMCS_HOST_IA32_EFER, vmm_get_host_efer());
802 
803 		/* Load the control registers */
804 		vmcs_write(VMCS_HOST_CR0, vmm_get_host_cr0());
805 		vmcs_write(VMCS_HOST_CR4, vmm_get_host_cr4() | CR4_VMXE);
806 
807 		/* Load the segment selectors */
808 		vmcs_write(VMCS_HOST_CS_SELECTOR, vmm_get_host_codesel());
809 
810 		vmcs_write(VMCS_HOST_ES_SELECTOR, datasel);
811 		vmcs_write(VMCS_HOST_SS_SELECTOR, datasel);
812 		vmcs_write(VMCS_HOST_DS_SELECTOR, datasel);
813 
814 		vmcs_write(VMCS_HOST_FS_SELECTOR, vmm_get_host_fssel());
815 		vmcs_write(VMCS_HOST_GS_SELECTOR, vmm_get_host_gssel());
816 		vmcs_write(VMCS_HOST_TR_SELECTOR, vmm_get_host_tsssel());
817 
818 		/*
819 		 * Configure host sysenter MSRs to be restored on VM exit.
820 		 * The thread-specific MSR_INTC_SEP_ESP value is loaded in
821 		 * vmx_run.
822 		 */
823 		vmcs_write(VMCS_HOST_IA32_SYSENTER_CS, KCS_SEL);
824 		vmcs_write(VMCS_HOST_IA32_SYSENTER_EIP,
825 		    rdmsr(MSR_SYSENTER_EIP_MSR));
826 
827 		/* instruction pointer */
828 		vmcs_write(VMCS_HOST_RIP, (uint64_t)vmx_exit_guest);
829 
830 		/* link pointer */
831 		vmcs_write(VMCS_LINK_POINTER, ~0);
832 
833 		vmcs_write(VMCS_EPTP, vmx->eptp);
834 		vmcs_write(VMCS_PIN_BASED_CTLS, pin_ctls);
835 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
836 
837 		uint32_t use_proc2_ctls = proc2_ctls;
838 		if (cap_wbinvd_exit && vcpu_trap_wbinvd(vm, i) != 0)
839 			use_proc2_ctls |= PROCBASED2_WBINVD_EXITING;
840 		vmcs_write(VMCS_SEC_PROC_BASED_CTLS, use_proc2_ctls);
841 
842 		vmcs_write(VMCS_EXIT_CTLS, exit_ctls);
843 		vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
844 		vmcs_write(VMCS_MSR_BITMAP, msr_bitmap_pa);
845 		vmcs_write(VMCS_VPID, vpid[i]);
846 
847 		if (guest_l1d_flush && !guest_l1d_flush_sw) {
848 			vmcs_write(VMCS_ENTRY_MSR_LOAD,
849 			    vtophys(&msr_load_list[0]));
850 			vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT,
851 			    nitems(msr_load_list));
852 			vmcs_write(VMCS_EXIT_MSR_STORE, 0);
853 			vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0);
854 		}
855 
856 		/* exception bitmap */
857 		if (vcpu_trace_exceptions(vm, i))
858 			exc_bitmap = 0xffffffff;
859 		else
860 			exc_bitmap = 1 << IDT_MC;
861 		vmcs_write(VMCS_EXCEPTION_BITMAP, exc_bitmap);
862 
863 		vmx->ctx[i].guest_dr6 = DBREG_DR6_RESERVED1;
864 		vmcs_write(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1);
865 
866 		if (vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW)) {
867 			vmcs_write(VMCS_VIRTUAL_APIC, apic_page_pa);
868 		}
869 
870 		if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
871 			vmcs_write(VMCS_APIC_ACCESS, apic_access_pa);
872 			vmcs_write(VMCS_EOI_EXIT0, 0);
873 			vmcs_write(VMCS_EOI_EXIT1, 0);
874 			vmcs_write(VMCS_EOI_EXIT2, 0);
875 			vmcs_write(VMCS_EOI_EXIT3, 0);
876 		}
877 		if (vmx_cap_en(vmx, VMX_CAP_APICV_PIR)) {
878 			vmcs_write(VMCS_PIR_VECTOR, pirvec);
879 			vmcs_write(VMCS_PIR_DESC, pir_desc_pa);
880 		}
881 
882 		/*
883 		 * Set up the CR0/4 masks and configure the read shadow state
884 		 * to the power-on register value from the Intel Sys Arch.
885 		 *  CR0 - 0x60000010
886 		 *  CR4 - 0
887 		 */
888 		vmcs_write(VMCS_CR0_MASK, cr0_ones_mask | cr0_zeros_mask);
889 		vmcs_write(VMCS_CR0_SHADOW, 0x60000010);
890 		vmcs_write(VMCS_CR4_MASK, cr4_ones_mask | cr4_zeros_mask);
891 		vmcs_write(VMCS_CR4_SHADOW, 0);
892 
893 		vmcs_clear(vmx->vmcs_pa[i]);
894 
895 		vmx->cap[i].set = cap_defaults;
896 		vmx->cap[i].proc_ctls = proc_ctls;
897 		vmx->cap[i].proc_ctls2 = proc2_ctls;
898 		vmx->cap[i].exc_bitmap = exc_bitmap;
899 
900 		vmx->state[i].nextrip = ~0;
901 		vmx->state[i].lastcpu = NOCPU;
902 		vmx->state[i].vpid = vpid[i];
903 	}
904 
905 	return (vmx);
906 }
907 
908 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
909 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
910 
911 #define	INVVPID_TYPE_ADDRESS		0UL
912 #define	INVVPID_TYPE_SINGLE_CONTEXT	1UL
913 #define	INVVPID_TYPE_ALL_CONTEXTS	2UL
914 
915 struct invvpid_desc {
916 	uint16_t	vpid;
917 	uint16_t	_res1;
918 	uint32_t	_res2;
919 	uint64_t	linear_addr;
920 };
921 CTASSERT(sizeof (struct invvpid_desc) == 16);
922 
923 static __inline void
924 invvpid(uint64_t type, struct invvpid_desc desc)
925 {
926 	int error;
927 
928 	DTRACE_PROBE3(vmx__invvpid, uint64_t, type, uint16_t, desc.vpid,
929 	    uint64_t, desc.linear_addr);
930 
931 	__asm __volatile("invvpid %[desc], %[type];"
932 	    VMX_SET_ERROR_CODE_ASM
933 	    : [error] "=r" (error)
934 	    : [desc] "m" (desc), [type] "r" (type)
935 	    : "memory");
936 
937 	if (error) {
938 		panic("invvpid error %d", error);
939 	}
940 }
941 
942 /*
943  * Invalidate guest mappings identified by its VPID from the TLB.
944  *
945  * This is effectively a flush of the guest TLB, removing only "combined
946  * mappings" (to use the VMX parlance).  Actions which modify the EPT structures
947  * for the instance (such as unmapping GPAs) would require an 'invept' flush.
948  */
949 static void
950 vmx_invvpid(struct vmx *vmx, int vcpu, int running)
951 {
952 	struct vmxstate *vmxstate;
953 	struct vmspace *vms;
954 
955 	vmxstate = &vmx->state[vcpu];
956 	if (vmxstate->vpid == 0) {
957 		return;
958 	}
959 
960 	if (!running) {
961 		/*
962 		 * Set the 'lastcpu' to an invalid host cpu.
963 		 *
964 		 * This will invalidate TLB entries tagged with the vcpu's
965 		 * vpid the next time it runs via vmx_set_pcpu_defaults().
966 		 */
967 		vmxstate->lastcpu = NOCPU;
968 		return;
969 	}
970 
971 	/*
972 	 * Invalidate all mappings tagged with 'vpid'
973 	 *
974 	 * This is done when a vCPU moves between host CPUs, where there may be
975 	 * stale TLB entries for this VPID on the target, or if emulated actions
976 	 * in the guest CPU have incurred an explicit TLB flush.
977 	 */
978 	vms = vm_get_vmspace(vmx->vm);
979 	if (vmspace_table_gen(vms) == vmx->eptgen[curcpu]) {
980 		struct invvpid_desc invvpid_desc = {
981 			.vpid = vmxstate->vpid,
982 			.linear_addr = 0,
983 			._res1 = 0,
984 			._res2 = 0,
985 		};
986 
987 		invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
988 		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
989 	} else {
990 		/*
991 		 * The INVVPID can be skipped if an INVEPT is going to be
992 		 * performed before entering the guest.  The INVEPT will
993 		 * invalidate combined mappings for the EP4TA associated with
994 		 * this guest, in all VPIDs.
995 		 */
996 		vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
997 	}
998 }
999 
1000 static __inline void
1001 invept(uint64_t type, uint64_t eptp)
1002 {
1003 	int error;
1004 	struct invept_desc {
1005 		uint64_t eptp;
1006 		uint64_t _resv;
1007 	} desc = { eptp, 0 };
1008 
1009 	DTRACE_PROBE2(vmx__invept, uint64_t, type, uint64_t, eptp);
1010 
1011 	__asm __volatile("invept %[desc], %[type];"
1012 	    VMX_SET_ERROR_CODE_ASM
1013 	    : [error] "=r" (error)
1014 	    : [desc] "m" (desc), [type] "r" (type)
1015 	    : "memory");
1016 
1017 	if (error != 0) {
1018 		panic("invvpid error %d", error);
1019 	}
1020 }
1021 
1022 static void
1023 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu)
1024 {
1025 	struct vmxstate *vmxstate;
1026 
1027 	/*
1028 	 * Regardless of whether the VM appears to have migrated between CPUs,
1029 	 * save the host sysenter stack pointer.  As it points to the kernel
1030 	 * stack of each thread, the correct value must be maintained for every
1031 	 * trip into the critical section.
1032 	 */
1033 	vmcs_write(VMCS_HOST_IA32_SYSENTER_ESP, rdmsr(MSR_SYSENTER_ESP_MSR));
1034 
1035 	/*
1036 	 * Perform any needed TSC_OFFSET adjustment based on TSC_MSR writes or
1037 	 * migration between host CPUs with differing TSC values.
1038 	 */
1039 	vmx_apply_tsc_adjust(vmx, vcpu);
1040 
1041 	vmxstate = &vmx->state[vcpu];
1042 	if (vmxstate->lastcpu == curcpu)
1043 		return;
1044 
1045 	vmxstate->lastcpu = curcpu;
1046 
1047 	vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1048 
1049 	/* Load the per-CPU IDT address */
1050 	vmcs_write(VMCS_HOST_IDTR_BASE, vmm_get_host_idtrbase());
1051 	vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1052 	vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1053 	vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1054 	vmx_invvpid(vmx, vcpu, 1);
1055 }
1056 
1057 static __inline bool
1058 vmx_int_window_exiting(struct vmx *vmx, int vcpu)
1059 {
1060 	return ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0);
1061 }
1062 
1063 static __inline void
1064 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1065 {
1066 	if (!vmx_int_window_exiting(vmx, vcpu)) {
1067 		/* Enable interrupt window exiting */
1068 		vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1069 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1070 	}
1071 }
1072 
1073 static __inline void
1074 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1075 {
1076 	/* Disable interrupt window exiting */
1077 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1078 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1079 }
1080 
1081 static __inline bool
1082 vmx_nmi_window_exiting(struct vmx *vmx, int vcpu)
1083 {
1084 	return ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0);
1085 }
1086 
1087 static __inline void
1088 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1089 {
1090 	if (!vmx_nmi_window_exiting(vmx, vcpu)) {
1091 		vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1092 		vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1093 	}
1094 }
1095 
1096 static __inline void
1097 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1098 {
1099 	vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1100 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1101 }
1102 
1103 /*
1104  * Set the TSC adjustment, taking into account the offsets measured between
1105  * host physical CPUs.  This is required even if the guest has not set a TSC
1106  * offset since vCPUs inherit the TSC offset of whatever physical CPU it has
1107  * migrated onto.  Without this mitigation, un-synched host TSCs will convey
1108  * the appearance of TSC time-travel to the guest as its vCPUs migrate.
1109  */
1110 static void
1111 vmx_apply_tsc_adjust(struct vmx *vmx, int vcpu)
1112 {
1113 	const uint64_t offset = vcpu_tsc_offset(vmx->vm, vcpu, true);
1114 
1115 	ASSERT(vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET);
1116 
1117 	if (vmx->tsc_offset_active[vcpu] != offset) {
1118 		vmcs_write(VMCS_TSC_OFFSET, offset);
1119 		vmx->tsc_offset_active[vcpu] = offset;
1120 	}
1121 }
1122 
1123 CTASSERT(VMCS_INTR_T_HWINTR		== VM_INTINFO_HWINTR);
1124 CTASSERT(VMCS_INTR_T_NMI		== VM_INTINFO_NMI);
1125 CTASSERT(VMCS_INTR_T_HWEXCEPTION	== VM_INTINFO_HWEXCP);
1126 CTASSERT(VMCS_INTR_T_SWINTR		== VM_INTINFO_SWINTR);
1127 CTASSERT(VMCS_INTR_T_PRIV_SWEXCEPTION	== VM_INTINFO_RESV5);
1128 CTASSERT(VMCS_INTR_T_SWEXCEPTION	== VM_INTINFO_RESV6);
1129 CTASSERT(VMCS_IDT_VEC_ERRCODE_VALID	== VM_INTINFO_DEL_ERRCODE);
1130 CTASSERT(VMCS_INTR_T_MASK		== VM_INTINFO_MASK_TYPE);
1131 
1132 static uint64_t
1133 vmx_idtvec_to_intinfo(uint32_t info, uint32_t errcode)
1134 {
1135 	ASSERT(info & VMCS_IDT_VEC_VALID);
1136 
1137 	const uint32_t type = info & VMCS_INTR_T_MASK;
1138 	const uint8_t vec = info & 0xff;
1139 
1140 	switch (type) {
1141 	case VMCS_INTR_T_HWINTR:
1142 	case VMCS_INTR_T_NMI:
1143 	case VMCS_INTR_T_HWEXCEPTION:
1144 	case VMCS_INTR_T_SWINTR:
1145 	case VMCS_INTR_T_PRIV_SWEXCEPTION:
1146 	case VMCS_INTR_T_SWEXCEPTION:
1147 		break;
1148 	default:
1149 		panic("unexpected event type 0x%03x", type);
1150 	}
1151 
1152 	uint64_t intinfo = VM_INTINFO_VALID | type | vec;
1153 	if (info & VMCS_IDT_VEC_ERRCODE_VALID) {
1154 		intinfo |= (uint64_t)errcode << 32;
1155 	}
1156 
1157 	return (intinfo);
1158 }
1159 
1160 CTASSERT(VMCS_INTR_DEL_ERRCODE		== VMCS_IDT_VEC_ERRCODE_VALID);
1161 CTASSERT(VMCS_INTR_VALID		== VMCS_IDT_VEC_VALID);
1162 
1163 /*
1164  * Store VMX-specific event injection info for later handling.  This depends on
1165  * the bhyve-internal event definitions matching those in the VMCS, as ensured
1166  * by the vmx_idtvec_to_intinfo() and the related CTASSERTs.
1167  */
1168 static void
1169 vmx_stash_intinfo(struct vmx *vmx, int vcpu)
1170 {
1171 	uint64_t info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1172 	if ((info & VMCS_INTR_VALID) != 0) {
1173 		uint32_t errcode = 0;
1174 
1175 		if ((info & VMCS_INTR_DEL_ERRCODE) != 0) {
1176 			errcode = vmcs_read(VMCS_ENTRY_EXCEPTION_ERROR);
1177 		}
1178 
1179 		VERIFY0(vm_exit_intinfo(vmx->vm, vcpu,
1180 		    vmx_idtvec_to_intinfo(info, errcode)));
1181 
1182 		vmcs_write(VMCS_ENTRY_INTR_INFO, 0);
1183 		vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, 0);
1184 	}
1185 }
1186 
1187 static void
1188 vmx_inject_intinfo(uint64_t info)
1189 {
1190 	ASSERT(VM_INTINFO_PENDING(info));
1191 	ASSERT0(info & VM_INTINFO_MASK_RSVD);
1192 
1193 	/*
1194 	 * The bhyve format matches that of the VMCS, which is ensured by the
1195 	 * CTASSERTs above.
1196 	 */
1197 	uint32_t inject = info;
1198 	switch (VM_INTINFO_VECTOR(info)) {
1199 	case IDT_BP:
1200 	case IDT_OF:
1201 		/*
1202 		 * VT-x requires #BP and #OF to be injected as software
1203 		 * exceptions.
1204 		 */
1205 		inject &= ~VMCS_INTR_T_MASK;
1206 		inject |= VMCS_INTR_T_SWEXCEPTION;
1207 		break;
1208 	default:
1209 		break;
1210 	}
1211 
1212 	if (VM_INTINFO_HAS_ERRCODE(info)) {
1213 		vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR,
1214 		    VM_INTINFO_ERRCODE(info));
1215 	}
1216 	vmcs_write(VMCS_ENTRY_INTR_INFO, inject);
1217 }
1218 
1219 #define	NMI_BLOCKING	(VMCS_INTERRUPTIBILITY_NMI_BLOCKING |		\
1220 			VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1221 #define	HWINTR_BLOCKING	(VMCS_INTERRUPTIBILITY_STI_BLOCKING |		\
1222 			VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1223 
1224 static void
1225 vmx_inject_nmi(struct vmx *vmx, int vcpu)
1226 {
1227 	ASSERT0(vmcs_read(VMCS_GUEST_INTERRUPTIBILITY) & NMI_BLOCKING);
1228 	ASSERT0(vmcs_read(VMCS_ENTRY_INTR_INFO) & VMCS_INTR_VALID);
1229 
1230 	/*
1231 	 * Inject the virtual NMI. The vector must be the NMI IDT entry
1232 	 * or the VMCS entry check will fail.
1233 	 */
1234 	vmcs_write(VMCS_ENTRY_INTR_INFO,
1235 	    IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID);
1236 
1237 	/* Clear the request */
1238 	vm_nmi_clear(vmx->vm, vcpu);
1239 }
1240 
1241 /*
1242  * Inject exceptions, NMIs, and ExtINTs.
1243  *
1244  * The logic behind these are complicated and may involve mutex contention, so
1245  * the injection is performed without the protection of host CPU interrupts
1246  * being disabled.  This means a racing notification could be "lost",
1247  * necessitating a later call to vmx_inject_recheck() to close that window
1248  * of opportunity.
1249  */
1250 static enum event_inject_state
1251 vmx_inject_events(struct vmx *vmx, int vcpu, uint64_t rip)
1252 {
1253 	uint64_t entryinfo;
1254 	uint32_t gi, info;
1255 	int vector;
1256 	enum event_inject_state state;
1257 
1258 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1259 	info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1260 	state = EIS_CAN_INJECT;
1261 
1262 	/* Clear any interrupt blocking if the guest %rip has changed */
1263 	if (vmx->state[vcpu].nextrip != rip && (gi & HWINTR_BLOCKING) != 0) {
1264 		gi &= ~HWINTR_BLOCKING;
1265 		vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1266 	}
1267 
1268 	/*
1269 	 * It could be that an interrupt is already pending for injection from
1270 	 * the VMCS.  This would be the case if the vCPU exited for conditions
1271 	 * such as an AST before a vm-entry delivered the injection.
1272 	 */
1273 	if ((info & VMCS_INTR_VALID) != 0) {
1274 		return (EIS_EV_EXISTING | EIS_REQ_EXIT);
1275 	}
1276 
1277 	if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1278 		vmx_inject_intinfo(entryinfo);
1279 		state = EIS_EV_INJECTED;
1280 	}
1281 
1282 	if (vm_nmi_pending(vmx->vm, vcpu)) {
1283 		/*
1284 		 * If there are no conditions blocking NMI injection then inject
1285 		 * it directly here otherwise enable "NMI window exiting" to
1286 		 * inject it as soon as we can.
1287 		 *
1288 		 * According to the Intel manual, some CPUs do not allow NMI
1289 		 * injection when STI_BLOCKING is active.  That check is
1290 		 * enforced here, regardless of CPU capability.  If running on a
1291 		 * CPU without such a restriction it will immediately exit and
1292 		 * the NMI will be injected in the "NMI window exiting" handler.
1293 		 */
1294 		if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1295 			if (state == EIS_CAN_INJECT) {
1296 				vmx_inject_nmi(vmx, vcpu);
1297 				state = EIS_EV_INJECTED;
1298 			} else {
1299 				return (state | EIS_REQ_EXIT);
1300 			}
1301 		} else {
1302 			vmx_set_nmi_window_exiting(vmx, vcpu);
1303 		}
1304 	}
1305 
1306 	if (vm_extint_pending(vmx->vm, vcpu)) {
1307 		if (state != EIS_CAN_INJECT) {
1308 			return (state | EIS_REQ_EXIT);
1309 		}
1310 		if ((gi & HWINTR_BLOCKING) != 0 ||
1311 		    (vmcs_read(VMCS_GUEST_RFLAGS) & PSL_I) == 0) {
1312 			return (EIS_GI_BLOCK);
1313 		}
1314 
1315 		/* Ask the legacy pic for a vector to inject */
1316 		vatpic_pending_intr(vmx->vm, &vector);
1317 
1318 		/*
1319 		 * From the Intel SDM, Volume 3, Section "Maskable
1320 		 * Hardware Interrupts":
1321 		 * - maskable interrupt vectors [0,255] can be delivered
1322 		 *   through the INTR pin.
1323 		 */
1324 		KASSERT(vector >= 0 && vector <= 255,
1325 		    ("invalid vector %d from INTR", vector));
1326 
1327 		/* Inject the interrupt */
1328 		vmcs_write(VMCS_ENTRY_INTR_INFO,
1329 		    VMCS_INTR_T_HWINTR | VMCS_INTR_VALID | vector);
1330 
1331 		vm_extint_clear(vmx->vm, vcpu);
1332 		vatpic_intr_accepted(vmx->vm, vector);
1333 		state = EIS_EV_INJECTED;
1334 	}
1335 
1336 	return (state);
1337 }
1338 
1339 /*
1340  * Inject any interrupts pending on the vLAPIC.
1341  *
1342  * This is done with host CPU interrupts disabled so notification IPIs, either
1343  * from the standard vCPU notification or APICv posted interrupts, will be
1344  * queued on the host APIC and recognized when entering VMX context.
1345  */
1346 static enum event_inject_state
1347 vmx_inject_vlapic(struct vmx *vmx, int vcpu, struct vlapic *vlapic)
1348 {
1349 	int vector;
1350 
1351 	if (!vlapic_pending_intr(vlapic, &vector)) {
1352 		return (EIS_CAN_INJECT);
1353 	}
1354 
1355 	/*
1356 	 * From the Intel SDM, Volume 3, Section "Maskable
1357 	 * Hardware Interrupts":
1358 	 * - maskable interrupt vectors [16,255] can be delivered
1359 	 *   through the local APIC.
1360 	 */
1361 	KASSERT(vector >= 16 && vector <= 255,
1362 	    ("invalid vector %d from local APIC", vector));
1363 
1364 	if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
1365 		uint16_t status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
1366 		uint16_t status_new = (status_old & 0xff00) | vector;
1367 
1368 		/*
1369 		 * The APICv state will have been synced into the vLAPIC
1370 		 * as part of vlapic_pending_intr().  Prepare the VMCS
1371 		 * for the to-be-injected pending interrupt.
1372 		 */
1373 		if (status_new > status_old) {
1374 			vmcs_write(VMCS_GUEST_INTR_STATUS, status_new);
1375 		}
1376 
1377 		/*
1378 		 * Ensure VMCS state regarding EOI traps is kept in sync
1379 		 * with the TMRs in the vlapic.
1380 		 */
1381 		vmx_apicv_sync_tmr(vlapic);
1382 
1383 		/*
1384 		 * The rest of the injection process for injecting the
1385 		 * interrupt(s) is handled by APICv. It does not preclude other
1386 		 * event injection from occurring.
1387 		 */
1388 		return (EIS_CAN_INJECT);
1389 	}
1390 
1391 	ASSERT0(vmcs_read(VMCS_ENTRY_INTR_INFO) & VMCS_INTR_VALID);
1392 
1393 	/* Does guest interruptability block injection? */
1394 	if ((vmcs_read(VMCS_GUEST_INTERRUPTIBILITY) & HWINTR_BLOCKING) != 0 ||
1395 	    (vmcs_read(VMCS_GUEST_RFLAGS) & PSL_I) == 0) {
1396 		return (EIS_GI_BLOCK);
1397 	}
1398 
1399 	/* Inject the interrupt */
1400 	vmcs_write(VMCS_ENTRY_INTR_INFO,
1401 	    VMCS_INTR_T_HWINTR | VMCS_INTR_VALID | vector);
1402 
1403 	/* Update the Local APIC ISR */
1404 	vlapic_intr_accepted(vlapic, vector);
1405 
1406 	return (EIS_EV_INJECTED);
1407 }
1408 
1409 /*
1410  * Re-check for events to be injected.
1411  *
1412  * Once host CPU interrupts are disabled, check for the presence of any events
1413  * which require injection processing.  If an exit is required upon injection,
1414  * or once the guest becomes interruptable, that will be configured too.
1415  */
1416 static bool
1417 vmx_inject_recheck(struct vmx *vmx, int vcpu, enum event_inject_state state)
1418 {
1419 	if (state == EIS_CAN_INJECT) {
1420 		if (vm_nmi_pending(vmx->vm, vcpu) &&
1421 		    !vmx_nmi_window_exiting(vmx, vcpu)) {
1422 			/* queued NMI not blocked by NMI-window-exiting */
1423 			return (true);
1424 		}
1425 		if (vm_extint_pending(vmx->vm, vcpu)) {
1426 			/* queued ExtINT not blocked by existing injection */
1427 			return (true);
1428 		}
1429 	} else {
1430 		if ((state & EIS_REQ_EXIT) != 0) {
1431 			/*
1432 			 * Use a self-IPI to force an immediate exit after
1433 			 * event injection has occurred.
1434 			 */
1435 			poke_cpu(CPU->cpu_id);
1436 		} else {
1437 			/*
1438 			 * If any event is being injected, an exit immediately
1439 			 * upon becoming interruptable again will allow pending
1440 			 * or newly queued events to be injected in a timely
1441 			 * manner.
1442 			 */
1443 			vmx_set_int_window_exiting(vmx, vcpu);
1444 		}
1445 	}
1446 	return (false);
1447 }
1448 
1449 /*
1450  * If the Virtual NMIs execution control is '1' then the logical processor
1451  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1452  * the VMCS. An IRET instruction in VMX non-root operation will remove any
1453  * virtual-NMI blocking.
1454  *
1455  * This unblocking occurs even if the IRET causes a fault. In this case the
1456  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1457  */
1458 static void
1459 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1460 {
1461 	uint32_t gi;
1462 
1463 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1464 	gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1465 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1466 }
1467 
1468 static void
1469 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1470 {
1471 	uint32_t gi;
1472 
1473 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1474 	gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1475 	vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1476 }
1477 
1478 static void
1479 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1480 {
1481 	uint32_t gi;
1482 
1483 	gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1484 	KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1485 	    ("NMI blocking is not in effect %x", gi));
1486 }
1487 
1488 static int
1489 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1490 {
1491 	struct vmxctx *vmxctx;
1492 	uint64_t xcrval;
1493 	const struct xsave_limits *limits;
1494 
1495 	vmxctx = &vmx->ctx[vcpu];
1496 	limits = vmm_get_xsave_limits();
1497 
1498 	/*
1499 	 * Note that the processor raises a GP# fault on its own if
1500 	 * xsetbv is executed for CPL != 0, so we do not have to
1501 	 * emulate that fault here.
1502 	 */
1503 
1504 	/* Only xcr0 is supported. */
1505 	if (vmxctx->guest_rcx != 0) {
1506 		vm_inject_gp(vmx->vm, vcpu);
1507 		return (HANDLED);
1508 	}
1509 
1510 	/* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1511 	if (!limits->xsave_enabled ||
1512 	    !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1513 		vm_inject_ud(vmx->vm, vcpu);
1514 		return (HANDLED);
1515 	}
1516 
1517 	xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1518 	if ((xcrval & ~limits->xcr0_allowed) != 0) {
1519 		vm_inject_gp(vmx->vm, vcpu);
1520 		return (HANDLED);
1521 	}
1522 
1523 	if (!(xcrval & XFEATURE_ENABLED_X87)) {
1524 		vm_inject_gp(vmx->vm, vcpu);
1525 		return (HANDLED);
1526 	}
1527 
1528 	/* AVX (YMM_Hi128) requires SSE. */
1529 	if (xcrval & XFEATURE_ENABLED_AVX &&
1530 	    (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1531 		vm_inject_gp(vmx->vm, vcpu);
1532 		return (HANDLED);
1533 	}
1534 
1535 	/*
1536 	 * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1537 	 * ZMM_Hi256, and Hi16_ZMM.
1538 	 */
1539 	if (xcrval & XFEATURE_AVX512 &&
1540 	    (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1541 	    (XFEATURE_AVX512 | XFEATURE_AVX)) {
1542 		vm_inject_gp(vmx->vm, vcpu);
1543 		return (HANDLED);
1544 	}
1545 
1546 	/*
1547 	 * Intel MPX requires both bound register state flags to be
1548 	 * set.
1549 	 */
1550 	if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1551 	    ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1552 		vm_inject_gp(vmx->vm, vcpu);
1553 		return (HANDLED);
1554 	}
1555 
1556 	/*
1557 	 * This runs "inside" vmrun() with the guest's FPU state, so
1558 	 * modifying xcr0 directly modifies the guest's xcr0, not the
1559 	 * host's.
1560 	 */
1561 	load_xcr(0, xcrval);
1562 	return (HANDLED);
1563 }
1564 
1565 static uint64_t
1566 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1567 {
1568 	const struct vmxctx *vmxctx;
1569 
1570 	vmxctx = &vmx->ctx[vcpu];
1571 
1572 	switch (ident) {
1573 	case 0:
1574 		return (vmxctx->guest_rax);
1575 	case 1:
1576 		return (vmxctx->guest_rcx);
1577 	case 2:
1578 		return (vmxctx->guest_rdx);
1579 	case 3:
1580 		return (vmxctx->guest_rbx);
1581 	case 4:
1582 		return (vmcs_read(VMCS_GUEST_RSP));
1583 	case 5:
1584 		return (vmxctx->guest_rbp);
1585 	case 6:
1586 		return (vmxctx->guest_rsi);
1587 	case 7:
1588 		return (vmxctx->guest_rdi);
1589 	case 8:
1590 		return (vmxctx->guest_r8);
1591 	case 9:
1592 		return (vmxctx->guest_r9);
1593 	case 10:
1594 		return (vmxctx->guest_r10);
1595 	case 11:
1596 		return (vmxctx->guest_r11);
1597 	case 12:
1598 		return (vmxctx->guest_r12);
1599 	case 13:
1600 		return (vmxctx->guest_r13);
1601 	case 14:
1602 		return (vmxctx->guest_r14);
1603 	case 15:
1604 		return (vmxctx->guest_r15);
1605 	default:
1606 		panic("invalid vmx register %d", ident);
1607 	}
1608 }
1609 
1610 static void
1611 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1612 {
1613 	struct vmxctx *vmxctx;
1614 
1615 	vmxctx = &vmx->ctx[vcpu];
1616 
1617 	switch (ident) {
1618 	case 0:
1619 		vmxctx->guest_rax = regval;
1620 		break;
1621 	case 1:
1622 		vmxctx->guest_rcx = regval;
1623 		break;
1624 	case 2:
1625 		vmxctx->guest_rdx = regval;
1626 		break;
1627 	case 3:
1628 		vmxctx->guest_rbx = regval;
1629 		break;
1630 	case 4:
1631 		vmcs_write(VMCS_GUEST_RSP, regval);
1632 		break;
1633 	case 5:
1634 		vmxctx->guest_rbp = regval;
1635 		break;
1636 	case 6:
1637 		vmxctx->guest_rsi = regval;
1638 		break;
1639 	case 7:
1640 		vmxctx->guest_rdi = regval;
1641 		break;
1642 	case 8:
1643 		vmxctx->guest_r8 = regval;
1644 		break;
1645 	case 9:
1646 		vmxctx->guest_r9 = regval;
1647 		break;
1648 	case 10:
1649 		vmxctx->guest_r10 = regval;
1650 		break;
1651 	case 11:
1652 		vmxctx->guest_r11 = regval;
1653 		break;
1654 	case 12:
1655 		vmxctx->guest_r12 = regval;
1656 		break;
1657 	case 13:
1658 		vmxctx->guest_r13 = regval;
1659 		break;
1660 	case 14:
1661 		vmxctx->guest_r14 = regval;
1662 		break;
1663 	case 15:
1664 		vmxctx->guest_r15 = regval;
1665 		break;
1666 	default:
1667 		panic("invalid vmx register %d", ident);
1668 	}
1669 }
1670 
1671 static void
1672 vmx_sync_efer_state(struct vmx *vmx, int vcpu, uint64_t efer)
1673 {
1674 	uint64_t ctrl;
1675 
1676 	/*
1677 	 * If the "load EFER" VM-entry control is 1 (which we require) then the
1678 	 * value of EFER.LMA must be identical to "IA-32e mode guest" bit in the
1679 	 * VM-entry control.
1680 	 */
1681 	ctrl = vmcs_read(VMCS_ENTRY_CTLS);
1682 	if ((efer & EFER_LMA) != 0) {
1683 		ctrl |= VM_ENTRY_GUEST_LMA;
1684 	} else {
1685 		ctrl &= ~VM_ENTRY_GUEST_LMA;
1686 	}
1687 	vmcs_write(VMCS_ENTRY_CTLS, ctrl);
1688 }
1689 
1690 static int
1691 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1692 {
1693 	uint64_t crval, regval;
1694 
1695 	/* We only handle mov to %cr0 at this time */
1696 	if ((exitqual & 0xf0) != 0x00)
1697 		return (UNHANDLED);
1698 
1699 	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1700 
1701 	vmcs_write(VMCS_CR0_SHADOW, regval);
1702 
1703 	crval = regval | cr0_ones_mask;
1704 	crval &= ~cr0_zeros_mask;
1705 
1706 	const uint64_t old = vmcs_read(VMCS_GUEST_CR0);
1707 	const uint64_t diff = crval ^ old;
1708 	/* Flush the TLB if the paging or write-protect bits are changing */
1709 	if ((diff & CR0_PG) != 0 || (diff & CR0_WP) != 0) {
1710 		vmx_invvpid(vmx, vcpu, 1);
1711 	}
1712 
1713 	vmcs_write(VMCS_GUEST_CR0, crval);
1714 
1715 	if (regval & CR0_PG) {
1716 		uint64_t efer;
1717 
1718 		/* Keep EFER.LMA properly updated if paging is enabled */
1719 		efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1720 		if (efer & EFER_LME) {
1721 			efer |= EFER_LMA;
1722 			vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1723 			vmx_sync_efer_state(vmx, vcpu, efer);
1724 		}
1725 	}
1726 
1727 	return (HANDLED);
1728 }
1729 
1730 static int
1731 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1732 {
1733 	uint64_t crval, regval;
1734 
1735 	/* We only handle mov to %cr4 at this time */
1736 	if ((exitqual & 0xf0) != 0x00)
1737 		return (UNHANDLED);
1738 
1739 	regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1740 
1741 	vmcs_write(VMCS_CR4_SHADOW, regval);
1742 
1743 	crval = regval | cr4_ones_mask;
1744 	crval &= ~cr4_zeros_mask;
1745 	vmcs_write(VMCS_GUEST_CR4, crval);
1746 
1747 	return (HANDLED);
1748 }
1749 
1750 static int
1751 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1752 {
1753 	struct vlapic *vlapic;
1754 	uint64_t cr8;
1755 	int regnum;
1756 
1757 	/* We only handle mov %cr8 to/from a register at this time. */
1758 	if ((exitqual & 0xe0) != 0x00) {
1759 		return (UNHANDLED);
1760 	}
1761 
1762 	vlapic = vm_lapic(vmx->vm, vcpu);
1763 	regnum = (exitqual >> 8) & 0xf;
1764 	if (exitqual & 0x10) {
1765 		cr8 = vlapic_get_cr8(vlapic);
1766 		vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1767 	} else {
1768 		cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1769 		vlapic_set_cr8(vlapic, cr8);
1770 	}
1771 
1772 	return (HANDLED);
1773 }
1774 
1775 /*
1776  * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1777  */
1778 static int
1779 vmx_cpl(void)
1780 {
1781 	uint32_t ssar;
1782 
1783 	ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1784 	return ((ssar >> 5) & 0x3);
1785 }
1786 
1787 static enum vm_cpu_mode
1788 vmx_cpu_mode(void)
1789 {
1790 	uint32_t csar;
1791 
1792 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1793 		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1794 		if (csar & 0x2000)
1795 			return (CPU_MODE_64BIT);	/* CS.L = 1 */
1796 		else
1797 			return (CPU_MODE_COMPATIBILITY);
1798 	} else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1799 		return (CPU_MODE_PROTECTED);
1800 	} else {
1801 		return (CPU_MODE_REAL);
1802 	}
1803 }
1804 
1805 static enum vm_paging_mode
1806 vmx_paging_mode(void)
1807 {
1808 
1809 	if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1810 		return (PAGING_MODE_FLAT);
1811 	if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE))
1812 		return (PAGING_MODE_32);
1813 	if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME)
1814 		return (PAGING_MODE_64);
1815 	else
1816 		return (PAGING_MODE_PAE);
1817 }
1818 
1819 static void
1820 vmx_paging_info(struct vm_guest_paging *paging)
1821 {
1822 	paging->cr3 = vmcs_read(VMCS_GUEST_CR3);
1823 	paging->cpl = vmx_cpl();
1824 	paging->cpu_mode = vmx_cpu_mode();
1825 	paging->paging_mode = vmx_paging_mode();
1826 }
1827 
1828 static void
1829 vmexit_mmio_emul(struct vm_exit *vmexit, struct vie *vie, uint64_t gpa,
1830     uint64_t gla)
1831 {
1832 	struct vm_guest_paging paging;
1833 	uint32_t csar;
1834 
1835 	vmexit->exitcode = VM_EXITCODE_MMIO_EMUL;
1836 	vmexit->inst_length = 0;
1837 	vmexit->u.mmio_emul.gpa = gpa;
1838 	vmexit->u.mmio_emul.gla = gla;
1839 	vmx_paging_info(&paging);
1840 
1841 	switch (paging.cpu_mode) {
1842 	case CPU_MODE_REAL:
1843 		vmexit->u.mmio_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1844 		vmexit->u.mmio_emul.cs_d = 0;
1845 		break;
1846 	case CPU_MODE_PROTECTED:
1847 	case CPU_MODE_COMPATIBILITY:
1848 		vmexit->u.mmio_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1849 		csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1850 		vmexit->u.mmio_emul.cs_d = SEG_DESC_DEF32(csar);
1851 		break;
1852 	default:
1853 		vmexit->u.mmio_emul.cs_base = 0;
1854 		vmexit->u.mmio_emul.cs_d = 0;
1855 		break;
1856 	}
1857 
1858 	vie_init_mmio(vie, NULL, 0, &paging, gpa);
1859 }
1860 
1861 static void
1862 vmexit_inout(struct vm_exit *vmexit, struct vie *vie, uint64_t qual,
1863     uint32_t eax)
1864 {
1865 	struct vm_guest_paging paging;
1866 	struct vm_inout *inout;
1867 
1868 	inout = &vmexit->u.inout;
1869 
1870 	inout->bytes = (qual & 0x7) + 1;
1871 	inout->flags = 0;
1872 	inout->flags |= (qual & 0x8) ? INOUT_IN : 0;
1873 	inout->flags |= (qual & 0x10) ? INOUT_STR : 0;
1874 	inout->flags |= (qual & 0x20) ? INOUT_REP : 0;
1875 	inout->port = (uint16_t)(qual >> 16);
1876 	inout->eax = eax;
1877 	if (inout->flags & INOUT_STR) {
1878 		uint64_t inst_info;
1879 
1880 		inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
1881 
1882 		/*
1883 		 * According to the SDM, bits 9:7 encode the address size of the
1884 		 * ins/outs operation, but only values 0/1/2 are expected,
1885 		 * corresponding to 16/32/64 bit sizes.
1886 		 */
1887 		inout->addrsize = 2 << BITX(inst_info, 9, 7);
1888 		VERIFY(inout->addrsize == 2 || inout->addrsize == 4 ||
1889 		    inout->addrsize == 8);
1890 
1891 		if (inout->flags & INOUT_IN) {
1892 			/*
1893 			 * The bits describing the segment in INSTRUCTION_INFO
1894 			 * are not defined for ins, leaving it to system
1895 			 * software to assume %es (encoded as 0)
1896 			 */
1897 			inout->segment = 0;
1898 		} else {
1899 			/*
1900 			 * Bits 15-17 encode the segment for OUTS.
1901 			 * This value follows the standard x86 segment order.
1902 			 */
1903 			inout->segment = (inst_info >> 15) & 0x7;
1904 		}
1905 	}
1906 
1907 	vmexit->exitcode = VM_EXITCODE_INOUT;
1908 	vmx_paging_info(&paging);
1909 	vie_init_inout(vie, inout, vmexit->inst_length, &paging);
1910 
1911 	/* The in/out emulation will handle advancing %rip */
1912 	vmexit->inst_length = 0;
1913 }
1914 
1915 static int
1916 ept_fault_type(uint64_t ept_qual)
1917 {
1918 	int fault_type;
1919 
1920 	if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1921 		fault_type = PROT_WRITE;
1922 	else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1923 		fault_type = PROT_EXEC;
1924 	else
1925 		fault_type = PROT_READ;
1926 
1927 	return (fault_type);
1928 }
1929 
1930 static bool
1931 ept_emulation_fault(uint64_t ept_qual)
1932 {
1933 	int read, write;
1934 
1935 	/* EPT fault on an instruction fetch doesn't make sense here */
1936 	if (ept_qual & EPT_VIOLATION_INST_FETCH)
1937 		return (false);
1938 
1939 	/* EPT fault must be a read fault or a write fault */
1940 	read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1941 	write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1942 	if ((read | write) == 0)
1943 		return (false);
1944 
1945 	/*
1946 	 * The EPT violation must have been caused by accessing a
1947 	 * guest-physical address that is a translation of a guest-linear
1948 	 * address.
1949 	 */
1950 	if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1951 	    (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1952 		return (false);
1953 	}
1954 
1955 	return (true);
1956 }
1957 
1958 static __inline int
1959 apic_access_virtualization(struct vmx *vmx, int vcpuid)
1960 {
1961 	uint32_t proc_ctls2;
1962 
1963 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1964 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
1965 }
1966 
1967 static __inline int
1968 x2apic_virtualization(struct vmx *vmx, int vcpuid)
1969 {
1970 	uint32_t proc_ctls2;
1971 
1972 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1973 	return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
1974 }
1975 
1976 static int
1977 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
1978     uint64_t qual)
1979 {
1980 	const uint_t offset = APIC_WRITE_OFFSET(qual);
1981 
1982 	if (!apic_access_virtualization(vmx, vcpuid)) {
1983 		/*
1984 		 * In general there should not be any APIC write VM-exits
1985 		 * unless APIC-access virtualization is enabled.
1986 		 *
1987 		 * However self-IPI virtualization can legitimately trigger
1988 		 * an APIC-write VM-exit so treat it specially.
1989 		 */
1990 		if (x2apic_virtualization(vmx, vcpuid) &&
1991 		    offset == APIC_OFFSET_SELF_IPI) {
1992 			const uint32_t *apic_regs =
1993 			    (uint32_t *)(vlapic->apic_page);
1994 			const uint32_t vector =
1995 			    apic_regs[APIC_OFFSET_SELF_IPI / 4];
1996 
1997 			vlapic_self_ipi_handler(vlapic, vector);
1998 			return (HANDLED);
1999 		} else
2000 			return (UNHANDLED);
2001 	}
2002 
2003 	switch (offset) {
2004 	case APIC_OFFSET_ID:
2005 		vlapic_id_write_handler(vlapic);
2006 		break;
2007 	case APIC_OFFSET_LDR:
2008 		vlapic_ldr_write_handler(vlapic);
2009 		break;
2010 	case APIC_OFFSET_DFR:
2011 		vlapic_dfr_write_handler(vlapic);
2012 		break;
2013 	case APIC_OFFSET_SVR:
2014 		vlapic_svr_write_handler(vlapic);
2015 		break;
2016 	case APIC_OFFSET_ESR:
2017 		vlapic_esr_write_handler(vlapic);
2018 		break;
2019 	case APIC_OFFSET_ICR_LOW:
2020 		vlapic_icrlo_write_handler(vlapic);
2021 		break;
2022 	case APIC_OFFSET_CMCI_LVT:
2023 	case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
2024 		vlapic_lvt_write_handler(vlapic, offset);
2025 		break;
2026 	case APIC_OFFSET_TIMER_ICR:
2027 		vlapic_icrtmr_write_handler(vlapic);
2028 		break;
2029 	case APIC_OFFSET_TIMER_DCR:
2030 		vlapic_dcr_write_handler(vlapic);
2031 		break;
2032 	default:
2033 		return (UNHANDLED);
2034 	}
2035 	return (HANDLED);
2036 }
2037 
2038 static bool
2039 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
2040 {
2041 
2042 	if (apic_access_virtualization(vmx, vcpuid) &&
2043 	    (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
2044 		return (true);
2045 	else
2046 		return (false);
2047 }
2048 
2049 static int
2050 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2051 {
2052 	uint64_t qual;
2053 	int access_type, offset, allowed;
2054 	struct vie *vie;
2055 
2056 	if (!apic_access_virtualization(vmx, vcpuid))
2057 		return (UNHANDLED);
2058 
2059 	qual = vmexit->u.vmx.exit_qualification;
2060 	access_type = APIC_ACCESS_TYPE(qual);
2061 	offset = APIC_ACCESS_OFFSET(qual);
2062 
2063 	allowed = 0;
2064 	if (access_type == 0) {
2065 		/*
2066 		 * Read data access to the following registers is expected.
2067 		 */
2068 		switch (offset) {
2069 		case APIC_OFFSET_APR:
2070 		case APIC_OFFSET_PPR:
2071 		case APIC_OFFSET_RRR:
2072 		case APIC_OFFSET_CMCI_LVT:
2073 		case APIC_OFFSET_TIMER_CCR:
2074 			allowed = 1;
2075 			break;
2076 		default:
2077 			break;
2078 		}
2079 	} else if (access_type == 1) {
2080 		/*
2081 		 * Write data access to the following registers is expected.
2082 		 */
2083 		switch (offset) {
2084 		case APIC_OFFSET_VER:
2085 		case APIC_OFFSET_APR:
2086 		case APIC_OFFSET_PPR:
2087 		case APIC_OFFSET_RRR:
2088 		case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
2089 		case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
2090 		case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
2091 		case APIC_OFFSET_CMCI_LVT:
2092 		case APIC_OFFSET_TIMER_CCR:
2093 			allowed = 1;
2094 			break;
2095 		default:
2096 			break;
2097 		}
2098 	}
2099 
2100 	if (allowed) {
2101 		vie = vm_vie_ctx(vmx->vm, vcpuid);
2102 		vmexit_mmio_emul(vmexit, vie, DEFAULT_APIC_BASE + offset,
2103 		    VIE_INVALID_GLA);
2104 	}
2105 
2106 	/*
2107 	 * Regardless of whether the APIC-access is allowed this handler
2108 	 * always returns UNHANDLED:
2109 	 * - if the access is allowed then it is handled by emulating the
2110 	 *   instruction that caused the VM-exit (outside the critical section)
2111 	 * - if the access is not allowed then it will be converted to an
2112 	 *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2113 	 */
2114 	return (UNHANDLED);
2115 }
2116 
2117 static enum task_switch_reason
2118 vmx_task_switch_reason(uint64_t qual)
2119 {
2120 	int reason;
2121 
2122 	reason = (qual >> 30) & 0x3;
2123 	switch (reason) {
2124 	case 0:
2125 		return (TSR_CALL);
2126 	case 1:
2127 		return (TSR_IRET);
2128 	case 2:
2129 		return (TSR_JMP);
2130 	case 3:
2131 		return (TSR_IDT_GATE);
2132 	default:
2133 		panic("%s: invalid reason %d", __func__, reason);
2134 	}
2135 }
2136 
2137 static int
2138 vmx_handle_msr(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit,
2139     bool is_wrmsr)
2140 {
2141 	struct vmxctx *vmxctx = &vmx->ctx[vcpuid];
2142 	const uint32_t ecx = vmxctx->guest_rcx;
2143 	vm_msr_result_t res;
2144 	uint64_t val = 0;
2145 
2146 	if (is_wrmsr) {
2147 		vmm_stat_incr(vmx->vm, vcpuid, VMEXIT_WRMSR, 1);
2148 		val = vmxctx->guest_rdx << 32 | (uint32_t)vmxctx->guest_rax;
2149 
2150 		if (vlapic_owned_msr(ecx)) {
2151 			struct vlapic *vlapic = vm_lapic(vmx->vm, vcpuid);
2152 
2153 			res = vlapic_wrmsr(vlapic, ecx, val);
2154 		} else {
2155 			res = vmx_wrmsr(vmx, vcpuid, ecx, val);
2156 		}
2157 	} else {
2158 		vmm_stat_incr(vmx->vm, vcpuid, VMEXIT_RDMSR, 1);
2159 
2160 		if (vlapic_owned_msr(ecx)) {
2161 			struct vlapic *vlapic = vm_lapic(vmx->vm, vcpuid);
2162 
2163 			res = vlapic_rdmsr(vlapic, ecx, &val);
2164 		} else {
2165 			res = vmx_rdmsr(vmx, vcpuid, ecx, &val);
2166 		}
2167 	}
2168 
2169 	switch (res) {
2170 	case VMR_OK:
2171 		/* Store rdmsr result in the appropriate registers */
2172 		if (!is_wrmsr) {
2173 			vmxctx->guest_rax = (uint32_t)val;
2174 			vmxctx->guest_rdx = val >> 32;
2175 		}
2176 		return (HANDLED);
2177 	case VMR_GP:
2178 		vm_inject_gp(vmx->vm, vcpuid);
2179 		return (HANDLED);
2180 	case VMR_UNHANLDED:
2181 		vmexit->exitcode = is_wrmsr ?
2182 		    VM_EXITCODE_WRMSR : VM_EXITCODE_RDMSR;
2183 		vmexit->u.msr.code = ecx;
2184 		vmexit->u.msr.wval = val;
2185 		return (UNHANDLED);
2186 	default:
2187 		panic("unexpected msr result %u\n", res);
2188 	}
2189 }
2190 
2191 static int
2192 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2193 {
2194 	int error, errcode, errcode_valid, handled;
2195 	struct vmxctx *vmxctx;
2196 	struct vie *vie;
2197 	struct vlapic *vlapic;
2198 	struct vm_task_switch *ts;
2199 	uint32_t idtvec_info, intr_info;
2200 	uint32_t intr_type, intr_vec, reason;
2201 	uint64_t qual, gpa;
2202 
2203 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2204 	CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2205 
2206 	handled = UNHANDLED;
2207 	vmxctx = &vmx->ctx[vcpu];
2208 
2209 	qual = vmexit->u.vmx.exit_qualification;
2210 	reason = vmexit->u.vmx.exit_reason;
2211 	vmexit->exitcode = VM_EXITCODE_BOGUS;
2212 
2213 	vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2214 	SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpu, vmexit);
2215 
2216 	/*
2217 	 * VM-entry failures during or after loading guest state.
2218 	 *
2219 	 * These VM-exits are uncommon but must be handled specially
2220 	 * as most VM-exit fields are not populated as usual.
2221 	 */
2222 	if (reason == EXIT_REASON_MCE_DURING_ENTRY) {
2223 		vmm_call_trap(T_MCE);
2224 		return (1);
2225 	}
2226 
2227 	/*
2228 	 * VM exits that can be triggered during event delivery need to
2229 	 * be handled specially by re-injecting the event if the IDT
2230 	 * vectoring information field's valid bit is set.
2231 	 *
2232 	 * See "Information for VM Exits During Event Delivery" in Intel SDM
2233 	 * for details.
2234 	 */
2235 	idtvec_info = vmcs_read(VMCS_IDT_VECTORING_INFO);
2236 	if (idtvec_info & VMCS_IDT_VEC_VALID) {
2237 		uint32_t errcode = 0;
2238 		if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2239 			errcode = vmcs_read(VMCS_IDT_VECTORING_ERROR);
2240 		}
2241 
2242 		/* Record exit intinfo */
2243 		VERIFY0(vm_exit_intinfo(vmx->vm, vcpu,
2244 		    vmx_idtvec_to_intinfo(idtvec_info, errcode)));
2245 
2246 		/*
2247 		 * If 'virtual NMIs' are being used and the VM-exit
2248 		 * happened while injecting an NMI during the previous
2249 		 * VM-entry, then clear "blocking by NMI" in the
2250 		 * Guest Interruptibility-State so the NMI can be
2251 		 * reinjected on the subsequent VM-entry.
2252 		 *
2253 		 * However, if the NMI was being delivered through a task
2254 		 * gate, then the new task must start execution with NMIs
2255 		 * blocked so don't clear NMI blocking in this case.
2256 		 */
2257 		intr_type = idtvec_info & VMCS_INTR_T_MASK;
2258 		if (intr_type == VMCS_INTR_T_NMI) {
2259 			if (reason != EXIT_REASON_TASK_SWITCH)
2260 				vmx_clear_nmi_blocking(vmx, vcpu);
2261 			else
2262 				vmx_assert_nmi_blocking(vmx, vcpu);
2263 		}
2264 
2265 		/*
2266 		 * Update VM-entry instruction length if the event being
2267 		 * delivered was a software interrupt or software exception.
2268 		 */
2269 		if (intr_type == VMCS_INTR_T_SWINTR ||
2270 		    intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2271 		    intr_type == VMCS_INTR_T_SWEXCEPTION) {
2272 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2273 		}
2274 	}
2275 
2276 	switch (reason) {
2277 	case EXIT_REASON_TRIPLE_FAULT:
2278 		(void) vm_suspend(vmx->vm, VM_SUSPEND_TRIPLEFAULT, vcpu);
2279 		handled = HANDLED;
2280 		break;
2281 	case EXIT_REASON_TASK_SWITCH:
2282 		ts = &vmexit->u.task_switch;
2283 		ts->tsssel = qual & 0xffff;
2284 		ts->reason = vmx_task_switch_reason(qual);
2285 		ts->ext = 0;
2286 		ts->errcode_valid = 0;
2287 		vmx_paging_info(&ts->paging);
2288 		/*
2289 		 * If the task switch was due to a CALL, JMP, IRET, software
2290 		 * interrupt (INT n) or software exception (INT3, INTO),
2291 		 * then the saved %rip references the instruction that caused
2292 		 * the task switch. The instruction length field in the VMCS
2293 		 * is valid in this case.
2294 		 *
2295 		 * In all other cases (e.g., NMI, hardware exception) the
2296 		 * saved %rip is one that would have been saved in the old TSS
2297 		 * had the task switch completed normally so the instruction
2298 		 * length field is not needed in this case and is explicitly
2299 		 * set to 0.
2300 		 */
2301 		if (ts->reason == TSR_IDT_GATE) {
2302 			KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2303 			    ("invalid idtvec_info %x for IDT task switch",
2304 			    idtvec_info));
2305 			intr_type = idtvec_info & VMCS_INTR_T_MASK;
2306 			if (intr_type != VMCS_INTR_T_SWINTR &&
2307 			    intr_type != VMCS_INTR_T_SWEXCEPTION &&
2308 			    intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2309 				/* Task switch triggered by external event */
2310 				ts->ext = 1;
2311 				vmexit->inst_length = 0;
2312 				if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2313 					ts->errcode_valid = 1;
2314 					ts->errcode =
2315 					    vmcs_read(VMCS_IDT_VECTORING_ERROR);
2316 				}
2317 			}
2318 		}
2319 		vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2320 		SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpu, vmexit, ts);
2321 		break;
2322 	case EXIT_REASON_CR_ACCESS:
2323 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2324 		SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpu, vmexit, qual);
2325 		switch (qual & 0xf) {
2326 		case 0:
2327 			handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2328 			break;
2329 		case 4:
2330 			handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2331 			break;
2332 		case 8:
2333 			handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2334 			break;
2335 		}
2336 		break;
2337 	case EXIT_REASON_RDMSR:
2338 	case EXIT_REASON_WRMSR:
2339 		handled = vmx_handle_msr(vmx, vcpu, vmexit,
2340 		    reason == EXIT_REASON_WRMSR);
2341 		break;
2342 	case EXIT_REASON_HLT:
2343 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2344 		SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpu, vmexit);
2345 		vmexit->exitcode = VM_EXITCODE_HLT;
2346 		vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2347 		break;
2348 	case EXIT_REASON_MTF:
2349 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2350 		SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpu, vmexit);
2351 		vmexit->exitcode = VM_EXITCODE_MTRAP;
2352 		vmexit->inst_length = 0;
2353 		break;
2354 	case EXIT_REASON_PAUSE:
2355 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2356 		SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpu, vmexit);
2357 		vmexit->exitcode = VM_EXITCODE_PAUSE;
2358 		break;
2359 	case EXIT_REASON_INTR_WINDOW:
2360 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2361 		SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpu, vmexit);
2362 		ASSERT(vmx_int_window_exiting(vmx, vcpu));
2363 		vmx_clear_int_window_exiting(vmx, vcpu);
2364 		return (1);
2365 	case EXIT_REASON_EXT_INTR:
2366 		/*
2367 		 * External interrupts serve only to cause VM exits and allow
2368 		 * the host interrupt handler to run.
2369 		 *
2370 		 * If this external interrupt triggers a virtual interrupt
2371 		 * to a VM, then that state will be recorded by the
2372 		 * host interrupt handler in the VM's softc. We will inject
2373 		 * this virtual interrupt during the subsequent VM enter.
2374 		 */
2375 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2376 		SDT_PROBE4(vmm, vmx, exit, interrupt,
2377 		    vmx, vcpu, vmexit, intr_info);
2378 
2379 		/*
2380 		 * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2381 		 * This appears to be a bug in VMware Fusion?
2382 		 */
2383 		if (!(intr_info & VMCS_INTR_VALID))
2384 			return (1);
2385 		KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2386 		    (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2387 		    ("VM exit interruption info invalid: %x", intr_info));
2388 		vmx_trigger_hostintr(intr_info & 0xff);
2389 
2390 		/*
2391 		 * This is special. We want to treat this as an 'handled'
2392 		 * VM-exit but not increment the instruction pointer.
2393 		 */
2394 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2395 		return (1);
2396 	case EXIT_REASON_NMI_WINDOW:
2397 		SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpu, vmexit);
2398 		/* Exit to allow the pending virtual NMI to be injected */
2399 		if (vm_nmi_pending(vmx->vm, vcpu))
2400 			vmx_inject_nmi(vmx, vcpu);
2401 		ASSERT(vmx_nmi_window_exiting(vmx, vcpu));
2402 		vmx_clear_nmi_window_exiting(vmx, vcpu);
2403 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2404 		return (1);
2405 	case EXIT_REASON_INOUT:
2406 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2407 		vie = vm_vie_ctx(vmx->vm, vcpu);
2408 		vmexit_inout(vmexit, vie, qual, (uint32_t)vmxctx->guest_rax);
2409 		SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpu, vmexit);
2410 		break;
2411 	case EXIT_REASON_CPUID:
2412 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2413 		SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpu, vmexit);
2414 		vcpu_emulate_cpuid(vmx->vm, vcpu,
2415 		    (uint64_t *)&vmxctx->guest_rax,
2416 		    (uint64_t *)&vmxctx->guest_rbx,
2417 		    (uint64_t *)&vmxctx->guest_rcx,
2418 		    (uint64_t *)&vmxctx->guest_rdx);
2419 		handled = HANDLED;
2420 		break;
2421 	case EXIT_REASON_EXCEPTION:
2422 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2423 		intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2424 		KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2425 		    ("VM exit interruption info invalid: %x", intr_info));
2426 
2427 		intr_vec = intr_info & 0xff;
2428 		intr_type = intr_info & VMCS_INTR_T_MASK;
2429 
2430 		/*
2431 		 * If Virtual NMIs control is 1 and the VM-exit is due to a
2432 		 * fault encountered during the execution of IRET then we must
2433 		 * restore the state of "virtual-NMI blocking" before resuming
2434 		 * the guest.
2435 		 *
2436 		 * See "Resuming Guest Software after Handling an Exception".
2437 		 * See "Information for VM Exits Due to Vectored Events".
2438 		 */
2439 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2440 		    (intr_vec != IDT_DF) &&
2441 		    (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2442 			vmx_restore_nmi_blocking(vmx, vcpu);
2443 
2444 		/*
2445 		 * The NMI has already been handled in vmx_exit_handle_nmi().
2446 		 */
2447 		if (intr_type == VMCS_INTR_T_NMI)
2448 			return (1);
2449 
2450 		/*
2451 		 * Call the machine check handler by hand. Also don't reflect
2452 		 * the machine check back into the guest.
2453 		 */
2454 		if (intr_vec == IDT_MC) {
2455 			vmm_call_trap(T_MCE);
2456 			return (1);
2457 		}
2458 
2459 		/*
2460 		 * If the hypervisor has requested user exits for
2461 		 * debug exceptions, bounce them out to userland.
2462 		 */
2463 		if (intr_type == VMCS_INTR_T_SWEXCEPTION &&
2464 		    intr_vec == IDT_BP &&
2465 		    (vmx->cap[vcpu].set & (1 << VM_CAP_BPT_EXIT))) {
2466 			vmexit->exitcode = VM_EXITCODE_BPT;
2467 			vmexit->u.bpt.inst_length = vmexit->inst_length;
2468 			vmexit->inst_length = 0;
2469 			break;
2470 		}
2471 
2472 		if (intr_vec == IDT_PF) {
2473 			vmxctx->guest_cr2 = qual;
2474 		}
2475 
2476 		/*
2477 		 * Software exceptions exhibit trap-like behavior. This in
2478 		 * turn requires populating the VM-entry instruction length
2479 		 * so that the %rip in the trap frame is past the INT3/INTO
2480 		 * instruction.
2481 		 */
2482 		if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2483 			vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2484 
2485 		/* Reflect all other exceptions back into the guest */
2486 		errcode_valid = errcode = 0;
2487 		if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2488 			errcode_valid = 1;
2489 			errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2490 		}
2491 		SDT_PROBE5(vmm, vmx, exit, exception,
2492 		    vmx, vcpu, vmexit, intr_vec, errcode);
2493 		error = vm_inject_exception(vmx->vm, vcpu, intr_vec,
2494 		    errcode_valid, errcode, 0);
2495 		KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2496 		    __func__, error));
2497 		return (1);
2498 
2499 	case EXIT_REASON_EPT_FAULT:
2500 		/*
2501 		 * If 'gpa' lies within the address space allocated to
2502 		 * memory then this must be a nested page fault otherwise
2503 		 * this must be an instruction that accesses MMIO space.
2504 		 */
2505 		gpa = vmcs_read(VMCS_GUEST_PHYSICAL_ADDRESS);
2506 		if (vm_mem_allocated(vmx->vm, vcpu, gpa) ||
2507 		    apic_access_fault(vmx, vcpu, gpa)) {
2508 			vmexit->exitcode = VM_EXITCODE_PAGING;
2509 			vmexit->inst_length = 0;
2510 			vmexit->u.paging.gpa = gpa;
2511 			vmexit->u.paging.fault_type = ept_fault_type(qual);
2512 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2513 			SDT_PROBE5(vmm, vmx, exit, nestedfault,
2514 			    vmx, vcpu, vmexit, gpa, qual);
2515 		} else if (ept_emulation_fault(qual)) {
2516 			vie = vm_vie_ctx(vmx->vm, vcpu);
2517 			vmexit_mmio_emul(vmexit, vie, gpa,
2518 			    vmcs_read(VMCS_GUEST_LINEAR_ADDRESS));
2519 			vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MMIO_EMUL, 1);
2520 			SDT_PROBE4(vmm, vmx, exit, mmiofault,
2521 			    vmx, vcpu, vmexit, gpa);
2522 		}
2523 		/*
2524 		 * If Virtual NMIs control is 1 and the VM-exit is due to an
2525 		 * EPT fault during the execution of IRET then we must restore
2526 		 * the state of "virtual-NMI blocking" before resuming.
2527 		 *
2528 		 * See description of "NMI unblocking due to IRET" in
2529 		 * "Exit Qualification for EPT Violations".
2530 		 */
2531 		if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2532 		    (qual & EXIT_QUAL_NMIUDTI) != 0)
2533 			vmx_restore_nmi_blocking(vmx, vcpu);
2534 		break;
2535 	case EXIT_REASON_VIRTUALIZED_EOI:
2536 		vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2537 		vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2538 		SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpu, vmexit);
2539 		vmexit->inst_length = 0;	/* trap-like */
2540 		break;
2541 	case EXIT_REASON_APIC_ACCESS:
2542 		SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpu, vmexit);
2543 		handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2544 		break;
2545 	case EXIT_REASON_APIC_WRITE:
2546 		/*
2547 		 * APIC-write VM exit is trap-like so the %rip is already
2548 		 * pointing to the next instruction.
2549 		 */
2550 		vmexit->inst_length = 0;
2551 		vlapic = vm_lapic(vmx->vm, vcpu);
2552 		SDT_PROBE4(vmm, vmx, exit, apicwrite,
2553 		    vmx, vcpu, vmexit, vlapic);
2554 		handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2555 		break;
2556 	case EXIT_REASON_XSETBV:
2557 		SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpu, vmexit);
2558 		handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2559 		break;
2560 	case EXIT_REASON_MONITOR:
2561 		SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpu, vmexit);
2562 		vmexit->exitcode = VM_EXITCODE_MONITOR;
2563 		break;
2564 	case EXIT_REASON_MWAIT:
2565 		SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpu, vmexit);
2566 		vmexit->exitcode = VM_EXITCODE_MWAIT;
2567 		break;
2568 	case EXIT_REASON_TPR:
2569 		vlapic = vm_lapic(vmx->vm, vcpu);
2570 		vlapic_sync_tpr(vlapic);
2571 		vmexit->inst_length = 0;
2572 		handled = HANDLED;
2573 		break;
2574 	case EXIT_REASON_VMCALL:
2575 	case EXIT_REASON_VMCLEAR:
2576 	case EXIT_REASON_VMLAUNCH:
2577 	case EXIT_REASON_VMPTRLD:
2578 	case EXIT_REASON_VMPTRST:
2579 	case EXIT_REASON_VMREAD:
2580 	case EXIT_REASON_VMRESUME:
2581 	case EXIT_REASON_VMWRITE:
2582 	case EXIT_REASON_VMXOFF:
2583 	case EXIT_REASON_VMXON:
2584 		SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpu, vmexit);
2585 		vmexit->exitcode = VM_EXITCODE_VMINSN;
2586 		break;
2587 	case EXIT_REASON_INVD:
2588 	case EXIT_REASON_WBINVD:
2589 		/* ignore exit */
2590 		handled = HANDLED;
2591 		break;
2592 	default:
2593 		SDT_PROBE4(vmm, vmx, exit, unknown,
2594 		    vmx, vcpu, vmexit, reason);
2595 		vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2596 		break;
2597 	}
2598 
2599 	if (handled) {
2600 		/*
2601 		 * It is possible that control is returned to userland
2602 		 * even though we were able to handle the VM exit in the
2603 		 * kernel.
2604 		 *
2605 		 * In such a case we want to make sure that the userland
2606 		 * restarts guest execution at the instruction *after*
2607 		 * the one we just processed. Therefore we update the
2608 		 * guest rip in the VMCS and in 'vmexit'.
2609 		 */
2610 		vmexit->rip += vmexit->inst_length;
2611 		vmexit->inst_length = 0;
2612 		vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2613 	} else {
2614 		if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2615 			/*
2616 			 * If this VM exit was not claimed by anybody then
2617 			 * treat it as a generic VMX exit.
2618 			 */
2619 			vmexit->exitcode = VM_EXITCODE_VMX;
2620 			vmexit->u.vmx.status = VM_SUCCESS;
2621 			vmexit->u.vmx.inst_type = 0;
2622 			vmexit->u.vmx.inst_error = 0;
2623 		} else {
2624 			/*
2625 			 * The exitcode and collateral have been populated.
2626 			 * The VM exit will be processed further in userland.
2627 			 */
2628 		}
2629 	}
2630 
2631 	SDT_PROBE4(vmm, vmx, exit, return,
2632 	    vmx, vcpu, vmexit, handled);
2633 	return (handled);
2634 }
2635 
2636 static void
2637 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2638 {
2639 
2640 	KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2641 	    ("vmx_exit_inst_error: invalid inst_fail_status %d",
2642 	    vmxctx->inst_fail_status));
2643 
2644 	vmexit->inst_length = 0;
2645 	vmexit->exitcode = VM_EXITCODE_VMX;
2646 	vmexit->u.vmx.status = vmxctx->inst_fail_status;
2647 	vmexit->u.vmx.inst_error = vmcs_read(VMCS_INSTRUCTION_ERROR);
2648 	vmexit->u.vmx.exit_reason = ~0;
2649 	vmexit->u.vmx.exit_qualification = ~0;
2650 
2651 	switch (rc) {
2652 	case VMX_VMRESUME_ERROR:
2653 	case VMX_VMLAUNCH_ERROR:
2654 	case VMX_INVEPT_ERROR:
2655 	case VMX_VMWRITE_ERROR:
2656 		vmexit->u.vmx.inst_type = rc;
2657 		break;
2658 	default:
2659 		panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2660 	}
2661 }
2662 
2663 /*
2664  * If the NMI-exiting VM execution control is set to '1' then an NMI in
2665  * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2666  * sufficient to simply vector to the NMI handler via a software interrupt.
2667  * However, this must be done before maskable interrupts are enabled
2668  * otherwise the "iret" issued by an interrupt handler will incorrectly
2669  * clear NMI blocking.
2670  */
2671 static __inline void
2672 vmx_exit_handle_possible_nmi(struct vm_exit *vmexit)
2673 {
2674 	ASSERT(!interrupts_enabled());
2675 
2676 	if (vmexit->u.vmx.exit_reason == EXIT_REASON_EXCEPTION) {
2677 		uint32_t intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2678 		ASSERT(intr_info & VMCS_INTR_VALID);
2679 
2680 		if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2681 			ASSERT3U(intr_info & 0xff, ==, IDT_NMI);
2682 			vmm_call_trap(T_NMIFLT);
2683 		}
2684 	}
2685 }
2686 
2687 static __inline void
2688 vmx_dr_enter_guest(struct vmxctx *vmxctx)
2689 {
2690 	uint64_t rflags;
2691 
2692 	/* Save host control debug registers. */
2693 	vmxctx->host_dr7 = rdr7();
2694 	vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2695 
2696 	/*
2697 	 * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2698 	 * exceptions in the host based on the guest DRx values.  The
2699 	 * guest DR7 and DEBUGCTL are saved/restored in the VMCS.
2700 	 */
2701 	load_dr7(0);
2702 	wrmsr(MSR_DEBUGCTLMSR, 0);
2703 
2704 	/*
2705 	 * Disable single stepping the kernel to avoid corrupting the
2706 	 * guest DR6.  A debugger might still be able to corrupt the
2707 	 * guest DR6 by setting a breakpoint after this point and then
2708 	 * single stepping.
2709 	 */
2710 	rflags = read_rflags();
2711 	vmxctx->host_tf = rflags & PSL_T;
2712 	write_rflags(rflags & ~PSL_T);
2713 
2714 	/* Save host debug registers. */
2715 	vmxctx->host_dr0 = rdr0();
2716 	vmxctx->host_dr1 = rdr1();
2717 	vmxctx->host_dr2 = rdr2();
2718 	vmxctx->host_dr3 = rdr3();
2719 	vmxctx->host_dr6 = rdr6();
2720 
2721 	/* Restore guest debug registers. */
2722 	load_dr0(vmxctx->guest_dr0);
2723 	load_dr1(vmxctx->guest_dr1);
2724 	load_dr2(vmxctx->guest_dr2);
2725 	load_dr3(vmxctx->guest_dr3);
2726 	load_dr6(vmxctx->guest_dr6);
2727 }
2728 
2729 static __inline void
2730 vmx_dr_leave_guest(struct vmxctx *vmxctx)
2731 {
2732 
2733 	/* Save guest debug registers. */
2734 	vmxctx->guest_dr0 = rdr0();
2735 	vmxctx->guest_dr1 = rdr1();
2736 	vmxctx->guest_dr2 = rdr2();
2737 	vmxctx->guest_dr3 = rdr3();
2738 	vmxctx->guest_dr6 = rdr6();
2739 
2740 	/*
2741 	 * Restore host debug registers.  Restore DR7, DEBUGCTL, and
2742 	 * PSL_T last.
2743 	 */
2744 	load_dr0(vmxctx->host_dr0);
2745 	load_dr1(vmxctx->host_dr1);
2746 	load_dr2(vmxctx->host_dr2);
2747 	load_dr3(vmxctx->host_dr3);
2748 	load_dr6(vmxctx->host_dr6);
2749 	wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl);
2750 	load_dr7(vmxctx->host_dr7);
2751 	write_rflags(read_rflags() | vmxctx->host_tf);
2752 }
2753 
2754 static int
2755 vmx_run(void *arg, int vcpu, uint64_t rip)
2756 {
2757 	int rc, handled, launched;
2758 	struct vmx *vmx;
2759 	struct vm *vm;
2760 	struct vmxctx *vmxctx;
2761 	uintptr_t vmcs_pa;
2762 	struct vm_exit *vmexit;
2763 	struct vlapic *vlapic;
2764 	uint32_t exit_reason;
2765 	bool tpr_shadow_active;
2766 	vm_client_t *vmc;
2767 
2768 	vmx = arg;
2769 	vm = vmx->vm;
2770 	vmcs_pa = vmx->vmcs_pa[vcpu];
2771 	vmxctx = &vmx->ctx[vcpu];
2772 	vlapic = vm_lapic(vm, vcpu);
2773 	vmexit = vm_exitinfo(vm, vcpu);
2774 	vmc = vm_get_vmclient(vm, vcpu);
2775 	launched = 0;
2776 	tpr_shadow_active = vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW) &&
2777 	    !vmx_cap_en(vmx, VMX_CAP_APICV) &&
2778 	    (vmx->cap[vcpu].proc_ctls & PROCBASED_USE_TPR_SHADOW) != 0;
2779 
2780 	vmx_msr_guest_enter(vmx, vcpu);
2781 
2782 	vmcs_load(vmcs_pa);
2783 
2784 	VERIFY(vmx->vmcs_state[vcpu] == VS_NONE && curthread->t_preempt != 0);
2785 	vmx->vmcs_state[vcpu] = VS_LOADED;
2786 
2787 	/*
2788 	 * XXX
2789 	 * We do this every time because we may setup the virtual machine
2790 	 * from a different process than the one that actually runs it.
2791 	 *
2792 	 * If the life of a virtual machine was spent entirely in the context
2793 	 * of a single process we could do this once in vmx_vminit().
2794 	 */
2795 	vmcs_write(VMCS_HOST_CR3, rcr3());
2796 
2797 	vmcs_write(VMCS_GUEST_RIP, rip);
2798 	vmx_set_pcpu_defaults(vmx, vcpu);
2799 	do {
2800 		enum event_inject_state inject_state;
2801 		uint64_t eptgen;
2802 
2803 		ASSERT3U(vmcs_read(VMCS_GUEST_RIP), ==, rip);
2804 
2805 		handled = UNHANDLED;
2806 
2807 		/*
2808 		 * Perform initial event/exception/interrupt injection before
2809 		 * host CPU interrupts are disabled.
2810 		 */
2811 		inject_state = vmx_inject_events(vmx, vcpu, rip);
2812 
2813 		/*
2814 		 * Interrupts are disabled from this point on until the
2815 		 * guest starts executing. This is done for the following
2816 		 * reasons:
2817 		 *
2818 		 * If an AST is asserted on this thread after the check below,
2819 		 * then the IPI_AST notification will not be lost, because it
2820 		 * will cause a VM exit due to external interrupt as soon as
2821 		 * the guest state is loaded.
2822 		 *
2823 		 * A posted interrupt after vmx_inject_vlapic() will not be
2824 		 * "lost" because it will be held pending in the host APIC
2825 		 * because interrupts are disabled. The pending interrupt will
2826 		 * be recognized as soon as the guest state is loaded.
2827 		 *
2828 		 * The same reasoning applies to the IPI generated by vmspace
2829 		 * invalidation.
2830 		 */
2831 		disable_intr();
2832 
2833 		/*
2834 		 * If not precluded by existing events, inject any interrupt
2835 		 * pending on the vLAPIC.  As a lock-less operation, it is safe
2836 		 * (and prudent) to perform with host CPU interrupts disabled.
2837 		 */
2838 		if (inject_state == EIS_CAN_INJECT) {
2839 			inject_state = vmx_inject_vlapic(vmx, vcpu, vlapic);
2840 		}
2841 
2842 		/*
2843 		 * Check for vCPU bail-out conditions.  This must be done after
2844 		 * vmx_inject_events() to detect a triple-fault condition.
2845 		 */
2846 		if (vcpu_entry_bailout_checks(vmx->vm, vcpu, rip)) {
2847 			enable_intr();
2848 			break;
2849 		}
2850 
2851 		if (vcpu_run_state_pending(vm, vcpu)) {
2852 			enable_intr();
2853 			vm_exit_run_state(vmx->vm, vcpu, rip);
2854 			break;
2855 		}
2856 
2857 		/*
2858 		 * If subsequent activity queued events which require injection
2859 		 * handling, take another lap to handle them.
2860 		 */
2861 		if (vmx_inject_recheck(vmx, vcpu, inject_state)) {
2862 			enable_intr();
2863 			handled = HANDLED;
2864 			continue;
2865 		}
2866 
2867 		if ((rc = smt_acquire()) != 1) {
2868 			enable_intr();
2869 			vmexit->rip = rip;
2870 			vmexit->inst_length = 0;
2871 			if (rc == -1) {
2872 				vmexit->exitcode = VM_EXITCODE_HT;
2873 			} else {
2874 				vmexit->exitcode = VM_EXITCODE_BOGUS;
2875 				handled = HANDLED;
2876 			}
2877 			break;
2878 		}
2879 
2880 		/*
2881 		 * If this thread has gone off-cpu due to mutex operations
2882 		 * during vmx_run, the VMCS will have been unloaded, forcing a
2883 		 * re-VMLAUNCH as opposed to VMRESUME.
2884 		 */
2885 		launched = (vmx->vmcs_state[vcpu] & VS_LAUNCHED) != 0;
2886 		/*
2887 		 * Restoration of the GDT limit is taken care of by
2888 		 * vmx_savectx().  Since the maximum practical index for the
2889 		 * IDT is 255, restoring its limits from the post-VMX-exit
2890 		 * default of 0xffff is not a concern.
2891 		 *
2892 		 * Only 64-bit hypervisor callers are allowed, which forgoes
2893 		 * the need to restore any LDT descriptor.  Toss an error to
2894 		 * anyone attempting to break that rule.
2895 		 */
2896 		if (curproc->p_model != DATAMODEL_LP64) {
2897 			smt_release();
2898 			enable_intr();
2899 			bzero(vmexit, sizeof (*vmexit));
2900 			vmexit->rip = rip;
2901 			vmexit->exitcode = VM_EXITCODE_VMX;
2902 			vmexit->u.vmx.status = VM_FAIL_INVALID;
2903 			handled = UNHANDLED;
2904 			break;
2905 		}
2906 
2907 		if (tpr_shadow_active) {
2908 			vmx_tpr_shadow_enter(vlapic);
2909 		}
2910 
2911 		/*
2912 		 * Indicate activation of vmspace (EPT) table just prior to VMX
2913 		 * entry, checking for the necessity of an invept invalidation.
2914 		 */
2915 		eptgen = vmc_table_enter(vmc);
2916 		if (vmx->eptgen[curcpu] != eptgen) {
2917 			/*
2918 			 * VMspace generation does not match what was previously
2919 			 * used on this host CPU, so all mappings associated
2920 			 * with this EP4TA must be invalidated.
2921 			 */
2922 			invept(1, vmx->eptp);
2923 			vmx->eptgen[curcpu] = eptgen;
2924 		}
2925 
2926 		vcpu_ustate_change(vm, vcpu, VU_RUN);
2927 		vmx_dr_enter_guest(vmxctx);
2928 
2929 		/* Perform VMX entry */
2930 		rc = vmx_enter_guest(vmxctx, vmx, launched);
2931 
2932 		vmx_dr_leave_guest(vmxctx);
2933 		vcpu_ustate_change(vm, vcpu, VU_EMU_KERN);
2934 
2935 		vmx->vmcs_state[vcpu] |= VS_LAUNCHED;
2936 		smt_release();
2937 
2938 		if (tpr_shadow_active) {
2939 			vmx_tpr_shadow_exit(vlapic);
2940 		}
2941 
2942 		/* Collect some information for VM exit processing */
2943 		vmexit->rip = rip = vmcs_read(VMCS_GUEST_RIP);
2944 		vmexit->inst_length = vmcs_read(VMCS_EXIT_INSTRUCTION_LENGTH);
2945 		vmexit->u.vmx.exit_reason = exit_reason =
2946 		    (vmcs_read(VMCS_EXIT_REASON) & BASIC_EXIT_REASON_MASK);
2947 		vmexit->u.vmx.exit_qualification =
2948 		    vmcs_read(VMCS_EXIT_QUALIFICATION);
2949 		/* Update 'nextrip' */
2950 		vmx->state[vcpu].nextrip = rip;
2951 
2952 		if (rc == VMX_GUEST_VMEXIT) {
2953 			vmx_exit_handle_possible_nmi(vmexit);
2954 		}
2955 		enable_intr();
2956 		vmc_table_exit(vmc);
2957 
2958 		if (rc == VMX_GUEST_VMEXIT) {
2959 			handled = vmx_exit_process(vmx, vcpu, vmexit);
2960 		} else {
2961 			vmx_exit_inst_error(vmxctx, rc, vmexit);
2962 		}
2963 		DTRACE_PROBE3(vmm__vexit, int, vcpu, uint64_t, rip,
2964 		    uint32_t, exit_reason);
2965 		rip = vmexit->rip;
2966 	} while (handled);
2967 
2968 	/* If a VM exit has been handled then the exitcode must be BOGUS */
2969 	if (handled && vmexit->exitcode != VM_EXITCODE_BOGUS) {
2970 		panic("Non-BOGUS exitcode (%d) unexpected for handled VM exit",
2971 		    vmexit->exitcode);
2972 	}
2973 
2974 	vmcs_clear(vmcs_pa);
2975 	vmx_msr_guest_exit(vmx, vcpu);
2976 
2977 	VERIFY(vmx->vmcs_state[vcpu] != VS_NONE && curthread->t_preempt != 0);
2978 	vmx->vmcs_state[vcpu] = VS_NONE;
2979 
2980 	return (0);
2981 }
2982 
2983 static void
2984 vmx_vmcleanup(void *arg)
2985 {
2986 	int i;
2987 	struct vmx *vmx = arg;
2988 	uint16_t maxcpus;
2989 
2990 	if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
2991 		(void) vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
2992 		kmem_free(vmx->apic_access_page, PAGESIZE);
2993 	} else {
2994 		VERIFY3P(vmx->apic_access_page, ==, NULL);
2995 	}
2996 
2997 	vmx_msr_bitmap_destroy(vmx);
2998 
2999 	maxcpus = vm_get_maxcpus(vmx->vm);
3000 	for (i = 0; i < maxcpus; i++)
3001 		vpid_free(vmx->state[i].vpid);
3002 
3003 	kmem_free(vmx, sizeof (*vmx));
3004 }
3005 
3006 /*
3007  * Ensure that the VMCS for this vcpu is loaded.
3008  * Returns true if a VMCS load was required.
3009  */
3010 static bool
3011 vmx_vmcs_access_ensure(struct vmx *vmx, int vcpu)
3012 {
3013 	int hostcpu;
3014 
3015 	if (vcpu_is_running(vmx->vm, vcpu, &hostcpu)) {
3016 		if (hostcpu != curcpu) {
3017 			panic("unexpected vcpu migration %d != %d",
3018 			    hostcpu, curcpu);
3019 		}
3020 		/* Earlier logic already took care of the load */
3021 		return (false);
3022 	} else {
3023 		vmcs_load(vmx->vmcs_pa[vcpu]);
3024 		return (true);
3025 	}
3026 }
3027 
3028 static void
3029 vmx_vmcs_access_done(struct vmx *vmx, int vcpu)
3030 {
3031 	int hostcpu;
3032 
3033 	if (vcpu_is_running(vmx->vm, vcpu, &hostcpu)) {
3034 		if (hostcpu != curcpu) {
3035 			panic("unexpected vcpu migration %d != %d",
3036 			    hostcpu, curcpu);
3037 		}
3038 		/* Later logic will take care of the unload */
3039 	} else {
3040 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3041 	}
3042 }
3043 
3044 static uint64_t *
3045 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
3046 {
3047 	switch (reg) {
3048 	case VM_REG_GUEST_RAX:
3049 		return (&vmxctx->guest_rax);
3050 	case VM_REG_GUEST_RBX:
3051 		return (&vmxctx->guest_rbx);
3052 	case VM_REG_GUEST_RCX:
3053 		return (&vmxctx->guest_rcx);
3054 	case VM_REG_GUEST_RDX:
3055 		return (&vmxctx->guest_rdx);
3056 	case VM_REG_GUEST_RSI:
3057 		return (&vmxctx->guest_rsi);
3058 	case VM_REG_GUEST_RDI:
3059 		return (&vmxctx->guest_rdi);
3060 	case VM_REG_GUEST_RBP:
3061 		return (&vmxctx->guest_rbp);
3062 	case VM_REG_GUEST_R8:
3063 		return (&vmxctx->guest_r8);
3064 	case VM_REG_GUEST_R9:
3065 		return (&vmxctx->guest_r9);
3066 	case VM_REG_GUEST_R10:
3067 		return (&vmxctx->guest_r10);
3068 	case VM_REG_GUEST_R11:
3069 		return (&vmxctx->guest_r11);
3070 	case VM_REG_GUEST_R12:
3071 		return (&vmxctx->guest_r12);
3072 	case VM_REG_GUEST_R13:
3073 		return (&vmxctx->guest_r13);
3074 	case VM_REG_GUEST_R14:
3075 		return (&vmxctx->guest_r14);
3076 	case VM_REG_GUEST_R15:
3077 		return (&vmxctx->guest_r15);
3078 	case VM_REG_GUEST_CR2:
3079 		return (&vmxctx->guest_cr2);
3080 	case VM_REG_GUEST_DR0:
3081 		return (&vmxctx->guest_dr0);
3082 	case VM_REG_GUEST_DR1:
3083 		return (&vmxctx->guest_dr1);
3084 	case VM_REG_GUEST_DR2:
3085 		return (&vmxctx->guest_dr2);
3086 	case VM_REG_GUEST_DR3:
3087 		return (&vmxctx->guest_dr3);
3088 	case VM_REG_GUEST_DR6:
3089 		return (&vmxctx->guest_dr6);
3090 	default:
3091 		break;
3092 	}
3093 	return (NULL);
3094 }
3095 
3096 static int
3097 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
3098 {
3099 	struct vmx *vmx = arg;
3100 	uint64_t *regp;
3101 
3102 	/* VMCS access not required for ctx reads */
3103 	if ((regp = vmxctx_regptr(&vmx->ctx[vcpu], reg)) != NULL) {
3104 		*retval = *regp;
3105 		return (0);
3106 	}
3107 
3108 	bool vmcs_loaded = vmx_vmcs_access_ensure(vmx, vcpu);
3109 	int err = 0;
3110 
3111 	if (reg == VM_REG_GUEST_INTR_SHADOW) {
3112 		uint64_t gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
3113 		*retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
3114 	} else {
3115 		uint32_t encoding;
3116 
3117 		encoding = vmcs_field_encoding(reg);
3118 		switch (encoding) {
3119 		case VMCS_GUEST_CR0:
3120 			/* Take the shadow bits into account */
3121 			*retval = vmx_unshadow_cr0(vmcs_read(encoding),
3122 			    vmcs_read(VMCS_CR0_SHADOW));
3123 			break;
3124 		case VMCS_GUEST_CR4:
3125 			/* Take the shadow bits into account */
3126 			*retval = vmx_unshadow_cr4(vmcs_read(encoding),
3127 			    vmcs_read(VMCS_CR4_SHADOW));
3128 			break;
3129 		case VMCS_INVALID_ENCODING:
3130 			err = EINVAL;
3131 			break;
3132 		default:
3133 			*retval = vmcs_read(encoding);
3134 			break;
3135 		}
3136 	}
3137 
3138 	if (vmcs_loaded) {
3139 		vmx_vmcs_access_done(vmx, vcpu);
3140 	}
3141 	return (err);
3142 }
3143 
3144 static int
3145 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
3146 {
3147 	struct vmx *vmx = arg;
3148 	uint64_t *regp;
3149 
3150 	/* VMCS access not required for ctx writes */
3151 	if ((regp = vmxctx_regptr(&vmx->ctx[vcpu], reg)) != NULL) {
3152 		*regp = val;
3153 		return (0);
3154 	}
3155 
3156 	bool vmcs_loaded = vmx_vmcs_access_ensure(vmx, vcpu);
3157 	int err = 0;
3158 
3159 	if (reg == VM_REG_GUEST_INTR_SHADOW) {
3160 		if (val != 0) {
3161 			/*
3162 			 * Forcing the vcpu into an interrupt shadow is not
3163 			 * presently supported.
3164 			 */
3165 			err = EINVAL;
3166 		} else {
3167 			uint64_t gi;
3168 
3169 			gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
3170 			gi &= ~HWINTR_BLOCKING;
3171 			vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
3172 			err = 0;
3173 		}
3174 	} else {
3175 		uint32_t encoding;
3176 
3177 		err = 0;
3178 		encoding = vmcs_field_encoding(reg);
3179 		switch (encoding) {
3180 		case VMCS_GUEST_IA32_EFER:
3181 			vmcs_write(encoding, val);
3182 			vmx_sync_efer_state(vmx, vcpu, val);
3183 			break;
3184 		case VMCS_GUEST_CR0:
3185 			/*
3186 			 * The guest is not allowed to modify certain bits in
3187 			 * %cr0 and %cr4.  To maintain the illusion of full
3188 			 * control, they have shadow versions which contain the
3189 			 * guest-perceived (via reads from the register) values
3190 			 * as opposed to the guest-effective values.
3191 			 *
3192 			 * This is detailed in the SDM: Vol. 3 Ch. 24.6.6.
3193 			 */
3194 			vmcs_write(VMCS_CR0_SHADOW, val);
3195 			vmcs_write(encoding, vmx_fix_cr0(val));
3196 			break;
3197 		case VMCS_GUEST_CR4:
3198 			/* See above for detail on %cr4 shadowing */
3199 			vmcs_write(VMCS_CR4_SHADOW, val);
3200 			vmcs_write(encoding, vmx_fix_cr4(val));
3201 			break;
3202 		case VMCS_GUEST_CR3:
3203 			vmcs_write(encoding, val);
3204 			/*
3205 			 * Invalidate the guest vcpu's TLB mappings to emulate
3206 			 * the behavior of updating %cr3.
3207 			 *
3208 			 * XXX the processor retains global mappings when %cr3
3209 			 * is updated but vmx_invvpid() does not.
3210 			 */
3211 			vmx_invvpid(vmx, vcpu,
3212 			    vcpu_is_running(vmx->vm, vcpu, NULL));
3213 			break;
3214 		case VMCS_INVALID_ENCODING:
3215 			err = EINVAL;
3216 			break;
3217 		default:
3218 			vmcs_write(encoding, val);
3219 			break;
3220 		}
3221 	}
3222 
3223 	if (vmcs_loaded) {
3224 		vmx_vmcs_access_done(vmx, vcpu);
3225 	}
3226 	return (err);
3227 }
3228 
3229 static int
3230 vmx_getdesc(void *arg, int vcpu, int seg, struct seg_desc *desc)
3231 {
3232 	struct vmx *vmx = arg;
3233 	uint32_t base, limit, access;
3234 
3235 	bool vmcs_loaded = vmx_vmcs_access_ensure(vmx, vcpu);
3236 
3237 	vmcs_seg_desc_encoding(seg, &base, &limit, &access);
3238 	desc->base = vmcs_read(base);
3239 	desc->limit = vmcs_read(limit);
3240 	if (access != VMCS_INVALID_ENCODING) {
3241 		desc->access = vmcs_read(access);
3242 	} else {
3243 		desc->access = 0;
3244 	}
3245 
3246 	if (vmcs_loaded) {
3247 		vmx_vmcs_access_done(vmx, vcpu);
3248 	}
3249 	return (0);
3250 }
3251 
3252 static int
3253 vmx_setdesc(void *arg, int vcpu, int seg, const struct seg_desc *desc)
3254 {
3255 	struct vmx *vmx = arg;
3256 	uint32_t base, limit, access;
3257 
3258 	bool vmcs_loaded = vmx_vmcs_access_ensure(vmx, vcpu);
3259 
3260 	vmcs_seg_desc_encoding(seg, &base, &limit, &access);
3261 	vmcs_write(base, desc->base);
3262 	vmcs_write(limit, desc->limit);
3263 	if (access != VMCS_INVALID_ENCODING) {
3264 		vmcs_write(access, desc->access);
3265 	}
3266 
3267 	if (vmcs_loaded) {
3268 		vmx_vmcs_access_done(vmx, vcpu);
3269 	}
3270 	return (0);
3271 }
3272 
3273 static uint64_t *
3274 vmx_msr_ptr(struct vmx *vmx, int vcpu, uint32_t msr)
3275 {
3276 	uint64_t *guest_msrs = vmx->guest_msrs[vcpu];
3277 
3278 	switch (msr) {
3279 	case MSR_LSTAR:
3280 		return (&guest_msrs[IDX_MSR_LSTAR]);
3281 	case MSR_CSTAR:
3282 		return (&guest_msrs[IDX_MSR_CSTAR]);
3283 	case MSR_STAR:
3284 		return (&guest_msrs[IDX_MSR_STAR]);
3285 	case MSR_SF_MASK:
3286 		return (&guest_msrs[IDX_MSR_SF_MASK]);
3287 	case MSR_KGSBASE:
3288 		return (&guest_msrs[IDX_MSR_KGSBASE]);
3289 	case MSR_PAT:
3290 		return (&guest_msrs[IDX_MSR_PAT]);
3291 	default:
3292 		return (NULL);
3293 	}
3294 }
3295 
3296 static int
3297 vmx_msr_get(void *arg, int vcpu, uint32_t msr, uint64_t *valp)
3298 {
3299 	struct vmx *vmx = arg;
3300 
3301 	ASSERT(valp != NULL);
3302 
3303 	const uint64_t *msrp = vmx_msr_ptr(vmx, vcpu, msr);
3304 	if (msrp != NULL) {
3305 		*valp = *msrp;
3306 		return (0);
3307 	}
3308 
3309 	const uint32_t vmcs_enc = vmcs_msr_encoding(msr);
3310 	if (vmcs_enc != VMCS_INVALID_ENCODING) {
3311 		bool vmcs_loaded = vmx_vmcs_access_ensure(vmx, vcpu);
3312 
3313 		*valp = vmcs_read(vmcs_enc);
3314 
3315 		if (vmcs_loaded) {
3316 			vmx_vmcs_access_done(vmx, vcpu);
3317 		}
3318 		return (0);
3319 	}
3320 
3321 	return (EINVAL);
3322 }
3323 
3324 static int
3325 vmx_msr_set(void *arg, int vcpu, uint32_t msr, uint64_t val)
3326 {
3327 	struct vmx *vmx = arg;
3328 
3329 	/* TODO: mask value */
3330 
3331 	uint64_t *msrp = vmx_msr_ptr(vmx, vcpu, msr);
3332 	if (msrp != NULL) {
3333 		*msrp = val;
3334 		return (0);
3335 	}
3336 
3337 	const uint32_t vmcs_enc = vmcs_msr_encoding(msr);
3338 	if (vmcs_enc != VMCS_INVALID_ENCODING) {
3339 		bool vmcs_loaded = vmx_vmcs_access_ensure(vmx, vcpu);
3340 
3341 		vmcs_write(vmcs_enc, val);
3342 
3343 		if (msr == MSR_EFER) {
3344 			vmx_sync_efer_state(vmx, vcpu, val);
3345 		}
3346 
3347 		if (vmcs_loaded) {
3348 			vmx_vmcs_access_done(vmx, vcpu);
3349 		}
3350 		return (0);
3351 	}
3352 	return (EINVAL);
3353 }
3354 
3355 static int
3356 vmx_getcap(void *arg, int vcpu, int type, int *retval)
3357 {
3358 	struct vmx *vmx = arg;
3359 	int vcap;
3360 	int ret;
3361 
3362 	ret = ENOENT;
3363 
3364 	vcap = vmx->cap[vcpu].set;
3365 
3366 	switch (type) {
3367 	case VM_CAP_HALT_EXIT:
3368 		ret = 0;
3369 		break;
3370 	case VM_CAP_PAUSE_EXIT:
3371 		if (cap_pause_exit)
3372 			ret = 0;
3373 		break;
3374 	case VM_CAP_MTRAP_EXIT:
3375 		if (cap_monitor_trap)
3376 			ret = 0;
3377 		break;
3378 	case VM_CAP_ENABLE_INVPCID:
3379 		if (cap_invpcid)
3380 			ret = 0;
3381 		break;
3382 	case VM_CAP_BPT_EXIT:
3383 		ret = 0;
3384 		break;
3385 	default:
3386 		break;
3387 	}
3388 
3389 	if (ret == 0)
3390 		*retval = (vcap & (1 << type)) ? 1 : 0;
3391 
3392 	return (ret);
3393 }
3394 
3395 static int
3396 vmx_setcap(void *arg, int vcpu, int type, int val)
3397 {
3398 	struct vmx *vmx = arg;
3399 	uint32_t baseval, reg, flag;
3400 	uint32_t *pptr;
3401 	int error;
3402 
3403 	error = ENOENT;
3404 	pptr = NULL;
3405 
3406 	switch (type) {
3407 	case VM_CAP_HALT_EXIT:
3408 		error = 0;
3409 		pptr = &vmx->cap[vcpu].proc_ctls;
3410 		baseval = *pptr;
3411 		flag = PROCBASED_HLT_EXITING;
3412 		reg = VMCS_PRI_PROC_BASED_CTLS;
3413 		break;
3414 	case VM_CAP_MTRAP_EXIT:
3415 		if (cap_monitor_trap) {
3416 			error = 0;
3417 			pptr = &vmx->cap[vcpu].proc_ctls;
3418 			baseval = *pptr;
3419 			flag = PROCBASED_MTF;
3420 			reg = VMCS_PRI_PROC_BASED_CTLS;
3421 		}
3422 		break;
3423 	case VM_CAP_PAUSE_EXIT:
3424 		if (cap_pause_exit) {
3425 			error = 0;
3426 			pptr = &vmx->cap[vcpu].proc_ctls;
3427 			baseval = *pptr;
3428 			flag = PROCBASED_PAUSE_EXITING;
3429 			reg = VMCS_PRI_PROC_BASED_CTLS;
3430 		}
3431 		break;
3432 	case VM_CAP_ENABLE_INVPCID:
3433 		if (cap_invpcid) {
3434 			error = 0;
3435 			pptr = &vmx->cap[vcpu].proc_ctls2;
3436 			baseval = *pptr;
3437 			flag = PROCBASED2_ENABLE_INVPCID;
3438 			reg = VMCS_SEC_PROC_BASED_CTLS;
3439 		}
3440 		break;
3441 	case VM_CAP_BPT_EXIT:
3442 		error = 0;
3443 
3444 		/* Don't change the bitmap if we are tracing all exceptions. */
3445 		if (vmx->cap[vcpu].exc_bitmap != 0xffffffff) {
3446 			pptr = &vmx->cap[vcpu].exc_bitmap;
3447 			baseval = *pptr;
3448 			flag = (1 << IDT_BP);
3449 			reg = VMCS_EXCEPTION_BITMAP;
3450 		}
3451 		break;
3452 	default:
3453 		break;
3454 	}
3455 
3456 	if (error != 0) {
3457 		return (error);
3458 	}
3459 
3460 	if (pptr != NULL) {
3461 		if (val) {
3462 			baseval |= flag;
3463 		} else {
3464 			baseval &= ~flag;
3465 		}
3466 		vmcs_load(vmx->vmcs_pa[vcpu]);
3467 		vmcs_write(reg, baseval);
3468 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3469 
3470 		/*
3471 		 * Update optional stored flags, and record
3472 		 * setting
3473 		 */
3474 		*pptr = baseval;
3475 	}
3476 
3477 	if (val) {
3478 		vmx->cap[vcpu].set |= (1 << type);
3479 	} else {
3480 		vmx->cap[vcpu].set &= ~(1 << type);
3481 	}
3482 
3483 	return (0);
3484 }
3485 
3486 struct vlapic_vtx {
3487 	struct vlapic	vlapic;
3488 
3489 	/* Align to the nearest cacheline */
3490 	uint8_t		_pad[64 - (sizeof (struct vlapic) % 64)];
3491 
3492 	/* TMR handling state for posted interrupts */
3493 	uint32_t	tmr_active[8];
3494 	uint32_t	pending_level[8];
3495 	uint32_t	pending_edge[8];
3496 
3497 	struct pir_desc	*pir_desc;
3498 	struct vmx	*vmx;
3499 	uint_t	pending_prio;
3500 	boolean_t	tmr_sync;
3501 };
3502 
3503 CTASSERT((offsetof(struct vlapic_vtx, tmr_active) & 63) == 0);
3504 
3505 #define	VPR_PRIO_BIT(vpr)	(1 << ((vpr) >> 4))
3506 
3507 static vcpu_notify_t
3508 vmx_apicv_set_ready(struct vlapic *vlapic, int vector, bool level)
3509 {
3510 	struct vlapic_vtx *vlapic_vtx;
3511 	struct pir_desc *pir_desc;
3512 	uint32_t mask, tmrval;
3513 	int idx;
3514 	vcpu_notify_t notify = VCPU_NOTIFY_NONE;
3515 
3516 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3517 	pir_desc = vlapic_vtx->pir_desc;
3518 	idx = vector / 32;
3519 	mask = 1UL << (vector % 32);
3520 
3521 	/*
3522 	 * If the currently asserted TMRs do not match the state requested by
3523 	 * the incoming interrupt, an exit will be required to reconcile those
3524 	 * bits in the APIC page.  This will keep the vLAPIC behavior in line
3525 	 * with the architecturally defined expectations.
3526 	 *
3527 	 * If actors of mixed types (edge and level) are racing against the same
3528 	 * vector (toggling its TMR bit back and forth), the results could
3529 	 * inconsistent.  Such circumstances are considered a rare edge case and
3530 	 * are never expected to be found in the wild.
3531 	 */
3532 	tmrval = atomic_load_acq_int(&vlapic_vtx->tmr_active[idx]);
3533 	if (!level) {
3534 		if ((tmrval & mask) != 0) {
3535 			/* Edge-triggered interrupt needs TMR de-asserted */
3536 			atomic_set_int(&vlapic_vtx->pending_edge[idx], mask);
3537 			atomic_store_rel_long(&pir_desc->pending, 1);
3538 			return (VCPU_NOTIFY_EXIT);
3539 		}
3540 	} else {
3541 		if ((tmrval & mask) == 0) {
3542 			/* Level-triggered interrupt needs TMR asserted */
3543 			atomic_set_int(&vlapic_vtx->pending_level[idx], mask);
3544 			atomic_store_rel_long(&pir_desc->pending, 1);
3545 			return (VCPU_NOTIFY_EXIT);
3546 		}
3547 	}
3548 
3549 	/*
3550 	 * If the interrupt request does not require manipulation of the TMRs
3551 	 * for delivery, set it in PIR descriptor.  It cannot be inserted into
3552 	 * the APIC page while the vCPU might be running.
3553 	 */
3554 	atomic_set_int(&pir_desc->pir[idx], mask);
3555 
3556 	/*
3557 	 * A notification is required whenever the 'pending' bit makes a
3558 	 * transition from 0->1.
3559 	 *
3560 	 * Even if the 'pending' bit is already asserted, notification about
3561 	 * the incoming interrupt may still be necessary.  For example, if a
3562 	 * vCPU is HLTed with a high PPR, a low priority interrupt would cause
3563 	 * the 0->1 'pending' transition with a notification, but the vCPU
3564 	 * would ignore the interrupt for the time being.  The same vCPU would
3565 	 * need to then be notified if a high-priority interrupt arrived which
3566 	 * satisfied the PPR.
3567 	 *
3568 	 * The priorities of interrupts injected while 'pending' is asserted
3569 	 * are tracked in a custom bitfield 'pending_prio'.  Should the
3570 	 * to-be-injected interrupt exceed the priorities already present, the
3571 	 * notification is sent.  The priorities recorded in 'pending_prio' are
3572 	 * cleared whenever the 'pending' bit makes another 0->1 transition.
3573 	 */
3574 	if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) {
3575 		notify = VCPU_NOTIFY_APIC;
3576 		vlapic_vtx->pending_prio = 0;
3577 	} else {
3578 		const uint_t old_prio = vlapic_vtx->pending_prio;
3579 		const uint_t prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT);
3580 
3581 		if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) {
3582 			atomic_set_int(&vlapic_vtx->pending_prio, prio_bit);
3583 			notify = VCPU_NOTIFY_APIC;
3584 		}
3585 	}
3586 
3587 	return (notify);
3588 }
3589 
3590 static void
3591 vmx_apicv_accepted(struct vlapic *vlapic, int vector)
3592 {
3593 	/*
3594 	 * When APICv is enabled for an instance, the traditional interrupt
3595 	 * injection method (populating ENTRY_INTR_INFO in the VMCS) is not
3596 	 * used and the CPU does the heavy lifting of virtual interrupt
3597 	 * delivery.  For that reason vmx_intr_accepted() should never be called
3598 	 * when APICv is enabled.
3599 	 */
3600 	panic("vmx_intr_accepted: not expected to be called");
3601 }
3602 
3603 static void
3604 vmx_apicv_sync_tmr(struct vlapic *vlapic)
3605 {
3606 	struct vlapic_vtx *vlapic_vtx;
3607 	const uint32_t *tmrs;
3608 
3609 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3610 	tmrs = &vlapic_vtx->tmr_active[0];
3611 
3612 	if (!vlapic_vtx->tmr_sync) {
3613 		return;
3614 	}
3615 
3616 	vmcs_write(VMCS_EOI_EXIT0, ((uint64_t)tmrs[1] << 32) | tmrs[0]);
3617 	vmcs_write(VMCS_EOI_EXIT1, ((uint64_t)tmrs[3] << 32) | tmrs[2]);
3618 	vmcs_write(VMCS_EOI_EXIT2, ((uint64_t)tmrs[5] << 32) | tmrs[4]);
3619 	vmcs_write(VMCS_EOI_EXIT3, ((uint64_t)tmrs[7] << 32) | tmrs[6]);
3620 	vlapic_vtx->tmr_sync = B_FALSE;
3621 }
3622 
3623 static void
3624 vmx_enable_x2apic_mode_ts(struct vlapic *vlapic)
3625 {
3626 	struct vmx *vmx;
3627 	uint32_t proc_ctls;
3628 	int vcpuid;
3629 
3630 	vcpuid = vlapic->vcpuid;
3631 	vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3632 
3633 	proc_ctls = vmx->cap[vcpuid].proc_ctls;
3634 	proc_ctls &= ~PROCBASED_USE_TPR_SHADOW;
3635 	proc_ctls |= PROCBASED_CR8_LOAD_EXITING;
3636 	proc_ctls |= PROCBASED_CR8_STORE_EXITING;
3637 	vmx->cap[vcpuid].proc_ctls = proc_ctls;
3638 
3639 	vmcs_load(vmx->vmcs_pa[vcpuid]);
3640 	vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
3641 	vmcs_clear(vmx->vmcs_pa[vcpuid]);
3642 }
3643 
3644 static void
3645 vmx_enable_x2apic_mode_vid(struct vlapic *vlapic)
3646 {
3647 	struct vmx *vmx;
3648 	uint32_t proc_ctls2;
3649 	int vcpuid;
3650 
3651 	vcpuid = vlapic->vcpuid;
3652 	vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3653 
3654 	proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3655 	KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3656 	    ("%s: invalid proc_ctls2 %x", __func__, proc_ctls2));
3657 
3658 	proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3659 	proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3660 	vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3661 
3662 	vmcs_load(vmx->vmcs_pa[vcpuid]);
3663 	vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3664 	vmcs_clear(vmx->vmcs_pa[vcpuid]);
3665 
3666 	vmx_allow_x2apic_msrs(vmx, vcpuid);
3667 }
3668 
3669 static void
3670 vmx_apicv_notify(struct vlapic *vlapic, int hostcpu)
3671 {
3672 	psm_send_pir_ipi(hostcpu);
3673 }
3674 
3675 static void
3676 vmx_apicv_sync(struct vlapic *vlapic)
3677 {
3678 	struct vlapic_vtx *vlapic_vtx;
3679 	struct pir_desc *pir_desc;
3680 	struct LAPIC *lapic;
3681 	uint_t i;
3682 
3683 	vlapic_vtx = (struct vlapic_vtx *)vlapic;
3684 	pir_desc = vlapic_vtx->pir_desc;
3685 	lapic = vlapic->apic_page;
3686 
3687 	if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3688 		return;
3689 	}
3690 
3691 	vlapic_vtx->pending_prio = 0;
3692 
3693 	/* Make sure the invalid (0-15) vectors are not set */
3694 	ASSERT0(vlapic_vtx->pending_level[0] & 0xffff);
3695 	ASSERT0(vlapic_vtx->pending_edge[0] & 0xffff);
3696 	ASSERT0(pir_desc->pir[0] & 0xffff);
3697 
3698 	for (i = 0; i <= 7; i++) {
3699 		uint32_t *tmrp = &lapic->tmr0 + (i * 4);
3700 		uint32_t *irrp = &lapic->irr0 + (i * 4);
3701 
3702 		const uint32_t pending_level =
3703 		    atomic_readandclear_int(&vlapic_vtx->pending_level[i]);
3704 		const uint32_t pending_edge =
3705 		    atomic_readandclear_int(&vlapic_vtx->pending_edge[i]);
3706 		const uint32_t pending_inject =
3707 		    atomic_readandclear_int(&pir_desc->pir[i]);
3708 
3709 		if (pending_level != 0) {
3710 			/*
3711 			 * Level-triggered interrupts assert their corresponding
3712 			 * bit in the TMR when queued in IRR.
3713 			 */
3714 			*tmrp |= pending_level;
3715 			*irrp |= pending_level;
3716 		}
3717 		if (pending_edge != 0) {
3718 			/*
3719 			 * When queuing an edge-triggered interrupt in IRR, the
3720 			 * corresponding bit in the TMR is cleared.
3721 			 */
3722 			*tmrp &= ~pending_edge;
3723 			*irrp |= pending_edge;
3724 		}
3725 		if (pending_inject != 0) {
3726 			/*
3727 			 * Interrupts which do not require a change to the TMR
3728 			 * (because it already matches the necessary state) can
3729 			 * simply be queued in IRR.
3730 			 */
3731 			*irrp |= pending_inject;
3732 		}
3733 
3734 		if (*tmrp != vlapic_vtx->tmr_active[i]) {
3735 			/* Check if VMX EOI triggers require updating. */
3736 			vlapic_vtx->tmr_active[i] = *tmrp;
3737 			vlapic_vtx->tmr_sync = B_TRUE;
3738 		}
3739 	}
3740 }
3741 
3742 static void
3743 vmx_tpr_shadow_enter(struct vlapic *vlapic)
3744 {
3745 	/*
3746 	 * When TPR shadowing is enabled, VMX will initiate a guest exit if its
3747 	 * TPR falls below a threshold priority.  That threshold is set to the
3748 	 * current TPR priority, since guest interrupt status should be
3749 	 * re-evaluated if its TPR is set lower.
3750 	 */
3751 	vmcs_write(VMCS_TPR_THRESHOLD, vlapic_get_cr8(vlapic));
3752 }
3753 
3754 static void
3755 vmx_tpr_shadow_exit(struct vlapic *vlapic)
3756 {
3757 	/*
3758 	 * Unlike full APICv, where changes to the TPR are reflected in the PPR,
3759 	 * with TPR shadowing, that duty is relegated to the VMM.  Upon exit,
3760 	 * the PPR is updated to reflect any change in the TPR here.
3761 	 */
3762 	vlapic_sync_tpr(vlapic);
3763 }
3764 
3765 static struct vlapic *
3766 vmx_vlapic_init(void *arg, int vcpuid)
3767 {
3768 	struct vmx *vmx = arg;
3769 	struct vlapic_vtx *vlapic_vtx;
3770 	struct vlapic *vlapic;
3771 
3772 	vlapic_vtx = kmem_zalloc(sizeof (struct vlapic_vtx), KM_SLEEP);
3773 	vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
3774 	vlapic_vtx->vmx = vmx;
3775 
3776 	vlapic = &vlapic_vtx->vlapic;
3777 	vlapic->vm = vmx->vm;
3778 	vlapic->vcpuid = vcpuid;
3779 	vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
3780 
3781 	if (vmx_cap_en(vmx, VMX_CAP_TPR_SHADOW)) {
3782 		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_ts;
3783 	}
3784 	if (vmx_cap_en(vmx, VMX_CAP_APICV)) {
3785 		vlapic->ops.set_intr_ready = vmx_apicv_set_ready;
3786 		vlapic->ops.sync_state = vmx_apicv_sync;
3787 		vlapic->ops.intr_accepted = vmx_apicv_accepted;
3788 		vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_vid;
3789 
3790 		if (vmx_cap_en(vmx, VMX_CAP_APICV_PIR)) {
3791 			vlapic->ops.post_intr = vmx_apicv_notify;
3792 		}
3793 	}
3794 
3795 	vlapic_init(vlapic);
3796 
3797 	return (vlapic);
3798 }
3799 
3800 static void
3801 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
3802 {
3803 	vlapic_cleanup(vlapic);
3804 	kmem_free(vlapic, sizeof (struct vlapic_vtx));
3805 }
3806 
3807 static void
3808 vmx_pause(void *arg, int vcpuid)
3809 {
3810 	struct vmx *vmx = arg;
3811 
3812 	VERIFY(vmx_vmcs_access_ensure(vmx, vcpuid));
3813 
3814 	/* Stash any interrupt/exception pending injection. */
3815 	vmx_stash_intinfo(vmx, vcpuid);
3816 
3817 	/*
3818 	 * Now that no event is pending injection, interrupt-window exiting and
3819 	 * NMI-window exiting can be disabled.  If/when this vCPU is made to run
3820 	 * again, those conditions will be reinstated when the now-queued events
3821 	 * are re-injected.
3822 	 */
3823 	vmx_clear_nmi_window_exiting(vmx, vcpuid);
3824 	vmx_clear_int_window_exiting(vmx, vcpuid);
3825 
3826 	vmx_vmcs_access_done(vmx, vcpuid);
3827 }
3828 
3829 static void
3830 vmx_savectx(void *arg, int vcpu)
3831 {
3832 	struct vmx *vmx = arg;
3833 
3834 	if ((vmx->vmcs_state[vcpu] & VS_LOADED) != 0) {
3835 		vmcs_clear(vmx->vmcs_pa[vcpu]);
3836 		vmx_msr_guest_exit(vmx, vcpu);
3837 		/*
3838 		 * Having VMCLEARed the VMCS, it can no longer be re-entered
3839 		 * with VMRESUME, but must be VMLAUNCHed again.
3840 		 */
3841 		vmx->vmcs_state[vcpu] &= ~VS_LAUNCHED;
3842 	}
3843 
3844 	reset_gdtr_limit();
3845 }
3846 
3847 static void
3848 vmx_restorectx(void *arg, int vcpu)
3849 {
3850 	struct vmx *vmx = arg;
3851 
3852 	ASSERT0(vmx->vmcs_state[vcpu] & VS_LAUNCHED);
3853 
3854 	if ((vmx->vmcs_state[vcpu] & VS_LOADED) != 0) {
3855 		vmx_msr_guest_enter(vmx, vcpu);
3856 		vmcs_load(vmx->vmcs_pa[vcpu]);
3857 	}
3858 }
3859 
3860 static freqratio_res_t
3861 vmx_freq_ratio(uint64_t guest_hz, uint64_t host_hz, uint64_t *mult)
3862 {
3863 	if (guest_hz == host_hz) {
3864 		*mult = VM_TSCM_NOSCALE;
3865 		return (FR_SCALING_NOT_NEEDED);
3866 	}
3867 
3868 	/* VMX support not implemented at this time */
3869 	return (FR_SCALING_NOT_SUPPORTED);
3870 }
3871 
3872 struct vmm_ops vmm_ops_intel = {
3873 	.init		= vmx_init,
3874 	.cleanup	= vmx_cleanup,
3875 	.resume		= vmx_restore,
3876 
3877 	.vminit		= vmx_vminit,
3878 	.vmrun		= vmx_run,
3879 	.vmcleanup	= vmx_vmcleanup,
3880 	.vmgetreg	= vmx_getreg,
3881 	.vmsetreg	= vmx_setreg,
3882 	.vmgetdesc	= vmx_getdesc,
3883 	.vmsetdesc	= vmx_setdesc,
3884 	.vmgetcap	= vmx_getcap,
3885 	.vmsetcap	= vmx_setcap,
3886 	.vlapic_init	= vmx_vlapic_init,
3887 	.vlapic_cleanup	= vmx_vlapic_cleanup,
3888 	.vmpause	= vmx_pause,
3889 
3890 	.vmsavectx	= vmx_savectx,
3891 	.vmrestorectx	= vmx_restorectx,
3892 
3893 	.vmgetmsr	= vmx_msr_get,
3894 	.vmsetmsr	= vmx_msr_set,
3895 
3896 	.vmfreqratio	= vmx_freq_ratio,
3897 	.fr_intsize	= INTEL_TSCM_INT_SIZE,
3898 	.fr_fracsize	= INTEL_TSCM_FRAC_SIZE,
3899 };
3900 
3901 /* Side-effect free HW validation derived from checks in vmx_init. */
3902 int
3903 vmx_x86_supported(const char **msg)
3904 {
3905 	int error;
3906 	uint32_t tmp;
3907 
3908 	ASSERT(msg != NULL);
3909 
3910 	/* Check support for primary processor-based VM-execution controls */
3911 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
3912 	    MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_CTLS_ONE_SETTING,
3913 	    PROCBASED_CTLS_ZERO_SETTING, &tmp);
3914 	if (error) {
3915 		*msg = "processor does not support desired primary "
3916 		    "processor-based controls";
3917 		return (error);
3918 	}
3919 
3920 	/* Check support for secondary processor-based VM-execution controls */
3921 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
3922 	    MSR_VMX_PROCBASED_CTLS2, PROCBASED_CTLS2_ONE_SETTING,
3923 	    PROCBASED_CTLS2_ZERO_SETTING, &tmp);
3924 	if (error) {
3925 		*msg = "processor does not support desired secondary "
3926 		    "processor-based controls";
3927 		return (error);
3928 	}
3929 
3930 	/* Check support for pin-based VM-execution controls */
3931 	error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
3932 	    MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_CTLS_ONE_SETTING,
3933 	    PINBASED_CTLS_ZERO_SETTING, &tmp);
3934 	if (error) {
3935 		*msg = "processor does not support desired pin-based controls";
3936 		return (error);
3937 	}
3938 
3939 	/* Check support for VM-exit controls */
3940 	error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
3941 	    VM_EXIT_CTLS_ONE_SETTING, VM_EXIT_CTLS_ZERO_SETTING, &tmp);
3942 	if (error) {
3943 		*msg = "processor does not support desired exit controls";
3944 		return (error);
3945 	}
3946 
3947 	/* Check support for VM-entry controls */
3948 	error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
3949 	    VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING, &tmp);
3950 	if (error) {
3951 		*msg = "processor does not support desired entry controls";
3952 		return (error);
3953 	}
3954 
3955 	/* Unrestricted guest is nominally optional, but not for us. */
3956 	error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
3957 	    PROCBASED2_UNRESTRICTED_GUEST, 0, &tmp);
3958 	if (error) {
3959 		*msg = "processor does not support desired unrestricted guest "
3960 		    "controls";
3961 		return (error);
3962 	}
3963 
3964 	return (0);
3965 }
3966