xref: /illumos-gate/usr/src/uts/common/os/fio.c (revision 9a686fbc186e8e2a64e9a5094d44c7d6fa0ea167)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, Joyent Inc. All rights reserved.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	All Rights Reserved */
29 
30 #include <sys/types.h>
31 #include <sys/sysmacros.h>
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/errno.h>
35 #include <sys/signal.h>
36 #include <sys/cred.h>
37 #include <sys/user.h>
38 #include <sys/conf.h>
39 #include <sys/vfs.h>
40 #include <sys/vnode.h>
41 #include <sys/pathname.h>
42 #include <sys/file.h>
43 #include <sys/proc.h>
44 #include <sys/var.h>
45 #include <sys/cpuvar.h>
46 #include <sys/open.h>
47 #include <sys/cmn_err.h>
48 #include <sys/priocntl.h>
49 #include <sys/procset.h>
50 #include <sys/prsystm.h>
51 #include <sys/debug.h>
52 #include <sys/kmem.h>
53 #include <sys/atomic.h>
54 #include <sys/fcntl.h>
55 #include <sys/poll.h>
56 #include <sys/rctl.h>
57 #include <sys/port_impl.h>
58 #include <sys/dtrace.h>
59 
60 #include <c2/audit.h>
61 #include <sys/nbmlock.h>
62 
63 #ifdef DEBUG
64 
65 static uint32_t afd_maxfd;	/* # of entries in maximum allocated array */
66 static uint32_t afd_alloc;	/* count of kmem_alloc()s */
67 static uint32_t afd_free;	/* count of kmem_free()s */
68 static uint32_t afd_wait;	/* count of waits on non-zero ref count */
69 #define	MAXFD(x)	(afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x)))
70 #define	COUNT(x)	atomic_inc_32(&x)
71 
72 #else	/* DEBUG */
73 
74 #define	MAXFD(x)
75 #define	COUNT(x)
76 
77 #endif	/* DEBUG */
78 
79 kmem_cache_t *file_cache;
80 
81 static void port_close_fd(portfd_t *);
82 
83 /*
84  * File descriptor allocation.
85  *
86  * fd_find(fip, minfd) finds the first available descriptor >= minfd.
87  * The most common case is open(2), in which minfd = 0, but we must also
88  * support fcntl(fd, F_DUPFD, minfd).
89  *
90  * The algorithm is as follows: we keep all file descriptors in an infix
91  * binary tree in which each node records the number of descriptors
92  * allocated in its right subtree, including itself.  Starting at minfd,
93  * we ascend the tree until we find a non-fully allocated right subtree.
94  * We then descend that subtree in a binary search for the smallest fd.
95  * Finally, we ascend the tree again to increment the allocation count
96  * of every subtree containing the newly-allocated fd.  Freeing an fd
97  * requires only the last step: we ascend the tree to decrement allocation
98  * counts.  Each of these three steps (ascent to find non-full subtree,
99  * descent to find lowest fd, ascent to update allocation counts) is
100  * O(log n), thus the algorithm as a whole is O(log n).
101  *
102  * We don't implement the fd tree using the customary left/right/parent
103  * pointers, but instead take advantage of the glorious mathematics of
104  * full infix binary trees.  For reference, here's an illustration of the
105  * logical structure of such a tree, rooted at 4 (binary 100), covering
106  * the range 1-7 (binary 001-111).  Our canonical trees do not include
107  * fd 0; we'll deal with that later.
108  *
109  *	      100
110  *	     /	 \
111  *	    /	  \
112  *	  010	  110
113  *	  / \	  / \
114  *	001 011 101 111
115  *
116  * We make the following observations, all of which are easily proven by
117  * induction on the depth of the tree:
118  *
119  * (T1) The least-significant bit (LSB) of any node is equal to its level
120  *      in the tree.  In our example, nodes 001, 011, 101 and 111 are at
121  *      level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2.
122  *
123  * (T2) The child size (CSIZE) of node N -- that is, the total number of
124  *	right-branch descendants in a child of node N, including itself -- is
125  *	given by clearing all but the least significant bit of N.  This
126  *	follows immediately from (T1).  Applying this rule to our example, we
127  *	see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1.
128  *
129  * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest
130  *	ancestor containing node N in its right child -- is given by clearing
131  *	the LSB of N.  For example, LPARENT(111) = 110 and LPARENT(110) = 100.
132  *	Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting
133  *	the fact that these are leftmost nodes.  Note that this algorithm
134  *	automatically skips generations as necessary.  For example, the parent
135  *      of node 101 is 110, which is a *right* ancestor (not what we want);
136  *      but its grandparent is 100, which is a left ancestor. Clearing the LSB
137  *      of 101 gets us to 100 directly, skipping right past the uninteresting
138  *      generation (110).
139  *
140  *      Note that since LPARENT clears the LSB, whereas CSIZE clears all *but*
141  *	the LSB, we can express LPARENT() nicely in terms of CSIZE():
142  *
143  *	LPARENT(N) = N - CSIZE(N)
144  *
145  * (T4) The nearest right ancestor (RPARENT) of node N is given by:
146  *
147  *	RPARENT(N) = N + CSIZE(N)
148  *
149  * (T5) For every interior node, the children differ from their parent by
150  *	CSIZE(parent) / 2.  In our example, CSIZE(100) / 2 = 2 = 10 binary,
151  *      and indeed, the children of 100 are 100 +/- 10 = 010 and 110.
152  *
153  * Next, we'll need a few two's-complement math tricks.  Suppose a number,
154  * N, has the following form:
155  *
156  *		N = xxxx10...0
157  *
158  * That is, the binary representation of N consists of some string of bits,
159  * then a 1, then all zeroes.  This amounts to nothing more than saying that
160  * N has a least-significant bit, which is true for any N != 0.  If we look
161  * at N and N - 1 together, we see that we can combine them in useful ways:
162  *
163  *		  N = xxxx10...0
164  *	      N - 1 = xxxx01...1
165  *	------------------------
166  *	N & (N - 1) = xxxx000000
167  *	N | (N - 1) = xxxx111111
168  *	N ^ (N - 1) =     111111
169  *
170  * In particular, this suggests several easy ways to clear all but the LSB,
171  * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0.
172  * We'll opt for this formulation:
173  *
174  *	(C1) CSIZE(N) = (N - 1) ^ (N | (N - 1))
175  *
176  * Similarly, we have an easy way to determine LPARENT(N), which requires
177  * that we clear the LSB of N:
178  *
179  *	(L1) LPARENT(N) = N & (N - 1)
180  *
181  * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1.
182  * When combined with (T4), this yields an easy way to compute RPARENT(N):
183  *
184  *	(R1) RPARENT(N) = (N | (N - 1)) + 1
185  *
186  * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to
187  * move the fd range from [1, 2^n) to [0, 2^n - 1).  This is straightforward,
188  * so there's no need to belabor the algebra; the revised relations become:
189  *
190  *	(C1a) CSIZE(N) = N ^ (N | (N + 1))
191  *
192  *	(L1a) LPARENT(N) = (N & (N + 1)) - 1
193  *
194  *	(R1a) RPARENT(N) = N | (N + 1)
195  *
196  * This completes the mathematical framework.  We now have all the tools
197  * we need to implement fd_find() and fd_reserve().
198  *
199  * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd.
200  * It does not actually allocate the descriptor; that's done by fd_reserve().
201  * fd_find() proceeds in two steps:
202  *
203  * (1) Find the leftmost subtree that contains a descriptor >= minfd.
204  *     We start at the right subtree rooted at minfd.  If this subtree is
205  *     not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then
206  *     step 1 is done.  Otherwise, we know that all fds in this subtree
207  *     are taken, so we ascend to RPARENT(minfd) using (R1a).  We repeat
208  *     this process until we either find a candidate subtree or exceed
209  *     fip->fi_nfiles.  We use (C1a) to compute CSIZE().
210  *
211  * (2) Find the smallest fd in the subtree discovered by step 1.
212  *     Starting at the root of this subtree, we descend to find the
213  *     smallest available fd.  Since the left children have the smaller
214  *     fds, we will descend rightward only when the left child is full.
215  *
216  *     We begin by comparing the number of allocated fds in the root
217  *     to the number of allocated fds in its right child; if they differ
218  *     by exactly CSIZE(child), we know the left subtree is full, so we
219  *     descend right; that is, the right child becomes the search root.
220  *     Otherwise we leave the root alone and start following the right
221  *     child's left children.  As fortune would have it, this is very
222  *     simple computationally: by (T5), the right child of fd is just
223  *     fd + size, where size = CSIZE(fd) / 2.  Applying (T5) again,
224  *     we find that the right child's left child is fd + size - (size / 2) =
225  *     fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) =
226  *     fd + (size / 4), and so on.  In general, fd's right child's
227  *     leftmost nth descendant is fd + (size >> n).  Thus, to follow
228  *     the right child's left descendants, we just halve the size in
229  *     each iteration of the search.
230  *
231  *     When we descend leftward, we must keep track of the number of fds
232  *     that were allocated in all the right subtrees we rejected, so we
233  *     know how many of the root fd's allocations are in the remaining
234  *     (as yet unexplored) leftmost part of its right subtree.  When we
235  *     encounter a fully-allocated left child -- that is, when we find
236  *     that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right
237  *     (as described earlier), resetting ralloc to zero.
238  *
239  * fd_reserve(fip, fd, incr) either allocates or frees fd, depending
240  * on whether incr is 1 or -1.  Starting at fd, fd_reserve() ascends
241  * the leftmost ancestors (see (T3)) and updates the allocation counts.
242  * At each step we use (L1a) to compute LPARENT(), the next left ancestor.
243  *
244  * flist_minsize() finds the minimal tree that still covers all
245  * used fds; as long as the allocation count of a root node is zero, we
246  * don't need that node or its right subtree.
247  *
248  * flist_nalloc() counts the number of allocated fds in the tree, by starting
249  * at the top of the tree and summing the right-subtree allocation counts as
250  * it descends leftwards.
251  *
252  * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form
253  * 2^n - 1.  This ensures that the fd trees are always full, which saves
254  * quite a bit of boundary checking.
255  */
256 static int
257 fd_find(uf_info_t *fip, int minfd)
258 {
259 	int size, ralloc, fd;
260 
261 	ASSERT(MUTEX_HELD(&fip->fi_lock));
262 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
263 
264 	for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) {
265 		size = fd ^ (fd | (fd + 1));
266 		if (fip->fi_list[fd].uf_alloc == size)
267 			continue;
268 		for (ralloc = 0, size >>= 1; size != 0; size >>= 1) {
269 			ralloc += fip->fi_list[fd + size].uf_alloc;
270 			if (fip->fi_list[fd].uf_alloc == ralloc + size) {
271 				fd += size;
272 				ralloc = 0;
273 			}
274 		}
275 		return (fd);
276 	}
277 	return (-1);
278 }
279 
280 static void
281 fd_reserve(uf_info_t *fip, int fd, int incr)
282 {
283 	int pfd;
284 	uf_entry_t *ufp = &fip->fi_list[fd];
285 
286 	ASSERT((uint_t)fd < fip->fi_nfiles);
287 	ASSERT((ufp->uf_busy == 0 && incr == 1) ||
288 	    (ufp->uf_busy == 1 && incr == -1));
289 	ASSERT(MUTEX_HELD(&ufp->uf_lock));
290 	ASSERT(MUTEX_HELD(&fip->fi_lock));
291 
292 	for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1)
293 		fip->fi_list[pfd].uf_alloc += incr;
294 
295 	ufp->uf_busy += incr;
296 }
297 
298 static int
299 flist_minsize(uf_info_t *fip)
300 {
301 	int fd;
302 
303 	/*
304 	 * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called
305 	 * by flist_fork(), which relies on other mechanisms for mutual
306 	 * exclusion.
307 	 */
308 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
309 
310 	for (fd = fip->fi_nfiles; fd != 0; fd >>= 1)
311 		if (fip->fi_list[fd >> 1].uf_alloc != 0)
312 			break;
313 
314 	return (fd);
315 }
316 
317 static int
318 flist_nalloc(uf_info_t *fip)
319 {
320 	int fd;
321 	int nalloc = 0;
322 
323 	ASSERT(MUTEX_HELD(&fip->fi_lock));
324 	ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0);
325 
326 	for (fd = fip->fi_nfiles; fd != 0; fd >>= 1)
327 		nalloc += fip->fi_list[fd >> 1].uf_alloc;
328 
329 	return (nalloc);
330 }
331 
332 /*
333  * Increase size of the fi_list array to accommodate at least maxfd.
334  * We keep the size of the form 2^n - 1 for benefit of fd_find().
335  */
336 static void
337 flist_grow(int maxfd)
338 {
339 	uf_info_t *fip = P_FINFO(curproc);
340 	int newcnt, oldcnt;
341 	uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend;
342 	uf_rlist_t *urp;
343 
344 	for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1)
345 		continue;
346 
347 	newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP);
348 
349 	mutex_enter(&fip->fi_lock);
350 	oldcnt = fip->fi_nfiles;
351 	if (newcnt <= oldcnt) {
352 		mutex_exit(&fip->fi_lock);
353 		kmem_free(newlist, newcnt * sizeof (uf_entry_t));
354 		return;
355 	}
356 	ASSERT((newcnt & (newcnt + 1)) == 0);
357 	oldlist = fip->fi_list;
358 	oldend = oldlist + oldcnt;
359 	newend = newlist + oldcnt;	/* no need to lock beyond old end */
360 
361 	/*
362 	 * fi_list and fi_nfiles cannot change while any uf_lock is held,
363 	 * so we must grab all the old locks *and* the new locks up to oldcnt.
364 	 * (Locks beyond the end of oldcnt aren't visible until we store
365 	 * the new fi_nfiles, which is the last thing we do before dropping
366 	 * all the locks, so there's no need to acquire these locks).
367 	 * Holding the new locks is necessary because when fi_list changes
368 	 * to point to the new list, fi_nfiles won't have been stored yet.
369 	 * If we *didn't* hold the new locks, someone doing a UF_ENTER()
370 	 * could see the new fi_list, grab the new uf_lock, and then see
371 	 * fi_nfiles change while the lock is held -- in violation of
372 	 * UF_ENTER() semantics.
373 	 */
374 	for (src = oldlist; src < oldend; src++)
375 		mutex_enter(&src->uf_lock);
376 
377 	for (dst = newlist; dst < newend; dst++)
378 		mutex_enter(&dst->uf_lock);
379 
380 	for (src = oldlist, dst = newlist; src < oldend; src++, dst++) {
381 		dst->uf_file = src->uf_file;
382 		dst->uf_fpollinfo = src->uf_fpollinfo;
383 		dst->uf_refcnt = src->uf_refcnt;
384 		dst->uf_alloc = src->uf_alloc;
385 		dst->uf_flag = src->uf_flag;
386 		dst->uf_busy = src->uf_busy;
387 		dst->uf_portfd = src->uf_portfd;
388 	}
389 
390 	/*
391 	 * As soon as we store the new flist, future locking operations
392 	 * will use it.  Therefore, we must ensure that all the state
393 	 * we've just established reaches global visibility before the
394 	 * new flist does.
395 	 */
396 	membar_producer();
397 	fip->fi_list = newlist;
398 
399 	/*
400 	 * Routines like getf() make an optimistic check on the validity
401 	 * of the supplied file descriptor: if it's less than the current
402 	 * value of fi_nfiles -- examined without any locks -- then it's
403 	 * safe to attempt a UF_ENTER() on that fd (which is a valid
404 	 * assumption because fi_nfiles only increases).  Therefore, it
405 	 * is critical that the new value of fi_nfiles not reach global
406 	 * visibility until after the new fi_list: if it happened the
407 	 * other way around, getf() could see the new fi_nfiles and attempt
408 	 * a UF_ENTER() on the old fi_list, which would write beyond its
409 	 * end if the fd exceeded the old fi_nfiles.
410 	 */
411 	membar_producer();
412 	fip->fi_nfiles = newcnt;
413 
414 	/*
415 	 * The new state is consistent now, so we can drop all the locks.
416 	 */
417 	for (dst = newlist; dst < newend; dst++)
418 		mutex_exit(&dst->uf_lock);
419 
420 	for (src = oldlist; src < oldend; src++) {
421 		/*
422 		 * If any threads are blocked on the old cvs, wake them.
423 		 * This will force them to wake up, discover that fi_list
424 		 * has changed, and go back to sleep on the new cvs.
425 		 */
426 		cv_broadcast(&src->uf_wanted_cv);
427 		cv_broadcast(&src->uf_closing_cv);
428 		mutex_exit(&src->uf_lock);
429 	}
430 
431 	mutex_exit(&fip->fi_lock);
432 
433 	/*
434 	 * Retire the old flist.  We can't actually kmem_free() it now
435 	 * because someone may still have a pointer to it.  Instead,
436 	 * we link it onto a list of retired flists.  The new flist
437 	 * is at least double the size of the previous flist, so the
438 	 * total size of all retired flists will be less than the size
439 	 * of the current one (to prove, consider the sum of a geometric
440 	 * series in powers of 2).  exit() frees the retired flists.
441 	 */
442 	urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP);
443 	urp->ur_list = oldlist;
444 	urp->ur_nfiles = oldcnt;
445 
446 	mutex_enter(&fip->fi_lock);
447 	urp->ur_next = fip->fi_rlist;
448 	fip->fi_rlist = urp;
449 	mutex_exit(&fip->fi_lock);
450 }
451 
452 /*
453  * Utility functions for keeping track of the active file descriptors.
454  */
455 void
456 clear_stale_fd()		/* called from post_syscall() */
457 {
458 	afd_t *afd = &curthread->t_activefd;
459 	int i;
460 
461 	/* uninitialized is ok here, a_nfd is then zero */
462 	for (i = 0; i < afd->a_nfd; i++) {
463 		/* assert that this should not be necessary */
464 		ASSERT(afd->a_fd[i] == -1);
465 		afd->a_fd[i] = -1;
466 	}
467 	afd->a_stale = 0;
468 }
469 
470 void
471 free_afd(afd_t *afd)		/* called below and from thread_free() */
472 {
473 	int i;
474 
475 	/* free the buffer if it was kmem_alloc()ed */
476 	if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
477 		COUNT(afd_free);
478 		kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0]));
479 	}
480 
481 	/* (re)initialize the structure */
482 	afd->a_fd = &afd->a_buf[0];
483 	afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]);
484 	afd->a_stale = 0;
485 	for (i = 0; i < afd->a_nfd; i++)
486 		afd->a_fd[i] = -1;
487 }
488 
489 static void
490 set_active_fd(int fd)
491 {
492 	afd_t *afd = &curthread->t_activefd;
493 	int i;
494 	int *old_fd;
495 	int old_nfd;
496 	int *new_fd;
497 	int new_nfd;
498 
499 	if (afd->a_nfd == 0) {	/* first time initialization */
500 		ASSERT(fd == -1);
501 		mutex_enter(&afd->a_fdlock);
502 		free_afd(afd);
503 		mutex_exit(&afd->a_fdlock);
504 	}
505 
506 	/* insert fd into vacant slot, if any */
507 	for (i = 0; i < afd->a_nfd; i++) {
508 		if (afd->a_fd[i] == -1) {
509 			afd->a_fd[i] = fd;
510 			return;
511 		}
512 	}
513 
514 	/*
515 	 * Reallocate the a_fd[] array to add one more slot.
516 	 */
517 	ASSERT(fd == -1);
518 	old_nfd = afd->a_nfd;
519 	old_fd = afd->a_fd;
520 	new_nfd = old_nfd + 1;
521 	new_fd = kmem_alloc(new_nfd * sizeof (afd->a_fd[0]), KM_SLEEP);
522 	MAXFD(new_nfd);
523 	COUNT(afd_alloc);
524 
525 	mutex_enter(&afd->a_fdlock);
526 	afd->a_fd = new_fd;
527 	afd->a_nfd = new_nfd;
528 	for (i = 0; i < old_nfd; i++)
529 		afd->a_fd[i] = old_fd[i];
530 	afd->a_fd[i] = fd;
531 	mutex_exit(&afd->a_fdlock);
532 
533 	if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) {
534 		COUNT(afd_free);
535 		kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0]));
536 	}
537 }
538 
539 void
540 clear_active_fd(int fd)		/* called below and from aio.c */
541 {
542 	afd_t *afd = &curthread->t_activefd;
543 	int i;
544 
545 	for (i = 0; i < afd->a_nfd; i++) {
546 		if (afd->a_fd[i] == fd) {
547 			afd->a_fd[i] = -1;
548 			break;
549 		}
550 	}
551 	ASSERT(i < afd->a_nfd);		/* not found is not ok */
552 }
553 
554 /*
555  * Does this thread have this fd active?
556  */
557 static int
558 is_active_fd(kthread_t *t, int fd)
559 {
560 	afd_t *afd = &t->t_activefd;
561 	int i;
562 
563 	ASSERT(t != curthread);
564 	mutex_enter(&afd->a_fdlock);
565 	/* uninitialized is ok here, a_nfd is then zero */
566 	for (i = 0; i < afd->a_nfd; i++) {
567 		if (afd->a_fd[i] == fd) {
568 			mutex_exit(&afd->a_fdlock);
569 			return (1);
570 		}
571 	}
572 	mutex_exit(&afd->a_fdlock);
573 	return (0);
574 }
575 
576 /*
577  * Convert a user supplied file descriptor into a pointer to a file
578  * structure.  Only task is to check range of the descriptor (soft
579  * resource limit was enforced at open time and shouldn't be checked
580  * here).
581  */
582 file_t *
583 getf(int fd)
584 {
585 	uf_info_t *fip = P_FINFO(curproc);
586 	uf_entry_t *ufp;
587 	file_t *fp;
588 
589 	if ((uint_t)fd >= fip->fi_nfiles)
590 		return (NULL);
591 
592 	/*
593 	 * Reserve a slot in the active fd array now so we can call
594 	 * set_active_fd(fd) for real below, while still inside UF_ENTER().
595 	 */
596 	set_active_fd(-1);
597 
598 	UF_ENTER(ufp, fip, fd);
599 
600 	if ((fp = ufp->uf_file) == NULL) {
601 		UF_EXIT(ufp);
602 
603 		if (fd == fip->fi_badfd && fip->fi_action > 0)
604 			tsignal(curthread, fip->fi_action);
605 
606 		return (NULL);
607 	}
608 	ufp->uf_refcnt++;
609 
610 	set_active_fd(fd);	/* record the active file descriptor */
611 
612 	UF_EXIT(ufp);
613 
614 	return (fp);
615 }
616 
617 /*
618  * Close whatever file currently occupies the file descriptor slot
619  * and install the new file, usually NULL, in the file descriptor slot.
620  * The close must complete before we release the file descriptor slot.
621  * If newfp != NULL we only return an error if we can't allocate the
622  * slot so the caller knows that it needs to free the filep;
623  * in the other cases we return the error number from closef().
624  */
625 int
626 closeandsetf(int fd, file_t *newfp)
627 {
628 	proc_t *p = curproc;
629 	uf_info_t *fip = P_FINFO(p);
630 	uf_entry_t *ufp;
631 	file_t *fp;
632 	fpollinfo_t *fpip;
633 	portfd_t *pfd;
634 	int error;
635 
636 	if ((uint_t)fd >= fip->fi_nfiles) {
637 		if (newfp == NULL)
638 			return (EBADF);
639 		flist_grow(fd);
640 	}
641 
642 	if (newfp != NULL) {
643 		/*
644 		 * If ufp is reserved but has no file pointer, it's in the
645 		 * transition between ufalloc() and setf().  We must wait
646 		 * for this transition to complete before assigning the
647 		 * new non-NULL file pointer.
648 		 */
649 		mutex_enter(&fip->fi_lock);
650 		if (fd == fip->fi_badfd) {
651 			mutex_exit(&fip->fi_lock);
652 			if (fip->fi_action > 0)
653 				tsignal(curthread, fip->fi_action);
654 			return (EBADF);
655 		}
656 		UF_ENTER(ufp, fip, fd);
657 		while (ufp->uf_busy && ufp->uf_file == NULL) {
658 			mutex_exit(&fip->fi_lock);
659 			cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250);
660 			UF_EXIT(ufp);
661 			mutex_enter(&fip->fi_lock);
662 			UF_ENTER(ufp, fip, fd);
663 		}
664 		if ((fp = ufp->uf_file) == NULL) {
665 			ASSERT(ufp->uf_fpollinfo == NULL);
666 			ASSERT(ufp->uf_flag == 0);
667 			fd_reserve(fip, fd, 1);
668 			ufp->uf_file = newfp;
669 			UF_EXIT(ufp);
670 			mutex_exit(&fip->fi_lock);
671 			return (0);
672 		}
673 		mutex_exit(&fip->fi_lock);
674 	} else {
675 		UF_ENTER(ufp, fip, fd);
676 		if ((fp = ufp->uf_file) == NULL) {
677 			UF_EXIT(ufp);
678 			return (EBADF);
679 		}
680 	}
681 
682 	ASSERT(ufp->uf_busy);
683 	ufp->uf_file = NULL;
684 	ufp->uf_flag = 0;
685 
686 	/*
687 	 * If the file descriptor reference count is non-zero, then
688 	 * some other lwp in the process is performing system call
689 	 * activity on the file.  To avoid blocking here for a long
690 	 * time (the other lwp might be in a long term sleep in its
691 	 * system call), we scan all other lwps in the process to
692 	 * find the ones with this fd as one of their active fds,
693 	 * set their a_stale flag, and set them running if they
694 	 * are in an interruptible sleep so they will emerge from
695 	 * their system calls immediately.  post_syscall() will
696 	 * test the a_stale flag and set errno to EBADF.
697 	 */
698 	ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1);
699 	if (ufp->uf_refcnt > 0) {
700 		kthread_t *t;
701 
702 		/*
703 		 * We call sprlock_proc(p) to ensure that the thread
704 		 * list will not change while we are scanning it.
705 		 * To do this, we must drop ufp->uf_lock and then
706 		 * reacquire it (so we are not holding both p->p_lock
707 		 * and ufp->uf_lock at the same time).  ufp->uf_lock
708 		 * must be held for is_active_fd() to be correct
709 		 * (set_active_fd() is called while holding ufp->uf_lock).
710 		 *
711 		 * This is a convoluted dance, but it is better than
712 		 * the old brute-force method of stopping every thread
713 		 * in the process by calling holdlwps(SHOLDFORK1).
714 		 */
715 
716 		UF_EXIT(ufp);
717 		COUNT(afd_wait);
718 
719 		mutex_enter(&p->p_lock);
720 		sprlock_proc(p);
721 		mutex_exit(&p->p_lock);
722 
723 		UF_ENTER(ufp, fip, fd);
724 		ASSERT(ufp->uf_file == NULL);
725 
726 		if (ufp->uf_refcnt > 0) {
727 			for (t = curthread->t_forw;
728 			    t != curthread;
729 			    t = t->t_forw) {
730 				if (is_active_fd(t, fd)) {
731 					thread_lock(t);
732 					t->t_activefd.a_stale = 1;
733 					t->t_post_sys = 1;
734 					if (ISWAKEABLE(t))
735 						setrun_locked(t);
736 					thread_unlock(t);
737 				}
738 			}
739 		}
740 
741 		UF_EXIT(ufp);
742 
743 		mutex_enter(&p->p_lock);
744 		sprunlock(p);
745 
746 		UF_ENTER(ufp, fip, fd);
747 		ASSERT(ufp->uf_file == NULL);
748 	}
749 
750 	/*
751 	 * Wait for other lwps to stop using this file descriptor.
752 	 */
753 	while (ufp->uf_refcnt > 0) {
754 		cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250);
755 		/*
756 		 * cv_wait_stop() drops ufp->uf_lock, so the file list
757 		 * can change.  Drop the lock on our (possibly) stale
758 		 * ufp and let UF_ENTER() find and lock the current ufp.
759 		 */
760 		UF_EXIT(ufp);
761 		UF_ENTER(ufp, fip, fd);
762 	}
763 
764 #ifdef DEBUG
765 	/*
766 	 * catch a watchfd on device's pollhead list but not on fpollinfo list
767 	 */
768 	if (ufp->uf_fpollinfo != NULL)
769 		checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo);
770 #endif	/* DEBUG */
771 
772 	/*
773 	 * We may need to cleanup some cached poll states in t_pollstate
774 	 * before the fd can be reused. It is important that we don't
775 	 * access a stale thread structure. We will do the cleanup in two
776 	 * phases to avoid deadlock and holding uf_lock for too long.
777 	 * In phase 1, hold the uf_lock and call pollblockexit() to set
778 	 * state in t_pollstate struct so that a thread does not exit on
779 	 * us. In phase 2, we drop the uf_lock and call pollcacheclean().
780 	 */
781 	pfd = ufp->uf_portfd;
782 	ufp->uf_portfd = NULL;
783 	fpip = ufp->uf_fpollinfo;
784 	ufp->uf_fpollinfo = NULL;
785 	if (fpip != NULL)
786 		pollblockexit(fpip);
787 	UF_EXIT(ufp);
788 	if (fpip != NULL)
789 		pollcacheclean(fpip, fd);
790 	if (pfd)
791 		port_close_fd(pfd);
792 
793 	/*
794 	 * Keep the file descriptor entry reserved across the closef().
795 	 */
796 	error = closef(fp);
797 
798 	setf(fd, newfp);
799 
800 	/* Only return closef() error when closing is all we do */
801 	return (newfp == NULL ? error : 0);
802 }
803 
804 /*
805  * Decrement uf_refcnt; wakeup anyone waiting to close the file.
806  */
807 void
808 releasef(int fd)
809 {
810 	uf_info_t *fip = P_FINFO(curproc);
811 	uf_entry_t *ufp;
812 
813 	UF_ENTER(ufp, fip, fd);
814 	ASSERT(ufp->uf_refcnt > 0);
815 	clear_active_fd(fd);	/* clear the active file descriptor */
816 	if (--ufp->uf_refcnt == 0)
817 		cv_broadcast(&ufp->uf_closing_cv);
818 	UF_EXIT(ufp);
819 }
820 
821 /*
822  * Identical to releasef() but can be called from another process.
823  */
824 void
825 areleasef(int fd, uf_info_t *fip)
826 {
827 	uf_entry_t *ufp;
828 
829 	UF_ENTER(ufp, fip, fd);
830 	ASSERT(ufp->uf_refcnt > 0);
831 	if (--ufp->uf_refcnt == 0)
832 		cv_broadcast(&ufp->uf_closing_cv);
833 	UF_EXIT(ufp);
834 }
835 
836 /*
837  * Duplicate all file descriptors across a fork.
838  */
839 void
840 flist_fork(uf_info_t *pfip, uf_info_t *cfip)
841 {
842 	int fd, nfiles;
843 	uf_entry_t *pufp, *cufp;
844 
845 	mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL);
846 	cfip->fi_rlist = NULL;
847 
848 	/*
849 	 * We don't need to hold fi_lock because all other lwp's in the
850 	 * parent have been held.
851 	 */
852 	cfip->fi_nfiles = nfiles = flist_minsize(pfip);
853 
854 	cfip->fi_list = kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP);
855 
856 	for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles;
857 	    fd++, pufp++, cufp++) {
858 		cufp->uf_file = pufp->uf_file;
859 		cufp->uf_alloc = pufp->uf_alloc;
860 		cufp->uf_flag = pufp->uf_flag;
861 		cufp->uf_busy = pufp->uf_busy;
862 		if (pufp->uf_file == NULL) {
863 			ASSERT(pufp->uf_flag == 0);
864 			if (pufp->uf_busy) {
865 				/*
866 				 * Grab locks to appease ASSERTs in fd_reserve
867 				 */
868 				mutex_enter(&cfip->fi_lock);
869 				mutex_enter(&cufp->uf_lock);
870 				fd_reserve(cfip, fd, -1);
871 				mutex_exit(&cufp->uf_lock);
872 				mutex_exit(&cfip->fi_lock);
873 			}
874 		}
875 	}
876 }
877 
878 /*
879  * Close all open file descriptors for the current process.
880  * This is only called from exit(), which is single-threaded,
881  * so we don't need any locking.
882  */
883 void
884 closeall(uf_info_t *fip)
885 {
886 	int fd;
887 	file_t *fp;
888 	uf_entry_t *ufp;
889 
890 	ufp = fip->fi_list;
891 	for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) {
892 		if ((fp = ufp->uf_file) != NULL) {
893 			ufp->uf_file = NULL;
894 			if (ufp->uf_portfd != NULL) {
895 				portfd_t *pfd;
896 				/* remove event port association */
897 				pfd = ufp->uf_portfd;
898 				ufp->uf_portfd = NULL;
899 				port_close_fd(pfd);
900 			}
901 			ASSERT(ufp->uf_fpollinfo == NULL);
902 			(void) closef(fp);
903 		}
904 	}
905 
906 	kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t));
907 	fip->fi_list = NULL;
908 	fip->fi_nfiles = 0;
909 	while (fip->fi_rlist != NULL) {
910 		uf_rlist_t *urp = fip->fi_rlist;
911 		fip->fi_rlist = urp->ur_next;
912 		kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t));
913 		kmem_free(urp, sizeof (uf_rlist_t));
914 	}
915 }
916 
917 /*
918  * Internal form of close.  Decrement reference count on file
919  * structure.  Decrement reference count on the vnode following
920  * removal of the referencing file structure.
921  */
922 int
923 closef(file_t *fp)
924 {
925 	vnode_t *vp;
926 	int error;
927 	int count;
928 	int flag;
929 	offset_t offset;
930 
931 	/*
932 	 * audit close of file (may be exit)
933 	 */
934 	if (AU_AUDITING())
935 		audit_closef(fp);
936 	ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock));
937 
938 	mutex_enter(&fp->f_tlock);
939 
940 	ASSERT(fp->f_count > 0);
941 
942 	count = fp->f_count--;
943 	flag = fp->f_flag;
944 	offset = fp->f_offset;
945 
946 	vp = fp->f_vnode;
947 
948 	error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred, NULL);
949 
950 	if (count > 1) {
951 		mutex_exit(&fp->f_tlock);
952 		return (error);
953 	}
954 	ASSERT(fp->f_count == 0);
955 	mutex_exit(&fp->f_tlock);
956 
957 	/*
958 	 * If DTrace has getf() subroutines active, it will set dtrace_closef
959 	 * to point to code that implements a barrier with respect to probe
960 	 * context.  This must be called before the file_t is freed (and the
961 	 * vnode that it refers to is released) -- but it must be after the
962 	 * file_t has been removed from the uf_entry_t.  That is, there must
963 	 * be no way for a racing getf() in probe context to yield the fp that
964 	 * we're operating upon.
965 	 */
966 	if (dtrace_closef != NULL)
967 		(*dtrace_closef)();
968 
969 	VN_RELE(vp);
970 	/*
971 	 * deallocate resources to audit_data
972 	 */
973 	if (audit_active)
974 		audit_unfalloc(fp);
975 	crfree(fp->f_cred);
976 	kmem_cache_free(file_cache, fp);
977 	return (error);
978 }
979 
980 /*
981  * This is a combination of ufalloc() and setf().
982  */
983 int
984 ufalloc_file(int start, file_t *fp)
985 {
986 	proc_t *p = curproc;
987 	uf_info_t *fip = P_FINFO(p);
988 	int filelimit;
989 	uf_entry_t *ufp;
990 	int nfiles;
991 	int fd;
992 
993 	/*
994 	 * Assertion is to convince the correctness of the following
995 	 * assignment for filelimit after casting to int.
996 	 */
997 	ASSERT(p->p_fno_ctl <= INT_MAX);
998 	filelimit = (int)p->p_fno_ctl;
999 
1000 	for (;;) {
1001 		mutex_enter(&fip->fi_lock);
1002 		fd = fd_find(fip, start);
1003 		if (fd >= 0 && fd == fip->fi_badfd) {
1004 			start = fd + 1;
1005 			mutex_exit(&fip->fi_lock);
1006 			continue;
1007 		}
1008 		if ((uint_t)fd < filelimit)
1009 			break;
1010 		if (fd >= filelimit) {
1011 			mutex_exit(&fip->fi_lock);
1012 			mutex_enter(&p->p_lock);
1013 			(void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
1014 			    p->p_rctls, p, RCA_SAFE);
1015 			mutex_exit(&p->p_lock);
1016 			return (-1);
1017 		}
1018 		/* fd_find() returned -1 */
1019 		nfiles = fip->fi_nfiles;
1020 		mutex_exit(&fip->fi_lock);
1021 		flist_grow(MAX(start, nfiles));
1022 	}
1023 
1024 	UF_ENTER(ufp, fip, fd);
1025 	fd_reserve(fip, fd, 1);
1026 	ASSERT(ufp->uf_file == NULL);
1027 	ufp->uf_file = fp;
1028 	UF_EXIT(ufp);
1029 	mutex_exit(&fip->fi_lock);
1030 	return (fd);
1031 }
1032 
1033 /*
1034  * Allocate a user file descriptor greater than or equal to "start".
1035  */
1036 int
1037 ufalloc(int start)
1038 {
1039 	return (ufalloc_file(start, NULL));
1040 }
1041 
1042 /*
1043  * Check that a future allocation of count fds on proc p has a good
1044  * chance of succeeding.  If not, do rctl processing as if we'd failed
1045  * the allocation.
1046  *
1047  * Our caller must guarantee that p cannot disappear underneath us.
1048  */
1049 int
1050 ufcanalloc(proc_t *p, uint_t count)
1051 {
1052 	uf_info_t *fip = P_FINFO(p);
1053 	int filelimit;
1054 	int current;
1055 
1056 	if (count == 0)
1057 		return (1);
1058 
1059 	ASSERT(p->p_fno_ctl <= INT_MAX);
1060 	filelimit = (int)p->p_fno_ctl;
1061 
1062 	mutex_enter(&fip->fi_lock);
1063 	current = flist_nalloc(fip);		/* # of in-use descriptors */
1064 	mutex_exit(&fip->fi_lock);
1065 
1066 	/*
1067 	 * If count is a positive integer, the worst that can happen is
1068 	 * an overflow to a negative value, which is caught by the >= 0 check.
1069 	 */
1070 	current += count;
1071 	if (count <= INT_MAX && current >= 0 && current <= filelimit)
1072 		return (1);
1073 
1074 	mutex_enter(&p->p_lock);
1075 	(void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE],
1076 	    p->p_rctls, p, RCA_SAFE);
1077 	mutex_exit(&p->p_lock);
1078 	return (0);
1079 }
1080 
1081 /*
1082  * Allocate a user file descriptor and a file structure.
1083  * Initialize the descriptor to point at the file structure.
1084  * If fdp is NULL, the user file descriptor will not be allocated.
1085  */
1086 int
1087 falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp)
1088 {
1089 	file_t *fp;
1090 	int fd;
1091 
1092 	if (fdp) {
1093 		if ((fd = ufalloc(0)) == -1)
1094 			return (EMFILE);
1095 	}
1096 	fp = kmem_cache_alloc(file_cache, KM_SLEEP);
1097 	/*
1098 	 * Note: falloc returns the fp locked
1099 	 */
1100 	mutex_enter(&fp->f_tlock);
1101 	fp->f_count = 1;
1102 	fp->f_flag = (ushort_t)flag;
1103 	fp->f_flag2 = (flag & (FSEARCH|FEXEC)) >> 16;
1104 	fp->f_vnode = vp;
1105 	fp->f_offset = 0;
1106 	fp->f_audit_data = 0;
1107 	crhold(fp->f_cred = CRED());
1108 	/*
1109 	 * allocate resources to audit_data
1110 	 */
1111 	if (audit_active)
1112 		audit_falloc(fp);
1113 	*fpp = fp;
1114 	if (fdp)
1115 		*fdp = fd;
1116 	return (0);
1117 }
1118 
1119 /*ARGSUSED*/
1120 static int
1121 file_cache_constructor(void *buf, void *cdrarg, int kmflags)
1122 {
1123 	file_t *fp = buf;
1124 
1125 	mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL);
1126 	return (0);
1127 }
1128 
1129 /*ARGSUSED*/
1130 static void
1131 file_cache_destructor(void *buf, void *cdrarg)
1132 {
1133 	file_t *fp = buf;
1134 
1135 	mutex_destroy(&fp->f_tlock);
1136 }
1137 
1138 void
1139 finit()
1140 {
1141 	file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0,
1142 	    file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0);
1143 }
1144 
1145 void
1146 unfalloc(file_t *fp)
1147 {
1148 	ASSERT(MUTEX_HELD(&fp->f_tlock));
1149 	if (--fp->f_count <= 0) {
1150 		/*
1151 		 * deallocate resources to audit_data
1152 		 */
1153 		if (audit_active)
1154 			audit_unfalloc(fp);
1155 		crfree(fp->f_cred);
1156 		mutex_exit(&fp->f_tlock);
1157 		kmem_cache_free(file_cache, fp);
1158 	} else
1159 		mutex_exit(&fp->f_tlock);
1160 }
1161 
1162 /*
1163  * Given a file descriptor, set the user's
1164  * file pointer to the given parameter.
1165  */
1166 void
1167 setf(int fd, file_t *fp)
1168 {
1169 	uf_info_t *fip = P_FINFO(curproc);
1170 	uf_entry_t *ufp;
1171 
1172 	if (AU_AUDITING())
1173 		audit_setf(fp, fd);
1174 
1175 	if (fp == NULL) {
1176 		mutex_enter(&fip->fi_lock);
1177 		UF_ENTER(ufp, fip, fd);
1178 		fd_reserve(fip, fd, -1);
1179 		mutex_exit(&fip->fi_lock);
1180 	} else {
1181 		UF_ENTER(ufp, fip, fd);
1182 		ASSERT(ufp->uf_busy);
1183 	}
1184 	ASSERT(ufp->uf_fpollinfo == NULL);
1185 	ASSERT(ufp->uf_flag == 0);
1186 	ufp->uf_file = fp;
1187 	cv_broadcast(&ufp->uf_wanted_cv);
1188 	UF_EXIT(ufp);
1189 }
1190 
1191 /*
1192  * Given a file descriptor, return the file table flags, plus,
1193  * if this is a socket in asynchronous mode, the FASYNC flag.
1194  * getf() may or may not have been called before calling f_getfl().
1195  */
1196 int
1197 f_getfl(int fd, int *flagp)
1198 {
1199 	uf_info_t *fip = P_FINFO(curproc);
1200 	uf_entry_t *ufp;
1201 	file_t *fp;
1202 	int error;
1203 
1204 	if ((uint_t)fd >= fip->fi_nfiles)
1205 		error = EBADF;
1206 	else {
1207 		UF_ENTER(ufp, fip, fd);
1208 		if ((fp = ufp->uf_file) == NULL)
1209 			error = EBADF;
1210 		else {
1211 			vnode_t *vp = fp->f_vnode;
1212 			int flag = fp->f_flag |
1213 			    ((fp->f_flag2 & ~FEPOLLED) << 16);
1214 
1215 			/*
1216 			 * BSD fcntl() FASYNC compatibility.
1217 			 */
1218 			if (vp->v_type == VSOCK)
1219 				flag |= sock_getfasync(vp);
1220 			*flagp = flag;
1221 			error = 0;
1222 		}
1223 		UF_EXIT(ufp);
1224 	}
1225 
1226 	return (error);
1227 }
1228 
1229 /*
1230  * Given a file descriptor, return the user's file flags.
1231  * Force the FD_CLOEXEC flag for writable self-open /proc files.
1232  * getf() may or may not have been called before calling f_getfd_error().
1233  */
1234 int
1235 f_getfd_error(int fd, int *flagp)
1236 {
1237 	uf_info_t *fip = P_FINFO(curproc);
1238 	uf_entry_t *ufp;
1239 	file_t *fp;
1240 	int flag;
1241 	int error;
1242 
1243 	if ((uint_t)fd >= fip->fi_nfiles)
1244 		error = EBADF;
1245 	else {
1246 		UF_ENTER(ufp, fip, fd);
1247 		if ((fp = ufp->uf_file) == NULL)
1248 			error = EBADF;
1249 		else {
1250 			flag = ufp->uf_flag;
1251 			if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode))
1252 				flag |= FD_CLOEXEC;
1253 			*flagp = flag;
1254 			error = 0;
1255 		}
1256 		UF_EXIT(ufp);
1257 	}
1258 
1259 	return (error);
1260 }
1261 
1262 /*
1263  * getf() must have been called before calling f_getfd().
1264  */
1265 char
1266 f_getfd(int fd)
1267 {
1268 	int flag = 0;
1269 	(void) f_getfd_error(fd, &flag);
1270 	return ((char)flag);
1271 }
1272 
1273 /*
1274  * Given a file descriptor and file flags, set the user's file flags.
1275  * At present, the only valid flag is FD_CLOEXEC.
1276  * getf() may or may not have been called before calling f_setfd_error().
1277  */
1278 int
1279 f_setfd_error(int fd, int flags)
1280 {
1281 	uf_info_t *fip = P_FINFO(curproc);
1282 	uf_entry_t *ufp;
1283 	int error;
1284 
1285 	if ((uint_t)fd >= fip->fi_nfiles)
1286 		error = EBADF;
1287 	else {
1288 		UF_ENTER(ufp, fip, fd);
1289 		if (ufp->uf_file == NULL)
1290 			error = EBADF;
1291 		else {
1292 			ufp->uf_flag = flags & FD_CLOEXEC;
1293 			error = 0;
1294 		}
1295 		UF_EXIT(ufp);
1296 	}
1297 	return (error);
1298 }
1299 
1300 void
1301 f_setfd(int fd, char flags)
1302 {
1303 	(void) f_setfd_error(fd, flags);
1304 }
1305 
1306 #define	BADFD_MIN	3
1307 #define	BADFD_MAX	255
1308 
1309 /*
1310  * Attempt to allocate a file descriptor which is bad and which
1311  * is "poison" to the application.  It cannot be closed (except
1312  * on exec), allocated for a different use, etc.
1313  */
1314 int
1315 f_badfd(int start, int *fdp, int action)
1316 {
1317 	int fdr;
1318 	int badfd;
1319 	uf_info_t *fip = P_FINFO(curproc);
1320 
1321 #ifdef _LP64
1322 	/* No restrictions on 64 bit _file */
1323 	if (get_udatamodel() != DATAMODEL_ILP32)
1324 		return (EINVAL);
1325 #endif
1326 
1327 	if (start > BADFD_MAX || start < BADFD_MIN)
1328 		return (EINVAL);
1329 
1330 	if (action >= NSIG || action < 0)
1331 		return (EINVAL);
1332 
1333 	mutex_enter(&fip->fi_lock);
1334 	badfd = fip->fi_badfd;
1335 	mutex_exit(&fip->fi_lock);
1336 
1337 	if (badfd != -1)
1338 		return (EAGAIN);
1339 
1340 	fdr = ufalloc(start);
1341 
1342 	if (fdr > BADFD_MAX) {
1343 		setf(fdr, NULL);
1344 		return (EMFILE);
1345 	}
1346 	if (fdr < 0)
1347 		return (EMFILE);
1348 
1349 	mutex_enter(&fip->fi_lock);
1350 	if (fip->fi_badfd != -1) {
1351 		/* Lost race */
1352 		mutex_exit(&fip->fi_lock);
1353 		setf(fdr, NULL);
1354 		return (EAGAIN);
1355 	}
1356 	fip->fi_action = action;
1357 	fip->fi_badfd = fdr;
1358 	mutex_exit(&fip->fi_lock);
1359 	setf(fdr, NULL);
1360 
1361 	*fdp = fdr;
1362 
1363 	return (0);
1364 }
1365 
1366 /*
1367  * Allocate a file descriptor and assign it to the vnode "*vpp",
1368  * performing the usual open protocol upon it and returning the
1369  * file descriptor allocated.  It is the responsibility of the
1370  * caller to dispose of "*vpp" if any error occurs.
1371  */
1372 int
1373 fassign(vnode_t **vpp, int mode, int *fdp)
1374 {
1375 	file_t *fp;
1376 	int error;
1377 	int fd;
1378 
1379 	if (error = falloc((vnode_t *)NULL, mode, &fp, &fd))
1380 		return (error);
1381 	if (error = VOP_OPEN(vpp, mode, fp->f_cred, NULL)) {
1382 		setf(fd, NULL);
1383 		unfalloc(fp);
1384 		return (error);
1385 	}
1386 	fp->f_vnode = *vpp;
1387 	mutex_exit(&fp->f_tlock);
1388 	/*
1389 	 * Fill in the slot falloc reserved.
1390 	 */
1391 	setf(fd, fp);
1392 	*fdp = fd;
1393 	return (0);
1394 }
1395 
1396 /*
1397  * When a process forks it must increment the f_count of all file pointers
1398  * since there is a new process pointing at them.  fcnt_add(fip, 1) does this.
1399  * Since we are called when there is only 1 active lwp we don't need to
1400  * hold fi_lock or any uf_lock.  If the fork fails, fork_fail() calls
1401  * fcnt_add(fip, -1) to restore the counts.
1402  */
1403 void
1404 fcnt_add(uf_info_t *fip, int incr)
1405 {
1406 	int i;
1407 	uf_entry_t *ufp;
1408 	file_t *fp;
1409 
1410 	ufp = fip->fi_list;
1411 	for (i = 0; i < fip->fi_nfiles; i++, ufp++) {
1412 		if ((fp = ufp->uf_file) != NULL) {
1413 			mutex_enter(&fp->f_tlock);
1414 			ASSERT((incr == 1 && fp->f_count >= 1) ||
1415 			    (incr == -1 && fp->f_count >= 2));
1416 			fp->f_count += incr;
1417 			mutex_exit(&fp->f_tlock);
1418 		}
1419 	}
1420 }
1421 
1422 /*
1423  * This is called from exec to close all fd's that have the FD_CLOEXEC flag
1424  * set and also to close all self-open for write /proc file descriptors.
1425  */
1426 void
1427 close_exec(uf_info_t *fip)
1428 {
1429 	int fd;
1430 	file_t *fp;
1431 	fpollinfo_t *fpip;
1432 	uf_entry_t *ufp;
1433 	portfd_t *pfd;
1434 
1435 	ufp = fip->fi_list;
1436 	for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) {
1437 		if ((fp = ufp->uf_file) != NULL &&
1438 		    ((ufp->uf_flag & FD_CLOEXEC) ||
1439 		    ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) {
1440 			fpip = ufp->uf_fpollinfo;
1441 			mutex_enter(&fip->fi_lock);
1442 			mutex_enter(&ufp->uf_lock);
1443 			fd_reserve(fip, fd, -1);
1444 			mutex_exit(&fip->fi_lock);
1445 			ufp->uf_file = NULL;
1446 			ufp->uf_fpollinfo = NULL;
1447 			ufp->uf_flag = 0;
1448 			/*
1449 			 * We may need to cleanup some cached poll states
1450 			 * in t_pollstate before the fd can be reused. It
1451 			 * is important that we don't access a stale thread
1452 			 * structure. We will do the cleanup in two
1453 			 * phases to avoid deadlock and holding uf_lock for
1454 			 * too long. In phase 1, hold the uf_lock and call
1455 			 * pollblockexit() to set state in t_pollstate struct
1456 			 * so that a thread does not exit on us. In phase 2,
1457 			 * we drop the uf_lock and call pollcacheclean().
1458 			 */
1459 			pfd = ufp->uf_portfd;
1460 			ufp->uf_portfd = NULL;
1461 			if (fpip != NULL)
1462 				pollblockexit(fpip);
1463 			mutex_exit(&ufp->uf_lock);
1464 			if (fpip != NULL)
1465 				pollcacheclean(fpip, fd);
1466 			if (pfd)
1467 				port_close_fd(pfd);
1468 			(void) closef(fp);
1469 		}
1470 	}
1471 
1472 	/* Reset bad fd */
1473 	fip->fi_badfd = -1;
1474 	fip->fi_action = -1;
1475 }
1476 
1477 /*
1478  * Utility function called by most of the *at() system call interfaces.
1479  *
1480  * Generate a starting vnode pointer for an (fd, path) pair where 'fd'
1481  * is an open file descriptor for a directory to be used as the starting
1482  * point for the lookup of the relative pathname 'path' (or, if path is
1483  * NULL, generate a vnode pointer for the direct target of the operation).
1484  *
1485  * If we successfully return a non-NULL startvp, it has been the target
1486  * of VN_HOLD() and the caller must call VN_RELE() on it.
1487  */
1488 int
1489 fgetstartvp(int fd, char *path, vnode_t **startvpp)
1490 {
1491 	vnode_t		*startvp;
1492 	file_t 		*startfp;
1493 	char 		startchar;
1494 
1495 	if (fd == AT_FDCWD && path == NULL)
1496 		return (EFAULT);
1497 
1498 	if (fd == AT_FDCWD) {
1499 		/*
1500 		 * Start from the current working directory.
1501 		 */
1502 		startvp = NULL;
1503 	} else {
1504 		if (path == NULL)
1505 			startchar = '\0';
1506 		else if (copyin(path, &startchar, sizeof (char)))
1507 			return (EFAULT);
1508 
1509 		if (startchar == '/') {
1510 			/*
1511 			 * 'path' is an absolute pathname.
1512 			 */
1513 			startvp = NULL;
1514 		} else {
1515 			/*
1516 			 * 'path' is a relative pathname or we will
1517 			 * be applying the operation to 'fd' itself.
1518 			 */
1519 			if ((startfp = getf(fd)) == NULL)
1520 				return (EBADF);
1521 			startvp = startfp->f_vnode;
1522 			VN_HOLD(startvp);
1523 			releasef(fd);
1524 		}
1525 	}
1526 	*startvpp = startvp;
1527 	return (0);
1528 }
1529 
1530 /*
1531  * Called from fchownat() and fchmodat() to set ownership and mode.
1532  * The contents of *vap must be set before calling here.
1533  */
1534 int
1535 fsetattrat(int fd, char *path, int flags, struct vattr *vap)
1536 {
1537 	vnode_t		*startvp;
1538 	vnode_t		*vp;
1539 	int 		error;
1540 
1541 	/*
1542 	 * Since we are never called to set the size of a file, we don't
1543 	 * need to check for non-blocking locks (via nbl_need_check(vp)).
1544 	 */
1545 	ASSERT(!(vap->va_mask & AT_SIZE));
1546 
1547 	if ((error = fgetstartvp(fd, path, &startvp)) != 0)
1548 		return (error);
1549 	if (AU_AUDITING() && startvp != NULL)
1550 		audit_setfsat_path(1);
1551 
1552 	/*
1553 	 * Do lookup for fchownat/fchmodat when path not NULL
1554 	 */
1555 	if (path != NULL) {
1556 		if (error = lookupnameat(path, UIO_USERSPACE,
1557 		    (flags == AT_SYMLINK_NOFOLLOW) ?
1558 		    NO_FOLLOW : FOLLOW,
1559 		    NULLVPP, &vp, startvp)) {
1560 			if (startvp != NULL)
1561 				VN_RELE(startvp);
1562 			return (error);
1563 		}
1564 	} else {
1565 		vp = startvp;
1566 		ASSERT(vp);
1567 		VN_HOLD(vp);
1568 	}
1569 
1570 	if (vn_is_readonly(vp)) {
1571 		error = EROFS;
1572 	} else {
1573 		error = VOP_SETATTR(vp, vap, 0, CRED(), NULL);
1574 	}
1575 
1576 	if (startvp != NULL)
1577 		VN_RELE(startvp);
1578 	VN_RELE(vp);
1579 
1580 	return (error);
1581 }
1582 
1583 /*
1584  * Return true if the given vnode is referenced by any
1585  * entry in the current process's file descriptor table.
1586  */
1587 int
1588 fisopen(vnode_t *vp)
1589 {
1590 	int fd;
1591 	file_t *fp;
1592 	vnode_t *ovp;
1593 	uf_info_t *fip = P_FINFO(curproc);
1594 	uf_entry_t *ufp;
1595 
1596 	mutex_enter(&fip->fi_lock);
1597 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1598 		UF_ENTER(ufp, fip, fd);
1599 		if ((fp = ufp->uf_file) != NULL &&
1600 		    (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) {
1601 			UF_EXIT(ufp);
1602 			mutex_exit(&fip->fi_lock);
1603 			return (1);
1604 		}
1605 		UF_EXIT(ufp);
1606 	}
1607 	mutex_exit(&fip->fi_lock);
1608 	return (0);
1609 }
1610 
1611 /*
1612  * Return zero if at least one file currently open (by curproc) shouldn't be
1613  * allowed to change zones.
1614  */
1615 int
1616 files_can_change_zones(void)
1617 {
1618 	int fd;
1619 	file_t *fp;
1620 	uf_info_t *fip = P_FINFO(curproc);
1621 	uf_entry_t *ufp;
1622 
1623 	mutex_enter(&fip->fi_lock);
1624 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1625 		UF_ENTER(ufp, fip, fd);
1626 		if ((fp = ufp->uf_file) != NULL &&
1627 		    !vn_can_change_zones(fp->f_vnode)) {
1628 			UF_EXIT(ufp);
1629 			mutex_exit(&fip->fi_lock);
1630 			return (0);
1631 		}
1632 		UF_EXIT(ufp);
1633 	}
1634 	mutex_exit(&fip->fi_lock);
1635 	return (1);
1636 }
1637 
1638 #ifdef DEBUG
1639 
1640 /*
1641  * The following functions are only used in ASSERT()s elsewhere.
1642  * They do not modify the state of the system.
1643  */
1644 
1645 /*
1646  * Return true (1) if the current thread is in the fpollinfo
1647  * list for this file descriptor, else false (0).
1648  */
1649 static int
1650 curthread_in_plist(uf_entry_t *ufp)
1651 {
1652 	fpollinfo_t *fpip;
1653 
1654 	ASSERT(MUTEX_HELD(&ufp->uf_lock));
1655 	for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next)
1656 		if (fpip->fp_thread == curthread)
1657 			return (1);
1658 	return (0);
1659 }
1660 
1661 /*
1662  * Sanity check to make sure that after lwp_exit(),
1663  * curthread does not appear on any fd's fpollinfo list.
1664  */
1665 void
1666 checkfpollinfo(void)
1667 {
1668 	int fd;
1669 	uf_info_t *fip = P_FINFO(curproc);
1670 	uf_entry_t *ufp;
1671 
1672 	mutex_enter(&fip->fi_lock);
1673 	for (fd = 0; fd < fip->fi_nfiles; fd++) {
1674 		UF_ENTER(ufp, fip, fd);
1675 		ASSERT(!curthread_in_plist(ufp));
1676 		UF_EXIT(ufp);
1677 	}
1678 	mutex_exit(&fip->fi_lock);
1679 }
1680 
1681 /*
1682  * Return true (1) if the current thread is in the fpollinfo
1683  * list for this file descriptor, else false (0).
1684  * This is the same as curthread_in_plist(),
1685  * but is called w/o holding uf_lock.
1686  */
1687 int
1688 infpollinfo(int fd)
1689 {
1690 	uf_info_t *fip = P_FINFO(curproc);
1691 	uf_entry_t *ufp;
1692 	int rc;
1693 
1694 	UF_ENTER(ufp, fip, fd);
1695 	rc = curthread_in_plist(ufp);
1696 	UF_EXIT(ufp);
1697 	return (rc);
1698 }
1699 
1700 #endif	/* DEBUG */
1701 
1702 /*
1703  * Add the curthread to fpollinfo list, meaning this fd is currently in the
1704  * thread's poll cache. Each lwp polling this file descriptor should call
1705  * this routine once.
1706  */
1707 void
1708 addfpollinfo(int fd)
1709 {
1710 	struct uf_entry *ufp;
1711 	fpollinfo_t *fpip;
1712 	uf_info_t *fip = P_FINFO(curproc);
1713 
1714 	fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP);
1715 	fpip->fp_thread = curthread;
1716 	UF_ENTER(ufp, fip, fd);
1717 	/*
1718 	 * Assert we are not already on the list, that is, that
1719 	 * this lwp did not call addfpollinfo twice for the same fd.
1720 	 */
1721 	ASSERT(!curthread_in_plist(ufp));
1722 	/*
1723 	 * addfpollinfo is always done inside the getf/releasef pair.
1724 	 */
1725 	ASSERT(ufp->uf_refcnt >= 1);
1726 	fpip->fp_next = ufp->uf_fpollinfo;
1727 	ufp->uf_fpollinfo = fpip;
1728 	UF_EXIT(ufp);
1729 }
1730 
1731 /*
1732  * Delete curthread from fpollinfo list if it is there.
1733  */
1734 void
1735 delfpollinfo(int fd)
1736 {
1737 	struct uf_entry *ufp;
1738 	struct fpollinfo *fpip;
1739 	struct fpollinfo **fpipp;
1740 	uf_info_t *fip = P_FINFO(curproc);
1741 
1742 	UF_ENTER(ufp, fip, fd);
1743 	for (fpipp = &ufp->uf_fpollinfo;
1744 	    (fpip = *fpipp) != NULL;
1745 	    fpipp = &fpip->fp_next) {
1746 		if (fpip->fp_thread == curthread) {
1747 			*fpipp = fpip->fp_next;
1748 			kmem_free(fpip, sizeof (fpollinfo_t));
1749 			break;
1750 		}
1751 	}
1752 	/*
1753 	 * Assert that we are not still on the list, that is, that
1754 	 * this lwp did not call addfpollinfo twice for the same fd.
1755 	 */
1756 	ASSERT(!curthread_in_plist(ufp));
1757 	UF_EXIT(ufp);
1758 }
1759 
1760 /*
1761  * fd is associated with a port. pfd is a pointer to the fd entry in the
1762  * cache of the port.
1763  */
1764 
1765 void
1766 addfd_port(int fd, portfd_t *pfd)
1767 {
1768 	struct uf_entry *ufp;
1769 	uf_info_t *fip = P_FINFO(curproc);
1770 
1771 	UF_ENTER(ufp, fip, fd);
1772 	/*
1773 	 * addfd_port is always done inside the getf/releasef pair.
1774 	 */
1775 	ASSERT(ufp->uf_refcnt >= 1);
1776 	if (ufp->uf_portfd == NULL) {
1777 		/* first entry */
1778 		ufp->uf_portfd = pfd;
1779 		pfd->pfd_next = NULL;
1780 	} else {
1781 		pfd->pfd_next = ufp->uf_portfd;
1782 		ufp->uf_portfd = pfd;
1783 		pfd->pfd_next->pfd_prev = pfd;
1784 	}
1785 	UF_EXIT(ufp);
1786 }
1787 
1788 void
1789 delfd_port(int fd, portfd_t *pfd)
1790 {
1791 	struct uf_entry *ufp;
1792 	uf_info_t *fip = P_FINFO(curproc);
1793 
1794 	UF_ENTER(ufp, fip, fd);
1795 	/*
1796 	 * delfd_port is always done inside the getf/releasef pair.
1797 	 */
1798 	ASSERT(ufp->uf_refcnt >= 1);
1799 	if (ufp->uf_portfd == pfd) {
1800 		/* remove first entry */
1801 		ufp->uf_portfd = pfd->pfd_next;
1802 	} else {
1803 		pfd->pfd_prev->pfd_next = pfd->pfd_next;
1804 		if (pfd->pfd_next != NULL)
1805 			pfd->pfd_next->pfd_prev = pfd->pfd_prev;
1806 	}
1807 	UF_EXIT(ufp);
1808 }
1809 
1810 static void
1811 port_close_fd(portfd_t *pfd)
1812 {
1813 	portfd_t	*pfdn;
1814 
1815 	/*
1816 	 * At this point, no other thread should access
1817 	 * the portfd_t list for this fd. The uf_file, uf_portfd
1818 	 * pointers in the uf_entry_t struct for this fd would
1819 	 * be set to NULL.
1820 	 */
1821 	for (; pfd != NULL; pfd = pfdn) {
1822 		pfdn = pfd->pfd_next;
1823 		port_close_pfd(pfd);
1824 	}
1825 }
1826