xref: /illumos-gate/usr/src/uts/common/vm/vm_anon.c (revision b6805bf78d2bbbeeaea8909a05623587b42d58b3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
26 /*	  All Rights Reserved  	*/
27 
28 /*
29  * University Copyright- Copyright (c) 1982, 1986, 1988
30  * The Regents of the University of California
31  * All Rights Reserved
32  *
33  * University Acknowledgment- Portions of this document are derived from
34  * software developed by the University of California, Berkeley, and its
35  * contributors.
36  */
37 
38 /*
39  * VM - anonymous pages.
40  *
41  * This layer sits immediately above the vm_swap layer.  It manages
42  * physical pages that have no permanent identity in the file system
43  * name space, using the services of the vm_swap layer to allocate
44  * backing storage for these pages.  Since these pages have no external
45  * identity, they are discarded when the last reference is removed.
46  *
47  * An important function of this layer is to manage low-level sharing
48  * of pages that are logically distinct but that happen to be
49  * physically identical (e.g., the corresponding pages of the processes
50  * resulting from a fork before one process or the other changes their
51  * contents).  This pseudo-sharing is present only as an optimization
52  * and is not to be confused with true sharing in which multiple
53  * address spaces deliberately contain references to the same object;
54  * such sharing is managed at a higher level.
55  *
56  * The key data structure here is the anon struct, which contains a
57  * reference count for its associated physical page and a hint about
58  * the identity of that page.  Anon structs typically live in arrays,
59  * with an instance's position in its array determining where the
60  * corresponding backing storage is allocated; however, the swap_xlate()
61  * routine abstracts away this representation information so that the
62  * rest of the anon layer need not know it.  (See the swap layer for
63  * more details on anon struct layout.)
64  *
65  * In the future versions of the system, the association between an
66  * anon struct and its position on backing store will change so that
67  * we don't require backing store all anonymous pages in the system.
68  * This is important for consideration for large memory systems.
69  * We can also use this technique to delay binding physical locations
70  * to anonymous pages until pageout/swapout time where we can make
71  * smarter allocation decisions to improve anonymous klustering.
72  *
73  * Many of the routines defined here take a (struct anon **) argument,
74  * which allows the code at this level to manage anon pages directly,
75  * so that callers can regard anon structs as opaque objects and not be
76  * concerned with assigning or inspecting their contents.
77  *
78  * Clients of this layer refer to anon pages indirectly.  That is, they
79  * maintain arrays of pointers to anon structs rather than maintaining
80  * anon structs themselves.  The (struct anon **) arguments mentioned
81  * above are pointers to entries in these arrays.  It is these arrays
82  * that capture the mapping between offsets within a given segment and
83  * the corresponding anonymous backing storage address.
84  */
85 
86 #ifdef DEBUG
87 #define	ANON_DEBUG
88 #endif
89 
90 #include <sys/types.h>
91 #include <sys/t_lock.h>
92 #include <sys/param.h>
93 #include <sys/systm.h>
94 #include <sys/mman.h>
95 #include <sys/cred.h>
96 #include <sys/thread.h>
97 #include <sys/vnode.h>
98 #include <sys/cpuvar.h>
99 #include <sys/swap.h>
100 #include <sys/cmn_err.h>
101 #include <sys/vtrace.h>
102 #include <sys/kmem.h>
103 #include <sys/sysmacros.h>
104 #include <sys/bitmap.h>
105 #include <sys/vmsystm.h>
106 #include <sys/tuneable.h>
107 #include <sys/debug.h>
108 #include <sys/fs/swapnode.h>
109 #include <sys/tnf_probe.h>
110 #include <sys/lgrp.h>
111 #include <sys/policy.h>
112 #include <sys/condvar_impl.h>
113 #include <sys/mutex_impl.h>
114 #include <sys/rctl.h>
115 
116 #include <vm/as.h>
117 #include <vm/hat.h>
118 #include <vm/anon.h>
119 #include <vm/page.h>
120 #include <vm/vpage.h>
121 #include <vm/seg.h>
122 #include <vm/rm.h>
123 
124 #include <fs/fs_subr.h>
125 
126 struct vnode *anon_vp;
127 
128 int anon_debug;
129 
130 kmutex_t	anoninfo_lock;
131 struct		k_anoninfo k_anoninfo;
132 ani_free_t	*ani_free_pool;
133 pad_mutex_t	anon_array_lock[ANON_LOCKSIZE];
134 kcondvar_t	anon_array_cv[ANON_LOCKSIZE];
135 
136 /*
137  * Global hash table for (vp, off) -> anon slot
138  */
139 extern	int swap_maxcontig;
140 size_t	anon_hash_size;
141 unsigned int anon_hash_shift;
142 struct anon **anon_hash;
143 
144 static struct kmem_cache *anon_cache;
145 static struct kmem_cache *anonmap_cache;
146 
147 pad_mutex_t	*anonhash_lock;
148 
149 /*
150  * Used to make the increment of all refcnts of all anon slots of a large
151  * page appear to be atomic.  The lock is grabbed for the first anon slot of
152  * a large page.
153  */
154 pad_mutex_t	*anonpages_hash_lock;
155 
156 #define	APH_MUTEX(vp, off)				\
157 	(&anonpages_hash_lock[(ANON_HASH((vp), (off)) &	\
158 	    (AH_LOCK_SIZE - 1))].pad_mutex)
159 
160 #ifdef VM_STATS
161 static struct anonvmstats_str {
162 	ulong_t getpages[30];
163 	ulong_t privatepages[10];
164 	ulong_t demotepages[9];
165 	ulong_t decrefpages[9];
166 	ulong_t	dupfillholes[4];
167 	ulong_t freepages[1];
168 } anonvmstats;
169 #endif /* VM_STATS */
170 
171 /*ARGSUSED*/
172 static int
173 anonmap_cache_constructor(void *buf, void *cdrarg, int kmflags)
174 {
175 	struct anon_map *amp = buf;
176 
177 	rw_init(&amp->a_rwlock, NULL, RW_DEFAULT, NULL);
178 	cv_init(&amp->a_purgecv, NULL, CV_DEFAULT, NULL);
179 	mutex_init(&amp->a_pmtx, NULL, MUTEX_DEFAULT, NULL);
180 	mutex_init(&amp->a_purgemtx, NULL, MUTEX_DEFAULT, NULL);
181 	return (0);
182 }
183 
184 /*ARGSUSED1*/
185 static void
186 anonmap_cache_destructor(void *buf, void *cdrarg)
187 {
188 	struct anon_map *amp = buf;
189 
190 	rw_destroy(&amp->a_rwlock);
191 	cv_destroy(&amp->a_purgecv);
192 	mutex_destroy(&amp->a_pmtx);
193 	mutex_destroy(&amp->a_purgemtx);
194 }
195 
196 void
197 anon_init(void)
198 {
199 	int i;
200 	pad_mutex_t *tmp;
201 
202 	/* These both need to be powers of 2 so round up to the next power */
203 	anon_hash_shift = highbit((physmem / ANON_HASHAVELEN) - 1);
204 	anon_hash_size = 1L << anon_hash_shift;
205 
206 	/*
207 	 * We need to align the anonhash_lock and anonpages_hash_lock arrays
208 	 * to a 64B boundary to avoid false sharing.  We add 63B to our
209 	 * allocation so that we can get a 64B aligned address to use.
210 	 * We allocate both of these together to avoid wasting an additional
211 	 * 63B.
212 	 */
213 	tmp = kmem_zalloc((2 * AH_LOCK_SIZE * sizeof (pad_mutex_t)) + 63,
214 	    KM_SLEEP);
215 	anonhash_lock = (pad_mutex_t *)P2ROUNDUP((uintptr_t)tmp, 64);
216 	anonpages_hash_lock = anonhash_lock + AH_LOCK_SIZE;
217 
218 	for (i = 0; i < AH_LOCK_SIZE; i++) {
219 		mutex_init(&anonhash_lock[i].pad_mutex, NULL, MUTEX_DEFAULT,
220 		    NULL);
221 		mutex_init(&anonpages_hash_lock[i].pad_mutex, NULL,
222 		    MUTEX_DEFAULT, NULL);
223 	}
224 
225 	for (i = 0; i < ANON_LOCKSIZE; i++) {
226 		mutex_init(&anon_array_lock[i].pad_mutex, NULL,
227 		    MUTEX_DEFAULT, NULL);
228 		cv_init(&anon_array_cv[i], NULL, CV_DEFAULT, NULL);
229 	}
230 
231 	anon_hash = (struct anon **)
232 	    kmem_zalloc(sizeof (struct anon *) * anon_hash_size, KM_SLEEP);
233 	anon_cache = kmem_cache_create("anon_cache", sizeof (struct anon),
234 	    AN_CACHE_ALIGN, NULL, NULL, NULL, NULL, NULL, KMC_PREFILL);
235 	anonmap_cache = kmem_cache_create("anonmap_cache",
236 	    sizeof (struct anon_map), 0,
237 	    anonmap_cache_constructor, anonmap_cache_destructor, NULL,
238 	    NULL, NULL, 0);
239 	swap_maxcontig = (1024 * 1024) >> PAGESHIFT;	/* 1MB of pages */
240 
241 	tmp = kmem_zalloc((ANI_MAX_POOL * sizeof (ani_free_t)) + 63, KM_SLEEP);
242 	/* Round ani_free_pool to cacheline boundary to avoid false sharing. */
243 	ani_free_pool = (ani_free_t *)P2ROUNDUP((uintptr_t)tmp, 64);
244 
245 	anon_vp = vn_alloc(KM_SLEEP);
246 	vn_setops(anon_vp, swap_vnodeops);
247 	anon_vp->v_type = VREG;
248 	anon_vp->v_flag |= (VISSWAP|VISSWAPFS);
249 }
250 
251 /*
252  * Global anon slot hash table manipulation.
253  */
254 
255 static void
256 anon_addhash(struct anon *ap)
257 {
258 	int index;
259 
260 	ASSERT(MUTEX_HELD(AH_MUTEX(ap->an_vp, ap->an_off)));
261 	index = ANON_HASH(ap->an_vp, ap->an_off);
262 	ap->an_hash = anon_hash[index];
263 	anon_hash[index] = ap;
264 }
265 
266 static void
267 anon_rmhash(struct anon *ap)
268 {
269 	struct anon **app;
270 
271 	ASSERT(MUTEX_HELD(AH_MUTEX(ap->an_vp, ap->an_off)));
272 
273 	for (app = &anon_hash[ANON_HASH(ap->an_vp, ap->an_off)];
274 	    *app; app = &((*app)->an_hash)) {
275 		if (*app == ap) {
276 			*app = ap->an_hash;
277 			break;
278 		}
279 	}
280 }
281 
282 /*
283  * The anon array interfaces. Functions allocating,
284  * freeing array of pointers, and returning/setting
285  * entries in the array of pointers for a given offset.
286  *
287  * Create the list of pointers
288  */
289 struct anon_hdr *
290 anon_create(pgcnt_t npages, int flags)
291 {
292 	struct anon_hdr *ahp;
293 	ulong_t nchunks;
294 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
295 
296 	if ((ahp = kmem_zalloc(sizeof (struct anon_hdr), kmemflags)) == NULL) {
297 		return (NULL);
298 	}
299 
300 	mutex_init(&ahp->serial_lock, NULL, MUTEX_DEFAULT, NULL);
301 	/*
302 	 * Single level case.
303 	 */
304 	ahp->size = npages;
305 	if (npages <= ANON_CHUNK_SIZE || (flags & ANON_ALLOC_FORCE)) {
306 
307 		if (flags & ANON_ALLOC_FORCE)
308 			ahp->flags |= ANON_ALLOC_FORCE;
309 
310 		ahp->array_chunk = kmem_zalloc(
311 		    ahp->size * sizeof (struct anon *), kmemflags);
312 
313 		if (ahp->array_chunk == NULL) {
314 			kmem_free(ahp, sizeof (struct anon_hdr));
315 			return (NULL);
316 		}
317 	} else {
318 		/*
319 		 * 2 Level case.
320 		 * anon hdr size needs to be rounded off  to be a multiple
321 		 * of ANON_CHUNK_SIZE. This is important as various anon
322 		 * related functions depend on this.
323 		 * NOTE -
324 		 * anon_grow()  makes anon hdr size a multiple of
325 		 * ANON_CHUNK_SIZE.
326 		 * amp size is <= anon hdr size.
327 		 * anon_index + seg_pgs <= anon hdr size.
328 		 */
329 		ahp->size = P2ROUNDUP(npages, ANON_CHUNK_SIZE);
330 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
331 
332 		ahp->array_chunk = kmem_zalloc(nchunks * sizeof (ulong_t *),
333 		    kmemflags);
334 
335 		if (ahp->array_chunk == NULL) {
336 			kmem_free(ahp, sizeof (struct anon_hdr));
337 			return (NULL);
338 		}
339 	}
340 	return (ahp);
341 }
342 
343 /*
344  * Free the array of pointers
345  */
346 void
347 anon_release(struct anon_hdr *ahp, pgcnt_t npages)
348 {
349 	ulong_t i;
350 	void **ppp;
351 	ulong_t nchunks;
352 
353 	ASSERT(npages <= ahp->size);
354 
355 	/*
356 	 * Single level case.
357 	 */
358 	if (npages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
359 		kmem_free(ahp->array_chunk, ahp->size * sizeof (struct anon *));
360 	} else {
361 		/*
362 		 * 2 level case.
363 		 */
364 		nchunks = ahp->size >> ANON_CHUNK_SHIFT;
365 		for (i = 0; i < nchunks; i++) {
366 			ppp = &ahp->array_chunk[i];
367 			if (*ppp != NULL)
368 				kmem_free(*ppp, PAGESIZE);
369 		}
370 		kmem_free(ahp->array_chunk, nchunks * sizeof (ulong_t *));
371 	}
372 	mutex_destroy(&ahp->serial_lock);
373 	kmem_free(ahp, sizeof (struct anon_hdr));
374 }
375 
376 /*
377  * Return the pointer from the list for a
378  * specified anon index.
379  */
380 struct anon *
381 anon_get_ptr(struct anon_hdr *ahp, ulong_t an_idx)
382 {
383 	struct anon **app;
384 
385 	ASSERT(an_idx < ahp->size);
386 
387 	/*
388 	 * Single level case.
389 	 */
390 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
391 		return ((struct anon *)
392 		    ((uintptr_t)ahp->array_chunk[an_idx] & ANON_PTRMASK));
393 	} else {
394 
395 		/*
396 		 * 2 level case.
397 		 */
398 		app = ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
399 		if (app) {
400 			return ((struct anon *)
401 			    ((uintptr_t)app[an_idx & ANON_CHUNK_OFF] &
402 			    ANON_PTRMASK));
403 		} else {
404 			return (NULL);
405 		}
406 	}
407 }
408 
409 /*
410  * Return the anon pointer for the first valid entry in the anon list,
411  * starting from the given index.
412  */
413 struct anon *
414 anon_get_next_ptr(struct anon_hdr *ahp, ulong_t *index)
415 {
416 	struct anon *ap;
417 	struct anon **app;
418 	ulong_t chunkoff;
419 	ulong_t i;
420 	ulong_t j;
421 	pgcnt_t size;
422 
423 	i = *index;
424 	size = ahp->size;
425 
426 	ASSERT(i < size);
427 
428 	if ((size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
429 		/*
430 		 * 1 level case
431 		 */
432 		while (i < size) {
433 			ap = (struct anon *)
434 			    ((uintptr_t)ahp->array_chunk[i] & ANON_PTRMASK);
435 			if (ap) {
436 				*index = i;
437 				return (ap);
438 			}
439 			i++;
440 		}
441 	} else {
442 		/*
443 		 * 2 level case
444 		 */
445 		chunkoff = i & ANON_CHUNK_OFF;
446 		while (i < size) {
447 			app = ahp->array_chunk[i >> ANON_CHUNK_SHIFT];
448 			if (app)
449 				for (j = chunkoff; j < ANON_CHUNK_SIZE; j++) {
450 					ap = (struct anon *)
451 					    ((uintptr_t)app[j] & ANON_PTRMASK);
452 					if (ap) {
453 						*index = i + (j - chunkoff);
454 						return (ap);
455 					}
456 				}
457 			chunkoff = 0;
458 			i = (i + ANON_CHUNK_SIZE) & ~ANON_CHUNK_OFF;
459 		}
460 	}
461 	*index = size;
462 	return (NULL);
463 }
464 
465 /*
466  * Set list entry with a given pointer for a specified offset
467  */
468 int
469 anon_set_ptr(struct anon_hdr *ahp, ulong_t an_idx, struct anon *ap, int flags)
470 {
471 	void		**ppp;
472 	struct anon	**app;
473 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
474 	uintptr_t	*ap_addr;
475 
476 	ASSERT(an_idx < ahp->size);
477 
478 	/*
479 	 * Single level case.
480 	 */
481 	if (ahp->size <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
482 		ap_addr = (uintptr_t *)&ahp->array_chunk[an_idx];
483 	} else {
484 
485 		/*
486 		 * 2 level case.
487 		 */
488 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
489 
490 		ASSERT(ppp != NULL);
491 		if (*ppp == NULL) {
492 			mutex_enter(&ahp->serial_lock);
493 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
494 			if (*ppp == NULL) {
495 				*ppp = kmem_zalloc(PAGESIZE, kmemflags);
496 				if (*ppp == NULL) {
497 					mutex_exit(&ahp->serial_lock);
498 					return (ENOMEM);
499 				}
500 			}
501 			mutex_exit(&ahp->serial_lock);
502 		}
503 		app = *ppp;
504 		ap_addr = (uintptr_t *)&app[an_idx & ANON_CHUNK_OFF];
505 	}
506 	*ap_addr = (*ap_addr & ~ANON_PTRMASK) | (uintptr_t)ap;
507 	return (0);
508 }
509 
510 /*
511  * Copy anon array into a given new anon array
512  */
513 int
514 anon_copy_ptr(struct anon_hdr *sahp, ulong_t s_idx,
515 	struct anon_hdr *dahp, ulong_t d_idx,
516 	pgcnt_t npages, int flags)
517 {
518 	void **sapp, **dapp;
519 	void *ap;
520 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
521 
522 	ASSERT((s_idx < sahp->size) && (d_idx < dahp->size));
523 	ASSERT((npages <= sahp->size) && (npages <= dahp->size));
524 
525 	/*
526 	 * Both arrays are 1 level.
527 	 */
528 	if (((sahp->size <= ANON_CHUNK_SIZE) &&
529 	    (dahp->size <= ANON_CHUNK_SIZE)) ||
530 	    ((sahp->flags & ANON_ALLOC_FORCE) &&
531 	    (dahp->flags & ANON_ALLOC_FORCE))) {
532 
533 		bcopy(&sahp->array_chunk[s_idx], &dahp->array_chunk[d_idx],
534 		    npages * sizeof (struct anon *));
535 		return (0);
536 	}
537 
538 	/*
539 	 * Both arrays are 2 levels.
540 	 */
541 	if (sahp->size > ANON_CHUNK_SIZE &&
542 	    dahp->size > ANON_CHUNK_SIZE &&
543 	    ((sahp->flags & ANON_ALLOC_FORCE) == 0) &&
544 	    ((dahp->flags & ANON_ALLOC_FORCE) == 0)) {
545 
546 		ulong_t sapidx, dapidx;
547 		ulong_t *sap, *dap;
548 		ulong_t chknp;
549 
550 		while (npages != 0) {
551 
552 			sapidx = s_idx & ANON_CHUNK_OFF;
553 			dapidx = d_idx & ANON_CHUNK_OFF;
554 			chknp = ANON_CHUNK_SIZE - MAX(sapidx, dapidx);
555 			if (chknp > npages)
556 				chknp = npages;
557 
558 			sapp = &sahp->array_chunk[s_idx >> ANON_CHUNK_SHIFT];
559 			if ((sap = *sapp) != NULL) {
560 				dapp = &dahp->array_chunk[d_idx
561 				    >> ANON_CHUNK_SHIFT];
562 				if ((dap = *dapp) == NULL) {
563 					*dapp = kmem_zalloc(PAGESIZE,
564 					    kmemflags);
565 					if ((dap = *dapp) == NULL)
566 						return (ENOMEM);
567 				}
568 				bcopy((sap + sapidx), (dap + dapidx),
569 				    chknp << ANON_PTRSHIFT);
570 			}
571 			s_idx += chknp;
572 			d_idx += chknp;
573 			npages -= chknp;
574 		}
575 		return (0);
576 	}
577 
578 	/*
579 	 * At least one of the arrays is 2 level.
580 	 */
581 	while (npages--) {
582 		if ((ap = anon_get_ptr(sahp, s_idx)) != NULL) {
583 			ASSERT(!ANON_ISBUSY(anon_get_slot(sahp, s_idx)));
584 			if (anon_set_ptr(dahp, d_idx, ap, flags) == ENOMEM)
585 					return (ENOMEM);
586 		}
587 		s_idx++;
588 		d_idx++;
589 	}
590 	return (0);
591 }
592 
593 
594 /*
595  * ANON_INITBUF is a convenience macro for anon_grow() below. It
596  * takes a buffer dst, which is at least as large as buffer src. It
597  * does a bcopy from src into dst, and then bzeros the extra bytes
598  * of dst. If tail is set, the data in src is tail aligned within
599  * dst instead of head aligned.
600  */
601 
602 #define	ANON_INITBUF(src, srclen, dst, dstsize, tail)			      \
603 	if (tail) {							      \
604 		bzero((dst), (dstsize) - (srclen));			      \
605 		bcopy((src), (char *)(dst) + (dstsize) - (srclen), (srclen)); \
606 	} else {							      \
607 		bcopy((src), (dst), (srclen));				      \
608 		bzero((char *)(dst) + (srclen), (dstsize) - (srclen));	      \
609 	}
610 
611 #define	ANON_1_LEVEL_INC	(ANON_CHUNK_SIZE / 8)
612 #define	ANON_2_LEVEL_INC	(ANON_1_LEVEL_INC * ANON_CHUNK_SIZE)
613 
614 /*
615  * anon_grow() is used to efficiently extend an existing anon array.
616  * startidx_p points to the index into the anon array of the first page
617  * that is in use. oldseg_pgs is the number of pages in use, starting at
618  * *startidx_p. newpages is the number of additional pages desired.
619  *
620  * If startidx_p == NULL, startidx is taken to be 0 and cannot be changed.
621  *
622  * The growth is done by creating a new top level of the anon array,
623  * and (if the array is 2-level) reusing the existing second level arrays.
624  *
625  * flags can be used to specify ANON_NOSLEEP and ANON_GROWDOWN.
626  *
627  * Returns the new number of pages in the anon array.
628  */
629 pgcnt_t
630 anon_grow(struct anon_hdr *ahp, ulong_t *startidx_p, pgcnt_t oldseg_pgs,
631     pgcnt_t newseg_pgs, int flags)
632 {
633 	ulong_t startidx = startidx_p ? *startidx_p : 0;
634 	pgcnt_t oldamp_pgs = ahp->size, newamp_pgs;
635 	pgcnt_t oelems, nelems, totpages;
636 	void **level1;
637 	int kmemflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
638 	int growdown = (flags & ANON_GROWDOWN);
639 	size_t newarrsz, oldarrsz;
640 	void *level2;
641 
642 	ASSERT(!(startidx_p == NULL && growdown));
643 	ASSERT(startidx + oldseg_pgs <= ahp->size);
644 
645 	/*
646 	 * Determine the total number of pages needed in the new
647 	 * anon array. If growing down, totpages is all pages from
648 	 * startidx through the end of the array, plus <newseg_pgs>
649 	 * pages. If growing up, keep all pages from page 0 through
650 	 * the last page currently in use, plus <newseg_pgs> pages.
651 	 */
652 	if (growdown)
653 		totpages = oldamp_pgs - startidx + newseg_pgs;
654 	else
655 		totpages = startidx + oldseg_pgs + newseg_pgs;
656 
657 	/* If the array is already large enough, just return. */
658 
659 	if (oldamp_pgs >= totpages) {
660 		if (growdown)
661 			*startidx_p = oldamp_pgs - totpages;
662 		return (oldamp_pgs);
663 	}
664 
665 	/*
666 	 * oldamp_pgs/newamp_pgs are the total numbers of pages represented
667 	 * by the corresponding arrays.
668 	 * oelems/nelems are the number of pointers in the top level arrays
669 	 * which may be either level 1 or level 2.
670 	 * Will the new anon array be one level or two levels?
671 	 */
672 	if (totpages <= ANON_CHUNK_SIZE || (ahp->flags & ANON_ALLOC_FORCE)) {
673 		newamp_pgs = P2ROUNDUP(totpages, ANON_1_LEVEL_INC);
674 		oelems = oldamp_pgs;
675 		nelems = newamp_pgs;
676 	} else {
677 		newamp_pgs = P2ROUNDUP(totpages, ANON_2_LEVEL_INC);
678 		oelems = (oldamp_pgs + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
679 		nelems = newamp_pgs >> ANON_CHUNK_SHIFT;
680 	}
681 
682 	newarrsz = nelems * sizeof (void *);
683 	level1 = kmem_alloc(newarrsz, kmemflags);
684 	if (level1 == NULL)
685 		return (0);
686 
687 	/* Are we converting from a one level to a two level anon array? */
688 
689 	if (newamp_pgs > ANON_CHUNK_SIZE && oldamp_pgs <= ANON_CHUNK_SIZE &&
690 	    !(ahp->flags & ANON_ALLOC_FORCE)) {
691 
692 		/*
693 		 * Yes, we're converting to a two level. Reuse old level 1
694 		 * as new level 2 if it is exactly PAGESIZE. Otherwise
695 		 * alloc a new level 2 and copy the old level 1 data into it.
696 		 */
697 		if (oldamp_pgs == ANON_CHUNK_SIZE) {
698 			level2 = (void *)ahp->array_chunk;
699 		} else {
700 			level2 = kmem_alloc(PAGESIZE, kmemflags);
701 			if (level2 == NULL) {
702 				kmem_free(level1, newarrsz);
703 				return (0);
704 			}
705 			oldarrsz = oldamp_pgs * sizeof (void *);
706 
707 			ANON_INITBUF(ahp->array_chunk, oldarrsz,
708 			    level2, PAGESIZE, growdown);
709 			kmem_free(ahp->array_chunk, oldarrsz);
710 		}
711 		bzero(level1, newarrsz);
712 		if (growdown)
713 			level1[nelems - 1] = level2;
714 		else
715 			level1[0] = level2;
716 	} else {
717 		oldarrsz = oelems * sizeof (void *);
718 
719 		ANON_INITBUF(ahp->array_chunk, oldarrsz,
720 		    level1, newarrsz, growdown);
721 		kmem_free(ahp->array_chunk, oldarrsz);
722 	}
723 
724 	ahp->array_chunk = level1;
725 	ahp->size = newamp_pgs;
726 	if (growdown)
727 		*startidx_p = newamp_pgs - totpages;
728 
729 	return (newamp_pgs);
730 }
731 
732 
733 /*
734  * Called to sync ani_free value.
735  */
736 
737 void
738 set_anoninfo(void)
739 {
740 	processorid_t	ix, max_seqid;
741 	pgcnt_t		total = 0;
742 	static clock_t	last_time;
743 	clock_t		new_time;
744 
745 	if (ani_free_pool == NULL)
746 		return;
747 
748 	/*
749 	 * Recompute ani_free at most once per tick. Use max_cpu_seqid_ever to
750 	 * identify the maximum number of CPUs were ever online.
751 	 */
752 	new_time = ddi_get_lbolt();
753 	if (new_time > last_time) {
754 
755 		max_seqid = max_cpu_seqid_ever;
756 		ASSERT(ANI_MAX_POOL > max_seqid);
757 		for (ix = 0; ix <= max_seqid; ix++)
758 			total += ani_free_pool[ix].ani_count;
759 
760 		last_time = new_time;
761 		k_anoninfo.ani_free = total;
762 	}
763 }
764 
765 /*
766  * Reserve anon space.
767  *
768  * It's no longer simply a matter of incrementing ani_resv to
769  * reserve swap space, we need to check memory-based as well
770  * as disk-backed (physical) swap.  The following algorithm
771  * is used:
772  * 	Check the space on physical swap
773  * 		i.e. amount needed < ani_max - ani_phys_resv
774  * 	If we are swapping on swapfs check
775  *		amount needed < (availrmem - swapfs_minfree)
776  * Since the algorithm to check for the quantity of swap space is
777  * almost the same as that for reserving it, we'll just use anon_resvmem
778  * with a flag to decrement availrmem.
779  *
780  * Return non-zero on success.
781  */
782 int
783 anon_resvmem(size_t size, boolean_t takemem, zone_t *zone, int tryhard)
784 {
785 	pgcnt_t npages = btopr(size);
786 	pgcnt_t mswap_pages = 0;
787 	pgcnt_t pswap_pages = 0;
788 	proc_t *p = curproc;
789 
790 	if (zone != NULL && takemem) {
791 		/* test zone.max-swap resource control */
792 		mutex_enter(&p->p_lock);
793 		if (rctl_incr_swap(p, zone, ptob(npages)) != 0) {
794 			mutex_exit(&p->p_lock);
795 			return (0);
796 		}
797 		mutex_exit(&p->p_lock);
798 	}
799 	mutex_enter(&anoninfo_lock);
800 
801 	/*
802 	 * pswap_pages is the number of pages we can take from
803 	 * physical (i.e. disk-backed) swap.
804 	 */
805 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
806 	pswap_pages = k_anoninfo.ani_max - k_anoninfo.ani_phys_resv;
807 
808 	ANON_PRINT(A_RESV,
809 	    ("anon_resvmem: npages %lu takemem %u pswap %lu caller %p\n",
810 	    npages, takemem, pswap_pages, (void *)caller()));
811 
812 	if (npages <= pswap_pages) {
813 		/*
814 		 * we have enough space on a physical swap
815 		 */
816 		if (takemem)
817 			k_anoninfo.ani_phys_resv += npages;
818 		mutex_exit(&anoninfo_lock);
819 		return (1);
820 	} else if (pswap_pages != 0) {
821 		/*
822 		 * we have some space on a physical swap
823 		 */
824 		if (takemem) {
825 			/*
826 			 * use up remainder of phys swap
827 			 */
828 			k_anoninfo.ani_phys_resv += pswap_pages;
829 			ASSERT(k_anoninfo.ani_phys_resv == k_anoninfo.ani_max);
830 		}
831 	}
832 	/*
833 	 * since (npages > pswap_pages) we need mem swap
834 	 * mswap_pages is the number of pages needed from availrmem
835 	 */
836 	ASSERT(npages > pswap_pages);
837 	mswap_pages = npages - pswap_pages;
838 
839 	ANON_PRINT(A_RESV, ("anon_resvmem: need %ld pages from memory\n",
840 	    mswap_pages));
841 
842 	/*
843 	 * priv processes can reserve memory as swap as long as availrmem
844 	 * remains greater than swapfs_minfree; in the case of non-priv
845 	 * processes, memory can be reserved as swap only if availrmem
846 	 * doesn't fall below (swapfs_minfree + swapfs_reserve). Thus,
847 	 * swapfs_reserve amount of memswap is not available to non-priv
848 	 * processes. This protects daemons such as automounter dying
849 	 * as a result of application processes eating away almost entire
850 	 * membased swap. This safeguard becomes useless if apps are run
851 	 * with root access.
852 	 *
853 	 * swapfs_reserve is minimum of 4Mb or 1/16 of physmem.
854 	 *
855 	 */
856 	if (tryhard) {
857 		pgcnt_t floor_pages;
858 
859 		if (secpolicy_resource_anon_mem(CRED())) {
860 			floor_pages = swapfs_minfree;
861 		} else {
862 			floor_pages = swapfs_minfree + swapfs_reserve;
863 		}
864 
865 		mutex_exit(&anoninfo_lock);
866 		(void) page_reclaim_mem(mswap_pages, floor_pages, 0);
867 		mutex_enter(&anoninfo_lock);
868 	}
869 
870 	mutex_enter(&freemem_lock);
871 	if (availrmem > (swapfs_minfree + swapfs_reserve + mswap_pages) ||
872 	    (availrmem > (swapfs_minfree + mswap_pages) &&
873 	    secpolicy_resource(CRED()) == 0)) {
874 
875 		if (takemem) {
876 			/*
877 			 * Take the memory from the rest of the system.
878 			 */
879 			availrmem -= mswap_pages;
880 			mutex_exit(&freemem_lock);
881 			k_anoninfo.ani_mem_resv += mswap_pages;
882 			ANI_ADD(mswap_pages);
883 			ANON_PRINT((A_RESV | A_MRESV),
884 			    ("anon_resvmem: took %ld pages of availrmem\n",
885 			    mswap_pages));
886 		} else {
887 			mutex_exit(&freemem_lock);
888 		}
889 
890 		ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
891 		mutex_exit(&anoninfo_lock);
892 		return (1);
893 	} else {
894 		/*
895 		 * Fail if not enough memory
896 		 */
897 		if (takemem) {
898 			k_anoninfo.ani_phys_resv -= pswap_pages;
899 		}
900 
901 		mutex_exit(&freemem_lock);
902 		mutex_exit(&anoninfo_lock);
903 		ANON_PRINT(A_RESV,
904 		    ("anon_resvmem: not enough space from swapfs\n"));
905 		if (zone != NULL && takemem)
906 			rctl_decr_swap(zone, ptob(npages));
907 		return (0);
908 	}
909 }
910 
911 /*
912  * Give back an anon reservation.
913  */
914 void
915 anon_unresvmem(size_t size, zone_t *zone)
916 {
917 	pgcnt_t npages = btopr(size);
918 	spgcnt_t mem_free_pages = 0;
919 	pgcnt_t phys_free_slots;
920 #ifdef	ANON_DEBUG
921 	pgcnt_t mem_resv;
922 #endif
923 	if (zone != NULL)
924 		rctl_decr_swap(zone, ptob(npages));
925 
926 	mutex_enter(&anoninfo_lock);
927 
928 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
929 
930 	/*
931 	 * If some of this reservation belonged to swapfs
932 	 * give it back to availrmem.
933 	 * ani_mem_resv is the amount of availrmem swapfs has reserved.
934 	 * but some of that memory could be locked by segspt so we can only
935 	 * return non locked ani_mem_resv back to availrmem
936 	 */
937 	if (k_anoninfo.ani_mem_resv > k_anoninfo.ani_locked_swap) {
938 		ANON_PRINT((A_RESV | A_MRESV),
939 		    ("anon_unresv: growing availrmem by %ld pages\n",
940 		    MIN(k_anoninfo.ani_mem_resv, npages)));
941 
942 		mem_free_pages = MIN((spgcnt_t)(k_anoninfo.ani_mem_resv -
943 		    k_anoninfo.ani_locked_swap), npages);
944 		mutex_enter(&freemem_lock);
945 		availrmem += mem_free_pages;
946 		mutex_exit(&freemem_lock);
947 		k_anoninfo.ani_mem_resv -= mem_free_pages;
948 
949 		ANI_ADD(-mem_free_pages);
950 	}
951 	/*
952 	 * The remainder of the pages is returned to phys swap
953 	 */
954 	ASSERT(npages >= mem_free_pages);
955 	phys_free_slots = npages - mem_free_pages;
956 
957 	if (phys_free_slots) {
958 		k_anoninfo.ani_phys_resv -= phys_free_slots;
959 	}
960 
961 #ifdef	ANON_DEBUG
962 	mem_resv = k_anoninfo.ani_mem_resv;
963 #endif
964 
965 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
966 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
967 
968 	mutex_exit(&anoninfo_lock);
969 
970 	ANON_PRINT(A_RESV, ("anon_unresv: %lu, tot %lu, caller %p\n",
971 	    npages, mem_resv, (void *)caller()));
972 }
973 
974 /*
975  * Allocate an anon slot and return it with the lock held.
976  */
977 struct anon *
978 anon_alloc(struct vnode *vp, anoff_t off)
979 {
980 	struct anon	*ap;
981 	kmutex_t	*ahm;
982 
983 	ap = kmem_cache_alloc(anon_cache, KM_SLEEP);
984 	if (vp == NULL) {
985 		swap_alloc(ap);
986 	} else {
987 		ap->an_vp = vp;
988 		ap->an_off = off;
989 	}
990 	ap->an_refcnt = 1;
991 	ap->an_pvp = NULL;
992 	ap->an_poff = 0;
993 	ahm = AH_MUTEX(ap->an_vp, ap->an_off);
994 	mutex_enter(ahm);
995 	anon_addhash(ap);
996 	mutex_exit(ahm);
997 	ANI_ADD(-1);
998 	ANON_PRINT(A_ANON, ("anon_alloc: returning ap %p, vp %p\n",
999 	    (void *)ap, (ap ? (void *)ap->an_vp : NULL)));
1000 	return (ap);
1001 }
1002 
1003 /*
1004  * Called for pages locked in memory via softlock/pagelock/mlock to make sure
1005  * such pages don't consume any physical swap resources needed for swapping
1006  * unlocked pages.
1007  */
1008 void
1009 anon_swap_free(struct anon *ap, page_t *pp)
1010 {
1011 	kmutex_t *ahm;
1012 
1013 	ASSERT(ap != NULL);
1014 	ASSERT(pp != NULL);
1015 	ASSERT(PAGE_LOCKED(pp));
1016 	ASSERT(pp->p_vnode != NULL);
1017 	ASSERT(IS_SWAPFSVP(pp->p_vnode));
1018 	ASSERT(ap->an_refcnt != 0);
1019 	ASSERT(pp->p_vnode == ap->an_vp);
1020 	ASSERT(pp->p_offset == ap->an_off);
1021 
1022 	if (ap->an_pvp == NULL)
1023 		return;
1024 
1025 	page_io_lock(pp);
1026 	ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1027 	mutex_enter(ahm);
1028 
1029 	ASSERT(ap->an_refcnt != 0);
1030 	ASSERT(pp->p_vnode == ap->an_vp);
1031 	ASSERT(pp->p_offset == ap->an_off);
1032 
1033 	if (ap->an_pvp != NULL) {
1034 		swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
1035 		ap->an_pvp = NULL;
1036 		ap->an_poff = 0;
1037 		mutex_exit(ahm);
1038 		hat_setmod(pp);
1039 	} else {
1040 		mutex_exit(ahm);
1041 	}
1042 	page_io_unlock(pp);
1043 }
1044 
1045 /*
1046  * Decrement the reference count of an anon page.
1047  * If reference count goes to zero, free it and
1048  * its associated page (if any).
1049  */
1050 void
1051 anon_decref(struct anon *ap)
1052 {
1053 	page_t *pp;
1054 	struct vnode *vp;
1055 	anoff_t off;
1056 	kmutex_t *ahm;
1057 
1058 	ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1059 	mutex_enter(ahm);
1060 	ASSERT(ap->an_refcnt != 0);
1061 	if (ap->an_refcnt == 0)
1062 		panic("anon_decref: slot count 0");
1063 	if (--ap->an_refcnt == 0) {
1064 		swap_xlate(ap, &vp, &off);
1065 		anon_rmhash(ap);
1066 		if (ap->an_pvp != NULL)
1067 			swap_phys_free(ap->an_pvp, ap->an_poff, PAGESIZE);
1068 		mutex_exit(ahm);
1069 
1070 		/*
1071 		 * If there is a page for this anon slot we will need to
1072 		 * call VN_DISPOSE to get rid of the vp association and
1073 		 * put the page back on the free list as really free.
1074 		 * Acquire the "exclusive" lock to ensure that any
1075 		 * pending i/o always completes before the swap slot
1076 		 * is freed.
1077 		 */
1078 		pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1079 		if (pp != NULL) {
1080 			/*LINTED: constant in conditional context */
1081 			VN_DISPOSE(pp, B_INVAL, 0, kcred);
1082 		}
1083 		ANON_PRINT(A_ANON, ("anon_decref: free ap %p, vp %p\n",
1084 		    (void *)ap, (void *)ap->an_vp));
1085 
1086 		kmem_cache_free(anon_cache, ap);
1087 
1088 		ANI_ADD(1);
1089 	} else {
1090 		mutex_exit(ahm);
1091 	}
1092 }
1093 
1094 
1095 /*
1096  * check an_refcnt of the root anon slot (anon_index argument is aligned at
1097  * seg->s_szc level) to determine whether COW processing is required.
1098  * anonpages_hash_lock[] held on the root ap ensures that if root's
1099  * refcnt is 1 all other refcnt's are 1 as well (and they can't increase
1100  * later since this process can't fork while its AS lock is held).
1101  *
1102  * returns 1 if the root anon slot has a refcnt > 1 otherwise returns 0.
1103  */
1104 int
1105 anon_szcshare(struct anon_hdr *ahp, ulong_t anon_index)
1106 {
1107 	struct anon	*ap;
1108 	kmutex_t	*ahmpages = NULL;
1109 
1110 	ap = anon_get_ptr(ahp, anon_index);
1111 	if (ap == NULL)
1112 		return (0);
1113 
1114 	ahmpages = APH_MUTEX(ap->an_vp, ap->an_off);
1115 	mutex_enter(ahmpages);
1116 	ASSERT(ap->an_refcnt >= 1);
1117 	if (ap->an_refcnt == 1) {
1118 		mutex_exit(ahmpages);
1119 		return (0);
1120 	}
1121 	mutex_exit(ahmpages);
1122 	return (1);
1123 }
1124 /*
1125  * Check 'nslots' anon slots for refcnt > 1.
1126  *
1127  * returns 1 if any of the 'nslots' anon slots has a refcnt > 1 otherwise
1128  * returns 0.
1129  */
1130 static int
1131 anon_share(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
1132 {
1133 	struct anon *ap;
1134 
1135 	while (nslots-- > 0) {
1136 		if ((ap = anon_get_ptr(ahp, anon_index)) != NULL &&
1137 		    ap->an_refcnt > 1)
1138 			return (1);
1139 		anon_index++;
1140 	}
1141 
1142 	return (0);
1143 }
1144 
1145 static void
1146 anon_decref_pages(
1147 	struct anon_hdr *ahp,
1148 	ulong_t an_idx,
1149 	uint_t szc)
1150 {
1151 	struct anon *ap = anon_get_ptr(ahp, an_idx);
1152 	kmutex_t *ahmpages = NULL;
1153 	page_t *pp;
1154 	pgcnt_t pgcnt = page_get_pagecnt(szc);
1155 	pgcnt_t i;
1156 	struct vnode *vp;
1157 	anoff_t   off;
1158 	kmutex_t *ahm;
1159 #ifdef DEBUG
1160 	int refcnt = 1;
1161 #endif
1162 
1163 	ASSERT(szc != 0);
1164 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1165 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1166 	ASSERT(an_idx < ahp->size);
1167 
1168 	if (ahp->size - an_idx < pgcnt) {
1169 		/*
1170 		 * In case of shared mappings total anon map size may not be
1171 		 * the largest page size aligned.
1172 		 */
1173 		pgcnt = ahp->size - an_idx;
1174 	}
1175 
1176 	VM_STAT_ADD(anonvmstats.decrefpages[0]);
1177 
1178 	if (ap != NULL) {
1179 		ahmpages = APH_MUTEX(ap->an_vp, ap->an_off);
1180 		mutex_enter(ahmpages);
1181 		ASSERT((refcnt = ap->an_refcnt) != 0);
1182 		VM_STAT_ADD(anonvmstats.decrefpages[1]);
1183 		if (ap->an_refcnt == 1) {
1184 			VM_STAT_ADD(anonvmstats.decrefpages[2]);
1185 			ASSERT(!anon_share(ahp, an_idx, pgcnt));
1186 			mutex_exit(ahmpages);
1187 			ahmpages = NULL;
1188 		}
1189 	}
1190 
1191 	i = 0;
1192 	while (i < pgcnt) {
1193 		if ((ap = anon_get_ptr(ahp, an_idx + i)) == NULL) {
1194 			ASSERT(refcnt == 1 && ahmpages == NULL);
1195 			i++;
1196 			continue;
1197 		}
1198 		ASSERT(ap->an_refcnt == refcnt);
1199 		ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1200 		ASSERT(ahmpages == NULL || ap->an_refcnt > 1);
1201 
1202 		if (ahmpages == NULL) {
1203 			swap_xlate(ap, &vp, &off);
1204 			pp = page_lookup(vp, (u_offset_t)off, SE_EXCL);
1205 			if (pp == NULL || pp->p_szc == 0) {
1206 				VM_STAT_ADD(anonvmstats.decrefpages[3]);
1207 				ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1208 				(void) anon_set_ptr(ahp, an_idx + i, NULL,
1209 				    ANON_SLEEP);
1210 				mutex_enter(ahm);
1211 				ap->an_refcnt--;
1212 				ASSERT(ap->an_refcnt == 0);
1213 				anon_rmhash(ap);
1214 				if (ap->an_pvp)
1215 					swap_phys_free(ap->an_pvp, ap->an_poff,
1216 					    PAGESIZE);
1217 				mutex_exit(ahm);
1218 				if (pp == NULL) {
1219 					pp = page_lookup(vp, (u_offset_t)off,
1220 					    SE_EXCL);
1221 					ASSERT(pp == NULL || pp->p_szc == 0);
1222 				}
1223 				if (pp != NULL) {
1224 					VM_STAT_ADD(anonvmstats.decrefpages[4]);
1225 					/*LINTED*/
1226 					VN_DISPOSE(pp, B_INVAL, 0, kcred);
1227 				}
1228 				kmem_cache_free(anon_cache, ap);
1229 				ANI_ADD(1);
1230 				i++;
1231 			} else {
1232 				pgcnt_t j;
1233 				pgcnt_t curpgcnt =
1234 				    page_get_pagecnt(pp->p_szc);
1235 				size_t ppasize = curpgcnt * sizeof (page_t *);
1236 				page_t **ppa = kmem_alloc(ppasize, KM_SLEEP);
1237 				int dispose = 0;
1238 
1239 				VM_STAT_ADD(anonvmstats.decrefpages[5]);
1240 
1241 				ASSERT(pp->p_szc <= szc);
1242 				ASSERT(IS_P2ALIGNED(curpgcnt, curpgcnt));
1243 				ASSERT(IS_P2ALIGNED(i, curpgcnt));
1244 				ASSERT(i + curpgcnt <= pgcnt);
1245 				ASSERT(!(page_pptonum(pp) & (curpgcnt - 1)));
1246 				ppa[0] = pp;
1247 				for (j = i + 1; j < i + curpgcnt; j++) {
1248 					ap = anon_get_ptr(ahp, an_idx + j);
1249 					ASSERT(ap != NULL &&
1250 					    ap->an_refcnt == 1);
1251 					swap_xlate(ap, &vp, &off);
1252 					pp = page_lookup(vp, (u_offset_t)off,
1253 					    SE_EXCL);
1254 					if (pp == NULL)
1255 						panic("anon_decref_pages: "
1256 						    "no page");
1257 
1258 					(void) hat_pageunload(pp,
1259 					    HAT_FORCE_PGUNLOAD);
1260 					ASSERT(pp->p_szc == ppa[0]->p_szc);
1261 					ASSERT(page_pptonum(pp) - 1 ==
1262 					    page_pptonum(ppa[j - i - 1]));
1263 					ppa[j - i] = pp;
1264 					if (ap->an_pvp != NULL &&
1265 					    !vn_matchopval(ap->an_pvp,
1266 					    VOPNAME_DISPOSE,
1267 					    (fs_generic_func_p)fs_dispose))
1268 						dispose = 1;
1269 				}
1270 				for (j = i; j < i + curpgcnt; j++) {
1271 					ap = anon_get_ptr(ahp, an_idx + j);
1272 					ASSERT(ap != NULL &&
1273 					    ap->an_refcnt == 1);
1274 					ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1275 					(void) anon_set_ptr(ahp, an_idx + j,
1276 					    NULL, ANON_SLEEP);
1277 					mutex_enter(ahm);
1278 					ap->an_refcnt--;
1279 					ASSERT(ap->an_refcnt == 0);
1280 					anon_rmhash(ap);
1281 					if (ap->an_pvp)
1282 						swap_phys_free(ap->an_pvp,
1283 						    ap->an_poff, PAGESIZE);
1284 					mutex_exit(ahm);
1285 					kmem_cache_free(anon_cache, ap);
1286 					ANI_ADD(1);
1287 				}
1288 				if (!dispose) {
1289 					VM_STAT_ADD(anonvmstats.decrefpages[6]);
1290 					page_destroy_pages(ppa[0]);
1291 				} else {
1292 					VM_STAT_ADD(anonvmstats.decrefpages[7]);
1293 					for (j = 0; j < curpgcnt; j++) {
1294 						ASSERT(PAGE_EXCL(ppa[j]));
1295 						ppa[j]->p_szc = 0;
1296 					}
1297 					for (j = 0; j < curpgcnt; j++) {
1298 						ASSERT(!hat_page_is_mapped(
1299 						    ppa[j]));
1300 						/*LINTED*/
1301 						VN_DISPOSE(ppa[j], B_INVAL, 0,
1302 						    kcred);
1303 					}
1304 				}
1305 				kmem_free(ppa, ppasize);
1306 				i += curpgcnt;
1307 			}
1308 		} else {
1309 			VM_STAT_ADD(anonvmstats.decrefpages[8]);
1310 			(void) anon_set_ptr(ahp, an_idx + i, NULL, ANON_SLEEP);
1311 			ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1312 			mutex_enter(ahm);
1313 			ap->an_refcnt--;
1314 			mutex_exit(ahm);
1315 			i++;
1316 		}
1317 	}
1318 
1319 	if (ahmpages != NULL) {
1320 		mutex_exit(ahmpages);
1321 	}
1322 }
1323 
1324 /*
1325  * Duplicate references to size bytes worth of anon pages.
1326  * Used when duplicating a segment that contains private anon pages.
1327  * This code assumes that procedure calling this one has already used
1328  * hat_chgprot() to disable write access to the range of addresses that
1329  * that *old actually refers to.
1330  */
1331 void
1332 anon_dup(struct anon_hdr *old, ulong_t old_idx, struct anon_hdr *new,
1333 			ulong_t new_idx, size_t size)
1334 {
1335 	spgcnt_t npages;
1336 	kmutex_t *ahm;
1337 	struct anon *ap;
1338 	ulong_t off;
1339 	ulong_t index;
1340 
1341 	npages = btopr(size);
1342 	while (npages > 0) {
1343 		index = old_idx;
1344 		if ((ap = anon_get_next_ptr(old, &index)) == NULL)
1345 			break;
1346 
1347 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1348 		off = index - old_idx;
1349 		npages -= off;
1350 		if (npages <= 0)
1351 			break;
1352 
1353 		(void) anon_set_ptr(new, new_idx + off, ap, ANON_SLEEP);
1354 		ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1355 
1356 		mutex_enter(ahm);
1357 		ap->an_refcnt++;
1358 		mutex_exit(ahm);
1359 
1360 		off++;
1361 		new_idx += off;
1362 		old_idx += off;
1363 		npages--;
1364 	}
1365 }
1366 
1367 /*
1368  * Just like anon_dup but also guarantees there are no holes (unallocated anon
1369  * slots) within any large page region. That means if a large page region is
1370  * empty in the old array it will skip it. If there are 1 or more valid slots
1371  * in the large page region of the old array it will make sure to fill in any
1372  * unallocated ones and also copy them to the new array. If noalloc is 1 large
1373  * page region should either have no valid anon slots or all slots should be
1374  * valid.
1375  */
1376 void
1377 anon_dup_fill_holes(
1378 	struct anon_hdr *old,
1379 	ulong_t old_idx,
1380 	struct anon_hdr *new,
1381 	ulong_t new_idx,
1382 	size_t size,
1383 	uint_t szc,
1384 	int noalloc)
1385 {
1386 	struct anon	*ap;
1387 	spgcnt_t	npages;
1388 	kmutex_t	*ahm, *ahmpages = NULL;
1389 	pgcnt_t		pgcnt, i;
1390 	ulong_t		index, off;
1391 #ifdef DEBUG
1392 	int		refcnt;
1393 #endif
1394 
1395 	ASSERT(szc != 0);
1396 	pgcnt = page_get_pagecnt(szc);
1397 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1398 	npages = btopr(size);
1399 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1400 	ASSERT(IS_P2ALIGNED(old_idx, pgcnt));
1401 
1402 	VM_STAT_ADD(anonvmstats.dupfillholes[0]);
1403 
1404 	while (npages > 0) {
1405 		index = old_idx;
1406 
1407 		/*
1408 		 * Find the next valid slot.
1409 		 */
1410 		if (anon_get_next_ptr(old, &index) == NULL)
1411 			break;
1412 
1413 		ASSERT(!ANON_ISBUSY(anon_get_slot(old, index)));
1414 		/*
1415 		 * Now backup index to the beginning of the
1416 		 * current large page region of the old array.
1417 		 */
1418 		index = P2ALIGN(index, pgcnt);
1419 		off = index - old_idx;
1420 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1421 		npages -= off;
1422 		if (npages <= 0)
1423 			break;
1424 
1425 		/*
1426 		 * Fill and copy a large page regions worth
1427 		 * of anon slots.
1428 		 */
1429 		for (i = 0; i < pgcnt; i++) {
1430 			if ((ap = anon_get_ptr(old, index + i)) == NULL) {
1431 				if (noalloc) {
1432 					panic("anon_dup_fill_holes: "
1433 					    "empty anon slot\n");
1434 				}
1435 				VM_STAT_ADD(anonvmstats.dupfillholes[1]);
1436 				ap = anon_alloc(NULL, 0);
1437 				(void) anon_set_ptr(old, index + i, ap,
1438 				    ANON_SLEEP);
1439 			} else if (i == 0) {
1440 				/*
1441 				 * make the increment of all refcnts of all
1442 				 * anon slots of a large page appear atomic by
1443 				 * getting an anonpages_hash_lock for the
1444 				 * first anon slot of a large page.
1445 				 */
1446 				VM_STAT_ADD(anonvmstats.dupfillholes[2]);
1447 
1448 				ahmpages = APH_MUTEX(ap->an_vp, ap->an_off);
1449 				mutex_enter(ahmpages);
1450 				/*LINTED*/
1451 				ASSERT(refcnt = ap->an_refcnt);
1452 
1453 				VM_STAT_COND_ADD(ap->an_refcnt > 1,
1454 				    anonvmstats.dupfillholes[3]);
1455 			}
1456 			(void) anon_set_ptr(new, new_idx + off + i, ap,
1457 			    ANON_SLEEP);
1458 			ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1459 			mutex_enter(ahm);
1460 			ASSERT(ahmpages != NULL || ap->an_refcnt == 1);
1461 			ASSERT(i == 0 || ahmpages == NULL ||
1462 			    refcnt == ap->an_refcnt);
1463 			ap->an_refcnt++;
1464 			mutex_exit(ahm);
1465 		}
1466 		if (ahmpages != NULL) {
1467 			mutex_exit(ahmpages);
1468 			ahmpages = NULL;
1469 		}
1470 		off += pgcnt;
1471 		new_idx += off;
1472 		old_idx += off;
1473 		npages -= pgcnt;
1474 	}
1475 }
1476 
1477 /*
1478  * Used when a segment with a vnode changes szc. similarly to
1479  * anon_dup_fill_holes() makes sure each large page region either has no anon
1480  * slots or all of them. but new slots are created by COWing the file
1481  * pages. on entrance no anon slots should be shared.
1482  */
1483 int
1484 anon_fill_cow_holes(
1485 	struct seg *seg,
1486 	caddr_t addr,
1487 	struct anon_hdr *ahp,
1488 	ulong_t an_idx,
1489 	struct vnode *vp,
1490 	u_offset_t vp_off,
1491 	size_t size,
1492 	uint_t szc,
1493 	uint_t prot,
1494 	struct vpage vpage[],
1495 	struct cred *cred)
1496 {
1497 	struct anon	*ap;
1498 	spgcnt_t	npages;
1499 	pgcnt_t		pgcnt, i;
1500 	ulong_t		index, off;
1501 	int		err = 0;
1502 	int		pageflags = 0;
1503 
1504 	ASSERT(szc != 0);
1505 	pgcnt = page_get_pagecnt(szc);
1506 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1507 	npages = btopr(size);
1508 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1509 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1510 
1511 	while (npages > 0) {
1512 		index = an_idx;
1513 
1514 		/*
1515 		 * Find the next valid slot.
1516 		 */
1517 		if (anon_get_next_ptr(ahp, &index) == NULL) {
1518 			break;
1519 		}
1520 
1521 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1522 		/*
1523 		 * Now backup index to the beginning of the
1524 		 * current large page region of the anon array.
1525 		 */
1526 		index = P2ALIGN(index, pgcnt);
1527 		off = index - an_idx;
1528 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1529 		npages -= off;
1530 		if (npages <= 0)
1531 			break;
1532 		an_idx += off;
1533 		vp_off += ptob(off);
1534 		addr += ptob(off);
1535 		if (vpage != NULL) {
1536 			vpage += off;
1537 		}
1538 
1539 		for (i = 0; i < pgcnt; i++, an_idx++, vp_off += PAGESIZE) {
1540 			if ((ap = anon_get_ptr(ahp, an_idx)) == NULL) {
1541 				page_t *pl[1 + 1];
1542 				page_t *pp;
1543 
1544 				err = VOP_GETPAGE(vp, vp_off, PAGESIZE, NULL,
1545 				    pl, PAGESIZE, seg, addr, S_READ, cred,
1546 				    NULL);
1547 				if (err) {
1548 					break;
1549 				}
1550 				if (vpage != NULL) {
1551 					prot = VPP_PROT(vpage);
1552 					pageflags = VPP_ISPPLOCK(vpage) ?
1553 					    LOCK_PAGE : 0;
1554 				}
1555 				pp = anon_private(&ap, seg, addr, prot, pl[0],
1556 				    pageflags, cred);
1557 				if (pp == NULL) {
1558 					err = ENOMEM;
1559 					break;
1560 				}
1561 				(void) anon_set_ptr(ahp, an_idx, ap,
1562 				    ANON_SLEEP);
1563 				page_unlock(pp);
1564 			}
1565 			ASSERT(ap->an_refcnt == 1);
1566 			addr += PAGESIZE;
1567 			if (vpage != NULL) {
1568 				vpage++;
1569 			}
1570 		}
1571 		npages -= pgcnt;
1572 	}
1573 
1574 	return (err);
1575 }
1576 
1577 /*
1578  * Free a group of "size" anon pages, size in bytes,
1579  * and clear out the pointers to the anon entries.
1580  */
1581 void
1582 anon_free(struct anon_hdr *ahp, ulong_t index, size_t size)
1583 {
1584 	spgcnt_t npages;
1585 	struct anon *ap;
1586 	ulong_t old;
1587 
1588 	npages = btopr(size);
1589 
1590 	while (npages > 0) {
1591 		old = index;
1592 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1593 			break;
1594 
1595 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1596 		npages -= index - old;
1597 		if (npages <= 0)
1598 			break;
1599 
1600 		(void) anon_set_ptr(ahp, index, NULL, ANON_SLEEP);
1601 		anon_decref(ap);
1602 		/*
1603 		 * Bump index and decrement page count
1604 		 */
1605 		index++;
1606 		npages--;
1607 	}
1608 }
1609 
1610 void
1611 anon_free_pages(
1612 	struct anon_hdr *ahp,
1613 	ulong_t an_idx,
1614 	size_t size,
1615 	uint_t szc)
1616 {
1617 	spgcnt_t	npages;
1618 	pgcnt_t		pgcnt;
1619 	ulong_t		index, off;
1620 
1621 	ASSERT(szc != 0);
1622 	pgcnt = page_get_pagecnt(szc);
1623 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1624 	npages = btopr(size);
1625 	ASSERT(IS_P2ALIGNED(npages, pgcnt));
1626 	ASSERT(IS_P2ALIGNED(an_idx, pgcnt));
1627 	ASSERT(an_idx < ahp->size);
1628 
1629 	VM_STAT_ADD(anonvmstats.freepages[0]);
1630 
1631 	while (npages > 0) {
1632 		index = an_idx;
1633 
1634 		/*
1635 		 * Find the next valid slot.
1636 		 */
1637 		if (anon_get_next_ptr(ahp, &index) == NULL)
1638 			break;
1639 
1640 		ASSERT(!ANON_ISBUSY(anon_get_slot(ahp, index)));
1641 		/*
1642 		 * Now backup index to the beginning of the
1643 		 * current large page region of the old array.
1644 		 */
1645 		index = P2ALIGN(index, pgcnt);
1646 		off = index - an_idx;
1647 		ASSERT(IS_P2ALIGNED(off, pgcnt));
1648 		npages -= off;
1649 		if (npages <= 0)
1650 			break;
1651 
1652 		anon_decref_pages(ahp, index, szc);
1653 
1654 		off += pgcnt;
1655 		an_idx += off;
1656 		npages -= pgcnt;
1657 	}
1658 }
1659 
1660 /*
1661  * Make anonymous pages discardable
1662  */
1663 void
1664 anon_disclaim(struct anon_map *amp, ulong_t index, size_t size)
1665 {
1666 	spgcnt_t npages = btopr(size);
1667 	struct anon *ap;
1668 	struct vnode *vp;
1669 	anoff_t off;
1670 	page_t *pp, *root_pp;
1671 	kmutex_t *ahm;
1672 	pgcnt_t pgcnt;
1673 	ulong_t old_idx, idx, i;
1674 	struct anon_hdr *ahp = amp->ahp;
1675 	anon_sync_obj_t cookie;
1676 
1677 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
1678 	pgcnt = 1;
1679 	for (; npages > 0; index = (pgcnt == 1) ? index + 1 :
1680 	    P2ROUNDUP(index + 1, pgcnt), npages -= pgcnt) {
1681 
1682 		/*
1683 		 * get anon pointer and index for the first valid entry
1684 		 * in the anon list, starting from "index"
1685 		 */
1686 		old_idx = index;
1687 		if ((ap = anon_get_next_ptr(ahp, &index)) == NULL)
1688 			break;
1689 
1690 		/*
1691 		 * decrement npages by number of NULL anon slots we skipped
1692 		 */
1693 		npages -= index - old_idx;
1694 		if (npages <= 0)
1695 			break;
1696 
1697 		anon_array_enter(amp, index, &cookie);
1698 		ap = anon_get_ptr(ahp, index);
1699 		ASSERT(ap != NULL);
1700 
1701 		/*
1702 		 * Get anonymous page and try to lock it SE_EXCL;
1703 		 * if we couldn't grab the lock we skip to next page.
1704 		 */
1705 		swap_xlate(ap, &vp, &off);
1706 		pp = page_lookup_nowait(vp, (u_offset_t)off, SE_EXCL);
1707 		if (pp == NULL) {
1708 			segadvstat.MADV_FREE_miss.value.ul++;
1709 			pgcnt = 1;
1710 			anon_array_exit(&cookie);
1711 			continue;
1712 		}
1713 		pgcnt = page_get_pagecnt(pp->p_szc);
1714 
1715 		/*
1716 		 * we cannot free a page which is permanently locked.
1717 		 * The page_struct_lock need not be acquired to examine
1718 		 * these fields since the page has an "exclusive" lock.
1719 		 */
1720 		if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1721 			page_unlock(pp);
1722 			segadvstat.MADV_FREE_miss.value.ul++;
1723 			anon_array_exit(&cookie);
1724 			continue;
1725 		}
1726 
1727 		ahm = AH_MUTEX(vp, off);
1728 		mutex_enter(ahm);
1729 		ASSERT(ap->an_refcnt != 0);
1730 		/*
1731 		 * skip this one if copy-on-write is not yet broken.
1732 		 */
1733 		if (ap->an_refcnt > 1) {
1734 			mutex_exit(ahm);
1735 			page_unlock(pp);
1736 			segadvstat.MADV_FREE_miss.value.ul++;
1737 			anon_array_exit(&cookie);
1738 			continue;
1739 		}
1740 
1741 		if (pp->p_szc == 0) {
1742 			pgcnt = 1;
1743 
1744 			/*
1745 			 * free swap slot;
1746 			 */
1747 			if (ap->an_pvp) {
1748 				swap_phys_free(ap->an_pvp, ap->an_poff,
1749 				    PAGESIZE);
1750 				ap->an_pvp = NULL;
1751 				ap->an_poff = 0;
1752 			}
1753 			mutex_exit(ahm);
1754 			segadvstat.MADV_FREE_hit.value.ul++;
1755 
1756 			/*
1757 			 * while we are at it, unload all the translations
1758 			 * and attempt to free the page.
1759 			 */
1760 			(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1761 			/*LINTED: constant in conditional context */
1762 			VN_DISPOSE(pp, B_FREE, 0, kcred);
1763 			anon_array_exit(&cookie);
1764 			continue;
1765 		}
1766 
1767 		pgcnt = page_get_pagecnt(pp->p_szc);
1768 		if (!IS_P2ALIGNED(index, pgcnt) || npages < pgcnt) {
1769 			if (!page_try_demote_pages(pp)) {
1770 				mutex_exit(ahm);
1771 				page_unlock(pp);
1772 				segadvstat.MADV_FREE_miss.value.ul++;
1773 				anon_array_exit(&cookie);
1774 				continue;
1775 			} else {
1776 				pgcnt = 1;
1777 				if (ap->an_pvp) {
1778 					swap_phys_free(ap->an_pvp,
1779 					    ap->an_poff, PAGESIZE);
1780 					ap->an_pvp = NULL;
1781 					ap->an_poff = 0;
1782 				}
1783 				mutex_exit(ahm);
1784 				(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
1785 				/*LINTED*/
1786 				VN_DISPOSE(pp, B_FREE, 0, kcred);
1787 				segadvstat.MADV_FREE_hit.value.ul++;
1788 				anon_array_exit(&cookie);
1789 				continue;
1790 			}
1791 		}
1792 		mutex_exit(ahm);
1793 		root_pp = pp;
1794 
1795 		/*
1796 		 * try to lock remaining pages
1797 		 */
1798 		for (idx = 1; idx < pgcnt; idx++) {
1799 			pp++;
1800 			if (!page_trylock(pp, SE_EXCL))
1801 				break;
1802 			if (pp->p_lckcnt != 0 || pp->p_cowcnt != 0) {
1803 				page_unlock(pp);
1804 				break;
1805 			}
1806 		}
1807 
1808 		if (idx == pgcnt) {
1809 			for (i = 0; i < pgcnt; i++) {
1810 				ap = anon_get_ptr(ahp, index + i);
1811 				if (ap == NULL)
1812 					break;
1813 				swap_xlate(ap, &vp, &off);
1814 				ahm = AH_MUTEX(vp, off);
1815 				mutex_enter(ahm);
1816 				ASSERT(ap->an_refcnt != 0);
1817 
1818 				/*
1819 				 * skip this one if copy-on-write
1820 				 * is not yet broken.
1821 				 */
1822 				if (ap->an_refcnt > 1) {
1823 					mutex_exit(ahm);
1824 					goto skiplp;
1825 				}
1826 				if (ap->an_pvp) {
1827 					swap_phys_free(ap->an_pvp,
1828 					    ap->an_poff, PAGESIZE);
1829 					ap->an_pvp = NULL;
1830 					ap->an_poff = 0;
1831 				}
1832 				mutex_exit(ahm);
1833 			}
1834 			page_destroy_pages(root_pp);
1835 			segadvstat.MADV_FREE_hit.value.ul += pgcnt;
1836 			anon_array_exit(&cookie);
1837 			continue;
1838 		}
1839 skiplp:
1840 		segadvstat.MADV_FREE_miss.value.ul += pgcnt;
1841 		for (i = 0, pp = root_pp; i < idx; pp++, i++)
1842 			page_unlock(pp);
1843 		anon_array_exit(&cookie);
1844 	}
1845 }
1846 
1847 /*
1848  * Return the kept page(s) and protections back to the segment driver.
1849  */
1850 int
1851 anon_getpage(
1852 	struct anon **app,
1853 	uint_t *protp,
1854 	page_t *pl[],
1855 	size_t plsz,
1856 	struct seg *seg,
1857 	caddr_t addr,
1858 	enum seg_rw rw,
1859 	struct cred *cred)
1860 {
1861 	page_t *pp;
1862 	struct anon *ap = *app;
1863 	struct vnode *vp;
1864 	anoff_t off;
1865 	int err;
1866 	kmutex_t *ahm;
1867 
1868 	swap_xlate(ap, &vp, &off);
1869 
1870 	/*
1871 	 * Lookup the page. If page is being paged in,
1872 	 * wait for it to finish as we must return a list of
1873 	 * pages since this routine acts like the VOP_GETPAGE
1874 	 * routine does.
1875 	 */
1876 	if (pl != NULL && (pp = page_lookup(vp, (u_offset_t)off, SE_SHARED))) {
1877 		ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1878 		mutex_enter(ahm);
1879 		if (ap->an_refcnt == 1)
1880 			*protp = PROT_ALL;
1881 		else
1882 			*protp = PROT_ALL & ~PROT_WRITE;
1883 		mutex_exit(ahm);
1884 		pl[0] = pp;
1885 		pl[1] = NULL;
1886 		return (0);
1887 	}
1888 
1889 	/*
1890 	 * Simply treat it as a vnode fault on the anon vp.
1891 	 */
1892 
1893 	TRACE_3(TR_FAC_VM, TR_ANON_GETPAGE,
1894 	    "anon_getpage:seg %x addr %x vp %x",
1895 	    seg, addr, vp);
1896 
1897 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, protp, pl, plsz,
1898 	    seg, addr, rw, cred, NULL);
1899 
1900 	if (err == 0 && pl != NULL) {
1901 		ahm = AH_MUTEX(ap->an_vp, ap->an_off);
1902 		mutex_enter(ahm);
1903 		if (ap->an_refcnt != 1)
1904 			*protp &= ~PROT_WRITE;	/* make read-only */
1905 		mutex_exit(ahm);
1906 	}
1907 	return (err);
1908 }
1909 
1910 /*
1911  * Creates or returns kept pages to the segment driver.  returns -1 if a large
1912  * page cannot be allocated. returns -2 if some other process has allocated a
1913  * larger page.
1914  *
1915  * For cowfault it will allocate any size pages to fill the requested area to
1916  * avoid partially overwriting anon slots (i.e. sharing only some of the anon
1917  * slots within a large page with other processes). This policy greatly
1918  * simplifies large page freeing (which is only freed when all anon slot
1919  * refcnts are 0).
1920  */
1921 int
1922 anon_map_getpages(
1923 	struct anon_map *amp,
1924 	ulong_t	start_idx,
1925 	uint_t	szc,
1926 	struct seg *seg,
1927 	caddr_t	addr,
1928 	uint_t prot,
1929 	uint_t *protp,
1930 	page_t	*ppa[],
1931 	uint_t	*ppa_szc,
1932 	struct vpage vpage[],
1933 	enum seg_rw rw,
1934 	int brkcow,
1935 	int anypgsz,
1936 	int pgflags,
1937 	struct cred *cred)
1938 {
1939 	pgcnt_t		pgcnt;
1940 	struct anon	*ap;
1941 	struct vnode	*vp;
1942 	anoff_t		off;
1943 	page_t		*pp, *pl[2], *conpp = NULL;
1944 	caddr_t		vaddr;
1945 	ulong_t		pg_idx, an_idx, i;
1946 	spgcnt_t	nreloc = 0;
1947 	int		prealloc = 1;
1948 	int		err, slotcreate;
1949 	uint_t		vpprot;
1950 	int		upsize = (szc < seg->s_szc);
1951 
1952 #if !defined(__i386) && !defined(__amd64)
1953 	ASSERT(seg->s_szc != 0);
1954 #endif
1955 	ASSERT(szc <= seg->s_szc);
1956 	ASSERT(ppa_szc != NULL);
1957 	ASSERT(rw != S_CREATE);
1958 
1959 	*protp = PROT_ALL;
1960 
1961 	VM_STAT_ADD(anonvmstats.getpages[0]);
1962 
1963 	if (szc == 0) {
1964 		VM_STAT_ADD(anonvmstats.getpages[1]);
1965 		if ((ap = anon_get_ptr(amp->ahp, start_idx)) != NULL) {
1966 			err = anon_getpage(&ap, protp, pl, PAGESIZE, seg,
1967 			    addr, rw, cred);
1968 			if (err)
1969 				return (err);
1970 			ppa[0] = pl[0];
1971 			if (brkcow == 0 || (*protp & PROT_WRITE)) {
1972 				VM_STAT_ADD(anonvmstats.getpages[2]);
1973 				if (ppa[0]->p_szc != 0 && upsize) {
1974 					VM_STAT_ADD(anonvmstats.getpages[3]);
1975 					*ppa_szc = MIN(ppa[0]->p_szc,
1976 					    seg->s_szc);
1977 					page_unlock(ppa[0]);
1978 					return (-2);
1979 				}
1980 				return (0);
1981 			}
1982 			panic("anon_map_getpages: cowfault for szc 0");
1983 		} else {
1984 			VM_STAT_ADD(anonvmstats.getpages[4]);
1985 			ppa[0] = anon_zero(seg, addr, &ap, cred);
1986 			if (ppa[0] == NULL)
1987 				return (ENOMEM);
1988 			(void) anon_set_ptr(amp->ahp, start_idx, ap,
1989 			    ANON_SLEEP);
1990 			return (0);
1991 		}
1992 	}
1993 
1994 	pgcnt = page_get_pagecnt(szc);
1995 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
1996 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
1997 
1998 	/*
1999 	 * First we check for the case that the requtested large
2000 	 * page or larger page already exists in the system.
2001 	 * Actually we only check if the first constituent page
2002 	 * exists and only preallocate if it's not found.
2003 	 */
2004 	ap = anon_get_ptr(amp->ahp, start_idx);
2005 	if (ap) {
2006 		uint_t pszc;
2007 		swap_xlate(ap, &vp, &off);
2008 		if (page_exists_forreal(vp, (u_offset_t)off, &pszc)) {
2009 			if (pszc > szc && upsize) {
2010 				*ppa_szc = MIN(pszc, seg->s_szc);
2011 				return (-2);
2012 			}
2013 			if (pszc >= szc) {
2014 				prealloc = 0;
2015 			}
2016 		}
2017 	}
2018 
2019 	VM_STAT_COND_ADD(prealloc == 0, anonvmstats.getpages[5]);
2020 	VM_STAT_COND_ADD(prealloc != 0, anonvmstats.getpages[6]);
2021 
2022 top:
2023 	/*
2024 	 * If a smaller page or no page at all was found,
2025 	 * grab a large page off the freelist.
2026 	 */
2027 	if (prealloc) {
2028 		ASSERT(conpp == NULL);
2029 		if (page_alloc_pages(anon_vp, seg, addr, NULL, ppa,
2030 		    szc, 0, pgflags) != 0) {
2031 			VM_STAT_ADD(anonvmstats.getpages[7]);
2032 			if (brkcow == 0 || szc < seg->s_szc ||
2033 			    !anon_szcshare(amp->ahp, start_idx)) {
2034 				/*
2035 				 * If the refcnt's of all anon slots are <= 1
2036 				 * they can't increase since we are holding
2037 				 * the address space's lock. So segvn can
2038 				 * safely decrease szc without risking to
2039 				 * generate a cow fault for the region smaller
2040 				 * than the segment's largest page size.
2041 				 */
2042 				VM_STAT_ADD(anonvmstats.getpages[8]);
2043 				return (-1);
2044 			}
2045 		docow:
2046 			/*
2047 			 * This is a cow fault. Copy away the entire 1 large
2048 			 * page region of this segment.
2049 			 */
2050 			if (szc != seg->s_szc)
2051 				panic("anon_map_getpages: cowfault for szc %d",
2052 				    szc);
2053 			vaddr = addr;
2054 			for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
2055 			    pg_idx++, an_idx++, vaddr += PAGESIZE) {
2056 				if ((ap = anon_get_ptr(amp->ahp, an_idx)) !=
2057 				    NULL) {
2058 					err = anon_getpage(&ap, &vpprot, pl,
2059 					    PAGESIZE, seg, vaddr, rw, cred);
2060 					if (err) {
2061 						for (i = 0; i < pg_idx; i++) {
2062 							if ((pp = ppa[i]) !=
2063 							    NULL)
2064 								page_unlock(pp);
2065 						}
2066 						return (err);
2067 					}
2068 					ppa[pg_idx] = pl[0];
2069 				} else {
2070 					/*
2071 					 * Since this is a cowfault we know
2072 					 * that this address space has a
2073 					 * parent or children which means
2074 					 * anon_dup_fill_holes() has initialized
2075 					 * all anon slots within a large page
2076 					 * region that had at least one anon
2077 					 * slot at the time of fork().
2078 					 */
2079 					panic("anon_map_getpages: "
2080 					    "cowfault but anon slot is empty");
2081 				}
2082 			}
2083 			VM_STAT_ADD(anonvmstats.getpages[9]);
2084 			*protp = PROT_ALL;
2085 			return (anon_map_privatepages(amp, start_idx, szc, seg,
2086 			    addr, prot, ppa, vpage, anypgsz, pgflags, cred));
2087 		}
2088 	}
2089 
2090 	VM_STAT_ADD(anonvmstats.getpages[10]);
2091 
2092 	an_idx = start_idx;
2093 	pg_idx = 0;
2094 	vaddr = addr;
2095 	while (pg_idx < pgcnt) {
2096 		slotcreate = 0;
2097 		if ((ap = anon_get_ptr(amp->ahp, an_idx)) == NULL) {
2098 			VM_STAT_ADD(anonvmstats.getpages[11]);
2099 			/*
2100 			 * For us to have decided not to preallocate
2101 			 * would have meant that a large page
2102 			 * was found. Which also means that all of the
2103 			 * anon slots for that page would have been
2104 			 * already created for us.
2105 			 */
2106 			if (prealloc == 0)
2107 				panic("anon_map_getpages: prealloc = 0");
2108 
2109 			slotcreate = 1;
2110 			ap = anon_alloc(NULL, 0);
2111 		}
2112 		swap_xlate(ap, &vp, &off);
2113 
2114 		/*
2115 		 * Now setup our preallocated page to pass down
2116 		 * to swap_getpage().
2117 		 */
2118 		if (prealloc) {
2119 			ASSERT(ppa[pg_idx]->p_szc == szc);
2120 			conpp = ppa[pg_idx];
2121 		}
2122 		ASSERT(prealloc || conpp == NULL);
2123 
2124 		/*
2125 		 * If we just created this anon slot then call
2126 		 * with S_CREATE to prevent doing IO on the page.
2127 		 * Similar to the anon_zero case.
2128 		 */
2129 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE,
2130 		    NULL, pl, PAGESIZE, conpp, ppa_szc, &nreloc, seg, vaddr,
2131 		    slotcreate == 1 ? S_CREATE : rw, cred);
2132 
2133 		if (err) {
2134 			ASSERT(err != -2 || upsize);
2135 			VM_STAT_ADD(anonvmstats.getpages[12]);
2136 			ASSERT(slotcreate == 0);
2137 			goto io_err;
2138 		}
2139 
2140 		pp = pl[0];
2141 
2142 		if (pp->p_szc < szc || (pp->p_szc > szc && upsize)) {
2143 			VM_STAT_ADD(anonvmstats.getpages[13]);
2144 			ASSERT(slotcreate == 0);
2145 			ASSERT(prealloc == 0);
2146 			ASSERT(pg_idx == 0);
2147 			if (pp->p_szc > szc) {
2148 				ASSERT(upsize);
2149 				*ppa_szc = MIN(pp->p_szc, seg->s_szc);
2150 				page_unlock(pp);
2151 				VM_STAT_ADD(anonvmstats.getpages[14]);
2152 				return (-2);
2153 			}
2154 			page_unlock(pp);
2155 			prealloc = 1;
2156 			goto top;
2157 		}
2158 
2159 		/*
2160 		 * If we decided to preallocate but VOP_GETPAGE
2161 		 * found a page in the system that satisfies our
2162 		 * request then free up our preallocated large page
2163 		 * and continue looping accross the existing large
2164 		 * page via VOP_GETPAGE.
2165 		 */
2166 		if (prealloc && pp != ppa[pg_idx]) {
2167 			VM_STAT_ADD(anonvmstats.getpages[15]);
2168 			ASSERT(slotcreate == 0);
2169 			ASSERT(pg_idx == 0);
2170 			conpp = NULL;
2171 			prealloc = 0;
2172 			page_free_pages(ppa[0]);
2173 		}
2174 
2175 		if (prealloc && nreloc > 1) {
2176 			/*
2177 			 * we have relocated out of a smaller large page.
2178 			 * skip npgs - 1 iterations and continue which will
2179 			 * increment by one the loop indices.
2180 			 */
2181 			spgcnt_t npgs = nreloc;
2182 
2183 			VM_STAT_ADD(anonvmstats.getpages[16]);
2184 
2185 			ASSERT(pp == ppa[pg_idx]);
2186 			ASSERT(slotcreate == 0);
2187 			ASSERT(pg_idx + npgs <= pgcnt);
2188 			if ((*protp & PROT_WRITE) &&
2189 			    anon_share(amp->ahp, an_idx, npgs)) {
2190 				*protp &= ~PROT_WRITE;
2191 			}
2192 			pg_idx += npgs;
2193 			an_idx += npgs;
2194 			vaddr += PAGESIZE * npgs;
2195 			continue;
2196 		}
2197 
2198 		VM_STAT_ADD(anonvmstats.getpages[17]);
2199 
2200 		/*
2201 		 * Anon_zero case.
2202 		 */
2203 		if (slotcreate) {
2204 			ASSERT(prealloc);
2205 			pagezero(pp, 0, PAGESIZE);
2206 			CPU_STATS_ADD_K(vm, zfod, 1);
2207 			hat_setrefmod(pp);
2208 		}
2209 
2210 		ASSERT(prealloc == 0 || ppa[pg_idx] == pp);
2211 		ASSERT(prealloc != 0 || PAGE_SHARED(pp));
2212 		ASSERT(prealloc == 0 || PAGE_EXCL(pp));
2213 
2214 		if (pg_idx > 0 &&
2215 		    ((page_pptonum(pp) != page_pptonum(ppa[pg_idx - 1]) + 1) ||
2216 		    (pp->p_szc != ppa[pg_idx - 1]->p_szc))) {
2217 			panic("anon_map_getpages: unexpected page");
2218 		} else if (pg_idx == 0 && (page_pptonum(pp) & (pgcnt - 1))) {
2219 			panic("anon_map_getpages: unaligned page");
2220 		}
2221 
2222 		if (prealloc == 0) {
2223 			ppa[pg_idx] = pp;
2224 		}
2225 
2226 		if (ap->an_refcnt > 1) {
2227 			VM_STAT_ADD(anonvmstats.getpages[18]);
2228 			*protp &= ~PROT_WRITE;
2229 		}
2230 
2231 		/*
2232 		 * If this is a new anon slot then initialize
2233 		 * the anon array entry.
2234 		 */
2235 		if (slotcreate) {
2236 			(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2237 		}
2238 		pg_idx++;
2239 		an_idx++;
2240 		vaddr += PAGESIZE;
2241 	}
2242 
2243 	/*
2244 	 * Since preallocated pages come off the freelist
2245 	 * they are locked SE_EXCL. Simply downgrade and return.
2246 	 */
2247 	if (prealloc) {
2248 		VM_STAT_ADD(anonvmstats.getpages[19]);
2249 		conpp = NULL;
2250 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2251 			page_downgrade(ppa[pg_idx]);
2252 		}
2253 	}
2254 	ASSERT(conpp == NULL);
2255 
2256 	if (brkcow == 0 || (*protp & PROT_WRITE)) {
2257 		VM_STAT_ADD(anonvmstats.getpages[20]);
2258 		return (0);
2259 	}
2260 
2261 	if (szc < seg->s_szc)
2262 		panic("anon_map_getpages: cowfault for szc %d", szc);
2263 
2264 	VM_STAT_ADD(anonvmstats.getpages[21]);
2265 
2266 	*protp = PROT_ALL;
2267 	return (anon_map_privatepages(amp, start_idx, szc, seg, addr, prot,
2268 	    ppa, vpage, anypgsz, pgflags, cred));
2269 io_err:
2270 	/*
2271 	 * We got an IO error somewhere in our large page.
2272 	 * If we were using a preallocated page then just demote
2273 	 * all the constituent pages that we've succeeded with sofar
2274 	 * to PAGESIZE pages and leave them in the system
2275 	 * unlocked.
2276 	 */
2277 
2278 	ASSERT(err != -2 || ((pg_idx == 0) && upsize));
2279 
2280 	VM_STAT_COND_ADD(err > 0, anonvmstats.getpages[22]);
2281 	VM_STAT_COND_ADD(err == -1, anonvmstats.getpages[23]);
2282 	VM_STAT_COND_ADD(err == -2, anonvmstats.getpages[24]);
2283 
2284 	if (prealloc) {
2285 		conpp = NULL;
2286 		if (pg_idx > 0) {
2287 			VM_STAT_ADD(anonvmstats.getpages[25]);
2288 			for (i = 0; i < pgcnt; i++) {
2289 				pp = ppa[i];
2290 				ASSERT(PAGE_EXCL(pp));
2291 				ASSERT(pp->p_szc == szc);
2292 				pp->p_szc = 0;
2293 			}
2294 			for (i = 0; i < pg_idx; i++) {
2295 				ASSERT(!hat_page_is_mapped(ppa[i]));
2296 				page_unlock(ppa[i]);
2297 			}
2298 			/*
2299 			 * Now free up the remaining unused constituent
2300 			 * pages.
2301 			 */
2302 			while (pg_idx < pgcnt) {
2303 				ASSERT(!hat_page_is_mapped(ppa[pg_idx]));
2304 				page_free(ppa[pg_idx], 0);
2305 				pg_idx++;
2306 			}
2307 		} else {
2308 			VM_STAT_ADD(anonvmstats.getpages[26]);
2309 			page_free_pages(ppa[0]);
2310 		}
2311 	} else {
2312 		VM_STAT_ADD(anonvmstats.getpages[27]);
2313 		ASSERT(err > 0);
2314 		for (i = 0; i < pg_idx; i++)
2315 			page_unlock(ppa[i]);
2316 	}
2317 	ASSERT(conpp == NULL);
2318 	if (err != -1)
2319 		return (err);
2320 	/*
2321 	 * we are here because we failed to relocate.
2322 	 */
2323 	ASSERT(prealloc);
2324 	if (brkcow == 0 || szc < seg->s_szc ||
2325 	    !anon_szcshare(amp->ahp, start_idx)) {
2326 		VM_STAT_ADD(anonvmstats.getpages[28]);
2327 		return (-1);
2328 	}
2329 	VM_STAT_ADD(anonvmstats.getpages[29]);
2330 	goto docow;
2331 }
2332 
2333 
2334 /*
2335  * Turn a reference to an object or shared anon page
2336  * into a private page with a copy of the data from the
2337  * original page which is always locked by the caller.
2338  * This routine unloads the translation and unlocks the
2339  * original page, if it isn't being stolen, before returning
2340  * to the caller.
2341  *
2342  * NOTE:  The original anon slot is not freed by this routine
2343  *	  It must be freed by the caller while holding the
2344  *	  "anon_map" lock to prevent races which can occur if
2345  *	  a process has multiple lwps in its address space.
2346  */
2347 page_t *
2348 anon_private(
2349 	struct anon **app,
2350 	struct seg *seg,
2351 	caddr_t addr,
2352 	uint_t	prot,
2353 	page_t *opp,
2354 	int oppflags,
2355 	struct cred *cred)
2356 {
2357 	struct anon *old = *app;
2358 	struct anon *new;
2359 	page_t *pp = NULL;
2360 	struct vnode *vp;
2361 	anoff_t off;
2362 	page_t *anon_pl[1 + 1];
2363 	int err;
2364 
2365 	if (oppflags & STEAL_PAGE)
2366 		ASSERT(PAGE_EXCL(opp));
2367 	else
2368 		ASSERT(PAGE_LOCKED(opp));
2369 
2370 	CPU_STATS_ADD_K(vm, cow_fault, 1);
2371 
2372 	/* Kernel probe */
2373 	TNF_PROBE_1(anon_private, "vm pagefault", /* CSTYLED */,
2374 		tnf_opaque,	address,	addr);
2375 
2376 	*app = new = anon_alloc(NULL, 0);
2377 	swap_xlate(new, &vp, &off);
2378 
2379 	if (oppflags & STEAL_PAGE) {
2380 		page_rename(opp, vp, (u_offset_t)off);
2381 		pp = opp;
2382 		TRACE_5(TR_FAC_VM, TR_ANON_PRIVATE,
2383 		    "anon_private:seg %p addr %x pp %p vp %p off %lx",
2384 		    seg, addr, pp, vp, off);
2385 		hat_setmod(pp);
2386 
2387 		/* bug 4026339 */
2388 		page_downgrade(pp);
2389 		return (pp);
2390 	}
2391 
2392 	/*
2393 	 * Call the VOP_GETPAGE routine to create the page, thereby
2394 	 * enabling the vnode driver to allocate any filesystem
2395 	 * space (e.g., disk block allocation for UFS).  This also
2396 	 * prevents more than one page from being added to the
2397 	 * vnode at the same time.
2398 	 */
2399 	err = VOP_GETPAGE(vp, (u_offset_t)off, PAGESIZE, NULL,
2400 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred, NULL);
2401 	if (err)
2402 		goto out;
2403 
2404 	pp = anon_pl[0];
2405 
2406 	/*
2407 	 * If the original page was locked, we need to move the lock
2408 	 * to the new page by transfering 'cowcnt/lckcnt' of the original
2409 	 * page to 'cowcnt/lckcnt' of the new page.
2410 	 *
2411 	 * See Statement at the beginning of segvn_lockop() and
2412 	 * comments in page_pp_useclaim() regarding the way
2413 	 * cowcnts/lckcnts are handled.
2414 	 *
2415 	 * Also availrmem must be decremented up front for read only mapping
2416 	 * before calling page_pp_useclaim. page_pp_useclaim will bump it back
2417 	 * if availrmem did not need to be decremented after all.
2418 	 */
2419 	if (oppflags & LOCK_PAGE) {
2420 		if ((prot & PROT_WRITE) == 0) {
2421 			mutex_enter(&freemem_lock);
2422 			if (availrmem > pages_pp_maximum) {
2423 				availrmem--;
2424 				pages_useclaim++;
2425 			} else {
2426 				mutex_exit(&freemem_lock);
2427 				goto out;
2428 			}
2429 			mutex_exit(&freemem_lock);
2430 		}
2431 		page_pp_useclaim(opp, pp, prot & PROT_WRITE);
2432 	}
2433 
2434 	/*
2435 	 * Now copy the contents from the original page,
2436 	 * which is locked and loaded in the MMU by
2437 	 * the caller to prevent yet another page fault.
2438 	 */
2439 	/* XXX - should set mod bit in here */
2440 	if (ppcopy(opp, pp) == 0) {
2441 		/*
2442 		 * Before ppcopy could hanlde UE or other faults, we
2443 		 * would have panicked here, and still have no option
2444 		 * but to do so now.
2445 		 */
2446 		panic("anon_private, ppcopy failed, opp = 0x%p, pp = 0x%p",
2447 		    (void *)opp, (void *)pp);
2448 	}
2449 
2450 	hat_setrefmod(pp);		/* mark as modified */
2451 
2452 	/*
2453 	 * Unload the old translation.
2454 	 */
2455 	hat_unload(seg->s_as->a_hat, addr, PAGESIZE, HAT_UNLOAD);
2456 
2457 	/*
2458 	 * Free unmapped, unmodified original page.
2459 	 * or release the lock on the original page,
2460 	 * otherwise the process will sleep forever in
2461 	 * anon_decref() waiting for the "exclusive" lock
2462 	 * on the page.
2463 	 */
2464 	(void) page_release(opp, 1);
2465 
2466 	/*
2467 	 * we are done with page creation so downgrade the new
2468 	 * page's selock to shared, this helps when multiple
2469 	 * as_fault(...SOFTLOCK...) are done to the same
2470 	 * page(aio)
2471 	 */
2472 	page_downgrade(pp);
2473 
2474 	/*
2475 	 * NOTE:  The original anon slot must be freed by the
2476 	 * caller while holding the "anon_map" lock, if we
2477 	 * copied away from an anonymous page.
2478 	 */
2479 	return (pp);
2480 
2481 out:
2482 	*app = old;
2483 	if (pp)
2484 		page_unlock(pp);
2485 	anon_decref(new);
2486 	page_unlock(opp);
2487 	return ((page_t *)NULL);
2488 }
2489 
2490 int
2491 anon_map_privatepages(
2492 	struct anon_map *amp,
2493 	ulong_t	start_idx,
2494 	uint_t	szc,
2495 	struct seg *seg,
2496 	caddr_t addr,
2497 	uint_t	prot,
2498 	page_t	*ppa[],
2499 	struct vpage vpage[],
2500 	int anypgsz,
2501 	int pgflags,
2502 	struct cred *cred)
2503 {
2504 	pgcnt_t		pgcnt;
2505 	struct vnode	*vp;
2506 	anoff_t		off;
2507 	page_t		*pl[2], *conpp = NULL;
2508 	int		err;
2509 	int		prealloc = 1;
2510 	struct anon	*ap, *oldap;
2511 	caddr_t		vaddr;
2512 	page_t		*pplist, *pp;
2513 	ulong_t		pg_idx, an_idx;
2514 	spgcnt_t	nreloc = 0;
2515 	int		pagelock = 0;
2516 	kmutex_t	*ahmpages = NULL;
2517 #ifdef DEBUG
2518 	int		refcnt;
2519 #endif
2520 
2521 	ASSERT(szc != 0);
2522 	ASSERT(szc == seg->s_szc);
2523 
2524 	VM_STAT_ADD(anonvmstats.privatepages[0]);
2525 
2526 	pgcnt = page_get_pagecnt(szc);
2527 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
2528 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
2529 
2530 	ASSERT(amp != NULL);
2531 	ap = anon_get_ptr(amp->ahp, start_idx);
2532 	ASSERT(ap == NULL || ap->an_refcnt >= 1);
2533 
2534 	VM_STAT_COND_ADD(ap == NULL, anonvmstats.privatepages[1]);
2535 
2536 	/*
2537 	 * Now try and allocate the large page. If we fail then just
2538 	 * let VOP_GETPAGE give us PAGESIZE pages. Normally we let
2539 	 * the caller make this decision but to avoid added complexity
2540 	 * it's simplier to handle that case here.
2541 	 */
2542 	if (anypgsz == -1) {
2543 		VM_STAT_ADD(anonvmstats.privatepages[2]);
2544 		prealloc = 0;
2545 	} else if (page_alloc_pages(anon_vp, seg, addr, &pplist, NULL, szc,
2546 	    anypgsz, pgflags) != 0) {
2547 		VM_STAT_ADD(anonvmstats.privatepages[3]);
2548 		prealloc = 0;
2549 	}
2550 
2551 	/*
2552 	 * make the decrement of all refcnts of all
2553 	 * anon slots of a large page appear atomic by
2554 	 * getting an anonpages_hash_lock for the
2555 	 * first anon slot of a large page.
2556 	 */
2557 	if (ap != NULL) {
2558 		ahmpages = APH_MUTEX(ap->an_vp, ap->an_off);
2559 		mutex_enter(ahmpages);
2560 		if (ap->an_refcnt == 1) {
2561 			VM_STAT_ADD(anonvmstats.privatepages[4]);
2562 			ASSERT(!anon_share(amp->ahp, start_idx, pgcnt));
2563 			mutex_exit(ahmpages);
2564 
2565 			if (prealloc) {
2566 				page_free_replacement_page(pplist);
2567 				page_create_putback(pgcnt);
2568 			}
2569 			ASSERT(ppa[0]->p_szc <= szc);
2570 			if (ppa[0]->p_szc == szc) {
2571 				VM_STAT_ADD(anonvmstats.privatepages[5]);
2572 				return (0);
2573 			}
2574 			for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2575 				ASSERT(ppa[pg_idx] != NULL);
2576 				page_unlock(ppa[pg_idx]);
2577 			}
2578 			return (-1);
2579 		}
2580 	}
2581 
2582 	/*
2583 	 * If we are passed in the vpage array and this is
2584 	 * not PROT_WRITE then we need to decrement availrmem
2585 	 * up front before we try anything. If we need to and
2586 	 * can't decrement availrmem then its better to fail now
2587 	 * than in the middle of processing the new large page.
2588 	 * page_pp_usclaim() on behalf of each constituent page
2589 	 * below will adjust availrmem back for the cases not needed.
2590 	 */
2591 	if (vpage != NULL && (prot & PROT_WRITE) == 0) {
2592 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2593 			if (VPP_ISPPLOCK(&vpage[pg_idx])) {
2594 				pagelock = 1;
2595 				break;
2596 			}
2597 		}
2598 		if (pagelock) {
2599 			VM_STAT_ADD(anonvmstats.privatepages[6]);
2600 			mutex_enter(&freemem_lock);
2601 			if (availrmem >= pages_pp_maximum + pgcnt) {
2602 				availrmem -= pgcnt;
2603 				pages_useclaim += pgcnt;
2604 			} else {
2605 				VM_STAT_ADD(anonvmstats.privatepages[7]);
2606 				mutex_exit(&freemem_lock);
2607 				if (ahmpages != NULL) {
2608 					mutex_exit(ahmpages);
2609 				}
2610 				if (prealloc) {
2611 					page_free_replacement_page(pplist);
2612 					page_create_putback(pgcnt);
2613 				}
2614 				for (pg_idx = 0; pg_idx < pgcnt; pg_idx++)
2615 					if (ppa[pg_idx] != NULL)
2616 						page_unlock(ppa[pg_idx]);
2617 				return (ENOMEM);
2618 			}
2619 			mutex_exit(&freemem_lock);
2620 		}
2621 	}
2622 
2623 	CPU_STATS_ADD_K(vm, cow_fault, pgcnt);
2624 
2625 	VM_STAT_ADD(anonvmstats.privatepages[8]);
2626 
2627 	an_idx = start_idx;
2628 	pg_idx = 0;
2629 	vaddr = addr;
2630 	for (; pg_idx < pgcnt; pg_idx++, an_idx++, vaddr += PAGESIZE) {
2631 		ASSERT(ppa[pg_idx] != NULL);
2632 		oldap = anon_get_ptr(amp->ahp, an_idx);
2633 		ASSERT(ahmpages != NULL || oldap == NULL);
2634 		ASSERT(ahmpages == NULL || oldap != NULL);
2635 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2636 		ASSERT(ahmpages == NULL || pg_idx != 0 ||
2637 		    (refcnt = oldap->an_refcnt));
2638 		ASSERT(ahmpages == NULL || pg_idx == 0 ||
2639 		    refcnt == oldap->an_refcnt);
2640 
2641 		ap = anon_alloc(NULL, 0);
2642 
2643 		swap_xlate(ap, &vp, &off);
2644 
2645 		/*
2646 		 * Now setup our preallocated page to pass down to
2647 		 * swap_getpage().
2648 		 */
2649 		if (prealloc) {
2650 			pp = pplist;
2651 			page_sub(&pplist, pp);
2652 			conpp = pp;
2653 		}
2654 
2655 		err = swap_getconpage(vp, (u_offset_t)off, PAGESIZE, NULL, pl,
2656 		    PAGESIZE, conpp, NULL, &nreloc, seg, vaddr,
2657 		    S_CREATE, cred);
2658 
2659 		/*
2660 		 * Impossible to fail this is S_CREATE.
2661 		 */
2662 		if (err)
2663 			panic("anon_map_privatepages: VOP_GETPAGE failed");
2664 
2665 		ASSERT(prealloc ? pp == pl[0] : pl[0]->p_szc == 0);
2666 		ASSERT(prealloc == 0 || nreloc == 1);
2667 
2668 		pp = pl[0];
2669 
2670 		/*
2671 		 * If the original page was locked, we need to move
2672 		 * the lock to the new page by transfering
2673 		 * 'cowcnt/lckcnt' of the original page to 'cowcnt/lckcnt'
2674 		 * of the new page. pg_idx can be used to index
2675 		 * into the vpage array since the caller will guarentee
2676 		 * that vpage struct passed in corresponds to addr
2677 		 * and forward.
2678 		 */
2679 		if (vpage != NULL && VPP_ISPPLOCK(&vpage[pg_idx])) {
2680 			page_pp_useclaim(ppa[pg_idx], pp, prot & PROT_WRITE);
2681 		} else if (pagelock) {
2682 			mutex_enter(&freemem_lock);
2683 			availrmem++;
2684 			pages_useclaim--;
2685 			mutex_exit(&freemem_lock);
2686 		}
2687 
2688 		/*
2689 		 * Now copy the contents from the original page.
2690 		 */
2691 		if (ppcopy(ppa[pg_idx], pp) == 0) {
2692 			/*
2693 			 * Before ppcopy could hanlde UE or other faults, we
2694 			 * would have panicked here, and still have no option
2695 			 * but to do so now.
2696 			 */
2697 			panic("anon_map_privatepages, ppcopy failed");
2698 		}
2699 
2700 		hat_setrefmod(pp);		/* mark as modified */
2701 
2702 		/*
2703 		 * Release the lock on the original page,
2704 		 * derement the old slot, and down grade the lock
2705 		 * on the new copy.
2706 		 */
2707 		page_unlock(ppa[pg_idx]);
2708 
2709 		if (!prealloc)
2710 			page_downgrade(pp);
2711 
2712 		ppa[pg_idx] = pp;
2713 
2714 		/*
2715 		 * Now reflect the copy in the new anon array.
2716 		 */
2717 		ASSERT(ahmpages == NULL || oldap->an_refcnt > 1);
2718 		if (oldap != NULL)
2719 			anon_decref(oldap);
2720 		(void) anon_set_ptr(amp->ahp, an_idx, ap, ANON_SLEEP);
2721 	}
2722 
2723 	/*
2724 	 * Unload the old large page translation.
2725 	 */
2726 	hat_unload(seg->s_as->a_hat, addr, pgcnt << PAGESHIFT, HAT_UNLOAD);
2727 
2728 	if (ahmpages != NULL) {
2729 		mutex_exit(ahmpages);
2730 	}
2731 	ASSERT(prealloc == 0 || pplist == NULL);
2732 	if (prealloc) {
2733 		VM_STAT_ADD(anonvmstats.privatepages[9]);
2734 		for (pg_idx = 0; pg_idx < pgcnt; pg_idx++) {
2735 			page_downgrade(ppa[pg_idx]);
2736 		}
2737 	}
2738 
2739 	return (0);
2740 }
2741 
2742 /*
2743  * Allocate a private zero-filled anon page.
2744  */
2745 page_t *
2746 anon_zero(struct seg *seg, caddr_t addr, struct anon **app, struct cred *cred)
2747 {
2748 	struct anon *ap;
2749 	page_t *pp;
2750 	struct vnode *vp;
2751 	anoff_t off;
2752 	page_t *anon_pl[1 + 1];
2753 	int err;
2754 
2755 	/* Kernel probe */
2756 	TNF_PROBE_1(anon_zero, "vm pagefault", /* CSTYLED */,
2757 		tnf_opaque,	address,	addr);
2758 
2759 	*app = ap = anon_alloc(NULL, 0);
2760 	swap_xlate(ap, &vp, &off);
2761 
2762 	/*
2763 	 * Call the VOP_GETPAGE routine to create the page, thereby
2764 	 * enabling the vnode driver to allocate any filesystem
2765 	 * dependent structures (e.g., disk block allocation for UFS).
2766 	 * This also prevents more than on page from being added to
2767 	 * the vnode at the same time since it is locked.
2768 	 */
2769 	err = VOP_GETPAGE(vp, off, PAGESIZE, NULL,
2770 	    anon_pl, PAGESIZE, seg, addr, S_CREATE, cred, NULL);
2771 	if (err) {
2772 		*app = NULL;
2773 		anon_decref(ap);
2774 		return (NULL);
2775 	}
2776 	pp = anon_pl[0];
2777 
2778 	pagezero(pp, 0, PAGESIZE);	/* XXX - should set mod bit */
2779 	page_downgrade(pp);
2780 	CPU_STATS_ADD_K(vm, zfod, 1);
2781 	hat_setrefmod(pp);	/* mark as modified so pageout writes back */
2782 	return (pp);
2783 }
2784 
2785 
2786 /*
2787  * Allocate array of private zero-filled anon pages for empty slots
2788  * and kept pages for non empty slots within given range.
2789  *
2790  * NOTE: This rontine will try and use large pages
2791  *	if available and supported by underlying platform.
2792  */
2793 int
2794 anon_map_createpages(
2795 	struct anon_map *amp,
2796 	ulong_t start_index,
2797 	size_t len,
2798 	page_t *ppa[],
2799 	struct seg *seg,
2800 	caddr_t addr,
2801 	enum seg_rw rw,
2802 	struct cred *cred)
2803 {
2804 
2805 	struct anon	*ap;
2806 	struct vnode	*ap_vp;
2807 	page_t		*pp, *pplist, *anon_pl[1 + 1], *conpp = NULL;
2808 	int		err = 0;
2809 	ulong_t		p_index, index;
2810 	pgcnt_t		npgs, pg_cnt;
2811 	spgcnt_t	nreloc = 0;
2812 	uint_t		l_szc, szc, prot;
2813 	anoff_t		ap_off;
2814 	size_t		pgsz;
2815 	lgrp_t		*lgrp;
2816 	kmutex_t	*ahm;
2817 
2818 	/*
2819 	 * XXX For now only handle S_CREATE.
2820 	 */
2821 	ASSERT(rw == S_CREATE);
2822 
2823 	index	= start_index;
2824 	p_index	= 0;
2825 	npgs = btopr(len);
2826 
2827 	/*
2828 	 * If this platform supports multiple page sizes
2829 	 * then try and allocate directly from the free
2830 	 * list for pages larger than PAGESIZE.
2831 	 *
2832 	 * NOTE:When we have page_create_ru we can stop
2833 	 *	directly allocating from the freelist.
2834 	 */
2835 	l_szc  = seg->s_szc;
2836 	ANON_LOCK_ENTER(&amp->a_rwlock, RW_WRITER);
2837 	while (npgs) {
2838 
2839 		/*
2840 		 * if anon slot already exists
2841 		 *   (means page has been created)
2842 		 * so 1) look up the page
2843 		 *    2) if the page is still in memory, get it.
2844 		 *    3) if not, create a page and
2845 		 *	  page in from physical swap device.
2846 		 * These are done in anon_getpage().
2847 		 */
2848 		ap = anon_get_ptr(amp->ahp, index);
2849 		if (ap) {
2850 			err = anon_getpage(&ap, &prot, anon_pl, PAGESIZE,
2851 			    seg, addr, S_READ, cred);
2852 			if (err) {
2853 				ANON_LOCK_EXIT(&amp->a_rwlock);
2854 				panic("anon_map_createpages: anon_getpage");
2855 			}
2856 			pp = anon_pl[0];
2857 			ppa[p_index++] = pp;
2858 
2859 			/*
2860 			 * an_pvp can become non-NULL after SysV's page was
2861 			 * paged out before ISM was attached to this SysV
2862 			 * shared memory segment. So free swap slot if needed.
2863 			 */
2864 			if (ap->an_pvp != NULL) {
2865 				page_io_lock(pp);
2866 				ahm = AH_MUTEX(ap->an_vp, ap->an_off);
2867 				mutex_enter(ahm);
2868 				if (ap->an_pvp != NULL) {
2869 					swap_phys_free(ap->an_pvp,
2870 					    ap->an_poff, PAGESIZE);
2871 					ap->an_pvp = NULL;
2872 					ap->an_poff = 0;
2873 					mutex_exit(ahm);
2874 					hat_setmod(pp);
2875 				} else {
2876 					mutex_exit(ahm);
2877 				}
2878 				page_io_unlock(pp);
2879 			}
2880 
2881 			addr += PAGESIZE;
2882 			index++;
2883 			npgs--;
2884 			continue;
2885 		}
2886 		/*
2887 		 * Now try and allocate the largest page possible
2888 		 * for the current address and range.
2889 		 * Keep dropping down in page size until:
2890 		 *
2891 		 *	1) Properly aligned
2892 		 *	2) Does not overlap existing anon pages
2893 		 *	3) Fits in remaining range.
2894 		 *	4) able to allocate one.
2895 		 *
2896 		 * NOTE: XXX When page_create_ru is completed this code
2897 		 *	 will change.
2898 		 */
2899 		szc    = l_szc;
2900 		pplist = NULL;
2901 		pg_cnt = 0;
2902 		while (szc) {
2903 			pgsz	= page_get_pagesize(szc);
2904 			pg_cnt	= pgsz >> PAGESHIFT;
2905 			if (IS_P2ALIGNED(addr, pgsz) && pg_cnt <= npgs &&
2906 			    anon_pages(amp->ahp, index, pg_cnt) == 0) {
2907 				/*
2908 				 * XXX
2909 				 * Since we are faking page_create()
2910 				 * we also need to do the freemem and
2911 				 * pcf accounting.
2912 				 */
2913 				(void) page_create_wait(pg_cnt, PG_WAIT);
2914 
2915 				/*
2916 				 * Get lgroup to allocate next page of shared
2917 				 * memory from and use it to specify where to
2918 				 * allocate the physical memory
2919 				 */
2920 				lgrp = lgrp_mem_choose(seg, addr, pgsz);
2921 
2922 				pplist = page_get_freelist(
2923 				    anon_vp, (u_offset_t)0, seg,
2924 				    addr, pgsz, 0, lgrp);
2925 
2926 				if (pplist == NULL) {
2927 					page_create_putback(pg_cnt);
2928 				}
2929 
2930 				/*
2931 				 * If a request for a page of size
2932 				 * larger than PAGESIZE failed
2933 				 * then don't try that size anymore.
2934 				 */
2935 				if (pplist == NULL) {
2936 					l_szc = szc - 1;
2937 				} else {
2938 					break;
2939 				}
2940 			}
2941 			szc--;
2942 		}
2943 
2944 		/*
2945 		 * If just using PAGESIZE pages then don't
2946 		 * directly allocate from the free list.
2947 		 */
2948 		if (pplist == NULL) {
2949 			ASSERT(szc == 0);
2950 			pp = anon_zero(seg, addr, &ap, cred);
2951 			if (pp == NULL) {
2952 				ANON_LOCK_EXIT(&amp->a_rwlock);
2953 				panic("anon_map_createpages: anon_zero");
2954 			}
2955 			ppa[p_index++] = pp;
2956 
2957 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
2958 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
2959 
2960 			addr += PAGESIZE;
2961 			index++;
2962 			npgs--;
2963 			continue;
2964 		}
2965 
2966 		/*
2967 		 * pplist is a list of pg_cnt PAGESIZE pages.
2968 		 * These pages are locked SE_EXCL since they
2969 		 * came directly off the free list.
2970 		 */
2971 		ASSERT(IS_P2ALIGNED(pg_cnt, pg_cnt));
2972 		ASSERT(IS_P2ALIGNED(index, pg_cnt));
2973 		ASSERT(conpp == NULL);
2974 		while (pg_cnt--) {
2975 
2976 			ap = anon_alloc(NULL, 0);
2977 			swap_xlate(ap, &ap_vp, &ap_off);
2978 
2979 			ASSERT(pplist != NULL);
2980 			pp = pplist;
2981 			page_sub(&pplist, pp);
2982 			PP_CLRFREE(pp);
2983 			PP_CLRAGED(pp);
2984 			conpp = pp;
2985 
2986 			err = swap_getconpage(ap_vp, ap_off, PAGESIZE,
2987 			    (uint_t *)NULL, anon_pl, PAGESIZE, conpp, NULL,
2988 			    &nreloc, seg, addr, S_CREATE, cred);
2989 
2990 			if (err) {
2991 				ANON_LOCK_EXIT(&amp->a_rwlock);
2992 				panic("anon_map_createpages: S_CREATE");
2993 			}
2994 
2995 			ASSERT(anon_pl[0] == pp);
2996 			ASSERT(nreloc == 1);
2997 			pagezero(pp, 0, PAGESIZE);
2998 			CPU_STATS_ADD_K(vm, zfod, 1);
2999 			hat_setrefmod(pp);
3000 
3001 			ASSERT(anon_get_ptr(amp->ahp, index) == NULL);
3002 			(void) anon_set_ptr(amp->ahp, index, ap, ANON_SLEEP);
3003 
3004 			ppa[p_index++] = pp;
3005 
3006 			addr += PAGESIZE;
3007 			index++;
3008 			npgs--;
3009 		}
3010 		conpp = NULL;
3011 		pg_cnt	= pgsz >> PAGESHIFT;
3012 		p_index = p_index - pg_cnt;
3013 		while (pg_cnt--) {
3014 			page_downgrade(ppa[p_index++]);
3015 		}
3016 	}
3017 	ANON_LOCK_EXIT(&amp->a_rwlock);
3018 	return (0);
3019 }
3020 
3021 static int
3022 anon_try_demote_pages(
3023 	struct anon_hdr *ahp,
3024 	ulong_t sidx,
3025 	uint_t szc,
3026 	page_t **ppa,
3027 	int private)
3028 {
3029 	struct anon	*ap;
3030 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
3031 	page_t		*pp;
3032 	pgcnt_t		i;
3033 	kmutex_t	*ahmpages = NULL;
3034 	int		root = 0;
3035 	pgcnt_t		npgs;
3036 	pgcnt_t		curnpgs = 0;
3037 	size_t		ppasize = 0;
3038 
3039 	ASSERT(szc != 0);
3040 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
3041 	ASSERT(IS_P2ALIGNED(sidx, pgcnt));
3042 	ASSERT(sidx < ahp->size);
3043 
3044 	if (ppa == NULL) {
3045 		ppasize = pgcnt * sizeof (page_t *);
3046 		ppa = kmem_alloc(ppasize, KM_SLEEP);
3047 	}
3048 
3049 	ap = anon_get_ptr(ahp, sidx);
3050 	if (ap != NULL && private) {
3051 		VM_STAT_ADD(anonvmstats.demotepages[1]);
3052 		ahmpages = APH_MUTEX(ap->an_vp, ap->an_off);
3053 		mutex_enter(ahmpages);
3054 	}
3055 
3056 	if (ap != NULL && ap->an_refcnt > 1) {
3057 		if (ahmpages != NULL) {
3058 			VM_STAT_ADD(anonvmstats.demotepages[2]);
3059 			mutex_exit(ahmpages);
3060 		}
3061 		if (ppasize != 0) {
3062 			kmem_free(ppa, ppasize);
3063 		}
3064 		return (0);
3065 	}
3066 	if (ahmpages != NULL) {
3067 		mutex_exit(ahmpages);
3068 	}
3069 	if (ahp->size - sidx < pgcnt) {
3070 		ASSERT(private == 0);
3071 		pgcnt = ahp->size - sidx;
3072 	}
3073 	for (i = 0; i < pgcnt; i++, sidx++) {
3074 		ap = anon_get_ptr(ahp, sidx);
3075 		if (ap != NULL) {
3076 			if (ap->an_refcnt != 1) {
3077 				panic("anon_try_demote_pages: an_refcnt != 1");
3078 			}
3079 			pp = ppa[i] = page_lookup(ap->an_vp, ap->an_off,
3080 			    SE_EXCL);
3081 			if (pp != NULL) {
3082 				(void) hat_pageunload(pp,
3083 				    HAT_FORCE_PGUNLOAD);
3084 			}
3085 		} else {
3086 			ppa[i] = NULL;
3087 		}
3088 	}
3089 	for (i = 0; i < pgcnt; i++) {
3090 		if ((pp = ppa[i]) != NULL && pp->p_szc != 0) {
3091 			ASSERT(pp->p_szc <= szc);
3092 			if (!root) {
3093 				VM_STAT_ADD(anonvmstats.demotepages[3]);
3094 				if (curnpgs != 0)
3095 					panic("anon_try_demote_pages: "
3096 					    "bad large page");
3097 
3098 				root = 1;
3099 				curnpgs = npgs =
3100 				    page_get_pagecnt(pp->p_szc);
3101 
3102 				ASSERT(npgs <= pgcnt);
3103 				ASSERT(IS_P2ALIGNED(npgs, npgs));
3104 				ASSERT(!(page_pptonum(pp) & (npgs - 1)));
3105 			} else {
3106 				ASSERT(i > 0);
3107 				ASSERT(page_pptonum(pp) - 1 ==
3108 				    page_pptonum(ppa[i - 1]));
3109 				if ((page_pptonum(pp) & (npgs - 1)) ==
3110 				    npgs - 1)
3111 					root = 0;
3112 			}
3113 			ASSERT(PAGE_EXCL(pp));
3114 			pp->p_szc = 0;
3115 			ASSERT(curnpgs > 0);
3116 			curnpgs--;
3117 		}
3118 	}
3119 	if (root != 0 || curnpgs != 0)
3120 		panic("anon_try_demote_pages: bad large page");
3121 
3122 	for (i = 0; i < pgcnt; i++) {
3123 		if ((pp = ppa[i]) != NULL) {
3124 			ASSERT(!hat_page_is_mapped(pp));
3125 			ASSERT(pp->p_szc == 0);
3126 			page_unlock(pp);
3127 		}
3128 	}
3129 	if (ppasize != 0) {
3130 		kmem_free(ppa, ppasize);
3131 	}
3132 	return (1);
3133 }
3134 
3135 /*
3136  * anon_map_demotepages() can only be called by MAP_PRIVATE segments.
3137  */
3138 int
3139 anon_map_demotepages(
3140 	struct anon_map *amp,
3141 	ulong_t	start_idx,
3142 	struct seg *seg,
3143 	caddr_t addr,
3144 	uint_t prot,
3145 	struct vpage vpage[],
3146 	struct cred *cred)
3147 {
3148 	struct anon	*ap;
3149 	uint_t		szc = seg->s_szc;
3150 	pgcnt_t		pgcnt = page_get_pagecnt(szc);
3151 	size_t		ppasize = pgcnt * sizeof (page_t *);
3152 	page_t		**ppa = kmem_alloc(ppasize, KM_SLEEP);
3153 	page_t		*pp;
3154 	page_t		*pl[2];
3155 	pgcnt_t		i, pg_idx;
3156 	ulong_t		an_idx;
3157 	caddr_t		vaddr;
3158 	int 		err;
3159 	int		retry = 0;
3160 	uint_t		vpprot;
3161 
3162 	ASSERT(RW_WRITE_HELD(&amp->a_rwlock));
3163 	ASSERT(IS_P2ALIGNED(pgcnt, pgcnt));
3164 	ASSERT(IS_P2ALIGNED(start_idx, pgcnt));
3165 	ASSERT(ppa != NULL);
3166 	ASSERT(szc != 0);
3167 	ASSERT(szc == amp->a_szc);
3168 
3169 	VM_STAT_ADD(anonvmstats.demotepages[0]);
3170 
3171 top:
3172 	if (anon_try_demote_pages(amp->ahp, start_idx, szc, ppa, 1)) {
3173 		kmem_free(ppa, ppasize);
3174 		return (0);
3175 	}
3176 
3177 	VM_STAT_ADD(anonvmstats.demotepages[4]);
3178 
3179 	ASSERT(retry == 0); /* we can be here only once */
3180 
3181 	vaddr = addr;
3182 	for (pg_idx = 0, an_idx = start_idx; pg_idx < pgcnt;
3183 	    pg_idx++, an_idx++, vaddr += PAGESIZE) {
3184 		ap = anon_get_ptr(amp->ahp, an_idx);
3185 		if (ap == NULL)
3186 			panic("anon_map_demotepages: no anon slot");
3187 		err = anon_getpage(&ap, &vpprot, pl, PAGESIZE, seg, vaddr,
3188 		    S_READ, cred);
3189 		if (err) {
3190 			for (i = 0; i < pg_idx; i++) {
3191 				if ((pp = ppa[i]) != NULL)
3192 					page_unlock(pp);
3193 			}
3194 			kmem_free(ppa, ppasize);
3195 			return (err);
3196 		}
3197 		ppa[pg_idx] = pl[0];
3198 	}
3199 
3200 	err = anon_map_privatepages(amp, start_idx, szc, seg, addr, prot, ppa,
3201 	    vpage, -1, 0, cred);
3202 	if (err > 0) {
3203 		VM_STAT_ADD(anonvmstats.demotepages[5]);
3204 		kmem_free(ppa, ppasize);
3205 		return (err);
3206 	}
3207 	ASSERT(err == 0 || err == -1);
3208 	if (err == -1) {
3209 		VM_STAT_ADD(anonvmstats.demotepages[6]);
3210 		retry = 1;
3211 		goto top;
3212 	}
3213 	for (i = 0; i < pgcnt; i++) {
3214 		ASSERT(ppa[i] != NULL);
3215 		if (ppa[i]->p_szc != 0)
3216 			retry = 1;
3217 		page_unlock(ppa[i]);
3218 	}
3219 	if (retry) {
3220 		VM_STAT_ADD(anonvmstats.demotepages[7]);
3221 		goto top;
3222 	}
3223 
3224 	VM_STAT_ADD(anonvmstats.demotepages[8]);
3225 
3226 	kmem_free(ppa, ppasize);
3227 
3228 	return (0);
3229 }
3230 
3231 /*
3232  * Free pages of shared anon map. It's assumed that anon maps don't share anon
3233  * structures with private anon maps. Therefore all anon structures should
3234  * have at most one reference at this point. This means underlying pages can
3235  * be exclusively locked and demoted or freed.  If not freeing the entire
3236  * large pages demote the ends of the region we free to be able to free
3237  * subpages. Page roots correspond to aligned index positions in anon map.
3238  */
3239 void
3240 anon_shmap_free_pages(struct anon_map *amp, ulong_t sidx, size_t len)
3241 {
3242 	ulong_t eidx = sidx + btopr(len);
3243 	pgcnt_t pages = page_get_pagecnt(amp->a_szc);
3244 	struct anon_hdr *ahp = amp->ahp;
3245 	ulong_t tidx;
3246 	size_t size;
3247 	ulong_t sidx_aligned;
3248 	ulong_t eidx_aligned;
3249 
3250 	ASSERT(ANON_WRITE_HELD(&amp->a_rwlock));
3251 	ASSERT(amp->refcnt <= 1);
3252 	ASSERT(amp->a_szc > 0);
3253 	ASSERT(eidx <= ahp->size);
3254 	ASSERT(!anon_share(ahp, sidx, btopr(len)));
3255 
3256 	if (len == 0) {	/* XXX */
3257 		return;
3258 	}
3259 
3260 	sidx_aligned = P2ALIGN(sidx, pages);
3261 	if (sidx_aligned != sidx ||
3262 	    (eidx < sidx_aligned + pages && eidx < ahp->size)) {
3263 		if (!anon_try_demote_pages(ahp, sidx_aligned,
3264 		    amp->a_szc, NULL, 0)) {
3265 			panic("anon_shmap_free_pages: demote failed");
3266 		}
3267 		size = (eidx <= sidx_aligned + pages) ? (eidx - sidx) :
3268 		    P2NPHASE(sidx, pages);
3269 		size <<= PAGESHIFT;
3270 		anon_free(ahp, sidx, size);
3271 		sidx = sidx_aligned + pages;
3272 		if (eidx <= sidx) {
3273 			return;
3274 		}
3275 	}
3276 	eidx_aligned = P2ALIGN(eidx, pages);
3277 	if (sidx < eidx_aligned) {
3278 		anon_free_pages(ahp, sidx,
3279 		    (eidx_aligned - sidx) << PAGESHIFT,
3280 		    amp->a_szc);
3281 		sidx = eidx_aligned;
3282 	}
3283 	ASSERT(sidx == eidx_aligned);
3284 	if (eidx == eidx_aligned) {
3285 		return;
3286 	}
3287 	tidx = eidx;
3288 	if (eidx != ahp->size && anon_get_next_ptr(ahp, &tidx) != NULL &&
3289 	    tidx - sidx < pages) {
3290 		if (!anon_try_demote_pages(ahp, sidx, amp->a_szc, NULL, 0)) {
3291 			panic("anon_shmap_free_pages: demote failed");
3292 		}
3293 		size = (eidx - sidx) << PAGESHIFT;
3294 		anon_free(ahp, sidx, size);
3295 	} else {
3296 		anon_free_pages(ahp, sidx, pages << PAGESHIFT, amp->a_szc);
3297 	}
3298 }
3299 
3300 /*
3301  * This routine should be called with amp's writer lock when there're no other
3302  * users of amp.  All pcache entries of this amp must have been already
3303  * inactivated. We must not drop a_rwlock here to prevent new users from
3304  * attaching to this amp.
3305  */
3306 void
3307 anonmap_purge(struct anon_map *amp)
3308 {
3309 	ASSERT(ANON_WRITE_HELD(&amp->a_rwlock));
3310 	ASSERT(amp->refcnt <= 1);
3311 
3312 	if (amp->a_softlockcnt != 0) {
3313 		seg_ppurge(NULL, amp, 0);
3314 	}
3315 
3316 	/*
3317 	 * Since all pcache entries were already inactive before this routine
3318 	 * was called seg_ppurge() couldn't return while there're still
3319 	 * entries that can be found via the list anchored at a_phead. So we
3320 	 * can assert this list is empty now. a_softlockcnt may be still non 0
3321 	 * if asynchronous thread that manages pcache already removed pcache
3322 	 * entries but hasn't unlocked the pages yet. If a_softlockcnt is non
3323 	 * 0 we just wait on a_purgecv for shamp_reclaim() to finish. Even if
3324 	 * a_softlockcnt is 0 we grab a_purgemtx to avoid freeing anon map
3325 	 * before shamp_reclaim() is done with it. a_purgemtx also taken by
3326 	 * shamp_reclaim() while a_softlockcnt was still not 0 acts as a
3327 	 * barrier that prevents anonmap_purge() to complete while
3328 	 * shamp_reclaim() may still be referencing this amp.
3329 	 */
3330 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3331 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3332 
3333 	mutex_enter(&amp->a_purgemtx);
3334 	while (amp->a_softlockcnt != 0) {
3335 		ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3336 		ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3337 		amp->a_purgewait = 1;
3338 		cv_wait(&amp->a_purgecv, &amp->a_purgemtx);
3339 	}
3340 	mutex_exit(&amp->a_purgemtx);
3341 
3342 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3343 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3344 	ASSERT(amp->a_softlockcnt == 0);
3345 }
3346 
3347 /*
3348  * Allocate and initialize an anon_map structure for seg
3349  * associating the given swap reservation with the new anon_map.
3350  */
3351 struct anon_map *
3352 anonmap_alloc(size_t size, size_t swresv, int flags)
3353 {
3354 	struct anon_map *amp;
3355 	int kmflags = (flags & ANON_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
3356 
3357 	amp = kmem_cache_alloc(anonmap_cache, kmflags);
3358 	if (amp == NULL) {
3359 		ASSERT(kmflags == KM_NOSLEEP);
3360 		return (NULL);
3361 	}
3362 
3363 	amp->ahp = anon_create(btopr(size), flags);
3364 	if (amp->ahp == NULL) {
3365 		ASSERT(flags == ANON_NOSLEEP);
3366 		kmem_cache_free(anonmap_cache, amp);
3367 		return (NULL);
3368 	}
3369 	amp->refcnt = 1;
3370 	amp->size = size;
3371 	amp->swresv = swresv;
3372 	amp->locality = 0;
3373 	amp->a_szc = 0;
3374 	amp->a_sp = NULL;
3375 	amp->a_softlockcnt = 0;
3376 	amp->a_purgewait = 0;
3377 	amp->a_phead.p_lnext = &amp->a_phead;
3378 	amp->a_phead.p_lprev = &amp->a_phead;
3379 
3380 	return (amp);
3381 }
3382 
3383 void
3384 anonmap_free(struct anon_map *amp)
3385 {
3386 	ASSERT(amp->ahp != NULL);
3387 	ASSERT(amp->refcnt == 0);
3388 	ASSERT(amp->a_softlockcnt == 0);
3389 	ASSERT(amp->a_phead.p_lnext == &amp->a_phead);
3390 	ASSERT(amp->a_phead.p_lprev == &amp->a_phead);
3391 
3392 	lgrp_shm_policy_fini(amp, NULL);
3393 	anon_release(amp->ahp, btopr(amp->size));
3394 	kmem_cache_free(anonmap_cache, amp);
3395 }
3396 
3397 /*
3398  * Returns true if the app array has some empty slots.
3399  * The offp and lenp parameters are in/out parameters.  On entry
3400  * these values represent the starting offset and length of the
3401  * mapping.  When true is returned, these values may be modified
3402  * to be the largest range which includes empty slots.
3403  */
3404 int
3405 non_anon(struct anon_hdr *ahp, ulong_t anon_idx, u_offset_t *offp,
3406 				size_t *lenp)
3407 {
3408 	ulong_t i, el;
3409 	ssize_t low, high;
3410 	struct anon *ap;
3411 
3412 	low = -1;
3413 	for (i = 0, el = *lenp; i < el; i += PAGESIZE, anon_idx++) {
3414 		ap = anon_get_ptr(ahp, anon_idx);
3415 		if (ap == NULL) {
3416 			if (low == -1)
3417 				low = i;
3418 			high = i;
3419 		}
3420 	}
3421 	if (low != -1) {
3422 		/*
3423 		 * Found at least one non-anon page.
3424 		 * Set up the off and len return values.
3425 		 */
3426 		if (low != 0)
3427 			*offp += low;
3428 		*lenp = high - low + PAGESIZE;
3429 		return (1);
3430 	}
3431 	return (0);
3432 }
3433 
3434 /*
3435  * Return a count of the number of existing anon pages in the anon array
3436  * app in the range (off, off+len). The array and slots must be guaranteed
3437  * stable by the caller.
3438  */
3439 pgcnt_t
3440 anon_pages(struct anon_hdr *ahp, ulong_t anon_index, pgcnt_t nslots)
3441 {
3442 	pgcnt_t cnt = 0;
3443 
3444 	while (nslots-- > 0) {
3445 		if ((anon_get_ptr(ahp, anon_index)) != NULL)
3446 			cnt++;
3447 		anon_index++;
3448 	}
3449 	return (cnt);
3450 }
3451 
3452 /*
3453  * Move reserved phys swap into memory swap (unreserve phys swap
3454  * and reserve mem swap by the same amount).
3455  * Used by segspt when it needs to lock reserved swap npages in memory
3456  */
3457 int
3458 anon_swap_adjust(pgcnt_t npages)
3459 {
3460 	pgcnt_t unlocked_mem_swap;
3461 
3462 	mutex_enter(&anoninfo_lock);
3463 
3464 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3465 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3466 
3467 	unlocked_mem_swap = k_anoninfo.ani_mem_resv
3468 	    - k_anoninfo.ani_locked_swap;
3469 	if (npages > unlocked_mem_swap) {
3470 		spgcnt_t adjusted_swap = npages - unlocked_mem_swap;
3471 
3472 		/*
3473 		 * if there is not enough unlocked mem swap we take missing
3474 		 * amount from phys swap and give it to mem swap
3475 		 */
3476 		if (!page_reclaim_mem(adjusted_swap, segspt_minfree, 1)) {
3477 			mutex_exit(&anoninfo_lock);
3478 			return (ENOMEM);
3479 		}
3480 
3481 		k_anoninfo.ani_mem_resv += adjusted_swap;
3482 		ASSERT(k_anoninfo.ani_phys_resv >= adjusted_swap);
3483 		k_anoninfo.ani_phys_resv -= adjusted_swap;
3484 
3485 		ANI_ADD(adjusted_swap);
3486 	}
3487 	k_anoninfo.ani_locked_swap += npages;
3488 
3489 	ASSERT(k_anoninfo.ani_mem_resv >= k_anoninfo.ani_locked_swap);
3490 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
3491 
3492 	mutex_exit(&anoninfo_lock);
3493 
3494 	return (0);
3495 }
3496 
3497 /*
3498  * 'unlocked' reserved mem swap so when it is unreserved it
3499  * can be moved back phys (disk) swap
3500  */
3501 void
3502 anon_swap_restore(pgcnt_t npages)
3503 {
3504 	mutex_enter(&anoninfo_lock);
3505 
3506 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3507 
3508 	ASSERT(k_anoninfo.ani_locked_swap >= npages);
3509 	k_anoninfo.ani_locked_swap -= npages;
3510 
3511 	ASSERT(k_anoninfo.ani_locked_swap <= k_anoninfo.ani_mem_resv);
3512 
3513 	mutex_exit(&anoninfo_lock);
3514 }
3515 
3516 /*
3517  * Return the pointer from the list for a
3518  * specified anon index.
3519  */
3520 ulong_t *
3521 anon_get_slot(struct anon_hdr *ahp, ulong_t an_idx)
3522 {
3523 	struct anon	**app;
3524 	void 		**ppp;
3525 
3526 	ASSERT(an_idx < ahp->size);
3527 
3528 	/*
3529 	 * Single level case.
3530 	 */
3531 	if ((ahp->size <= ANON_CHUNK_SIZE) || (ahp->flags & ANON_ALLOC_FORCE)) {
3532 		return ((ulong_t *)&ahp->array_chunk[an_idx]);
3533 	} else {
3534 
3535 		/*
3536 		 * 2 level case.
3537 		 */
3538 		ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3539 		if (*ppp == NULL) {
3540 			mutex_enter(&ahp->serial_lock);
3541 			ppp = &ahp->array_chunk[an_idx >> ANON_CHUNK_SHIFT];
3542 			if (*ppp == NULL)
3543 				*ppp = kmem_zalloc(PAGESIZE, KM_SLEEP);
3544 			mutex_exit(&ahp->serial_lock);
3545 		}
3546 		app = *ppp;
3547 		return ((ulong_t *)&app[an_idx & ANON_CHUNK_OFF]);
3548 	}
3549 }
3550 
3551 void
3552 anon_array_enter(struct anon_map *amp, ulong_t an_idx, anon_sync_obj_t *sobj)
3553 {
3554 	ulong_t		*ap_slot;
3555 	kmutex_t	*mtx;
3556 	kcondvar_t	*cv;
3557 	int		hash;
3558 
3559 	/*
3560 	 * Use szc to determine anon slot(s) to appear atomic.
3561 	 * If szc = 0, then lock the anon slot and mark it busy.
3562 	 * If szc > 0, then lock the range of slots by getting the
3563 	 * anon_array_lock for the first anon slot, and mark only the
3564 	 * first anon slot busy to represent whole range being busy.
3565 	 */
3566 
3567 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3568 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3569 	hash = ANON_ARRAY_HASH(amp, an_idx);
3570 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3571 	sobj->sync_cv = cv = &anon_array_cv[hash];
3572 	mutex_enter(mtx);
3573 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3574 	while (ANON_ISBUSY(ap_slot))
3575 		cv_wait(cv, mtx);
3576 	ANON_SETBUSY(ap_slot);
3577 	sobj->sync_data = ap_slot;
3578 	mutex_exit(mtx);
3579 }
3580 
3581 int
3582 anon_array_try_enter(struct anon_map *amp, ulong_t an_idx,
3583 			anon_sync_obj_t *sobj)
3584 {
3585 	ulong_t		*ap_slot;
3586 	kmutex_t	*mtx;
3587 	int		hash;
3588 
3589 	/*
3590 	 * Try to lock a range of anon slots.
3591 	 * Use szc to determine anon slot(s) to appear atomic.
3592 	 * If szc = 0, then lock the anon slot and mark it busy.
3593 	 * If szc > 0, then lock the range of slots by getting the
3594 	 * anon_array_lock for the first anon slot, and mark only the
3595 	 * first anon slot busy to represent whole range being busy.
3596 	 * Fail if the mutex or the anon_array are busy.
3597 	 */
3598 
3599 	ASSERT(RW_READ_HELD(&amp->a_rwlock));
3600 	an_idx = P2ALIGN(an_idx, page_get_pagecnt(amp->a_szc));
3601 	hash = ANON_ARRAY_HASH(amp, an_idx);
3602 	sobj->sync_mutex = mtx = &anon_array_lock[hash].pad_mutex;
3603 	sobj->sync_cv = &anon_array_cv[hash];
3604 	if (!mutex_tryenter(mtx)) {
3605 		return (EWOULDBLOCK);
3606 	}
3607 	ap_slot = anon_get_slot(amp->ahp, an_idx);
3608 	if (ANON_ISBUSY(ap_slot)) {
3609 		mutex_exit(mtx);
3610 		return (EWOULDBLOCK);
3611 	}
3612 	ANON_SETBUSY(ap_slot);
3613 	sobj->sync_data = ap_slot;
3614 	mutex_exit(mtx);
3615 	return (0);
3616 }
3617 
3618 void
3619 anon_array_exit(anon_sync_obj_t *sobj)
3620 {
3621 	mutex_enter(sobj->sync_mutex);
3622 	ASSERT(ANON_ISBUSY(sobj->sync_data));
3623 	ANON_CLRBUSY(sobj->sync_data);
3624 	if (CV_HAS_WAITERS(sobj->sync_cv))
3625 		cv_broadcast(sobj->sync_cv);
3626 	mutex_exit(sobj->sync_mutex);
3627 }
3628