xref: /illumos-gate/usr/src/uts/common/sys/scsi/adapters/pmcs/pmcs_def.h (revision 56f33205c9ed776c3c909e07d52e94610a675740)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  *
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 #ifndef	_PMCS_DEF_H
26 #define	_PMCS_DEF_H
27 #ifdef	__cplusplus
28 extern "C" {
29 #endif
30 
31 typedef enum {
32 	NOTHING,	/* nothing connected here */
33 	SATA,		/* SATA connection */
34 	SAS,		/* direct or indirect SAS connection */
35 	EXPANDER,	/* connection to an expander */
36 	NEW		/* Brand new device (pending state) */
37 } pmcs_dtype_t;
38 
39 /*
40  * This structure defines a PHY device that represents what we
41  * are connected to.
42  *
43  * The eight real physical PHYs that are in the PMC8X6G are represented
44  * as an array of eight of these structures which define what these
45  * real PHYs are connected to.
46  *
47  * Depending upon what is actually connected to each PHY, the
48  * type set will define what we're connected to. If it is
49  * a direct SATA connection, the phy will describe a SATA endpoint
50  * If it is a direct SAS connection, it will describe a SAS
51  * endpoint.
52  *
53  * If it is an EXPANDER, this will describe the edge of an expander.
54  * As we perform discovery on what is in an EXPANDER we define an
55  * additional list of phys that represent what the Expander is connected to.
56  */
57 #define	PMCS_HW_MIN_LINK_RATE	SAS_LINK_RATE_1_5GBIT
58 #define	PMCS_HW_MAX_LINK_RATE	SAS_LINK_RATE_6GBIT
59 
60 #define	PMCS_INVALID_DEVICE_ID		0xffffffff
61 #define	PMCS_PHY_INVALID_PORT_ID	0xf
62 
63 #define	PMCS_PM_MAX_NAMELEN	16
64 
65 struct pmcs_phy {
66 	pmcs_phy_t	*sibling;	/* sibling phy */
67 	pmcs_phy_t 	*parent;	/* parent phy */
68 	pmcs_phy_t 	*children;	/* head of list of children */
69 	pmcs_phy_t 	*dead_next;	/* dead PHY list link */
70 	list_node_t	list_node;	/* list element */
71 	uint32_t	device_id;	/* PMC8X6G device handle */
72 	uint32_t
73 		ncphy 		: 8,	/* # of contained phys for expander */
74 		hw_event_ack	: 24;	/* XXX: first level phy event acked */
75 	uint8_t		phynum;		/* phy number on parent expander */
76 	uint8_t		width;		/* how many phys wide */
77 	uint8_t		ds_recovery_retries; /* # error retry attempts */
78 	uint8_t		ds_prev_good_recoveries; /* # successful recoveries */
79 	clock_t		prev_recovery;	/* previous successful recovery */
80 	clock_t		last_good_recovery; /* oldest successful recovery */
81 			/* within PMCS_MAX_DS_RECOVERY_TIME time frame */
82 	pmcs_dtype_t	dtype;		/* current dtype of the phy */
83 	pmcs_dtype_t	pend_dtype;	/* new dtype (pending change) */
84 	uint32_t
85 		level		: 8,	/* level in expander tree */
86 		tolerates_sas2	: 1,	/* tolerates SAS2 SMP */
87 		spinup_hold	: 1,	/* spinup hold needs releasing */
88 		atdt		: 3,	/* attached device type */
89 		portid		: 4,	/* PMC8X6G port context */
90 		link_rate   	: 4,	/* current supported speeds */
91 		valid_device_id	: 1,	/* device id is valid */
92 		abort_sent	: 1,	/* we've sent an abort */
93 		abort_pending	: 1,	/* we have an abort pending */
94 		need_rl_ext	: 1,	/* need SATA RL_EXT recocvery */
95 		subsidiary	: 1,	/* this is part of a wide phy */
96 		configured	: 1,	/* is configured */
97 		dead		: 1,	/* dead */
98 		changed		: 1,	/* this phy is changing */
99 		deregister_wait : 1;	/* phy waiting to get deregistered */
100 	clock_t		config_stop;	/* When config attempts will stop */
101 	hrtime_t	abort_all_start;
102 	kcondvar_t	abort_all_cv;	/* Wait for ABORT_ALL completion */
103 	kmutex_t	phy_lock;
104 	volatile uint32_t ref_count;	/* Targets & work on this PHY */
105 	uint8_t 	sas_address[8];	/* SAS address for this PHY */
106 	struct {
107 	uint32_t
108 		prog_min_rate	:4,
109 		hw_min_rate	:4,
110 		prog_max_rate	:4,
111 		hw_max_rate	:4,
112 		reserved	:16;
113 	} state;
114 	char		path[32];	/* path name for this phy */
115 	pmcs_hw_t	*pwp;		/* back ptr to hba struct */
116 	pmcs_iport_t	*iport;		/* back ptr to the iport handle */
117 	pmcs_xscsi_t	*target;	/* back ptr to current target */
118 	kstat_t		*phy_stats;	/* kstats for this phy */
119 	/*
120 	 * Attached port phy mask and target port phymask.  With 16 bytes
121 	 * we can represent a phymask for anything with up to 64 ports
122 	 */
123 	uint64_t	att_port_pm;		/* att port pm for this PHY */
124 	uint64_t	att_port_pm_tmp;	/* Temp area for wide-ports */
125 	char		att_port_pm_str[PMCS_PM_MAX_NAMELEN + 1];
126 	uint64_t	tgt_port_pm;		/* tgt port pm for this PHY */
127 	uint64_t	tgt_port_pm_tmp;	/* Temp area for wide-ports */
128 	char		tgt_port_pm_str[PMCS_PM_MAX_NAMELEN + 1];
129 };
130 
131 /* maximum number of ds recovery retries (ds_recovery_retries) */
132 #define	PMCS_MAX_DS_RECOVERY_RETRIES	10
133 
134 /* max time allowed for successful recovery */
135 #define	PMCS_MAX_DS_RECOVERY_TIME	(60 * 1000000) /* 60 seconds */
136 
137 /* ds recovery on same same phy is not allowed within this interval */
138 #define	PMCS_DS_RECOVERY_INTERVAL	(1000000) /* 1 second */
139 
140 
141 /*
142  * Inbound and Outbound Queue Related Definitions.
143  *
144  * The PMC8X6G has a programmable number of inbound and outbound circular
145  * queues for use in message passing between the host and the PMC8X6G
146  * (up to 64 queues for the Rev C Chip). This driver does not use all
147  * possible queues.
148  *
149  * Each Queue is given 4K of consistent memory and we set a 64 byte size for
150  * the queue entry size (this gives us 256 queue entries per queue).
151  *
152  * This allocation then continues up a further PMCS_SCRATCH_SIZE bytes
153  * that the driver uses as a temporary scratch area for things like
154  * SMP discovery.
155  *
156  * This control area looks like this:
157  *
158  * Offset			What
159  * ------------------------------------------------
160  * 0					IQ 0 Consumer Index
161  * 4					IQ 1 Consumer Index
162  * 8..255				...
163  * 252..255				IQ 63 Consumer Index
164  * 256					OQ 0 Producer Index
165  * 260					OQ 1 Producer Index
166  * 264..259				....
167  * 508..511				OQ 63 Producer Index
168  * 512..512+PMCS_SCRATCH_SIZE-1		Scratch area.
169  */
170 #define	IQCI_BASE_OFFSET	0
171 #define	IQ_OFFSET(qnum)		(IQCI_BASE_OFFSET + (qnum << 2))
172 #define	OQPI_BASE_OFFSET	256
173 #define	OQ_OFFSET(qnum)		(OQPI_BASE_OFFSET + (qnum << 2))
174 
175 /*
176  * Work related structures. Each one of these structures is paired
177  * with *any* command that is fed to the PMC8X6G via one of the
178  * Inbound Queues. The work structure has a tag to compare with
179  * the message that comes back out of an Outbound Queue. The
180  * work structure also points to the phy which this command is
181  * tied to. It also has a pointer a callback function (if defined).
182  * See that TAG Architecture below for the various kinds of
183  * dispositions of a work structure.
184  */
185 
186 /*
187  * Work Structure States
188  *
189  * NIL			->	READY
190  * READY		->	NIL
191  * READY		->	ONCHIP
192  * ONCHIP		->	INTR
193  * INTR			->	READY
194  * INTR			->	NIL
195  * INTR			->	ABORTED
196  * INTR			->	TIMED_OUT
197  * ABORTED		->	NIL
198  * TIMED_OUT		->	NIL
199  */
200 typedef enum {
201 	PMCS_WORK_STATE_NIL = 0,
202 	PMCS_WORK_STATE_READY,
203 	PMCS_WORK_STATE_ONCHIP,
204 	PMCS_WORK_STATE_INTR,
205 	PMCS_WORK_STATE_IOCOMPQ,
206 	PMCS_WORK_STATE_ABORTED,
207 	PMCS_WORK_STATE_TIMED_OUT
208 } pmcs_work_state_t;
209 
210 struct pmcwork {
211 	STAILQ_ENTRY(pmcwork)	next;
212 	kmutex_t		lock;
213 	kcondvar_t		sleep_cv;
214 	void			*ptr;	/* linkage or callback function */
215 	void 			*arg;	/* command specific data */
216 	pmcs_phy_t 		*phy;	/* phy who owns this command */
217 	pmcs_xscsi_t		*xp;	/* Back pointer to xscsi struct */
218 	volatile uint32_t	htag;	/* tag for this structure */
219 	uint32_t		abt_htag; /* Tag of command to be aborted */
220 	uint32_t
221 			timer	:	27,
222 			onwire	:	1,
223 			dead	:	1,
224 			state	:	3;
225 	hrtime_t		start;	/* timestamp start */
226 	uint32_t		ssp_event; /* ssp event */
227 	pmcs_dtype_t		dtype;	/* stash, incase phy gets cleared */
228 
229 	void			*last_ptr;
230 	void			*last_arg;
231 	pmcs_phy_t		*last_phy;
232 	pmcs_xscsi_t		*last_xp;
233 	uint32_t		last_htag;
234 	pmcs_work_state_t	last_state;
235 	hrtime_t		finish;
236 };
237 
238 #define	PMCS_REC_EVENT	0xffffffff	/* event recovery */
239 
240 /*
241  * This structure defines a PMC-Sierra defined firmware header.
242  */
243 #pragma	pack(4)
244 typedef struct {
245 	char 		vendor_id[8];
246 	uint8_t		product_id;
247 	uint8_t		hwrev;
248 	uint8_t		destination_partition;
249 	uint8_t		reserved0;
250 	uint8_t		fwrev[4];
251 	uint32_t	firmware_length;
252 	uint32_t	crc;
253 	uint32_t	start_address;
254 	uint8_t		data[];
255 } pmcs_fw_hdr_t;
256 #pragma	pack()
257 
258 /*
259  * Offlevel work as a bit pattern.
260  */
261 #define	PMCS_WORK_DISCOVER		0
262 #define	PMCS_WORK_ABORT_HANDLE		3
263 #define	PMCS_WORK_SPINUP_RELEASE	4
264 #define	PMCS_WORK_SAS_HW_ACK		5
265 #define	PMCS_WORK_SATA_RUN		6
266 #define	PMCS_WORK_RUN_QUEUES		7
267 #define	PMCS_WORK_ADD_DMA_CHUNKS	8
268 #define	PMCS_WORK_DS_ERR_RECOVERY	9
269 #define	PMCS_WORK_SSP_EVT_RECOVERY	10
270 #define	PMCS_WORK_DEREGISTER_DEV	11
271 
272 /*
273  * The actual values as they appear in work_flags
274  */
275 #define	PMCS_WORK_FLAG_DISCOVER		(1 << 0)
276 #define	PMCS_WORK_FLAG_ABORT_HANDLE	(1 << 3)
277 #define	PMCS_WORK_FLAG_SPINUP_RELEASE	(1 << 4)
278 #define	PMCS_WORK_FLAG_SAS_HW_ACK	(1 << 5)
279 #define	PMCS_WORK_FLAG_SATA_RUN		(1 << 6)
280 #define	PMCS_WORK_FLAG_RUN_QUEUES	(1 << 7)
281 #define	PMCS_WORK_FLAG_ADD_DMA_CHUNKS	(1 << 8)
282 #define	PMCS_WORK_FLAG_DS_ERR_RECOVERY	(1 << 9)
283 #define	PMCS_WORK_FLAG_SSP_EVT_RECOVERY (1 << 10)
284 #define	PMCS_WORK_FLAG_DEREGISTER_DEV   (1 << 11)
285 
286 /*
287  * This structure is used by this function to test MPI (and interrupts)
288  * after MPI has been started to make sure it's working reliably.
289  */
290 typedef struct {
291 	uint32_t signature;
292 	uint32_t count;
293 	uint32_t *ptr;
294 } echo_test_t;
295 #define	ECHO_SIGNATURE	0xbebebeef
296 
297 /*
298  * Tag Architecture. The PMC has 32 bit tags for MPI messages.
299  * We use this tag this way.
300  *
301  * bits		what
302  * ------------------------
303  * 31		done bit
304  * 30..28	tag type
305  * 27..12	rolling serial number
306  * 11..0	index into work area to get pmcwork structure
307  *
308  * A tag type of NONE means that nobody is waiting on any results,
309  * so the interrupt code frees the work structure that has this
310  * tag.
311  *
312  * A tag type of CBACK means that the the interrupt handler
313  * takes the tag 'arg' in the work structure to be a callback
314  * function pointer (see pmcs_cb_t). The callee is responsible
315  * for freeing the work structure that has this tag.
316  *
317  * A tag type of WAIT means that the issuer of the work needs
318  * be woken up from interrupt level when the command completes
319  * (or times out). If work structure tag 'arg' is non-null,
320  * up to 2*PMCS_QENTRY_SIZE bits of data from the Outbound Queue
321  * entry may be copied to the area pointed to by 'arg'. This
322  * allows issuers to get directly at the results of the command
323  * they issed. The synchronization point for the issuer and the
324  * interrupt code for command done notification is the setting
325  * of the 'DONE' bit in the tag as stored in the work structure.
326  */
327 #define	PMCS_TAG_TYPE_FREE	0
328 #define	PMCS_TAG_TYPE_NONE	1
329 #define	PMCS_TAG_TYPE_CBACK  	2
330 #define	PMCS_TAG_TYPE_WAIT	3
331 #define	PMCS_TAG_TYPE_SHIFT	28
332 #define	PMCS_TAG_SERNO_SHIFT	12
333 #define	PMCS_TAG_INDEX_SHIFT	0
334 #define	PMCS_TAG_TYPE_MASK	0x70000000
335 #define	PMCS_TAG_DONE		0x80000000
336 #define	PMCS_TAG_SERNO_MASK	0x0ffff000
337 #define	PMCS_TAG_INDEX_MASK	0x00000fff
338 #define	PMCS_TAG_TYPE(x)		\
339 	(((x) & PMCS_TAG_TYPE_MASK) >> PMCS_TAG_TYPE_SHIFT)
340 #define	PMCS_TAG_SERNO(x)	\
341 	(((x) & PMCS_TAG_SERNO_MASK) >> PMCS_TAG_SERNO_SHIFT)
342 #define	PMCS_TAG_INDEX(x)	\
343 	(((x) & PMCS_TAG_INDEX_MASK) >> PMCS_TAG_INDEX_SHIFT)
344 #define	PMCS_TAG_FREE		0
345 #define	PMCS_COMMAND_DONE(x)	\
346 	(((x)->htag == PMCS_TAG_FREE) || (((x)->htag & PMCS_TAG_DONE) != 0))
347 #define	PMCS_COMMAND_ACTIVE(x)	\
348 	((x)->htag != PMCS_TAG_FREE && (x)->state == PMCS_WORK_STATE_ONCHIP)
349 
350 /*
351  * Miscellaneous Definitions
352  */
353 #define	CLEAN_MESSAGE(m, x)	{	\
354 	int _j = x;			\
355 	while (_j < PMCS_MSG_SIZE) {	\
356 		m[_j++] = 0;		\
357 	}				\
358 }
359 
360 #define	COPY_MESSAGE(t, f, a)	{	\
361 	int _j;				\
362 	for (_j = 0; _j < a; _j++) {	\
363 		t[_j] = f[_j];		\
364 	}				\
365 	while (_j < PMCS_MSG_SIZE) {	\
366 		t[_j++] = 0;		\
367 	}				\
368 }
369 
370 #define	PMCS_PHY_ADDRESSABLE(pp)			\
371 	((pp)->level == 0 && (pp)->dtype == SATA &&	\
372 	    ((pp)->sas_address[0] >> 4) != 5)
373 
374 #define	RESTART_DISCOVERY(pwp)				\
375 	ASSERT(!mutex_owned(&pwp->config_lock));	\
376 	mutex_enter(&pwp->config_lock);			\
377 	pwp->config_changed = B_TRUE;			\
378 	mutex_exit(&pwp->config_lock);			\
379 	SCHEDULE_WORK(pwp, PMCS_WORK_DISCOVER);
380 
381 #define	RESTART_DISCOVERY_LOCKED(pwp)			\
382 	ASSERT(mutex_owned(&pwp->config_lock));		\
383 	pwp->config_changed = B_TRUE;			\
384 	SCHEDULE_WORK(pwp, PMCS_WORK_DISCOVER);
385 
386 #define	PHY_CHANGED(pwp, p)						\
387 	pmcs_prt(pwp, PMCS_PRT_DEBUG_CONFIG, p, NULL, "%s changed in "  \
388 	    "%s line %d", p->path, __func__, __LINE__); 		\
389 	p->changed = 1
390 
391 #define	PHY_CHANGED_AT_LOCATION(pwp, p, func, line)			\
392 	pmcs_prt(pwp, PMCS_PRT_DEBUG_CONFIG, p, NULL, "%s changed in "  \
393 	    "%s line %d", p->path, func, line);				\
394 	p->changed = 1
395 
396 #define	PHY_TYPE(pptr)					\
397 	(((pptr)->dtype == NOTHING)?  "NOTHING" :	\
398 	(((pptr)->dtype == SATA)? "SATA" :		\
399 	(((pptr)->dtype == SAS)? "SAS" : "EXPANDER")))
400 
401 #define	IS_ROOT_PHY(pptr)	(pptr->parent == NULL)
402 
403 #define	PMCS_HIPRI(pwp, oq, c)				\
404 	(pwp->hipri_queue & (1 << PMCS_IQ_OTHER)) ?	\
405 	(PMCS_IOMB_HIPRI | PMCS_IOMB_IN_SAS(oq, c)) :	\
406 	(PMCS_IOMB_IN_SAS(oq, c))
407 
408 #define	SCHEDULE_WORK(hwp, wrk)		\
409 	(void) atomic_set_long_excl(&hwp->work_flags, wrk)
410 
411 /*
412  * Check to see if the requested work bit is set.  Either way, the bit will
413  * be cleared upon return.
414  */
415 #define	WORK_SCHEDULED(hwp, wrk)	\
416 	(atomic_clear_long_excl(&hwp->work_flags, wrk) == 0)
417 
418 /*
419  * Check to see if the requested work bit is set.  The value will not be
420  * changed in this case.  The atomic_xx_nv operations can be quite expensive
421  * so this should not be used in non-DEBUG code.
422  */
423 #define	WORK_IS_SCHEDULED(hwp, wrk)	\
424 	((atomic_and_ulong_nv(&hwp->work_flags, (ulong_t)-1) & (1 << wrk)) != 0)
425 
426 #define	WAIT_FOR(p, t, r)					\
427 	r = 0;							\
428 	while (!PMCS_COMMAND_DONE(p)) {				\
429 		clock_t tmp = cv_timedwait(&p->sleep_cv,	\
430 		    &p->lock, ddi_get_lbolt() +			\
431 		    drv_usectohz(t * 1000));			\
432 		if (!PMCS_COMMAND_DONE(p) && tmp < 0) {		\
433 			r = 1;					\
434 			break;					\
435 		}						\
436 	}
437 
438 /*
439  * Signal the next I/O completion thread to start running.
440  */
441 
442 #define	PMCS_CQ_RUN_LOCKED(hwp)						\
443 	if (!STAILQ_EMPTY(&hwp->cq) || hwp->iocomp_cb_head) {		\
444 		pmcs_cq_thr_info_t *cqti;				\
445 		cqti = &hwp->cq_info.cq_thr_info			\
446 		    [hwp->cq_info.cq_next_disp_thr];			\
447 		hwp->cq_info.cq_next_disp_thr++;			\
448 		if (hwp->cq_info.cq_next_disp_thr ==			\
449 		    hwp->cq_info.cq_threads) {				\
450 			hwp->cq_info.cq_next_disp_thr = 0;		\
451 		}							\
452 		mutex_enter(&cqti->cq_thr_lock);			\
453 		cv_signal(&cqti->cq_cv);				\
454 		mutex_exit(&cqti->cq_thr_lock);				\
455 	}								\
456 
457 #define	PMCS_CQ_RUN(hwp)						\
458 	mutex_enter(&hwp->cq_lock);					\
459 	PMCS_CQ_RUN_LOCKED(hwp);					\
460 	mutex_exit(&hwp->cq_lock);
461 
462 
463 /*
464  * Watchdog/SCSA timer definitions
465  */
466 /* usecs to SCSA watchdog ticks */
467 #define	US2WT(x)	(x)/10
468 
469 /*
470  * More misc
471  */
472 #define	BYTE0(x)	(((x) >>  0) & 0xff)
473 #define	BYTE1(x)	(((x) >>  8) & 0xff)
474 #define	BYTE2(x)	(((x) >> 16) & 0xff)
475 #define	BYTE3(x)	(((x) >> 24) & 0xff)
476 #define	BYTE4(x)	(((x) >> 32) & 0xff)
477 #define	BYTE5(x)	(((x) >> 40) & 0xff)
478 #define	BYTE6(x)	(((x) >> 48) & 0xff)
479 #define	BYTE7(x)	(((x) >> 56) & 0xff)
480 #define	WORD0(x)	(((x) >>  0) & 0xffff)
481 #define	WORD1(x)	(((x) >> 16) & 0xffff)
482 #define	WORD2(x)	(((x) >> 32) & 0xffff)
483 #define	WORD3(x)	(((x) >> 48) & 0xffff)
484 #define	DWORD0(x)	((uint32_t)(x))
485 #define	DWORD1(x)	((uint32_t)(((uint64_t)x) >> 32))
486 
487 #define	SAS_ADDR_FMT	"0x%02x%02x%02x%02x%02x%02x%02x%02x"
488 #define	SAS_ADDR_PRT(x)	x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7]
489 
490 #define	PMCS_VALID_LINK_RATE(r) \
491 	((r == SAS_LINK_RATE_1_5GBIT) || (r == SAS_LINK_RATE_3GBIT) || \
492 	(r == SAS_LINK_RATE_6GBIT))
493 
494 /*
495  * This is here to avoid inclusion of <sys/ctype.h> which is not lint clean.
496  */
497 #define	HEXDIGIT(x)	(((x) >= '0' && (x) <= '9') || \
498 	((x) >= 'a' && (x) <= 'f') || ((x) >= 'A' && (x) <= 'F'))
499 
500 
501 typedef void (*pmcs_cb_t) (pmcs_hw_t *, pmcwork_t *, uint32_t *);
502 
503 /*
504  * Defines and structure used for tracing/logging information
505  */
506 
507 #define	PMCS_TBUF_ELEM_SIZE	120
508 
509 #ifdef DEBUG
510 #define	PMCS_TBUF_NUM_ELEMS_DEF	100000
511 #else
512 #define	PMCS_TBUF_NUM_ELEMS_DEF	15000
513 #endif
514 
515 #define	PMCS_TBUF_UA_MAX_SIZE	32
516 typedef struct {
517 	/* Target-specific data */
518 	uint16_t	target_num;
519 	char		target_ua[PMCS_TBUF_UA_MAX_SIZE];
520 	/* PHY-specific data */
521 	uint8_t 	phy_sas_address[8];
522 	char		phy_path[32];
523 	pmcs_dtype_t	phy_dtype;
524 	/* Log data */
525 	timespec_t	timestamp;
526 	char		buf[PMCS_TBUF_ELEM_SIZE];
527 } pmcs_tbuf_t;
528 
529 /*
530  * Firmware event log header format
531  */
532 
533 typedef struct pmcs_fw_event_hdr_s {
534 	uint32_t	fw_el_signature;
535 	uint32_t	fw_el_entry_start_offset;
536 	uint32_t	fw_el_rsvd1;
537 	uint32_t	fw_el_buf_size;
538 	uint32_t	fw_el_rsvd2;
539 	uint32_t	fw_el_oldest_idx;
540 	uint32_t	fw_el_latest_idx;
541 	uint32_t	fw_el_entry_size;
542 } pmcs_fw_event_hdr_t;
543 
544 #ifdef	__cplusplus
545 }
546 #endif
547 #endif	/* _PMCS_DEF_H */
548