xref: /illumos-gate/usr/src/uts/common/os/fork.c (revision 44bc9120699af80bb18366ca474cb2c618608ca9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2013, Joyent, Inc. All rights reserved.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/sysmacros.h>
33 #include <sys/signal.h>
34 #include <sys/cred.h>
35 #include <sys/policy.h>
36 #include <sys/user.h>
37 #include <sys/systm.h>
38 #include <sys/cpuvar.h>
39 #include <sys/vfs.h>
40 #include <sys/vnode.h>
41 #include <sys/file.h>
42 #include <sys/errno.h>
43 #include <sys/time.h>
44 #include <sys/proc.h>
45 #include <sys/cmn_err.h>
46 #include <sys/acct.h>
47 #include <sys/tuneable.h>
48 #include <sys/class.h>
49 #include <sys/kmem.h>
50 #include <sys/session.h>
51 #include <sys/ucontext.h>
52 #include <sys/stack.h>
53 #include <sys/procfs.h>
54 #include <sys/prsystm.h>
55 #include <sys/vmsystm.h>
56 #include <sys/vtrace.h>
57 #include <sys/debug.h>
58 #include <sys/shm_impl.h>
59 #include <sys/door_data.h>
60 #include <vm/as.h>
61 #include <vm/rm.h>
62 #include <c2/audit.h>
63 #include <sys/var.h>
64 #include <sys/schedctl.h>
65 #include <sys/utrap.h>
66 #include <sys/task.h>
67 #include <sys/resource.h>
68 #include <sys/cyclic.h>
69 #include <sys/lgrp.h>
70 #include <sys/rctl.h>
71 #include <sys/contract_impl.h>
72 #include <sys/contract/process_impl.h>
73 #include <sys/list.h>
74 #include <sys/dtrace.h>
75 #include <sys/pool.h>
76 #include <sys/zone.h>
77 #include <sys/sdt.h>
78 #include <sys/class.h>
79 #include <sys/corectl.h>
80 #include <sys/brand.h>
81 #include <sys/fork.h>
82 
83 static int64_t cfork(int, int, int);
84 static int getproc(proc_t **, pid_t, uint_t);
85 #define	GETPROC_USER	0x0
86 #define	GETPROC_KERNEL	0x1
87 
88 static void fork_fail(proc_t *);
89 static void forklwp_fail(proc_t *);
90 
91 int fork_fail_pending;
92 
93 extern struct kmem_cache *process_cache;
94 
95 /*
96  * The vfork() system call trap is no longer invoked by libc.
97  * It is retained only for the benefit of applications running
98  * within a solaris10 branded zone.  It should be eliminated
99  * when we no longer support solaris10 branded zones.
100  */
101 int64_t
102 vfork(void)
103 {
104 	curthread->t_post_sys = 1;	/* so vfwait() will be called */
105 	return (cfork(1, 1, 0));
106 }
107 
108 /*
109  * forksys system call - forkx, forkallx, vforkx.  This is the
110  * interface invoked by libc for fork1(), forkall(), and vfork()
111  */
112 int64_t
113 forksys(int subcode, int flags)
114 {
115 	switch (subcode) {
116 	case 0:
117 		return (cfork(0, 1, flags));	/* forkx(flags) */
118 	case 1:
119 		return (cfork(0, 0, flags));	/* forkallx(flags) */
120 	case 2:
121 		curthread->t_post_sys = 1;	/* so vfwait() will be called */
122 		return (cfork(1, 1, flags));	/* vforkx(flags) */
123 	default:
124 		return ((int64_t)set_errno(EINVAL));
125 	}
126 }
127 
128 /* ARGSUSED */
129 static int64_t
130 cfork(int isvfork, int isfork1, int flags)
131 {
132 	proc_t *p = ttoproc(curthread);
133 	struct as *as;
134 	proc_t *cp, **orphpp;
135 	klwp_t *clone;
136 	kthread_t *t;
137 	task_t *tk;
138 	rval_t	r;
139 	int error;
140 	int i;
141 	rctl_set_t *dup_set;
142 	rctl_alloc_gp_t *dup_gp;
143 	rctl_entity_p_t e;
144 	lwpdir_t *ldp;
145 	lwpent_t *lep;
146 	lwpent_t *clep;
147 
148 	/*
149 	 * Allow only these two flags.
150 	 */
151 	if ((flags & ~(FORK_NOSIGCHLD | FORK_WAITPID)) != 0) {
152 		error = EINVAL;
153 		atomic_inc_32(&curproc->p_zone->zone_ffmisc);
154 		goto forkerr;
155 	}
156 
157 	/*
158 	 * fork is not supported for the /proc agent lwp.
159 	 */
160 	if (curthread == p->p_agenttp) {
161 		error = ENOTSUP;
162 		atomic_inc_32(&curproc->p_zone->zone_ffmisc);
163 		goto forkerr;
164 	}
165 
166 	if ((error = secpolicy_basic_fork(CRED())) != 0) {
167 		atomic_inc_32(&p->p_zone->zone_ffmisc);
168 		goto forkerr;
169 	}
170 
171 	/*
172 	 * If the calling lwp is doing a fork1() then the
173 	 * other lwps in this process are not duplicated and
174 	 * don't need to be held where their kernel stacks can be
175 	 * cloned.  If doing forkall(), the process is held with
176 	 * SHOLDFORK, so that the lwps are at a point where their
177 	 * stacks can be copied which is on entry or exit from
178 	 * the kernel.
179 	 */
180 	if (!holdlwps(isfork1 ? SHOLDFORK1 : SHOLDFORK)) {
181 		aston(curthread);
182 		error = EINTR;
183 		atomic_inc_32(&p->p_zone->zone_ffmisc);
184 		goto forkerr;
185 	}
186 
187 #if defined(__sparc)
188 	/*
189 	 * Ensure that the user stack is fully constructed
190 	 * before creating the child process structure.
191 	 */
192 	(void) flush_user_windows_to_stack(NULL);
193 #endif
194 
195 	mutex_enter(&p->p_lock);
196 	/*
197 	 * If this is vfork(), cancel any suspend request we might
198 	 * have gotten from some other thread via lwp_suspend().
199 	 * Otherwise we could end up with a deadlock on return
200 	 * from the vfork() in both the parent and the child.
201 	 */
202 	if (isvfork)
203 		curthread->t_proc_flag &= ~TP_HOLDLWP;
204 	/*
205 	 * Prevent our resource set associations from being changed during fork.
206 	 */
207 	pool_barrier_enter();
208 	mutex_exit(&p->p_lock);
209 
210 	/*
211 	 * Create a child proc struct. Place a VN_HOLD on appropriate vnodes.
212 	 */
213 	if (getproc(&cp, 0, GETPROC_USER) < 0) {
214 		mutex_enter(&p->p_lock);
215 		pool_barrier_exit();
216 		continuelwps(p);
217 		mutex_exit(&p->p_lock);
218 		error = EAGAIN;
219 		goto forkerr;
220 	}
221 
222 	TRACE_2(TR_FAC_PROC, TR_PROC_FORK, "proc_fork:cp %p p %p", cp, p);
223 
224 	/*
225 	 * Assign an address space to child
226 	 */
227 	if (isvfork) {
228 		/*
229 		 * Clear any watched areas and remember the
230 		 * watched pages for restoring in vfwait().
231 		 */
232 		as = p->p_as;
233 		if (avl_numnodes(&as->a_wpage) != 0) {
234 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
235 			as_clearwatch(as);
236 			p->p_wpage = as->a_wpage;
237 			avl_create(&as->a_wpage, wp_compare,
238 			    sizeof (struct watched_page),
239 			    offsetof(struct watched_page, wp_link));
240 			AS_LOCK_EXIT(as, &as->a_lock);
241 		}
242 		cp->p_as = as;
243 		cp->p_flag |= SVFORK;
244 
245 		/*
246 		 * Use the parent's shm segment list information for
247 		 * the child as it uses its address space till it execs.
248 		 */
249 		cp->p_segacct = p->p_segacct;
250 	} else {
251 		/*
252 		 * We need to hold P_PR_LOCK until the address space has
253 		 * been duplicated and we've had a chance to remove from the
254 		 * child any DTrace probes that were in the parent. Holding
255 		 * P_PR_LOCK prevents any new probes from being added and any
256 		 * extant probes from being removed.
257 		 */
258 		mutex_enter(&p->p_lock);
259 		sprlock_proc(p);
260 		p->p_flag |= SFORKING;
261 		mutex_exit(&p->p_lock);
262 
263 		error = as_dup(p->p_as, cp);
264 		if (error != 0) {
265 			mutex_enter(&p->p_lock);
266 			sprunlock(p);
267 			fork_fail(cp);
268 			mutex_enter(&pidlock);
269 			orphpp = &p->p_orphan;
270 			while (*orphpp != cp)
271 				orphpp = &(*orphpp)->p_nextorph;
272 			*orphpp = cp->p_nextorph;
273 			if (p->p_child == cp)
274 				p->p_child = cp->p_sibling;
275 			if (cp->p_sibling)
276 				cp->p_sibling->p_psibling = cp->p_psibling;
277 			if (cp->p_psibling)
278 				cp->p_psibling->p_sibling = cp->p_sibling;
279 			mutex_enter(&cp->p_lock);
280 			tk = cp->p_task;
281 			task_detach(cp);
282 			ASSERT(cp->p_pool->pool_ref > 0);
283 			atomic_dec_32(&cp->p_pool->pool_ref);
284 			mutex_exit(&cp->p_lock);
285 			pid_exit(cp, tk);
286 			mutex_exit(&pidlock);
287 			task_rele(tk);
288 
289 			mutex_enter(&p->p_lock);
290 			p->p_flag &= ~SFORKING;
291 			pool_barrier_exit();
292 			continuelwps(p);
293 			mutex_exit(&p->p_lock);
294 			/*
295 			 * Preserve ENOMEM error condition but
296 			 * map all others to EAGAIN.
297 			 */
298 			error = (error == ENOMEM) ? ENOMEM : EAGAIN;
299 			atomic_inc_32(&p->p_zone->zone_ffnomem);
300 			goto forkerr;
301 		}
302 
303 		/*
304 		 * Remove all DTrace tracepoints from the child process. We
305 		 * need to do this _before_ duplicating USDT providers since
306 		 * any associated probes may be immediately enabled.
307 		 */
308 		if (p->p_dtrace_count > 0)
309 			dtrace_fasttrap_fork(p, cp);
310 
311 		mutex_enter(&p->p_lock);
312 		sprunlock(p);
313 
314 		/* Duplicate parent's shared memory */
315 		if (p->p_segacct)
316 			shmfork(p, cp);
317 
318 		/*
319 		 * Duplicate any helper actions and providers. The SFORKING
320 		 * we set above informs the code to enable USDT probes that
321 		 * sprlock() may fail because the child is being forked.
322 		 */
323 		if (p->p_dtrace_helpers != NULL) {
324 			ASSERT(dtrace_helpers_fork != NULL);
325 			(*dtrace_helpers_fork)(p, cp);
326 		}
327 
328 		mutex_enter(&p->p_lock);
329 		p->p_flag &= ~SFORKING;
330 		mutex_exit(&p->p_lock);
331 	}
332 
333 	/*
334 	 * Duplicate parent's resource controls.
335 	 */
336 	dup_set = rctl_set_create();
337 	for (;;) {
338 		dup_gp = rctl_set_dup_prealloc(p->p_rctls);
339 		mutex_enter(&p->p_rctls->rcs_lock);
340 		if (rctl_set_dup_ready(p->p_rctls, dup_gp))
341 			break;
342 		mutex_exit(&p->p_rctls->rcs_lock);
343 		rctl_prealloc_destroy(dup_gp);
344 	}
345 	e.rcep_p.proc = cp;
346 	e.rcep_t = RCENTITY_PROCESS;
347 	cp->p_rctls = rctl_set_dup(p->p_rctls, p, cp, &e, dup_set, dup_gp,
348 	    RCD_DUP | RCD_CALLBACK);
349 	mutex_exit(&p->p_rctls->rcs_lock);
350 
351 	rctl_prealloc_destroy(dup_gp);
352 
353 	/*
354 	 * Allocate the child's lwp directory and lwpid hash table.
355 	 */
356 	if (isfork1)
357 		cp->p_lwpdir_sz = 2;
358 	else
359 		cp->p_lwpdir_sz = p->p_lwpdir_sz;
360 	cp->p_lwpdir = cp->p_lwpfree = ldp =
361 	    kmem_zalloc(cp->p_lwpdir_sz * sizeof (lwpdir_t), KM_SLEEP);
362 	for (i = 1; i < cp->p_lwpdir_sz; i++, ldp++)
363 		ldp->ld_next = ldp + 1;
364 	cp->p_tidhash_sz = (cp->p_lwpdir_sz + 2) / 2;
365 	cp->p_tidhash =
366 	    kmem_zalloc(cp->p_tidhash_sz * sizeof (tidhash_t), KM_SLEEP);
367 
368 	/*
369 	 * Duplicate parent's lwps.
370 	 * Mutual exclusion is not needed because the process is
371 	 * in the hold state and only the current lwp is running.
372 	 */
373 	klgrpset_clear(cp->p_lgrpset);
374 	if (isfork1) {
375 		clone = forklwp(ttolwp(curthread), cp, curthread->t_tid);
376 		if (clone == NULL)
377 			goto forklwperr;
378 		/*
379 		 * Inherit only the lwp_wait()able flag,
380 		 * Daemon threads should not call fork1(), but oh well...
381 		 */
382 		lwptot(clone)->t_proc_flag |=
383 		    (curthread->t_proc_flag & TP_TWAIT);
384 	} else {
385 		/* this is forkall(), no one can be in lwp_wait() */
386 		ASSERT(p->p_lwpwait == 0 && p->p_lwpdwait == 0);
387 		/* for each entry in the parent's lwp directory... */
388 		for (i = 0, ldp = p->p_lwpdir; i < p->p_lwpdir_sz; i++, ldp++) {
389 			klwp_t *clwp;
390 			kthread_t *ct;
391 
392 			if ((lep = ldp->ld_entry) == NULL)
393 				continue;
394 
395 			if ((t = lep->le_thread) != NULL) {
396 				clwp = forklwp(ttolwp(t), cp, t->t_tid);
397 				if (clwp == NULL)
398 					goto forklwperr;
399 				ct = lwptot(clwp);
400 				/*
401 				 * Inherit lwp_wait()able and daemon flags.
402 				 */
403 				ct->t_proc_flag |=
404 				    (t->t_proc_flag & (TP_TWAIT|TP_DAEMON));
405 				/*
406 				 * Keep track of the clone of curthread to
407 				 * post return values through lwp_setrval().
408 				 * Mark other threads for special treatment
409 				 * by lwp_rtt() / post_syscall().
410 				 */
411 				if (t == curthread)
412 					clone = clwp;
413 				else
414 					ct->t_flag |= T_FORKALL;
415 			} else {
416 				/*
417 				 * Replicate zombie lwps in the child.
418 				 */
419 				clep = kmem_zalloc(sizeof (*clep), KM_SLEEP);
420 				clep->le_lwpid = lep->le_lwpid;
421 				clep->le_start = lep->le_start;
422 				lwp_hash_in(cp, clep,
423 				    cp->p_tidhash, cp->p_tidhash_sz, 0);
424 			}
425 		}
426 	}
427 
428 	/*
429 	 * Put new process in the parent's process contract, or put it
430 	 * in a new one if there is an active process template.  Send a
431 	 * fork event (if requested) to whatever contract the child is
432 	 * a member of.  Fails if the parent has been SIGKILLed.
433 	 */
434 	if (contract_process_fork(NULL, cp, p, B_TRUE) == NULL) {
435 		atomic_inc_32(&p->p_zone->zone_ffmisc);
436 		goto forklwperr;
437 	}
438 
439 	/*
440 	 * No fork failures occur beyond this point.
441 	 */
442 
443 	cp->p_lwpid = p->p_lwpid;
444 	if (!isfork1) {
445 		cp->p_lwpdaemon = p->p_lwpdaemon;
446 		cp->p_zombcnt = p->p_zombcnt;
447 		/*
448 		 * If the parent's lwp ids have wrapped around, so have the
449 		 * child's.
450 		 */
451 		cp->p_flag |= p->p_flag & SLWPWRAP;
452 	}
453 
454 	mutex_enter(&p->p_lock);
455 	corectl_path_hold(cp->p_corefile = p->p_corefile);
456 	corectl_content_hold(cp->p_content = p->p_content);
457 	mutex_exit(&p->p_lock);
458 
459 	/*
460 	 * Duplicate process context ops, if any.
461 	 */
462 	if (p->p_pctx)
463 		forkpctx(p, cp);
464 
465 #ifdef __sparc
466 	utrap_dup(p, cp);
467 #endif
468 	/*
469 	 * If the child process has been marked to stop on exit
470 	 * from this fork, arrange for all other lwps to stop in
471 	 * sympathy with the active lwp.
472 	 */
473 	if (PTOU(cp)->u_systrap &&
474 	    prismember(&PTOU(cp)->u_exitmask, curthread->t_sysnum)) {
475 		mutex_enter(&cp->p_lock);
476 		t = cp->p_tlist;
477 		do {
478 			t->t_proc_flag |= TP_PRSTOP;
479 			aston(t);	/* so TP_PRSTOP will be seen */
480 		} while ((t = t->t_forw) != cp->p_tlist);
481 		mutex_exit(&cp->p_lock);
482 	}
483 	/*
484 	 * If the parent process has been marked to stop on exit
485 	 * from this fork, and its asynchronous-stop flag has not
486 	 * been set, arrange for all other lwps to stop before
487 	 * they return back to user level.
488 	 */
489 	if (!(p->p_proc_flag & P_PR_ASYNC) && PTOU(p)->u_systrap &&
490 	    prismember(&PTOU(p)->u_exitmask, curthread->t_sysnum)) {
491 		mutex_enter(&p->p_lock);
492 		t = p->p_tlist;
493 		do {
494 			t->t_proc_flag |= TP_PRSTOP;
495 			aston(t);	/* so TP_PRSTOP will be seen */
496 		} while ((t = t->t_forw) != p->p_tlist);
497 		mutex_exit(&p->p_lock);
498 	}
499 
500 	if (PROC_IS_BRANDED(p))
501 		BROP(p)->b_lwp_setrval(clone, p->p_pid, 1);
502 	else
503 		lwp_setrval(clone, p->p_pid, 1);
504 
505 	/* set return values for parent */
506 	r.r_val1 = (int)cp->p_pid;
507 	r.r_val2 = 0;
508 
509 	/*
510 	 * pool_barrier_exit() can now be called because the child process has:
511 	 * - all identifying features cloned or set (p_pid, p_task, p_pool)
512 	 * - all resource sets associated (p_tlist->*->t_cpupart, p_as->a_mset)
513 	 * - any other fields set which are used in resource set binding.
514 	 */
515 	mutex_enter(&p->p_lock);
516 	pool_barrier_exit();
517 	mutex_exit(&p->p_lock);
518 
519 	mutex_enter(&pidlock);
520 	mutex_enter(&cp->p_lock);
521 
522 	/*
523 	 * Set flags telling the child what (not) to do on exit.
524 	 */
525 	if (flags & FORK_NOSIGCHLD)
526 		cp->p_pidflag |= CLDNOSIGCHLD;
527 	if (flags & FORK_WAITPID)
528 		cp->p_pidflag |= CLDWAITPID;
529 
530 	/*
531 	 * Now that there are lwps and threads attached, add the new
532 	 * process to the process group.
533 	 */
534 	pgjoin(cp, p->p_pgidp);
535 	cp->p_stat = SRUN;
536 	/*
537 	 * We are now done with all the lwps in the child process.
538 	 */
539 	t = cp->p_tlist;
540 	do {
541 		/*
542 		 * Set the lwp_suspend()ed lwps running.
543 		 * They will suspend properly at syscall exit.
544 		 */
545 		if (t->t_proc_flag & TP_HOLDLWP)
546 			lwp_create_done(t);
547 		else {
548 			/* set TS_CREATE to allow continuelwps() to work */
549 			thread_lock(t);
550 			ASSERT(t->t_state == TS_STOPPED &&
551 			    !(t->t_schedflag & (TS_CREATE|TS_CSTART)));
552 			t->t_schedflag |= TS_CREATE;
553 			thread_unlock(t);
554 		}
555 	} while ((t = t->t_forw) != cp->p_tlist);
556 	mutex_exit(&cp->p_lock);
557 
558 	if (isvfork) {
559 		CPU_STATS_ADDQ(CPU, sys, sysvfork, 1);
560 		mutex_enter(&p->p_lock);
561 		p->p_flag |= SVFWAIT;
562 		curthread->t_flag |= T_VFPARENT;
563 		DTRACE_PROC1(create, proc_t *, cp);
564 		cv_broadcast(&pr_pid_cv[p->p_slot]);	/* inform /proc */
565 		mutex_exit(&p->p_lock);
566 		/*
567 		 * Grab child's p_lock before dropping pidlock to ensure
568 		 * the process will not disappear before we set it running.
569 		 */
570 		mutex_enter(&cp->p_lock);
571 		mutex_exit(&pidlock);
572 		sigdefault(cp);
573 		continuelwps(cp);
574 		mutex_exit(&cp->p_lock);
575 	} else {
576 		CPU_STATS_ADDQ(CPU, sys, sysfork, 1);
577 		DTRACE_PROC1(create, proc_t *, cp);
578 		/*
579 		 * It is CL_FORKRET's job to drop pidlock.
580 		 * If we do it here, the process could be set running
581 		 * and disappear before CL_FORKRET() is called.
582 		 */
583 		CL_FORKRET(curthread, cp->p_tlist);
584 		schedctl_set_cidpri(curthread);
585 		ASSERT(MUTEX_NOT_HELD(&pidlock));
586 	}
587 
588 	return (r.r_vals);
589 
590 forklwperr:
591 	if (isvfork) {
592 		if (avl_numnodes(&p->p_wpage) != 0) {
593 			/* restore watchpoints to parent */
594 			as = p->p_as;
595 			AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
596 			as->a_wpage = p->p_wpage;
597 			avl_create(&p->p_wpage, wp_compare,
598 			    sizeof (struct watched_page),
599 			    offsetof(struct watched_page, wp_link));
600 			as_setwatch(as);
601 			AS_LOCK_EXIT(as, &as->a_lock);
602 		}
603 	} else {
604 		if (cp->p_segacct)
605 			shmexit(cp);
606 		as = cp->p_as;
607 		cp->p_as = &kas;
608 		as_free(as);
609 	}
610 
611 	if (cp->p_lwpdir) {
612 		for (i = 0, ldp = cp->p_lwpdir; i < cp->p_lwpdir_sz; i++, ldp++)
613 			if ((lep = ldp->ld_entry) != NULL)
614 				kmem_free(lep, sizeof (*lep));
615 		kmem_free(cp->p_lwpdir,
616 		    cp->p_lwpdir_sz * sizeof (*cp->p_lwpdir));
617 	}
618 	cp->p_lwpdir = NULL;
619 	cp->p_lwpfree = NULL;
620 	cp->p_lwpdir_sz = 0;
621 
622 	if (cp->p_tidhash)
623 		kmem_free(cp->p_tidhash,
624 		    cp->p_tidhash_sz * sizeof (*cp->p_tidhash));
625 	cp->p_tidhash = NULL;
626 	cp->p_tidhash_sz = 0;
627 
628 	forklwp_fail(cp);
629 	fork_fail(cp);
630 	rctl_set_free(cp->p_rctls);
631 	mutex_enter(&pidlock);
632 
633 	/*
634 	 * Detach failed child from task.
635 	 */
636 	mutex_enter(&cp->p_lock);
637 	tk = cp->p_task;
638 	task_detach(cp);
639 	ASSERT(cp->p_pool->pool_ref > 0);
640 	atomic_dec_32(&cp->p_pool->pool_ref);
641 	mutex_exit(&cp->p_lock);
642 
643 	orphpp = &p->p_orphan;
644 	while (*orphpp != cp)
645 		orphpp = &(*orphpp)->p_nextorph;
646 	*orphpp = cp->p_nextorph;
647 	if (p->p_child == cp)
648 		p->p_child = cp->p_sibling;
649 	if (cp->p_sibling)
650 		cp->p_sibling->p_psibling = cp->p_psibling;
651 	if (cp->p_psibling)
652 		cp->p_psibling->p_sibling = cp->p_sibling;
653 	pid_exit(cp, tk);
654 	mutex_exit(&pidlock);
655 
656 	task_rele(tk);
657 
658 	mutex_enter(&p->p_lock);
659 	pool_barrier_exit();
660 	continuelwps(p);
661 	mutex_exit(&p->p_lock);
662 	error = EAGAIN;
663 forkerr:
664 	return ((int64_t)set_errno(error));
665 }
666 
667 /*
668  * Free allocated resources from getproc() if a fork failed.
669  */
670 static void
671 fork_fail(proc_t *cp)
672 {
673 	uf_info_t *fip = P_FINFO(cp);
674 
675 	fcnt_add(fip, -1);
676 	sigdelq(cp, NULL, 0);
677 
678 	mutex_enter(&pidlock);
679 	upcount_dec(crgetruid(cp->p_cred), crgetzoneid(cp->p_cred));
680 	mutex_exit(&pidlock);
681 
682 	/*
683 	 * single threaded, so no locking needed here
684 	 */
685 	crfree(cp->p_cred);
686 
687 	kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));
688 
689 	VN_RELE(PTOU(curproc)->u_cdir);
690 	if (PTOU(curproc)->u_rdir)
691 		VN_RELE(PTOU(curproc)->u_rdir);
692 	if (cp->p_exec)
693 		VN_RELE(cp->p_exec);
694 	if (cp->p_execdir)
695 		VN_RELE(cp->p_execdir);
696 	if (PTOU(curproc)->u_cwd)
697 		refstr_rele(PTOU(curproc)->u_cwd);
698 	if (PROC_IS_BRANDED(cp)) {
699 		brand_clearbrand(cp, B_TRUE);
700 	}
701 }
702 
703 /*
704  * Clean up the lwps already created for this child process.
705  * The fork failed while duplicating all the lwps of the parent
706  * and those lwps already created must be freed.
707  * This process is invisible to the rest of the system,
708  * so we don't need to hold p->p_lock to protect the list.
709  */
710 static void
711 forklwp_fail(proc_t *p)
712 {
713 	kthread_t *t;
714 	task_t *tk;
715 	int branded = 0;
716 
717 	if (PROC_IS_BRANDED(p))
718 		branded = 1;
719 
720 	while ((t = p->p_tlist) != NULL) {
721 		/*
722 		 * First remove the lwp from the process's p_tlist.
723 		 */
724 		if (t != t->t_forw)
725 			p->p_tlist = t->t_forw;
726 		else
727 			p->p_tlist = NULL;
728 		p->p_lwpcnt--;
729 		t->t_forw->t_back = t->t_back;
730 		t->t_back->t_forw = t->t_forw;
731 
732 		tk = p->p_task;
733 		mutex_enter(&p->p_zone->zone_nlwps_lock);
734 		tk->tk_nlwps--;
735 		tk->tk_proj->kpj_nlwps--;
736 		p->p_zone->zone_nlwps--;
737 		mutex_exit(&p->p_zone->zone_nlwps_lock);
738 
739 		ASSERT(t->t_schedctl == NULL);
740 
741 		if (branded)
742 			BROP(p)->b_freelwp(ttolwp(t));
743 
744 		if (t->t_door != NULL) {
745 			kmem_free(t->t_door, sizeof (door_data_t));
746 			t->t_door = NULL;
747 		}
748 		lwp_ctmpl_clear(ttolwp(t));
749 
750 		/*
751 		 * Remove the thread from the all threads list.
752 		 * We need to hold pidlock for this.
753 		 */
754 		mutex_enter(&pidlock);
755 		t->t_next->t_prev = t->t_prev;
756 		t->t_prev->t_next = t->t_next;
757 		CL_EXIT(t);	/* tell the scheduler that we're exiting */
758 		cv_broadcast(&t->t_joincv);	/* tell anyone in thread_join */
759 		mutex_exit(&pidlock);
760 
761 		/*
762 		 * Let the lgroup load averages know that this thread isn't
763 		 * going to show up (i.e. un-do what was done on behalf of
764 		 * this thread by the earlier lgrp_move_thread()).
765 		 */
766 		kpreempt_disable();
767 		lgrp_move_thread(t, NULL, 1);
768 		kpreempt_enable();
769 
770 		/*
771 		 * The thread was created TS_STOPPED.
772 		 * We change it to TS_FREE to avoid an
773 		 * ASSERT() panic in thread_free().
774 		 */
775 		t->t_state = TS_FREE;
776 		thread_rele(t);
777 		thread_free(t);
778 	}
779 }
780 
781 extern struct as kas;
782 
783 /*
784  * fork a kernel process.
785  */
786 int
787 newproc(void (*pc)(), caddr_t arg, id_t cid, int pri, struct contract **ct,
788     pid_t pid)
789 {
790 	proc_t *p;
791 	struct user *up;
792 	kthread_t *t;
793 	cont_process_t *ctp = NULL;
794 	rctl_entity_p_t e;
795 
796 	ASSERT(cid != sysdccid);
797 	ASSERT(cid != syscid || ct == NULL);
798 	if (CLASS_KERNEL(cid)) {
799 		rctl_alloc_gp_t *init_gp;
800 		rctl_set_t *init_set;
801 
802 		ASSERT(pid != 1);
803 
804 		if (getproc(&p, pid, GETPROC_KERNEL) < 0)
805 			return (EAGAIN);
806 
807 		/*
808 		 * Release the hold on the p_exec and p_execdir, these
809 		 * were acquired in getproc()
810 		 */
811 		if (p->p_execdir != NULL)
812 			VN_RELE(p->p_execdir);
813 		if (p->p_exec != NULL)
814 			VN_RELE(p->p_exec);
815 		p->p_flag |= SNOWAIT;
816 		p->p_exec = NULL;
817 		p->p_execdir = NULL;
818 
819 		init_set = rctl_set_create();
820 		init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS);
821 
822 		/*
823 		 * kernel processes do not inherit /proc tracing flags.
824 		 */
825 		sigemptyset(&p->p_sigmask);
826 		premptyset(&p->p_fltmask);
827 		up = PTOU(p);
828 		up->u_systrap = 0;
829 		premptyset(&(up->u_entrymask));
830 		premptyset(&(up->u_exitmask));
831 		mutex_enter(&p->p_lock);
832 		e.rcep_p.proc = p;
833 		e.rcep_t = RCENTITY_PROCESS;
834 		p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set,
835 		    init_gp);
836 		mutex_exit(&p->p_lock);
837 
838 		rctl_prealloc_destroy(init_gp);
839 
840 		t = lwp_kernel_create(p, pc, arg, TS_STOPPED, pri);
841 	} else {
842 		rctl_alloc_gp_t *init_gp, *default_gp;
843 		rctl_set_t *init_set;
844 		task_t *tk, *tk_old;
845 		klwp_t *lwp;
846 
847 		if (getproc(&p, pid, GETPROC_USER) < 0)
848 			return (EAGAIN);
849 		/*
850 		 * init creates a new task, distinct from the task
851 		 * containing kernel "processes".
852 		 */
853 		tk = task_create(0, p->p_zone);
854 		mutex_enter(&tk->tk_zone->zone_nlwps_lock);
855 		tk->tk_proj->kpj_ntasks++;
856 		tk->tk_nprocs++;
857 		mutex_exit(&tk->tk_zone->zone_nlwps_lock);
858 
859 		default_gp = rctl_rlimit_set_prealloc(RLIM_NLIMITS);
860 		init_gp = rctl_set_init_prealloc(RCENTITY_PROCESS);
861 		init_set = rctl_set_create();
862 
863 		mutex_enter(&pidlock);
864 		mutex_enter(&p->p_lock);
865 		tk_old = p->p_task;	/* switch to new task */
866 
867 		task_detach(p);
868 		task_begin(tk, p);
869 		mutex_exit(&pidlock);
870 
871 		mutex_enter(&tk_old->tk_zone->zone_nlwps_lock);
872 		tk_old->tk_nprocs--;
873 		mutex_exit(&tk_old->tk_zone->zone_nlwps_lock);
874 
875 		e.rcep_p.proc = p;
876 		e.rcep_t = RCENTITY_PROCESS;
877 		p->p_rctls = rctl_set_init(RCENTITY_PROCESS, p, &e, init_set,
878 		    init_gp);
879 		rctlproc_default_init(p, default_gp);
880 		mutex_exit(&p->p_lock);
881 
882 		task_rele(tk_old);
883 		rctl_prealloc_destroy(default_gp);
884 		rctl_prealloc_destroy(init_gp);
885 
886 		if ((lwp = lwp_create(pc, arg, 0, p, TS_STOPPED, pri,
887 		    &curthread->t_hold, cid, 1)) == NULL) {
888 			task_t *tk;
889 			fork_fail(p);
890 			mutex_enter(&pidlock);
891 			mutex_enter(&p->p_lock);
892 			tk = p->p_task;
893 			task_detach(p);
894 			ASSERT(p->p_pool->pool_ref > 0);
895 			atomic_add_32(&p->p_pool->pool_ref, -1);
896 			mutex_exit(&p->p_lock);
897 			pid_exit(p, tk);
898 			mutex_exit(&pidlock);
899 			task_rele(tk);
900 
901 			return (EAGAIN);
902 		}
903 		t = lwptot(lwp);
904 
905 		ctp = contract_process_fork(sys_process_tmpl, p, curproc,
906 		    B_FALSE);
907 		ASSERT(ctp != NULL);
908 		if (ct != NULL)
909 			*ct = &ctp->conp_contract;
910 	}
911 
912 	ASSERT3U(t->t_tid, ==, 1);
913 	p->p_lwpid = 1;
914 	mutex_enter(&pidlock);
915 	pgjoin(p, p->p_parent->p_pgidp);
916 	p->p_stat = SRUN;
917 	mutex_enter(&p->p_lock);
918 	t->t_proc_flag &= ~TP_HOLDLWP;
919 	lwp_create_done(t);
920 	mutex_exit(&p->p_lock);
921 	mutex_exit(&pidlock);
922 	return (0);
923 }
924 
925 /*
926  * create a child proc struct.
927  */
928 static int
929 getproc(proc_t **cpp, pid_t pid, uint_t flags)
930 {
931 	proc_t		*pp, *cp;
932 	pid_t		newpid;
933 	struct user	*uarea;
934 	extern uint_t	nproc;
935 	struct cred	*cr;
936 	uid_t		ruid;
937 	zoneid_t	zoneid;
938 	task_t		*task;
939 	kproject_t	*proj;
940 	zone_t		*zone;
941 	int		rctlfail = 0;
942 
943 	if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN)
944 		return (-1);	/* no point in starting new processes */
945 
946 	pp = (flags & GETPROC_KERNEL) ? &p0 : curproc;
947 	task = pp->p_task;
948 	proj = task->tk_proj;
949 	zone = pp->p_zone;
950 
951 	mutex_enter(&pp->p_lock);
952 	mutex_enter(&zone->zone_nlwps_lock);
953 	if (proj != proj0p) {
954 		if (task->tk_nprocs >= task->tk_nprocs_ctl)
955 			if (rctl_test(rc_task_nprocs, task->tk_rctls,
956 			    pp, 1, 0) & RCT_DENY)
957 				rctlfail = 1;
958 
959 		if (proj->kpj_nprocs >= proj->kpj_nprocs_ctl)
960 			if (rctl_test(rc_project_nprocs, proj->kpj_rctls,
961 			    pp, 1, 0) & RCT_DENY)
962 				rctlfail = 1;
963 
964 		if (zone->zone_nprocs >= zone->zone_nprocs_ctl)
965 			if (rctl_test(rc_zone_nprocs, zone->zone_rctls,
966 			    pp, 1, 0) & RCT_DENY)
967 				rctlfail = 1;
968 
969 		if (rctlfail) {
970 			mutex_exit(&zone->zone_nlwps_lock);
971 			mutex_exit(&pp->p_lock);
972 			atomic_inc_32(&zone->zone_ffcap);
973 			goto punish;
974 		}
975 	}
976 	task->tk_nprocs++;
977 	proj->kpj_nprocs++;
978 	zone->zone_nprocs++;
979 	mutex_exit(&zone->zone_nlwps_lock);
980 	mutex_exit(&pp->p_lock);
981 
982 	cp = kmem_cache_alloc(process_cache, KM_SLEEP);
983 	bzero(cp, sizeof (proc_t));
984 
985 	/*
986 	 * Make proc entry for child process
987 	 */
988 	mutex_init(&cp->p_splock, NULL, MUTEX_DEFAULT, NULL);
989 	mutex_init(&cp->p_crlock, NULL, MUTEX_DEFAULT, NULL);
990 	mutex_init(&cp->p_pflock, NULL, MUTEX_DEFAULT, NULL);
991 #if defined(__x86)
992 	mutex_init(&cp->p_ldtlock, NULL, MUTEX_DEFAULT, NULL);
993 #endif
994 	mutex_init(&cp->p_maplock, NULL, MUTEX_DEFAULT, NULL);
995 	cp->p_stat = SIDL;
996 	cp->p_mstart = gethrtime();
997 	cp->p_as = &kas;
998 	/*
999 	 * p_zone must be set before we call pid_allocate since the process
1000 	 * will be visible after that and code such as prfind_zone will
1001 	 * look at the p_zone field.
1002 	 */
1003 	cp->p_zone = pp->p_zone;
1004 	cp->p_t1_lgrpid = LGRP_NONE;
1005 	cp->p_tr_lgrpid = LGRP_NONE;
1006 
1007 	if ((newpid = pid_allocate(cp, pid, PID_ALLOC_PROC)) == -1) {
1008 		if (nproc == v.v_proc) {
1009 			CPU_STATS_ADDQ(CPU, sys, procovf, 1);
1010 			cmn_err(CE_WARN, "out of processes");
1011 		}
1012 		goto bad;
1013 	}
1014 
1015 	mutex_enter(&pp->p_lock);
1016 	cp->p_exec = pp->p_exec;
1017 	cp->p_execdir = pp->p_execdir;
1018 	mutex_exit(&pp->p_lock);
1019 
1020 	if (cp->p_exec) {
1021 		VN_HOLD(cp->p_exec);
1022 		/*
1023 		 * Each VOP_OPEN() must be paired with a corresponding
1024 		 * VOP_CLOSE(). In this case, the executable will be
1025 		 * closed for the child in either proc_exit() or gexec().
1026 		 */
1027 		if (VOP_OPEN(&cp->p_exec, FREAD, CRED(), NULL) != 0) {
1028 			VN_RELE(cp->p_exec);
1029 			cp->p_exec = NULLVP;
1030 			cp->p_execdir = NULLVP;
1031 			goto bad;
1032 		}
1033 	}
1034 	if (cp->p_execdir)
1035 		VN_HOLD(cp->p_execdir);
1036 
1037 	/*
1038 	 * If not privileged make sure that this user hasn't exceeded
1039 	 * v.v_maxup processes, and that users collectively haven't
1040 	 * exceeded v.v_maxupttl processes.
1041 	 */
1042 	mutex_enter(&pidlock);
1043 	ASSERT(nproc < v.v_proc);	/* otherwise how'd we get our pid? */
1044 	cr = CRED();
1045 	ruid = crgetruid(cr);
1046 	zoneid = crgetzoneid(cr);
1047 	if (nproc >= v.v_maxup && 	/* short-circuit; usually false */
1048 	    (nproc >= v.v_maxupttl ||
1049 	    upcount_get(ruid, zoneid) >= v.v_maxup) &&
1050 	    secpolicy_newproc(cr) != 0) {
1051 		mutex_exit(&pidlock);
1052 		zcmn_err(zoneid, CE_NOTE,
1053 		    "out of per-user processes for uid %d", ruid);
1054 		goto bad;
1055 	}
1056 
1057 	/*
1058 	 * Everything is cool, put the new proc on the active process list.
1059 	 * It is already on the pid list and in /proc.
1060 	 * Increment the per uid process count (upcount).
1061 	 */
1062 	nproc++;
1063 	upcount_inc(ruid, zoneid);
1064 
1065 	cp->p_next = practive;
1066 	practive->p_prev = cp;
1067 	practive = cp;
1068 
1069 	cp->p_ignore = pp->p_ignore;
1070 	cp->p_siginfo = pp->p_siginfo;
1071 	cp->p_flag = pp->p_flag & (SJCTL|SNOWAIT|SNOCD);
1072 	cp->p_sessp = pp->p_sessp;
1073 	sess_hold(pp);
1074 	cp->p_brand = pp->p_brand;
1075 	if (PROC_IS_BRANDED(pp))
1076 		BROP(pp)->b_copy_procdata(cp, pp);
1077 	cp->p_bssbase = pp->p_bssbase;
1078 	cp->p_brkbase = pp->p_brkbase;
1079 	cp->p_brksize = pp->p_brksize;
1080 	cp->p_brkpageszc = pp->p_brkpageszc;
1081 	cp->p_stksize = pp->p_stksize;
1082 	cp->p_stkpageszc = pp->p_stkpageszc;
1083 	cp->p_stkprot = pp->p_stkprot;
1084 	cp->p_datprot = pp->p_datprot;
1085 	cp->p_usrstack = pp->p_usrstack;
1086 	cp->p_model = pp->p_model;
1087 	cp->p_ppid = pp->p_pid;
1088 	cp->p_ancpid = pp->p_pid;
1089 	cp->p_portcnt = pp->p_portcnt;
1090 
1091 	/*
1092 	 * Initialize watchpoint structures
1093 	 */
1094 	avl_create(&cp->p_warea, wa_compare, sizeof (struct watched_area),
1095 	    offsetof(struct watched_area, wa_link));
1096 
1097 	/*
1098 	 * Initialize immediate resource control values.
1099 	 */
1100 	cp->p_stk_ctl = pp->p_stk_ctl;
1101 	cp->p_fsz_ctl = pp->p_fsz_ctl;
1102 	cp->p_vmem_ctl = pp->p_vmem_ctl;
1103 	cp->p_fno_ctl = pp->p_fno_ctl;
1104 
1105 	/*
1106 	 * Link up to parent-child-sibling chain.  No need to lock
1107 	 * in general since only a call to freeproc() (done by the
1108 	 * same parent as newproc()) diddles with the child chain.
1109 	 */
1110 	cp->p_sibling = pp->p_child;
1111 	if (pp->p_child)
1112 		pp->p_child->p_psibling = cp;
1113 
1114 	cp->p_parent = pp;
1115 	pp->p_child = cp;
1116 
1117 	cp->p_child_ns = NULL;
1118 	cp->p_sibling_ns = NULL;
1119 
1120 	cp->p_nextorph = pp->p_orphan;
1121 	cp->p_nextofkin = pp;
1122 	pp->p_orphan = cp;
1123 
1124 	/*
1125 	 * Inherit profiling state; do not inherit REALPROF profiling state.
1126 	 */
1127 	cp->p_prof = pp->p_prof;
1128 	cp->p_rprof_cyclic = CYCLIC_NONE;
1129 
1130 	/*
1131 	 * Inherit pool pointer from the parent.  Kernel processes are
1132 	 * always bound to the default pool.
1133 	 */
1134 	mutex_enter(&pp->p_lock);
1135 	if (flags & GETPROC_KERNEL) {
1136 		cp->p_pool = pool_default;
1137 		cp->p_flag |= SSYS;
1138 	} else {
1139 		cp->p_pool = pp->p_pool;
1140 	}
1141 	atomic_inc_32(&cp->p_pool->pool_ref);
1142 	mutex_exit(&pp->p_lock);
1143 
1144 	/*
1145 	 * Add the child process to the current task.  Kernel processes
1146 	 * are always attached to task0.
1147 	 */
1148 	mutex_enter(&cp->p_lock);
1149 	if (flags & GETPROC_KERNEL)
1150 		task_attach(task0p, cp);
1151 	else
1152 		task_attach(pp->p_task, cp);
1153 	mutex_exit(&cp->p_lock);
1154 	mutex_exit(&pidlock);
1155 
1156 	avl_create(&cp->p_ct_held, contract_compar, sizeof (contract_t),
1157 	    offsetof(contract_t, ct_ctlist));
1158 
1159 	/*
1160 	 * Duplicate any audit information kept in the process table
1161 	 */
1162 	if (audit_active)	/* copy audit data to cp */
1163 		audit_newproc(cp);
1164 
1165 	crhold(cp->p_cred = cr);
1166 
1167 	/*
1168 	 * Bump up the counts on the file structures pointed at by the
1169 	 * parent's file table since the child will point at them too.
1170 	 */
1171 	fcnt_add(P_FINFO(pp), 1);
1172 
1173 	if (PTOU(pp)->u_cdir) {
1174 		VN_HOLD(PTOU(pp)->u_cdir);
1175 	} else {
1176 		ASSERT(pp == &p0);
1177 		/*
1178 		 * We must be at or before vfs_mountroot(); it will take care of
1179 		 * assigning our current directory.
1180 		 */
1181 	}
1182 	if (PTOU(pp)->u_rdir)
1183 		VN_HOLD(PTOU(pp)->u_rdir);
1184 	if (PTOU(pp)->u_cwd)
1185 		refstr_hold(PTOU(pp)->u_cwd);
1186 
1187 	/*
1188 	 * copy the parent's uarea.
1189 	 */
1190 	uarea = PTOU(cp);
1191 	bcopy(PTOU(pp), uarea, sizeof (*uarea));
1192 	flist_fork(P_FINFO(pp), P_FINFO(cp));
1193 
1194 	gethrestime(&uarea->u_start);
1195 	uarea->u_ticks = ddi_get_lbolt();
1196 	uarea->u_mem = rm_asrss(pp->p_as);
1197 	uarea->u_acflag = AFORK;
1198 
1199 	/*
1200 	 * If inherit-on-fork, copy /proc tracing flags to child.
1201 	 */
1202 	if ((pp->p_proc_flag & P_PR_FORK) != 0) {
1203 		cp->p_proc_flag |= pp->p_proc_flag & (P_PR_TRACE|P_PR_FORK);
1204 		cp->p_sigmask = pp->p_sigmask;
1205 		cp->p_fltmask = pp->p_fltmask;
1206 	} else {
1207 		sigemptyset(&cp->p_sigmask);
1208 		premptyset(&cp->p_fltmask);
1209 		uarea->u_systrap = 0;
1210 		premptyset(&uarea->u_entrymask);
1211 		premptyset(&uarea->u_exitmask);
1212 	}
1213 	/*
1214 	 * If microstate accounting is being inherited, mark child
1215 	 */
1216 	if ((pp->p_flag & SMSFORK) != 0)
1217 		cp->p_flag |= pp->p_flag & (SMSFORK|SMSACCT);
1218 
1219 	/*
1220 	 * Inherit fixalignment flag from the parent
1221 	 */
1222 	cp->p_fixalignment = pp->p_fixalignment;
1223 
1224 	*cpp = cp;
1225 	return (0);
1226 
1227 bad:
1228 	ASSERT(MUTEX_NOT_HELD(&pidlock));
1229 
1230 	mutex_destroy(&cp->p_crlock);
1231 	mutex_destroy(&cp->p_pflock);
1232 #if defined(__x86)
1233 	mutex_destroy(&cp->p_ldtlock);
1234 #endif
1235 	if (newpid != -1) {
1236 		proc_entry_free(cp->p_pidp);
1237 		(void) pid_rele(cp->p_pidp);
1238 	}
1239 	kmem_cache_free(process_cache, cp);
1240 
1241 	mutex_enter(&zone->zone_nlwps_lock);
1242 	task->tk_nprocs--;
1243 	proj->kpj_nprocs--;
1244 	zone->zone_nprocs--;
1245 	mutex_exit(&zone->zone_nlwps_lock);
1246 	atomic_inc_32(&zone->zone_ffnoproc);
1247 
1248 punish:
1249 	/*
1250 	 * We most likely got into this situation because some process is
1251 	 * forking out of control.  As punishment, put it to sleep for a
1252 	 * bit so it can't eat the machine alive.  Sleep interval is chosen
1253 	 * to allow no more than one fork failure per cpu per clock tick
1254 	 * on average (yes, I just made this up).  This has two desirable
1255 	 * properties: (1) it sets a constant limit on the fork failure
1256 	 * rate, and (2) the busier the system is, the harsher the penalty
1257 	 * for abusing it becomes.
1258 	 */
1259 	INCR_COUNT(&fork_fail_pending, &pidlock);
1260 	delay(fork_fail_pending / ncpus + 1);
1261 	DECR_COUNT(&fork_fail_pending, &pidlock);
1262 
1263 	return (-1); /* out of memory or proc slots */
1264 }
1265 
1266 /*
1267  * Release virtual memory.
1268  * In the case of vfork(), the child was given exclusive access to its
1269  * parent's address space.  The parent is waiting in vfwait() for the
1270  * child to release its exclusive claim via relvm().
1271  */
1272 void
1273 relvm()
1274 {
1275 	proc_t *p = curproc;
1276 
1277 	ASSERT((unsigned)p->p_lwpcnt <= 1);
1278 
1279 	prrelvm();	/* inform /proc */
1280 
1281 	if (p->p_flag & SVFORK) {
1282 		proc_t *pp = p->p_parent;
1283 		/*
1284 		 * The child process is either exec'ing or exit'ing.
1285 		 * The child is now separated from the parent's address
1286 		 * space.  The parent process is made dispatchable.
1287 		 *
1288 		 * This is a delicate locking maneuver, involving
1289 		 * both the parent's p_lock and the child's p_lock.
1290 		 * As soon as the SVFORK flag is turned off, the
1291 		 * parent is free to run, but it must not run until
1292 		 * we wake it up using its p_cv because it might
1293 		 * exit and we would be referencing invalid memory.
1294 		 * Therefore, we hold the parent with its p_lock
1295 		 * while protecting our p_flags with our own p_lock.
1296 		 */
1297 try_again:
1298 		mutex_enter(&p->p_lock);	/* grab child's lock first */
1299 		prbarrier(p);		/* make sure /proc is blocked out */
1300 		mutex_enter(&pp->p_lock);
1301 
1302 		/*
1303 		 * Check if parent is locked by /proc.
1304 		 */
1305 		if (pp->p_proc_flag & P_PR_LOCK) {
1306 			/*
1307 			 * Delay until /proc is done with the parent.
1308 			 * We must drop our (the child's) p->p_lock, wait
1309 			 * via prbarrier() on the parent, then start over.
1310 			 */
1311 			mutex_exit(&p->p_lock);
1312 			prbarrier(pp);
1313 			mutex_exit(&pp->p_lock);
1314 			goto try_again;
1315 		}
1316 		p->p_flag &= ~SVFORK;
1317 		kpreempt_disable();
1318 		p->p_as = &kas;
1319 
1320 		/*
1321 		 * notify hat of change in thread's address space
1322 		 */
1323 		hat_thread_exit(curthread);
1324 		kpreempt_enable();
1325 
1326 		/*
1327 		 * child sizes are copied back to parent because
1328 		 * child may have grown.
1329 		 */
1330 		pp->p_brkbase = p->p_brkbase;
1331 		pp->p_brksize = p->p_brksize;
1332 		pp->p_stksize = p->p_stksize;
1333 
1334 		/*
1335 		 * Copy back the shm accounting information
1336 		 * to the parent process.
1337 		 */
1338 		pp->p_segacct = p->p_segacct;
1339 		p->p_segacct = NULL;
1340 
1341 		/*
1342 		 * The parent is no longer waiting for the vfork()d child.
1343 		 * Restore the parent's watched pages, if any.  This is
1344 		 * safe because we know the parent is not locked by /proc
1345 		 */
1346 		pp->p_flag &= ~SVFWAIT;
1347 		if (avl_numnodes(&pp->p_wpage) != 0) {
1348 			pp->p_as->a_wpage = pp->p_wpage;
1349 			avl_create(&pp->p_wpage, wp_compare,
1350 			    sizeof (struct watched_page),
1351 			    offsetof(struct watched_page, wp_link));
1352 		}
1353 		cv_signal(&pp->p_cv);
1354 		mutex_exit(&pp->p_lock);
1355 		mutex_exit(&p->p_lock);
1356 	} else {
1357 		if (p->p_as != &kas) {
1358 			struct as *as;
1359 
1360 			if (p->p_segacct)
1361 				shmexit(p);
1362 
1363 			/*
1364 			 * We grab p_lock for the benefit of /proc
1365 			 */
1366 			kpreempt_disable();
1367 			mutex_enter(&p->p_lock);
1368 			prbarrier(p);	/* make sure /proc is blocked out */
1369 			as = p->p_as;
1370 			p->p_as = &kas;
1371 			mutex_exit(&p->p_lock);
1372 
1373 			/*
1374 			 * notify hat of change in thread's address space
1375 			 */
1376 			hat_thread_exit(curthread);
1377 			kpreempt_enable();
1378 
1379 			as_free(as);
1380 			p->p_tr_lgrpid = LGRP_NONE;
1381 		}
1382 	}
1383 }
1384 
1385 /*
1386  * Wait for child to exec or exit.
1387  * Called by parent of vfork'ed process.
1388  * See important comments in relvm(), above.
1389  */
1390 void
1391 vfwait(pid_t pid)
1392 {
1393 	int signalled = 0;
1394 	proc_t *pp = ttoproc(curthread);
1395 	proc_t *cp;
1396 
1397 	/*
1398 	 * Wait for child to exec or exit.
1399 	 */
1400 	for (;;) {
1401 		mutex_enter(&pidlock);
1402 		cp = prfind(pid);
1403 		if (cp == NULL || cp->p_parent != pp) {
1404 			/*
1405 			 * Child has exit()ed.
1406 			 */
1407 			mutex_exit(&pidlock);
1408 			break;
1409 		}
1410 		/*
1411 		 * Grab the child's p_lock before releasing pidlock.
1412 		 * Otherwise, the child could exit and we would be
1413 		 * referencing invalid memory.
1414 		 */
1415 		mutex_enter(&cp->p_lock);
1416 		mutex_exit(&pidlock);
1417 		if (!(cp->p_flag & SVFORK)) {
1418 			/*
1419 			 * Child has exec()ed or is exit()ing.
1420 			 */
1421 			mutex_exit(&cp->p_lock);
1422 			break;
1423 		}
1424 		mutex_enter(&pp->p_lock);
1425 		mutex_exit(&cp->p_lock);
1426 		/*
1427 		 * We might be waked up spuriously from the cv_wait().
1428 		 * We have to do the whole operation over again to be
1429 		 * sure the child's SVFORK flag really is turned off.
1430 		 * We cannot make reference to the child because it can
1431 		 * exit before we return and we would be referencing
1432 		 * invalid memory.
1433 		 *
1434 		 * Because this is potentially a very long-term wait,
1435 		 * we call cv_wait_sig() (for its jobcontrol and /proc
1436 		 * side-effects) unless there is a current signal, in
1437 		 * which case we use cv_wait() because we cannot return
1438 		 * from this function until the child has released the
1439 		 * address space.  Calling cv_wait_sig() with a current
1440 		 * signal would lead to an indefinite loop here because
1441 		 * cv_wait_sig() returns immediately in this case.
1442 		 */
1443 		if (signalled)
1444 			cv_wait(&pp->p_cv, &pp->p_lock);
1445 		else
1446 			signalled = !cv_wait_sig(&pp->p_cv, &pp->p_lock);
1447 		mutex_exit(&pp->p_lock);
1448 	}
1449 
1450 	/* restore watchpoints to parent */
1451 	if (pr_watch_active(pp)) {
1452 		struct as *as = pp->p_as;
1453 		AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER);
1454 		as_setwatch(as);
1455 		AS_LOCK_EXIT(as, &as->a_lock);
1456 	}
1457 
1458 	mutex_enter(&pp->p_lock);
1459 	prbarrier(pp);	/* barrier against /proc locking */
1460 	continuelwps(pp);
1461 	mutex_exit(&pp->p_lock);
1462 }
1463