xref: /illumos-gate/usr/src/uts/i86pc/os/cmi_hw.c (revision b6805bf78d2bbbeeaea8909a05623587b42d58b3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  */
29 
30 /*
31  * CPU Module Interface - hardware abstraction.
32  */
33 
34 #ifdef __xpv
35 #include <sys/xpv_user.h>
36 #endif
37 
38 #include <sys/types.h>
39 #include <sys/cpu_module.h>
40 #include <sys/kmem.h>
41 #include <sys/x86_archext.h>
42 #include <sys/cpuvar.h>
43 #include <sys/ksynch.h>
44 #include <sys/x_call.h>
45 #include <sys/pghw.h>
46 #include <sys/pci_cfgacc.h>
47 #include <sys/pci_cfgspace.h>
48 #include <sys/archsystm.h>
49 #include <sys/ontrap.h>
50 #include <sys/controlregs.h>
51 #include <sys/sunddi.h>
52 #include <sys/trap.h>
53 #include <sys/mca_x86.h>
54 #include <sys/processor.h>
55 #include <sys/cmn_err.h>
56 #include <sys/nvpair.h>
57 #include <sys/fm/util.h>
58 #include <sys/fm/protocol.h>
59 #include <sys/fm/smb/fmsmb.h>
60 #include <sys/cpu_module_impl.h>
61 
62 /*
63  * Variable which determines if the SMBIOS supports x86 generic topology; or
64  * if legacy topolgy enumeration will occur.
65  */
66 extern int x86gentopo_legacy;
67 
68 /*
69  * Outside of this file consumers use the opaque cmi_hdl_t.  This
70  * definition is duplicated in the generic_cpu mdb module, so keep
71  * them in-sync when making changes.
72  */
73 typedef struct cmi_hdl_impl {
74 	enum cmi_hdl_class cmih_class;		/* Handle nature */
75 	const struct cmi_hdl_ops *cmih_ops;	/* Operations vector */
76 	uint_t cmih_chipid;			/* Chipid of cpu resource */
77 	uint_t cmih_procnodeid;			/* Nodeid of cpu resource */
78 	uint_t cmih_coreid;			/* Core within die */
79 	uint_t cmih_strandid;			/* Thread within core */
80 	uint_t cmih_procnodes_per_pkg;		/* Nodes in a processor */
81 	boolean_t cmih_mstrand;			/* cores are multithreaded */
82 	volatile uint32_t *cmih_refcntp;	/* Reference count pointer */
83 	uint64_t cmih_msrsrc;			/* MSR data source flags */
84 	void *cmih_hdlpriv;			/* cmi_hw.c private data */
85 	void *cmih_spec;			/* cmi_hdl_{set,get}_specific */
86 	void *cmih_cmi;				/* cpu mod control structure */
87 	void *cmih_cmidata;			/* cpu mod private data */
88 	const struct cmi_mc_ops *cmih_mcops;	/* Memory-controller ops */
89 	void *cmih_mcdata;			/* Memory-controller data */
90 	uint64_t cmih_flags;			/* See CMIH_F_* below */
91 	uint16_t cmih_smbiosid;			/* SMBIOS Type 4 struct ID */
92 	uint_t cmih_smb_chipid;			/* SMBIOS factored chipid */
93 	nvlist_t *cmih_smb_bboard;		/* SMBIOS bboard nvlist */
94 } cmi_hdl_impl_t;
95 
96 #define	IMPLHDL(ophdl)	((cmi_hdl_impl_t *)ophdl)
97 #define	HDLOPS(hdl)	((hdl)->cmih_ops)
98 
99 #define	CMIH_F_INJACTV		0x1ULL
100 #define	CMIH_F_DEAD		0x2ULL
101 
102 /*
103  * Ops structure for handle operations.
104  */
105 struct cmi_hdl_ops {
106 	/*
107 	 * These ops are required in an implementation.
108 	 */
109 	uint_t (*cmio_vendor)(cmi_hdl_impl_t *);
110 	const char *(*cmio_vendorstr)(cmi_hdl_impl_t *);
111 	uint_t (*cmio_family)(cmi_hdl_impl_t *);
112 	uint_t (*cmio_model)(cmi_hdl_impl_t *);
113 	uint_t (*cmio_stepping)(cmi_hdl_impl_t *);
114 	uint_t (*cmio_chipid)(cmi_hdl_impl_t *);
115 	uint_t (*cmio_procnodeid)(cmi_hdl_impl_t *);
116 	uint_t (*cmio_coreid)(cmi_hdl_impl_t *);
117 	uint_t (*cmio_strandid)(cmi_hdl_impl_t *);
118 	uint_t (*cmio_procnodes_per_pkg)(cmi_hdl_impl_t *);
119 	uint_t (*cmio_strand_apicid)(cmi_hdl_impl_t *);
120 	uint32_t (*cmio_chiprev)(cmi_hdl_impl_t *);
121 	const char *(*cmio_chiprevstr)(cmi_hdl_impl_t *);
122 	uint32_t (*cmio_getsockettype)(cmi_hdl_impl_t *);
123 	const char *(*cmio_getsocketstr)(cmi_hdl_impl_t *);
124 
125 	id_t (*cmio_logical_id)(cmi_hdl_impl_t *);
126 	/*
127 	 * These ops are optional in an implementation.
128 	 */
129 	ulong_t (*cmio_getcr4)(cmi_hdl_impl_t *);
130 	void (*cmio_setcr4)(cmi_hdl_impl_t *, ulong_t);
131 	cmi_errno_t (*cmio_rdmsr)(cmi_hdl_impl_t *, uint_t, uint64_t *);
132 	cmi_errno_t (*cmio_wrmsr)(cmi_hdl_impl_t *, uint_t, uint64_t);
133 	cmi_errno_t (*cmio_msrinterpose)(cmi_hdl_impl_t *, uint_t, uint64_t);
134 	void (*cmio_int)(cmi_hdl_impl_t *, int);
135 	int (*cmio_online)(cmi_hdl_impl_t *, int, int *);
136 	uint16_t (*cmio_smbiosid) (cmi_hdl_impl_t *);
137 	uint_t (*cmio_smb_chipid)(cmi_hdl_impl_t *);
138 	nvlist_t *(*cmio_smb_bboard)(cmi_hdl_impl_t *);
139 };
140 
141 static const struct cmi_hdl_ops cmi_hdl_ops;
142 
143 /*
144  * Handles are looked up from contexts such as polling, injection etc
145  * where the context is reasonably well defined (although a poller could
146  * interrupt any old thread holding any old lock).  They are also looked
147  * up by machine check handlers, which may strike at inconvenient times
148  * such as during handle initialization or destruction or during handle
149  * lookup (which the #MC handler itself will also have to perform).
150  *
151  * So keeping handles in a linked list makes locking difficult when we
152  * consider #MC handlers.  Our solution is to have a look-up table indexed
153  * by that which uniquely identifies a handle - chip/core/strand id -
154  * with each entry a structure including a pointer to a handle
155  * structure for the resource, and a reference count for the handle.
156  * Reference counts are modified atomically.  The public cmi_hdl_hold
157  * always succeeds because this can only be used after handle creation
158  * and before the call to destruct, so the hold count is already at least one.
159  * In other functions that lookup a handle (cmi_hdl_lookup, cmi_hdl_any)
160  * we must be certain that the count has not already decrmented to zero
161  * before applying our hold.
162  *
163  * The table is an array of maximum number of chips defined in
164  * CMI_CHIPID_ARR_SZ indexed by the chip id. If the chip is not present, the
165  * entry is NULL. Each entry is a pointer to another array which contains a
166  * list of all strands of the chip. This first level table is allocated when
167  * first we want to populate an entry. The size of the latter (per chip) table
168  * is CMI_MAX_STRANDS_PER_CHIP and it is populated when one of its cpus starts.
169  *
170  * Ideally we should only allocate to the actual number of chips, cores per
171  * chip and strand per core. The number of chips is not available until all
172  * of them are passed. The number of cores and strands are partially available.
173  * For now we stick with the above approach.
174  */
175 #define	CMI_MAX_CHIPID_NBITS		6	/* max chipid of 63 */
176 #define	CMI_MAX_CORES_PER_CHIP_NBITS	4	/* 16 cores per chip max */
177 #define	CMI_MAX_STRANDS_PER_CORE_NBITS	3	/* 8 strands per core max */
178 
179 #define	CMI_MAX_CHIPID			((1 << (CMI_MAX_CHIPID_NBITS)) - 1)
180 #define	CMI_MAX_CORES_PER_CHIP(cbits)	(1 << (cbits))
181 #define	CMI_MAX_COREID(cbits)		((1 << (cbits)) - 1)
182 #define	CMI_MAX_STRANDS_PER_CORE(sbits)	(1 << (sbits))
183 #define	CMI_MAX_STRANDID(sbits)		((1 << (sbits)) - 1)
184 #define	CMI_MAX_STRANDS_PER_CHIP(cbits, sbits)	\
185 	(CMI_MAX_CORES_PER_CHIP(cbits) * CMI_MAX_STRANDS_PER_CORE(sbits))
186 
187 #define	CMI_CHIPID_ARR_SZ		(1 << CMI_MAX_CHIPID_NBITS)
188 
189 typedef struct cmi_hdl_ent {
190 	volatile uint32_t cmae_refcnt;
191 	cmi_hdl_impl_t *cmae_hdlp;
192 } cmi_hdl_ent_t;
193 
194 static cmi_hdl_ent_t *cmi_chip_tab[CMI_CHIPID_ARR_SZ];
195 
196 /*
197  * Default values for the number of core and strand bits.
198  */
199 uint_t cmi_core_nbits = CMI_MAX_CORES_PER_CHIP_NBITS;
200 uint_t cmi_strand_nbits = CMI_MAX_STRANDS_PER_CORE_NBITS;
201 static int cmi_ext_topo_check = 0;
202 
203 /*
204  * Controls where we will source PCI config space data.
205  */
206 #define	CMI_PCICFG_FLAG_RD_HWOK		0x0001
207 #define	CMI_PCICFG_FLAG_RD_INTERPOSEOK	0X0002
208 #define	CMI_PCICFG_FLAG_WR_HWOK		0x0004
209 #define	CMI_PCICFG_FLAG_WR_INTERPOSEOK	0X0008
210 
211 static uint64_t cmi_pcicfg_flags =
212     CMI_PCICFG_FLAG_RD_HWOK | CMI_PCICFG_FLAG_RD_INTERPOSEOK |
213     CMI_PCICFG_FLAG_WR_HWOK | CMI_PCICFG_FLAG_WR_INTERPOSEOK;
214 
215 /*
216  * The flags for individual cpus are kept in their per-cpu handle cmih_msrsrc
217  */
218 #define	CMI_MSR_FLAG_RD_HWOK		0x0001
219 #define	CMI_MSR_FLAG_RD_INTERPOSEOK	0x0002
220 #define	CMI_MSR_FLAG_WR_HWOK		0x0004
221 #define	CMI_MSR_FLAG_WR_INTERPOSEOK	0x0008
222 
223 int cmi_call_func_ntv_tries = 3;
224 
225 static cmi_errno_t
226 call_func_ntv(int cpuid, xc_func_t func, xc_arg_t arg1, xc_arg_t arg2)
227 {
228 	cmi_errno_t rc = -1;
229 	int i;
230 
231 	kpreempt_disable();
232 
233 	if (CPU->cpu_id == cpuid) {
234 		(*func)(arg1, arg2, (xc_arg_t)&rc);
235 	} else {
236 		/*
237 		 * This should not happen for a #MC trap or a poll, so
238 		 * this is likely an error injection or similar.
239 		 * We will try to cross call with xc_trycall - we
240 		 * can't guarantee success with xc_call because
241 		 * the interrupt code in the case of a #MC may
242 		 * already hold the xc mutex.
243 		 */
244 		for (i = 0; i < cmi_call_func_ntv_tries; i++) {
245 			cpuset_t cpus;
246 
247 			CPUSET_ONLY(cpus, cpuid);
248 			xc_priority(arg1, arg2, (xc_arg_t)&rc,
249 			    CPUSET2BV(cpus), func);
250 			if (rc != -1)
251 				break;
252 
253 			DELAY(1);
254 		}
255 	}
256 
257 	kpreempt_enable();
258 
259 	return (rc != -1 ? rc : CMIERR_DEADLOCK);
260 }
261 
262 static uint64_t injcnt;
263 
264 void
265 cmi_hdl_inj_begin(cmi_hdl_t ophdl)
266 {
267 	cmi_hdl_impl_t *hdl = IMPLHDL(ophdl);
268 
269 	if (hdl != NULL)
270 		hdl->cmih_flags |= CMIH_F_INJACTV;
271 	if (injcnt++ == 0) {
272 		cmn_err(CE_NOTE, "Hardware error injection/simulation "
273 		    "activity noted");
274 	}
275 }
276 
277 void
278 cmi_hdl_inj_end(cmi_hdl_t ophdl)
279 {
280 	cmi_hdl_impl_t *hdl = IMPLHDL(ophdl);
281 
282 	ASSERT(hdl == NULL || hdl->cmih_flags & CMIH_F_INJACTV);
283 	if (hdl != NULL)
284 		hdl->cmih_flags &= ~CMIH_F_INJACTV;
285 }
286 
287 boolean_t
288 cmi_inj_tainted(void)
289 {
290 	return (injcnt != 0 ? B_TRUE : B_FALSE);
291 }
292 
293 /*
294  *	 =======================================================
295  *	|	MSR Interposition				|
296  *	|	-----------------				|
297  *	|							|
298  *	 -------------------------------------------------------
299  */
300 
301 #define	CMI_MSRI_HASHSZ		16
302 #define	CMI_MSRI_HASHIDX(hdl, msr) \
303 	(((uintptr_t)(hdl) >> 3 + (msr)) % (CMI_MSRI_HASHSZ - 1))
304 
305 struct cmi_msri_bkt {
306 	kmutex_t msrib_lock;
307 	struct cmi_msri_hashent *msrib_head;
308 };
309 
310 struct cmi_msri_hashent {
311 	struct cmi_msri_hashent *msrie_next;
312 	struct cmi_msri_hashent *msrie_prev;
313 	cmi_hdl_impl_t *msrie_hdl;
314 	uint_t msrie_msrnum;
315 	uint64_t msrie_msrval;
316 };
317 
318 #define	CMI_MSRI_MATCH(ent, hdl, req_msr) \
319 	((ent)->msrie_hdl == (hdl) && (ent)->msrie_msrnum == (req_msr))
320 
321 static struct cmi_msri_bkt msrihash[CMI_MSRI_HASHSZ];
322 
323 static void
324 msri_addent(cmi_hdl_impl_t *hdl, uint_t msr, uint64_t val)
325 {
326 	int idx = CMI_MSRI_HASHIDX(hdl, msr);
327 	struct cmi_msri_bkt *hbp = &msrihash[idx];
328 	struct cmi_msri_hashent *hep;
329 
330 	mutex_enter(&hbp->msrib_lock);
331 
332 	for (hep = hbp->msrib_head; hep != NULL; hep = hep->msrie_next) {
333 		if (CMI_MSRI_MATCH(hep, hdl, msr))
334 			break;
335 	}
336 
337 	if (hep != NULL) {
338 		hep->msrie_msrval = val;
339 	} else {
340 		hep = kmem_alloc(sizeof (*hep), KM_SLEEP);
341 		hep->msrie_hdl = hdl;
342 		hep->msrie_msrnum = msr;
343 		hep->msrie_msrval = val;
344 
345 		if (hbp->msrib_head != NULL)
346 			hbp->msrib_head->msrie_prev = hep;
347 		hep->msrie_next = hbp->msrib_head;
348 		hep->msrie_prev = NULL;
349 		hbp->msrib_head = hep;
350 	}
351 
352 	mutex_exit(&hbp->msrib_lock);
353 }
354 
355 /*
356  * Look for a match for the given hanlde and msr.  Return 1 with valp
357  * filled if a match is found, otherwise return 0 with valp untouched.
358  */
359 static int
360 msri_lookup(cmi_hdl_impl_t *hdl, uint_t msr, uint64_t *valp)
361 {
362 	int idx = CMI_MSRI_HASHIDX(hdl, msr);
363 	struct cmi_msri_bkt *hbp = &msrihash[idx];
364 	struct cmi_msri_hashent *hep;
365 
366 	/*
367 	 * This function is called during #MC trap handling, so we should
368 	 * consider the possibility that the hash mutex is held by the
369 	 * interrupted thread.  This should not happen because interposition
370 	 * is an artificial injection mechanism and the #MC is requested
371 	 * after adding entries, but just in case of a real #MC at an
372 	 * unlucky moment we'll use mutex_tryenter here.
373 	 */
374 	if (!mutex_tryenter(&hbp->msrib_lock))
375 		return (0);
376 
377 	for (hep = hbp->msrib_head; hep != NULL; hep = hep->msrie_next) {
378 		if (CMI_MSRI_MATCH(hep, hdl, msr)) {
379 			*valp = hep->msrie_msrval;
380 			break;
381 		}
382 	}
383 
384 	mutex_exit(&hbp->msrib_lock);
385 
386 	return (hep != NULL);
387 }
388 
389 /*
390  * Remove any interposed value that matches.
391  */
392 static void
393 msri_rment(cmi_hdl_impl_t *hdl, uint_t msr)
394 {
395 
396 	int idx = CMI_MSRI_HASHIDX(hdl, msr);
397 	struct cmi_msri_bkt *hbp = &msrihash[idx];
398 	struct cmi_msri_hashent *hep;
399 
400 	if (!mutex_tryenter(&hbp->msrib_lock))
401 		return;
402 
403 	for (hep = hbp->msrib_head; hep != NULL; hep = hep->msrie_next) {
404 		if (CMI_MSRI_MATCH(hep, hdl, msr)) {
405 			if (hep->msrie_prev != NULL)
406 				hep->msrie_prev->msrie_next = hep->msrie_next;
407 
408 			if (hep->msrie_next != NULL)
409 				hep->msrie_next->msrie_prev = hep->msrie_prev;
410 
411 			if (hbp->msrib_head == hep)
412 				hbp->msrib_head = hep->msrie_next;
413 
414 			kmem_free(hep, sizeof (*hep));
415 			break;
416 		}
417 	}
418 
419 	mutex_exit(&hbp->msrib_lock);
420 }
421 
422 /*
423  *	 =======================================================
424  *	|	PCI Config Space Interposition			|
425  *	|	------------------------------			|
426  *	|							|
427  *	 -------------------------------------------------------
428  */
429 
430 /*
431  * Hash for interposed PCI config space values.  We lookup on bus/dev/fun/offset
432  * and then record whether the value stashed was made with a byte, word or
433  * doubleword access;  we will only return a hit for an access of the
434  * same size.  If you access say a 32-bit register using byte accesses
435  * and then attempt to read the full 32-bit value back you will not obtain
436  * any sort of merged result - you get a lookup miss.
437  */
438 
439 #define	CMI_PCII_HASHSZ		16
440 #define	CMI_PCII_HASHIDX(b, d, f, o) \
441 	(((b) + (d) + (f) + (o)) % (CMI_PCII_HASHSZ - 1))
442 
443 struct cmi_pcii_bkt {
444 	kmutex_t pciib_lock;
445 	struct cmi_pcii_hashent *pciib_head;
446 };
447 
448 struct cmi_pcii_hashent {
449 	struct cmi_pcii_hashent *pcii_next;
450 	struct cmi_pcii_hashent *pcii_prev;
451 	int pcii_bus;
452 	int pcii_dev;
453 	int pcii_func;
454 	int pcii_reg;
455 	int pcii_asize;
456 	uint32_t pcii_val;
457 };
458 
459 #define	CMI_PCII_MATCH(ent, b, d, f, r, asz) \
460 	((ent)->pcii_bus == (b) && (ent)->pcii_dev == (d) && \
461 	(ent)->pcii_func == (f) && (ent)->pcii_reg == (r) && \
462 	(ent)->pcii_asize == (asz))
463 
464 static struct cmi_pcii_bkt pciihash[CMI_PCII_HASHSZ];
465 
466 
467 /*
468  * Add a new entry to the PCI interpose hash, overwriting any existing
469  * entry that is found.
470  */
471 static void
472 pcii_addent(int bus, int dev, int func, int reg, uint32_t val, int asz)
473 {
474 	int idx = CMI_PCII_HASHIDX(bus, dev, func, reg);
475 	struct cmi_pcii_bkt *hbp = &pciihash[idx];
476 	struct cmi_pcii_hashent *hep;
477 
478 	cmi_hdl_inj_begin(NULL);
479 
480 	mutex_enter(&hbp->pciib_lock);
481 
482 	for (hep = hbp->pciib_head; hep != NULL; hep = hep->pcii_next) {
483 		if (CMI_PCII_MATCH(hep, bus, dev, func, reg, asz))
484 			break;
485 	}
486 
487 	if (hep != NULL) {
488 		hep->pcii_val = val;
489 	} else {
490 		hep = kmem_alloc(sizeof (*hep), KM_SLEEP);
491 		hep->pcii_bus = bus;
492 		hep->pcii_dev = dev;
493 		hep->pcii_func = func;
494 		hep->pcii_reg = reg;
495 		hep->pcii_asize = asz;
496 		hep->pcii_val = val;
497 
498 		if (hbp->pciib_head != NULL)
499 			hbp->pciib_head->pcii_prev = hep;
500 		hep->pcii_next = hbp->pciib_head;
501 		hep->pcii_prev = NULL;
502 		hbp->pciib_head = hep;
503 	}
504 
505 	mutex_exit(&hbp->pciib_lock);
506 
507 	cmi_hdl_inj_end(NULL);
508 }
509 
510 /*
511  * Look for a match for the given bus/dev/func/reg; return 1 with valp
512  * filled if a match is found, otherwise return 0 with valp untouched.
513  */
514 static int
515 pcii_lookup(int bus, int dev, int func, int reg, int asz, uint32_t *valp)
516 {
517 	int idx = CMI_PCII_HASHIDX(bus, dev, func, reg);
518 	struct cmi_pcii_bkt *hbp = &pciihash[idx];
519 	struct cmi_pcii_hashent *hep;
520 
521 	if (!mutex_tryenter(&hbp->pciib_lock))
522 		return (0);
523 
524 	for (hep = hbp->pciib_head; hep != NULL; hep = hep->pcii_next) {
525 		if (CMI_PCII_MATCH(hep, bus, dev, func, reg, asz)) {
526 			*valp = hep->pcii_val;
527 			break;
528 		}
529 	}
530 
531 	mutex_exit(&hbp->pciib_lock);
532 
533 	return (hep != NULL);
534 }
535 
536 static void
537 pcii_rment(int bus, int dev, int func, int reg, int asz)
538 {
539 	int idx = CMI_PCII_HASHIDX(bus, dev, func, reg);
540 	struct cmi_pcii_bkt *hbp = &pciihash[idx];
541 	struct cmi_pcii_hashent *hep;
542 
543 	mutex_enter(&hbp->pciib_lock);
544 
545 	for (hep = hbp->pciib_head; hep != NULL; hep = hep->pcii_next) {
546 		if (CMI_PCII_MATCH(hep, bus, dev, func, reg, asz)) {
547 			if (hep->pcii_prev != NULL)
548 				hep->pcii_prev->pcii_next = hep->pcii_next;
549 
550 			if (hep->pcii_next != NULL)
551 				hep->pcii_next->pcii_prev = hep->pcii_prev;
552 
553 			if (hbp->pciib_head == hep)
554 				hbp->pciib_head = hep->pcii_next;
555 
556 			kmem_free(hep, sizeof (*hep));
557 			break;
558 		}
559 	}
560 
561 	mutex_exit(&hbp->pciib_lock);
562 }
563 
564 #ifndef __xpv
565 
566 /*
567  *	 =======================================================
568  *	|	Native methods					|
569  *	|	--------------					|
570  *	|							|
571  *	| These are used when we are running native on bare-	|
572  *	| metal, or simply don't know any better.		|
573  *	---------------------------------------------------------
574  */
575 
576 #define	HDLPRIV(hdl)	((cpu_t *)(hdl)->cmih_hdlpriv)
577 
578 static uint_t
579 ntv_vendor(cmi_hdl_impl_t *hdl)
580 {
581 	return (cpuid_getvendor(HDLPRIV(hdl)));
582 }
583 
584 static const char *
585 ntv_vendorstr(cmi_hdl_impl_t *hdl)
586 {
587 	return (cpuid_getvendorstr(HDLPRIV(hdl)));
588 }
589 
590 static uint_t
591 ntv_family(cmi_hdl_impl_t *hdl)
592 {
593 	return (cpuid_getfamily(HDLPRIV(hdl)));
594 }
595 
596 static uint_t
597 ntv_model(cmi_hdl_impl_t *hdl)
598 {
599 	return (cpuid_getmodel(HDLPRIV(hdl)));
600 }
601 
602 static uint_t
603 ntv_stepping(cmi_hdl_impl_t *hdl)
604 {
605 	return (cpuid_getstep(HDLPRIV(hdl)));
606 }
607 
608 static uint_t
609 ntv_chipid(cmi_hdl_impl_t *hdl)
610 {
611 	return (hdl->cmih_chipid);
612 
613 }
614 
615 static uint_t
616 ntv_procnodeid(cmi_hdl_impl_t *hdl)
617 {
618 	return (hdl->cmih_procnodeid);
619 }
620 
621 static uint_t
622 ntv_procnodes_per_pkg(cmi_hdl_impl_t *hdl)
623 {
624 	return (hdl->cmih_procnodes_per_pkg);
625 }
626 
627 static uint_t
628 ntv_coreid(cmi_hdl_impl_t *hdl)
629 {
630 	return (hdl->cmih_coreid);
631 }
632 
633 static uint_t
634 ntv_strandid(cmi_hdl_impl_t *hdl)
635 {
636 	return (hdl->cmih_strandid);
637 }
638 
639 static uint_t
640 ntv_strand_apicid(cmi_hdl_impl_t *hdl)
641 {
642 	return (cpuid_get_apicid(HDLPRIV(hdl)));
643 }
644 
645 static uint16_t
646 ntv_smbiosid(cmi_hdl_impl_t *hdl)
647 {
648 	return (hdl->cmih_smbiosid);
649 }
650 
651 static uint_t
652 ntv_smb_chipid(cmi_hdl_impl_t *hdl)
653 {
654 	return (hdl->cmih_smb_chipid);
655 }
656 
657 static nvlist_t *
658 ntv_smb_bboard(cmi_hdl_impl_t *hdl)
659 {
660 	return (hdl->cmih_smb_bboard);
661 }
662 
663 static uint32_t
664 ntv_chiprev(cmi_hdl_impl_t *hdl)
665 {
666 	return (cpuid_getchiprev(HDLPRIV(hdl)));
667 }
668 
669 static const char *
670 ntv_chiprevstr(cmi_hdl_impl_t *hdl)
671 {
672 	return (cpuid_getchiprevstr(HDLPRIV(hdl)));
673 }
674 
675 static uint32_t
676 ntv_getsockettype(cmi_hdl_impl_t *hdl)
677 {
678 	return (cpuid_getsockettype(HDLPRIV(hdl)));
679 }
680 
681 static const char *
682 ntv_getsocketstr(cmi_hdl_impl_t *hdl)
683 {
684 	return (cpuid_getsocketstr(HDLPRIV(hdl)));
685 }
686 
687 static id_t
688 ntv_logical_id(cmi_hdl_impl_t *hdl)
689 {
690 	return (HDLPRIV(hdl)->cpu_id);
691 }
692 
693 /*ARGSUSED*/
694 static int
695 ntv_getcr4_xc(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3)
696 {
697 	ulong_t *dest = (ulong_t *)arg1;
698 	cmi_errno_t *rcp = (cmi_errno_t *)arg3;
699 
700 	*dest = getcr4();
701 	*rcp = CMI_SUCCESS;
702 
703 	return (0);
704 }
705 
706 static ulong_t
707 ntv_getcr4(cmi_hdl_impl_t *hdl)
708 {
709 	cpu_t *cp = HDLPRIV(hdl);
710 	ulong_t val;
711 
712 	(void) call_func_ntv(cp->cpu_id, ntv_getcr4_xc, (xc_arg_t)&val, NULL);
713 
714 	return (val);
715 }
716 
717 /*ARGSUSED*/
718 static int
719 ntv_setcr4_xc(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3)
720 {
721 	ulong_t val = (ulong_t)arg1;
722 	cmi_errno_t *rcp = (cmi_errno_t *)arg3;
723 
724 	setcr4(val);
725 	*rcp = CMI_SUCCESS;
726 
727 	return (0);
728 }
729 
730 static void
731 ntv_setcr4(cmi_hdl_impl_t *hdl, ulong_t val)
732 {
733 	cpu_t *cp = HDLPRIV(hdl);
734 
735 	(void) call_func_ntv(cp->cpu_id, ntv_setcr4_xc, (xc_arg_t)val, NULL);
736 }
737 
738 volatile uint32_t cmi_trapped_rdmsr;
739 
740 /*ARGSUSED*/
741 static int
742 ntv_rdmsr_xc(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3)
743 {
744 	uint_t msr = (uint_t)arg1;
745 	uint64_t *valp = (uint64_t *)arg2;
746 	cmi_errno_t *rcp = (cmi_errno_t *)arg3;
747 
748 	on_trap_data_t otd;
749 
750 	if (on_trap(&otd, OT_DATA_ACCESS) == 0) {
751 		if (checked_rdmsr(msr, valp) == 0)
752 			*rcp = CMI_SUCCESS;
753 		else
754 			*rcp = CMIERR_NOTSUP;
755 	} else {
756 		*rcp = CMIERR_MSRGPF;
757 		atomic_inc_32(&cmi_trapped_rdmsr);
758 	}
759 	no_trap();
760 
761 	return (0);
762 }
763 
764 static cmi_errno_t
765 ntv_rdmsr(cmi_hdl_impl_t *hdl, uint_t msr, uint64_t *valp)
766 {
767 	cpu_t *cp = HDLPRIV(hdl);
768 
769 	if (!(hdl->cmih_msrsrc & CMI_MSR_FLAG_RD_HWOK))
770 		return (CMIERR_INTERPOSE);
771 
772 	return (call_func_ntv(cp->cpu_id, ntv_rdmsr_xc,
773 	    (xc_arg_t)msr, (xc_arg_t)valp));
774 }
775 
776 volatile uint32_t cmi_trapped_wrmsr;
777 
778 /*ARGSUSED*/
779 static int
780 ntv_wrmsr_xc(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3)
781 {
782 	uint_t msr = (uint_t)arg1;
783 	uint64_t val = *((uint64_t *)arg2);
784 	cmi_errno_t *rcp = (cmi_errno_t *)arg3;
785 	on_trap_data_t otd;
786 
787 	if (on_trap(&otd, OT_DATA_ACCESS) == 0) {
788 		if (checked_wrmsr(msr, val) == 0)
789 			*rcp = CMI_SUCCESS;
790 		else
791 			*rcp = CMIERR_NOTSUP;
792 	} else {
793 		*rcp = CMIERR_MSRGPF;
794 		atomic_inc_32(&cmi_trapped_wrmsr);
795 	}
796 	no_trap();
797 
798 	return (0);
799 
800 }
801 
802 static cmi_errno_t
803 ntv_wrmsr(cmi_hdl_impl_t *hdl, uint_t msr, uint64_t val)
804 {
805 	cpu_t *cp = HDLPRIV(hdl);
806 
807 	if (!(hdl->cmih_msrsrc & CMI_MSR_FLAG_WR_HWOK))
808 		return (CMI_SUCCESS);
809 
810 	return (call_func_ntv(cp->cpu_id, ntv_wrmsr_xc,
811 	    (xc_arg_t)msr, (xc_arg_t)&val));
812 }
813 
814 static cmi_errno_t
815 ntv_msrinterpose(cmi_hdl_impl_t *hdl, uint_t msr, uint64_t val)
816 {
817 	msri_addent(hdl, msr, val);
818 	return (CMI_SUCCESS);
819 }
820 
821 /*ARGSUSED*/
822 static int
823 ntv_int_xc(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3)
824 {
825 	cmi_errno_t *rcp = (cmi_errno_t *)arg3;
826 	int int_no = (int)arg1;
827 
828 	if (int_no == T_MCE)
829 		int18();
830 	else
831 		int_cmci();
832 	*rcp = CMI_SUCCESS;
833 
834 	return (0);
835 }
836 
837 static void
838 ntv_int(cmi_hdl_impl_t *hdl, int int_no)
839 {
840 	cpu_t *cp = HDLPRIV(hdl);
841 
842 	(void) call_func_ntv(cp->cpu_id, ntv_int_xc, (xc_arg_t)int_no, NULL);
843 }
844 
845 static int
846 ntv_online(cmi_hdl_impl_t *hdl, int new_status, int *old_status)
847 {
848 	int rc;
849 	processorid_t cpuid = HDLPRIV(hdl)->cpu_id;
850 
851 	while (mutex_tryenter(&cpu_lock) == 0) {
852 		if (hdl->cmih_flags & CMIH_F_DEAD)
853 			return (EBUSY);
854 		delay(1);
855 	}
856 	rc = p_online_internal_locked(cpuid, new_status, old_status);
857 	mutex_exit(&cpu_lock);
858 
859 	return (rc);
860 }
861 
862 #else	/* __xpv */
863 
864 /*
865  *	 =======================================================
866  *	|	xVM dom0 methods				|
867  *	|	----------------				|
868  *	|							|
869  *	| These are used when we are running as dom0 in		|
870  *	| a Solaris xVM context.				|
871  *	---------------------------------------------------------
872  */
873 
874 #define	HDLPRIV(hdl)	((xen_mc_lcpu_cookie_t)(hdl)->cmih_hdlpriv)
875 
876 extern uint_t _cpuid_vendorstr_to_vendorcode(char *);
877 
878 
879 static uint_t
880 xpv_vendor(cmi_hdl_impl_t *hdl)
881 {
882 	return (_cpuid_vendorstr_to_vendorcode((char *)xen_physcpu_vendorstr(
883 	    HDLPRIV(hdl))));
884 }
885 
886 static const char *
887 xpv_vendorstr(cmi_hdl_impl_t *hdl)
888 {
889 	return (xen_physcpu_vendorstr(HDLPRIV(hdl)));
890 }
891 
892 static uint_t
893 xpv_family(cmi_hdl_impl_t *hdl)
894 {
895 	return (xen_physcpu_family(HDLPRIV(hdl)));
896 }
897 
898 static uint_t
899 xpv_model(cmi_hdl_impl_t *hdl)
900 {
901 	return (xen_physcpu_model(HDLPRIV(hdl)));
902 }
903 
904 static uint_t
905 xpv_stepping(cmi_hdl_impl_t *hdl)
906 {
907 	return (xen_physcpu_stepping(HDLPRIV(hdl)));
908 }
909 
910 static uint_t
911 xpv_chipid(cmi_hdl_impl_t *hdl)
912 {
913 	return (hdl->cmih_chipid);
914 }
915 
916 static uint_t
917 xpv_procnodeid(cmi_hdl_impl_t *hdl)
918 {
919 	return (hdl->cmih_procnodeid);
920 }
921 
922 static uint_t
923 xpv_procnodes_per_pkg(cmi_hdl_impl_t *hdl)
924 {
925 	return (hdl->cmih_procnodes_per_pkg);
926 }
927 
928 static uint_t
929 xpv_coreid(cmi_hdl_impl_t *hdl)
930 {
931 	return (hdl->cmih_coreid);
932 }
933 
934 static uint_t
935 xpv_strandid(cmi_hdl_impl_t *hdl)
936 {
937 	return (hdl->cmih_strandid);
938 }
939 
940 static uint_t
941 xpv_strand_apicid(cmi_hdl_impl_t *hdl)
942 {
943 	return (xen_physcpu_initial_apicid(HDLPRIV(hdl)));
944 }
945 
946 static uint16_t
947 xpv_smbiosid(cmi_hdl_impl_t *hdl)
948 {
949 	return (hdl->cmih_smbiosid);
950 }
951 
952 static uint_t
953 xpv_smb_chipid(cmi_hdl_impl_t *hdl)
954 {
955 	return (hdl->cmih_smb_chipid);
956 }
957 
958 static nvlist_t *
959 xpv_smb_bboard(cmi_hdl_impl_t *hdl)
960 {
961 	return (hdl->cmih_smb_bboard);
962 }
963 
964 extern uint32_t _cpuid_chiprev(uint_t, uint_t, uint_t, uint_t);
965 
966 static uint32_t
967 xpv_chiprev(cmi_hdl_impl_t *hdl)
968 {
969 	return (_cpuid_chiprev(xpv_vendor(hdl), xpv_family(hdl),
970 	    xpv_model(hdl), xpv_stepping(hdl)));
971 }
972 
973 extern const char *_cpuid_chiprevstr(uint_t, uint_t, uint_t, uint_t);
974 
975 static const char *
976 xpv_chiprevstr(cmi_hdl_impl_t *hdl)
977 {
978 	return (_cpuid_chiprevstr(xpv_vendor(hdl), xpv_family(hdl),
979 	    xpv_model(hdl), xpv_stepping(hdl)));
980 }
981 
982 extern uint32_t _cpuid_skt(uint_t, uint_t, uint_t, uint_t);
983 
984 static uint32_t
985 xpv_getsockettype(cmi_hdl_impl_t *hdl)
986 {
987 	return (_cpuid_skt(xpv_vendor(hdl), xpv_family(hdl),
988 	    xpv_model(hdl), xpv_stepping(hdl)));
989 }
990 
991 extern const char *_cpuid_sktstr(uint_t, uint_t, uint_t, uint_t);
992 
993 static const char *
994 xpv_getsocketstr(cmi_hdl_impl_t *hdl)
995 {
996 	return (_cpuid_sktstr(xpv_vendor(hdl), xpv_family(hdl),
997 	    xpv_model(hdl), xpv_stepping(hdl)));
998 }
999 
1000 static id_t
1001 xpv_logical_id(cmi_hdl_impl_t *hdl)
1002 {
1003 	return (xen_physcpu_logical_id(HDLPRIV(hdl)));
1004 }
1005 
1006 static cmi_errno_t
1007 xpv_rdmsr(cmi_hdl_impl_t *hdl, uint_t msr, uint64_t *valp)
1008 {
1009 	switch (msr) {
1010 	case IA32_MSR_MCG_CAP:
1011 		*valp = xen_physcpu_mcg_cap(HDLPRIV(hdl));
1012 		break;
1013 
1014 	default:
1015 		return (CMIERR_NOTSUP);
1016 	}
1017 
1018 	return (CMI_SUCCESS);
1019 }
1020 
1021 /*
1022  * Request the hypervisor to write an MSR for us.  The hypervisor
1023  * will only accept MCA-related MSRs, as this is for MCA error
1024  * simulation purposes alone.  We will pre-screen MSRs for injection
1025  * so we don't bother the HV with bogus requests.  We will permit
1026  * injection to any MCA bank register, and to MCG_STATUS.
1027  */
1028 
1029 #define	IS_MCA_INJ_MSR(msr) \
1030 	(((msr) >= IA32_MSR_MC(0, CTL) && (msr) <= IA32_MSR_MC(10, MISC)) || \
1031 	(msr) == IA32_MSR_MCG_STATUS)
1032 
1033 static cmi_errno_t
1034 xpv_wrmsr_cmn(cmi_hdl_impl_t *hdl, uint_t msr, uint64_t val, boolean_t intpose)
1035 {
1036 	xen_mc_t xmc;
1037 	struct xen_mc_msrinject *mci = &xmc.u.mc_msrinject;
1038 
1039 	if (!(hdl->cmih_flags & CMIH_F_INJACTV))
1040 		return (CMIERR_NOTSUP);		/* for injection use only! */
1041 
1042 	if (!IS_MCA_INJ_MSR(msr))
1043 		return (CMIERR_API);
1044 
1045 	if (panicstr)
1046 		return (CMIERR_DEADLOCK);
1047 
1048 	mci->mcinj_cpunr = xen_physcpu_logical_id(HDLPRIV(hdl));
1049 	mci->mcinj_flags = intpose ? MC_MSRINJ_F_INTERPOSE : 0;
1050 	mci->mcinj_count = 1;	/* learn to batch sometime */
1051 	mci->mcinj_msr[0].reg = msr;
1052 	mci->mcinj_msr[0].value = val;
1053 
1054 	return (HYPERVISOR_mca(XEN_MC_msrinject, &xmc) ==
1055 	    0 ?  CMI_SUCCESS : CMIERR_NOTSUP);
1056 }
1057 
1058 static cmi_errno_t
1059 xpv_wrmsr(cmi_hdl_impl_t *hdl, uint_t msr, uint64_t val)
1060 {
1061 	return (xpv_wrmsr_cmn(hdl, msr, val, B_FALSE));
1062 }
1063 
1064 
1065 static cmi_errno_t
1066 xpv_msrinterpose(cmi_hdl_impl_t *hdl, uint_t msr, uint64_t val)
1067 {
1068 	return (xpv_wrmsr_cmn(hdl, msr, val, B_TRUE));
1069 }
1070 
1071 static void
1072 xpv_int(cmi_hdl_impl_t *hdl, int int_no)
1073 {
1074 	xen_mc_t xmc;
1075 	struct xen_mc_mceinject *mce = &xmc.u.mc_mceinject;
1076 
1077 	if (!(hdl->cmih_flags & CMIH_F_INJACTV))
1078 		return;
1079 
1080 	if (int_no != T_MCE) {
1081 		cmn_err(CE_WARN, "xpv_int: int_no %d unimplemented\n",
1082 		    int_no);
1083 	}
1084 
1085 	mce->mceinj_cpunr = xen_physcpu_logical_id(HDLPRIV(hdl));
1086 
1087 	(void) HYPERVISOR_mca(XEN_MC_mceinject, &xmc);
1088 }
1089 
1090 static int
1091 xpv_online(cmi_hdl_impl_t *hdl, int new_status, int *old_status)
1092 {
1093 	xen_sysctl_t xs;
1094 	int op, rc, status;
1095 
1096 	new_status &= ~P_FORCED;
1097 
1098 	switch (new_status) {
1099 	case P_STATUS:
1100 		op = XEN_SYSCTL_CPU_HOTPLUG_STATUS;
1101 		break;
1102 	case P_FAULTED:
1103 	case P_OFFLINE:
1104 		op = XEN_SYSCTL_CPU_HOTPLUG_OFFLINE;
1105 		break;
1106 	case P_ONLINE:
1107 		op = XEN_SYSCTL_CPU_HOTPLUG_ONLINE;
1108 		break;
1109 	default:
1110 		return (-1);
1111 	}
1112 
1113 	xs.cmd = XEN_SYSCTL_cpu_hotplug;
1114 	xs.interface_version = XEN_SYSCTL_INTERFACE_VERSION;
1115 	xs.u.cpu_hotplug.cpu = xen_physcpu_logical_id(HDLPRIV(hdl));
1116 	xs.u.cpu_hotplug.op = op;
1117 
1118 	if ((rc = HYPERVISOR_sysctl(&xs)) >= 0) {
1119 		status = rc;
1120 		rc = 0;
1121 		switch (status) {
1122 		case XEN_CPU_HOTPLUG_STATUS_NEW:
1123 			*old_status = P_OFFLINE;
1124 			break;
1125 		case XEN_CPU_HOTPLUG_STATUS_OFFLINE:
1126 			*old_status = P_FAULTED;
1127 			break;
1128 		case XEN_CPU_HOTPLUG_STATUS_ONLINE:
1129 			*old_status = P_ONLINE;
1130 			break;
1131 		default:
1132 			return (-1);
1133 		}
1134 	}
1135 
1136 	return (-rc);
1137 }
1138 
1139 #endif
1140 
1141 /*ARGSUSED*/
1142 static void *
1143 cpu_search(enum cmi_hdl_class class, uint_t chipid, uint_t coreid,
1144     uint_t strandid)
1145 {
1146 #ifdef __xpv
1147 	xen_mc_lcpu_cookie_t cpi;
1148 
1149 	for (cpi = xen_physcpu_next(NULL); cpi != NULL;
1150 	    cpi = xen_physcpu_next(cpi)) {
1151 		if (xen_physcpu_chipid(cpi) == chipid &&
1152 		    xen_physcpu_coreid(cpi) == coreid &&
1153 		    xen_physcpu_strandid(cpi) == strandid)
1154 			return ((void *)cpi);
1155 	}
1156 	return (NULL);
1157 
1158 #else	/* __xpv */
1159 
1160 	cpu_t *cp, *startcp;
1161 
1162 	kpreempt_disable();
1163 	cp = startcp = CPU;
1164 	do {
1165 		if (cmi_ntv_hwchipid(cp) == chipid &&
1166 		    cmi_ntv_hwcoreid(cp) == coreid &&
1167 		    cmi_ntv_hwstrandid(cp) == strandid) {
1168 			kpreempt_enable();
1169 			return ((void *)cp);
1170 		}
1171 
1172 		cp = cp->cpu_next;
1173 	} while (cp != startcp);
1174 	kpreempt_enable();
1175 	return (NULL);
1176 #endif	/* __ xpv */
1177 }
1178 
1179 static boolean_t
1180 cpu_is_cmt(void *priv)
1181 {
1182 #ifdef __xpv
1183 	return (xen_physcpu_is_cmt((xen_mc_lcpu_cookie_t)priv));
1184 #else /* __xpv */
1185 	cpu_t *cp = (cpu_t *)priv;
1186 
1187 	int strands_per_core = cpuid_get_ncpu_per_chip(cp) /
1188 	    cpuid_get_ncore_per_chip(cp);
1189 
1190 	return (strands_per_core > 1);
1191 #endif /* __xpv */
1192 }
1193 
1194 /*
1195  * Find the handle entry of a given cpu identified by a <chip,core,strand>
1196  * tuple.
1197  */
1198 static cmi_hdl_ent_t *
1199 cmi_hdl_ent_lookup(uint_t chipid, uint_t coreid, uint_t strandid)
1200 {
1201 	int max_strands = CMI_MAX_STRANDS_PER_CHIP(cmi_core_nbits,
1202 	    cmi_strand_nbits);
1203 
1204 	/*
1205 	 * Allocate per-chip table which contains a list of handle of
1206 	 * all strands of the chip.
1207 	 */
1208 	if (cmi_chip_tab[chipid] == NULL) {
1209 		size_t sz;
1210 		cmi_hdl_ent_t *pg;
1211 
1212 		sz = max_strands * sizeof (cmi_hdl_ent_t);
1213 		pg = kmem_zalloc(sz, KM_SLEEP);
1214 
1215 		/* test and set the per-chip table if it is not allocated */
1216 		if (atomic_cas_ptr(&cmi_chip_tab[chipid], NULL, pg) != NULL)
1217 			kmem_free(pg, sz); /* someone beats us */
1218 	}
1219 
1220 	return (cmi_chip_tab[chipid] +
1221 	    ((((coreid) & CMI_MAX_COREID(cmi_core_nbits)) << cmi_strand_nbits) |
1222 	    ((strandid) & CMI_MAX_STRANDID(cmi_strand_nbits))));
1223 }
1224 
1225 extern void cpuid_get_ext_topo(uint_t, uint_t *, uint_t *);
1226 
1227 cmi_hdl_t
1228 cmi_hdl_create(enum cmi_hdl_class class, uint_t chipid, uint_t coreid,
1229     uint_t strandid)
1230 {
1231 	cmi_hdl_impl_t *hdl;
1232 	void *priv;
1233 	cmi_hdl_ent_t *ent;
1234 	uint_t vendor;
1235 
1236 #ifdef __xpv
1237 	ASSERT(class == CMI_HDL_SOLARIS_xVM_MCA);
1238 #else
1239 	ASSERT(class == CMI_HDL_NATIVE);
1240 #endif
1241 
1242 	if ((priv = cpu_search(class, chipid, coreid, strandid)) == NULL)
1243 		return (NULL);
1244 
1245 	/*
1246 	 * Assume all chips in the system are the same type.
1247 	 * For Intel, attempt to check if extended topology is available
1248 	 * CPUID.EAX=0xB. If so, get the number of core and strand bits.
1249 	 */
1250 #ifdef __xpv
1251 	vendor = _cpuid_vendorstr_to_vendorcode(
1252 	    (char *)xen_physcpu_vendorstr((xen_mc_lcpu_cookie_t)priv));
1253 #else
1254 	vendor = cpuid_getvendor((cpu_t *)priv);
1255 #endif
1256 	if (vendor == X86_VENDOR_Intel && cmi_ext_topo_check == 0) {
1257 		cpuid_get_ext_topo(vendor, &cmi_core_nbits, &cmi_strand_nbits);
1258 		cmi_ext_topo_check = 1;
1259 	}
1260 
1261 	if (chipid > CMI_MAX_CHIPID ||
1262 	    coreid > CMI_MAX_COREID(cmi_core_nbits) ||
1263 	    strandid > CMI_MAX_STRANDID(cmi_strand_nbits))
1264 		return (NULL);
1265 
1266 	hdl = kmem_zalloc(sizeof (*hdl), KM_SLEEP);
1267 
1268 	hdl->cmih_class = class;
1269 	HDLOPS(hdl) = &cmi_hdl_ops;
1270 	hdl->cmih_chipid = chipid;
1271 	hdl->cmih_coreid = coreid;
1272 	hdl->cmih_strandid = strandid;
1273 	hdl->cmih_mstrand = cpu_is_cmt(priv);
1274 	hdl->cmih_hdlpriv = priv;
1275 #ifdef __xpv
1276 	hdl->cmih_msrsrc = CMI_MSR_FLAG_RD_INTERPOSEOK |
1277 	    CMI_MSR_FLAG_WR_INTERPOSEOK;
1278 
1279 	/*
1280 	 * XXX: need hypervisor support for procnodeid, for now assume
1281 	 * single-node processors (procnodeid = chipid)
1282 	 */
1283 	hdl->cmih_procnodeid = xen_physcpu_chipid((xen_mc_lcpu_cookie_t)priv);
1284 	hdl->cmih_procnodes_per_pkg = 1;
1285 #else   /* __xpv */
1286 	hdl->cmih_msrsrc = CMI_MSR_FLAG_RD_HWOK | CMI_MSR_FLAG_RD_INTERPOSEOK |
1287 	    CMI_MSR_FLAG_WR_HWOK | CMI_MSR_FLAG_WR_INTERPOSEOK;
1288 	hdl->cmih_procnodeid = cpuid_get_procnodeid((cpu_t *)priv);
1289 	hdl->cmih_procnodes_per_pkg =
1290 	    cpuid_get_procnodes_per_pkg((cpu_t *)priv);
1291 #endif  /* __xpv */
1292 
1293 	ent = cmi_hdl_ent_lookup(chipid, coreid, strandid);
1294 	if (ent->cmae_refcnt != 0 || ent->cmae_hdlp != NULL) {
1295 		/*
1296 		 * Somehow this (chipid, coreid, strandid) id tuple has
1297 		 * already been assigned!  This indicates that the
1298 		 * callers logic in determining these values is busted,
1299 		 * or perhaps undermined by bad BIOS setup.  Complain,
1300 		 * and refuse to initialize this tuple again as bad things
1301 		 * will happen.
1302 		 */
1303 		cmn_err(CE_NOTE, "cmi_hdl_create: chipid %d coreid %d "
1304 		    "strandid %d handle already allocated!",
1305 		    chipid, coreid, strandid);
1306 		kmem_free(hdl, sizeof (*hdl));
1307 		return (NULL);
1308 	}
1309 
1310 	/*
1311 	 * Once we store a nonzero reference count others can find this
1312 	 * handle via cmi_hdl_lookup etc.  This initial hold on the handle
1313 	 * is to be dropped only if some other part of cmi initialization
1314 	 * fails or, if it succeeds, at later cpu deconfigure.  Note the
1315 	 * the module private data we hold in cmih_cmi and cmih_cmidata
1316 	 * is still NULL at this point (the caller will fill it with
1317 	 * cmi_hdl_setcmi if it initializes) so consumers of handles
1318 	 * should always be ready for that possibility.
1319 	 */
1320 	ent->cmae_hdlp = hdl;
1321 	hdl->cmih_refcntp = &ent->cmae_refcnt;
1322 	ent->cmae_refcnt = 1;
1323 
1324 	return ((cmi_hdl_t)hdl);
1325 }
1326 
1327 void
1328 cmi_read_smbios(cmi_hdl_t ophdl)
1329 {
1330 
1331 	uint_t strand_apicid = UINT_MAX;
1332 	uint_t chip_inst = UINT_MAX;
1333 	uint16_t smb_id = USHRT_MAX;
1334 	int rc = 0;
1335 
1336 	cmi_hdl_impl_t *hdl = IMPLHDL(ophdl);
1337 
1338 	/* set x86gentopo compatibility */
1339 	fm_smb_fmacompat();
1340 
1341 #ifndef __xpv
1342 	strand_apicid = ntv_strand_apicid(hdl);
1343 #else
1344 	strand_apicid = xpv_strand_apicid(hdl);
1345 #endif
1346 
1347 	if (!x86gentopo_legacy) {
1348 		/*
1349 		 * If fm_smb_chipinst() or fm_smb_bboard() fails,
1350 		 * topo reverts to legacy mode
1351 		 */
1352 		rc = fm_smb_chipinst(strand_apicid, &chip_inst, &smb_id);
1353 		if (rc == 0) {
1354 			hdl->cmih_smb_chipid = chip_inst;
1355 			hdl->cmih_smbiosid = smb_id;
1356 		} else {
1357 #ifdef DEBUG
1358 			cmn_err(CE_NOTE, "!cmi reads smbios chip info failed");
1359 #endif /* DEBUG */
1360 			return;
1361 		}
1362 
1363 		hdl->cmih_smb_bboard  = fm_smb_bboard(strand_apicid);
1364 #ifdef DEBUG
1365 		if (hdl->cmih_smb_bboard == NULL)
1366 			cmn_err(CE_NOTE,
1367 			    "!cmi reads smbios base boards info failed");
1368 #endif /* DEBUG */
1369 	}
1370 }
1371 
1372 void
1373 cmi_hdl_hold(cmi_hdl_t ophdl)
1374 {
1375 	cmi_hdl_impl_t *hdl = IMPLHDL(ophdl);
1376 
1377 	ASSERT(*hdl->cmih_refcntp != 0); /* must not be the initial hold */
1378 
1379 	atomic_inc_32(hdl->cmih_refcntp);
1380 }
1381 
1382 static int
1383 cmi_hdl_canref(cmi_hdl_ent_t *ent)
1384 {
1385 	volatile uint32_t *refcntp;
1386 	uint32_t refcnt;
1387 
1388 	refcntp = &ent->cmae_refcnt;
1389 	refcnt = *refcntp;
1390 
1391 	if (refcnt == 0) {
1392 		/*
1393 		 * Associated object never existed, is being destroyed,
1394 		 * or has been destroyed.
1395 		 */
1396 		return (0);
1397 	}
1398 
1399 	/*
1400 	 * We cannot use atomic increment here because once the reference
1401 	 * count reaches zero it must never be bumped up again.
1402 	 */
1403 	while (refcnt != 0) {
1404 		if (atomic_cas_32(refcntp, refcnt, refcnt + 1) == refcnt)
1405 			return (1);
1406 		refcnt = *refcntp;
1407 	}
1408 
1409 	/*
1410 	 * Somebody dropped the reference count to 0 after our initial
1411 	 * check.
1412 	 */
1413 	return (0);
1414 }
1415 
1416 
1417 void
1418 cmi_hdl_rele(cmi_hdl_t ophdl)
1419 {
1420 	cmi_hdl_impl_t *hdl = IMPLHDL(ophdl);
1421 
1422 	ASSERT(*hdl->cmih_refcntp > 0);
1423 	(void) atomic_dec_32_nv(hdl->cmih_refcntp);
1424 }
1425 
1426 void
1427 cmi_hdl_destroy(cmi_hdl_t ophdl)
1428 {
1429 	cmi_hdl_impl_t *hdl = IMPLHDL(ophdl);
1430 	cmi_hdl_ent_t *ent;
1431 
1432 	/* Release the reference count held by cmi_hdl_create(). */
1433 	ASSERT(*hdl->cmih_refcntp > 0);
1434 	(void) atomic_dec_32_nv(hdl->cmih_refcntp);
1435 	hdl->cmih_flags |= CMIH_F_DEAD;
1436 
1437 	ent = cmi_hdl_ent_lookup(hdl->cmih_chipid, hdl->cmih_coreid,
1438 	    hdl->cmih_strandid);
1439 	/*
1440 	 * Use busy polling instead of condition variable here because
1441 	 * cmi_hdl_rele() may be called from #MC handler.
1442 	 */
1443 	while (cmi_hdl_canref(ent)) {
1444 		cmi_hdl_rele(ophdl);
1445 		delay(1);
1446 	}
1447 	ent->cmae_hdlp = NULL;
1448 
1449 	kmem_free(hdl, sizeof (*hdl));
1450 }
1451 
1452 void
1453 cmi_hdl_setspecific(cmi_hdl_t ophdl, void *arg)
1454 {
1455 	IMPLHDL(ophdl)->cmih_spec = arg;
1456 }
1457 
1458 void *
1459 cmi_hdl_getspecific(cmi_hdl_t ophdl)
1460 {
1461 	return (IMPLHDL(ophdl)->cmih_spec);
1462 }
1463 
1464 void
1465 cmi_hdl_setmc(cmi_hdl_t ophdl, const struct cmi_mc_ops *mcops, void *mcdata)
1466 {
1467 	cmi_hdl_impl_t *hdl = IMPLHDL(ophdl);
1468 
1469 	ASSERT(hdl->cmih_mcops == NULL && hdl->cmih_mcdata == NULL);
1470 	hdl->cmih_mcops = mcops;
1471 	hdl->cmih_mcdata = mcdata;
1472 }
1473 
1474 const struct cmi_mc_ops *
1475 cmi_hdl_getmcops(cmi_hdl_t ophdl)
1476 {
1477 	return (IMPLHDL(ophdl)->cmih_mcops);
1478 }
1479 
1480 void *
1481 cmi_hdl_getmcdata(cmi_hdl_t ophdl)
1482 {
1483 	return (IMPLHDL(ophdl)->cmih_mcdata);
1484 }
1485 
1486 cmi_hdl_t
1487 cmi_hdl_lookup(enum cmi_hdl_class class, uint_t chipid, uint_t coreid,
1488     uint_t strandid)
1489 {
1490 	cmi_hdl_ent_t *ent;
1491 
1492 	if (chipid > CMI_MAX_CHIPID ||
1493 	    coreid > CMI_MAX_COREID(cmi_core_nbits) ||
1494 	    strandid > CMI_MAX_STRANDID(cmi_strand_nbits))
1495 		return (NULL);
1496 
1497 	ent = cmi_hdl_ent_lookup(chipid, coreid, strandid);
1498 
1499 	if (class == CMI_HDL_NEUTRAL)
1500 #ifdef __xpv
1501 		class = CMI_HDL_SOLARIS_xVM_MCA;
1502 #else
1503 		class = CMI_HDL_NATIVE;
1504 #endif
1505 
1506 	if (!cmi_hdl_canref(ent))
1507 		return (NULL);
1508 
1509 	if (ent->cmae_hdlp->cmih_class != class) {
1510 		cmi_hdl_rele((cmi_hdl_t)ent->cmae_hdlp);
1511 		return (NULL);
1512 	}
1513 
1514 	return ((cmi_hdl_t)ent->cmae_hdlp);
1515 }
1516 
1517 cmi_hdl_t
1518 cmi_hdl_any(void)
1519 {
1520 	int i, j;
1521 	cmi_hdl_ent_t *ent;
1522 	int max_strands = CMI_MAX_STRANDS_PER_CHIP(cmi_core_nbits,
1523 	    cmi_strand_nbits);
1524 
1525 	for (i = 0; i < CMI_CHIPID_ARR_SZ; i++) {
1526 		if (cmi_chip_tab[i] == NULL)
1527 			continue;
1528 		for (j = 0, ent = cmi_chip_tab[i]; j < max_strands;
1529 		    j++, ent++) {
1530 			if (cmi_hdl_canref(ent))
1531 				return ((cmi_hdl_t)ent->cmae_hdlp);
1532 		}
1533 	}
1534 
1535 	return (NULL);
1536 }
1537 
1538 void
1539 cmi_hdl_walk(int (*cbfunc)(cmi_hdl_t, void *, void *, void *),
1540     void *arg1, void *arg2, void *arg3)
1541 {
1542 	int i, j;
1543 	cmi_hdl_ent_t *ent;
1544 	int max_strands = CMI_MAX_STRANDS_PER_CHIP(cmi_core_nbits,
1545 	    cmi_strand_nbits);
1546 
1547 	for (i = 0; i < CMI_CHIPID_ARR_SZ; i++) {
1548 		if (cmi_chip_tab[i] == NULL)
1549 			continue;
1550 		for (j = 0, ent = cmi_chip_tab[i]; j < max_strands;
1551 		    j++, ent++) {
1552 			if (cmi_hdl_canref(ent)) {
1553 				cmi_hdl_impl_t *hdl = ent->cmae_hdlp;
1554 				if ((*cbfunc)((cmi_hdl_t)hdl, arg1, arg2, arg3)
1555 				    == CMI_HDL_WALK_DONE) {
1556 					cmi_hdl_rele((cmi_hdl_t)hdl);
1557 					return;
1558 				}
1559 				cmi_hdl_rele((cmi_hdl_t)hdl);
1560 			}
1561 		}
1562 	}
1563 }
1564 
1565 void
1566 cmi_hdl_setcmi(cmi_hdl_t ophdl, void *cmi, void *cmidata)
1567 {
1568 	IMPLHDL(ophdl)->cmih_cmidata = cmidata;
1569 	IMPLHDL(ophdl)->cmih_cmi = cmi;
1570 }
1571 
1572 void *
1573 cmi_hdl_getcmi(cmi_hdl_t ophdl)
1574 {
1575 	return (IMPLHDL(ophdl)->cmih_cmi);
1576 }
1577 
1578 void *
1579 cmi_hdl_getcmidata(cmi_hdl_t ophdl)
1580 {
1581 	return (IMPLHDL(ophdl)->cmih_cmidata);
1582 }
1583 
1584 enum cmi_hdl_class
1585 cmi_hdl_class(cmi_hdl_t ophdl)
1586 {
1587 	return (IMPLHDL(ophdl)->cmih_class);
1588 }
1589 
1590 #define	CMI_HDL_OPFUNC(what, type)				\
1591 	type							\
1592 	cmi_hdl_##what(cmi_hdl_t ophdl)				\
1593 	{							\
1594 		return (HDLOPS(IMPLHDL(ophdl))->		\
1595 		    cmio_##what(IMPLHDL(ophdl)));		\
1596 	}
1597 
1598 CMI_HDL_OPFUNC(vendor, uint_t)
1599 CMI_HDL_OPFUNC(vendorstr, const char *)
1600 CMI_HDL_OPFUNC(family, uint_t)
1601 CMI_HDL_OPFUNC(model, uint_t)
1602 CMI_HDL_OPFUNC(stepping, uint_t)
1603 CMI_HDL_OPFUNC(chipid, uint_t)
1604 CMI_HDL_OPFUNC(procnodeid, uint_t)
1605 CMI_HDL_OPFUNC(coreid, uint_t)
1606 CMI_HDL_OPFUNC(strandid, uint_t)
1607 CMI_HDL_OPFUNC(procnodes_per_pkg, uint_t)
1608 CMI_HDL_OPFUNC(strand_apicid, uint_t)
1609 CMI_HDL_OPFUNC(chiprev, uint32_t)
1610 CMI_HDL_OPFUNC(chiprevstr, const char *)
1611 CMI_HDL_OPFUNC(getsockettype, uint32_t)
1612 CMI_HDL_OPFUNC(getsocketstr, const char *)
1613 CMI_HDL_OPFUNC(logical_id, id_t)
1614 CMI_HDL_OPFUNC(smbiosid, uint16_t)
1615 CMI_HDL_OPFUNC(smb_chipid, uint_t)
1616 CMI_HDL_OPFUNC(smb_bboard, nvlist_t *)
1617 
1618 boolean_t
1619 cmi_hdl_is_cmt(cmi_hdl_t ophdl)
1620 {
1621 	return (IMPLHDL(ophdl)->cmih_mstrand);
1622 }
1623 
1624 void
1625 cmi_hdl_int(cmi_hdl_t ophdl, int num)
1626 {
1627 	if (HDLOPS(IMPLHDL(ophdl))->cmio_int == NULL)
1628 		return;
1629 
1630 	cmi_hdl_inj_begin(ophdl);
1631 	HDLOPS(IMPLHDL(ophdl))->cmio_int(IMPLHDL(ophdl), num);
1632 	cmi_hdl_inj_end(NULL);
1633 }
1634 
1635 int
1636 cmi_hdl_online(cmi_hdl_t ophdl, int new_status, int *old_status)
1637 {
1638 	return (HDLOPS(IMPLHDL(ophdl))->cmio_online(IMPLHDL(ophdl),
1639 	    new_status, old_status));
1640 }
1641 
1642 #ifndef	__xpv
1643 /*
1644  * Return hardware chip instance; cpuid_get_chipid provides this directly.
1645  */
1646 uint_t
1647 cmi_ntv_hwchipid(cpu_t *cp)
1648 {
1649 	return (cpuid_get_chipid(cp));
1650 }
1651 
1652 /*
1653  * Return hardware node instance; cpuid_get_procnodeid provides this directly.
1654  */
1655 uint_t
1656 cmi_ntv_hwprocnodeid(cpu_t *cp)
1657 {
1658 	return (cpuid_get_procnodeid(cp));
1659 }
1660 
1661 /*
1662  * Return core instance within a single chip.
1663  */
1664 uint_t
1665 cmi_ntv_hwcoreid(cpu_t *cp)
1666 {
1667 	return (cpuid_get_pkgcoreid(cp));
1668 }
1669 
1670 /*
1671  * Return strand number within a single core.  cpuid_get_clogid numbers
1672  * all execution units (strands, or cores in unstranded models) sequentially
1673  * within a single chip.
1674  */
1675 uint_t
1676 cmi_ntv_hwstrandid(cpu_t *cp)
1677 {
1678 	int strands_per_core = cpuid_get_ncpu_per_chip(cp) /
1679 	    cpuid_get_ncore_per_chip(cp);
1680 
1681 	return (cpuid_get_clogid(cp) % strands_per_core);
1682 }
1683 
1684 static void
1685 cmi_ntv_hwdisable_mce_xc(void)
1686 {
1687 	ulong_t cr4;
1688 
1689 	cr4 = getcr4();
1690 	cr4 = cr4 & (~CR4_MCE);
1691 	setcr4(cr4);
1692 }
1693 
1694 void
1695 cmi_ntv_hwdisable_mce(cmi_hdl_t hdl)
1696 {
1697 	cpuset_t	set;
1698 	cmi_hdl_impl_t *thdl = IMPLHDL(hdl);
1699 	cpu_t *cp = HDLPRIV(thdl);
1700 
1701 	if (CPU->cpu_id == cp->cpu_id) {
1702 		cmi_ntv_hwdisable_mce_xc();
1703 	} else {
1704 		CPUSET_ONLY(set, cp->cpu_id);
1705 		xc_call(NULL, NULL, NULL, CPUSET2BV(set),
1706 		    (xc_func_t)cmi_ntv_hwdisable_mce_xc);
1707 	}
1708 }
1709 
1710 #endif	/* __xpv */
1711 
1712 void
1713 cmi_hdlconf_rdmsr_nohw(cmi_hdl_t ophdl)
1714 {
1715 	cmi_hdl_impl_t *hdl = IMPLHDL(ophdl);
1716 
1717 	hdl->cmih_msrsrc &= ~CMI_MSR_FLAG_RD_HWOK;
1718 }
1719 
1720 void
1721 cmi_hdlconf_wrmsr_nohw(cmi_hdl_t ophdl)
1722 {
1723 	cmi_hdl_impl_t *hdl = IMPLHDL(ophdl);
1724 
1725 	hdl->cmih_msrsrc &= ~CMI_MSR_FLAG_WR_HWOK;
1726 }
1727 
1728 cmi_errno_t
1729 cmi_hdl_rdmsr(cmi_hdl_t ophdl, uint_t msr, uint64_t *valp)
1730 {
1731 	cmi_hdl_impl_t *hdl = IMPLHDL(ophdl);
1732 
1733 	/*
1734 	 * Regardless of the handle class, we first check for am
1735 	 * interposed value.  In the xVM case you probably want to
1736 	 * place interposed values within the hypervisor itself, but
1737 	 * we still allow interposing them in dom0 for test and bringup
1738 	 * purposes.
1739 	 */
1740 	if ((hdl->cmih_msrsrc & CMI_MSR_FLAG_RD_INTERPOSEOK) &&
1741 	    msri_lookup(hdl, msr, valp))
1742 		return (CMI_SUCCESS);
1743 
1744 	if (HDLOPS(hdl)->cmio_rdmsr == NULL)
1745 		return (CMIERR_NOTSUP);
1746 
1747 	return (HDLOPS(hdl)->cmio_rdmsr(hdl, msr, valp));
1748 }
1749 
1750 cmi_errno_t
1751 cmi_hdl_wrmsr(cmi_hdl_t ophdl, uint_t msr, uint64_t val)
1752 {
1753 	cmi_hdl_impl_t *hdl = IMPLHDL(ophdl);
1754 
1755 	/* Invalidate any interposed value */
1756 	msri_rment(hdl, msr);
1757 
1758 	if (HDLOPS(hdl)->cmio_wrmsr == NULL)
1759 		return (CMI_SUCCESS);	/* pretend all is ok */
1760 
1761 	return (HDLOPS(hdl)->cmio_wrmsr(hdl, msr, val));
1762 }
1763 
1764 void
1765 cmi_hdl_enable_mce(cmi_hdl_t ophdl)
1766 {
1767 	cmi_hdl_impl_t *hdl = IMPLHDL(ophdl);
1768 	ulong_t cr4;
1769 
1770 	if (HDLOPS(hdl)->cmio_getcr4 == NULL ||
1771 	    HDLOPS(hdl)->cmio_setcr4 == NULL)
1772 		return;
1773 
1774 	cr4 = HDLOPS(hdl)->cmio_getcr4(hdl);
1775 
1776 	HDLOPS(hdl)->cmio_setcr4(hdl, cr4 | CR4_MCE);
1777 }
1778 
1779 void
1780 cmi_hdl_msrinterpose(cmi_hdl_t ophdl, cmi_mca_regs_t *regs, uint_t nregs)
1781 {
1782 	cmi_hdl_impl_t *hdl = IMPLHDL(ophdl);
1783 	int i;
1784 
1785 	if (HDLOPS(hdl)->cmio_msrinterpose == NULL)
1786 		return;
1787 
1788 	cmi_hdl_inj_begin(ophdl);
1789 
1790 	for (i = 0; i < nregs; i++, regs++)
1791 		HDLOPS(hdl)->cmio_msrinterpose(hdl, regs->cmr_msrnum,
1792 		    regs->cmr_msrval);
1793 
1794 	cmi_hdl_inj_end(ophdl);
1795 }
1796 
1797 /*ARGSUSED*/
1798 void
1799 cmi_hdl_msrforward(cmi_hdl_t ophdl, cmi_mca_regs_t *regs, uint_t nregs)
1800 {
1801 #ifdef __xpv
1802 	cmi_hdl_impl_t *hdl = IMPLHDL(ophdl);
1803 	int i;
1804 
1805 	for (i = 0; i < nregs; i++, regs++)
1806 		msri_addent(hdl, regs->cmr_msrnum, regs->cmr_msrval);
1807 #endif
1808 }
1809 
1810 
1811 void
1812 cmi_pcird_nohw(void)
1813 {
1814 	cmi_pcicfg_flags &= ~CMI_PCICFG_FLAG_RD_HWOK;
1815 }
1816 
1817 void
1818 cmi_pciwr_nohw(void)
1819 {
1820 	cmi_pcicfg_flags &= ~CMI_PCICFG_FLAG_WR_HWOK;
1821 }
1822 
1823 static uint32_t
1824 cmi_pci_get_cmn(int bus, int dev, int func, int reg, int asz,
1825     int *interpose, ddi_acc_handle_t hdl)
1826 {
1827 	uint32_t val;
1828 
1829 	if (cmi_pcicfg_flags & CMI_PCICFG_FLAG_RD_INTERPOSEOK &&
1830 	    pcii_lookup(bus, dev, func, reg, asz, &val)) {
1831 		if (interpose)
1832 			*interpose = 1;
1833 		return (val);
1834 	}
1835 	if (interpose)
1836 		*interpose = 0;
1837 
1838 	if (!(cmi_pcicfg_flags & CMI_PCICFG_FLAG_RD_HWOK))
1839 		return (0);
1840 
1841 	switch (asz) {
1842 	case 1:
1843 		if (hdl)
1844 			val = pci_config_get8(hdl, (off_t)reg);
1845 		else
1846 			val = pci_cfgacc_get8(NULL, PCI_GETBDF(bus, dev, func),
1847 			    reg);
1848 		break;
1849 	case 2:
1850 		if (hdl)
1851 			val = pci_config_get16(hdl, (off_t)reg);
1852 		else
1853 			val = pci_cfgacc_get16(NULL, PCI_GETBDF(bus, dev, func),
1854 			    reg);
1855 		break;
1856 	case 4:
1857 		if (hdl)
1858 			val = pci_config_get32(hdl, (off_t)reg);
1859 		else
1860 			val = pci_cfgacc_get32(NULL, PCI_GETBDF(bus, dev, func),
1861 			    reg);
1862 		break;
1863 	default:
1864 		val = 0;
1865 	}
1866 	return (val);
1867 }
1868 
1869 uint8_t
1870 cmi_pci_getb(int bus, int dev, int func, int reg, int *interpose,
1871     ddi_acc_handle_t hdl)
1872 {
1873 	return ((uint8_t)cmi_pci_get_cmn(bus, dev, func, reg, 1, interpose,
1874 	    hdl));
1875 }
1876 
1877 uint16_t
1878 cmi_pci_getw(int bus, int dev, int func, int reg, int *interpose,
1879     ddi_acc_handle_t hdl)
1880 {
1881 	return ((uint16_t)cmi_pci_get_cmn(bus, dev, func, reg, 2, interpose,
1882 	    hdl));
1883 }
1884 
1885 uint32_t
1886 cmi_pci_getl(int bus, int dev, int func, int reg, int *interpose,
1887     ddi_acc_handle_t hdl)
1888 {
1889 	return (cmi_pci_get_cmn(bus, dev, func, reg, 4, interpose, hdl));
1890 }
1891 
1892 void
1893 cmi_pci_interposeb(int bus, int dev, int func, int reg, uint8_t val)
1894 {
1895 	pcii_addent(bus, dev, func, reg, val, 1);
1896 }
1897 
1898 void
1899 cmi_pci_interposew(int bus, int dev, int func, int reg, uint16_t val)
1900 {
1901 	pcii_addent(bus, dev, func, reg, val, 2);
1902 }
1903 
1904 void
1905 cmi_pci_interposel(int bus, int dev, int func, int reg, uint32_t val)
1906 {
1907 	pcii_addent(bus, dev, func, reg, val, 4);
1908 }
1909 
1910 static void
1911 cmi_pci_put_cmn(int bus, int dev, int func, int reg, int asz,
1912     ddi_acc_handle_t hdl, uint32_t val)
1913 {
1914 	/*
1915 	 * If there is an interposed value for this register invalidate it.
1916 	 */
1917 	pcii_rment(bus, dev, func, reg, asz);
1918 
1919 	if (!(cmi_pcicfg_flags & CMI_PCICFG_FLAG_WR_HWOK))
1920 		return;
1921 
1922 	switch (asz) {
1923 	case 1:
1924 		if (hdl)
1925 			pci_config_put8(hdl, (off_t)reg, (uint8_t)val);
1926 		else
1927 			pci_cfgacc_put8(NULL, PCI_GETBDF(bus, dev, func), reg,
1928 			    (uint8_t)val);
1929 		break;
1930 
1931 	case 2:
1932 		if (hdl)
1933 			pci_config_put16(hdl, (off_t)reg, (uint16_t)val);
1934 		else
1935 			pci_cfgacc_put16(NULL, PCI_GETBDF(bus, dev, func), reg,
1936 			    (uint16_t)val);
1937 		break;
1938 
1939 	case 4:
1940 		if (hdl)
1941 			pci_config_put32(hdl, (off_t)reg, val);
1942 		else
1943 			pci_cfgacc_put32(NULL, PCI_GETBDF(bus, dev, func), reg,
1944 			    val);
1945 		break;
1946 
1947 	default:
1948 		break;
1949 	}
1950 }
1951 
1952 void
1953 cmi_pci_putb(int bus, int dev, int func, int reg, ddi_acc_handle_t hdl,
1954     uint8_t val)
1955 {
1956 	cmi_pci_put_cmn(bus, dev, func, reg, 1, hdl, val);
1957 }
1958 
1959 void
1960 cmi_pci_putw(int bus, int dev, int func, int reg, ddi_acc_handle_t hdl,
1961     uint16_t val)
1962 {
1963 	cmi_pci_put_cmn(bus, dev, func, reg, 2, hdl, val);
1964 }
1965 
1966 void
1967 cmi_pci_putl(int bus, int dev, int func, int reg, ddi_acc_handle_t hdl,
1968     uint32_t val)
1969 {
1970 	cmi_pci_put_cmn(bus, dev, func, reg, 4, hdl, val);
1971 }
1972 
1973 static const struct cmi_hdl_ops cmi_hdl_ops = {
1974 #ifdef __xpv
1975 	/*
1976 	 * CMI_HDL_SOLARIS_xVM_MCA - ops when we are an xVM dom0
1977 	 */
1978 	xpv_vendor,		/* cmio_vendor */
1979 	xpv_vendorstr,		/* cmio_vendorstr */
1980 	xpv_family,		/* cmio_family */
1981 	xpv_model,		/* cmio_model */
1982 	xpv_stepping,		/* cmio_stepping */
1983 	xpv_chipid,		/* cmio_chipid */
1984 	xpv_procnodeid,		/* cmio_procnodeid */
1985 	xpv_coreid,		/* cmio_coreid */
1986 	xpv_strandid,		/* cmio_strandid */
1987 	xpv_procnodes_per_pkg,	/* cmio_procnodes_per_pkg */
1988 	xpv_strand_apicid,	/* cmio_strand_apicid */
1989 	xpv_chiprev,		/* cmio_chiprev */
1990 	xpv_chiprevstr,		/* cmio_chiprevstr */
1991 	xpv_getsockettype,	/* cmio_getsockettype */
1992 	xpv_getsocketstr,	/* cmio_getsocketstr */
1993 	xpv_logical_id,		/* cmio_logical_id */
1994 	NULL,			/* cmio_getcr4 */
1995 	NULL,			/* cmio_setcr4 */
1996 	xpv_rdmsr,		/* cmio_rdmsr */
1997 	xpv_wrmsr,		/* cmio_wrmsr */
1998 	xpv_msrinterpose,	/* cmio_msrinterpose */
1999 	xpv_int,		/* cmio_int */
2000 	xpv_online,		/* cmio_online */
2001 	xpv_smbiosid,		/* cmio_smbiosid */
2002 	xpv_smb_chipid,		/* cmio_smb_chipid */
2003 	xpv_smb_bboard		/* cmio_smb_bboard */
2004 
2005 #else	/* __xpv */
2006 
2007 	/*
2008 	 * CMI_HDL_NATIVE - ops when apparently running on bare-metal
2009 	 */
2010 	ntv_vendor,		/* cmio_vendor */
2011 	ntv_vendorstr,		/* cmio_vendorstr */
2012 	ntv_family,		/* cmio_family */
2013 	ntv_model,		/* cmio_model */
2014 	ntv_stepping,		/* cmio_stepping */
2015 	ntv_chipid,		/* cmio_chipid */
2016 	ntv_procnodeid,		/* cmio_procnodeid */
2017 	ntv_coreid,		/* cmio_coreid */
2018 	ntv_strandid,		/* cmio_strandid */
2019 	ntv_procnodes_per_pkg,	/* cmio_procnodes_per_pkg */
2020 	ntv_strand_apicid,	/* cmio_strand_apicid */
2021 	ntv_chiprev,		/* cmio_chiprev */
2022 	ntv_chiprevstr,		/* cmio_chiprevstr */
2023 	ntv_getsockettype,	/* cmio_getsockettype */
2024 	ntv_getsocketstr,	/* cmio_getsocketstr */
2025 	ntv_logical_id,		/* cmio_logical_id */
2026 	ntv_getcr4,		/* cmio_getcr4 */
2027 	ntv_setcr4,		/* cmio_setcr4 */
2028 	ntv_rdmsr,		/* cmio_rdmsr */
2029 	ntv_wrmsr,		/* cmio_wrmsr */
2030 	ntv_msrinterpose,	/* cmio_msrinterpose */
2031 	ntv_int,		/* cmio_int */
2032 	ntv_online,		/* cmio_online */
2033 	ntv_smbiosid,		/* cmio_smbiosid */
2034 	ntv_smb_chipid,		/* cmio_smb_chipid */
2035 	ntv_smb_bboard		/* cmio_smb_bboard */
2036 #endif
2037 };
2038