xref: /illumos-gate/usr/src/uts/i86xpv/cpu/generic_cpu/gcpu_mca_xpv.c (revision 566b4223c74de6cad48ddbedf35a12d6a511c8c5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #ifndef __xpv
28 #error "This file is for i86xpv only"
29 #endif
30 
31 #include <sys/types.h>
32 #include <sys/mca_x86.h>
33 #include <sys/archsystm.h>
34 #include <sys/hypervisor.h>
35 
36 #include "../../i86pc/cpu/generic_cpu/gcpu.h"
37 
38 extern xpv_mca_panic_data_t *xpv_mca_panic_data;
39 
40 mc_info_t gcpu_mce_data;
41 
42 enum mctelem_direction {
43 	MCTELEM_FORWARD,
44 	MCTELEM_REVERSE
45 };
46 
47 static uint32_t gcpu_xpv_hdl_lookupfails;
48 static uint32_t gcpu_xpv_bankhdr_found;
49 static uint32_t gcpu_xpv_spechdr_found;
50 
51 static uint32_t gcpu_xpv_mca_hcall_fails[16];
52 static uint32_t gcpu_xpv_globalhdr_found;
53 
54 static cmi_mca_regs_t *gcpu_xpv_bankregs;
55 size_t gcpu_xpv_bankregs_sz;
56 
57 #define	GCPU_XPV_ARCH_NREGS	3
58 
59 void
60 gcpu_xpv_mca_init(int nbanks)
61 {
62 	if (gcpu_xpv_bankregs == NULL) {
63 		gcpu_xpv_bankregs_sz = nbanks * GCPU_XPV_ARCH_NREGS *
64 		    sizeof (cmi_mca_regs_t);
65 
66 		gcpu_xpv_bankregs = kmem_zalloc(gcpu_xpv_bankregs_sz, KM_SLEEP);
67 	}
68 }
69 
70 static void
71 gcpu_xpv_proxy_logout(int what, struct mc_info *mi, struct mcinfo_common **micp,
72     int *idxp, cmi_mca_regs_t *bankregs, size_t bankregs_sz)
73 {
74 	struct mcinfo_global *mgi = (struct mcinfo_global *)(uintptr_t)*micp;
75 	struct mcinfo_common *mic;
76 	struct mcinfo_bank *mib;
77 	cmi_hdl_t hdl = NULL;
78 	cmi_mca_regs_t *mcrp;
79 	int idx = *idxp;
80 	int tried = 0;
81 	int j;
82 
83 	/* Skip over the MC_TYPE_GLOBAL record */
84 	ASSERT(mgi->common.type == MC_TYPE_GLOBAL);
85 	mic = x86_mcinfo_next((struct mcinfo_common *)(uintptr_t)mgi);
86 	idx++;
87 
88 	/*
89 	 * Process all MC_TYPE_BANK and MC_TYPE_EXTENDED records that
90 	 * follow the MC_TYPE_GLOBAL record, ending when we reach any
91 	 * other record type or when we're out of record.
92 	 *
93 	 * We skip over MC_TYPE_EXTENDED for now - nothing consumes
94 	 * the extended MSR data even in native Solaris.
95 	 */
96 	while (idx < x86_mcinfo_nentries(mi) &&
97 	    (mic->type == MC_TYPE_BANK || mic->type == MC_TYPE_EXTENDED)) {
98 		if (mic->type == MC_TYPE_EXTENDED) {
99 			gcpu_xpv_spechdr_found++;
100 			goto next_record;
101 		} else {
102 			gcpu_xpv_bankhdr_found++;
103 		}
104 
105 		if (hdl == NULL && !tried++) {
106 			if ((hdl = cmi_hdl_lookup(CMI_HDL_SOLARIS_xVM_MCA,
107 			    mgi->mc_socketid, mgi->mc_coreid,
108 			    mgi->mc_core_threadid)) == NULL) {
109 				gcpu_xpv_hdl_lookupfails++;
110 				goto next_record;
111 			} else {
112 				bzero(bankregs, bankregs_sz);
113 				mcrp = bankregs;
114 			}
115 		}
116 
117 		mib = (struct mcinfo_bank *)(uintptr_t)mic;
118 
119 		mcrp->cmr_msrnum = IA32_MSR_MC(mib->mc_bank, STATUS);
120 		mcrp->cmr_msrval = mib->mc_status;
121 		mcrp++;
122 
123 		mcrp->cmr_msrnum = IA32_MSR_MC(mib->mc_bank, ADDR);
124 		mcrp->cmr_msrval = mib->mc_addr;
125 		mcrp++;
126 
127 		mcrp->cmr_msrnum = IA32_MSR_MC(mib->mc_bank, MISC);
128 		mcrp->cmr_msrval = mib->mc_misc;
129 		mcrp++;
130 
131 next_record:
132 		idx++;
133 		mic = x86_mcinfo_next(mic);
134 	}
135 
136 	/*
137 	 * If we found some telemetry and a handle to associate it with
138 	 * then "forward" that telemetry into the MSR interpose layer
139 	 * and then request logout which will find that interposed
140 	 * telemetry.  Indicate that logout code should clear bank
141 	 * status registers so that it can invalidate them in the interpose
142 	 * layer - they won't actually make it as far as real MSR writes.
143 	 */
144 	if (hdl != NULL) {
145 		cmi_mca_regs_t gsr;
146 		gcpu_mce_status_t mce;
147 
148 		gsr.cmr_msrnum = IA32_MSR_MCG_STATUS;
149 		gsr.cmr_msrval = mgi->mc_gstatus;
150 		cmi_hdl_msrforward(hdl, &gsr, 1);
151 
152 		cmi_hdl_msrforward(hdl, bankregs, mcrp - bankregs);
153 		gcpu_mca_logout(hdl, NULL, (uint64_t)-1, &mce, B_TRUE, what);
154 		cmi_hdl_rele(hdl);
155 	}
156 
157 	/*
158 	 * We must move the index on at least one record or our caller
159 	 * may loop forever;  our initial increment over the global
160 	 * record assures this.
161 	 */
162 	ASSERT(idx > *idxp);
163 	*idxp = idx;
164 	*micp = mic;
165 }
166 
167 /*
168  * Process a struct mc_info.
169  *
170  * There are x86_mcinfo_nentries(mi) entries.  An entry of type
171  * MC_TYPE_GLOBAL precedes a number (potentially zero) of
172  * entries of type MC_TYPE_BANK for telemetry from MCA banks
173  * of the resource identified in the MC_TYPE_GLOBAL entry.
174  * I think there can be multiple MC_TYPE_GLOBAL entries per buffer.
175  */
176 void
177 gcpu_xpv_mci_process(mc_info_t *mi, int type,
178     cmi_mca_regs_t *bankregs, size_t bankregs_sz)
179 {
180 	struct mcinfo_common *mic;
181 	int idx;
182 
183 	mic = x86_mcinfo_first(mi);
184 
185 	idx = 0;
186 	while (idx < x86_mcinfo_nentries(mi)) {
187 		if (mic->type == MC_TYPE_GLOBAL) {
188 			gcpu_xpv_globalhdr_found++;
189 			gcpu_xpv_proxy_logout(type == XEN_MC_URGENT ?
190 			    GCPU_MPT_WHAT_MC_ERR : GCPU_MPT_WHAT_XPV_VIRQ,
191 			    mi, &mic, &idx, bankregs, bankregs_sz);
192 		} else {
193 			idx++;
194 			mic = x86_mcinfo_next(mic);
195 		}
196 	}
197 }
198 
199 int
200 gcpu_xpv_telem_read(mc_info_t *mci, int type, uint64_t *idp)
201 {
202 	xen_mc_t xmc;
203 	xen_mc_fetch_t *mcf = &xmc.u.mc_fetch;
204 	long err;
205 
206 	mcf->flags = type;
207 	set_xen_guest_handle(mcf->data, mci);
208 
209 	if ((err = HYPERVISOR_mca(XEN_MC_fetch, &xmc)) != 0) {
210 		gcpu_xpv_mca_hcall_fails[err < 16 ? err : 0]++;
211 		return (0);
212 	}
213 
214 	if (mcf->flags == XEN_MC_OK) {
215 		*idp = mcf->fetch_id;
216 		return (1);
217 	} else {
218 		*idp = 0;
219 		return (0);
220 	}
221 }
222 
223 void
224 gcpu_xpv_telem_ack(int type, uint64_t fetch_id)
225 {
226 	xen_mc_t xmc;
227 	struct xen_mc_fetch *mcf = &xmc.u.mc_fetch;
228 
229 	mcf->flags = type | XEN_MC_ACK;
230 	mcf->fetch_id = fetch_id;
231 	(void) HYPERVISOR_mca(XEN_MC_fetch, &xmc);
232 }
233 
234 static void
235 mctelem_traverse(void *head, enum mctelem_direction direction,
236     boolean_t urgent)
237 {
238 	char *tep = head, **ntepp;
239 	int noff = (direction == MCTELEM_FORWARD) ?
240 	    xpv_mca_panic_data->mpd_fwdptr_offset :
241 	    xpv_mca_panic_data->mpd_revptr_offset;
242 
243 
244 	while (tep != NULL) {
245 		struct mc_info **mcip = (struct mc_info **)
246 		    (tep + xpv_mca_panic_data->mpd_dataptr_offset);
247 
248 		gcpu_xpv_mci_process(*mcip,
249 		    urgent ? XEN_MC_URGENT : XEN_MC_NONURGENT,
250 		    gcpu_xpv_bankregs, gcpu_xpv_bankregs_sz);
251 
252 		ntepp = (char **)(tep + noff);
253 		tep = *ntepp;
254 	}
255 }
256 
257 /*
258  * Callback made from panicsys.  We may have reached panicsys from a
259  * Solaris-initiated panic or a hypervisor-initiated panic;  for the
260  * latter we may not perform any hypercalls.  Our task is to retrieve
261  * unprocessed MCA telemetry from the hypervisor and shovel it into
262  * errorqs for later processing during panic.
263  */
264 void
265 gcpu_xpv_panic_callback(void)
266 {
267 	if (IN_XPV_PANIC()) {
268 		xpv_mca_panic_data_t *ti = xpv_mca_panic_data;
269 
270 		if (ti == NULL ||
271 		    ti->mpd_magic != MCA_PANICDATA_MAGIC ||
272 		    ti->mpd_version != MCA_PANICDATA_VERS)
273 			return;
274 
275 		mctelem_traverse(ti->mpd_urgent_processing, MCTELEM_FORWARD,
276 		    B_TRUE);
277 		mctelem_traverse(ti->mpd_urgent_dangling, MCTELEM_REVERSE,
278 		    B_TRUE);
279 		mctelem_traverse(ti->mpd_urgent_committed, MCTELEM_REVERSE,
280 		    B_TRUE);
281 
282 		mctelem_traverse(ti->mpd_nonurgent_processing, MCTELEM_FORWARD,
283 		    B_FALSE);
284 		mctelem_traverse(ti->mpd_nonurgent_dangling, MCTELEM_REVERSE,
285 		    B_FALSE);
286 		mctelem_traverse(ti->mpd_nonurgent_committed, MCTELEM_REVERSE,
287 		    B_FALSE);
288 	} else {
289 		int types[] = { XEN_MC_URGENT, XEN_MC_NONURGENT };
290 		uint64_t fetch_id;
291 		int i;
292 
293 		for (i = 0; i < sizeof (types) / sizeof (types[0]); i++) {
294 			while (gcpu_xpv_telem_read(&gcpu_mce_data,
295 			    types[i], &fetch_id)) {
296 				gcpu_xpv_mci_process(&gcpu_mce_data, types[i],
297 				    gcpu_xpv_bankregs, gcpu_xpv_bankregs_sz);
298 				gcpu_xpv_telem_ack(types[i], fetch_id);
299 			}
300 		}
301 	}
302 }
303