xref: /illumos-gate/usr/src/uts/common/io/scsi/targets/sd.c (revision b6805bf78d2bbbeeaea8909a05623587b42d58b3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2011 Bayard G. Bell.  All rights reserved.
27  * Copyright (c) 2012 by Delphix. All rights reserved.
28  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
29  */
30 /*
31  * Copyright 2011 cyril.galibern@opensvc.com
32  */
33 
34 /*
35  * SCSI disk target driver.
36  */
37 #include <sys/scsi/scsi.h>
38 #include <sys/dkbad.h>
39 #include <sys/dklabel.h>
40 #include <sys/dkio.h>
41 #include <sys/fdio.h>
42 #include <sys/cdio.h>
43 #include <sys/mhd.h>
44 #include <sys/vtoc.h>
45 #include <sys/dktp/fdisk.h>
46 #include <sys/kstat.h>
47 #include <sys/vtrace.h>
48 #include <sys/note.h>
49 #include <sys/thread.h>
50 #include <sys/proc.h>
51 #include <sys/efi_partition.h>
52 #include <sys/var.h>
53 #include <sys/aio_req.h>
54 
55 #ifdef __lock_lint
56 #define	_LP64
57 #define	__amd64
58 #endif
59 
60 #if (defined(__fibre))
61 /* Note: is there a leadville version of the following? */
62 #include <sys/fc4/fcal_linkapp.h>
63 #endif
64 #include <sys/taskq.h>
65 #include <sys/uuid.h>
66 #include <sys/byteorder.h>
67 #include <sys/sdt.h>
68 
69 #include "sd_xbuf.h"
70 
71 #include <sys/scsi/targets/sddef.h>
72 #include <sys/cmlb.h>
73 #include <sys/sysevent/eventdefs.h>
74 #include <sys/sysevent/dev.h>
75 
76 #include <sys/fm/protocol.h>
77 
78 /*
79  * Loadable module info.
80  */
81 #if (defined(__fibre))
82 #define	SD_MODULE_NAME	"SCSI SSA/FCAL Disk Driver"
83 #else /* !__fibre */
84 #define	SD_MODULE_NAME	"SCSI Disk Driver"
85 #endif /* !__fibre */
86 
87 /*
88  * Define the interconnect type, to allow the driver to distinguish
89  * between parallel SCSI (sd) and fibre channel (ssd) behaviors.
90  *
91  * This is really for backward compatibility. In the future, the driver
92  * should actually check the "interconnect-type" property as reported by
93  * the HBA; however at present this property is not defined by all HBAs,
94  * so we will use this #define (1) to permit the driver to run in
95  * backward-compatibility mode; and (2) to print a notification message
96  * if an FC HBA does not support the "interconnect-type" property.  The
97  * behavior of the driver will be to assume parallel SCSI behaviors unless
98  * the "interconnect-type" property is defined by the HBA **AND** has a
99  * value of either INTERCONNECT_FIBRE, INTERCONNECT_SSA, or
100  * INTERCONNECT_FABRIC, in which case the driver will assume Fibre
101  * Channel behaviors (as per the old ssd).  (Note that the
102  * INTERCONNECT_1394 and INTERCONNECT_USB types are not supported and
103  * will result in the driver assuming parallel SCSI behaviors.)
104  *
105  * (see common/sys/scsi/impl/services.h)
106  *
107  * Note: For ssd semantics, don't use INTERCONNECT_FABRIC as the default
108  * since some FC HBAs may already support that, and there is some code in
109  * the driver that already looks for it.  Using INTERCONNECT_FABRIC as the
110  * default would confuse that code, and besides things should work fine
111  * anyways if the FC HBA already reports INTERCONNECT_FABRIC for the
112  * "interconnect_type" property.
113  *
114  */
115 #if (defined(__fibre))
116 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_FIBRE
117 #else
118 #define	SD_DEFAULT_INTERCONNECT_TYPE	SD_INTERCONNECT_PARALLEL
119 #endif
120 
121 /*
122  * The name of the driver, established from the module name in _init.
123  */
124 static	char *sd_label			= NULL;
125 
126 /*
127  * Driver name is unfortunately prefixed on some driver.conf properties.
128  */
129 #if (defined(__fibre))
130 #define	sd_max_xfer_size		ssd_max_xfer_size
131 #define	sd_config_list			ssd_config_list
132 static	char *sd_max_xfer_size		= "ssd_max_xfer_size";
133 static	char *sd_config_list		= "ssd-config-list";
134 #else
135 static	char *sd_max_xfer_size		= "sd_max_xfer_size";
136 static	char *sd_config_list		= "sd-config-list";
137 #endif
138 
139 /*
140  * Driver global variables
141  */
142 
143 #if (defined(__fibre))
144 /*
145  * These #defines are to avoid namespace collisions that occur because this
146  * code is currently used to compile two separate driver modules: sd and ssd.
147  * All global variables need to be treated this way (even if declared static)
148  * in order to allow the debugger to resolve the names properly.
149  * It is anticipated that in the near future the ssd module will be obsoleted,
150  * at which time this namespace issue should go away.
151  */
152 #define	sd_state			ssd_state
153 #define	sd_io_time			ssd_io_time
154 #define	sd_failfast_enable		ssd_failfast_enable
155 #define	sd_ua_retry_count		ssd_ua_retry_count
156 #define	sd_report_pfa			ssd_report_pfa
157 #define	sd_max_throttle			ssd_max_throttle
158 #define	sd_min_throttle			ssd_min_throttle
159 #define	sd_rot_delay			ssd_rot_delay
160 
161 #define	sd_retry_on_reservation_conflict	\
162 					ssd_retry_on_reservation_conflict
163 #define	sd_reinstate_resv_delay		ssd_reinstate_resv_delay
164 #define	sd_resv_conflict_name		ssd_resv_conflict_name
165 
166 #define	sd_component_mask		ssd_component_mask
167 #define	sd_level_mask			ssd_level_mask
168 #define	sd_debug_un			ssd_debug_un
169 #define	sd_error_level			ssd_error_level
170 
171 #define	sd_xbuf_active_limit		ssd_xbuf_active_limit
172 #define	sd_xbuf_reserve_limit		ssd_xbuf_reserve_limit
173 
174 #define	sd_tr				ssd_tr
175 #define	sd_reset_throttle_timeout	ssd_reset_throttle_timeout
176 #define	sd_qfull_throttle_timeout	ssd_qfull_throttle_timeout
177 #define	sd_qfull_throttle_enable	ssd_qfull_throttle_enable
178 #define	sd_check_media_time		ssd_check_media_time
179 #define	sd_wait_cmds_complete		ssd_wait_cmds_complete
180 #define	sd_label_mutex			ssd_label_mutex
181 #define	sd_detach_mutex			ssd_detach_mutex
182 #define	sd_log_buf			ssd_log_buf
183 #define	sd_log_mutex			ssd_log_mutex
184 
185 #define	sd_disk_table			ssd_disk_table
186 #define	sd_disk_table_size		ssd_disk_table_size
187 #define	sd_sense_mutex			ssd_sense_mutex
188 #define	sd_cdbtab			ssd_cdbtab
189 
190 #define	sd_cb_ops			ssd_cb_ops
191 #define	sd_ops				ssd_ops
192 #define	sd_additional_codes		ssd_additional_codes
193 #define	sd_tgops			ssd_tgops
194 
195 #define	sd_minor_data			ssd_minor_data
196 #define	sd_minor_data_efi		ssd_minor_data_efi
197 
198 #define	sd_tq				ssd_tq
199 #define	sd_wmr_tq			ssd_wmr_tq
200 #define	sd_taskq_name			ssd_taskq_name
201 #define	sd_wmr_taskq_name		ssd_wmr_taskq_name
202 #define	sd_taskq_minalloc		ssd_taskq_minalloc
203 #define	sd_taskq_maxalloc		ssd_taskq_maxalloc
204 
205 #define	sd_dump_format_string		ssd_dump_format_string
206 
207 #define	sd_iostart_chain		ssd_iostart_chain
208 #define	sd_iodone_chain			ssd_iodone_chain
209 
210 #define	sd_pm_idletime			ssd_pm_idletime
211 
212 #define	sd_force_pm_supported		ssd_force_pm_supported
213 
214 #define	sd_dtype_optical_bind		ssd_dtype_optical_bind
215 
216 #define	sd_ssc_init			ssd_ssc_init
217 #define	sd_ssc_send			ssd_ssc_send
218 #define	sd_ssc_fini			ssd_ssc_fini
219 #define	sd_ssc_assessment		ssd_ssc_assessment
220 #define	sd_ssc_post			ssd_ssc_post
221 #define	sd_ssc_print			ssd_ssc_print
222 #define	sd_ssc_ereport_post		ssd_ssc_ereport_post
223 #define	sd_ssc_set_info			ssd_ssc_set_info
224 #define	sd_ssc_extract_info		ssd_ssc_extract_info
225 
226 #endif
227 
228 #ifdef	SDDEBUG
229 int	sd_force_pm_supported		= 0;
230 #endif	/* SDDEBUG */
231 
232 void *sd_state				= NULL;
233 int sd_io_time				= SD_IO_TIME;
234 int sd_failfast_enable			= 1;
235 int sd_ua_retry_count			= SD_UA_RETRY_COUNT;
236 int sd_report_pfa			= 1;
237 int sd_max_throttle			= SD_MAX_THROTTLE;
238 int sd_min_throttle			= SD_MIN_THROTTLE;
239 int sd_rot_delay			= 4; /* Default 4ms Rotation delay */
240 int sd_qfull_throttle_enable		= TRUE;
241 
242 int sd_retry_on_reservation_conflict	= 1;
243 int sd_reinstate_resv_delay		= SD_REINSTATE_RESV_DELAY;
244 _NOTE(SCHEME_PROTECTS_DATA("safe sharing", sd_reinstate_resv_delay))
245 
246 static int sd_dtype_optical_bind	= -1;
247 
248 /* Note: the following is not a bug, it really is "sd_" and not "ssd_" */
249 static	char *sd_resv_conflict_name	= "sd_retry_on_reservation_conflict";
250 
251 /*
252  * Global data for debug logging. To enable debug printing, sd_component_mask
253  * and sd_level_mask should be set to the desired bit patterns as outlined in
254  * sddef.h.
255  */
256 uint_t	sd_component_mask		= 0x0;
257 uint_t	sd_level_mask			= 0x0;
258 struct	sd_lun *sd_debug_un		= NULL;
259 uint_t	sd_error_level			= SCSI_ERR_RETRYABLE;
260 
261 /* Note: these may go away in the future... */
262 static uint32_t	sd_xbuf_active_limit	= 512;
263 static uint32_t sd_xbuf_reserve_limit	= 16;
264 
265 static struct sd_resv_reclaim_request	sd_tr = { NULL, NULL, NULL, 0, 0, 0 };
266 
267 /*
268  * Timer value used to reset the throttle after it has been reduced
269  * (typically in response to TRAN_BUSY or STATUS_QFULL)
270  */
271 static int sd_reset_throttle_timeout	= SD_RESET_THROTTLE_TIMEOUT;
272 static int sd_qfull_throttle_timeout	= SD_QFULL_THROTTLE_TIMEOUT;
273 
274 /*
275  * Interval value associated with the media change scsi watch.
276  */
277 static int sd_check_media_time		= 3000000;
278 
279 /*
280  * Wait value used for in progress operations during a DDI_SUSPEND
281  */
282 static int sd_wait_cmds_complete	= SD_WAIT_CMDS_COMPLETE;
283 
284 /*
285  * sd_label_mutex protects a static buffer used in the disk label
286  * component of the driver
287  */
288 static kmutex_t sd_label_mutex;
289 
290 /*
291  * sd_detach_mutex protects un_layer_count, un_detach_count, and
292  * un_opens_in_progress in the sd_lun structure.
293  */
294 static kmutex_t sd_detach_mutex;
295 
296 _NOTE(MUTEX_PROTECTS_DATA(sd_detach_mutex,
297 	sd_lun::{un_layer_count un_detach_count un_opens_in_progress}))
298 
299 /*
300  * Global buffer and mutex for debug logging
301  */
302 static char	sd_log_buf[1024];
303 static kmutex_t	sd_log_mutex;
304 
305 /*
306  * Structs and globals for recording attached lun information.
307  * This maintains a chain. Each node in the chain represents a SCSI controller.
308  * The structure records the number of luns attached to each target connected
309  * with the controller.
310  * For parallel scsi device only.
311  */
312 struct sd_scsi_hba_tgt_lun {
313 	struct sd_scsi_hba_tgt_lun	*next;
314 	dev_info_t			*pdip;
315 	int				nlun[NTARGETS_WIDE];
316 };
317 
318 /*
319  * Flag to indicate the lun is attached or detached
320  */
321 #define	SD_SCSI_LUN_ATTACH	0
322 #define	SD_SCSI_LUN_DETACH	1
323 
324 static kmutex_t	sd_scsi_target_lun_mutex;
325 static struct sd_scsi_hba_tgt_lun	*sd_scsi_target_lun_head = NULL;
326 
327 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
328     sd_scsi_hba_tgt_lun::next sd_scsi_hba_tgt_lun::pdip))
329 
330 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_target_lun_mutex,
331     sd_scsi_target_lun_head))
332 
333 /*
334  * "Smart" Probe Caching structs, globals, #defines, etc.
335  * For parallel scsi and non-self-identify device only.
336  */
337 
338 /*
339  * The following resources and routines are implemented to support
340  * "smart" probing, which caches the scsi_probe() results in an array,
341  * in order to help avoid long probe times.
342  */
343 struct sd_scsi_probe_cache {
344 	struct	sd_scsi_probe_cache	*next;
345 	dev_info_t	*pdip;
346 	int		cache[NTARGETS_WIDE];
347 };
348 
349 static kmutex_t	sd_scsi_probe_cache_mutex;
350 static struct	sd_scsi_probe_cache *sd_scsi_probe_cache_head = NULL;
351 
352 /*
353  * Really we only need protection on the head of the linked list, but
354  * better safe than sorry.
355  */
356 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
357     sd_scsi_probe_cache::next sd_scsi_probe_cache::pdip))
358 
359 _NOTE(MUTEX_PROTECTS_DATA(sd_scsi_probe_cache_mutex,
360     sd_scsi_probe_cache_head))
361 
362 /*
363  * Power attribute table
364  */
365 static sd_power_attr_ss sd_pwr_ss = {
366 	{ "NAME=spindle-motor", "0=off", "1=on", NULL },
367 	{0, 100},
368 	{30, 0},
369 	{20000, 0}
370 };
371 
372 static sd_power_attr_pc sd_pwr_pc = {
373 	{ "NAME=spindle-motor", "0=stopped", "1=standby", "2=idle",
374 		"3=active", NULL },
375 	{0, 0, 0, 100},
376 	{90, 90, 20, 0},
377 	{15000, 15000, 1000, 0}
378 };
379 
380 /*
381  * Power level to power condition
382  */
383 static int sd_pl2pc[] = {
384 	SD_TARGET_START_VALID,
385 	SD_TARGET_STANDBY,
386 	SD_TARGET_IDLE,
387 	SD_TARGET_ACTIVE
388 };
389 
390 /*
391  * Vendor specific data name property declarations
392  */
393 
394 #if defined(__fibre) || defined(__i386) ||defined(__amd64)
395 
396 static sd_tunables seagate_properties = {
397 	SEAGATE_THROTTLE_VALUE,
398 	0,
399 	0,
400 	0,
401 	0,
402 	0,
403 	0,
404 	0,
405 	0
406 };
407 
408 
409 static sd_tunables fujitsu_properties = {
410 	FUJITSU_THROTTLE_VALUE,
411 	0,
412 	0,
413 	0,
414 	0,
415 	0,
416 	0,
417 	0,
418 	0
419 };
420 
421 static sd_tunables ibm_properties = {
422 	IBM_THROTTLE_VALUE,
423 	0,
424 	0,
425 	0,
426 	0,
427 	0,
428 	0,
429 	0,
430 	0
431 };
432 
433 static sd_tunables purple_properties = {
434 	PURPLE_THROTTLE_VALUE,
435 	0,
436 	0,
437 	PURPLE_BUSY_RETRIES,
438 	PURPLE_RESET_RETRY_COUNT,
439 	PURPLE_RESERVE_RELEASE_TIME,
440 	0,
441 	0,
442 	0
443 };
444 
445 static sd_tunables sve_properties = {
446 	SVE_THROTTLE_VALUE,
447 	0,
448 	0,
449 	SVE_BUSY_RETRIES,
450 	SVE_RESET_RETRY_COUNT,
451 	SVE_RESERVE_RELEASE_TIME,
452 	SVE_MIN_THROTTLE_VALUE,
453 	SVE_DISKSORT_DISABLED_FLAG,
454 	0
455 };
456 
457 static sd_tunables maserati_properties = {
458 	0,
459 	0,
460 	0,
461 	0,
462 	0,
463 	0,
464 	0,
465 	MASERATI_DISKSORT_DISABLED_FLAG,
466 	MASERATI_LUN_RESET_ENABLED_FLAG
467 };
468 
469 static sd_tunables pirus_properties = {
470 	PIRUS_THROTTLE_VALUE,
471 	0,
472 	PIRUS_NRR_COUNT,
473 	PIRUS_BUSY_RETRIES,
474 	PIRUS_RESET_RETRY_COUNT,
475 	0,
476 	PIRUS_MIN_THROTTLE_VALUE,
477 	PIRUS_DISKSORT_DISABLED_FLAG,
478 	PIRUS_LUN_RESET_ENABLED_FLAG
479 };
480 
481 #endif
482 
483 #if (defined(__sparc) && !defined(__fibre)) || \
484 	(defined(__i386) || defined(__amd64))
485 
486 
487 static sd_tunables elite_properties = {
488 	ELITE_THROTTLE_VALUE,
489 	0,
490 	0,
491 	0,
492 	0,
493 	0,
494 	0,
495 	0,
496 	0
497 };
498 
499 static sd_tunables st31200n_properties = {
500 	ST31200N_THROTTLE_VALUE,
501 	0,
502 	0,
503 	0,
504 	0,
505 	0,
506 	0,
507 	0,
508 	0
509 };
510 
511 #endif /* Fibre or not */
512 
513 static sd_tunables lsi_properties_scsi = {
514 	LSI_THROTTLE_VALUE,
515 	0,
516 	LSI_NOTREADY_RETRIES,
517 	0,
518 	0,
519 	0,
520 	0,
521 	0,
522 	0
523 };
524 
525 static sd_tunables symbios_properties = {
526 	SYMBIOS_THROTTLE_VALUE,
527 	0,
528 	SYMBIOS_NOTREADY_RETRIES,
529 	0,
530 	0,
531 	0,
532 	0,
533 	0,
534 	0
535 };
536 
537 static sd_tunables lsi_properties = {
538 	0,
539 	0,
540 	LSI_NOTREADY_RETRIES,
541 	0,
542 	0,
543 	0,
544 	0,
545 	0,
546 	0
547 };
548 
549 static sd_tunables lsi_oem_properties = {
550 	0,
551 	0,
552 	LSI_OEM_NOTREADY_RETRIES,
553 	0,
554 	0,
555 	0,
556 	0,
557 	0,
558 	0,
559 	1
560 };
561 
562 
563 
564 #if (defined(SD_PROP_TST))
565 
566 #define	SD_TST_CTYPE_VAL	CTYPE_CDROM
567 #define	SD_TST_THROTTLE_VAL	16
568 #define	SD_TST_NOTREADY_VAL	12
569 #define	SD_TST_BUSY_VAL		60
570 #define	SD_TST_RST_RETRY_VAL	36
571 #define	SD_TST_RSV_REL_TIME	60
572 
573 static sd_tunables tst_properties = {
574 	SD_TST_THROTTLE_VAL,
575 	SD_TST_CTYPE_VAL,
576 	SD_TST_NOTREADY_VAL,
577 	SD_TST_BUSY_VAL,
578 	SD_TST_RST_RETRY_VAL,
579 	SD_TST_RSV_REL_TIME,
580 	0,
581 	0,
582 	0
583 };
584 #endif
585 
586 /* This is similar to the ANSI toupper implementation */
587 #define	SD_TOUPPER(C)	(((C) >= 'a' && (C) <= 'z') ? (C) - 'a' + 'A' : (C))
588 
589 /*
590  * Static Driver Configuration Table
591  *
592  * This is the table of disks which need throttle adjustment (or, perhaps
593  * something else as defined by the flags at a future time.)  device_id
594  * is a string consisting of concatenated vid (vendor), pid (product/model)
595  * and revision strings as defined in the scsi_inquiry structure.  Offsets of
596  * the parts of the string are as defined by the sizes in the scsi_inquiry
597  * structure.  Device type is searched as far as the device_id string is
598  * defined.  Flags defines which values are to be set in the driver from the
599  * properties list.
600  *
601  * Entries below which begin and end with a "*" are a special case.
602  * These do not have a specific vendor, and the string which follows
603  * can appear anywhere in the 16 byte PID portion of the inquiry data.
604  *
605  * Entries below which begin and end with a " " (blank) are a special
606  * case. The comparison function will treat multiple consecutive blanks
607  * as equivalent to a single blank. For example, this causes a
608  * sd_disk_table entry of " NEC CDROM " to match a device's id string
609  * of  "NEC       CDROM".
610  *
611  * Note: The MD21 controller type has been obsoleted.
612  *	 ST318202F is a Legacy device
613  *	 MAM3182FC, MAM3364FC, MAM3738FC do not appear to have ever been
614  *	 made with an FC connection. The entries here are a legacy.
615  */
616 static sd_disk_config_t sd_disk_table[] = {
617 #if defined(__fibre) || defined(__i386) || defined(__amd64)
618 	{ "SEAGATE ST34371FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
619 	{ "SEAGATE ST19171FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
620 	{ "SEAGATE ST39102FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
621 	{ "SEAGATE ST39103FC", SD_CONF_BSET_THROTTLE, &seagate_properties },
622 	{ "SEAGATE ST118273F", SD_CONF_BSET_THROTTLE, &seagate_properties },
623 	{ "SEAGATE ST318202F", SD_CONF_BSET_THROTTLE, &seagate_properties },
624 	{ "SEAGATE ST318203F", SD_CONF_BSET_THROTTLE, &seagate_properties },
625 	{ "SEAGATE ST136403F", SD_CONF_BSET_THROTTLE, &seagate_properties },
626 	{ "SEAGATE ST318304F", SD_CONF_BSET_THROTTLE, &seagate_properties },
627 	{ "SEAGATE ST336704F", SD_CONF_BSET_THROTTLE, &seagate_properties },
628 	{ "SEAGATE ST373405F", SD_CONF_BSET_THROTTLE, &seagate_properties },
629 	{ "SEAGATE ST336605F", SD_CONF_BSET_THROTTLE, &seagate_properties },
630 	{ "SEAGATE ST336752F", SD_CONF_BSET_THROTTLE, &seagate_properties },
631 	{ "SEAGATE ST318452F", SD_CONF_BSET_THROTTLE, &seagate_properties },
632 	{ "FUJITSU MAG3091F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
633 	{ "FUJITSU MAG3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
634 	{ "FUJITSU MAA3182F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
635 	{ "FUJITSU MAF3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
636 	{ "FUJITSU MAL3364F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
637 	{ "FUJITSU MAL3738F",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
638 	{ "FUJITSU MAM3182FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
639 	{ "FUJITSU MAM3364FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
640 	{ "FUJITSU MAM3738FC",  SD_CONF_BSET_THROTTLE, &fujitsu_properties },
641 	{ "IBM     DDYFT1835",  SD_CONF_BSET_THROTTLE, &ibm_properties },
642 	{ "IBM     DDYFT3695",  SD_CONF_BSET_THROTTLE, &ibm_properties },
643 	{ "IBM     IC35LF2D2",  SD_CONF_BSET_THROTTLE, &ibm_properties },
644 	{ "IBM     IC35LF2PR",  SD_CONF_BSET_THROTTLE, &ibm_properties },
645 	{ "IBM     1724-100",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
646 	{ "IBM     1726-2xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
647 	{ "IBM     1726-22x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
648 	{ "IBM     1726-4xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
649 	{ "IBM     1726-42x",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
650 	{ "IBM     1726-3xx",   SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
651 	{ "IBM     3526",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
652 	{ "IBM     3542",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
653 	{ "IBM     3552",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
654 	{ "IBM     1722",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
655 	{ "IBM     1742",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
656 	{ "IBM     1815",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
657 	{ "IBM     FAStT",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
658 	{ "IBM     1814",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
659 	{ "IBM     1814-200",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
660 	{ "IBM     1818",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
661 	{ "DELL    MD3000",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
662 	{ "DELL    MD3000i",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
663 	{ "LSI     INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
664 	{ "ENGENIO INF",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
665 	{ "SGI     TP",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
666 	{ "SGI     IS",		SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
667 	{ "*CSM100_*",		SD_CONF_BSET_NRR_COUNT |
668 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
669 	{ "*CSM200_*",		SD_CONF_BSET_NRR_COUNT |
670 			SD_CONF_BSET_CACHE_IS_NV, &lsi_oem_properties },
671 	{ "Fujitsu SX300",	SD_CONF_BSET_THROTTLE,  &lsi_oem_properties },
672 	{ "LSI",		SD_CONF_BSET_NRR_COUNT, &lsi_properties },
673 	{ "SUN     T3", SD_CONF_BSET_THROTTLE |
674 			SD_CONF_BSET_BSY_RETRY_COUNT|
675 			SD_CONF_BSET_RST_RETRIES|
676 			SD_CONF_BSET_RSV_REL_TIME,
677 		&purple_properties },
678 	{ "SUN     SESS01", SD_CONF_BSET_THROTTLE |
679 		SD_CONF_BSET_BSY_RETRY_COUNT|
680 		SD_CONF_BSET_RST_RETRIES|
681 		SD_CONF_BSET_RSV_REL_TIME|
682 		SD_CONF_BSET_MIN_THROTTLE|
683 		SD_CONF_BSET_DISKSORT_DISABLED,
684 		&sve_properties },
685 	{ "SUN     T4", SD_CONF_BSET_THROTTLE |
686 			SD_CONF_BSET_BSY_RETRY_COUNT|
687 			SD_CONF_BSET_RST_RETRIES|
688 			SD_CONF_BSET_RSV_REL_TIME,
689 		&purple_properties },
690 	{ "SUN     SVE01", SD_CONF_BSET_DISKSORT_DISABLED |
691 		SD_CONF_BSET_LUN_RESET_ENABLED,
692 		&maserati_properties },
693 	{ "SUN     SE6920", SD_CONF_BSET_THROTTLE |
694 		SD_CONF_BSET_NRR_COUNT|
695 		SD_CONF_BSET_BSY_RETRY_COUNT|
696 		SD_CONF_BSET_RST_RETRIES|
697 		SD_CONF_BSET_MIN_THROTTLE|
698 		SD_CONF_BSET_DISKSORT_DISABLED|
699 		SD_CONF_BSET_LUN_RESET_ENABLED,
700 		&pirus_properties },
701 	{ "SUN     SE6940", SD_CONF_BSET_THROTTLE |
702 		SD_CONF_BSET_NRR_COUNT|
703 		SD_CONF_BSET_BSY_RETRY_COUNT|
704 		SD_CONF_BSET_RST_RETRIES|
705 		SD_CONF_BSET_MIN_THROTTLE|
706 		SD_CONF_BSET_DISKSORT_DISABLED|
707 		SD_CONF_BSET_LUN_RESET_ENABLED,
708 		&pirus_properties },
709 	{ "SUN     StorageTek 6920", SD_CONF_BSET_THROTTLE |
710 		SD_CONF_BSET_NRR_COUNT|
711 		SD_CONF_BSET_BSY_RETRY_COUNT|
712 		SD_CONF_BSET_RST_RETRIES|
713 		SD_CONF_BSET_MIN_THROTTLE|
714 		SD_CONF_BSET_DISKSORT_DISABLED|
715 		SD_CONF_BSET_LUN_RESET_ENABLED,
716 		&pirus_properties },
717 	{ "SUN     StorageTek 6940", SD_CONF_BSET_THROTTLE |
718 		SD_CONF_BSET_NRR_COUNT|
719 		SD_CONF_BSET_BSY_RETRY_COUNT|
720 		SD_CONF_BSET_RST_RETRIES|
721 		SD_CONF_BSET_MIN_THROTTLE|
722 		SD_CONF_BSET_DISKSORT_DISABLED|
723 		SD_CONF_BSET_LUN_RESET_ENABLED,
724 		&pirus_properties },
725 	{ "SUN     PSX1000", SD_CONF_BSET_THROTTLE |
726 		SD_CONF_BSET_NRR_COUNT|
727 		SD_CONF_BSET_BSY_RETRY_COUNT|
728 		SD_CONF_BSET_RST_RETRIES|
729 		SD_CONF_BSET_MIN_THROTTLE|
730 		SD_CONF_BSET_DISKSORT_DISABLED|
731 		SD_CONF_BSET_LUN_RESET_ENABLED,
732 		&pirus_properties },
733 	{ "SUN     SE6330", SD_CONF_BSET_THROTTLE |
734 		SD_CONF_BSET_NRR_COUNT|
735 		SD_CONF_BSET_BSY_RETRY_COUNT|
736 		SD_CONF_BSET_RST_RETRIES|
737 		SD_CONF_BSET_MIN_THROTTLE|
738 		SD_CONF_BSET_DISKSORT_DISABLED|
739 		SD_CONF_BSET_LUN_RESET_ENABLED,
740 		&pirus_properties },
741 	{ "SUN     STK6580_6780", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
742 	{ "SUN     SUN_6180", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
743 	{ "STK     OPENstorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
744 	{ "STK     OpenStorage", SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
745 	{ "STK     BladeCtlr",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
746 	{ "STK     FLEXLINE",	SD_CONF_BSET_NRR_COUNT, &lsi_oem_properties },
747 	{ "SYMBIOS", SD_CONF_BSET_NRR_COUNT, &symbios_properties },
748 #endif /* fibre or NON-sparc platforms */
749 #if ((defined(__sparc) && !defined(__fibre)) ||\
750 	(defined(__i386) || defined(__amd64)))
751 	{ "SEAGATE ST42400N", SD_CONF_BSET_THROTTLE, &elite_properties },
752 	{ "SEAGATE ST31200N", SD_CONF_BSET_THROTTLE, &st31200n_properties },
753 	{ "SEAGATE ST41600N", SD_CONF_BSET_TUR_CHECK, NULL },
754 	{ "CONNER  CP30540",  SD_CONF_BSET_NOCACHE,  NULL },
755 	{ "*SUN0104*", SD_CONF_BSET_FAB_DEVID, NULL },
756 	{ "*SUN0207*", SD_CONF_BSET_FAB_DEVID, NULL },
757 	{ "*SUN0327*", SD_CONF_BSET_FAB_DEVID, NULL },
758 	{ "*SUN0340*", SD_CONF_BSET_FAB_DEVID, NULL },
759 	{ "*SUN0424*", SD_CONF_BSET_FAB_DEVID, NULL },
760 	{ "*SUN0669*", SD_CONF_BSET_FAB_DEVID, NULL },
761 	{ "*SUN1.0G*", SD_CONF_BSET_FAB_DEVID, NULL },
762 	{ "SYMBIOS INF-01-00       ", SD_CONF_BSET_FAB_DEVID, NULL },
763 	{ "SYMBIOS", SD_CONF_BSET_THROTTLE|SD_CONF_BSET_NRR_COUNT,
764 	    &symbios_properties },
765 	{ "LSI", SD_CONF_BSET_THROTTLE | SD_CONF_BSET_NRR_COUNT,
766 	    &lsi_properties_scsi },
767 #if defined(__i386) || defined(__amd64)
768 	{ " NEC CD-ROM DRIVE:260 ", (SD_CONF_BSET_PLAYMSF_BCD
769 				    | SD_CONF_BSET_READSUB_BCD
770 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
771 				    | SD_CONF_BSET_NO_READ_HEADER
772 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
773 
774 	{ " NEC CD-ROM DRIVE:270 ", (SD_CONF_BSET_PLAYMSF_BCD
775 				    | SD_CONF_BSET_READSUB_BCD
776 				    | SD_CONF_BSET_READ_TOC_ADDR_BCD
777 				    | SD_CONF_BSET_NO_READ_HEADER
778 				    | SD_CONF_BSET_READ_CD_XD4), NULL },
779 #endif /* __i386 || __amd64 */
780 #endif /* sparc NON-fibre or NON-sparc platforms */
781 
782 #if (defined(SD_PROP_TST))
783 	{ "VENDOR  PRODUCT ", (SD_CONF_BSET_THROTTLE
784 				| SD_CONF_BSET_CTYPE
785 				| SD_CONF_BSET_NRR_COUNT
786 				| SD_CONF_BSET_FAB_DEVID
787 				| SD_CONF_BSET_NOCACHE
788 				| SD_CONF_BSET_BSY_RETRY_COUNT
789 				| SD_CONF_BSET_PLAYMSF_BCD
790 				| SD_CONF_BSET_READSUB_BCD
791 				| SD_CONF_BSET_READ_TOC_TRK_BCD
792 				| SD_CONF_BSET_READ_TOC_ADDR_BCD
793 				| SD_CONF_BSET_NO_READ_HEADER
794 				| SD_CONF_BSET_READ_CD_XD4
795 				| SD_CONF_BSET_RST_RETRIES
796 				| SD_CONF_BSET_RSV_REL_TIME
797 				| SD_CONF_BSET_TUR_CHECK), &tst_properties},
798 #endif
799 };
800 
801 static const int sd_disk_table_size =
802 	sizeof (sd_disk_table)/ sizeof (sd_disk_config_t);
803 
804 /*
805  * Emulation mode disk drive VID/PID table
806  */
807 static char sd_flash_dev_table[][25] = {
808 	"ATA     MARVELL SD88SA02",
809 	"MARVELL SD88SA02",
810 	"TOSHIBA THNSNV05",
811 };
812 
813 static const int sd_flash_dev_table_size =
814 	sizeof (sd_flash_dev_table) / sizeof (sd_flash_dev_table[0]);
815 
816 #define	SD_INTERCONNECT_PARALLEL	0
817 #define	SD_INTERCONNECT_FABRIC		1
818 #define	SD_INTERCONNECT_FIBRE		2
819 #define	SD_INTERCONNECT_SSA		3
820 #define	SD_INTERCONNECT_SATA		4
821 #define	SD_INTERCONNECT_SAS		5
822 
823 #define	SD_IS_PARALLEL_SCSI(un)		\
824 	((un)->un_interconnect_type == SD_INTERCONNECT_PARALLEL)
825 #define	SD_IS_SERIAL(un)		\
826 	(((un)->un_interconnect_type == SD_INTERCONNECT_SATA) ||\
827 	((un)->un_interconnect_type == SD_INTERCONNECT_SAS))
828 
829 /*
830  * Definitions used by device id registration routines
831  */
832 #define	VPD_HEAD_OFFSET		3	/* size of head for vpd page */
833 #define	VPD_PAGE_LENGTH		3	/* offset for pge length data */
834 #define	VPD_MODE_PAGE		1	/* offset into vpd pg for "page code" */
835 
836 static kmutex_t sd_sense_mutex = {0};
837 
838 /*
839  * Macros for updates of the driver state
840  */
841 #define	New_state(un, s)        \
842 	(un)->un_last_state = (un)->un_state, (un)->un_state = (s)
843 #define	Restore_state(un)	\
844 	{ uchar_t tmp = (un)->un_last_state; New_state((un), tmp); }
845 
846 static struct sd_cdbinfo sd_cdbtab[] = {
847 	{ CDB_GROUP0, 0x00,	   0x1FFFFF,   0xFF,	    },
848 	{ CDB_GROUP1, SCMD_GROUP1, 0xFFFFFFFF, 0xFFFF,	    },
849 	{ CDB_GROUP5, SCMD_GROUP5, 0xFFFFFFFF, 0xFFFFFFFF,  },
850 	{ CDB_GROUP4, SCMD_GROUP4, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFF, },
851 };
852 
853 /*
854  * Specifies the number of seconds that must have elapsed since the last
855  * cmd. has completed for a device to be declared idle to the PM framework.
856  */
857 static int sd_pm_idletime = 1;
858 
859 /*
860  * Internal function prototypes
861  */
862 
863 #if (defined(__fibre))
864 /*
865  * These #defines are to avoid namespace collisions that occur because this
866  * code is currently used to compile two separate driver modules: sd and ssd.
867  * All function names need to be treated this way (even if declared static)
868  * in order to allow the debugger to resolve the names properly.
869  * It is anticipated that in the near future the ssd module will be obsoleted,
870  * at which time this ugliness should go away.
871  */
872 #define	sd_log_trace			ssd_log_trace
873 #define	sd_log_info			ssd_log_info
874 #define	sd_log_err			ssd_log_err
875 #define	sdprobe				ssdprobe
876 #define	sdinfo				ssdinfo
877 #define	sd_prop_op			ssd_prop_op
878 #define	sd_scsi_probe_cache_init	ssd_scsi_probe_cache_init
879 #define	sd_scsi_probe_cache_fini	ssd_scsi_probe_cache_fini
880 #define	sd_scsi_clear_probe_cache	ssd_scsi_clear_probe_cache
881 #define	sd_scsi_probe_with_cache	ssd_scsi_probe_with_cache
882 #define	sd_scsi_target_lun_init		ssd_scsi_target_lun_init
883 #define	sd_scsi_target_lun_fini		ssd_scsi_target_lun_fini
884 #define	sd_scsi_get_target_lun_count	ssd_scsi_get_target_lun_count
885 #define	sd_scsi_update_lun_on_target	ssd_scsi_update_lun_on_target
886 #define	sd_spin_up_unit			ssd_spin_up_unit
887 #define	sd_enable_descr_sense		ssd_enable_descr_sense
888 #define	sd_reenable_dsense_task		ssd_reenable_dsense_task
889 #define	sd_set_mmc_caps			ssd_set_mmc_caps
890 #define	sd_read_unit_properties		ssd_read_unit_properties
891 #define	sd_process_sdconf_file		ssd_process_sdconf_file
892 #define	sd_process_sdconf_table		ssd_process_sdconf_table
893 #define	sd_sdconf_id_match		ssd_sdconf_id_match
894 #define	sd_blank_cmp			ssd_blank_cmp
895 #define	sd_chk_vers1_data		ssd_chk_vers1_data
896 #define	sd_set_vers1_properties		ssd_set_vers1_properties
897 #define	sd_check_solid_state		ssd_check_solid_state
898 #define	sd_check_emulation_mode		ssd_check_emulation_mode
899 
900 #define	sd_get_physical_geometry	ssd_get_physical_geometry
901 #define	sd_get_virtual_geometry		ssd_get_virtual_geometry
902 #define	sd_update_block_info		ssd_update_block_info
903 #define	sd_register_devid		ssd_register_devid
904 #define	sd_get_devid			ssd_get_devid
905 #define	sd_create_devid			ssd_create_devid
906 #define	sd_write_deviceid		ssd_write_deviceid
907 #define	sd_check_vpd_page_support	ssd_check_vpd_page_support
908 #define	sd_setup_pm			ssd_setup_pm
909 #define	sd_create_pm_components		ssd_create_pm_components
910 #define	sd_ddi_suspend			ssd_ddi_suspend
911 #define	sd_ddi_resume			ssd_ddi_resume
912 #define	sd_pm_state_change		ssd_pm_state_change
913 #define	sdpower				ssdpower
914 #define	sdattach			ssdattach
915 #define	sddetach			ssddetach
916 #define	sd_unit_attach			ssd_unit_attach
917 #define	sd_unit_detach			ssd_unit_detach
918 #define	sd_set_unit_attributes		ssd_set_unit_attributes
919 #define	sd_create_errstats		ssd_create_errstats
920 #define	sd_set_errstats			ssd_set_errstats
921 #define	sd_set_pstats			ssd_set_pstats
922 #define	sddump				ssddump
923 #define	sd_scsi_poll			ssd_scsi_poll
924 #define	sd_send_polled_RQS		ssd_send_polled_RQS
925 #define	sd_ddi_scsi_poll		ssd_ddi_scsi_poll
926 #define	sd_init_event_callbacks		ssd_init_event_callbacks
927 #define	sd_event_callback		ssd_event_callback
928 #define	sd_cache_control		ssd_cache_control
929 #define	sd_get_write_cache_enabled	ssd_get_write_cache_enabled
930 #define	sd_get_nv_sup			ssd_get_nv_sup
931 #define	sd_make_device			ssd_make_device
932 #define	sdopen				ssdopen
933 #define	sdclose				ssdclose
934 #define	sd_ready_and_valid		ssd_ready_and_valid
935 #define	sdmin				ssdmin
936 #define	sdread				ssdread
937 #define	sdwrite				ssdwrite
938 #define	sdaread				ssdaread
939 #define	sdawrite			ssdawrite
940 #define	sdstrategy			ssdstrategy
941 #define	sdioctl				ssdioctl
942 #define	sd_mapblockaddr_iostart		ssd_mapblockaddr_iostart
943 #define	sd_mapblocksize_iostart		ssd_mapblocksize_iostart
944 #define	sd_checksum_iostart		ssd_checksum_iostart
945 #define	sd_checksum_uscsi_iostart	ssd_checksum_uscsi_iostart
946 #define	sd_pm_iostart			ssd_pm_iostart
947 #define	sd_core_iostart			ssd_core_iostart
948 #define	sd_mapblockaddr_iodone		ssd_mapblockaddr_iodone
949 #define	sd_mapblocksize_iodone		ssd_mapblocksize_iodone
950 #define	sd_checksum_iodone		ssd_checksum_iodone
951 #define	sd_checksum_uscsi_iodone	ssd_checksum_uscsi_iodone
952 #define	sd_pm_iodone			ssd_pm_iodone
953 #define	sd_initpkt_for_buf		ssd_initpkt_for_buf
954 #define	sd_destroypkt_for_buf		ssd_destroypkt_for_buf
955 #define	sd_setup_rw_pkt			ssd_setup_rw_pkt
956 #define	sd_setup_next_rw_pkt		ssd_setup_next_rw_pkt
957 #define	sd_buf_iodone			ssd_buf_iodone
958 #define	sd_uscsi_strategy		ssd_uscsi_strategy
959 #define	sd_initpkt_for_uscsi		ssd_initpkt_for_uscsi
960 #define	sd_destroypkt_for_uscsi		ssd_destroypkt_for_uscsi
961 #define	sd_uscsi_iodone			ssd_uscsi_iodone
962 #define	sd_xbuf_strategy		ssd_xbuf_strategy
963 #define	sd_xbuf_init			ssd_xbuf_init
964 #define	sd_pm_entry			ssd_pm_entry
965 #define	sd_pm_exit			ssd_pm_exit
966 
967 #define	sd_pm_idletimeout_handler	ssd_pm_idletimeout_handler
968 #define	sd_pm_timeout_handler		ssd_pm_timeout_handler
969 
970 #define	sd_add_buf_to_waitq		ssd_add_buf_to_waitq
971 #define	sdintr				ssdintr
972 #define	sd_start_cmds			ssd_start_cmds
973 #define	sd_send_scsi_cmd		ssd_send_scsi_cmd
974 #define	sd_bioclone_alloc		ssd_bioclone_alloc
975 #define	sd_bioclone_free		ssd_bioclone_free
976 #define	sd_shadow_buf_alloc		ssd_shadow_buf_alloc
977 #define	sd_shadow_buf_free		ssd_shadow_buf_free
978 #define	sd_print_transport_rejected_message	\
979 					ssd_print_transport_rejected_message
980 #define	sd_retry_command		ssd_retry_command
981 #define	sd_set_retry_bp			ssd_set_retry_bp
982 #define	sd_send_request_sense_command	ssd_send_request_sense_command
983 #define	sd_start_retry_command		ssd_start_retry_command
984 #define	sd_start_direct_priority_command	\
985 					ssd_start_direct_priority_command
986 #define	sd_return_failed_command	ssd_return_failed_command
987 #define	sd_return_failed_command_no_restart	\
988 					ssd_return_failed_command_no_restart
989 #define	sd_return_command		ssd_return_command
990 #define	sd_sync_with_callback		ssd_sync_with_callback
991 #define	sdrunout			ssdrunout
992 #define	sd_mark_rqs_busy		ssd_mark_rqs_busy
993 #define	sd_mark_rqs_idle		ssd_mark_rqs_idle
994 #define	sd_reduce_throttle		ssd_reduce_throttle
995 #define	sd_restore_throttle		ssd_restore_throttle
996 #define	sd_print_incomplete_msg		ssd_print_incomplete_msg
997 #define	sd_init_cdb_limits		ssd_init_cdb_limits
998 #define	sd_pkt_status_good		ssd_pkt_status_good
999 #define	sd_pkt_status_check_condition	ssd_pkt_status_check_condition
1000 #define	sd_pkt_status_busy		ssd_pkt_status_busy
1001 #define	sd_pkt_status_reservation_conflict	\
1002 					ssd_pkt_status_reservation_conflict
1003 #define	sd_pkt_status_qfull		ssd_pkt_status_qfull
1004 #define	sd_handle_request_sense		ssd_handle_request_sense
1005 #define	sd_handle_auto_request_sense	ssd_handle_auto_request_sense
1006 #define	sd_print_sense_failed_msg	ssd_print_sense_failed_msg
1007 #define	sd_validate_sense_data		ssd_validate_sense_data
1008 #define	sd_decode_sense			ssd_decode_sense
1009 #define	sd_print_sense_msg		ssd_print_sense_msg
1010 #define	sd_sense_key_no_sense		ssd_sense_key_no_sense
1011 #define	sd_sense_key_recoverable_error	ssd_sense_key_recoverable_error
1012 #define	sd_sense_key_not_ready		ssd_sense_key_not_ready
1013 #define	sd_sense_key_medium_or_hardware_error	\
1014 					ssd_sense_key_medium_or_hardware_error
1015 #define	sd_sense_key_illegal_request	ssd_sense_key_illegal_request
1016 #define	sd_sense_key_unit_attention	ssd_sense_key_unit_attention
1017 #define	sd_sense_key_fail_command	ssd_sense_key_fail_command
1018 #define	sd_sense_key_blank_check	ssd_sense_key_blank_check
1019 #define	sd_sense_key_aborted_command	ssd_sense_key_aborted_command
1020 #define	sd_sense_key_default		ssd_sense_key_default
1021 #define	sd_print_retry_msg		ssd_print_retry_msg
1022 #define	sd_print_cmd_incomplete_msg	ssd_print_cmd_incomplete_msg
1023 #define	sd_pkt_reason_cmd_incomplete	ssd_pkt_reason_cmd_incomplete
1024 #define	sd_pkt_reason_cmd_tran_err	ssd_pkt_reason_cmd_tran_err
1025 #define	sd_pkt_reason_cmd_reset		ssd_pkt_reason_cmd_reset
1026 #define	sd_pkt_reason_cmd_aborted	ssd_pkt_reason_cmd_aborted
1027 #define	sd_pkt_reason_cmd_timeout	ssd_pkt_reason_cmd_timeout
1028 #define	sd_pkt_reason_cmd_unx_bus_free	ssd_pkt_reason_cmd_unx_bus_free
1029 #define	sd_pkt_reason_cmd_tag_reject	ssd_pkt_reason_cmd_tag_reject
1030 #define	sd_pkt_reason_default		ssd_pkt_reason_default
1031 #define	sd_reset_target			ssd_reset_target
1032 #define	sd_start_stop_unit_callback	ssd_start_stop_unit_callback
1033 #define	sd_start_stop_unit_task		ssd_start_stop_unit_task
1034 #define	sd_taskq_create			ssd_taskq_create
1035 #define	sd_taskq_delete			ssd_taskq_delete
1036 #define	sd_target_change_task		ssd_target_change_task
1037 #define	sd_log_dev_status_event		ssd_log_dev_status_event
1038 #define	sd_log_lun_expansion_event	ssd_log_lun_expansion_event
1039 #define	sd_log_eject_request_event	ssd_log_eject_request_event
1040 #define	sd_media_change_task		ssd_media_change_task
1041 #define	sd_handle_mchange		ssd_handle_mchange
1042 #define	sd_send_scsi_DOORLOCK		ssd_send_scsi_DOORLOCK
1043 #define	sd_send_scsi_READ_CAPACITY	ssd_send_scsi_READ_CAPACITY
1044 #define	sd_send_scsi_READ_CAPACITY_16	ssd_send_scsi_READ_CAPACITY_16
1045 #define	sd_send_scsi_GET_CONFIGURATION	ssd_send_scsi_GET_CONFIGURATION
1046 #define	sd_send_scsi_feature_GET_CONFIGURATION	\
1047 					sd_send_scsi_feature_GET_CONFIGURATION
1048 #define	sd_send_scsi_START_STOP_UNIT	ssd_send_scsi_START_STOP_UNIT
1049 #define	sd_send_scsi_INQUIRY		ssd_send_scsi_INQUIRY
1050 #define	sd_send_scsi_TEST_UNIT_READY	ssd_send_scsi_TEST_UNIT_READY
1051 #define	sd_send_scsi_PERSISTENT_RESERVE_IN	\
1052 					ssd_send_scsi_PERSISTENT_RESERVE_IN
1053 #define	sd_send_scsi_PERSISTENT_RESERVE_OUT	\
1054 					ssd_send_scsi_PERSISTENT_RESERVE_OUT
1055 #define	sd_send_scsi_SYNCHRONIZE_CACHE	ssd_send_scsi_SYNCHRONIZE_CACHE
1056 #define	sd_send_scsi_SYNCHRONIZE_CACHE_biodone	\
1057 					ssd_send_scsi_SYNCHRONIZE_CACHE_biodone
1058 #define	sd_send_scsi_MODE_SENSE		ssd_send_scsi_MODE_SENSE
1059 #define	sd_send_scsi_MODE_SELECT	ssd_send_scsi_MODE_SELECT
1060 #define	sd_send_scsi_RDWR		ssd_send_scsi_RDWR
1061 #define	sd_send_scsi_LOG_SENSE		ssd_send_scsi_LOG_SENSE
1062 #define	sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION	\
1063 				ssd_send_scsi_GET_EVENT_STATUS_NOTIFICATION
1064 #define	sd_gesn_media_data_valid	ssd_gesn_media_data_valid
1065 #define	sd_alloc_rqs			ssd_alloc_rqs
1066 #define	sd_free_rqs			ssd_free_rqs
1067 #define	sd_dump_memory			ssd_dump_memory
1068 #define	sd_get_media_info_com		ssd_get_media_info_com
1069 #define	sd_get_media_info		ssd_get_media_info
1070 #define	sd_get_media_info_ext		ssd_get_media_info_ext
1071 #define	sd_dkio_ctrl_info		ssd_dkio_ctrl_info
1072 #define	sd_nvpair_str_decode		ssd_nvpair_str_decode
1073 #define	sd_strtok_r			ssd_strtok_r
1074 #define	sd_set_properties		ssd_set_properties
1075 #define	sd_get_tunables_from_conf	ssd_get_tunables_from_conf
1076 #define	sd_setup_next_xfer		ssd_setup_next_xfer
1077 #define	sd_dkio_get_temp		ssd_dkio_get_temp
1078 #define	sd_check_mhd			ssd_check_mhd
1079 #define	sd_mhd_watch_cb			ssd_mhd_watch_cb
1080 #define	sd_mhd_watch_incomplete		ssd_mhd_watch_incomplete
1081 #define	sd_sname			ssd_sname
1082 #define	sd_mhd_resvd_recover		ssd_mhd_resvd_recover
1083 #define	sd_resv_reclaim_thread		ssd_resv_reclaim_thread
1084 #define	sd_take_ownership		ssd_take_ownership
1085 #define	sd_reserve_release		ssd_reserve_release
1086 #define	sd_rmv_resv_reclaim_req		ssd_rmv_resv_reclaim_req
1087 #define	sd_mhd_reset_notify_cb		ssd_mhd_reset_notify_cb
1088 #define	sd_persistent_reservation_in_read_keys	\
1089 					ssd_persistent_reservation_in_read_keys
1090 #define	sd_persistent_reservation_in_read_resv	\
1091 					ssd_persistent_reservation_in_read_resv
1092 #define	sd_mhdioc_takeown		ssd_mhdioc_takeown
1093 #define	sd_mhdioc_failfast		ssd_mhdioc_failfast
1094 #define	sd_mhdioc_release		ssd_mhdioc_release
1095 #define	sd_mhdioc_register_devid	ssd_mhdioc_register_devid
1096 #define	sd_mhdioc_inkeys		ssd_mhdioc_inkeys
1097 #define	sd_mhdioc_inresv		ssd_mhdioc_inresv
1098 #define	sr_change_blkmode		ssr_change_blkmode
1099 #define	sr_change_speed			ssr_change_speed
1100 #define	sr_atapi_change_speed		ssr_atapi_change_speed
1101 #define	sr_pause_resume			ssr_pause_resume
1102 #define	sr_play_msf			ssr_play_msf
1103 #define	sr_play_trkind			ssr_play_trkind
1104 #define	sr_read_all_subcodes		ssr_read_all_subcodes
1105 #define	sr_read_subchannel		ssr_read_subchannel
1106 #define	sr_read_tocentry		ssr_read_tocentry
1107 #define	sr_read_tochdr			ssr_read_tochdr
1108 #define	sr_read_cdda			ssr_read_cdda
1109 #define	sr_read_cdxa			ssr_read_cdxa
1110 #define	sr_read_mode1			ssr_read_mode1
1111 #define	sr_read_mode2			ssr_read_mode2
1112 #define	sr_read_cd_mode2		ssr_read_cd_mode2
1113 #define	sr_sector_mode			ssr_sector_mode
1114 #define	sr_eject			ssr_eject
1115 #define	sr_ejected			ssr_ejected
1116 #define	sr_check_wp			ssr_check_wp
1117 #define	sd_watch_request_submit		ssd_watch_request_submit
1118 #define	sd_check_media			ssd_check_media
1119 #define	sd_media_watch_cb		ssd_media_watch_cb
1120 #define	sd_delayed_cv_broadcast		ssd_delayed_cv_broadcast
1121 #define	sr_volume_ctrl			ssr_volume_ctrl
1122 #define	sr_read_sony_session_offset	ssr_read_sony_session_offset
1123 #define	sd_log_page_supported		ssd_log_page_supported
1124 #define	sd_check_for_writable_cd	ssd_check_for_writable_cd
1125 #define	sd_wm_cache_constructor		ssd_wm_cache_constructor
1126 #define	sd_wm_cache_destructor		ssd_wm_cache_destructor
1127 #define	sd_range_lock			ssd_range_lock
1128 #define	sd_get_range			ssd_get_range
1129 #define	sd_free_inlist_wmap		ssd_free_inlist_wmap
1130 #define	sd_range_unlock			ssd_range_unlock
1131 #define	sd_read_modify_write_task	ssd_read_modify_write_task
1132 #define	sddump_do_read_of_rmw		ssddump_do_read_of_rmw
1133 
1134 #define	sd_iostart_chain		ssd_iostart_chain
1135 #define	sd_iodone_chain			ssd_iodone_chain
1136 #define	sd_initpkt_map			ssd_initpkt_map
1137 #define	sd_destroypkt_map		ssd_destroypkt_map
1138 #define	sd_chain_type_map		ssd_chain_type_map
1139 #define	sd_chain_index_map		ssd_chain_index_map
1140 
1141 #define	sd_failfast_flushctl		ssd_failfast_flushctl
1142 #define	sd_failfast_flushq		ssd_failfast_flushq
1143 #define	sd_failfast_flushq_callback	ssd_failfast_flushq_callback
1144 
1145 #define	sd_is_lsi			ssd_is_lsi
1146 #define	sd_tg_rdwr			ssd_tg_rdwr
1147 #define	sd_tg_getinfo			ssd_tg_getinfo
1148 #define	sd_rmw_msg_print_handler	ssd_rmw_msg_print_handler
1149 
1150 #endif	/* #if (defined(__fibre)) */
1151 
1152 
1153 int _init(void);
1154 int _fini(void);
1155 int _info(struct modinfo *modinfop);
1156 
1157 /*PRINTFLIKE3*/
1158 static void sd_log_trace(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1159 /*PRINTFLIKE3*/
1160 static void sd_log_info(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1161 /*PRINTFLIKE3*/
1162 static void sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...);
1163 
1164 static int sdprobe(dev_info_t *devi);
1165 static int sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1166     void **result);
1167 static int sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
1168     int mod_flags, char *name, caddr_t valuep, int *lengthp);
1169 
1170 /*
1171  * Smart probe for parallel scsi
1172  */
1173 static void sd_scsi_probe_cache_init(void);
1174 static void sd_scsi_probe_cache_fini(void);
1175 static void sd_scsi_clear_probe_cache(void);
1176 static int  sd_scsi_probe_with_cache(struct scsi_device *devp, int (*fn)());
1177 
1178 /*
1179  * Attached luns on target for parallel scsi
1180  */
1181 static void sd_scsi_target_lun_init(void);
1182 static void sd_scsi_target_lun_fini(void);
1183 static int  sd_scsi_get_target_lun_count(dev_info_t *dip, int target);
1184 static void sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag);
1185 
1186 static int	sd_spin_up_unit(sd_ssc_t *ssc);
1187 
1188 /*
1189  * Using sd_ssc_init to establish sd_ssc_t struct
1190  * Using sd_ssc_send to send uscsi internal command
1191  * Using sd_ssc_fini to free sd_ssc_t struct
1192  */
1193 static sd_ssc_t *sd_ssc_init(struct sd_lun *un);
1194 static int sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd,
1195     int flag, enum uio_seg dataspace, int path_flag);
1196 static void sd_ssc_fini(sd_ssc_t *ssc);
1197 
1198 /*
1199  * Using sd_ssc_assessment to set correct type-of-assessment
1200  * Using sd_ssc_post to post ereport & system log
1201  *       sd_ssc_post will call sd_ssc_print to print system log
1202  *       sd_ssc_post will call sd_ssd_ereport_post to post ereport
1203  */
1204 static void sd_ssc_assessment(sd_ssc_t *ssc,
1205     enum sd_type_assessment tp_assess);
1206 
1207 static void sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess);
1208 static void sd_ssc_print(sd_ssc_t *ssc, int sd_severity);
1209 static void sd_ssc_ereport_post(sd_ssc_t *ssc,
1210     enum sd_driver_assessment drv_assess);
1211 
1212 /*
1213  * Using sd_ssc_set_info to mark an un-decodable-data error.
1214  * Using sd_ssc_extract_info to transfer information from internal
1215  *       data structures to sd_ssc_t.
1216  */
1217 static void sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp,
1218     const char *fmt, ...);
1219 static void sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un,
1220     struct scsi_pkt *pktp, struct buf *bp, struct sd_xbuf *xp);
1221 
1222 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1223     enum uio_seg dataspace, int path_flag);
1224 
1225 #ifdef _LP64
1226 static void	sd_enable_descr_sense(sd_ssc_t *ssc);
1227 static void	sd_reenable_dsense_task(void *arg);
1228 #endif /* _LP64 */
1229 
1230 static void	sd_set_mmc_caps(sd_ssc_t *ssc);
1231 
1232 static void sd_read_unit_properties(struct sd_lun *un);
1233 static int  sd_process_sdconf_file(struct sd_lun *un);
1234 static void sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str);
1235 static char *sd_strtok_r(char *string, const char *sepset, char **lasts);
1236 static void sd_set_properties(struct sd_lun *un, char *name, char *value);
1237 static void sd_get_tunables_from_conf(struct sd_lun *un, int flags,
1238     int *data_list, sd_tunables *values);
1239 static void sd_process_sdconf_table(struct sd_lun *un);
1240 static int  sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen);
1241 static int  sd_blank_cmp(struct sd_lun *un, char *id, int idlen);
1242 static int  sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
1243 	int list_len, char *dataname_ptr);
1244 static void sd_set_vers1_properties(struct sd_lun *un, int flags,
1245     sd_tunables *prop_list);
1246 
1247 static void sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi,
1248     int reservation_flag);
1249 static int  sd_get_devid(sd_ssc_t *ssc);
1250 static ddi_devid_t sd_create_devid(sd_ssc_t *ssc);
1251 static int  sd_write_deviceid(sd_ssc_t *ssc);
1252 static int  sd_get_devid_page(struct sd_lun *un, uchar_t *wwn, int *len);
1253 static int  sd_check_vpd_page_support(sd_ssc_t *ssc);
1254 
1255 static void sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi);
1256 static void sd_create_pm_components(dev_info_t *devi, struct sd_lun *un);
1257 
1258 static int  sd_ddi_suspend(dev_info_t *devi);
1259 static int  sd_ddi_resume(dev_info_t *devi);
1260 static int  sd_pm_state_change(struct sd_lun *un, int level, int flag);
1261 static int  sdpower(dev_info_t *devi, int component, int level);
1262 
1263 static int  sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd);
1264 static int  sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd);
1265 static int  sd_unit_attach(dev_info_t *devi);
1266 static int  sd_unit_detach(dev_info_t *devi);
1267 
1268 static void sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi);
1269 static void sd_create_errstats(struct sd_lun *un, int instance);
1270 static void sd_set_errstats(struct sd_lun *un);
1271 static void sd_set_pstats(struct sd_lun *un);
1272 
1273 static int  sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
1274 static int  sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pkt);
1275 static int  sd_send_polled_RQS(struct sd_lun *un);
1276 static int  sd_ddi_scsi_poll(struct scsi_pkt *pkt);
1277 
1278 #if (defined(__fibre))
1279 /*
1280  * Event callbacks (photon)
1281  */
1282 static void sd_init_event_callbacks(struct sd_lun *un);
1283 static void  sd_event_callback(dev_info_t *, ddi_eventcookie_t, void *, void *);
1284 #endif
1285 
1286 /*
1287  * Defines for sd_cache_control
1288  */
1289 
1290 #define	SD_CACHE_ENABLE		1
1291 #define	SD_CACHE_DISABLE	0
1292 #define	SD_CACHE_NOCHANGE	-1
1293 
1294 static int   sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag);
1295 static int   sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled);
1296 static void  sd_get_nv_sup(sd_ssc_t *ssc);
1297 static dev_t sd_make_device(dev_info_t *devi);
1298 static void  sd_check_solid_state(sd_ssc_t *ssc);
1299 static void  sd_check_emulation_mode(sd_ssc_t *ssc);
1300 static void  sd_update_block_info(struct sd_lun *un, uint32_t lbasize,
1301 	uint64_t capacity);
1302 
1303 /*
1304  * Driver entry point functions.
1305  */
1306 static int  sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p);
1307 static int  sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p);
1308 static int  sd_ready_and_valid(sd_ssc_t *ssc, int part);
1309 
1310 static void sdmin(struct buf *bp);
1311 static int sdread(dev_t dev, struct uio *uio, cred_t *cred_p);
1312 static int sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p);
1313 static int sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1314 static int sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p);
1315 
1316 static int sdstrategy(struct buf *bp);
1317 static int sdioctl(dev_t, int, intptr_t, int, cred_t *, int *);
1318 
1319 /*
1320  * Function prototypes for layering functions in the iostart chain.
1321  */
1322 static void sd_mapblockaddr_iostart(int index, struct sd_lun *un,
1323 	struct buf *bp);
1324 static void sd_mapblocksize_iostart(int index, struct sd_lun *un,
1325 	struct buf *bp);
1326 static void sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp);
1327 static void sd_checksum_uscsi_iostart(int index, struct sd_lun *un,
1328 	struct buf *bp);
1329 static void sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp);
1330 static void sd_core_iostart(int index, struct sd_lun *un, struct buf *bp);
1331 
1332 /*
1333  * Function prototypes for layering functions in the iodone chain.
1334  */
1335 static void sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp);
1336 static void sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp);
1337 static void sd_mapblockaddr_iodone(int index, struct sd_lun *un,
1338 	struct buf *bp);
1339 static void sd_mapblocksize_iodone(int index, struct sd_lun *un,
1340 	struct buf *bp);
1341 static void sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp);
1342 static void sd_checksum_uscsi_iodone(int index, struct sd_lun *un,
1343 	struct buf *bp);
1344 static void sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp);
1345 
1346 /*
1347  * Prototypes for functions to support buf(9S) based IO.
1348  */
1349 static void sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg);
1350 static int sd_initpkt_for_buf(struct buf *, struct scsi_pkt **);
1351 static void sd_destroypkt_for_buf(struct buf *);
1352 static int sd_setup_rw_pkt(struct sd_lun *un, struct scsi_pkt **pktpp,
1353 	struct buf *bp, int flags,
1354 	int (*callback)(caddr_t), caddr_t callback_arg,
1355 	diskaddr_t lba, uint32_t blockcount);
1356 static int sd_setup_next_rw_pkt(struct sd_lun *un, struct scsi_pkt *pktp,
1357 	struct buf *bp, diskaddr_t lba, uint32_t blockcount);
1358 
1359 /*
1360  * Prototypes for functions to support USCSI IO.
1361  */
1362 static int sd_uscsi_strategy(struct buf *bp);
1363 static int sd_initpkt_for_uscsi(struct buf *, struct scsi_pkt **);
1364 static void sd_destroypkt_for_uscsi(struct buf *);
1365 
1366 static void sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
1367 	uchar_t chain_type, void *pktinfop);
1368 
1369 static int  sd_pm_entry(struct sd_lun *un);
1370 static void sd_pm_exit(struct sd_lun *un);
1371 
1372 static void sd_pm_idletimeout_handler(void *arg);
1373 
1374 /*
1375  * sd_core internal functions (used at the sd_core_io layer).
1376  */
1377 static void sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp);
1378 static void sdintr(struct scsi_pkt *pktp);
1379 static void sd_start_cmds(struct sd_lun *un, struct buf *immed_bp);
1380 
1381 static int sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
1382 	enum uio_seg dataspace, int path_flag);
1383 
1384 static struct buf *sd_bioclone_alloc(struct buf *bp, size_t datalen,
1385 	daddr_t blkno, int (*func)(struct buf *));
1386 static struct buf *sd_shadow_buf_alloc(struct buf *bp, size_t datalen,
1387 	uint_t bflags, daddr_t blkno, int (*func)(struct buf *));
1388 static void sd_bioclone_free(struct buf *bp);
1389 static void sd_shadow_buf_free(struct buf *bp);
1390 
1391 static void sd_print_transport_rejected_message(struct sd_lun *un,
1392 	struct sd_xbuf *xp, int code);
1393 static void sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp,
1394     void *arg, int code);
1395 static void sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp,
1396     void *arg, int code);
1397 static void sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp,
1398     void *arg, int code);
1399 
1400 static void sd_retry_command(struct sd_lun *un, struct buf *bp,
1401 	int retry_check_flag,
1402 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp,
1403 		int c),
1404 	void *user_arg, int failure_code,  clock_t retry_delay,
1405 	void (*statp)(kstat_io_t *));
1406 
1407 static void sd_set_retry_bp(struct sd_lun *un, struct buf *bp,
1408 	clock_t retry_delay, void (*statp)(kstat_io_t *));
1409 
1410 static void sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
1411 	struct scsi_pkt *pktp);
1412 static void sd_start_retry_command(void *arg);
1413 static void sd_start_direct_priority_command(void *arg);
1414 static void sd_return_failed_command(struct sd_lun *un, struct buf *bp,
1415 	int errcode);
1416 static void sd_return_failed_command_no_restart(struct sd_lun *un,
1417 	struct buf *bp, int errcode);
1418 static void sd_return_command(struct sd_lun *un, struct buf *bp);
1419 static void sd_sync_with_callback(struct sd_lun *un);
1420 static int sdrunout(caddr_t arg);
1421 
1422 static void sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp);
1423 static struct buf *sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *xp);
1424 
1425 static void sd_reduce_throttle(struct sd_lun *un, int throttle_type);
1426 static void sd_restore_throttle(void *arg);
1427 
1428 static void sd_init_cdb_limits(struct sd_lun *un);
1429 
1430 static void sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
1431 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1432 
1433 /*
1434  * Error handling functions
1435  */
1436 static void sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
1437 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1438 static void sd_pkt_status_busy(struct sd_lun *un, struct buf *bp,
1439 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1440 static void sd_pkt_status_reservation_conflict(struct sd_lun *un,
1441 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1442 static void sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
1443 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1444 
1445 static void sd_handle_request_sense(struct sd_lun *un, struct buf *bp,
1446 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1447 static void sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
1448 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1449 static int sd_validate_sense_data(struct sd_lun *un, struct buf *bp,
1450 	struct sd_xbuf *xp, size_t actual_len);
1451 static void sd_decode_sense(struct sd_lun *un, struct buf *bp,
1452 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1453 
1454 static void sd_print_sense_msg(struct sd_lun *un, struct buf *bp,
1455 	void *arg, int code);
1456 
1457 static void sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
1458 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1459 static void sd_sense_key_recoverable_error(struct sd_lun *un,
1460 	uint8_t *sense_datap,
1461 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1462 static void sd_sense_key_not_ready(struct sd_lun *un,
1463 	uint8_t *sense_datap,
1464 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1465 static void sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
1466 	uint8_t *sense_datap,
1467 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1468 static void sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
1469 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1470 static void sd_sense_key_unit_attention(struct sd_lun *un,
1471 	uint8_t *sense_datap,
1472 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1473 static void sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
1474 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1475 static void sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
1476 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1477 static void sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
1478 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1479 static void sd_sense_key_default(struct sd_lun *un,
1480 	uint8_t *sense_datap,
1481 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp);
1482 
1483 static void sd_print_retry_msg(struct sd_lun *un, struct buf *bp,
1484 	void *arg, int flag);
1485 
1486 static void sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
1487 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1488 static void sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
1489 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1490 static void sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
1491 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1492 static void sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
1493 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1494 static void sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
1495 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1496 static void sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
1497 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1498 static void sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
1499 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1500 static void sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
1501 	struct sd_xbuf *xp, struct scsi_pkt *pktp);
1502 
1503 static void sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp);
1504 
1505 static void sd_start_stop_unit_callback(void *arg);
1506 static void sd_start_stop_unit_task(void *arg);
1507 
1508 static void sd_taskq_create(void);
1509 static void sd_taskq_delete(void);
1510 static void sd_target_change_task(void *arg);
1511 static void sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag);
1512 static void sd_log_lun_expansion_event(struct sd_lun *un, int km_flag);
1513 static void sd_log_eject_request_event(struct sd_lun *un, int km_flag);
1514 static void sd_media_change_task(void *arg);
1515 
1516 static int sd_handle_mchange(struct sd_lun *un);
1517 static int sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag);
1518 static int sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp,
1519 	uint32_t *lbap, int path_flag);
1520 static int sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
1521 	uint32_t *lbap, uint32_t *psp, int path_flag);
1522 static int sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag,
1523 	int flag, int path_flag);
1524 static int sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr,
1525 	size_t buflen, uchar_t evpd, uchar_t page_code, size_t *residp);
1526 static int sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag);
1527 static int sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc,
1528 	uchar_t usr_cmd, uint16_t data_len, uchar_t *data_bufp);
1529 static int sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc,
1530 	uchar_t usr_cmd, uchar_t *usr_bufp);
1531 static int sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un,
1532 	struct dk_callback *dkc);
1533 static int sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp);
1534 static int sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc,
1535 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1536 	uchar_t *bufaddr, uint_t buflen, int path_flag);
1537 static int sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
1538 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
1539 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag);
1540 static int sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize,
1541 	uchar_t *bufaddr, size_t buflen, uchar_t page_code, int path_flag);
1542 static int sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize,
1543 	uchar_t *bufaddr, size_t buflen, uchar_t save_page, int path_flag);
1544 static int sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
1545 	size_t buflen, daddr_t start_block, int path_flag);
1546 #define	sd_send_scsi_READ(ssc, bufaddr, buflen, start_block, path_flag)	\
1547 	sd_send_scsi_RDWR(ssc, SCMD_READ, bufaddr, buflen, start_block, \
1548 	path_flag)
1549 #define	sd_send_scsi_WRITE(ssc, bufaddr, buflen, start_block, path_flag)\
1550 	sd_send_scsi_RDWR(ssc, SCMD_WRITE, bufaddr, buflen, start_block,\
1551 	path_flag)
1552 
1553 static int sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr,
1554 	uint16_t buflen, uchar_t page_code, uchar_t page_control,
1555 	uint16_t param_ptr, int path_flag);
1556 static int sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc,
1557 	uchar_t *bufaddr, size_t buflen, uchar_t class_req);
1558 static boolean_t sd_gesn_media_data_valid(uchar_t *data);
1559 
1560 static int  sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un);
1561 static void sd_free_rqs(struct sd_lun *un);
1562 
1563 static void sd_dump_memory(struct sd_lun *un, uint_t comp, char *title,
1564 	uchar_t *data, int len, int fmt);
1565 static void sd_panic_for_res_conflict(struct sd_lun *un);
1566 
1567 /*
1568  * Disk Ioctl Function Prototypes
1569  */
1570 static int sd_get_media_info(dev_t dev, caddr_t arg, int flag);
1571 static int sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag);
1572 static int sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag);
1573 static int sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag);
1574 
1575 /*
1576  * Multi-host Ioctl Prototypes
1577  */
1578 static int sd_check_mhd(dev_t dev, int interval);
1579 static int sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1580 static void sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt);
1581 static char *sd_sname(uchar_t status);
1582 static void sd_mhd_resvd_recover(void *arg);
1583 static void sd_resv_reclaim_thread();
1584 static int sd_take_ownership(dev_t dev, struct mhioctkown *p);
1585 static int sd_reserve_release(dev_t dev, int cmd);
1586 static void sd_rmv_resv_reclaim_req(dev_t dev);
1587 static void sd_mhd_reset_notify_cb(caddr_t arg);
1588 static int sd_persistent_reservation_in_read_keys(struct sd_lun *un,
1589 	mhioc_inkeys_t *usrp, int flag);
1590 static int sd_persistent_reservation_in_read_resv(struct sd_lun *un,
1591 	mhioc_inresvs_t *usrp, int flag);
1592 static int sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag);
1593 static int sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag);
1594 static int sd_mhdioc_release(dev_t dev);
1595 static int sd_mhdioc_register_devid(dev_t dev);
1596 static int sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag);
1597 static int sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag);
1598 
1599 /*
1600  * SCSI removable prototypes
1601  */
1602 static int sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag);
1603 static int sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1604 static int sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag);
1605 static int sr_pause_resume(dev_t dev, int mode);
1606 static int sr_play_msf(dev_t dev, caddr_t data, int flag);
1607 static int sr_play_trkind(dev_t dev, caddr_t data, int flag);
1608 static int sr_read_all_subcodes(dev_t dev, caddr_t data, int flag);
1609 static int sr_read_subchannel(dev_t dev, caddr_t data, int flag);
1610 static int sr_read_tocentry(dev_t dev, caddr_t data, int flag);
1611 static int sr_read_tochdr(dev_t dev, caddr_t data, int flag);
1612 static int sr_read_cdda(dev_t dev, caddr_t data, int flag);
1613 static int sr_read_cdxa(dev_t dev, caddr_t data, int flag);
1614 static int sr_read_mode1(dev_t dev, caddr_t data, int flag);
1615 static int sr_read_mode2(dev_t dev, caddr_t data, int flag);
1616 static int sr_read_cd_mode2(dev_t dev, caddr_t data, int flag);
1617 static int sr_sector_mode(dev_t dev, uint32_t blksize);
1618 static int sr_eject(dev_t dev);
1619 static void sr_ejected(register struct sd_lun *un);
1620 static int sr_check_wp(dev_t dev);
1621 static opaque_t sd_watch_request_submit(struct sd_lun *un);
1622 static int sd_check_media(dev_t dev, enum dkio_state state);
1623 static int sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp);
1624 static void sd_delayed_cv_broadcast(void *arg);
1625 static int sr_volume_ctrl(dev_t dev, caddr_t data, int flag);
1626 static int sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag);
1627 
1628 static int sd_log_page_supported(sd_ssc_t *ssc, int log_page);
1629 
1630 /*
1631  * Function Prototype for the non-512 support (DVDRAM, MO etc.) functions.
1632  */
1633 static void sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag);
1634 static int sd_wm_cache_constructor(void *wm, void *un, int flags);
1635 static void sd_wm_cache_destructor(void *wm, void *un);
1636 static struct sd_w_map *sd_range_lock(struct sd_lun *un, daddr_t startb,
1637 	daddr_t endb, ushort_t typ);
1638 static struct sd_w_map *sd_get_range(struct sd_lun *un, daddr_t startb,
1639 	daddr_t endb);
1640 static void sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp);
1641 static void sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm);
1642 static void sd_read_modify_write_task(void * arg);
1643 static int
1644 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
1645 	struct buf **bpp);
1646 
1647 
1648 /*
1649  * Function prototypes for failfast support.
1650  */
1651 static void sd_failfast_flushq(struct sd_lun *un);
1652 static int sd_failfast_flushq_callback(struct buf *bp);
1653 
1654 /*
1655  * Function prototypes to check for lsi devices
1656  */
1657 static void sd_is_lsi(struct sd_lun *un);
1658 
1659 /*
1660  * Function prototypes for partial DMA support
1661  */
1662 static int sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
1663 		struct scsi_pkt *pkt, struct sd_xbuf *xp);
1664 
1665 
1666 /* Function prototypes for cmlb */
1667 static int sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
1668     diskaddr_t start_block, size_t reqlength, void *tg_cookie);
1669 
1670 static int sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie);
1671 
1672 /*
1673  * For printing RMW warning message timely
1674  */
1675 static void sd_rmw_msg_print_handler(void *arg);
1676 
1677 /*
1678  * Constants for failfast support:
1679  *
1680  * SD_FAILFAST_INACTIVE: Instance is currently in a normal state, with NO
1681  * failfast processing being performed.
1682  *
1683  * SD_FAILFAST_ACTIVE: Instance is in the failfast state and is performing
1684  * failfast processing on all bufs with B_FAILFAST set.
1685  */
1686 
1687 #define	SD_FAILFAST_INACTIVE		0
1688 #define	SD_FAILFAST_ACTIVE		1
1689 
1690 /*
1691  * Bitmask to control behavior of buf(9S) flushes when a transition to
1692  * the failfast state occurs. Optional bits include:
1693  *
1694  * SD_FAILFAST_FLUSH_ALL_BUFS: When set, flush ALL bufs including those that
1695  * do NOT have B_FAILFAST set. When clear, only bufs with B_FAILFAST will
1696  * be flushed.
1697  *
1698  * SD_FAILFAST_FLUSH_ALL_QUEUES: When set, flush any/all other queues in the
1699  * driver, in addition to the regular wait queue. This includes the xbuf
1700  * queues. When clear, only the driver's wait queue will be flushed.
1701  */
1702 #define	SD_FAILFAST_FLUSH_ALL_BUFS	0x01
1703 #define	SD_FAILFAST_FLUSH_ALL_QUEUES	0x02
1704 
1705 /*
1706  * The default behavior is to only flush bufs that have B_FAILFAST set, but
1707  * to flush all queues within the driver.
1708  */
1709 static int sd_failfast_flushctl = SD_FAILFAST_FLUSH_ALL_QUEUES;
1710 
1711 
1712 /*
1713  * SD Testing Fault Injection
1714  */
1715 #ifdef SD_FAULT_INJECTION
1716 static void sd_faultinjection_ioctl(int cmd, intptr_t arg, struct sd_lun *un);
1717 static void sd_faultinjection(struct scsi_pkt *pktp);
1718 static void sd_injection_log(char *buf, struct sd_lun *un);
1719 #endif
1720 
1721 /*
1722  * Device driver ops vector
1723  */
1724 static struct cb_ops sd_cb_ops = {
1725 	sdopen,			/* open */
1726 	sdclose,		/* close */
1727 	sdstrategy,		/* strategy */
1728 	nodev,			/* print */
1729 	sddump,			/* dump */
1730 	sdread,			/* read */
1731 	sdwrite,		/* write */
1732 	sdioctl,		/* ioctl */
1733 	nodev,			/* devmap */
1734 	nodev,			/* mmap */
1735 	nodev,			/* segmap */
1736 	nochpoll,		/* poll */
1737 	sd_prop_op,		/* cb_prop_op */
1738 	0,			/* streamtab  */
1739 	D_64BIT | D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flags */
1740 	CB_REV,			/* cb_rev */
1741 	sdaread, 		/* async I/O read entry point */
1742 	sdawrite		/* async I/O write entry point */
1743 };
1744 
1745 struct dev_ops sd_ops = {
1746 	DEVO_REV,		/* devo_rev, */
1747 	0,			/* refcnt  */
1748 	sdinfo,			/* info */
1749 	nulldev,		/* identify */
1750 	sdprobe,		/* probe */
1751 	sdattach,		/* attach */
1752 	sddetach,		/* detach */
1753 	nodev,			/* reset */
1754 	&sd_cb_ops,		/* driver operations */
1755 	NULL,			/* bus operations */
1756 	sdpower,		/* power */
1757 	ddi_quiesce_not_needed,		/* quiesce */
1758 };
1759 
1760 /*
1761  * This is the loadable module wrapper.
1762  */
1763 #include <sys/modctl.h>
1764 
1765 #ifndef XPV_HVM_DRIVER
1766 static struct modldrv modldrv = {
1767 	&mod_driverops,		/* Type of module. This one is a driver */
1768 	SD_MODULE_NAME,		/* Module name. */
1769 	&sd_ops			/* driver ops */
1770 };
1771 
1772 static struct modlinkage modlinkage = {
1773 	MODREV_1, &modldrv, NULL
1774 };
1775 
1776 #else /* XPV_HVM_DRIVER */
1777 static struct modlmisc modlmisc = {
1778 	&mod_miscops,		/* Type of module. This one is a misc */
1779 	"HVM " SD_MODULE_NAME,		/* Module name. */
1780 };
1781 
1782 static struct modlinkage modlinkage = {
1783 	MODREV_1, &modlmisc, NULL
1784 };
1785 
1786 #endif /* XPV_HVM_DRIVER */
1787 
1788 static cmlb_tg_ops_t sd_tgops = {
1789 	TG_DK_OPS_VERSION_1,
1790 	sd_tg_rdwr,
1791 	sd_tg_getinfo
1792 };
1793 
1794 static struct scsi_asq_key_strings sd_additional_codes[] = {
1795 	0x81, 0, "Logical Unit is Reserved",
1796 	0x85, 0, "Audio Address Not Valid",
1797 	0xb6, 0, "Media Load Mechanism Failed",
1798 	0xB9, 0, "Audio Play Operation Aborted",
1799 	0xbf, 0, "Buffer Overflow for Read All Subcodes Command",
1800 	0x53, 2, "Medium removal prevented",
1801 	0x6f, 0, "Authentication failed during key exchange",
1802 	0x6f, 1, "Key not present",
1803 	0x6f, 2, "Key not established",
1804 	0x6f, 3, "Read without proper authentication",
1805 	0x6f, 4, "Mismatched region to this logical unit",
1806 	0x6f, 5, "Region reset count error",
1807 	0xffff, 0x0, NULL
1808 };
1809 
1810 
1811 /*
1812  * Struct for passing printing information for sense data messages
1813  */
1814 struct sd_sense_info {
1815 	int	ssi_severity;
1816 	int	ssi_pfa_flag;
1817 };
1818 
1819 /*
1820  * Table of function pointers for iostart-side routines. Separate "chains"
1821  * of layered function calls are formed by placing the function pointers
1822  * sequentially in the desired order. Functions are called according to an
1823  * incrementing table index ordering. The last function in each chain must
1824  * be sd_core_iostart(). The corresponding iodone-side routines are expected
1825  * in the sd_iodone_chain[] array.
1826  *
1827  * Note: It may seem more natural to organize both the iostart and iodone
1828  * functions together, into an array of structures (or some similar
1829  * organization) with a common index, rather than two separate arrays which
1830  * must be maintained in synchronization. The purpose of this division is
1831  * to achieve improved performance: individual arrays allows for more
1832  * effective cache line utilization on certain platforms.
1833  */
1834 
1835 typedef void (*sd_chain_t)(int index, struct sd_lun *un, struct buf *bp);
1836 
1837 
1838 static sd_chain_t sd_iostart_chain[] = {
1839 
1840 	/* Chain for buf IO for disk drive targets (PM enabled) */
1841 	sd_mapblockaddr_iostart,	/* Index: 0 */
1842 	sd_pm_iostart,			/* Index: 1 */
1843 	sd_core_iostart,		/* Index: 2 */
1844 
1845 	/* Chain for buf IO for disk drive targets (PM disabled) */
1846 	sd_mapblockaddr_iostart,	/* Index: 3 */
1847 	sd_core_iostart,		/* Index: 4 */
1848 
1849 	/*
1850 	 * Chain for buf IO for removable-media or large sector size
1851 	 * disk drive targets with RMW needed (PM enabled)
1852 	 */
1853 	sd_mapblockaddr_iostart,	/* Index: 5 */
1854 	sd_mapblocksize_iostart,	/* Index: 6 */
1855 	sd_pm_iostart,			/* Index: 7 */
1856 	sd_core_iostart,		/* Index: 8 */
1857 
1858 	/*
1859 	 * Chain for buf IO for removable-media or large sector size
1860 	 * disk drive targets with RMW needed (PM disabled)
1861 	 */
1862 	sd_mapblockaddr_iostart,	/* Index: 9 */
1863 	sd_mapblocksize_iostart,	/* Index: 10 */
1864 	sd_core_iostart,		/* Index: 11 */
1865 
1866 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1867 	sd_mapblockaddr_iostart,	/* Index: 12 */
1868 	sd_checksum_iostart,		/* Index: 13 */
1869 	sd_pm_iostart,			/* Index: 14 */
1870 	sd_core_iostart,		/* Index: 15 */
1871 
1872 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1873 	sd_mapblockaddr_iostart,	/* Index: 16 */
1874 	sd_checksum_iostart,		/* Index: 17 */
1875 	sd_core_iostart,		/* Index: 18 */
1876 
1877 	/* Chain for USCSI commands (all targets) */
1878 	sd_pm_iostart,			/* Index: 19 */
1879 	sd_core_iostart,		/* Index: 20 */
1880 
1881 	/* Chain for checksumming USCSI commands (all targets) */
1882 	sd_checksum_uscsi_iostart,	/* Index: 21 */
1883 	sd_pm_iostart,			/* Index: 22 */
1884 	sd_core_iostart,		/* Index: 23 */
1885 
1886 	/* Chain for "direct" USCSI commands (all targets) */
1887 	sd_core_iostart,		/* Index: 24 */
1888 
1889 	/* Chain for "direct priority" USCSI commands (all targets) */
1890 	sd_core_iostart,		/* Index: 25 */
1891 
1892 	/*
1893 	 * Chain for buf IO for large sector size disk drive targets
1894 	 * with RMW needed with checksumming (PM enabled)
1895 	 */
1896 	sd_mapblockaddr_iostart,	/* Index: 26 */
1897 	sd_mapblocksize_iostart,	/* Index: 27 */
1898 	sd_checksum_iostart,		/* Index: 28 */
1899 	sd_pm_iostart,			/* Index: 29 */
1900 	sd_core_iostart,		/* Index: 30 */
1901 
1902 	/*
1903 	 * Chain for buf IO for large sector size disk drive targets
1904 	 * with RMW needed with checksumming (PM disabled)
1905 	 */
1906 	sd_mapblockaddr_iostart,	/* Index: 31 */
1907 	sd_mapblocksize_iostart,	/* Index: 32 */
1908 	sd_checksum_iostart,		/* Index: 33 */
1909 	sd_core_iostart,		/* Index: 34 */
1910 
1911 };
1912 
1913 /*
1914  * Macros to locate the first function of each iostart chain in the
1915  * sd_iostart_chain[] array. These are located by the index in the array.
1916  */
1917 #define	SD_CHAIN_DISK_IOSTART			0
1918 #define	SD_CHAIN_DISK_IOSTART_NO_PM		3
1919 #define	SD_CHAIN_MSS_DISK_IOSTART		5
1920 #define	SD_CHAIN_RMMEDIA_IOSTART		5
1921 #define	SD_CHAIN_MSS_DISK_IOSTART_NO_PM		9
1922 #define	SD_CHAIN_RMMEDIA_IOSTART_NO_PM		9
1923 #define	SD_CHAIN_CHKSUM_IOSTART			12
1924 #define	SD_CHAIN_CHKSUM_IOSTART_NO_PM		16
1925 #define	SD_CHAIN_USCSI_CMD_IOSTART		19
1926 #define	SD_CHAIN_USCSI_CHKSUM_IOSTART		21
1927 #define	SD_CHAIN_DIRECT_CMD_IOSTART		24
1928 #define	SD_CHAIN_PRIORITY_CMD_IOSTART		25
1929 #define	SD_CHAIN_MSS_CHKSUM_IOSTART		26
1930 #define	SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM	31
1931 
1932 
1933 /*
1934  * Table of function pointers for the iodone-side routines for the driver-
1935  * internal layering mechanism.  The calling sequence for iodone routines
1936  * uses a decrementing table index, so the last routine called in a chain
1937  * must be at the lowest array index location for that chain.  The last
1938  * routine for each chain must be either sd_buf_iodone() (for buf(9S) IOs)
1939  * or sd_uscsi_iodone() (for uscsi IOs).  Other than this, the ordering
1940  * of the functions in an iodone side chain must correspond to the ordering
1941  * of the iostart routines for that chain.  Note that there is no iodone
1942  * side routine that corresponds to sd_core_iostart(), so there is no
1943  * entry in the table for this.
1944  */
1945 
1946 static sd_chain_t sd_iodone_chain[] = {
1947 
1948 	/* Chain for buf IO for disk drive targets (PM enabled) */
1949 	sd_buf_iodone,			/* Index: 0 */
1950 	sd_mapblockaddr_iodone,		/* Index: 1 */
1951 	sd_pm_iodone,			/* Index: 2 */
1952 
1953 	/* Chain for buf IO for disk drive targets (PM disabled) */
1954 	sd_buf_iodone,			/* Index: 3 */
1955 	sd_mapblockaddr_iodone,		/* Index: 4 */
1956 
1957 	/*
1958 	 * Chain for buf IO for removable-media or large sector size
1959 	 * disk drive targets with RMW needed (PM enabled)
1960 	 */
1961 	sd_buf_iodone,			/* Index: 5 */
1962 	sd_mapblockaddr_iodone,		/* Index: 6 */
1963 	sd_mapblocksize_iodone,		/* Index: 7 */
1964 	sd_pm_iodone,			/* Index: 8 */
1965 
1966 	/*
1967 	 * Chain for buf IO for removable-media or large sector size
1968 	 * disk drive targets with RMW needed (PM disabled)
1969 	 */
1970 	sd_buf_iodone,			/* Index: 9 */
1971 	sd_mapblockaddr_iodone,		/* Index: 10 */
1972 	sd_mapblocksize_iodone,		/* Index: 11 */
1973 
1974 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
1975 	sd_buf_iodone,			/* Index: 12 */
1976 	sd_mapblockaddr_iodone,		/* Index: 13 */
1977 	sd_checksum_iodone,		/* Index: 14 */
1978 	sd_pm_iodone,			/* Index: 15 */
1979 
1980 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
1981 	sd_buf_iodone,			/* Index: 16 */
1982 	sd_mapblockaddr_iodone,		/* Index: 17 */
1983 	sd_checksum_iodone,		/* Index: 18 */
1984 
1985 	/* Chain for USCSI commands (non-checksum targets) */
1986 	sd_uscsi_iodone,		/* Index: 19 */
1987 	sd_pm_iodone,			/* Index: 20 */
1988 
1989 	/* Chain for USCSI commands (checksum targets) */
1990 	sd_uscsi_iodone,		/* Index: 21 */
1991 	sd_checksum_uscsi_iodone,	/* Index: 22 */
1992 	sd_pm_iodone,			/* Index: 22 */
1993 
1994 	/* Chain for "direct" USCSI commands (all targets) */
1995 	sd_uscsi_iodone,		/* Index: 24 */
1996 
1997 	/* Chain for "direct priority" USCSI commands (all targets) */
1998 	sd_uscsi_iodone,		/* Index: 25 */
1999 
2000 	/*
2001 	 * Chain for buf IO for large sector size disk drive targets
2002 	 * with checksumming (PM enabled)
2003 	 */
2004 	sd_buf_iodone,			/* Index: 26 */
2005 	sd_mapblockaddr_iodone,		/* Index: 27 */
2006 	sd_mapblocksize_iodone,		/* Index: 28 */
2007 	sd_checksum_iodone,		/* Index: 29 */
2008 	sd_pm_iodone,			/* Index: 30 */
2009 
2010 	/*
2011 	 * Chain for buf IO for large sector size disk drive targets
2012 	 * with checksumming (PM disabled)
2013 	 */
2014 	sd_buf_iodone,			/* Index: 31 */
2015 	sd_mapblockaddr_iodone,		/* Index: 32 */
2016 	sd_mapblocksize_iodone,		/* Index: 33 */
2017 	sd_checksum_iodone,		/* Index: 34 */
2018 };
2019 
2020 
2021 /*
2022  * Macros to locate the "first" function in the sd_iodone_chain[] array for
2023  * each iodone-side chain. These are located by the array index, but as the
2024  * iodone side functions are called in a decrementing-index order, the
2025  * highest index number in each chain must be specified (as these correspond
2026  * to the first function in the iodone chain that will be called by the core
2027  * at IO completion time).
2028  */
2029 
2030 #define	SD_CHAIN_DISK_IODONE			2
2031 #define	SD_CHAIN_DISK_IODONE_NO_PM		4
2032 #define	SD_CHAIN_RMMEDIA_IODONE			8
2033 #define	SD_CHAIN_MSS_DISK_IODONE		8
2034 #define	SD_CHAIN_RMMEDIA_IODONE_NO_PM		11
2035 #define	SD_CHAIN_MSS_DISK_IODONE_NO_PM		11
2036 #define	SD_CHAIN_CHKSUM_IODONE			15
2037 #define	SD_CHAIN_CHKSUM_IODONE_NO_PM		18
2038 #define	SD_CHAIN_USCSI_CMD_IODONE		20
2039 #define	SD_CHAIN_USCSI_CHKSUM_IODONE		22
2040 #define	SD_CHAIN_DIRECT_CMD_IODONE		24
2041 #define	SD_CHAIN_PRIORITY_CMD_IODONE		25
2042 #define	SD_CHAIN_MSS_CHKSUM_IODONE		30
2043 #define	SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM	34
2044 
2045 
2046 
2047 /*
2048  * Array to map a layering chain index to the appropriate initpkt routine.
2049  * The redundant entries are present so that the index used for accessing
2050  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2051  * with this table as well.
2052  */
2053 typedef int (*sd_initpkt_t)(struct buf *, struct scsi_pkt **);
2054 
2055 static sd_initpkt_t	sd_initpkt_map[] = {
2056 
2057 	/* Chain for buf IO for disk drive targets (PM enabled) */
2058 	sd_initpkt_for_buf,		/* Index: 0 */
2059 	sd_initpkt_for_buf,		/* Index: 1 */
2060 	sd_initpkt_for_buf,		/* Index: 2 */
2061 
2062 	/* Chain for buf IO for disk drive targets (PM disabled) */
2063 	sd_initpkt_for_buf,		/* Index: 3 */
2064 	sd_initpkt_for_buf,		/* Index: 4 */
2065 
2066 	/*
2067 	 * Chain for buf IO for removable-media or large sector size
2068 	 * disk drive targets (PM enabled)
2069 	 */
2070 	sd_initpkt_for_buf,		/* Index: 5 */
2071 	sd_initpkt_for_buf,		/* Index: 6 */
2072 	sd_initpkt_for_buf,		/* Index: 7 */
2073 	sd_initpkt_for_buf,		/* Index: 8 */
2074 
2075 	/*
2076 	 * Chain for buf IO for removable-media or large sector size
2077 	 * disk drive targets (PM disabled)
2078 	 */
2079 	sd_initpkt_for_buf,		/* Index: 9 */
2080 	sd_initpkt_for_buf,		/* Index: 10 */
2081 	sd_initpkt_for_buf,		/* Index: 11 */
2082 
2083 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2084 	sd_initpkt_for_buf,		/* Index: 12 */
2085 	sd_initpkt_for_buf,		/* Index: 13 */
2086 	sd_initpkt_for_buf,		/* Index: 14 */
2087 	sd_initpkt_for_buf,		/* Index: 15 */
2088 
2089 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2090 	sd_initpkt_for_buf,		/* Index: 16 */
2091 	sd_initpkt_for_buf,		/* Index: 17 */
2092 	sd_initpkt_for_buf,		/* Index: 18 */
2093 
2094 	/* Chain for USCSI commands (non-checksum targets) */
2095 	sd_initpkt_for_uscsi,		/* Index: 19 */
2096 	sd_initpkt_for_uscsi,		/* Index: 20 */
2097 
2098 	/* Chain for USCSI commands (checksum targets) */
2099 	sd_initpkt_for_uscsi,		/* Index: 21 */
2100 	sd_initpkt_for_uscsi,		/* Index: 22 */
2101 	sd_initpkt_for_uscsi,		/* Index: 22 */
2102 
2103 	/* Chain for "direct" USCSI commands (all targets) */
2104 	sd_initpkt_for_uscsi,		/* Index: 24 */
2105 
2106 	/* Chain for "direct priority" USCSI commands (all targets) */
2107 	sd_initpkt_for_uscsi,		/* Index: 25 */
2108 
2109 	/*
2110 	 * Chain for buf IO for large sector size disk drive targets
2111 	 * with checksumming (PM enabled)
2112 	 */
2113 	sd_initpkt_for_buf,		/* Index: 26 */
2114 	sd_initpkt_for_buf,		/* Index: 27 */
2115 	sd_initpkt_for_buf,		/* Index: 28 */
2116 	sd_initpkt_for_buf,		/* Index: 29 */
2117 	sd_initpkt_for_buf,		/* Index: 30 */
2118 
2119 	/*
2120 	 * Chain for buf IO for large sector size disk drive targets
2121 	 * with checksumming (PM disabled)
2122 	 */
2123 	sd_initpkt_for_buf,		/* Index: 31 */
2124 	sd_initpkt_for_buf,		/* Index: 32 */
2125 	sd_initpkt_for_buf,		/* Index: 33 */
2126 	sd_initpkt_for_buf,		/* Index: 34 */
2127 };
2128 
2129 
2130 /*
2131  * Array to map a layering chain index to the appropriate destroypktpkt routine.
2132  * The redundant entries are present so that the index used for accessing
2133  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2134  * with this table as well.
2135  */
2136 typedef void (*sd_destroypkt_t)(struct buf *);
2137 
2138 static sd_destroypkt_t	sd_destroypkt_map[] = {
2139 
2140 	/* Chain for buf IO for disk drive targets (PM enabled) */
2141 	sd_destroypkt_for_buf,		/* Index: 0 */
2142 	sd_destroypkt_for_buf,		/* Index: 1 */
2143 	sd_destroypkt_for_buf,		/* Index: 2 */
2144 
2145 	/* Chain for buf IO for disk drive targets (PM disabled) */
2146 	sd_destroypkt_for_buf,		/* Index: 3 */
2147 	sd_destroypkt_for_buf,		/* Index: 4 */
2148 
2149 	/*
2150 	 * Chain for buf IO for removable-media or large sector size
2151 	 * disk drive targets (PM enabled)
2152 	 */
2153 	sd_destroypkt_for_buf,		/* Index: 5 */
2154 	sd_destroypkt_for_buf,		/* Index: 6 */
2155 	sd_destroypkt_for_buf,		/* Index: 7 */
2156 	sd_destroypkt_for_buf,		/* Index: 8 */
2157 
2158 	/*
2159 	 * Chain for buf IO for removable-media or large sector size
2160 	 * disk drive targets (PM disabled)
2161 	 */
2162 	sd_destroypkt_for_buf,		/* Index: 9 */
2163 	sd_destroypkt_for_buf,		/* Index: 10 */
2164 	sd_destroypkt_for_buf,		/* Index: 11 */
2165 
2166 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2167 	sd_destroypkt_for_buf,		/* Index: 12 */
2168 	sd_destroypkt_for_buf,		/* Index: 13 */
2169 	sd_destroypkt_for_buf,		/* Index: 14 */
2170 	sd_destroypkt_for_buf,		/* Index: 15 */
2171 
2172 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2173 	sd_destroypkt_for_buf,		/* Index: 16 */
2174 	sd_destroypkt_for_buf,		/* Index: 17 */
2175 	sd_destroypkt_for_buf,		/* Index: 18 */
2176 
2177 	/* Chain for USCSI commands (non-checksum targets) */
2178 	sd_destroypkt_for_uscsi,	/* Index: 19 */
2179 	sd_destroypkt_for_uscsi,	/* Index: 20 */
2180 
2181 	/* Chain for USCSI commands (checksum targets) */
2182 	sd_destroypkt_for_uscsi,	/* Index: 21 */
2183 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2184 	sd_destroypkt_for_uscsi,	/* Index: 22 */
2185 
2186 	/* Chain for "direct" USCSI commands (all targets) */
2187 	sd_destroypkt_for_uscsi,	/* Index: 24 */
2188 
2189 	/* Chain for "direct priority" USCSI commands (all targets) */
2190 	sd_destroypkt_for_uscsi,	/* Index: 25 */
2191 
2192 	/*
2193 	 * Chain for buf IO for large sector size disk drive targets
2194 	 * with checksumming (PM disabled)
2195 	 */
2196 	sd_destroypkt_for_buf,		/* Index: 26 */
2197 	sd_destroypkt_for_buf,		/* Index: 27 */
2198 	sd_destroypkt_for_buf,		/* Index: 28 */
2199 	sd_destroypkt_for_buf,		/* Index: 29 */
2200 	sd_destroypkt_for_buf,		/* Index: 30 */
2201 
2202 	/*
2203 	 * Chain for buf IO for large sector size disk drive targets
2204 	 * with checksumming (PM enabled)
2205 	 */
2206 	sd_destroypkt_for_buf,		/* Index: 31 */
2207 	sd_destroypkt_for_buf,		/* Index: 32 */
2208 	sd_destroypkt_for_buf,		/* Index: 33 */
2209 	sd_destroypkt_for_buf,		/* Index: 34 */
2210 };
2211 
2212 
2213 
2214 /*
2215  * Array to map a layering chain index to the appropriate chain "type".
2216  * The chain type indicates a specific property/usage of the chain.
2217  * The redundant entries are present so that the index used for accessing
2218  * the above sd_iostart_chain and sd_iodone_chain tables can be used directly
2219  * with this table as well.
2220  */
2221 
2222 #define	SD_CHAIN_NULL			0	/* for the special RQS cmd */
2223 #define	SD_CHAIN_BUFIO			1	/* regular buf IO */
2224 #define	SD_CHAIN_USCSI			2	/* regular USCSI commands */
2225 #define	SD_CHAIN_DIRECT			3	/* uscsi, w/ bypass power mgt */
2226 #define	SD_CHAIN_DIRECT_PRIORITY	4	/* uscsi, w/ bypass power mgt */
2227 						/* (for error recovery) */
2228 
2229 static int sd_chain_type_map[] = {
2230 
2231 	/* Chain for buf IO for disk drive targets (PM enabled) */
2232 	SD_CHAIN_BUFIO,			/* Index: 0 */
2233 	SD_CHAIN_BUFIO,			/* Index: 1 */
2234 	SD_CHAIN_BUFIO,			/* Index: 2 */
2235 
2236 	/* Chain for buf IO for disk drive targets (PM disabled) */
2237 	SD_CHAIN_BUFIO,			/* Index: 3 */
2238 	SD_CHAIN_BUFIO,			/* Index: 4 */
2239 
2240 	/*
2241 	 * Chain for buf IO for removable-media or large sector size
2242 	 * disk drive targets (PM enabled)
2243 	 */
2244 	SD_CHAIN_BUFIO,			/* Index: 5 */
2245 	SD_CHAIN_BUFIO,			/* Index: 6 */
2246 	SD_CHAIN_BUFIO,			/* Index: 7 */
2247 	SD_CHAIN_BUFIO,			/* Index: 8 */
2248 
2249 	/*
2250 	 * Chain for buf IO for removable-media or large sector size
2251 	 * disk drive targets (PM disabled)
2252 	 */
2253 	SD_CHAIN_BUFIO,			/* Index: 9 */
2254 	SD_CHAIN_BUFIO,			/* Index: 10 */
2255 	SD_CHAIN_BUFIO,			/* Index: 11 */
2256 
2257 	/* Chain for buf IO for disk drives with checksumming (PM enabled) */
2258 	SD_CHAIN_BUFIO,			/* Index: 12 */
2259 	SD_CHAIN_BUFIO,			/* Index: 13 */
2260 	SD_CHAIN_BUFIO,			/* Index: 14 */
2261 	SD_CHAIN_BUFIO,			/* Index: 15 */
2262 
2263 	/* Chain for buf IO for disk drives with checksumming (PM disabled) */
2264 	SD_CHAIN_BUFIO,			/* Index: 16 */
2265 	SD_CHAIN_BUFIO,			/* Index: 17 */
2266 	SD_CHAIN_BUFIO,			/* Index: 18 */
2267 
2268 	/* Chain for USCSI commands (non-checksum targets) */
2269 	SD_CHAIN_USCSI,			/* Index: 19 */
2270 	SD_CHAIN_USCSI,			/* Index: 20 */
2271 
2272 	/* Chain for USCSI commands (checksum targets) */
2273 	SD_CHAIN_USCSI,			/* Index: 21 */
2274 	SD_CHAIN_USCSI,			/* Index: 22 */
2275 	SD_CHAIN_USCSI,			/* Index: 23 */
2276 
2277 	/* Chain for "direct" USCSI commands (all targets) */
2278 	SD_CHAIN_DIRECT,		/* Index: 24 */
2279 
2280 	/* Chain for "direct priority" USCSI commands (all targets) */
2281 	SD_CHAIN_DIRECT_PRIORITY,	/* Index: 25 */
2282 
2283 	/*
2284 	 * Chain for buf IO for large sector size disk drive targets
2285 	 * with checksumming (PM enabled)
2286 	 */
2287 	SD_CHAIN_BUFIO,			/* Index: 26 */
2288 	SD_CHAIN_BUFIO,			/* Index: 27 */
2289 	SD_CHAIN_BUFIO,			/* Index: 28 */
2290 	SD_CHAIN_BUFIO,			/* Index: 29 */
2291 	SD_CHAIN_BUFIO,			/* Index: 30 */
2292 
2293 	/*
2294 	 * Chain for buf IO for large sector size disk drive targets
2295 	 * with checksumming (PM disabled)
2296 	 */
2297 	SD_CHAIN_BUFIO,			/* Index: 31 */
2298 	SD_CHAIN_BUFIO,			/* Index: 32 */
2299 	SD_CHAIN_BUFIO,			/* Index: 33 */
2300 	SD_CHAIN_BUFIO,			/* Index: 34 */
2301 };
2302 
2303 
2304 /* Macro to return TRUE if the IO has come from the sd_buf_iostart() chain. */
2305 #define	SD_IS_BUFIO(xp)			\
2306 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_BUFIO)
2307 
2308 /* Macro to return TRUE if the IO has come from the "direct priority" chain. */
2309 #define	SD_IS_DIRECT_PRIORITY(xp)	\
2310 	(sd_chain_type_map[(xp)->xb_chain_iostart] == SD_CHAIN_DIRECT_PRIORITY)
2311 
2312 
2313 
2314 /*
2315  * Struct, array, and macros to map a specific chain to the appropriate
2316  * layering indexes in the sd_iostart_chain[] and sd_iodone_chain[] arrays.
2317  *
2318  * The sd_chain_index_map[] array is used at attach time to set the various
2319  * un_xxx_chain type members of the sd_lun softstate to the specific layering
2320  * chain to be used with the instance. This allows different instances to use
2321  * different chain for buf IO, uscsi IO, etc.. Also, since the xb_chain_iostart
2322  * and xb_chain_iodone index values in the sd_xbuf are initialized to these
2323  * values at sd_xbuf init time, this allows (1) layering chains may be changed
2324  * dynamically & without the use of locking; and (2) a layer may update the
2325  * xb_chain_io[start|done] member in a given xbuf with its current index value,
2326  * to allow for deferred processing of an IO within the same chain from a
2327  * different execution context.
2328  */
2329 
2330 struct sd_chain_index {
2331 	int	sci_iostart_index;
2332 	int	sci_iodone_index;
2333 };
2334 
2335 static struct sd_chain_index	sd_chain_index_map[] = {
2336 	{ SD_CHAIN_DISK_IOSTART,		SD_CHAIN_DISK_IODONE },
2337 	{ SD_CHAIN_DISK_IOSTART_NO_PM,		SD_CHAIN_DISK_IODONE_NO_PM },
2338 	{ SD_CHAIN_RMMEDIA_IOSTART,		SD_CHAIN_RMMEDIA_IODONE },
2339 	{ SD_CHAIN_RMMEDIA_IOSTART_NO_PM,	SD_CHAIN_RMMEDIA_IODONE_NO_PM },
2340 	{ SD_CHAIN_CHKSUM_IOSTART,		SD_CHAIN_CHKSUM_IODONE },
2341 	{ SD_CHAIN_CHKSUM_IOSTART_NO_PM,	SD_CHAIN_CHKSUM_IODONE_NO_PM },
2342 	{ SD_CHAIN_USCSI_CMD_IOSTART,		SD_CHAIN_USCSI_CMD_IODONE },
2343 	{ SD_CHAIN_USCSI_CHKSUM_IOSTART,	SD_CHAIN_USCSI_CHKSUM_IODONE },
2344 	{ SD_CHAIN_DIRECT_CMD_IOSTART,		SD_CHAIN_DIRECT_CMD_IODONE },
2345 	{ SD_CHAIN_PRIORITY_CMD_IOSTART,	SD_CHAIN_PRIORITY_CMD_IODONE },
2346 	{ SD_CHAIN_MSS_CHKSUM_IOSTART,		SD_CHAIN_MSS_CHKSUM_IODONE },
2347 	{ SD_CHAIN_MSS_CHKSUM_IOSTART_NO_PM, SD_CHAIN_MSS_CHKSUM_IODONE_NO_PM },
2348 
2349 };
2350 
2351 
2352 /*
2353  * The following are indexes into the sd_chain_index_map[] array.
2354  */
2355 
2356 /* un->un_buf_chain_type must be set to one of these */
2357 #define	SD_CHAIN_INFO_DISK		0
2358 #define	SD_CHAIN_INFO_DISK_NO_PM	1
2359 #define	SD_CHAIN_INFO_RMMEDIA		2
2360 #define	SD_CHAIN_INFO_MSS_DISK		2
2361 #define	SD_CHAIN_INFO_RMMEDIA_NO_PM	3
2362 #define	SD_CHAIN_INFO_MSS_DSK_NO_PM	3
2363 #define	SD_CHAIN_INFO_CHKSUM		4
2364 #define	SD_CHAIN_INFO_CHKSUM_NO_PM	5
2365 #define	SD_CHAIN_INFO_MSS_DISK_CHKSUM	10
2366 #define	SD_CHAIN_INFO_MSS_DISK_CHKSUM_NO_PM	11
2367 
2368 /* un->un_uscsi_chain_type must be set to one of these */
2369 #define	SD_CHAIN_INFO_USCSI_CMD		6
2370 /* USCSI with PM disabled is the same as DIRECT */
2371 #define	SD_CHAIN_INFO_USCSI_CMD_NO_PM	8
2372 #define	SD_CHAIN_INFO_USCSI_CHKSUM	7
2373 
2374 /* un->un_direct_chain_type must be set to one of these */
2375 #define	SD_CHAIN_INFO_DIRECT_CMD	8
2376 
2377 /* un->un_priority_chain_type must be set to one of these */
2378 #define	SD_CHAIN_INFO_PRIORITY_CMD	9
2379 
2380 /* size for devid inquiries */
2381 #define	MAX_INQUIRY_SIZE		0xF0
2382 
2383 /*
2384  * Macros used by functions to pass a given buf(9S) struct along to the
2385  * next function in the layering chain for further processing.
2386  *
2387  * In the following macros, passing more than three arguments to the called
2388  * routines causes the optimizer for the SPARC compiler to stop doing tail
2389  * call elimination which results in significant performance degradation.
2390  */
2391 #define	SD_BEGIN_IOSTART(index, un, bp)	\
2392 	((*(sd_iostart_chain[index]))(index, un, bp))
2393 
2394 #define	SD_BEGIN_IODONE(index, un, bp)	\
2395 	((*(sd_iodone_chain[index]))(index, un, bp))
2396 
2397 #define	SD_NEXT_IOSTART(index, un, bp)				\
2398 	((*(sd_iostart_chain[(index) + 1]))((index) + 1, un, bp))
2399 
2400 #define	SD_NEXT_IODONE(index, un, bp)				\
2401 	((*(sd_iodone_chain[(index) - 1]))((index) - 1, un, bp))
2402 
2403 /*
2404  *    Function: _init
2405  *
2406  * Description: This is the driver _init(9E) entry point.
2407  *
2408  * Return Code: Returns the value from mod_install(9F) or
2409  *		ddi_soft_state_init(9F) as appropriate.
2410  *
2411  *     Context: Called when driver module loaded.
2412  */
2413 
2414 int
2415 _init(void)
2416 {
2417 	int	err;
2418 
2419 	/* establish driver name from module name */
2420 	sd_label = (char *)mod_modname(&modlinkage);
2421 
2422 #ifndef XPV_HVM_DRIVER
2423 	err = ddi_soft_state_init(&sd_state, sizeof (struct sd_lun),
2424 	    SD_MAXUNIT);
2425 	if (err != 0) {
2426 		return (err);
2427 	}
2428 
2429 #else /* XPV_HVM_DRIVER */
2430 	/* Remove the leading "hvm_" from the module name */
2431 	ASSERT(strncmp(sd_label, "hvm_", strlen("hvm_")) == 0);
2432 	sd_label += strlen("hvm_");
2433 
2434 #endif /* XPV_HVM_DRIVER */
2435 
2436 	mutex_init(&sd_detach_mutex, NULL, MUTEX_DRIVER, NULL);
2437 	mutex_init(&sd_log_mutex,    NULL, MUTEX_DRIVER, NULL);
2438 	mutex_init(&sd_label_mutex,  NULL, MUTEX_DRIVER, NULL);
2439 
2440 	mutex_init(&sd_tr.srq_resv_reclaim_mutex, NULL, MUTEX_DRIVER, NULL);
2441 	cv_init(&sd_tr.srq_resv_reclaim_cv, NULL, CV_DRIVER, NULL);
2442 	cv_init(&sd_tr.srq_inprocess_cv, NULL, CV_DRIVER, NULL);
2443 
2444 	/*
2445 	 * it's ok to init here even for fibre device
2446 	 */
2447 	sd_scsi_probe_cache_init();
2448 
2449 	sd_scsi_target_lun_init();
2450 
2451 	/*
2452 	 * Creating taskq before mod_install ensures that all callers (threads)
2453 	 * that enter the module after a successful mod_install encounter
2454 	 * a valid taskq.
2455 	 */
2456 	sd_taskq_create();
2457 
2458 	err = mod_install(&modlinkage);
2459 	if (err != 0) {
2460 		/* delete taskq if install fails */
2461 		sd_taskq_delete();
2462 
2463 		mutex_destroy(&sd_detach_mutex);
2464 		mutex_destroy(&sd_log_mutex);
2465 		mutex_destroy(&sd_label_mutex);
2466 
2467 		mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2468 		cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2469 		cv_destroy(&sd_tr.srq_inprocess_cv);
2470 
2471 		sd_scsi_probe_cache_fini();
2472 
2473 		sd_scsi_target_lun_fini();
2474 
2475 #ifndef XPV_HVM_DRIVER
2476 		ddi_soft_state_fini(&sd_state);
2477 #endif /* !XPV_HVM_DRIVER */
2478 		return (err);
2479 	}
2480 
2481 	return (err);
2482 }
2483 
2484 
2485 /*
2486  *    Function: _fini
2487  *
2488  * Description: This is the driver _fini(9E) entry point.
2489  *
2490  * Return Code: Returns the value from mod_remove(9F)
2491  *
2492  *     Context: Called when driver module is unloaded.
2493  */
2494 
2495 int
2496 _fini(void)
2497 {
2498 	int err;
2499 
2500 	if ((err = mod_remove(&modlinkage)) != 0) {
2501 		return (err);
2502 	}
2503 
2504 	sd_taskq_delete();
2505 
2506 	mutex_destroy(&sd_detach_mutex);
2507 	mutex_destroy(&sd_log_mutex);
2508 	mutex_destroy(&sd_label_mutex);
2509 	mutex_destroy(&sd_tr.srq_resv_reclaim_mutex);
2510 
2511 	sd_scsi_probe_cache_fini();
2512 
2513 	sd_scsi_target_lun_fini();
2514 
2515 	cv_destroy(&sd_tr.srq_resv_reclaim_cv);
2516 	cv_destroy(&sd_tr.srq_inprocess_cv);
2517 
2518 #ifndef XPV_HVM_DRIVER
2519 	ddi_soft_state_fini(&sd_state);
2520 #endif /* !XPV_HVM_DRIVER */
2521 
2522 	return (err);
2523 }
2524 
2525 
2526 /*
2527  *    Function: _info
2528  *
2529  * Description: This is the driver _info(9E) entry point.
2530  *
2531  *   Arguments: modinfop - pointer to the driver modinfo structure
2532  *
2533  * Return Code: Returns the value from mod_info(9F).
2534  *
2535  *     Context: Kernel thread context
2536  */
2537 
2538 int
2539 _info(struct modinfo *modinfop)
2540 {
2541 	return (mod_info(&modlinkage, modinfop));
2542 }
2543 
2544 
2545 /*
2546  * The following routines implement the driver message logging facility.
2547  * They provide component- and level- based debug output filtering.
2548  * Output may also be restricted to messages for a single instance by
2549  * specifying a soft state pointer in sd_debug_un. If sd_debug_un is set
2550  * to NULL, then messages for all instances are printed.
2551  *
2552  * These routines have been cloned from each other due to the language
2553  * constraints of macros and variable argument list processing.
2554  */
2555 
2556 
2557 /*
2558  *    Function: sd_log_err
2559  *
2560  * Description: This routine is called by the SD_ERROR macro for debug
2561  *		logging of error conditions.
2562  *
2563  *   Arguments: comp - driver component being logged
2564  *		dev  - pointer to driver info structure
2565  *		fmt  - error string and format to be logged
2566  */
2567 
2568 static void
2569 sd_log_err(uint_t comp, struct sd_lun *un, const char *fmt, ...)
2570 {
2571 	va_list		ap;
2572 	dev_info_t	*dev;
2573 
2574 	ASSERT(un != NULL);
2575 	dev = SD_DEVINFO(un);
2576 	ASSERT(dev != NULL);
2577 
2578 	/*
2579 	 * Filter messages based on the global component and level masks.
2580 	 * Also print if un matches the value of sd_debug_un, or if
2581 	 * sd_debug_un is set to NULL.
2582 	 */
2583 	if ((sd_component_mask & comp) && (sd_level_mask & SD_LOGMASK_ERROR) &&
2584 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2585 		mutex_enter(&sd_log_mutex);
2586 		va_start(ap, fmt);
2587 		(void) vsprintf(sd_log_buf, fmt, ap);
2588 		va_end(ap);
2589 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2590 		mutex_exit(&sd_log_mutex);
2591 	}
2592 #ifdef SD_FAULT_INJECTION
2593 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2594 	if (un->sd_injection_mask & comp) {
2595 		mutex_enter(&sd_log_mutex);
2596 		va_start(ap, fmt);
2597 		(void) vsprintf(sd_log_buf, fmt, ap);
2598 		va_end(ap);
2599 		sd_injection_log(sd_log_buf, un);
2600 		mutex_exit(&sd_log_mutex);
2601 	}
2602 #endif
2603 }
2604 
2605 
2606 /*
2607  *    Function: sd_log_info
2608  *
2609  * Description: This routine is called by the SD_INFO macro for debug
2610  *		logging of general purpose informational conditions.
2611  *
2612  *   Arguments: comp - driver component being logged
2613  *		dev  - pointer to driver info structure
2614  *		fmt  - info string and format to be logged
2615  */
2616 
2617 static void
2618 sd_log_info(uint_t component, struct sd_lun *un, const char *fmt, ...)
2619 {
2620 	va_list		ap;
2621 	dev_info_t	*dev;
2622 
2623 	ASSERT(un != NULL);
2624 	dev = SD_DEVINFO(un);
2625 	ASSERT(dev != NULL);
2626 
2627 	/*
2628 	 * Filter messages based on the global component and level masks.
2629 	 * Also print if un matches the value of sd_debug_un, or if
2630 	 * sd_debug_un is set to NULL.
2631 	 */
2632 	if ((sd_component_mask & component) &&
2633 	    (sd_level_mask & SD_LOGMASK_INFO) &&
2634 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2635 		mutex_enter(&sd_log_mutex);
2636 		va_start(ap, fmt);
2637 		(void) vsprintf(sd_log_buf, fmt, ap);
2638 		va_end(ap);
2639 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2640 		mutex_exit(&sd_log_mutex);
2641 	}
2642 #ifdef SD_FAULT_INJECTION
2643 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2644 	if (un->sd_injection_mask & component) {
2645 		mutex_enter(&sd_log_mutex);
2646 		va_start(ap, fmt);
2647 		(void) vsprintf(sd_log_buf, fmt, ap);
2648 		va_end(ap);
2649 		sd_injection_log(sd_log_buf, un);
2650 		mutex_exit(&sd_log_mutex);
2651 	}
2652 #endif
2653 }
2654 
2655 
2656 /*
2657  *    Function: sd_log_trace
2658  *
2659  * Description: This routine is called by the SD_TRACE macro for debug
2660  *		logging of trace conditions (i.e. function entry/exit).
2661  *
2662  *   Arguments: comp - driver component being logged
2663  *		dev  - pointer to driver info structure
2664  *		fmt  - trace string and format to be logged
2665  */
2666 
2667 static void
2668 sd_log_trace(uint_t component, struct sd_lun *un, const char *fmt, ...)
2669 {
2670 	va_list		ap;
2671 	dev_info_t	*dev;
2672 
2673 	ASSERT(un != NULL);
2674 	dev = SD_DEVINFO(un);
2675 	ASSERT(dev != NULL);
2676 
2677 	/*
2678 	 * Filter messages based on the global component and level masks.
2679 	 * Also print if un matches the value of sd_debug_un, or if
2680 	 * sd_debug_un is set to NULL.
2681 	 */
2682 	if ((sd_component_mask & component) &&
2683 	    (sd_level_mask & SD_LOGMASK_TRACE) &&
2684 	    ((sd_debug_un == NULL) || (sd_debug_un == un))) {
2685 		mutex_enter(&sd_log_mutex);
2686 		va_start(ap, fmt);
2687 		(void) vsprintf(sd_log_buf, fmt, ap);
2688 		va_end(ap);
2689 		scsi_log(dev, sd_label, CE_CONT, "%s", sd_log_buf);
2690 		mutex_exit(&sd_log_mutex);
2691 	}
2692 #ifdef SD_FAULT_INJECTION
2693 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::sd_injection_mask));
2694 	if (un->sd_injection_mask & component) {
2695 		mutex_enter(&sd_log_mutex);
2696 		va_start(ap, fmt);
2697 		(void) vsprintf(sd_log_buf, fmt, ap);
2698 		va_end(ap);
2699 		sd_injection_log(sd_log_buf, un);
2700 		mutex_exit(&sd_log_mutex);
2701 	}
2702 #endif
2703 }
2704 
2705 
2706 /*
2707  *    Function: sdprobe
2708  *
2709  * Description: This is the driver probe(9e) entry point function.
2710  *
2711  *   Arguments: devi - opaque device info handle
2712  *
2713  * Return Code: DDI_PROBE_SUCCESS: If the probe was successful.
2714  *              DDI_PROBE_FAILURE: If the probe failed.
2715  *              DDI_PROBE_PARTIAL: If the instance is not present now,
2716  *				   but may be present in the future.
2717  */
2718 
2719 static int
2720 sdprobe(dev_info_t *devi)
2721 {
2722 	struct scsi_device	*devp;
2723 	int			rval;
2724 #ifndef XPV_HVM_DRIVER
2725 	int			instance = ddi_get_instance(devi);
2726 #endif /* !XPV_HVM_DRIVER */
2727 
2728 	/*
2729 	 * if it wasn't for pln, sdprobe could actually be nulldev
2730 	 * in the "__fibre" case.
2731 	 */
2732 	if (ddi_dev_is_sid(devi) == DDI_SUCCESS) {
2733 		return (DDI_PROBE_DONTCARE);
2734 	}
2735 
2736 	devp = ddi_get_driver_private(devi);
2737 
2738 	if (devp == NULL) {
2739 		/* Ooops... nexus driver is mis-configured... */
2740 		return (DDI_PROBE_FAILURE);
2741 	}
2742 
2743 #ifndef XPV_HVM_DRIVER
2744 	if (ddi_get_soft_state(sd_state, instance) != NULL) {
2745 		return (DDI_PROBE_PARTIAL);
2746 	}
2747 #endif /* !XPV_HVM_DRIVER */
2748 
2749 	/*
2750 	 * Call the SCSA utility probe routine to see if we actually
2751 	 * have a target at this SCSI nexus.
2752 	 */
2753 	switch (sd_scsi_probe_with_cache(devp, NULL_FUNC)) {
2754 	case SCSIPROBE_EXISTS:
2755 		switch (devp->sd_inq->inq_dtype) {
2756 		case DTYPE_DIRECT:
2757 			rval = DDI_PROBE_SUCCESS;
2758 			break;
2759 		case DTYPE_RODIRECT:
2760 			/* CDs etc. Can be removable media */
2761 			rval = DDI_PROBE_SUCCESS;
2762 			break;
2763 		case DTYPE_OPTICAL:
2764 			/*
2765 			 * Rewritable optical driver HP115AA
2766 			 * Can also be removable media
2767 			 */
2768 
2769 			/*
2770 			 * Do not attempt to bind to  DTYPE_OPTICAL if
2771 			 * pre solaris 9 sparc sd behavior is required
2772 			 *
2773 			 * If first time through and sd_dtype_optical_bind
2774 			 * has not been set in /etc/system check properties
2775 			 */
2776 
2777 			if (sd_dtype_optical_bind  < 0) {
2778 				sd_dtype_optical_bind = ddi_prop_get_int
2779 				    (DDI_DEV_T_ANY, devi, 0,
2780 				    "optical-device-bind", 1);
2781 			}
2782 
2783 			if (sd_dtype_optical_bind == 0) {
2784 				rval = DDI_PROBE_FAILURE;
2785 			} else {
2786 				rval = DDI_PROBE_SUCCESS;
2787 			}
2788 			break;
2789 
2790 		case DTYPE_NOTPRESENT:
2791 		default:
2792 			rval = DDI_PROBE_FAILURE;
2793 			break;
2794 		}
2795 		break;
2796 	default:
2797 		rval = DDI_PROBE_PARTIAL;
2798 		break;
2799 	}
2800 
2801 	/*
2802 	 * This routine checks for resource allocation prior to freeing,
2803 	 * so it will take care of the "smart probing" case where a
2804 	 * scsi_probe() may or may not have been issued and will *not*
2805 	 * free previously-freed resources.
2806 	 */
2807 	scsi_unprobe(devp);
2808 	return (rval);
2809 }
2810 
2811 
2812 /*
2813  *    Function: sdinfo
2814  *
2815  * Description: This is the driver getinfo(9e) entry point function.
2816  * 		Given the device number, return the devinfo pointer from
2817  *		the scsi_device structure or the instance number
2818  *		associated with the dev_t.
2819  *
2820  *   Arguments: dip     - pointer to device info structure
2821  *		infocmd - command argument (DDI_INFO_DEVT2DEVINFO,
2822  *			  DDI_INFO_DEVT2INSTANCE)
2823  *		arg     - driver dev_t
2824  *		resultp - user buffer for request response
2825  *
2826  * Return Code: DDI_SUCCESS
2827  *              DDI_FAILURE
2828  */
2829 /* ARGSUSED */
2830 static int
2831 sdinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
2832 {
2833 	struct sd_lun	*un;
2834 	dev_t		dev;
2835 	int		instance;
2836 	int		error;
2837 
2838 	switch (infocmd) {
2839 	case DDI_INFO_DEVT2DEVINFO:
2840 		dev = (dev_t)arg;
2841 		instance = SDUNIT(dev);
2842 		if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
2843 			return (DDI_FAILURE);
2844 		}
2845 		*result = (void *) SD_DEVINFO(un);
2846 		error = DDI_SUCCESS;
2847 		break;
2848 	case DDI_INFO_DEVT2INSTANCE:
2849 		dev = (dev_t)arg;
2850 		instance = SDUNIT(dev);
2851 		*result = (void *)(uintptr_t)instance;
2852 		error = DDI_SUCCESS;
2853 		break;
2854 	default:
2855 		error = DDI_FAILURE;
2856 	}
2857 	return (error);
2858 }
2859 
2860 /*
2861  *    Function: sd_prop_op
2862  *
2863  * Description: This is the driver prop_op(9e) entry point function.
2864  *		Return the number of blocks for the partition in question
2865  *		or forward the request to the property facilities.
2866  *
2867  *   Arguments: dev       - device number
2868  *		dip       - pointer to device info structure
2869  *		prop_op   - property operator
2870  *		mod_flags - DDI_PROP_DONTPASS, don't pass to parent
2871  *		name      - pointer to property name
2872  *		valuep    - pointer or address of the user buffer
2873  *		lengthp   - property length
2874  *
2875  * Return Code: DDI_PROP_SUCCESS
2876  *              DDI_PROP_NOT_FOUND
2877  *              DDI_PROP_UNDEFINED
2878  *              DDI_PROP_NO_MEMORY
2879  *              DDI_PROP_BUF_TOO_SMALL
2880  */
2881 
2882 static int
2883 sd_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
2884 	char *name, caddr_t valuep, int *lengthp)
2885 {
2886 	struct sd_lun	*un;
2887 
2888 	if ((un = ddi_get_soft_state(sd_state, ddi_get_instance(dip))) == NULL)
2889 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
2890 		    name, valuep, lengthp));
2891 
2892 	return (cmlb_prop_op(un->un_cmlbhandle,
2893 	    dev, dip, prop_op, mod_flags, name, valuep, lengthp,
2894 	    SDPART(dev), (void *)SD_PATH_DIRECT));
2895 }
2896 
2897 /*
2898  * The following functions are for smart probing:
2899  * sd_scsi_probe_cache_init()
2900  * sd_scsi_probe_cache_fini()
2901  * sd_scsi_clear_probe_cache()
2902  * sd_scsi_probe_with_cache()
2903  */
2904 
2905 /*
2906  *    Function: sd_scsi_probe_cache_init
2907  *
2908  * Description: Initializes the probe response cache mutex and head pointer.
2909  *
2910  *     Context: Kernel thread context
2911  */
2912 
2913 static void
2914 sd_scsi_probe_cache_init(void)
2915 {
2916 	mutex_init(&sd_scsi_probe_cache_mutex, NULL, MUTEX_DRIVER, NULL);
2917 	sd_scsi_probe_cache_head = NULL;
2918 }
2919 
2920 
2921 /*
2922  *    Function: sd_scsi_probe_cache_fini
2923  *
2924  * Description: Frees all resources associated with the probe response cache.
2925  *
2926  *     Context: Kernel thread context
2927  */
2928 
2929 static void
2930 sd_scsi_probe_cache_fini(void)
2931 {
2932 	struct sd_scsi_probe_cache *cp;
2933 	struct sd_scsi_probe_cache *ncp;
2934 
2935 	/* Clean up our smart probing linked list */
2936 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = ncp) {
2937 		ncp = cp->next;
2938 		kmem_free(cp, sizeof (struct sd_scsi_probe_cache));
2939 	}
2940 	sd_scsi_probe_cache_head = NULL;
2941 	mutex_destroy(&sd_scsi_probe_cache_mutex);
2942 }
2943 
2944 
2945 /*
2946  *    Function: sd_scsi_clear_probe_cache
2947  *
2948  * Description: This routine clears the probe response cache. This is
2949  *		done when open() returns ENXIO so that when deferred
2950  *		attach is attempted (possibly after a device has been
2951  *		turned on) we will retry the probe. Since we don't know
2952  *		which target we failed to open, we just clear the
2953  *		entire cache.
2954  *
2955  *     Context: Kernel thread context
2956  */
2957 
2958 static void
2959 sd_scsi_clear_probe_cache(void)
2960 {
2961 	struct sd_scsi_probe_cache	*cp;
2962 	int				i;
2963 
2964 	mutex_enter(&sd_scsi_probe_cache_mutex);
2965 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
2966 		/*
2967 		 * Reset all entries to SCSIPROBE_EXISTS.  This will
2968 		 * force probing to be performed the next time
2969 		 * sd_scsi_probe_with_cache is called.
2970 		 */
2971 		for (i = 0; i < NTARGETS_WIDE; i++) {
2972 			cp->cache[i] = SCSIPROBE_EXISTS;
2973 		}
2974 	}
2975 	mutex_exit(&sd_scsi_probe_cache_mutex);
2976 }
2977 
2978 
2979 /*
2980  *    Function: sd_scsi_probe_with_cache
2981  *
2982  * Description: This routine implements support for a scsi device probe
2983  *		with cache. The driver maintains a cache of the target
2984  *		responses to scsi probes. If we get no response from a
2985  *		target during a probe inquiry, we remember that, and we
2986  *		avoid additional calls to scsi_probe on non-zero LUNs
2987  *		on the same target until the cache is cleared. By doing
2988  *		so we avoid the 1/4 sec selection timeout for nonzero
2989  *		LUNs. lun0 of a target is always probed.
2990  *
2991  *   Arguments: devp     - Pointer to a scsi_device(9S) structure
2992  *              waitfunc - indicates what the allocator routines should
2993  *			   do when resources are not available. This value
2994  *			   is passed on to scsi_probe() when that routine
2995  *			   is called.
2996  *
2997  * Return Code: SCSIPROBE_NORESP if a NORESP in probe response cache;
2998  *		otherwise the value returned by scsi_probe(9F).
2999  *
3000  *     Context: Kernel thread context
3001  */
3002 
3003 static int
3004 sd_scsi_probe_with_cache(struct scsi_device *devp, int (*waitfn)())
3005 {
3006 	struct sd_scsi_probe_cache	*cp;
3007 	dev_info_t	*pdip = ddi_get_parent(devp->sd_dev);
3008 	int		lun, tgt;
3009 
3010 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
3011 	    SCSI_ADDR_PROP_LUN, 0);
3012 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devp->sd_dev, DDI_PROP_DONTPASS,
3013 	    SCSI_ADDR_PROP_TARGET, -1);
3014 
3015 	/* Make sure caching enabled and target in range */
3016 	if ((tgt < 0) || (tgt >= NTARGETS_WIDE)) {
3017 		/* do it the old way (no cache) */
3018 		return (scsi_probe(devp, waitfn));
3019 	}
3020 
3021 	mutex_enter(&sd_scsi_probe_cache_mutex);
3022 
3023 	/* Find the cache for this scsi bus instance */
3024 	for (cp = sd_scsi_probe_cache_head; cp != NULL; cp = cp->next) {
3025 		if (cp->pdip == pdip) {
3026 			break;
3027 		}
3028 	}
3029 
3030 	/* If we can't find a cache for this pdip, create one */
3031 	if (cp == NULL) {
3032 		int i;
3033 
3034 		cp = kmem_zalloc(sizeof (struct sd_scsi_probe_cache),
3035 		    KM_SLEEP);
3036 		cp->pdip = pdip;
3037 		cp->next = sd_scsi_probe_cache_head;
3038 		sd_scsi_probe_cache_head = cp;
3039 		for (i = 0; i < NTARGETS_WIDE; i++) {
3040 			cp->cache[i] = SCSIPROBE_EXISTS;
3041 		}
3042 	}
3043 
3044 	mutex_exit(&sd_scsi_probe_cache_mutex);
3045 
3046 	/* Recompute the cache for this target if LUN zero */
3047 	if (lun == 0) {
3048 		cp->cache[tgt] = SCSIPROBE_EXISTS;
3049 	}
3050 
3051 	/* Don't probe if cache remembers a NORESP from a previous LUN. */
3052 	if (cp->cache[tgt] != SCSIPROBE_EXISTS) {
3053 		return (SCSIPROBE_NORESP);
3054 	}
3055 
3056 	/* Do the actual probe; save & return the result */
3057 	return (cp->cache[tgt] = scsi_probe(devp, waitfn));
3058 }
3059 
3060 
3061 /*
3062  *    Function: sd_scsi_target_lun_init
3063  *
3064  * Description: Initializes the attached lun chain mutex and head pointer.
3065  *
3066  *     Context: Kernel thread context
3067  */
3068 
3069 static void
3070 sd_scsi_target_lun_init(void)
3071 {
3072 	mutex_init(&sd_scsi_target_lun_mutex, NULL, MUTEX_DRIVER, NULL);
3073 	sd_scsi_target_lun_head = NULL;
3074 }
3075 
3076 
3077 /*
3078  *    Function: sd_scsi_target_lun_fini
3079  *
3080  * Description: Frees all resources associated with the attached lun
3081  *              chain
3082  *
3083  *     Context: Kernel thread context
3084  */
3085 
3086 static void
3087 sd_scsi_target_lun_fini(void)
3088 {
3089 	struct sd_scsi_hba_tgt_lun	*cp;
3090 	struct sd_scsi_hba_tgt_lun	*ncp;
3091 
3092 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = ncp) {
3093 		ncp = cp->next;
3094 		kmem_free(cp, sizeof (struct sd_scsi_hba_tgt_lun));
3095 	}
3096 	sd_scsi_target_lun_head = NULL;
3097 	mutex_destroy(&sd_scsi_target_lun_mutex);
3098 }
3099 
3100 
3101 /*
3102  *    Function: sd_scsi_get_target_lun_count
3103  *
3104  * Description: This routine will check in the attached lun chain to see
3105  * 		how many luns are attached on the required SCSI controller
3106  * 		and target. Currently, some capabilities like tagged queue
3107  *		are supported per target based by HBA. So all luns in a
3108  *		target have the same capabilities. Based on this assumption,
3109  * 		sd should only set these capabilities once per target. This
3110  *		function is called when sd needs to decide how many luns
3111  *		already attached on a target.
3112  *
3113  *   Arguments: dip	- Pointer to the system's dev_info_t for the SCSI
3114  *			  controller device.
3115  *              target	- The target ID on the controller's SCSI bus.
3116  *
3117  * Return Code: The number of luns attached on the required target and
3118  *		controller.
3119  *		-1 if target ID is not in parallel SCSI scope or the given
3120  * 		dip is not in the chain.
3121  *
3122  *     Context: Kernel thread context
3123  */
3124 
3125 static int
3126 sd_scsi_get_target_lun_count(dev_info_t *dip, int target)
3127 {
3128 	struct sd_scsi_hba_tgt_lun	*cp;
3129 
3130 	if ((target < 0) || (target >= NTARGETS_WIDE)) {
3131 		return (-1);
3132 	}
3133 
3134 	mutex_enter(&sd_scsi_target_lun_mutex);
3135 
3136 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3137 		if (cp->pdip == dip) {
3138 			break;
3139 		}
3140 	}
3141 
3142 	mutex_exit(&sd_scsi_target_lun_mutex);
3143 
3144 	if (cp == NULL) {
3145 		return (-1);
3146 	}
3147 
3148 	return (cp->nlun[target]);
3149 }
3150 
3151 
3152 /*
3153  *    Function: sd_scsi_update_lun_on_target
3154  *
3155  * Description: This routine is used to update the attached lun chain when a
3156  *		lun is attached or detached on a target.
3157  *
3158  *   Arguments: dip     - Pointer to the system's dev_info_t for the SCSI
3159  *                        controller device.
3160  *              target  - The target ID on the controller's SCSI bus.
3161  *		flag	- Indicate the lun is attached or detached.
3162  *
3163  *     Context: Kernel thread context
3164  */
3165 
3166 static void
3167 sd_scsi_update_lun_on_target(dev_info_t *dip, int target, int flag)
3168 {
3169 	struct sd_scsi_hba_tgt_lun	*cp;
3170 
3171 	mutex_enter(&sd_scsi_target_lun_mutex);
3172 
3173 	for (cp = sd_scsi_target_lun_head; cp != NULL; cp = cp->next) {
3174 		if (cp->pdip == dip) {
3175 			break;
3176 		}
3177 	}
3178 
3179 	if ((cp == NULL) && (flag == SD_SCSI_LUN_ATTACH)) {
3180 		cp = kmem_zalloc(sizeof (struct sd_scsi_hba_tgt_lun),
3181 		    KM_SLEEP);
3182 		cp->pdip = dip;
3183 		cp->next = sd_scsi_target_lun_head;
3184 		sd_scsi_target_lun_head = cp;
3185 	}
3186 
3187 	mutex_exit(&sd_scsi_target_lun_mutex);
3188 
3189 	if (cp != NULL) {
3190 		if (flag == SD_SCSI_LUN_ATTACH) {
3191 			cp->nlun[target] ++;
3192 		} else {
3193 			cp->nlun[target] --;
3194 		}
3195 	}
3196 }
3197 
3198 
3199 /*
3200  *    Function: sd_spin_up_unit
3201  *
3202  * Description: Issues the following commands to spin-up the device:
3203  *		START STOP UNIT, and INQUIRY.
3204  *
3205  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3206  *                      structure for this target.
3207  *
3208  * Return Code: 0 - success
3209  *		EIO - failure
3210  *		EACCES - reservation conflict
3211  *
3212  *     Context: Kernel thread context
3213  */
3214 
3215 static int
3216 sd_spin_up_unit(sd_ssc_t *ssc)
3217 {
3218 	size_t	resid		= 0;
3219 	int	has_conflict	= FALSE;
3220 	uchar_t *bufaddr;
3221 	int 	status;
3222 	struct sd_lun	*un;
3223 
3224 	ASSERT(ssc != NULL);
3225 	un = ssc->ssc_un;
3226 	ASSERT(un != NULL);
3227 
3228 	/*
3229 	 * Send a throwaway START UNIT command.
3230 	 *
3231 	 * If we fail on this, we don't care presently what precisely
3232 	 * is wrong.  EMC's arrays will also fail this with a check
3233 	 * condition (0x2/0x4/0x3) if the device is "inactive," but
3234 	 * we don't want to fail the attach because it may become
3235 	 * "active" later.
3236 	 * We don't know if power condition is supported or not at
3237 	 * this stage, use START STOP bit.
3238 	 */
3239 	status = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
3240 	    SD_TARGET_START, SD_PATH_DIRECT);
3241 
3242 	if (status != 0) {
3243 		if (status == EACCES)
3244 			has_conflict = TRUE;
3245 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3246 	}
3247 
3248 	/*
3249 	 * Send another INQUIRY command to the target. This is necessary for
3250 	 * non-removable media direct access devices because their INQUIRY data
3251 	 * may not be fully qualified until they are spun up (perhaps via the
3252 	 * START command above).  Note: This seems to be needed for some
3253 	 * legacy devices only.) The INQUIRY command should succeed even if a
3254 	 * Reservation Conflict is present.
3255 	 */
3256 	bufaddr = kmem_zalloc(SUN_INQSIZE, KM_SLEEP);
3257 
3258 	if (sd_send_scsi_INQUIRY(ssc, bufaddr, SUN_INQSIZE, 0, 0, &resid)
3259 	    != 0) {
3260 		kmem_free(bufaddr, SUN_INQSIZE);
3261 		sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
3262 		return (EIO);
3263 	}
3264 
3265 	/*
3266 	 * If we got enough INQUIRY data, copy it over the old INQUIRY data.
3267 	 * Note that this routine does not return a failure here even if the
3268 	 * INQUIRY command did not return any data.  This is a legacy behavior.
3269 	 */
3270 	if ((SUN_INQSIZE - resid) >= SUN_MIN_INQLEN) {
3271 		bcopy(bufaddr, SD_INQUIRY(un), SUN_INQSIZE);
3272 	}
3273 
3274 	kmem_free(bufaddr, SUN_INQSIZE);
3275 
3276 	/* If we hit a reservation conflict above, tell the caller. */
3277 	if (has_conflict == TRUE) {
3278 		return (EACCES);
3279 	}
3280 
3281 	return (0);
3282 }
3283 
3284 #ifdef _LP64
3285 /*
3286  *    Function: sd_enable_descr_sense
3287  *
3288  * Description: This routine attempts to select descriptor sense format
3289  *		using the Control mode page.  Devices that support 64 bit
3290  *		LBAs (for >2TB luns) should also implement descriptor
3291  *		sense data so we will call this function whenever we see
3292  *		a lun larger than 2TB.  If for some reason the device
3293  *		supports 64 bit LBAs but doesn't support descriptor sense
3294  *		presumably the mode select will fail.  Everything will
3295  *		continue to work normally except that we will not get
3296  *		complete sense data for commands that fail with an LBA
3297  *		larger than 32 bits.
3298  *
3299  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3300  *                      structure for this target.
3301  *
3302  *     Context: Kernel thread context only
3303  */
3304 
3305 static void
3306 sd_enable_descr_sense(sd_ssc_t *ssc)
3307 {
3308 	uchar_t			*header;
3309 	struct mode_control_scsi3 *ctrl_bufp;
3310 	size_t			buflen;
3311 	size_t			bd_len;
3312 	int			status;
3313 	struct sd_lun		*un;
3314 
3315 	ASSERT(ssc != NULL);
3316 	un = ssc->ssc_un;
3317 	ASSERT(un != NULL);
3318 
3319 	/*
3320 	 * Read MODE SENSE page 0xA, Control Mode Page
3321 	 */
3322 	buflen = MODE_HEADER_LENGTH + MODE_BLK_DESC_LENGTH +
3323 	    sizeof (struct mode_control_scsi3);
3324 	header = kmem_zalloc(buflen, KM_SLEEP);
3325 
3326 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
3327 	    MODEPAGE_CTRL_MODE, SD_PATH_DIRECT);
3328 
3329 	if (status != 0) {
3330 		SD_ERROR(SD_LOG_COMMON, un,
3331 		    "sd_enable_descr_sense: mode sense ctrl page failed\n");
3332 		goto eds_exit;
3333 	}
3334 
3335 	/*
3336 	 * Determine size of Block Descriptors in order to locate
3337 	 * the mode page data. ATAPI devices return 0, SCSI devices
3338 	 * should return MODE_BLK_DESC_LENGTH.
3339 	 */
3340 	bd_len  = ((struct mode_header *)header)->bdesc_length;
3341 
3342 	/* Clear the mode data length field for MODE SELECT */
3343 	((struct mode_header *)header)->length = 0;
3344 
3345 	ctrl_bufp = (struct mode_control_scsi3 *)
3346 	    (header + MODE_HEADER_LENGTH + bd_len);
3347 
3348 	/*
3349 	 * If the page length is smaller than the expected value,
3350 	 * the target device doesn't support D_SENSE. Bail out here.
3351 	 */
3352 	if (ctrl_bufp->mode_page.length <
3353 	    sizeof (struct mode_control_scsi3) - 2) {
3354 		SD_ERROR(SD_LOG_COMMON, un,
3355 		    "sd_enable_descr_sense: enable D_SENSE failed\n");
3356 		goto eds_exit;
3357 	}
3358 
3359 	/*
3360 	 * Clear PS bit for MODE SELECT
3361 	 */
3362 	ctrl_bufp->mode_page.ps = 0;
3363 
3364 	/*
3365 	 * Set D_SENSE to enable descriptor sense format.
3366 	 */
3367 	ctrl_bufp->d_sense = 1;
3368 
3369 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3370 
3371 	/*
3372 	 * Use MODE SELECT to commit the change to the D_SENSE bit
3373 	 */
3374 	status = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
3375 	    buflen, SD_DONTSAVE_PAGE, SD_PATH_DIRECT);
3376 
3377 	if (status != 0) {
3378 		SD_INFO(SD_LOG_COMMON, un,
3379 		    "sd_enable_descr_sense: mode select ctrl page failed\n");
3380 	} else {
3381 		kmem_free(header, buflen);
3382 		return;
3383 	}
3384 
3385 eds_exit:
3386 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3387 	kmem_free(header, buflen);
3388 }
3389 
3390 /*
3391  *    Function: sd_reenable_dsense_task
3392  *
3393  * Description: Re-enable descriptor sense after device or bus reset
3394  *
3395  *     Context: Executes in a taskq() thread context
3396  */
3397 static void
3398 sd_reenable_dsense_task(void *arg)
3399 {
3400 	struct	sd_lun	*un = arg;
3401 	sd_ssc_t	*ssc;
3402 
3403 	ASSERT(un != NULL);
3404 
3405 	ssc = sd_ssc_init(un);
3406 	sd_enable_descr_sense(ssc);
3407 	sd_ssc_fini(ssc);
3408 }
3409 #endif /* _LP64 */
3410 
3411 /*
3412  *    Function: sd_set_mmc_caps
3413  *
3414  * Description: This routine determines if the device is MMC compliant and if
3415  *		the device supports CDDA via a mode sense of the CDVD
3416  *		capabilities mode page. Also checks if the device is a
3417  *		dvdram writable device.
3418  *
3419  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
3420  *                      structure for this target.
3421  *
3422  *     Context: Kernel thread context only
3423  */
3424 
3425 static void
3426 sd_set_mmc_caps(sd_ssc_t *ssc)
3427 {
3428 	struct mode_header_grp2		*sense_mhp;
3429 	uchar_t				*sense_page;
3430 	caddr_t				buf;
3431 	int				bd_len;
3432 	int				status;
3433 	struct uscsi_cmd		com;
3434 	int				rtn;
3435 	uchar_t				*out_data_rw, *out_data_hd;
3436 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3437 	uchar_t				*out_data_gesn;
3438 	int				gesn_len;
3439 	struct sd_lun			*un;
3440 
3441 	ASSERT(ssc != NULL);
3442 	un = ssc->ssc_un;
3443 	ASSERT(un != NULL);
3444 
3445 	/*
3446 	 * The flags which will be set in this function are - mmc compliant,
3447 	 * dvdram writable device, cdda support. Initialize them to FALSE
3448 	 * and if a capability is detected - it will be set to TRUE.
3449 	 */
3450 	un->un_f_mmc_cap = FALSE;
3451 	un->un_f_dvdram_writable_device = FALSE;
3452 	un->un_f_cfg_cdda = FALSE;
3453 
3454 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3455 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3456 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, SD_PATH_DIRECT);
3457 
3458 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3459 
3460 	if (status != 0) {
3461 		/* command failed; just return */
3462 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3463 		return;
3464 	}
3465 	/*
3466 	 * If the mode sense request for the CDROM CAPABILITIES
3467 	 * page (0x2A) succeeds the device is assumed to be MMC.
3468 	 */
3469 	un->un_f_mmc_cap = TRUE;
3470 
3471 	/* See if GET STATUS EVENT NOTIFICATION is supported */
3472 	if (un->un_f_mmc_gesn_polling) {
3473 		gesn_len = SD_GESN_HEADER_LEN + SD_GESN_MEDIA_DATA_LEN;
3474 		out_data_gesn = kmem_zalloc(gesn_len, KM_SLEEP);
3475 
3476 		rtn = sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(ssc,
3477 		    out_data_gesn, gesn_len, 1 << SD_GESN_MEDIA_CLASS);
3478 
3479 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3480 
3481 		if ((rtn != 0) || !sd_gesn_media_data_valid(out_data_gesn)) {
3482 			un->un_f_mmc_gesn_polling = FALSE;
3483 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3484 			    "sd_set_mmc_caps: gesn not supported "
3485 			    "%d %x %x %x %x\n", rtn,
3486 			    out_data_gesn[0], out_data_gesn[1],
3487 			    out_data_gesn[2], out_data_gesn[3]);
3488 		}
3489 
3490 		kmem_free(out_data_gesn, gesn_len);
3491 	}
3492 
3493 	/* Get to the page data */
3494 	sense_mhp = (struct mode_header_grp2 *)buf;
3495 	bd_len = (sense_mhp->bdesc_length_hi << 8) |
3496 	    sense_mhp->bdesc_length_lo;
3497 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3498 		/*
3499 		 * We did not get back the expected block descriptor
3500 		 * length so we cannot determine if the device supports
3501 		 * CDDA. However, we still indicate the device is MMC
3502 		 * according to the successful response to the page
3503 		 * 0x2A mode sense request.
3504 		 */
3505 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3506 		    "sd_set_mmc_caps: Mode Sense returned "
3507 		    "invalid block descriptor length\n");
3508 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3509 		return;
3510 	}
3511 
3512 	/* See if read CDDA is supported */
3513 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 +
3514 	    bd_len);
3515 	un->un_f_cfg_cdda = (sense_page[5] & 0x01) ? TRUE : FALSE;
3516 
3517 	/* See if writing DVD RAM is supported. */
3518 	un->un_f_dvdram_writable_device = (sense_page[3] & 0x20) ? TRUE : FALSE;
3519 	if (un->un_f_dvdram_writable_device == TRUE) {
3520 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3521 		return;
3522 	}
3523 
3524 	/*
3525 	 * If the device presents DVD or CD capabilities in the mode
3526 	 * page, we can return here since a RRD will not have
3527 	 * these capabilities.
3528 	 */
3529 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3530 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3531 		return;
3532 	}
3533 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3534 
3535 	/*
3536 	 * If un->un_f_dvdram_writable_device is still FALSE,
3537 	 * check for a Removable Rigid Disk (RRD).  A RRD
3538 	 * device is identified by the features RANDOM_WRITABLE and
3539 	 * HARDWARE_DEFECT_MANAGEMENT.
3540 	 */
3541 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3542 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3543 
3544 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3545 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3546 	    RANDOM_WRITABLE, SD_PATH_STANDARD);
3547 
3548 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3549 
3550 	if (rtn != 0) {
3551 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3552 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3553 		return;
3554 	}
3555 
3556 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3557 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3558 
3559 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3560 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3561 	    HARDWARE_DEFECT_MANAGEMENT, SD_PATH_STANDARD);
3562 
3563 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3564 
3565 	if (rtn == 0) {
3566 		/*
3567 		 * We have good information, check for random writable
3568 		 * and hardware defect features.
3569 		 */
3570 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3571 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT)) {
3572 			un->un_f_dvdram_writable_device = TRUE;
3573 		}
3574 	}
3575 
3576 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3577 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3578 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3579 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3580 }
3581 
3582 /*
3583  *    Function: sd_check_for_writable_cd
3584  *
3585  * Description: This routine determines if the media in the device is
3586  *		writable or not. It uses the get configuration command (0x46)
3587  *		to determine if the media is writable
3588  *
3589  *   Arguments: un - driver soft state (unit) structure
3590  *              path_flag - SD_PATH_DIRECT to use the USCSI "direct"
3591  *                           chain and the normal command waitq, or
3592  *                           SD_PATH_DIRECT_PRIORITY to use the USCSI
3593  *                           "direct" chain and bypass the normal command
3594  *                           waitq.
3595  *
3596  *     Context: Never called at interrupt context.
3597  */
3598 
3599 static void
3600 sd_check_for_writable_cd(sd_ssc_t *ssc, int path_flag)
3601 {
3602 	struct uscsi_cmd		com;
3603 	uchar_t				*out_data;
3604 	uchar_t				*rqbuf;
3605 	int				rtn;
3606 	uchar_t				*out_data_rw, *out_data_hd;
3607 	uchar_t				*rqbuf_rw, *rqbuf_hd;
3608 	struct mode_header_grp2		*sense_mhp;
3609 	uchar_t				*sense_page;
3610 	caddr_t				buf;
3611 	int				bd_len;
3612 	int				status;
3613 	struct sd_lun			*un;
3614 
3615 	ASSERT(ssc != NULL);
3616 	un = ssc->ssc_un;
3617 	ASSERT(un != NULL);
3618 	ASSERT(mutex_owned(SD_MUTEX(un)));
3619 
3620 	/*
3621 	 * Initialize the writable media to false, if configuration info.
3622 	 * tells us otherwise then only we will set it.
3623 	 */
3624 	un->un_f_mmc_writable_media = FALSE;
3625 	mutex_exit(SD_MUTEX(un));
3626 
3627 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
3628 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3629 
3630 	rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf, SENSE_LENGTH,
3631 	    out_data, SD_PROFILE_HEADER_LEN, path_flag);
3632 
3633 	if (rtn != 0)
3634 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3635 
3636 	mutex_enter(SD_MUTEX(un));
3637 	if (rtn == 0) {
3638 		/*
3639 		 * We have good information, check for writable DVD.
3640 		 */
3641 		if ((out_data[6] == 0) && (out_data[7] == 0x12)) {
3642 			un->un_f_mmc_writable_media = TRUE;
3643 			kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3644 			kmem_free(rqbuf, SENSE_LENGTH);
3645 			return;
3646 		}
3647 	}
3648 
3649 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
3650 	kmem_free(rqbuf, SENSE_LENGTH);
3651 
3652 	/*
3653 	 * Determine if this is a RRD type device.
3654 	 */
3655 	mutex_exit(SD_MUTEX(un));
3656 	buf = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
3657 	status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, (uchar_t *)buf,
3658 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP, path_flag);
3659 
3660 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3661 
3662 	mutex_enter(SD_MUTEX(un));
3663 	if (status != 0) {
3664 		/* command failed; just return */
3665 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3666 		return;
3667 	}
3668 
3669 	/* Get to the page data */
3670 	sense_mhp = (struct mode_header_grp2 *)buf;
3671 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
3672 	if (bd_len > MODE_BLK_DESC_LENGTH) {
3673 		/*
3674 		 * We did not get back the expected block descriptor length so
3675 		 * we cannot check the mode page.
3676 		 */
3677 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3678 		    "sd_check_for_writable_cd: Mode Sense returned "
3679 		    "invalid block descriptor length\n");
3680 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3681 		return;
3682 	}
3683 
3684 	/*
3685 	 * If the device presents DVD or CD capabilities in the mode
3686 	 * page, we can return here since a RRD device will not have
3687 	 * these capabilities.
3688 	 */
3689 	sense_page = (uchar_t *)(buf + MODE_HEADER_LENGTH_GRP2 + bd_len);
3690 	if ((sense_page[2] & 0x3f) || (sense_page[3] & 0x3f)) {
3691 		kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3692 		return;
3693 	}
3694 	kmem_free(buf, BUFLEN_MODE_CDROM_CAP);
3695 
3696 	/*
3697 	 * If un->un_f_mmc_writable_media is still FALSE,
3698 	 * check for RRD type media.  A RRD device is identified
3699 	 * by the features RANDOM_WRITABLE and HARDWARE_DEFECT_MANAGEMENT.
3700 	 */
3701 	mutex_exit(SD_MUTEX(un));
3702 	out_data_rw = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3703 	rqbuf_rw = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3704 
3705 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_rw,
3706 	    SENSE_LENGTH, out_data_rw, SD_CURRENT_FEATURE_LEN,
3707 	    RANDOM_WRITABLE, path_flag);
3708 
3709 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3710 	if (rtn != 0) {
3711 		kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3712 		kmem_free(rqbuf_rw, SENSE_LENGTH);
3713 		mutex_enter(SD_MUTEX(un));
3714 		return;
3715 	}
3716 
3717 	out_data_hd = kmem_zalloc(SD_CURRENT_FEATURE_LEN, KM_SLEEP);
3718 	rqbuf_hd = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
3719 
3720 	rtn = sd_send_scsi_feature_GET_CONFIGURATION(ssc, &com, rqbuf_hd,
3721 	    SENSE_LENGTH, out_data_hd, SD_CURRENT_FEATURE_LEN,
3722 	    HARDWARE_DEFECT_MANAGEMENT, path_flag);
3723 
3724 	sd_ssc_assessment(ssc, SD_FMT_IGNORE);
3725 	mutex_enter(SD_MUTEX(un));
3726 	if (rtn == 0) {
3727 		/*
3728 		 * We have good information, check for random writable
3729 		 * and hardware defect features as current.
3730 		 */
3731 		if ((out_data_rw[9] & RANDOM_WRITABLE) &&
3732 		    (out_data_rw[10] & 0x1) &&
3733 		    (out_data_hd[9] & HARDWARE_DEFECT_MANAGEMENT) &&
3734 		    (out_data_hd[10] & 0x1)) {
3735 			un->un_f_mmc_writable_media = TRUE;
3736 		}
3737 	}
3738 
3739 	kmem_free(out_data_rw, SD_CURRENT_FEATURE_LEN);
3740 	kmem_free(rqbuf_rw, SENSE_LENGTH);
3741 	kmem_free(out_data_hd, SD_CURRENT_FEATURE_LEN);
3742 	kmem_free(rqbuf_hd, SENSE_LENGTH);
3743 }
3744 
3745 /*
3746  *    Function: sd_read_unit_properties
3747  *
3748  * Description: The following implements a property lookup mechanism.
3749  *		Properties for particular disks (keyed on vendor, model
3750  *		and rev numbers) are sought in the sd.conf file via
3751  *		sd_process_sdconf_file(), and if not found there, are
3752  *		looked for in a list hardcoded in this driver via
3753  *		sd_process_sdconf_table() Once located the properties
3754  *		are used to update the driver unit structure.
3755  *
3756  *   Arguments: un - driver soft state (unit) structure
3757  */
3758 
3759 static void
3760 sd_read_unit_properties(struct sd_lun *un)
3761 {
3762 	/*
3763 	 * sd_process_sdconf_file returns SD_FAILURE if it cannot find
3764 	 * the "sd-config-list" property (from the sd.conf file) or if
3765 	 * there was not a match for the inquiry vid/pid. If this event
3766 	 * occurs the static driver configuration table is searched for
3767 	 * a match.
3768 	 */
3769 	ASSERT(un != NULL);
3770 	if (sd_process_sdconf_file(un) == SD_FAILURE) {
3771 		sd_process_sdconf_table(un);
3772 	}
3773 
3774 	/* check for LSI device */
3775 	sd_is_lsi(un);
3776 
3777 
3778 }
3779 
3780 
3781 /*
3782  *    Function: sd_process_sdconf_file
3783  *
3784  * Description: Use ddi_prop_lookup(9F) to obtain the properties from the
3785  *		driver's config file (ie, sd.conf) and update the driver
3786  *		soft state structure accordingly.
3787  *
3788  *   Arguments: un - driver soft state (unit) structure
3789  *
3790  * Return Code: SD_SUCCESS - The properties were successfully set according
3791  *			     to the driver configuration file.
3792  *		SD_FAILURE - The driver config list was not obtained or
3793  *			     there was no vid/pid match. This indicates that
3794  *			     the static config table should be used.
3795  *
3796  * The config file has a property, "sd-config-list". Currently we support
3797  * two kinds of formats. For both formats, the value of this property
3798  * is a list of duplets:
3799  *
3800  *  sd-config-list=
3801  *	<duplet>,
3802  *	[,<duplet>]*;
3803  *
3804  * For the improved format, where
3805  *
3806  *     <duplet>:= "<vid+pid>","<tunable-list>"
3807  *
3808  * and
3809  *
3810  *     <tunable-list>:=   <tunable> [, <tunable> ]*;
3811  *     <tunable> =        <name> : <value>
3812  *
3813  * The <vid+pid> is the string that is returned by the target device on a
3814  * SCSI inquiry command, the <tunable-list> contains one or more tunables
3815  * to apply to all target devices with the specified <vid+pid>.
3816  *
3817  * Each <tunable> is a "<name> : <value>" pair.
3818  *
3819  * For the old format, the structure of each duplet is as follows:
3820  *
3821  *  <duplet>:= "<vid+pid>","<data-property-name_list>"
3822  *
3823  * The first entry of the duplet is the device ID string (the concatenated
3824  * vid & pid; not to be confused with a device_id).  This is defined in
3825  * the same way as in the sd_disk_table.
3826  *
3827  * The second part of the duplet is a string that identifies a
3828  * data-property-name-list. The data-property-name-list is defined as
3829  * follows:
3830  *
3831  *  <data-property-name-list>:=<data-property-name> [<data-property-name>]
3832  *
3833  * The syntax of <data-property-name> depends on the <version> field.
3834  *
3835  * If version = SD_CONF_VERSION_1 we have the following syntax:
3836  *
3837  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
3838  *
3839  * where the prop0 value will be used to set prop0 if bit0 set in the
3840  * flags, prop1 if bit1 set, etc. and N = SD_CONF_MAX_ITEMS -1
3841  *
3842  */
3843 
3844 static int
3845 sd_process_sdconf_file(struct sd_lun *un)
3846 {
3847 	char	**config_list = NULL;
3848 	uint_t	nelements;
3849 	char	*vidptr;
3850 	int	vidlen;
3851 	char	*dnlist_ptr;
3852 	char	*dataname_ptr;
3853 	char	*dataname_lasts;
3854 	int	*data_list = NULL;
3855 	uint_t	data_list_len;
3856 	int	rval = SD_FAILURE;
3857 	int	i;
3858 
3859 	ASSERT(un != NULL);
3860 
3861 	/* Obtain the configuration list associated with the .conf file */
3862 	if (ddi_prop_lookup_string_array(DDI_DEV_T_ANY, SD_DEVINFO(un),
3863 	    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, sd_config_list,
3864 	    &config_list, &nelements) != DDI_PROP_SUCCESS) {
3865 		return (SD_FAILURE);
3866 	}
3867 
3868 	/*
3869 	 * Compare vids in each duplet to the inquiry vid - if a match is
3870 	 * made, get the data value and update the soft state structure
3871 	 * accordingly.
3872 	 *
3873 	 * Each duplet should show as a pair of strings, return SD_FAILURE
3874 	 * otherwise.
3875 	 */
3876 	if (nelements & 1) {
3877 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
3878 		    "sd-config-list should show as pairs of strings.\n");
3879 		if (config_list)
3880 			ddi_prop_free(config_list);
3881 		return (SD_FAILURE);
3882 	}
3883 
3884 	for (i = 0; i < nelements; i += 2) {
3885 		/*
3886 		 * Note: The assumption here is that each vid entry is on
3887 		 * a unique line from its associated duplet.
3888 		 */
3889 		vidptr = config_list[i];
3890 		vidlen = (int)strlen(vidptr);
3891 		if ((vidlen == 0) ||
3892 		    (sd_sdconf_id_match(un, vidptr, vidlen) != SD_SUCCESS)) {
3893 			continue;
3894 		}
3895 
3896 		/*
3897 		 * dnlist contains 1 or more blank separated
3898 		 * data-property-name entries
3899 		 */
3900 		dnlist_ptr = config_list[i + 1];
3901 
3902 		if (strchr(dnlist_ptr, ':') != NULL) {
3903 			/*
3904 			 * Decode the improved format sd-config-list.
3905 			 */
3906 			sd_nvpair_str_decode(un, dnlist_ptr);
3907 		} else {
3908 			/*
3909 			 * The old format sd-config-list, loop through all
3910 			 * data-property-name entries in the
3911 			 * data-property-name-list
3912 			 * setting the properties for each.
3913 			 */
3914 			for (dataname_ptr = sd_strtok_r(dnlist_ptr, " \t",
3915 			    &dataname_lasts); dataname_ptr != NULL;
3916 			    dataname_ptr = sd_strtok_r(NULL, " \t",
3917 			    &dataname_lasts)) {
3918 				int version;
3919 
3920 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
3921 				    "sd_process_sdconf_file: disk:%s, "
3922 				    "data:%s\n", vidptr, dataname_ptr);
3923 
3924 				/* Get the data list */
3925 				if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY,
3926 				    SD_DEVINFO(un), 0, dataname_ptr, &data_list,
3927 				    &data_list_len) != DDI_PROP_SUCCESS) {
3928 					SD_INFO(SD_LOG_ATTACH_DETACH, un,
3929 					    "sd_process_sdconf_file: data "
3930 					    "property (%s) has no value\n",
3931 					    dataname_ptr);
3932 					continue;
3933 				}
3934 
3935 				version = data_list[0];
3936 
3937 				if (version == SD_CONF_VERSION_1) {
3938 					sd_tunables values;
3939 
3940 					/* Set the properties */
3941 					if (sd_chk_vers1_data(un, data_list[1],
3942 					    &data_list[2], data_list_len,
3943 					    dataname_ptr) == SD_SUCCESS) {
3944 						sd_get_tunables_from_conf(un,
3945 						    data_list[1], &data_list[2],
3946 						    &values);
3947 						sd_set_vers1_properties(un,
3948 						    data_list[1], &values);
3949 						rval = SD_SUCCESS;
3950 					} else {
3951 						rval = SD_FAILURE;
3952 					}
3953 				} else {
3954 					scsi_log(SD_DEVINFO(un), sd_label,
3955 					    CE_WARN, "data property %s version "
3956 					    "0x%x is invalid.",
3957 					    dataname_ptr, version);
3958 					rval = SD_FAILURE;
3959 				}
3960 				if (data_list)
3961 					ddi_prop_free(data_list);
3962 			}
3963 		}
3964 	}
3965 
3966 	/* free up the memory allocated by ddi_prop_lookup_string_array(). */
3967 	if (config_list) {
3968 		ddi_prop_free(config_list);
3969 	}
3970 
3971 	return (rval);
3972 }
3973 
3974 /*
3975  *    Function: sd_nvpair_str_decode()
3976  *
3977  * Description: Parse the improved format sd-config-list to get
3978  *    each entry of tunable, which includes a name-value pair.
3979  *    Then call sd_set_properties() to set the property.
3980  *
3981  *   Arguments: un - driver soft state (unit) structure
3982  *    nvpair_str - the tunable list
3983  */
3984 static void
3985 sd_nvpair_str_decode(struct sd_lun *un, char *nvpair_str)
3986 {
3987 	char	*nv, *name, *value, *token;
3988 	char	*nv_lasts, *v_lasts, *x_lasts;
3989 
3990 	for (nv = sd_strtok_r(nvpair_str, ",", &nv_lasts); nv != NULL;
3991 	    nv = sd_strtok_r(NULL, ",", &nv_lasts)) {
3992 		token = sd_strtok_r(nv, ":", &v_lasts);
3993 		name  = sd_strtok_r(token, " \t", &x_lasts);
3994 		token = sd_strtok_r(NULL, ":", &v_lasts);
3995 		value = sd_strtok_r(token, " \t", &x_lasts);
3996 		if (name == NULL || value == NULL) {
3997 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
3998 			    "sd_nvpair_str_decode: "
3999 			    "name or value is not valid!\n");
4000 		} else {
4001 			sd_set_properties(un, name, value);
4002 		}
4003 	}
4004 }
4005 
4006 /*
4007  *    Function: sd_strtok_r()
4008  *
4009  * Description: This function uses strpbrk and strspn to break
4010  *    string into tokens on sequentially subsequent calls. Return
4011  *    NULL when no non-separator characters remain. The first
4012  *    argument is NULL for subsequent calls.
4013  */
4014 static char *
4015 sd_strtok_r(char *string, const char *sepset, char **lasts)
4016 {
4017 	char	*q, *r;
4018 
4019 	/* First or subsequent call */
4020 	if (string == NULL)
4021 		string = *lasts;
4022 
4023 	if (string == NULL)
4024 		return (NULL);
4025 
4026 	/* Skip leading separators */
4027 	q = string + strspn(string, sepset);
4028 
4029 	if (*q == '\0')
4030 		return (NULL);
4031 
4032 	if ((r = strpbrk(q, sepset)) == NULL)
4033 		*lasts = NULL;
4034 	else {
4035 		*r = '\0';
4036 		*lasts = r + 1;
4037 	}
4038 	return (q);
4039 }
4040 
4041 /*
4042  *    Function: sd_set_properties()
4043  *
4044  * Description: Set device properties based on the improved
4045  *    format sd-config-list.
4046  *
4047  *   Arguments: un - driver soft state (unit) structure
4048  *    name  - supported tunable name
4049  *    value - tunable value
4050  */
4051 static void
4052 sd_set_properties(struct sd_lun *un, char *name, char *value)
4053 {
4054 	char	*endptr = NULL;
4055 	long	val = 0;
4056 
4057 	if (strcasecmp(name, "cache-nonvolatile") == 0) {
4058 		if (strcasecmp(value, "true") == 0) {
4059 			un->un_f_suppress_cache_flush = TRUE;
4060 		} else if (strcasecmp(value, "false") == 0) {
4061 			un->un_f_suppress_cache_flush = FALSE;
4062 		} else {
4063 			goto value_invalid;
4064 		}
4065 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4066 		    "suppress_cache_flush flag set to %d\n",
4067 		    un->un_f_suppress_cache_flush);
4068 		return;
4069 	}
4070 
4071 	if (strcasecmp(name, "controller-type") == 0) {
4072 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4073 			un->un_ctype = val;
4074 		} else {
4075 			goto value_invalid;
4076 		}
4077 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4078 		    "ctype set to %d\n", un->un_ctype);
4079 		return;
4080 	}
4081 
4082 	if (strcasecmp(name, "delay-busy") == 0) {
4083 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4084 			un->un_busy_timeout = drv_usectohz(val / 1000);
4085 		} else {
4086 			goto value_invalid;
4087 		}
4088 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4089 		    "busy_timeout set to %d\n", un->un_busy_timeout);
4090 		return;
4091 	}
4092 
4093 	if (strcasecmp(name, "disksort") == 0) {
4094 		if (strcasecmp(value, "true") == 0) {
4095 			un->un_f_disksort_disabled = FALSE;
4096 		} else if (strcasecmp(value, "false") == 0) {
4097 			un->un_f_disksort_disabled = TRUE;
4098 		} else {
4099 			goto value_invalid;
4100 		}
4101 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4102 		    "disksort disabled flag set to %d\n",
4103 		    un->un_f_disksort_disabled);
4104 		return;
4105 	}
4106 
4107 	if (strcasecmp(name, "power-condition") == 0) {
4108 		if (strcasecmp(value, "true") == 0) {
4109 			un->un_f_power_condition_disabled = FALSE;
4110 		} else if (strcasecmp(value, "false") == 0) {
4111 			un->un_f_power_condition_disabled = TRUE;
4112 		} else {
4113 			goto value_invalid;
4114 		}
4115 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4116 		    "power condition disabled flag set to %d\n",
4117 		    un->un_f_power_condition_disabled);
4118 		return;
4119 	}
4120 
4121 	if (strcasecmp(name, "timeout-releasereservation") == 0) {
4122 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4123 			un->un_reserve_release_time = val;
4124 		} else {
4125 			goto value_invalid;
4126 		}
4127 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4128 		    "reservation release timeout set to %d\n",
4129 		    un->un_reserve_release_time);
4130 		return;
4131 	}
4132 
4133 	if (strcasecmp(name, "reset-lun") == 0) {
4134 		if (strcasecmp(value, "true") == 0) {
4135 			un->un_f_lun_reset_enabled = TRUE;
4136 		} else if (strcasecmp(value, "false") == 0) {
4137 			un->un_f_lun_reset_enabled = FALSE;
4138 		} else {
4139 			goto value_invalid;
4140 		}
4141 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4142 		    "lun reset enabled flag set to %d\n",
4143 		    un->un_f_lun_reset_enabled);
4144 		return;
4145 	}
4146 
4147 	if (strcasecmp(name, "retries-busy") == 0) {
4148 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4149 			un->un_busy_retry_count = val;
4150 		} else {
4151 			goto value_invalid;
4152 		}
4153 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4154 		    "busy retry count set to %d\n", un->un_busy_retry_count);
4155 		return;
4156 	}
4157 
4158 	if (strcasecmp(name, "retries-timeout") == 0) {
4159 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4160 			un->un_retry_count = val;
4161 		} else {
4162 			goto value_invalid;
4163 		}
4164 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4165 		    "timeout retry count set to %d\n", un->un_retry_count);
4166 		return;
4167 	}
4168 
4169 	if (strcasecmp(name, "retries-notready") == 0) {
4170 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4171 			un->un_notready_retry_count = val;
4172 		} else {
4173 			goto value_invalid;
4174 		}
4175 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4176 		    "notready retry count set to %d\n",
4177 		    un->un_notready_retry_count);
4178 		return;
4179 	}
4180 
4181 	if (strcasecmp(name, "retries-reset") == 0) {
4182 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4183 			un->un_reset_retry_count = val;
4184 		} else {
4185 			goto value_invalid;
4186 		}
4187 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4188 		    "reset retry count set to %d\n",
4189 		    un->un_reset_retry_count);
4190 		return;
4191 	}
4192 
4193 	if (strcasecmp(name, "throttle-max") == 0) {
4194 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4195 			un->un_saved_throttle = un->un_throttle = val;
4196 		} else {
4197 			goto value_invalid;
4198 		}
4199 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4200 		    "throttle set to %d\n", un->un_throttle);
4201 	}
4202 
4203 	if (strcasecmp(name, "throttle-min") == 0) {
4204 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4205 			un->un_min_throttle = val;
4206 		} else {
4207 			goto value_invalid;
4208 		}
4209 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4210 		    "min throttle set to %d\n", un->un_min_throttle);
4211 	}
4212 
4213 	if (strcasecmp(name, "rmw-type") == 0) {
4214 		if (ddi_strtol(value, &endptr, 0, &val) == 0) {
4215 			un->un_f_rmw_type = val;
4216 		} else {
4217 			goto value_invalid;
4218 		}
4219 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4220 		    "RMW type set to %d\n", un->un_f_rmw_type);
4221 	}
4222 
4223 	if (strcasecmp(name, "physical-block-size") == 0) {
4224 		if (ddi_strtol(value, &endptr, 0, &val) == 0 &&
4225 		    ISP2(val) && val >= un->un_tgt_blocksize &&
4226 		    val >= un->un_sys_blocksize) {
4227 			un->un_phy_blocksize = val;
4228 		} else {
4229 			goto value_invalid;
4230 		}
4231 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4232 		    "physical block size set to %d\n", un->un_phy_blocksize);
4233 	}
4234 
4235 	/*
4236 	 * Validate the throttle values.
4237 	 * If any of the numbers are invalid, set everything to defaults.
4238 	 */
4239 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4240 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4241 	    (un->un_min_throttle > un->un_throttle)) {
4242 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4243 		un->un_min_throttle = sd_min_throttle;
4244 	}
4245 
4246 	if (strcasecmp(name, "mmc-gesn-polling") == 0) {
4247 		if (strcasecmp(value, "true") == 0) {
4248 			un->un_f_mmc_gesn_polling = TRUE;
4249 		} else if (strcasecmp(value, "false") == 0) {
4250 			un->un_f_mmc_gesn_polling = FALSE;
4251 		} else {
4252 			goto value_invalid;
4253 		}
4254 		SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4255 		    "mmc-gesn-polling set to %d\n",
4256 		    un->un_f_mmc_gesn_polling);
4257 	}
4258 
4259 	return;
4260 
4261 value_invalid:
4262 	SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_set_properties: "
4263 	    "value of prop %s is invalid\n", name);
4264 }
4265 
4266 /*
4267  *    Function: sd_get_tunables_from_conf()
4268  *
4269  *
4270  *    This function reads the data list from the sd.conf file and pulls
4271  *    the values that can have numeric values as arguments and places
4272  *    the values in the appropriate sd_tunables member.
4273  *    Since the order of the data list members varies across platforms
4274  *    This function reads them from the data list in a platform specific
4275  *    order and places them into the correct sd_tunable member that is
4276  *    consistent across all platforms.
4277  */
4278 static void
4279 sd_get_tunables_from_conf(struct sd_lun *un, int flags, int *data_list,
4280     sd_tunables *values)
4281 {
4282 	int i;
4283 	int mask;
4284 
4285 	bzero(values, sizeof (sd_tunables));
4286 
4287 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4288 
4289 		mask = 1 << i;
4290 		if (mask > flags) {
4291 			break;
4292 		}
4293 
4294 		switch (mask & flags) {
4295 		case 0:	/* This mask bit not set in flags */
4296 			continue;
4297 		case SD_CONF_BSET_THROTTLE:
4298 			values->sdt_throttle = data_list[i];
4299 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4300 			    "sd_get_tunables_from_conf: throttle = %d\n",
4301 			    values->sdt_throttle);
4302 			break;
4303 		case SD_CONF_BSET_CTYPE:
4304 			values->sdt_ctype = data_list[i];
4305 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4306 			    "sd_get_tunables_from_conf: ctype = %d\n",
4307 			    values->sdt_ctype);
4308 			break;
4309 		case SD_CONF_BSET_NRR_COUNT:
4310 			values->sdt_not_rdy_retries = data_list[i];
4311 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4312 			    "sd_get_tunables_from_conf: not_rdy_retries = %d\n",
4313 			    values->sdt_not_rdy_retries);
4314 			break;
4315 		case SD_CONF_BSET_BSY_RETRY_COUNT:
4316 			values->sdt_busy_retries = data_list[i];
4317 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4318 			    "sd_get_tunables_from_conf: busy_retries = %d\n",
4319 			    values->sdt_busy_retries);
4320 			break;
4321 		case SD_CONF_BSET_RST_RETRIES:
4322 			values->sdt_reset_retries = data_list[i];
4323 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4324 			    "sd_get_tunables_from_conf: reset_retries = %d\n",
4325 			    values->sdt_reset_retries);
4326 			break;
4327 		case SD_CONF_BSET_RSV_REL_TIME:
4328 			values->sdt_reserv_rel_time = data_list[i];
4329 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4330 			    "sd_get_tunables_from_conf: reserv_rel_time = %d\n",
4331 			    values->sdt_reserv_rel_time);
4332 			break;
4333 		case SD_CONF_BSET_MIN_THROTTLE:
4334 			values->sdt_min_throttle = data_list[i];
4335 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4336 			    "sd_get_tunables_from_conf: min_throttle = %d\n",
4337 			    values->sdt_min_throttle);
4338 			break;
4339 		case SD_CONF_BSET_DISKSORT_DISABLED:
4340 			values->sdt_disk_sort_dis = data_list[i];
4341 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4342 			    "sd_get_tunables_from_conf: disk_sort_dis = %d\n",
4343 			    values->sdt_disk_sort_dis);
4344 			break;
4345 		case SD_CONF_BSET_LUN_RESET_ENABLED:
4346 			values->sdt_lun_reset_enable = data_list[i];
4347 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4348 			    "sd_get_tunables_from_conf: lun_reset_enable = %d"
4349 			    "\n", values->sdt_lun_reset_enable);
4350 			break;
4351 		case SD_CONF_BSET_CACHE_IS_NV:
4352 			values->sdt_suppress_cache_flush = data_list[i];
4353 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4354 			    "sd_get_tunables_from_conf: \
4355 			    suppress_cache_flush = %d"
4356 			    "\n", values->sdt_suppress_cache_flush);
4357 			break;
4358 		case SD_CONF_BSET_PC_DISABLED:
4359 			values->sdt_disk_sort_dis = data_list[i];
4360 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4361 			    "sd_get_tunables_from_conf: power_condition_dis = "
4362 			    "%d\n", values->sdt_power_condition_dis);
4363 			break;
4364 		}
4365 	}
4366 }
4367 
4368 /*
4369  *    Function: sd_process_sdconf_table
4370  *
4371  * Description: Search the static configuration table for a match on the
4372  *		inquiry vid/pid and update the driver soft state structure
4373  *		according to the table property values for the device.
4374  *
4375  *		The form of a configuration table entry is:
4376  *		  <vid+pid>,<flags>,<property-data>
4377  *		  "SEAGATE ST42400N",1,0x40000,
4378  *		  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;
4379  *
4380  *   Arguments: un - driver soft state (unit) structure
4381  */
4382 
4383 static void
4384 sd_process_sdconf_table(struct sd_lun *un)
4385 {
4386 	char	*id = NULL;
4387 	int	table_index;
4388 	int	idlen;
4389 
4390 	ASSERT(un != NULL);
4391 	for (table_index = 0; table_index < sd_disk_table_size;
4392 	    table_index++) {
4393 		id = sd_disk_table[table_index].device_id;
4394 		idlen = strlen(id);
4395 		if (idlen == 0) {
4396 			continue;
4397 		}
4398 
4399 		/*
4400 		 * The static configuration table currently does not
4401 		 * implement version 10 properties. Additionally,
4402 		 * multiple data-property-name entries are not
4403 		 * implemented in the static configuration table.
4404 		 */
4405 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4406 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4407 			    "sd_process_sdconf_table: disk %s\n", id);
4408 			sd_set_vers1_properties(un,
4409 			    sd_disk_table[table_index].flags,
4410 			    sd_disk_table[table_index].properties);
4411 			break;
4412 		}
4413 	}
4414 }
4415 
4416 
4417 /*
4418  *    Function: sd_sdconf_id_match
4419  *
4420  * Description: This local function implements a case sensitive vid/pid
4421  *		comparison as well as the boundary cases of wild card and
4422  *		multiple blanks.
4423  *
4424  *		Note: An implicit assumption made here is that the scsi
4425  *		inquiry structure will always keep the vid, pid and
4426  *		revision strings in consecutive sequence, so they can be
4427  *		read as a single string. If this assumption is not the
4428  *		case, a separate string, to be used for the check, needs
4429  *		to be built with these strings concatenated.
4430  *
4431  *   Arguments: un - driver soft state (unit) structure
4432  *		id - table or config file vid/pid
4433  *		idlen  - length of the vid/pid (bytes)
4434  *
4435  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4436  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4437  */
4438 
4439 static int
4440 sd_sdconf_id_match(struct sd_lun *un, char *id, int idlen)
4441 {
4442 	struct scsi_inquiry	*sd_inq;
4443 	int 			rval = SD_SUCCESS;
4444 
4445 	ASSERT(un != NULL);
4446 	sd_inq = un->un_sd->sd_inq;
4447 	ASSERT(id != NULL);
4448 
4449 	/*
4450 	 * We use the inq_vid as a pointer to a buffer containing the
4451 	 * vid and pid and use the entire vid/pid length of the table
4452 	 * entry for the comparison. This works because the inq_pid
4453 	 * data member follows inq_vid in the scsi_inquiry structure.
4454 	 */
4455 	if (strncasecmp(sd_inq->inq_vid, id, idlen) != 0) {
4456 		/*
4457 		 * The user id string is compared to the inquiry vid/pid
4458 		 * using a case insensitive comparison and ignoring
4459 		 * multiple spaces.
4460 		 */
4461 		rval = sd_blank_cmp(un, id, idlen);
4462 		if (rval != SD_SUCCESS) {
4463 			/*
4464 			 * User id strings that start and end with a "*"
4465 			 * are a special case. These do not have a
4466 			 * specific vendor, and the product string can
4467 			 * appear anywhere in the 16 byte PID portion of
4468 			 * the inquiry data. This is a simple strstr()
4469 			 * type search for the user id in the inquiry data.
4470 			 */
4471 			if ((id[0] == '*') && (id[idlen - 1] == '*')) {
4472 				char	*pidptr = &id[1];
4473 				int	i;
4474 				int	j;
4475 				int	pidstrlen = idlen - 2;
4476 				j = sizeof (SD_INQUIRY(un)->inq_pid) -
4477 				    pidstrlen;
4478 
4479 				if (j < 0) {
4480 					return (SD_FAILURE);
4481 				}
4482 				for (i = 0; i < j; i++) {
4483 					if (bcmp(&SD_INQUIRY(un)->inq_pid[i],
4484 					    pidptr, pidstrlen) == 0) {
4485 						rval = SD_SUCCESS;
4486 						break;
4487 					}
4488 				}
4489 			}
4490 		}
4491 	}
4492 	return (rval);
4493 }
4494 
4495 
4496 /*
4497  *    Function: sd_blank_cmp
4498  *
4499  * Description: If the id string starts and ends with a space, treat
4500  *		multiple consecutive spaces as equivalent to a single
4501  *		space. For example, this causes a sd_disk_table entry
4502  *		of " NEC CDROM " to match a device's id string of
4503  *		"NEC       CDROM".
4504  *
4505  *		Note: The success exit condition for this routine is if
4506  *		the pointer to the table entry is '\0' and the cnt of
4507  *		the inquiry length is zero. This will happen if the inquiry
4508  *		string returned by the device is padded with spaces to be
4509  *		exactly 24 bytes in length (8 byte vid + 16 byte pid). The
4510  *		SCSI spec states that the inquiry string is to be padded with
4511  *		spaces.
4512  *
4513  *   Arguments: un - driver soft state (unit) structure
4514  *		id - table or config file vid/pid
4515  *		idlen  - length of the vid/pid (bytes)
4516  *
4517  * Return Code: SD_SUCCESS - Indicates a match with the inquiry vid/pid
4518  *		SD_FAILURE - Indicates no match with the inquiry vid/pid
4519  */
4520 
4521 static int
4522 sd_blank_cmp(struct sd_lun *un, char *id, int idlen)
4523 {
4524 	char		*p1;
4525 	char		*p2;
4526 	int		cnt;
4527 	cnt = sizeof (SD_INQUIRY(un)->inq_vid) +
4528 	    sizeof (SD_INQUIRY(un)->inq_pid);
4529 
4530 	ASSERT(un != NULL);
4531 	p2 = un->un_sd->sd_inq->inq_vid;
4532 	ASSERT(id != NULL);
4533 	p1 = id;
4534 
4535 	if ((id[0] == ' ') && (id[idlen - 1] == ' ')) {
4536 		/*
4537 		 * Note: string p1 is terminated by a NUL but string p2
4538 		 * isn't.  The end of p2 is determined by cnt.
4539 		 */
4540 		for (;;) {
4541 			/* skip over any extra blanks in both strings */
4542 			while ((*p1 != '\0') && (*p1 == ' ')) {
4543 				p1++;
4544 			}
4545 			while ((cnt != 0) && (*p2 == ' ')) {
4546 				p2++;
4547 				cnt--;
4548 			}
4549 
4550 			/* compare the two strings */
4551 			if ((cnt == 0) ||
4552 			    (SD_TOUPPER(*p1) != SD_TOUPPER(*p2))) {
4553 				break;
4554 			}
4555 			while ((cnt > 0) &&
4556 			    (SD_TOUPPER(*p1) == SD_TOUPPER(*p2))) {
4557 				p1++;
4558 				p2++;
4559 				cnt--;
4560 			}
4561 		}
4562 	}
4563 
4564 	/* return SD_SUCCESS if both strings match */
4565 	return (((*p1 == '\0') && (cnt == 0)) ? SD_SUCCESS : SD_FAILURE);
4566 }
4567 
4568 
4569 /*
4570  *    Function: sd_chk_vers1_data
4571  *
4572  * Description: Verify the version 1 device properties provided by the
4573  *		user via the configuration file
4574  *
4575  *   Arguments: un	     - driver soft state (unit) structure
4576  *		flags	     - integer mask indicating properties to be set
4577  *		prop_list    - integer list of property values
4578  *		list_len     - number of the elements
4579  *
4580  * Return Code: SD_SUCCESS - Indicates the user provided data is valid
4581  *		SD_FAILURE - Indicates the user provided data is invalid
4582  */
4583 
4584 static int
4585 sd_chk_vers1_data(struct sd_lun *un, int flags, int *prop_list,
4586     int list_len, char *dataname_ptr)
4587 {
4588 	int i;
4589 	int mask = 1;
4590 	int index = 0;
4591 
4592 	ASSERT(un != NULL);
4593 
4594 	/* Check for a NULL property name and list */
4595 	if (dataname_ptr == NULL) {
4596 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4597 		    "sd_chk_vers1_data: NULL data property name.");
4598 		return (SD_FAILURE);
4599 	}
4600 	if (prop_list == NULL) {
4601 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4602 		    "sd_chk_vers1_data: %s NULL data property list.",
4603 		    dataname_ptr);
4604 		return (SD_FAILURE);
4605 	}
4606 
4607 	/* Display a warning if undefined bits are set in the flags */
4608 	if (flags & ~SD_CONF_BIT_MASK) {
4609 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4610 		    "sd_chk_vers1_data: invalid bits 0x%x in data list %s. "
4611 		    "Properties not set.",
4612 		    (flags & ~SD_CONF_BIT_MASK), dataname_ptr);
4613 		return (SD_FAILURE);
4614 	}
4615 
4616 	/*
4617 	 * Verify the length of the list by identifying the highest bit set
4618 	 * in the flags and validating that the property list has a length
4619 	 * up to the index of this bit.
4620 	 */
4621 	for (i = 0; i < SD_CONF_MAX_ITEMS; i++) {
4622 		if (flags & mask) {
4623 			index++;
4624 		}
4625 		mask = 1 << i;
4626 	}
4627 	if (list_len < (index + 2)) {
4628 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4629 		    "sd_chk_vers1_data: "
4630 		    "Data property list %s size is incorrect. "
4631 		    "Properties not set.", dataname_ptr);
4632 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT, "Size expected: "
4633 		    "version + 1 flagword + %d properties", SD_CONF_MAX_ITEMS);
4634 		return (SD_FAILURE);
4635 	}
4636 	return (SD_SUCCESS);
4637 }
4638 
4639 
4640 /*
4641  *    Function: sd_set_vers1_properties
4642  *
4643  * Description: Set version 1 device properties based on a property list
4644  *		retrieved from the driver configuration file or static
4645  *		configuration table. Version 1 properties have the format:
4646  *
4647  * 	<data-property-name>:=<version>,<flags>,<prop0>,<prop1>,.....<propN>
4648  *
4649  *		where the prop0 value will be used to set prop0 if bit0
4650  *		is set in the flags
4651  *
4652  *   Arguments: un	     - driver soft state (unit) structure
4653  *		flags	     - integer mask indicating properties to be set
4654  *		prop_list    - integer list of property values
4655  */
4656 
4657 static void
4658 sd_set_vers1_properties(struct sd_lun *un, int flags, sd_tunables *prop_list)
4659 {
4660 	ASSERT(un != NULL);
4661 
4662 	/*
4663 	 * Set the flag to indicate cache is to be disabled. An attempt
4664 	 * to disable the cache via sd_cache_control() will be made
4665 	 * later during attach once the basic initialization is complete.
4666 	 */
4667 	if (flags & SD_CONF_BSET_NOCACHE) {
4668 		un->un_f_opt_disable_cache = TRUE;
4669 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4670 		    "sd_set_vers1_properties: caching disabled flag set\n");
4671 	}
4672 
4673 	/* CD-specific configuration parameters */
4674 	if (flags & SD_CONF_BSET_PLAYMSF_BCD) {
4675 		un->un_f_cfg_playmsf_bcd = TRUE;
4676 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4677 		    "sd_set_vers1_properties: playmsf_bcd set\n");
4678 	}
4679 	if (flags & SD_CONF_BSET_READSUB_BCD) {
4680 		un->un_f_cfg_readsub_bcd = TRUE;
4681 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4682 		    "sd_set_vers1_properties: readsub_bcd set\n");
4683 	}
4684 	if (flags & SD_CONF_BSET_READ_TOC_TRK_BCD) {
4685 		un->un_f_cfg_read_toc_trk_bcd = TRUE;
4686 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4687 		    "sd_set_vers1_properties: read_toc_trk_bcd set\n");
4688 	}
4689 	if (flags & SD_CONF_BSET_READ_TOC_ADDR_BCD) {
4690 		un->un_f_cfg_read_toc_addr_bcd = TRUE;
4691 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4692 		    "sd_set_vers1_properties: read_toc_addr_bcd set\n");
4693 	}
4694 	if (flags & SD_CONF_BSET_NO_READ_HEADER) {
4695 		un->un_f_cfg_no_read_header = TRUE;
4696 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4697 		    "sd_set_vers1_properties: no_read_header set\n");
4698 	}
4699 	if (flags & SD_CONF_BSET_READ_CD_XD4) {
4700 		un->un_f_cfg_read_cd_xd4 = TRUE;
4701 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4702 		    "sd_set_vers1_properties: read_cd_xd4 set\n");
4703 	}
4704 
4705 	/* Support for devices which do not have valid/unique serial numbers */
4706 	if (flags & SD_CONF_BSET_FAB_DEVID) {
4707 		un->un_f_opt_fab_devid = TRUE;
4708 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4709 		    "sd_set_vers1_properties: fab_devid bit set\n");
4710 	}
4711 
4712 	/* Support for user throttle configuration */
4713 	if (flags & SD_CONF_BSET_THROTTLE) {
4714 		ASSERT(prop_list != NULL);
4715 		un->un_saved_throttle = un->un_throttle =
4716 		    prop_list->sdt_throttle;
4717 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4718 		    "sd_set_vers1_properties: throttle set to %d\n",
4719 		    prop_list->sdt_throttle);
4720 	}
4721 
4722 	/* Set the per disk retry count according to the conf file or table. */
4723 	if (flags & SD_CONF_BSET_NRR_COUNT) {
4724 		ASSERT(prop_list != NULL);
4725 		if (prop_list->sdt_not_rdy_retries) {
4726 			un->un_notready_retry_count =
4727 			    prop_list->sdt_not_rdy_retries;
4728 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4729 			    "sd_set_vers1_properties: not ready retry count"
4730 			    " set to %d\n", un->un_notready_retry_count);
4731 		}
4732 	}
4733 
4734 	/* The controller type is reported for generic disk driver ioctls */
4735 	if (flags & SD_CONF_BSET_CTYPE) {
4736 		ASSERT(prop_list != NULL);
4737 		switch (prop_list->sdt_ctype) {
4738 		case CTYPE_CDROM:
4739 			un->un_ctype = prop_list->sdt_ctype;
4740 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4741 			    "sd_set_vers1_properties: ctype set to "
4742 			    "CTYPE_CDROM\n");
4743 			break;
4744 		case CTYPE_CCS:
4745 			un->un_ctype = prop_list->sdt_ctype;
4746 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4747 			    "sd_set_vers1_properties: ctype set to "
4748 			    "CTYPE_CCS\n");
4749 			break;
4750 		case CTYPE_ROD:		/* RW optical */
4751 			un->un_ctype = prop_list->sdt_ctype;
4752 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
4753 			    "sd_set_vers1_properties: ctype set to "
4754 			    "CTYPE_ROD\n");
4755 			break;
4756 		default:
4757 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
4758 			    "sd_set_vers1_properties: Could not set "
4759 			    "invalid ctype value (%d)",
4760 			    prop_list->sdt_ctype);
4761 		}
4762 	}
4763 
4764 	/* Purple failover timeout */
4765 	if (flags & SD_CONF_BSET_BSY_RETRY_COUNT) {
4766 		ASSERT(prop_list != NULL);
4767 		un->un_busy_retry_count =
4768 		    prop_list->sdt_busy_retries;
4769 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4770 		    "sd_set_vers1_properties: "
4771 		    "busy retry count set to %d\n",
4772 		    un->un_busy_retry_count);
4773 	}
4774 
4775 	/* Purple reset retry count */
4776 	if (flags & SD_CONF_BSET_RST_RETRIES) {
4777 		ASSERT(prop_list != NULL);
4778 		un->un_reset_retry_count =
4779 		    prop_list->sdt_reset_retries;
4780 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4781 		    "sd_set_vers1_properties: "
4782 		    "reset retry count set to %d\n",
4783 		    un->un_reset_retry_count);
4784 	}
4785 
4786 	/* Purple reservation release timeout */
4787 	if (flags & SD_CONF_BSET_RSV_REL_TIME) {
4788 		ASSERT(prop_list != NULL);
4789 		un->un_reserve_release_time =
4790 		    prop_list->sdt_reserv_rel_time;
4791 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4792 		    "sd_set_vers1_properties: "
4793 		    "reservation release timeout set to %d\n",
4794 		    un->un_reserve_release_time);
4795 	}
4796 
4797 	/*
4798 	 * Driver flag telling the driver to verify that no commands are pending
4799 	 * for a device before issuing a Test Unit Ready. This is a workaround
4800 	 * for a firmware bug in some Seagate eliteI drives.
4801 	 */
4802 	if (flags & SD_CONF_BSET_TUR_CHECK) {
4803 		un->un_f_cfg_tur_check = TRUE;
4804 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4805 		    "sd_set_vers1_properties: tur queue check set\n");
4806 	}
4807 
4808 	if (flags & SD_CONF_BSET_MIN_THROTTLE) {
4809 		un->un_min_throttle = prop_list->sdt_min_throttle;
4810 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4811 		    "sd_set_vers1_properties: min throttle set to %d\n",
4812 		    un->un_min_throttle);
4813 	}
4814 
4815 	if (flags & SD_CONF_BSET_DISKSORT_DISABLED) {
4816 		un->un_f_disksort_disabled =
4817 		    (prop_list->sdt_disk_sort_dis != 0) ?
4818 		    TRUE : FALSE;
4819 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4820 		    "sd_set_vers1_properties: disksort disabled "
4821 		    "flag set to %d\n",
4822 		    prop_list->sdt_disk_sort_dis);
4823 	}
4824 
4825 	if (flags & SD_CONF_BSET_LUN_RESET_ENABLED) {
4826 		un->un_f_lun_reset_enabled =
4827 		    (prop_list->sdt_lun_reset_enable != 0) ?
4828 		    TRUE : FALSE;
4829 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4830 		    "sd_set_vers1_properties: lun reset enabled "
4831 		    "flag set to %d\n",
4832 		    prop_list->sdt_lun_reset_enable);
4833 	}
4834 
4835 	if (flags & SD_CONF_BSET_CACHE_IS_NV) {
4836 		un->un_f_suppress_cache_flush =
4837 		    (prop_list->sdt_suppress_cache_flush != 0) ?
4838 		    TRUE : FALSE;
4839 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4840 		    "sd_set_vers1_properties: suppress_cache_flush "
4841 		    "flag set to %d\n",
4842 		    prop_list->sdt_suppress_cache_flush);
4843 	}
4844 
4845 	if (flags & SD_CONF_BSET_PC_DISABLED) {
4846 		un->un_f_power_condition_disabled =
4847 		    (prop_list->sdt_power_condition_dis != 0) ?
4848 		    TRUE : FALSE;
4849 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
4850 		    "sd_set_vers1_properties: power_condition_disabled "
4851 		    "flag set to %d\n",
4852 		    prop_list->sdt_power_condition_dis);
4853 	}
4854 
4855 	/*
4856 	 * Validate the throttle values.
4857 	 * If any of the numbers are invalid, set everything to defaults.
4858 	 */
4859 	if ((un->un_throttle < SD_LOWEST_VALID_THROTTLE) ||
4860 	    (un->un_min_throttle < SD_LOWEST_VALID_THROTTLE) ||
4861 	    (un->un_min_throttle > un->un_throttle)) {
4862 		un->un_saved_throttle = un->un_throttle = sd_max_throttle;
4863 		un->un_min_throttle = sd_min_throttle;
4864 	}
4865 }
4866 
4867 /*
4868  *   Function: sd_is_lsi()
4869  *
4870  *   Description: Check for lsi devices, step through the static device
4871  *	table to match vid/pid.
4872  *
4873  *   Args: un - ptr to sd_lun
4874  *
4875  *   Notes:  When creating new LSI property, need to add the new LSI property
4876  *		to this function.
4877  */
4878 static void
4879 sd_is_lsi(struct sd_lun *un)
4880 {
4881 	char	*id = NULL;
4882 	int	table_index;
4883 	int	idlen;
4884 	void	*prop;
4885 
4886 	ASSERT(un != NULL);
4887 	for (table_index = 0; table_index < sd_disk_table_size;
4888 	    table_index++) {
4889 		id = sd_disk_table[table_index].device_id;
4890 		idlen = strlen(id);
4891 		if (idlen == 0) {
4892 			continue;
4893 		}
4894 
4895 		if (sd_sdconf_id_match(un, id, idlen) == SD_SUCCESS) {
4896 			prop = sd_disk_table[table_index].properties;
4897 			if (prop == &lsi_properties ||
4898 			    prop == &lsi_oem_properties ||
4899 			    prop == &lsi_properties_scsi ||
4900 			    prop == &symbios_properties) {
4901 				un->un_f_cfg_is_lsi = TRUE;
4902 			}
4903 			break;
4904 		}
4905 	}
4906 }
4907 
4908 /*
4909  *    Function: sd_get_physical_geometry
4910  *
4911  * Description: Retrieve the MODE SENSE page 3 (Format Device Page) and
4912  *		MODE SENSE page 4 (Rigid Disk Drive Geometry Page) from the
4913  *		target, and use this information to initialize the physical
4914  *		geometry cache specified by pgeom_p.
4915  *
4916  *		MODE SENSE is an optional command, so failure in this case
4917  *		does not necessarily denote an error. We want to use the
4918  *		MODE SENSE commands to derive the physical geometry of the
4919  *		device, but if either command fails, the logical geometry is
4920  *		used as the fallback for disk label geometry in cmlb.
4921  *
4922  *		This requires that un->un_blockcount and un->un_tgt_blocksize
4923  *		have already been initialized for the current target and
4924  *		that the current values be passed as args so that we don't
4925  *		end up ever trying to use -1 as a valid value. This could
4926  *		happen if either value is reset while we're not holding
4927  *		the mutex.
4928  *
4929  *   Arguments: un - driver soft state (unit) structure
4930  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
4931  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
4932  *			to use the USCSI "direct" chain and bypass the normal
4933  *			command waitq.
4934  *
4935  *     Context: Kernel thread only (can sleep).
4936  */
4937 
4938 static int
4939 sd_get_physical_geometry(struct sd_lun *un, cmlb_geom_t *pgeom_p,
4940 	diskaddr_t capacity, int lbasize, int path_flag)
4941 {
4942 	struct	mode_format	*page3p;
4943 	struct	mode_geometry	*page4p;
4944 	struct	mode_header	*headerp;
4945 	int	sector_size;
4946 	int	nsect;
4947 	int	nhead;
4948 	int	ncyl;
4949 	int	intrlv;
4950 	int	spc;
4951 	diskaddr_t	modesense_capacity;
4952 	int	rpm;
4953 	int	bd_len;
4954 	int	mode_header_length;
4955 	uchar_t	*p3bufp;
4956 	uchar_t	*p4bufp;
4957 	int	cdbsize;
4958 	int 	ret = EIO;
4959 	sd_ssc_t *ssc;
4960 	int	status;
4961 
4962 	ASSERT(un != NULL);
4963 
4964 	if (lbasize == 0) {
4965 		if (ISCD(un)) {
4966 			lbasize = 2048;
4967 		} else {
4968 			lbasize = un->un_sys_blocksize;
4969 		}
4970 	}
4971 	pgeom_p->g_secsize = (unsigned short)lbasize;
4972 
4973 	/*
4974 	 * If the unit is a cd/dvd drive MODE SENSE page three
4975 	 * and MODE SENSE page four are reserved (see SBC spec
4976 	 * and MMC spec). To prevent soft errors just return
4977 	 * using the default LBA size.
4978 	 */
4979 	if (ISCD(un))
4980 		return (ret);
4981 
4982 	cdbsize = (un->un_f_cfg_is_atapi == TRUE) ? CDB_GROUP2 : CDB_GROUP0;
4983 
4984 	/*
4985 	 * Retrieve MODE SENSE page 3 - Format Device Page
4986 	 */
4987 	p3bufp = kmem_zalloc(SD_MODE_SENSE_PAGE3_LENGTH, KM_SLEEP);
4988 	ssc = sd_ssc_init(un);
4989 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p3bufp,
4990 	    SD_MODE_SENSE_PAGE3_LENGTH, SD_MODE_SENSE_PAGE3_CODE, path_flag);
4991 	if (status != 0) {
4992 		SD_ERROR(SD_LOG_COMMON, un,
4993 		    "sd_get_physical_geometry: mode sense page 3 failed\n");
4994 		goto page3_exit;
4995 	}
4996 
4997 	/*
4998 	 * Determine size of Block Descriptors in order to locate the mode
4999 	 * page data.  ATAPI devices return 0, SCSI devices should return
5000 	 * MODE_BLK_DESC_LENGTH.
5001 	 */
5002 	headerp = (struct mode_header *)p3bufp;
5003 	if (un->un_f_cfg_is_atapi == TRUE) {
5004 		struct mode_header_grp2 *mhp =
5005 		    (struct mode_header_grp2 *)headerp;
5006 		mode_header_length = MODE_HEADER_LENGTH_GRP2;
5007 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5008 	} else {
5009 		mode_header_length = MODE_HEADER_LENGTH;
5010 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5011 	}
5012 
5013 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5014 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5015 		    "sd_get_physical_geometry: received unexpected bd_len "
5016 		    "of %d, page3\n", bd_len);
5017 		status = EIO;
5018 		goto page3_exit;
5019 	}
5020 
5021 	page3p = (struct mode_format *)
5022 	    ((caddr_t)headerp + mode_header_length + bd_len);
5023 
5024 	if (page3p->mode_page.code != SD_MODE_SENSE_PAGE3_CODE) {
5025 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5026 		    "sd_get_physical_geometry: mode sense pg3 code mismatch "
5027 		    "%d\n", page3p->mode_page.code);
5028 		status = EIO;
5029 		goto page3_exit;
5030 	}
5031 
5032 	/*
5033 	 * Use this physical geometry data only if BOTH MODE SENSE commands
5034 	 * complete successfully; otherwise, revert to the logical geometry.
5035 	 * So, we need to save everything in temporary variables.
5036 	 */
5037 	sector_size = BE_16(page3p->data_bytes_sect);
5038 
5039 	/*
5040 	 * 1243403: The NEC D38x7 drives do not support MODE SENSE sector size
5041 	 */
5042 	if (sector_size == 0) {
5043 		sector_size = un->un_sys_blocksize;
5044 	} else {
5045 		sector_size &= ~(un->un_sys_blocksize - 1);
5046 	}
5047 
5048 	nsect  = BE_16(page3p->sect_track);
5049 	intrlv = BE_16(page3p->interleave);
5050 
5051 	SD_INFO(SD_LOG_COMMON, un,
5052 	    "sd_get_physical_geometry: Format Parameters (page 3)\n");
5053 	SD_INFO(SD_LOG_COMMON, un,
5054 	    "   mode page: %d; nsect: %d; sector size: %d;\n",
5055 	    page3p->mode_page.code, nsect, sector_size);
5056 	SD_INFO(SD_LOG_COMMON, un,
5057 	    "   interleave: %d; track skew: %d; cylinder skew: %d;\n", intrlv,
5058 	    BE_16(page3p->track_skew),
5059 	    BE_16(page3p->cylinder_skew));
5060 
5061 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
5062 
5063 	/*
5064 	 * Retrieve MODE SENSE page 4 - Rigid Disk Drive Geometry Page
5065 	 */
5066 	p4bufp = kmem_zalloc(SD_MODE_SENSE_PAGE4_LENGTH, KM_SLEEP);
5067 	status = sd_send_scsi_MODE_SENSE(ssc, cdbsize, p4bufp,
5068 	    SD_MODE_SENSE_PAGE4_LENGTH, SD_MODE_SENSE_PAGE4_CODE, path_flag);
5069 	if (status != 0) {
5070 		SD_ERROR(SD_LOG_COMMON, un,
5071 		    "sd_get_physical_geometry: mode sense page 4 failed\n");
5072 		goto page4_exit;
5073 	}
5074 
5075 	/*
5076 	 * Determine size of Block Descriptors in order to locate the mode
5077 	 * page data.  ATAPI devices return 0, SCSI devices should return
5078 	 * MODE_BLK_DESC_LENGTH.
5079 	 */
5080 	headerp = (struct mode_header *)p4bufp;
5081 	if (un->un_f_cfg_is_atapi == TRUE) {
5082 		struct mode_header_grp2 *mhp =
5083 		    (struct mode_header_grp2 *)headerp;
5084 		bd_len = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
5085 	} else {
5086 		bd_len = ((struct mode_header *)headerp)->bdesc_length;
5087 	}
5088 
5089 	if (bd_len > MODE_BLK_DESC_LENGTH) {
5090 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5091 		    "sd_get_physical_geometry: received unexpected bd_len of "
5092 		    "%d, page4\n", bd_len);
5093 		status = EIO;
5094 		goto page4_exit;
5095 	}
5096 
5097 	page4p = (struct mode_geometry *)
5098 	    ((caddr_t)headerp + mode_header_length + bd_len);
5099 
5100 	if (page4p->mode_page.code != SD_MODE_SENSE_PAGE4_CODE) {
5101 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
5102 		    "sd_get_physical_geometry: mode sense pg4 code mismatch "
5103 		    "%d\n", page4p->mode_page.code);
5104 		status = EIO;
5105 		goto page4_exit;
5106 	}
5107 
5108 	/*
5109 	 * Stash the data now, after we know that both commands completed.
5110 	 */
5111 
5112 
5113 	nhead = (int)page4p->heads;	/* uchar, so no conversion needed */
5114 	spc   = nhead * nsect;
5115 	ncyl  = (page4p->cyl_ub << 16) + (page4p->cyl_mb << 8) + page4p->cyl_lb;
5116 	rpm   = BE_16(page4p->rpm);
5117 
5118 	modesense_capacity = spc * ncyl;
5119 
5120 	SD_INFO(SD_LOG_COMMON, un,
5121 	    "sd_get_physical_geometry: Geometry Parameters (page 4)\n");
5122 	SD_INFO(SD_LOG_COMMON, un,
5123 	    "   cylinders: %d; heads: %d; rpm: %d;\n", ncyl, nhead, rpm);
5124 	SD_INFO(SD_LOG_COMMON, un,
5125 	    "   computed capacity(h*s*c): %d;\n", modesense_capacity);
5126 	SD_INFO(SD_LOG_COMMON, un, "   pgeom_p: %p; read cap: %d\n",
5127 	    (void *)pgeom_p, capacity);
5128 
5129 	/*
5130 	 * Compensate if the drive's geometry is not rectangular, i.e.,
5131 	 * the product of C * H * S returned by MODE SENSE >= that returned
5132 	 * by read capacity. This is an idiosyncrasy of the original x86
5133 	 * disk subsystem.
5134 	 */
5135 	if (modesense_capacity >= capacity) {
5136 		SD_INFO(SD_LOG_COMMON, un,
5137 		    "sd_get_physical_geometry: adjusting acyl; "
5138 		    "old: %d; new: %d\n", pgeom_p->g_acyl,
5139 		    (modesense_capacity - capacity + spc - 1) / spc);
5140 		if (sector_size != 0) {
5141 			/* 1243403: NEC D38x7 drives don't support sec size */
5142 			pgeom_p->g_secsize = (unsigned short)sector_size;
5143 		}
5144 		pgeom_p->g_nsect    = (unsigned short)nsect;
5145 		pgeom_p->g_nhead    = (unsigned short)nhead;
5146 		pgeom_p->g_capacity = capacity;
5147 		pgeom_p->g_acyl	    =
5148 		    (modesense_capacity - pgeom_p->g_capacity + spc - 1) / spc;
5149 		pgeom_p->g_ncyl	    = ncyl - pgeom_p->g_acyl;
5150 	}
5151 
5152 	pgeom_p->g_rpm    = (unsigned short)rpm;
5153 	pgeom_p->g_intrlv = (unsigned short)intrlv;
5154 	ret = 0;
5155 
5156 	SD_INFO(SD_LOG_COMMON, un,
5157 	    "sd_get_physical_geometry: mode sense geometry:\n");
5158 	SD_INFO(SD_LOG_COMMON, un,
5159 	    "   nsect: %d; sector size: %d; interlv: %d\n",
5160 	    nsect, sector_size, intrlv);
5161 	SD_INFO(SD_LOG_COMMON, un,
5162 	    "   nhead: %d; ncyl: %d; rpm: %d; capacity(ms): %d\n",
5163 	    nhead, ncyl, rpm, modesense_capacity);
5164 	SD_INFO(SD_LOG_COMMON, un,
5165 	    "sd_get_physical_geometry: (cached)\n");
5166 	SD_INFO(SD_LOG_COMMON, un,
5167 	    "   ncyl: %ld; acyl: %d; nhead: %d; nsect: %d\n",
5168 	    pgeom_p->g_ncyl,  pgeom_p->g_acyl,
5169 	    pgeom_p->g_nhead, pgeom_p->g_nsect);
5170 	SD_INFO(SD_LOG_COMMON, un,
5171 	    "   lbasize: %d; capacity: %ld; intrlv: %d; rpm: %d\n",
5172 	    pgeom_p->g_secsize, pgeom_p->g_capacity,
5173 	    pgeom_p->g_intrlv, pgeom_p->g_rpm);
5174 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
5175 
5176 page4_exit:
5177 	kmem_free(p4bufp, SD_MODE_SENSE_PAGE4_LENGTH);
5178 
5179 page3_exit:
5180 	kmem_free(p3bufp, SD_MODE_SENSE_PAGE3_LENGTH);
5181 
5182 	if (status != 0) {
5183 		if (status == EIO) {
5184 			/*
5185 			 * Some disks do not support mode sense(6), we
5186 			 * should ignore this kind of error(sense key is
5187 			 * 0x5 - illegal request).
5188 			 */
5189 			uint8_t *sensep;
5190 			int senlen;
5191 
5192 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
5193 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
5194 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
5195 
5196 			if (senlen > 0 &&
5197 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
5198 				sd_ssc_assessment(ssc,
5199 				    SD_FMT_IGNORE_COMPROMISE);
5200 			} else {
5201 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
5202 			}
5203 		} else {
5204 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5205 		}
5206 	}
5207 	sd_ssc_fini(ssc);
5208 	return (ret);
5209 }
5210 
5211 /*
5212  *    Function: sd_get_virtual_geometry
5213  *
5214  * Description: Ask the controller to tell us about the target device.
5215  *
5216  *   Arguments: un - pointer to softstate
5217  *		capacity - disk capacity in #blocks
5218  *		lbasize - disk block size in bytes
5219  *
5220  *     Context: Kernel thread only
5221  */
5222 
5223 static int
5224 sd_get_virtual_geometry(struct sd_lun *un, cmlb_geom_t *lgeom_p,
5225     diskaddr_t capacity, int lbasize)
5226 {
5227 	uint_t	geombuf;
5228 	int	spc;
5229 
5230 	ASSERT(un != NULL);
5231 
5232 	/* Set sector size, and total number of sectors */
5233 	(void) scsi_ifsetcap(SD_ADDRESS(un), "sector-size",   lbasize,  1);
5234 	(void) scsi_ifsetcap(SD_ADDRESS(un), "total-sectors", capacity, 1);
5235 
5236 	/* Let the HBA tell us its geometry */
5237 	geombuf = (uint_t)scsi_ifgetcap(SD_ADDRESS(un), "geometry", 1);
5238 
5239 	/* A value of -1 indicates an undefined "geometry" property */
5240 	if (geombuf == (-1)) {
5241 		return (EINVAL);
5242 	}
5243 
5244 	/* Initialize the logical geometry cache. */
5245 	lgeom_p->g_nhead   = (geombuf >> 16) & 0xffff;
5246 	lgeom_p->g_nsect   = geombuf & 0xffff;
5247 	lgeom_p->g_secsize = un->un_sys_blocksize;
5248 
5249 	spc = lgeom_p->g_nhead * lgeom_p->g_nsect;
5250 
5251 	/*
5252 	 * Note: The driver originally converted the capacity value from
5253 	 * target blocks to system blocks. However, the capacity value passed
5254 	 * to this routine is already in terms of system blocks (this scaling
5255 	 * is done when the READ CAPACITY command is issued and processed).
5256 	 * This 'error' may have gone undetected because the usage of g_ncyl
5257 	 * (which is based upon g_capacity) is very limited within the driver
5258 	 */
5259 	lgeom_p->g_capacity = capacity;
5260 
5261 	/*
5262 	 * Set ncyl to zero if the hba returned a zero nhead or nsect value. The
5263 	 * hba may return zero values if the device has been removed.
5264 	 */
5265 	if (spc == 0) {
5266 		lgeom_p->g_ncyl = 0;
5267 	} else {
5268 		lgeom_p->g_ncyl = lgeom_p->g_capacity / spc;
5269 	}
5270 	lgeom_p->g_acyl = 0;
5271 
5272 	SD_INFO(SD_LOG_COMMON, un, "sd_get_virtual_geometry: (cached)\n");
5273 	return (0);
5274 
5275 }
5276 /*
5277  *    Function: sd_update_block_info
5278  *
5279  * Description: Calculate a byte count to sector count bitshift value
5280  *		from sector size.
5281  *
5282  *   Arguments: un: unit struct.
5283  *		lbasize: new target sector size
5284  *		capacity: new target capacity, ie. block count
5285  *
5286  *     Context: Kernel thread context
5287  */
5288 
5289 static void
5290 sd_update_block_info(struct sd_lun *un, uint32_t lbasize, uint64_t capacity)
5291 {
5292 	if (lbasize != 0) {
5293 		un->un_tgt_blocksize = lbasize;
5294 		un->un_f_tgt_blocksize_is_valid = TRUE;
5295 		if (!un->un_f_has_removable_media) {
5296 			un->un_sys_blocksize = lbasize;
5297 		}
5298 	}
5299 
5300 	if (capacity != 0) {
5301 		un->un_blockcount		= capacity;
5302 		un->un_f_blockcount_is_valid	= TRUE;
5303 
5304 		/*
5305 		 * The capacity has changed so update the errstats.
5306 		 */
5307 		if (un->un_errstats != NULL) {
5308 			struct sd_errstats *stp;
5309 
5310 			capacity *= un->un_sys_blocksize;
5311 			stp = (struct sd_errstats *)un->un_errstats->ks_data;
5312 			if (stp->sd_capacity.value.ui64 < capacity)
5313 				stp->sd_capacity.value.ui64 = capacity;
5314 		}
5315 	}
5316 }
5317 
5318 
5319 /*
5320  *    Function: sd_register_devid
5321  *
5322  * Description: This routine will obtain the device id information from the
5323  *		target, obtain the serial number, and register the device
5324  *		id with the ddi framework.
5325  *
5326  *   Arguments: devi - the system's dev_info_t for the device.
5327  *		un - driver soft state (unit) structure
5328  *		reservation_flag - indicates if a reservation conflict
5329  *		occurred during attach
5330  *
5331  *     Context: Kernel Thread
5332  */
5333 static void
5334 sd_register_devid(sd_ssc_t *ssc, dev_info_t *devi, int reservation_flag)
5335 {
5336 	int		rval		= 0;
5337 	uchar_t		*inq80		= NULL;
5338 	size_t		inq80_len	= MAX_INQUIRY_SIZE;
5339 	size_t		inq80_resid	= 0;
5340 	uchar_t		*inq83		= NULL;
5341 	size_t		inq83_len	= MAX_INQUIRY_SIZE;
5342 	size_t		inq83_resid	= 0;
5343 	int		dlen, len;
5344 	char		*sn;
5345 	struct sd_lun	*un;
5346 
5347 	ASSERT(ssc != NULL);
5348 	un = ssc->ssc_un;
5349 	ASSERT(un != NULL);
5350 	ASSERT(mutex_owned(SD_MUTEX(un)));
5351 	ASSERT((SD_DEVINFO(un)) == devi);
5352 
5353 
5354 	/*
5355 	 * We check the availability of the World Wide Name (0x83) and Unit
5356 	 * Serial Number (0x80) pages in sd_check_vpd_page_support(), and using
5357 	 * un_vpd_page_mask from them, we decide which way to get the WWN.  If
5358 	 * 0x83 is available, that is the best choice.  Our next choice is
5359 	 * 0x80.  If neither are available, we munge the devid from the device
5360 	 * vid/pid/serial # for Sun qualified disks, or use the ddi framework
5361 	 * to fabricate a devid for non-Sun qualified disks.
5362 	 */
5363 	if (sd_check_vpd_page_support(ssc) == 0) {
5364 		/* collect page 80 data if available */
5365 		if (un->un_vpd_page_mask & SD_VPD_UNIT_SERIAL_PG) {
5366 
5367 			mutex_exit(SD_MUTEX(un));
5368 			inq80 = kmem_zalloc(inq80_len, KM_SLEEP);
5369 
5370 			rval = sd_send_scsi_INQUIRY(ssc, inq80, inq80_len,
5371 			    0x01, 0x80, &inq80_resid);
5372 
5373 			if (rval != 0) {
5374 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5375 				kmem_free(inq80, inq80_len);
5376 				inq80 = NULL;
5377 				inq80_len = 0;
5378 			} else if (ddi_prop_exists(
5379 			    DDI_DEV_T_NONE, SD_DEVINFO(un),
5380 			    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
5381 			    INQUIRY_SERIAL_NO) == 0) {
5382 				/*
5383 				 * If we don't already have a serial number
5384 				 * property, do quick verify of data returned
5385 				 * and define property.
5386 				 */
5387 				dlen = inq80_len - inq80_resid;
5388 				len = (size_t)inq80[3];
5389 				if ((dlen >= 4) && ((len + 4) <= dlen)) {
5390 					/*
5391 					 * Ensure sn termination, skip leading
5392 					 * blanks, and create property
5393 					 * 'inquiry-serial-no'.
5394 					 */
5395 					sn = (char *)&inq80[4];
5396 					sn[len] = 0;
5397 					while (*sn && (*sn == ' '))
5398 						sn++;
5399 					if (*sn) {
5400 						(void) ddi_prop_update_string(
5401 						    DDI_DEV_T_NONE,
5402 						    SD_DEVINFO(un),
5403 						    INQUIRY_SERIAL_NO, sn);
5404 					}
5405 				}
5406 			}
5407 			mutex_enter(SD_MUTEX(un));
5408 		}
5409 
5410 		/* collect page 83 data if available */
5411 		if (un->un_vpd_page_mask & SD_VPD_DEVID_WWN_PG) {
5412 			mutex_exit(SD_MUTEX(un));
5413 			inq83 = kmem_zalloc(inq83_len, KM_SLEEP);
5414 
5415 			rval = sd_send_scsi_INQUIRY(ssc, inq83, inq83_len,
5416 			    0x01, 0x83, &inq83_resid);
5417 
5418 			if (rval != 0) {
5419 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5420 				kmem_free(inq83, inq83_len);
5421 				inq83 = NULL;
5422 				inq83_len = 0;
5423 			}
5424 			mutex_enter(SD_MUTEX(un));
5425 		}
5426 	}
5427 
5428 	/*
5429 	 * If transport has already registered a devid for this target
5430 	 * then that takes precedence over the driver's determination
5431 	 * of the devid.
5432 	 *
5433 	 * NOTE: The reason this check is done here instead of at the beginning
5434 	 * of the function is to allow the code above to create the
5435 	 * 'inquiry-serial-no' property.
5436 	 */
5437 	if (ddi_devid_get(SD_DEVINFO(un), &un->un_devid) == DDI_SUCCESS) {
5438 		ASSERT(un->un_devid);
5439 		un->un_f_devid_transport_defined = TRUE;
5440 		goto cleanup; /* use devid registered by the transport */
5441 	}
5442 
5443 	/*
5444 	 * This is the case of antiquated Sun disk drives that have the
5445 	 * FAB_DEVID property set in the disk_table.  These drives
5446 	 * manage the devid's by storing them in last 2 available sectors
5447 	 * on the drive and have them fabricated by the ddi layer by calling
5448 	 * ddi_devid_init and passing the DEVID_FAB flag.
5449 	 */
5450 	if (un->un_f_opt_fab_devid == TRUE) {
5451 		/*
5452 		 * Depending on EINVAL isn't reliable, since a reserved disk
5453 		 * may result in invalid geometry, so check to make sure a
5454 		 * reservation conflict did not occur during attach.
5455 		 */
5456 		if ((sd_get_devid(ssc) == EINVAL) &&
5457 		    (reservation_flag != SD_TARGET_IS_RESERVED)) {
5458 			/*
5459 			 * The devid is invalid AND there is no reservation
5460 			 * conflict.  Fabricate a new devid.
5461 			 */
5462 			(void) sd_create_devid(ssc);
5463 		}
5464 
5465 		/* Register the devid if it exists */
5466 		if (un->un_devid != NULL) {
5467 			(void) ddi_devid_register(SD_DEVINFO(un),
5468 			    un->un_devid);
5469 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5470 			    "sd_register_devid: Devid Fabricated\n");
5471 		}
5472 		goto cleanup;
5473 	}
5474 
5475 	/* encode best devid possible based on data available */
5476 	if (ddi_devid_scsi_encode(DEVID_SCSI_ENCODE_VERSION_LATEST,
5477 	    (char *)ddi_driver_name(SD_DEVINFO(un)),
5478 	    (uchar_t *)SD_INQUIRY(un), sizeof (*SD_INQUIRY(un)),
5479 	    inq80, inq80_len - inq80_resid, inq83, inq83_len -
5480 	    inq83_resid, &un->un_devid) == DDI_SUCCESS) {
5481 
5482 		/* devid successfully encoded, register devid */
5483 		(void) ddi_devid_register(SD_DEVINFO(un), un->un_devid);
5484 
5485 	} else {
5486 		/*
5487 		 * Unable to encode a devid based on data available.
5488 		 * This is not a Sun qualified disk.  Older Sun disk
5489 		 * drives that have the SD_FAB_DEVID property
5490 		 * set in the disk_table and non Sun qualified
5491 		 * disks are treated in the same manner.  These
5492 		 * drives manage the devid's by storing them in
5493 		 * last 2 available sectors on the drive and
5494 		 * have them fabricated by the ddi layer by
5495 		 * calling ddi_devid_init and passing the
5496 		 * DEVID_FAB flag.
5497 		 * Create a fabricate devid only if there's no
5498 		 * fabricate devid existed.
5499 		 */
5500 		if (sd_get_devid(ssc) == EINVAL) {
5501 			(void) sd_create_devid(ssc);
5502 		}
5503 		un->un_f_opt_fab_devid = TRUE;
5504 
5505 		/* Register the devid if it exists */
5506 		if (un->un_devid != NULL) {
5507 			(void) ddi_devid_register(SD_DEVINFO(un),
5508 			    un->un_devid);
5509 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
5510 			    "sd_register_devid: devid fabricated using "
5511 			    "ddi framework\n");
5512 		}
5513 	}
5514 
5515 cleanup:
5516 	/* clean up resources */
5517 	if (inq80 != NULL) {
5518 		kmem_free(inq80, inq80_len);
5519 	}
5520 	if (inq83 != NULL) {
5521 		kmem_free(inq83, inq83_len);
5522 	}
5523 }
5524 
5525 
5526 
5527 /*
5528  *    Function: sd_get_devid
5529  *
5530  * Description: This routine will return 0 if a valid device id has been
5531  *		obtained from the target and stored in the soft state. If a
5532  *		valid device id has not been previously read and stored, a
5533  *		read attempt will be made.
5534  *
5535  *   Arguments: un - driver soft state (unit) structure
5536  *
5537  * Return Code: 0 if we successfully get the device id
5538  *
5539  *     Context: Kernel Thread
5540  */
5541 
5542 static int
5543 sd_get_devid(sd_ssc_t *ssc)
5544 {
5545 	struct dk_devid		*dkdevid;
5546 	ddi_devid_t		tmpid;
5547 	uint_t			*ip;
5548 	size_t			sz;
5549 	diskaddr_t		blk;
5550 	int			status;
5551 	int			chksum;
5552 	int			i;
5553 	size_t			buffer_size;
5554 	struct sd_lun		*un;
5555 
5556 	ASSERT(ssc != NULL);
5557 	un = ssc->ssc_un;
5558 	ASSERT(un != NULL);
5559 	ASSERT(mutex_owned(SD_MUTEX(un)));
5560 
5561 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: entry: un: 0x%p\n",
5562 	    un);
5563 
5564 	if (un->un_devid != NULL) {
5565 		return (0);
5566 	}
5567 
5568 	mutex_exit(SD_MUTEX(un));
5569 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5570 	    (void *)SD_PATH_DIRECT) != 0) {
5571 		mutex_enter(SD_MUTEX(un));
5572 		return (EINVAL);
5573 	}
5574 
5575 	/*
5576 	 * Read and verify device id, stored in the reserved cylinders at the
5577 	 * end of the disk. Backup label is on the odd sectors of the last
5578 	 * track of the last cylinder. Device id will be on track of the next
5579 	 * to last cylinder.
5580 	 */
5581 	mutex_enter(SD_MUTEX(un));
5582 	buffer_size = SD_REQBYTES2TGTBYTES(un, sizeof (struct dk_devid));
5583 	mutex_exit(SD_MUTEX(un));
5584 	dkdevid = kmem_alloc(buffer_size, KM_SLEEP);
5585 	status = sd_send_scsi_READ(ssc, dkdevid, buffer_size, blk,
5586 	    SD_PATH_DIRECT);
5587 
5588 	if (status != 0) {
5589 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5590 		goto error;
5591 	}
5592 
5593 	/* Validate the revision */
5594 	if ((dkdevid->dkd_rev_hi != DK_DEVID_REV_MSB) ||
5595 	    (dkdevid->dkd_rev_lo != DK_DEVID_REV_LSB)) {
5596 		status = EINVAL;
5597 		goto error;
5598 	}
5599 
5600 	/* Calculate the checksum */
5601 	chksum = 0;
5602 	ip = (uint_t *)dkdevid;
5603 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int));
5604 	    i++) {
5605 		chksum ^= ip[i];
5606 	}
5607 
5608 	/* Compare the checksums */
5609 	if (DKD_GETCHKSUM(dkdevid) != chksum) {
5610 		status = EINVAL;
5611 		goto error;
5612 	}
5613 
5614 	/* Validate the device id */
5615 	if (ddi_devid_valid((ddi_devid_t)&dkdevid->dkd_devid) != DDI_SUCCESS) {
5616 		status = EINVAL;
5617 		goto error;
5618 	}
5619 
5620 	/*
5621 	 * Store the device id in the driver soft state
5622 	 */
5623 	sz = ddi_devid_sizeof((ddi_devid_t)&dkdevid->dkd_devid);
5624 	tmpid = kmem_alloc(sz, KM_SLEEP);
5625 
5626 	mutex_enter(SD_MUTEX(un));
5627 
5628 	un->un_devid = tmpid;
5629 	bcopy(&dkdevid->dkd_devid, un->un_devid, sz);
5630 
5631 	kmem_free(dkdevid, buffer_size);
5632 
5633 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_get_devid: exit: un:0x%p\n", un);
5634 
5635 	return (status);
5636 error:
5637 	mutex_enter(SD_MUTEX(un));
5638 	kmem_free(dkdevid, buffer_size);
5639 	return (status);
5640 }
5641 
5642 
5643 /*
5644  *    Function: sd_create_devid
5645  *
5646  * Description: This routine will fabricate the device id and write it
5647  *		to the disk.
5648  *
5649  *   Arguments: un - driver soft state (unit) structure
5650  *
5651  * Return Code: value of the fabricated device id
5652  *
5653  *     Context: Kernel Thread
5654  */
5655 
5656 static ddi_devid_t
5657 sd_create_devid(sd_ssc_t *ssc)
5658 {
5659 	struct sd_lun	*un;
5660 
5661 	ASSERT(ssc != NULL);
5662 	un = ssc->ssc_un;
5663 	ASSERT(un != NULL);
5664 
5665 	/* Fabricate the devid */
5666 	if (ddi_devid_init(SD_DEVINFO(un), DEVID_FAB, 0, NULL, &un->un_devid)
5667 	    == DDI_FAILURE) {
5668 		return (NULL);
5669 	}
5670 
5671 	/* Write the devid to disk */
5672 	if (sd_write_deviceid(ssc) != 0) {
5673 		ddi_devid_free(un->un_devid);
5674 		un->un_devid = NULL;
5675 	}
5676 
5677 	return (un->un_devid);
5678 }
5679 
5680 
5681 /*
5682  *    Function: sd_write_deviceid
5683  *
5684  * Description: This routine will write the device id to the disk
5685  *		reserved sector.
5686  *
5687  *   Arguments: un - driver soft state (unit) structure
5688  *
5689  * Return Code: EINVAL
5690  *		value returned by sd_send_scsi_cmd
5691  *
5692  *     Context: Kernel Thread
5693  */
5694 
5695 static int
5696 sd_write_deviceid(sd_ssc_t *ssc)
5697 {
5698 	struct dk_devid		*dkdevid;
5699 	uchar_t			*buf;
5700 	diskaddr_t		blk;
5701 	uint_t			*ip, chksum;
5702 	int			status;
5703 	int			i;
5704 	struct sd_lun		*un;
5705 
5706 	ASSERT(ssc != NULL);
5707 	un = ssc->ssc_un;
5708 	ASSERT(un != NULL);
5709 	ASSERT(mutex_owned(SD_MUTEX(un)));
5710 
5711 	mutex_exit(SD_MUTEX(un));
5712 	if (cmlb_get_devid_block(un->un_cmlbhandle, &blk,
5713 	    (void *)SD_PATH_DIRECT) != 0) {
5714 		mutex_enter(SD_MUTEX(un));
5715 		return (-1);
5716 	}
5717 
5718 
5719 	/* Allocate the buffer */
5720 	buf = kmem_zalloc(un->un_sys_blocksize, KM_SLEEP);
5721 	dkdevid = (struct dk_devid *)buf;
5722 
5723 	/* Fill in the revision */
5724 	dkdevid->dkd_rev_hi = DK_DEVID_REV_MSB;
5725 	dkdevid->dkd_rev_lo = DK_DEVID_REV_LSB;
5726 
5727 	/* Copy in the device id */
5728 	mutex_enter(SD_MUTEX(un));
5729 	bcopy(un->un_devid, &dkdevid->dkd_devid,
5730 	    ddi_devid_sizeof(un->un_devid));
5731 	mutex_exit(SD_MUTEX(un));
5732 
5733 	/* Calculate the checksum */
5734 	chksum = 0;
5735 	ip = (uint_t *)dkdevid;
5736 	for (i = 0; i < ((DEV_BSIZE - sizeof (int)) / sizeof (int));
5737 	    i++) {
5738 		chksum ^= ip[i];
5739 	}
5740 
5741 	/* Fill-in checksum */
5742 	DKD_FORMCHKSUM(chksum, dkdevid);
5743 
5744 	/* Write the reserved sector */
5745 	status = sd_send_scsi_WRITE(ssc, buf, un->un_sys_blocksize, blk,
5746 	    SD_PATH_DIRECT);
5747 	if (status != 0)
5748 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5749 
5750 	kmem_free(buf, un->un_sys_blocksize);
5751 
5752 	mutex_enter(SD_MUTEX(un));
5753 	return (status);
5754 }
5755 
5756 
5757 /*
5758  *    Function: sd_check_vpd_page_support
5759  *
5760  * Description: This routine sends an inquiry command with the EVPD bit set and
5761  *		a page code of 0x00 to the device. It is used to determine which
5762  *		vital product pages are available to find the devid. We are
5763  *		looking for pages 0x83 0x80 or 0xB1.  If we return a negative 1,
5764  *		the device does not support that command.
5765  *
5766  *   Arguments: un  - driver soft state (unit) structure
5767  *
5768  * Return Code: 0 - success
5769  *		1 - check condition
5770  *
5771  *     Context: This routine can sleep.
5772  */
5773 
5774 static int
5775 sd_check_vpd_page_support(sd_ssc_t *ssc)
5776 {
5777 	uchar_t	*page_list	= NULL;
5778 	uchar_t	page_length	= 0xff;	/* Use max possible length */
5779 	uchar_t	evpd		= 0x01;	/* Set the EVPD bit */
5780 	uchar_t	page_code	= 0x00;	/* Supported VPD Pages */
5781 	int    	rval		= 0;
5782 	int	counter;
5783 	struct sd_lun		*un;
5784 
5785 	ASSERT(ssc != NULL);
5786 	un = ssc->ssc_un;
5787 	ASSERT(un != NULL);
5788 	ASSERT(mutex_owned(SD_MUTEX(un)));
5789 
5790 	mutex_exit(SD_MUTEX(un));
5791 
5792 	/*
5793 	 * We'll set the page length to the maximum to save figuring it out
5794 	 * with an additional call.
5795 	 */
5796 	page_list =  kmem_zalloc(page_length, KM_SLEEP);
5797 
5798 	rval = sd_send_scsi_INQUIRY(ssc, page_list, page_length, evpd,
5799 	    page_code, NULL);
5800 
5801 	if (rval != 0)
5802 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5803 
5804 	mutex_enter(SD_MUTEX(un));
5805 
5806 	/*
5807 	 * Now we must validate that the device accepted the command, as some
5808 	 * drives do not support it.  If the drive does support it, we will
5809 	 * return 0, and the supported pages will be in un_vpd_page_mask.  If
5810 	 * not, we return -1.
5811 	 */
5812 	if ((rval == 0) && (page_list[VPD_MODE_PAGE] == 0x00)) {
5813 		/* Loop to find one of the 2 pages we need */
5814 		counter = 4;  /* Supported pages start at byte 4, with 0x00 */
5815 
5816 		/*
5817 		 * Pages are returned in ascending order, and 0x83 is what we
5818 		 * are hoping for.
5819 		 */
5820 		while ((page_list[counter] <= 0xB1) &&
5821 		    (counter <= (page_list[VPD_PAGE_LENGTH] +
5822 		    VPD_HEAD_OFFSET))) {
5823 			/*
5824 			 * Add 3 because page_list[3] is the number of
5825 			 * pages minus 3
5826 			 */
5827 
5828 			switch (page_list[counter]) {
5829 			case 0x00:
5830 				un->un_vpd_page_mask |= SD_VPD_SUPPORTED_PG;
5831 				break;
5832 			case 0x80:
5833 				un->un_vpd_page_mask |= SD_VPD_UNIT_SERIAL_PG;
5834 				break;
5835 			case 0x81:
5836 				un->un_vpd_page_mask |= SD_VPD_OPERATING_PG;
5837 				break;
5838 			case 0x82:
5839 				un->un_vpd_page_mask |= SD_VPD_ASCII_OP_PG;
5840 				break;
5841 			case 0x83:
5842 				un->un_vpd_page_mask |= SD_VPD_DEVID_WWN_PG;
5843 				break;
5844 			case 0x86:
5845 				un->un_vpd_page_mask |= SD_VPD_EXTENDED_DATA_PG;
5846 				break;
5847 			case 0xB1:
5848 				un->un_vpd_page_mask |= SD_VPD_DEV_CHARACTER_PG;
5849 				break;
5850 			}
5851 			counter++;
5852 		}
5853 
5854 	} else {
5855 		rval = -1;
5856 
5857 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
5858 		    "sd_check_vpd_page_support: This drive does not implement "
5859 		    "VPD pages.\n");
5860 	}
5861 
5862 	kmem_free(page_list, page_length);
5863 
5864 	return (rval);
5865 }
5866 
5867 
5868 /*
5869  *    Function: sd_setup_pm
5870  *
5871  * Description: Initialize Power Management on the device
5872  *
5873  *     Context: Kernel Thread
5874  */
5875 
5876 static void
5877 sd_setup_pm(sd_ssc_t *ssc, dev_info_t *devi)
5878 {
5879 	uint_t		log_page_size;
5880 	uchar_t		*log_page_data;
5881 	int		rval = 0;
5882 	struct sd_lun	*un;
5883 
5884 	ASSERT(ssc != NULL);
5885 	un = ssc->ssc_un;
5886 	ASSERT(un != NULL);
5887 
5888 	/*
5889 	 * Since we are called from attach, holding a mutex for
5890 	 * un is unnecessary. Because some of the routines called
5891 	 * from here require SD_MUTEX to not be held, assert this
5892 	 * right up front.
5893 	 */
5894 	ASSERT(!mutex_owned(SD_MUTEX(un)));
5895 	/*
5896 	 * Since the sd device does not have the 'reg' property,
5897 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
5898 	 * The following code is to tell cpr that this device
5899 	 * DOES need to be suspended and resumed.
5900 	 */
5901 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, devi,
5902 	    "pm-hardware-state", "needs-suspend-resume");
5903 
5904 	/*
5905 	 * This complies with the new power management framework
5906 	 * for certain desktop machines. Create the pm_components
5907 	 * property as a string array property.
5908 	 * If un_f_pm_supported is TRUE, that means the disk
5909 	 * attached HBA has set the "pm-capable" property and
5910 	 * the value of this property is bigger than 0.
5911 	 */
5912 	if (un->un_f_pm_supported) {
5913 		/*
5914 		 * not all devices have a motor, try it first.
5915 		 * some devices may return ILLEGAL REQUEST, some
5916 		 * will hang
5917 		 * The following START_STOP_UNIT is used to check if target
5918 		 * device has a motor.
5919 		 */
5920 		un->un_f_start_stop_supported = TRUE;
5921 
5922 		if (un->un_f_power_condition_supported) {
5923 			rval = sd_send_scsi_START_STOP_UNIT(ssc,
5924 			    SD_POWER_CONDITION, SD_TARGET_ACTIVE,
5925 			    SD_PATH_DIRECT);
5926 			if (rval != 0) {
5927 				un->un_f_power_condition_supported = FALSE;
5928 			}
5929 		}
5930 		if (!un->un_f_power_condition_supported) {
5931 			rval = sd_send_scsi_START_STOP_UNIT(ssc,
5932 			    SD_START_STOP, SD_TARGET_START, SD_PATH_DIRECT);
5933 		}
5934 		if (rval != 0) {
5935 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
5936 			un->un_f_start_stop_supported = FALSE;
5937 		}
5938 
5939 		/*
5940 		 * create pm properties anyways otherwise the parent can't
5941 		 * go to sleep
5942 		 */
5943 		un->un_f_pm_is_enabled = TRUE;
5944 		(void) sd_create_pm_components(devi, un);
5945 
5946 		/*
5947 		 * If it claims that log sense is supported, check it out.
5948 		 */
5949 		if (un->un_f_log_sense_supported) {
5950 			rval = sd_log_page_supported(ssc,
5951 			    START_STOP_CYCLE_PAGE);
5952 			if (rval == 1) {
5953 				/* Page found, use it. */
5954 				un->un_start_stop_cycle_page =
5955 				    START_STOP_CYCLE_PAGE;
5956 			} else {
5957 				/*
5958 				 * Page not found or log sense is not
5959 				 * supported.
5960 				 * Notice we do not check the old style
5961 				 * START_STOP_CYCLE_VU_PAGE because this
5962 				 * code path does not apply to old disks.
5963 				 */
5964 				un->un_f_log_sense_supported = FALSE;
5965 				un->un_f_pm_log_sense_smart = FALSE;
5966 			}
5967 		}
5968 
5969 		return;
5970 	}
5971 
5972 	/*
5973 	 * For the disk whose attached HBA has not set the "pm-capable"
5974 	 * property, check if it supports the power management.
5975 	 */
5976 	if (!un->un_f_log_sense_supported) {
5977 		un->un_power_level = SD_SPINDLE_ON;
5978 		un->un_f_pm_is_enabled = FALSE;
5979 		return;
5980 	}
5981 
5982 	rval = sd_log_page_supported(ssc, START_STOP_CYCLE_PAGE);
5983 
5984 #ifdef	SDDEBUG
5985 	if (sd_force_pm_supported) {
5986 		/* Force a successful result */
5987 		rval = 1;
5988 	}
5989 #endif
5990 
5991 	/*
5992 	 * If the start-stop cycle counter log page is not supported
5993 	 * or if the pm-capable property is set to be false (0),
5994 	 * then we should not create the pm_components property.
5995 	 */
5996 	if (rval == -1) {
5997 		/*
5998 		 * Error.
5999 		 * Reading log sense failed, most likely this is
6000 		 * an older drive that does not support log sense.
6001 		 * If this fails auto-pm is not supported.
6002 		 */
6003 		un->un_power_level = SD_SPINDLE_ON;
6004 		un->un_f_pm_is_enabled = FALSE;
6005 
6006 	} else if (rval == 0) {
6007 		/*
6008 		 * Page not found.
6009 		 * The start stop cycle counter is implemented as page
6010 		 * START_STOP_CYCLE_PAGE_VU_PAGE (0x31) in older disks. For
6011 		 * newer disks it is implemented as START_STOP_CYCLE_PAGE (0xE).
6012 		 */
6013 		if (sd_log_page_supported(ssc, START_STOP_CYCLE_VU_PAGE) == 1) {
6014 			/*
6015 			 * Page found, use this one.
6016 			 */
6017 			un->un_start_stop_cycle_page = START_STOP_CYCLE_VU_PAGE;
6018 			un->un_f_pm_is_enabled = TRUE;
6019 		} else {
6020 			/*
6021 			 * Error or page not found.
6022 			 * auto-pm is not supported for this device.
6023 			 */
6024 			un->un_power_level = SD_SPINDLE_ON;
6025 			un->un_f_pm_is_enabled = FALSE;
6026 		}
6027 	} else {
6028 		/*
6029 		 * Page found, use it.
6030 		 */
6031 		un->un_start_stop_cycle_page = START_STOP_CYCLE_PAGE;
6032 		un->un_f_pm_is_enabled = TRUE;
6033 	}
6034 
6035 
6036 	if (un->un_f_pm_is_enabled == TRUE) {
6037 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6038 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6039 
6040 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6041 		    log_page_size, un->un_start_stop_cycle_page,
6042 		    0x01, 0, SD_PATH_DIRECT);
6043 
6044 		if (rval != 0) {
6045 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6046 		}
6047 
6048 #ifdef	SDDEBUG
6049 		if (sd_force_pm_supported) {
6050 			/* Force a successful result */
6051 			rval = 0;
6052 		}
6053 #endif
6054 
6055 		/*
6056 		 * If the Log sense for Page( Start/stop cycle counter page)
6057 		 * succeeds, then power management is supported and we can
6058 		 * enable auto-pm.
6059 		 */
6060 		if (rval == 0)  {
6061 			(void) sd_create_pm_components(devi, un);
6062 		} else {
6063 			un->un_power_level = SD_SPINDLE_ON;
6064 			un->un_f_pm_is_enabled = FALSE;
6065 		}
6066 
6067 		kmem_free(log_page_data, log_page_size);
6068 	}
6069 }
6070 
6071 
6072 /*
6073  *    Function: sd_create_pm_components
6074  *
6075  * Description: Initialize PM property.
6076  *
6077  *     Context: Kernel thread context
6078  */
6079 
6080 static void
6081 sd_create_pm_components(dev_info_t *devi, struct sd_lun *un)
6082 {
6083 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6084 
6085 	if (un->un_f_power_condition_supported) {
6086 		if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6087 		    "pm-components", sd_pwr_pc.pm_comp, 5)
6088 		    != DDI_PROP_SUCCESS) {
6089 			un->un_power_level = SD_SPINDLE_ACTIVE;
6090 			un->un_f_pm_is_enabled = FALSE;
6091 			return;
6092 		}
6093 	} else {
6094 		if (ddi_prop_update_string_array(DDI_DEV_T_NONE, devi,
6095 		    "pm-components", sd_pwr_ss.pm_comp, 3)
6096 		    != DDI_PROP_SUCCESS) {
6097 			un->un_power_level = SD_SPINDLE_ON;
6098 			un->un_f_pm_is_enabled = FALSE;
6099 			return;
6100 		}
6101 	}
6102 	/*
6103 	 * When components are initially created they are idle,
6104 	 * power up any non-removables.
6105 	 * Note: the return value of pm_raise_power can't be used
6106 	 * for determining if PM should be enabled for this device.
6107 	 * Even if you check the return values and remove this
6108 	 * property created above, the PM framework will not honor the
6109 	 * change after the first call to pm_raise_power. Hence,
6110 	 * removal of that property does not help if pm_raise_power
6111 	 * fails. In the case of removable media, the start/stop
6112 	 * will fail if the media is not present.
6113 	 */
6114 	if (un->un_f_attach_spinup && (pm_raise_power(SD_DEVINFO(un), 0,
6115 	    SD_PM_STATE_ACTIVE(un)) == DDI_SUCCESS)) {
6116 		mutex_enter(SD_MUTEX(un));
6117 		un->un_power_level = SD_PM_STATE_ACTIVE(un);
6118 		mutex_enter(&un->un_pm_mutex);
6119 		/* Set to on and not busy. */
6120 		un->un_pm_count = 0;
6121 	} else {
6122 		mutex_enter(SD_MUTEX(un));
6123 		un->un_power_level = SD_PM_STATE_STOPPED(un);
6124 		mutex_enter(&un->un_pm_mutex);
6125 		/* Set to off. */
6126 		un->un_pm_count = -1;
6127 	}
6128 	mutex_exit(&un->un_pm_mutex);
6129 	mutex_exit(SD_MUTEX(un));
6130 }
6131 
6132 
6133 /*
6134  *    Function: sd_ddi_suspend
6135  *
6136  * Description: Performs system power-down operations. This includes
6137  *		setting the drive state to indicate its suspended so
6138  *		that no new commands will be accepted. Also, wait for
6139  *		all commands that are in transport or queued to a timer
6140  *		for retry to complete. All timeout threads are cancelled.
6141  *
6142  * Return Code: DDI_FAILURE or DDI_SUCCESS
6143  *
6144  *     Context: Kernel thread context
6145  */
6146 
6147 static int
6148 sd_ddi_suspend(dev_info_t *devi)
6149 {
6150 	struct	sd_lun	*un;
6151 	clock_t		wait_cmds_complete;
6152 
6153 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6154 	if (un == NULL) {
6155 		return (DDI_FAILURE);
6156 	}
6157 
6158 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: entry\n");
6159 
6160 	mutex_enter(SD_MUTEX(un));
6161 
6162 	/* Return success if the device is already suspended. */
6163 	if (un->un_state == SD_STATE_SUSPENDED) {
6164 		mutex_exit(SD_MUTEX(un));
6165 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6166 		    "device already suspended, exiting\n");
6167 		return (DDI_SUCCESS);
6168 	}
6169 
6170 	/* Return failure if the device is being used by HA */
6171 	if (un->un_resvd_status &
6172 	    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE)) {
6173 		mutex_exit(SD_MUTEX(un));
6174 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6175 		    "device in use by HA, exiting\n");
6176 		return (DDI_FAILURE);
6177 	}
6178 
6179 	/*
6180 	 * Return failure if the device is in a resource wait
6181 	 * or power changing state.
6182 	 */
6183 	if ((un->un_state == SD_STATE_RWAIT) ||
6184 	    (un->un_state == SD_STATE_PM_CHANGING)) {
6185 		mutex_exit(SD_MUTEX(un));
6186 		SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: "
6187 		    "device in resource wait state, exiting\n");
6188 		return (DDI_FAILURE);
6189 	}
6190 
6191 
6192 	un->un_save_state = un->un_last_state;
6193 	New_state(un, SD_STATE_SUSPENDED);
6194 
6195 	/*
6196 	 * Wait for all commands that are in transport or queued to a timer
6197 	 * for retry to complete.
6198 	 *
6199 	 * While waiting, no new commands will be accepted or sent because of
6200 	 * the new state we set above.
6201 	 *
6202 	 * Wait till current operation has completed. If we are in the resource
6203 	 * wait state (with an intr outstanding) then we need to wait till the
6204 	 * intr completes and starts the next cmd. We want to wait for
6205 	 * SD_WAIT_CMDS_COMPLETE seconds before failing the DDI_SUSPEND.
6206 	 */
6207 	wait_cmds_complete = ddi_get_lbolt() +
6208 	    (sd_wait_cmds_complete * drv_usectohz(1000000));
6209 
6210 	while (un->un_ncmds_in_transport != 0) {
6211 		/*
6212 		 * Fail if commands do not finish in the specified time.
6213 		 */
6214 		if (cv_timedwait(&un->un_disk_busy_cv, SD_MUTEX(un),
6215 		    wait_cmds_complete) == -1) {
6216 			/*
6217 			 * Undo the state changes made above. Everything
6218 			 * must go back to it's original value.
6219 			 */
6220 			Restore_state(un);
6221 			un->un_last_state = un->un_save_state;
6222 			/* Wake up any threads that might be waiting. */
6223 			cv_broadcast(&un->un_suspend_cv);
6224 			mutex_exit(SD_MUTEX(un));
6225 			SD_ERROR(SD_LOG_IO_PM, un,
6226 			    "sd_ddi_suspend: failed due to outstanding cmds\n");
6227 			SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exiting\n");
6228 			return (DDI_FAILURE);
6229 		}
6230 	}
6231 
6232 	/*
6233 	 * Cancel SCSI watch thread and timeouts, if any are active
6234 	 */
6235 
6236 	if (SD_OK_TO_SUSPEND_SCSI_WATCHER(un)) {
6237 		opaque_t temp_token = un->un_swr_token;
6238 		mutex_exit(SD_MUTEX(un));
6239 		scsi_watch_suspend(temp_token);
6240 		mutex_enter(SD_MUTEX(un));
6241 	}
6242 
6243 	if (un->un_reset_throttle_timeid != NULL) {
6244 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
6245 		un->un_reset_throttle_timeid = NULL;
6246 		mutex_exit(SD_MUTEX(un));
6247 		(void) untimeout(temp_id);
6248 		mutex_enter(SD_MUTEX(un));
6249 	}
6250 
6251 	if (un->un_dcvb_timeid != NULL) {
6252 		timeout_id_t temp_id = un->un_dcvb_timeid;
6253 		un->un_dcvb_timeid = NULL;
6254 		mutex_exit(SD_MUTEX(un));
6255 		(void) untimeout(temp_id);
6256 		mutex_enter(SD_MUTEX(un));
6257 	}
6258 
6259 	mutex_enter(&un->un_pm_mutex);
6260 	if (un->un_pm_timeid != NULL) {
6261 		timeout_id_t temp_id = un->un_pm_timeid;
6262 		un->un_pm_timeid = NULL;
6263 		mutex_exit(&un->un_pm_mutex);
6264 		mutex_exit(SD_MUTEX(un));
6265 		(void) untimeout(temp_id);
6266 		mutex_enter(SD_MUTEX(un));
6267 	} else {
6268 		mutex_exit(&un->un_pm_mutex);
6269 	}
6270 
6271 	if (un->un_rmw_msg_timeid != NULL) {
6272 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
6273 		un->un_rmw_msg_timeid = NULL;
6274 		mutex_exit(SD_MUTEX(un));
6275 		(void) untimeout(temp_id);
6276 		mutex_enter(SD_MUTEX(un));
6277 	}
6278 
6279 	if (un->un_retry_timeid != NULL) {
6280 		timeout_id_t temp_id = un->un_retry_timeid;
6281 		un->un_retry_timeid = NULL;
6282 		mutex_exit(SD_MUTEX(un));
6283 		(void) untimeout(temp_id);
6284 		mutex_enter(SD_MUTEX(un));
6285 
6286 		if (un->un_retry_bp != NULL) {
6287 			un->un_retry_bp->av_forw = un->un_waitq_headp;
6288 			un->un_waitq_headp = un->un_retry_bp;
6289 			if (un->un_waitq_tailp == NULL) {
6290 				un->un_waitq_tailp = un->un_retry_bp;
6291 			}
6292 			un->un_retry_bp = NULL;
6293 			un->un_retry_statp = NULL;
6294 		}
6295 	}
6296 
6297 	if (un->un_direct_priority_timeid != NULL) {
6298 		timeout_id_t temp_id = un->un_direct_priority_timeid;
6299 		un->un_direct_priority_timeid = NULL;
6300 		mutex_exit(SD_MUTEX(un));
6301 		(void) untimeout(temp_id);
6302 		mutex_enter(SD_MUTEX(un));
6303 	}
6304 
6305 	if (un->un_f_is_fibre == TRUE) {
6306 		/*
6307 		 * Remove callbacks for insert and remove events
6308 		 */
6309 		if (un->un_insert_event != NULL) {
6310 			mutex_exit(SD_MUTEX(un));
6311 			(void) ddi_remove_event_handler(un->un_insert_cb_id);
6312 			mutex_enter(SD_MUTEX(un));
6313 			un->un_insert_event = NULL;
6314 		}
6315 
6316 		if (un->un_remove_event != NULL) {
6317 			mutex_exit(SD_MUTEX(un));
6318 			(void) ddi_remove_event_handler(un->un_remove_cb_id);
6319 			mutex_enter(SD_MUTEX(un));
6320 			un->un_remove_event = NULL;
6321 		}
6322 	}
6323 
6324 	mutex_exit(SD_MUTEX(un));
6325 
6326 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_suspend: exit\n");
6327 
6328 	return (DDI_SUCCESS);
6329 }
6330 
6331 
6332 /*
6333  *    Function: sd_ddi_resume
6334  *
6335  * Description: Performs system power-up operations..
6336  *
6337  * Return Code: DDI_SUCCESS
6338  *		DDI_FAILURE
6339  *
6340  *     Context: Kernel thread context
6341  */
6342 
6343 static int
6344 sd_ddi_resume(dev_info_t *devi)
6345 {
6346 	struct	sd_lun	*un;
6347 
6348 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
6349 	if (un == NULL) {
6350 		return (DDI_FAILURE);
6351 	}
6352 
6353 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: entry\n");
6354 
6355 	mutex_enter(SD_MUTEX(un));
6356 	Restore_state(un);
6357 
6358 	/*
6359 	 * Restore the state which was saved to give the
6360 	 * the right state in un_last_state
6361 	 */
6362 	un->un_last_state = un->un_save_state;
6363 	/*
6364 	 * Note: throttle comes back at full.
6365 	 * Also note: this MUST be done before calling pm_raise_power
6366 	 * otherwise the system can get hung in biowait. The scenario where
6367 	 * this'll happen is under cpr suspend. Writing of the system
6368 	 * state goes through sddump, which writes 0 to un_throttle. If
6369 	 * writing the system state then fails, example if the partition is
6370 	 * too small, then cpr attempts a resume. If throttle isn't restored
6371 	 * from the saved value until after calling pm_raise_power then
6372 	 * cmds sent in sdpower are not transported and sd_send_scsi_cmd hangs
6373 	 * in biowait.
6374 	 */
6375 	un->un_throttle = un->un_saved_throttle;
6376 
6377 	/*
6378 	 * The chance of failure is very rare as the only command done in power
6379 	 * entry point is START command when you transition from 0->1 or
6380 	 * unknown->1. Put it to SPINDLE ON state irrespective of the state at
6381 	 * which suspend was done. Ignore the return value as the resume should
6382 	 * not be failed. In the case of removable media the media need not be
6383 	 * inserted and hence there is a chance that raise power will fail with
6384 	 * media not present.
6385 	 */
6386 	if (un->un_f_attach_spinup) {
6387 		mutex_exit(SD_MUTEX(un));
6388 		(void) pm_raise_power(SD_DEVINFO(un), 0,
6389 		    SD_PM_STATE_ACTIVE(un));
6390 		mutex_enter(SD_MUTEX(un));
6391 	}
6392 
6393 	/*
6394 	 * Don't broadcast to the suspend cv and therefore possibly
6395 	 * start I/O until after power has been restored.
6396 	 */
6397 	cv_broadcast(&un->un_suspend_cv);
6398 	cv_broadcast(&un->un_state_cv);
6399 
6400 	/* restart thread */
6401 	if (SD_OK_TO_RESUME_SCSI_WATCHER(un)) {
6402 		scsi_watch_resume(un->un_swr_token);
6403 	}
6404 
6405 #if (defined(__fibre))
6406 	if (un->un_f_is_fibre == TRUE) {
6407 		/*
6408 		 * Add callbacks for insert and remove events
6409 		 */
6410 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
6411 			sd_init_event_callbacks(un);
6412 		}
6413 	}
6414 #endif
6415 
6416 	/*
6417 	 * Transport any pending commands to the target.
6418 	 *
6419 	 * If this is a low-activity device commands in queue will have to wait
6420 	 * until new commands come in, which may take awhile. Also, we
6421 	 * specifically don't check un_ncmds_in_transport because we know that
6422 	 * there really are no commands in progress after the unit was
6423 	 * suspended and we could have reached the throttle level, been
6424 	 * suspended, and have no new commands coming in for awhile. Highly
6425 	 * unlikely, but so is the low-activity disk scenario.
6426 	 */
6427 	ddi_xbuf_dispatch(un->un_xbuf_attr);
6428 
6429 	sd_start_cmds(un, NULL);
6430 	mutex_exit(SD_MUTEX(un));
6431 
6432 	SD_TRACE(SD_LOG_IO_PM, un, "sd_ddi_resume: exit\n");
6433 
6434 	return (DDI_SUCCESS);
6435 }
6436 
6437 
6438 /*
6439  *    Function: sd_pm_state_change
6440  *
6441  * Description: Change the driver power state.
6442  * 		Someone else is required to actually change the driver
6443  * 		power level.
6444  *
6445  *   Arguments: un - driver soft state (unit) structure
6446  *              level - the power level that is changed to
6447  *              flag - to decide how to change the power state
6448  *
6449  * Return Code: DDI_SUCCESS
6450  *
6451  *     Context: Kernel thread context
6452  */
6453 static int
6454 sd_pm_state_change(struct sd_lun *un, int level, int flag)
6455 {
6456 	ASSERT(un != NULL);
6457 	SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: entry\n");
6458 
6459 	ASSERT(!mutex_owned(SD_MUTEX(un)));
6460 	mutex_enter(SD_MUTEX(un));
6461 
6462 	if (flag == SD_PM_STATE_ROLLBACK || SD_PM_IS_IO_CAPABLE(un, level)) {
6463 		un->un_power_level = level;
6464 		ASSERT(!mutex_owned(&un->un_pm_mutex));
6465 		mutex_enter(&un->un_pm_mutex);
6466 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
6467 			un->un_pm_count++;
6468 			ASSERT(un->un_pm_count == 0);
6469 		}
6470 		mutex_exit(&un->un_pm_mutex);
6471 	} else {
6472 		/*
6473 		 * Exit if power management is not enabled for this device,
6474 		 * or if the device is being used by HA.
6475 		 */
6476 		if ((un->un_f_pm_is_enabled == FALSE) || (un->un_resvd_status &
6477 		    (SD_RESERVE | SD_WANT_RESERVE | SD_LOST_RESERVE))) {
6478 			mutex_exit(SD_MUTEX(un));
6479 			SD_TRACE(SD_LOG_POWER, un,
6480 			    "sd_pm_state_change: exiting\n");
6481 			return (DDI_FAILURE);
6482 		}
6483 
6484 		SD_INFO(SD_LOG_POWER, un, "sd_pm_state_change: "
6485 		    "un_ncmds_in_driver=%ld\n", un->un_ncmds_in_driver);
6486 
6487 		/*
6488 		 * See if the device is not busy, ie.:
6489 		 *    - we have no commands in the driver for this device
6490 		 *    - not waiting for resources
6491 		 */
6492 		if ((un->un_ncmds_in_driver == 0) &&
6493 		    (un->un_state != SD_STATE_RWAIT)) {
6494 			/*
6495 			 * The device is not busy, so it is OK to go to low
6496 			 * power state. Indicate low power, but rely on someone
6497 			 * else to actually change it.
6498 			 */
6499 			mutex_enter(&un->un_pm_mutex);
6500 			un->un_pm_count = -1;
6501 			mutex_exit(&un->un_pm_mutex);
6502 			un->un_power_level = level;
6503 		}
6504 	}
6505 
6506 	mutex_exit(SD_MUTEX(un));
6507 
6508 	SD_TRACE(SD_LOG_POWER, un, "sd_pm_state_change: exit\n");
6509 
6510 	return (DDI_SUCCESS);
6511 }
6512 
6513 
6514 /*
6515  *    Function: sd_pm_idletimeout_handler
6516  *
6517  * Description: A timer routine that's active only while a device is busy.
6518  *		The purpose is to extend slightly the pm framework's busy
6519  *		view of the device to prevent busy/idle thrashing for
6520  *		back-to-back commands. Do this by comparing the current time
6521  *		to the time at which the last command completed and when the
6522  *		difference is greater than sd_pm_idletime, call
6523  *		pm_idle_component. In addition to indicating idle to the pm
6524  *		framework, update the chain type to again use the internal pm
6525  *		layers of the driver.
6526  *
6527  *   Arguments: arg - driver soft state (unit) structure
6528  *
6529  *     Context: Executes in a timeout(9F) thread context
6530  */
6531 
6532 static void
6533 sd_pm_idletimeout_handler(void *arg)
6534 {
6535 	struct sd_lun *un = arg;
6536 
6537 	time_t	now;
6538 
6539 	mutex_enter(&sd_detach_mutex);
6540 	if (un->un_detach_count != 0) {
6541 		/* Abort if the instance is detaching */
6542 		mutex_exit(&sd_detach_mutex);
6543 		return;
6544 	}
6545 	mutex_exit(&sd_detach_mutex);
6546 
6547 	now = ddi_get_time();
6548 	/*
6549 	 * Grab both mutexes, in the proper order, since we're accessing
6550 	 * both PM and softstate variables.
6551 	 */
6552 	mutex_enter(SD_MUTEX(un));
6553 	mutex_enter(&un->un_pm_mutex);
6554 	if (((now - un->un_pm_idle_time) > sd_pm_idletime) &&
6555 	    (un->un_ncmds_in_driver == 0) && (un->un_pm_count == 0)) {
6556 		/*
6557 		 * Update the chain types.
6558 		 * This takes affect on the next new command received.
6559 		 */
6560 		if (un->un_f_non_devbsize_supported) {
6561 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
6562 		} else {
6563 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
6564 		}
6565 		un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD;
6566 
6567 		SD_TRACE(SD_LOG_IO_PM, un,
6568 		    "sd_pm_idletimeout_handler: idling device\n");
6569 		(void) pm_idle_component(SD_DEVINFO(un), 0);
6570 		un->un_pm_idle_timeid = NULL;
6571 	} else {
6572 		un->un_pm_idle_timeid =
6573 		    timeout(sd_pm_idletimeout_handler, un,
6574 		    (drv_usectohz((clock_t)300000))); /* 300 ms. */
6575 	}
6576 	mutex_exit(&un->un_pm_mutex);
6577 	mutex_exit(SD_MUTEX(un));
6578 }
6579 
6580 
6581 /*
6582  *    Function: sd_pm_timeout_handler
6583  *
6584  * Description: Callback to tell framework we are idle.
6585  *
6586  *     Context: timeout(9f) thread context.
6587  */
6588 
6589 static void
6590 sd_pm_timeout_handler(void *arg)
6591 {
6592 	struct sd_lun *un = arg;
6593 
6594 	(void) pm_idle_component(SD_DEVINFO(un), 0);
6595 	mutex_enter(&un->un_pm_mutex);
6596 	un->un_pm_timeid = NULL;
6597 	mutex_exit(&un->un_pm_mutex);
6598 }
6599 
6600 
6601 /*
6602  *    Function: sdpower
6603  *
6604  * Description: PM entry point.
6605  *
6606  * Return Code: DDI_SUCCESS
6607  *		DDI_FAILURE
6608  *
6609  *     Context: Kernel thread context
6610  */
6611 
6612 static int
6613 sdpower(dev_info_t *devi, int component, int level)
6614 {
6615 	struct sd_lun	*un;
6616 	int		instance;
6617 	int		rval = DDI_SUCCESS;
6618 	uint_t		i, log_page_size, maxcycles, ncycles;
6619 	uchar_t		*log_page_data;
6620 	int		log_sense_page;
6621 	int		medium_present;
6622 	time_t		intvlp;
6623 	struct pm_trans_data	sd_pm_tran_data;
6624 	uchar_t		save_state;
6625 	int		sval;
6626 	uchar_t		state_before_pm;
6627 	int		got_semaphore_here;
6628 	sd_ssc_t	*ssc;
6629 	int	last_power_level;
6630 
6631 	instance = ddi_get_instance(devi);
6632 
6633 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
6634 	    !SD_PM_IS_LEVEL_VALID(un, level) || component != 0) {
6635 		return (DDI_FAILURE);
6636 	}
6637 
6638 	ssc = sd_ssc_init(un);
6639 
6640 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: entry, level = %d\n", level);
6641 
6642 	/*
6643 	 * Must synchronize power down with close.
6644 	 * Attempt to decrement/acquire the open/close semaphore,
6645 	 * but do NOT wait on it. If it's not greater than zero,
6646 	 * ie. it can't be decremented without waiting, then
6647 	 * someone else, either open or close, already has it
6648 	 * and the try returns 0. Use that knowledge here to determine
6649 	 * if it's OK to change the device power level.
6650 	 * Also, only increment it on exit if it was decremented, ie. gotten,
6651 	 * here.
6652 	 */
6653 	got_semaphore_here = sema_tryp(&un->un_semoclose);
6654 
6655 	mutex_enter(SD_MUTEX(un));
6656 
6657 	SD_INFO(SD_LOG_POWER, un, "sdpower: un_ncmds_in_driver = %ld\n",
6658 	    un->un_ncmds_in_driver);
6659 
6660 	/*
6661 	 * If un_ncmds_in_driver is non-zero it indicates commands are
6662 	 * already being processed in the driver, or if the semaphore was
6663 	 * not gotten here it indicates an open or close is being processed.
6664 	 * At the same time somebody is requesting to go to a lower power
6665 	 * that can't perform I/O, which can't happen, therefore we need to
6666 	 * return failure.
6667 	 */
6668 	if ((!SD_PM_IS_IO_CAPABLE(un, level)) &&
6669 	    ((un->un_ncmds_in_driver != 0) || (got_semaphore_here == 0))) {
6670 		mutex_exit(SD_MUTEX(un));
6671 
6672 		if (got_semaphore_here != 0) {
6673 			sema_v(&un->un_semoclose);
6674 		}
6675 		SD_TRACE(SD_LOG_IO_PM, un,
6676 		    "sdpower: exit, device has queued cmds.\n");
6677 
6678 		goto sdpower_failed;
6679 	}
6680 
6681 	/*
6682 	 * if it is OFFLINE that means the disk is completely dead
6683 	 * in our case we have to put the disk in on or off by sending commands
6684 	 * Of course that will fail anyway so return back here.
6685 	 *
6686 	 * Power changes to a device that's OFFLINE or SUSPENDED
6687 	 * are not allowed.
6688 	 */
6689 	if ((un->un_state == SD_STATE_OFFLINE) ||
6690 	    (un->un_state == SD_STATE_SUSPENDED)) {
6691 		mutex_exit(SD_MUTEX(un));
6692 
6693 		if (got_semaphore_here != 0) {
6694 			sema_v(&un->un_semoclose);
6695 		}
6696 		SD_TRACE(SD_LOG_IO_PM, un,
6697 		    "sdpower: exit, device is off-line.\n");
6698 
6699 		goto sdpower_failed;
6700 	}
6701 
6702 	/*
6703 	 * Change the device's state to indicate it's power level
6704 	 * is being changed. Do this to prevent a power off in the
6705 	 * middle of commands, which is especially bad on devices
6706 	 * that are really powered off instead of just spun down.
6707 	 */
6708 	state_before_pm = un->un_state;
6709 	un->un_state = SD_STATE_PM_CHANGING;
6710 
6711 	mutex_exit(SD_MUTEX(un));
6712 
6713 	/*
6714 	 * If log sense command is not supported, bypass the
6715 	 * following checking, otherwise, check the log sense
6716 	 * information for this device.
6717 	 */
6718 	if (SD_PM_STOP_MOTOR_NEEDED(un, level) &&
6719 	    un->un_f_log_sense_supported) {
6720 		/*
6721 		 * Get the log sense information to understand whether the
6722 		 * the powercycle counts have gone beyond the threshhold.
6723 		 */
6724 		log_page_size = START_STOP_CYCLE_COUNTER_PAGE_SIZE;
6725 		log_page_data = kmem_zalloc(log_page_size, KM_SLEEP);
6726 
6727 		mutex_enter(SD_MUTEX(un));
6728 		log_sense_page = un->un_start_stop_cycle_page;
6729 		mutex_exit(SD_MUTEX(un));
6730 
6731 		rval = sd_send_scsi_LOG_SENSE(ssc, log_page_data,
6732 		    log_page_size, log_sense_page, 0x01, 0, SD_PATH_DIRECT);
6733 
6734 		if (rval != 0) {
6735 			if (rval == EIO)
6736 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6737 			else
6738 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6739 		}
6740 
6741 #ifdef	SDDEBUG
6742 		if (sd_force_pm_supported) {
6743 			/* Force a successful result */
6744 			rval = 0;
6745 		}
6746 #endif
6747 		if (rval != 0) {
6748 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
6749 			    "Log Sense Failed\n");
6750 
6751 			kmem_free(log_page_data, log_page_size);
6752 			/* Cannot support power management on those drives */
6753 
6754 			if (got_semaphore_here != 0) {
6755 				sema_v(&un->un_semoclose);
6756 			}
6757 			/*
6758 			 * On exit put the state back to it's original value
6759 			 * and broadcast to anyone waiting for the power
6760 			 * change completion.
6761 			 */
6762 			mutex_enter(SD_MUTEX(un));
6763 			un->un_state = state_before_pm;
6764 			cv_broadcast(&un->un_suspend_cv);
6765 			mutex_exit(SD_MUTEX(un));
6766 			SD_TRACE(SD_LOG_IO_PM, un,
6767 			    "sdpower: exit, Log Sense Failed.\n");
6768 
6769 			goto sdpower_failed;
6770 		}
6771 
6772 		/*
6773 		 * From the page data - Convert the essential information to
6774 		 * pm_trans_data
6775 		 */
6776 		maxcycles =
6777 		    (log_page_data[0x1c] << 24) | (log_page_data[0x1d] << 16) |
6778 		    (log_page_data[0x1E] << 8)  | log_page_data[0x1F];
6779 
6780 		ncycles =
6781 		    (log_page_data[0x24] << 24) | (log_page_data[0x25] << 16) |
6782 		    (log_page_data[0x26] << 8)  | log_page_data[0x27];
6783 
6784 		if (un->un_f_pm_log_sense_smart) {
6785 			sd_pm_tran_data.un.smart_count.allowed = maxcycles;
6786 			sd_pm_tran_data.un.smart_count.consumed = ncycles;
6787 			sd_pm_tran_data.un.smart_count.flag = 0;
6788 			sd_pm_tran_data.format = DC_SMART_FORMAT;
6789 		} else {
6790 			sd_pm_tran_data.un.scsi_cycles.lifemax = maxcycles;
6791 			sd_pm_tran_data.un.scsi_cycles.ncycles = ncycles;
6792 			for (i = 0; i < DC_SCSI_MFR_LEN; i++) {
6793 				sd_pm_tran_data.un.scsi_cycles.svc_date[i] =
6794 				    log_page_data[8+i];
6795 			}
6796 			sd_pm_tran_data.un.scsi_cycles.flag = 0;
6797 			sd_pm_tran_data.format = DC_SCSI_FORMAT;
6798 		}
6799 
6800 		kmem_free(log_page_data, log_page_size);
6801 
6802 		/*
6803 		 * Call pm_trans_check routine to get the Ok from
6804 		 * the global policy
6805 		 */
6806 		rval = pm_trans_check(&sd_pm_tran_data, &intvlp);
6807 #ifdef	SDDEBUG
6808 		if (sd_force_pm_supported) {
6809 			/* Force a successful result */
6810 			rval = 1;
6811 		}
6812 #endif
6813 		switch (rval) {
6814 		case 0:
6815 			/*
6816 			 * Not Ok to Power cycle or error in parameters passed
6817 			 * Would have given the advised time to consider power
6818 			 * cycle. Based on the new intvlp parameter we are
6819 			 * supposed to pretend we are busy so that pm framework
6820 			 * will never call our power entry point. Because of
6821 			 * that install a timeout handler and wait for the
6822 			 * recommended time to elapse so that power management
6823 			 * can be effective again.
6824 			 *
6825 			 * To effect this behavior, call pm_busy_component to
6826 			 * indicate to the framework this device is busy.
6827 			 * By not adjusting un_pm_count the rest of PM in
6828 			 * the driver will function normally, and independent
6829 			 * of this but because the framework is told the device
6830 			 * is busy it won't attempt powering down until it gets
6831 			 * a matching idle. The timeout handler sends this.
6832 			 * Note: sd_pm_entry can't be called here to do this
6833 			 * because sdpower may have been called as a result
6834 			 * of a call to pm_raise_power from within sd_pm_entry.
6835 			 *
6836 			 * If a timeout handler is already active then
6837 			 * don't install another.
6838 			 */
6839 			mutex_enter(&un->un_pm_mutex);
6840 			if (un->un_pm_timeid == NULL) {
6841 				un->un_pm_timeid =
6842 				    timeout(sd_pm_timeout_handler,
6843 				    un, intvlp * drv_usectohz(1000000));
6844 				mutex_exit(&un->un_pm_mutex);
6845 				(void) pm_busy_component(SD_DEVINFO(un), 0);
6846 			} else {
6847 				mutex_exit(&un->un_pm_mutex);
6848 			}
6849 			if (got_semaphore_here != 0) {
6850 				sema_v(&un->un_semoclose);
6851 			}
6852 			/*
6853 			 * On exit put the state back to it's original value
6854 			 * and broadcast to anyone waiting for the power
6855 			 * change completion.
6856 			 */
6857 			mutex_enter(SD_MUTEX(un));
6858 			un->un_state = state_before_pm;
6859 			cv_broadcast(&un->un_suspend_cv);
6860 			mutex_exit(SD_MUTEX(un));
6861 
6862 			SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, "
6863 			    "trans check Failed, not ok to power cycle.\n");
6864 
6865 			goto sdpower_failed;
6866 		case -1:
6867 			if (got_semaphore_here != 0) {
6868 				sema_v(&un->un_semoclose);
6869 			}
6870 			/*
6871 			 * On exit put the state back to it's original value
6872 			 * and broadcast to anyone waiting for the power
6873 			 * change completion.
6874 			 */
6875 			mutex_enter(SD_MUTEX(un));
6876 			un->un_state = state_before_pm;
6877 			cv_broadcast(&un->un_suspend_cv);
6878 			mutex_exit(SD_MUTEX(un));
6879 			SD_TRACE(SD_LOG_IO_PM, un,
6880 			    "sdpower: exit, trans check command Failed.\n");
6881 
6882 			goto sdpower_failed;
6883 		}
6884 	}
6885 
6886 	if (!SD_PM_IS_IO_CAPABLE(un, level)) {
6887 		/*
6888 		 * Save the last state... if the STOP FAILS we need it
6889 		 * for restoring
6890 		 */
6891 		mutex_enter(SD_MUTEX(un));
6892 		save_state = un->un_last_state;
6893 		last_power_level = un->un_power_level;
6894 		/*
6895 		 * There must not be any cmds. getting processed
6896 		 * in the driver when we get here. Power to the
6897 		 * device is potentially going off.
6898 		 */
6899 		ASSERT(un->un_ncmds_in_driver == 0);
6900 		mutex_exit(SD_MUTEX(un));
6901 
6902 		/*
6903 		 * For now PM suspend the device completely before spindle is
6904 		 * turned off
6905 		 */
6906 		if ((rval = sd_pm_state_change(un, level, SD_PM_STATE_CHANGE))
6907 		    == DDI_FAILURE) {
6908 			if (got_semaphore_here != 0) {
6909 				sema_v(&un->un_semoclose);
6910 			}
6911 			/*
6912 			 * On exit put the state back to it's original value
6913 			 * and broadcast to anyone waiting for the power
6914 			 * change completion.
6915 			 */
6916 			mutex_enter(SD_MUTEX(un));
6917 			un->un_state = state_before_pm;
6918 			un->un_power_level = last_power_level;
6919 			cv_broadcast(&un->un_suspend_cv);
6920 			mutex_exit(SD_MUTEX(un));
6921 			SD_TRACE(SD_LOG_IO_PM, un,
6922 			    "sdpower: exit, PM suspend Failed.\n");
6923 
6924 			goto sdpower_failed;
6925 		}
6926 	}
6927 
6928 	/*
6929 	 * The transition from SPINDLE_OFF to SPINDLE_ON can happen in open,
6930 	 * close, or strategy. Dump no long uses this routine, it uses it's
6931 	 * own code so it can be done in polled mode.
6932 	 */
6933 
6934 	medium_present = TRUE;
6935 
6936 	/*
6937 	 * When powering up, issue a TUR in case the device is at unit
6938 	 * attention.  Don't do retries. Bypass the PM layer, otherwise
6939 	 * a deadlock on un_pm_busy_cv will occur.
6940 	 */
6941 	if (SD_PM_IS_IO_CAPABLE(un, level)) {
6942 		sval = sd_send_scsi_TEST_UNIT_READY(ssc,
6943 		    SD_DONT_RETRY_TUR | SD_BYPASS_PM);
6944 		if (sval != 0)
6945 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6946 	}
6947 
6948 	if (un->un_f_power_condition_supported) {
6949 		char *pm_condition_name[] = {"STOPPED", "STANDBY",
6950 		    "IDLE", "ACTIVE"};
6951 		SD_TRACE(SD_LOG_IO_PM, un,
6952 		    "sdpower: sending \'%s\' power condition",
6953 		    pm_condition_name[level]);
6954 		sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION,
6955 		    sd_pl2pc[level], SD_PATH_DIRECT);
6956 	} else {
6957 		SD_TRACE(SD_LOG_IO_PM, un, "sdpower: sending \'%s\' unit\n",
6958 		    ((level == SD_SPINDLE_ON) ? "START" : "STOP"));
6959 		sval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
6960 		    ((level == SD_SPINDLE_ON) ? SD_TARGET_START :
6961 		    SD_TARGET_STOP), SD_PATH_DIRECT);
6962 	}
6963 	if (sval != 0) {
6964 		if (sval == EIO)
6965 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
6966 		else
6967 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
6968 	}
6969 
6970 	/* Command failed, check for media present. */
6971 	if ((sval == ENXIO) && un->un_f_has_removable_media) {
6972 		medium_present = FALSE;
6973 	}
6974 
6975 	/*
6976 	 * The conditions of interest here are:
6977 	 *   if a spindle off with media present fails,
6978 	 *	then restore the state and return an error.
6979 	 *   else if a spindle on fails,
6980 	 *	then return an error (there's no state to restore).
6981 	 * In all other cases we setup for the new state
6982 	 * and return success.
6983 	 */
6984 	if (!SD_PM_IS_IO_CAPABLE(un, level)) {
6985 		if ((medium_present == TRUE) && (sval != 0)) {
6986 			/* The stop command from above failed */
6987 			rval = DDI_FAILURE;
6988 			/*
6989 			 * The stop command failed, and we have media
6990 			 * present. Put the level back by calling the
6991 			 * sd_pm_resume() and set the state back to
6992 			 * it's previous value.
6993 			 */
6994 			(void) sd_pm_state_change(un, last_power_level,
6995 			    SD_PM_STATE_ROLLBACK);
6996 			mutex_enter(SD_MUTEX(un));
6997 			un->un_last_state = save_state;
6998 			mutex_exit(SD_MUTEX(un));
6999 		} else if (un->un_f_monitor_media_state) {
7000 			/*
7001 			 * The stop command from above succeeded.
7002 			 * Terminate watch thread in case of removable media
7003 			 * devices going into low power state. This is as per
7004 			 * the requirements of pm framework, otherwise commands
7005 			 * will be generated for the device (through watch
7006 			 * thread), even when the device is in low power state.
7007 			 */
7008 			mutex_enter(SD_MUTEX(un));
7009 			un->un_f_watcht_stopped = FALSE;
7010 			if (un->un_swr_token != NULL) {
7011 				opaque_t temp_token = un->un_swr_token;
7012 				un->un_f_watcht_stopped = TRUE;
7013 				un->un_swr_token = NULL;
7014 				mutex_exit(SD_MUTEX(un));
7015 				(void) scsi_watch_request_terminate(temp_token,
7016 				    SCSI_WATCH_TERMINATE_ALL_WAIT);
7017 			} else {
7018 				mutex_exit(SD_MUTEX(un));
7019 			}
7020 		}
7021 	} else {
7022 		/*
7023 		 * The level requested is I/O capable.
7024 		 * Legacy behavior: return success on a failed spinup
7025 		 * if there is no media in the drive.
7026 		 * Do this by looking at medium_present here.
7027 		 */
7028 		if ((sval != 0) && medium_present) {
7029 			/* The start command from above failed */
7030 			rval = DDI_FAILURE;
7031 		} else {
7032 			/*
7033 			 * The start command from above succeeded
7034 			 * PM resume the devices now that we have
7035 			 * started the disks
7036 			 */
7037 			(void) sd_pm_state_change(un, level,
7038 			    SD_PM_STATE_CHANGE);
7039 
7040 			/*
7041 			 * Resume the watch thread since it was suspended
7042 			 * when the device went into low power mode.
7043 			 */
7044 			if (un->un_f_monitor_media_state) {
7045 				mutex_enter(SD_MUTEX(un));
7046 				if (un->un_f_watcht_stopped == TRUE) {
7047 					opaque_t temp_token;
7048 
7049 					un->un_f_watcht_stopped = FALSE;
7050 					mutex_exit(SD_MUTEX(un));
7051 					temp_token =
7052 					    sd_watch_request_submit(un);
7053 					mutex_enter(SD_MUTEX(un));
7054 					un->un_swr_token = temp_token;
7055 				}
7056 				mutex_exit(SD_MUTEX(un));
7057 			}
7058 		}
7059 	}
7060 
7061 	if (got_semaphore_here != 0) {
7062 		sema_v(&un->un_semoclose);
7063 	}
7064 	/*
7065 	 * On exit put the state back to it's original value
7066 	 * and broadcast to anyone waiting for the power
7067 	 * change completion.
7068 	 */
7069 	mutex_enter(SD_MUTEX(un));
7070 	un->un_state = state_before_pm;
7071 	cv_broadcast(&un->un_suspend_cv);
7072 	mutex_exit(SD_MUTEX(un));
7073 
7074 	SD_TRACE(SD_LOG_IO_PM, un, "sdpower: exit, status = 0x%x\n", rval);
7075 
7076 	sd_ssc_fini(ssc);
7077 	return (rval);
7078 
7079 sdpower_failed:
7080 
7081 	sd_ssc_fini(ssc);
7082 	return (DDI_FAILURE);
7083 }
7084 
7085 
7086 
7087 /*
7088  *    Function: sdattach
7089  *
7090  * Description: Driver's attach(9e) entry point function.
7091  *
7092  *   Arguments: devi - opaque device info handle
7093  *		cmd  - attach  type
7094  *
7095  * Return Code: DDI_SUCCESS
7096  *		DDI_FAILURE
7097  *
7098  *     Context: Kernel thread context
7099  */
7100 
7101 static int
7102 sdattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
7103 {
7104 	switch (cmd) {
7105 	case DDI_ATTACH:
7106 		return (sd_unit_attach(devi));
7107 	case DDI_RESUME:
7108 		return (sd_ddi_resume(devi));
7109 	default:
7110 		break;
7111 	}
7112 	return (DDI_FAILURE);
7113 }
7114 
7115 
7116 /*
7117  *    Function: sddetach
7118  *
7119  * Description: Driver's detach(9E) entry point function.
7120  *
7121  *   Arguments: devi - opaque device info handle
7122  *		cmd  - detach  type
7123  *
7124  * Return Code: DDI_SUCCESS
7125  *		DDI_FAILURE
7126  *
7127  *     Context: Kernel thread context
7128  */
7129 
7130 static int
7131 sddetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
7132 {
7133 	switch (cmd) {
7134 	case DDI_DETACH:
7135 		return (sd_unit_detach(devi));
7136 	case DDI_SUSPEND:
7137 		return (sd_ddi_suspend(devi));
7138 	default:
7139 		break;
7140 	}
7141 	return (DDI_FAILURE);
7142 }
7143 
7144 
7145 /*
7146  *     Function: sd_sync_with_callback
7147  *
7148  *  Description: Prevents sd_unit_attach or sd_unit_detach from freeing the soft
7149  *		 state while the callback routine is active.
7150  *
7151  *    Arguments: un: softstate structure for the instance
7152  *
7153  *	Context: Kernel thread context
7154  */
7155 
7156 static void
7157 sd_sync_with_callback(struct sd_lun *un)
7158 {
7159 	ASSERT(un != NULL);
7160 
7161 	mutex_enter(SD_MUTEX(un));
7162 
7163 	ASSERT(un->un_in_callback >= 0);
7164 
7165 	while (un->un_in_callback > 0) {
7166 		mutex_exit(SD_MUTEX(un));
7167 		delay(2);
7168 		mutex_enter(SD_MUTEX(un));
7169 	}
7170 
7171 	mutex_exit(SD_MUTEX(un));
7172 }
7173 
7174 /*
7175  *    Function: sd_unit_attach
7176  *
7177  * Description: Performs DDI_ATTACH processing for sdattach(). Allocates
7178  *		the soft state structure for the device and performs
7179  *		all necessary structure and device initializations.
7180  *
7181  *   Arguments: devi: the system's dev_info_t for the device.
7182  *
7183  * Return Code: DDI_SUCCESS if attach is successful.
7184  *		DDI_FAILURE if any part of the attach fails.
7185  *
7186  *     Context: Called at attach(9e) time for the DDI_ATTACH flag.
7187  *		Kernel thread context only.  Can sleep.
7188  */
7189 
7190 static int
7191 sd_unit_attach(dev_info_t *devi)
7192 {
7193 	struct	scsi_device	*devp;
7194 	struct	sd_lun		*un;
7195 	char			*variantp;
7196 	char			name_str[48];
7197 	int	reservation_flag = SD_TARGET_IS_UNRESERVED;
7198 	int	instance;
7199 	int	rval;
7200 	int	wc_enabled;
7201 	int	tgt;
7202 	uint64_t	capacity;
7203 	uint_t		lbasize = 0;
7204 	dev_info_t	*pdip = ddi_get_parent(devi);
7205 	int		offbyone = 0;
7206 	int		geom_label_valid = 0;
7207 	sd_ssc_t	*ssc;
7208 	int		status;
7209 	struct sd_fm_internal	*sfip = NULL;
7210 	int		max_xfer_size;
7211 
7212 	/*
7213 	 * Retrieve the target driver's private data area. This was set
7214 	 * up by the HBA.
7215 	 */
7216 	devp = ddi_get_driver_private(devi);
7217 
7218 	/*
7219 	 * Retrieve the target ID of the device.
7220 	 */
7221 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7222 	    SCSI_ADDR_PROP_TARGET, -1);
7223 
7224 	/*
7225 	 * Since we have no idea what state things were left in by the last
7226 	 * user of the device, set up some 'default' settings, ie. turn 'em
7227 	 * off. The scsi_ifsetcap calls force re-negotiations with the drive.
7228 	 * Do this before the scsi_probe, which sends an inquiry.
7229 	 * This is a fix for bug (4430280).
7230 	 * Of special importance is wide-xfer. The drive could have been left
7231 	 * in wide transfer mode by the last driver to communicate with it,
7232 	 * this includes us. If that's the case, and if the following is not
7233 	 * setup properly or we don't re-negotiate with the drive prior to
7234 	 * transferring data to/from the drive, it causes bus parity errors,
7235 	 * data overruns, and unexpected interrupts. This first occurred when
7236 	 * the fix for bug (4378686) was made.
7237 	 */
7238 	(void) scsi_ifsetcap(&devp->sd_address, "lun-reset", 0, 1);
7239 	(void) scsi_ifsetcap(&devp->sd_address, "wide-xfer", 0, 1);
7240 	(void) scsi_ifsetcap(&devp->sd_address, "auto-rqsense", 0, 1);
7241 
7242 	/*
7243 	 * Currently, scsi_ifsetcap sets tagged-qing capability for all LUNs
7244 	 * on a target. Setting it per lun instance actually sets the
7245 	 * capability of this target, which affects those luns already
7246 	 * attached on the same target. So during attach, we can only disable
7247 	 * this capability only when no other lun has been attached on this
7248 	 * target. By doing this, we assume a target has the same tagged-qing
7249 	 * capability for every lun. The condition can be removed when HBA
7250 	 * is changed to support per lun based tagged-qing capability.
7251 	 */
7252 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
7253 		(void) scsi_ifsetcap(&devp->sd_address, "tagged-qing", 0, 1);
7254 	}
7255 
7256 	/*
7257 	 * Use scsi_probe() to issue an INQUIRY command to the device.
7258 	 * This call will allocate and fill in the scsi_inquiry structure
7259 	 * and point the sd_inq member of the scsi_device structure to it.
7260 	 * If the attach succeeds, then this memory will not be de-allocated
7261 	 * (via scsi_unprobe()) until the instance is detached.
7262 	 */
7263 	if (scsi_probe(devp, SLEEP_FUNC) != SCSIPROBE_EXISTS) {
7264 		goto probe_failed;
7265 	}
7266 
7267 	/*
7268 	 * Check the device type as specified in the inquiry data and
7269 	 * claim it if it is of a type that we support.
7270 	 */
7271 	switch (devp->sd_inq->inq_dtype) {
7272 	case DTYPE_DIRECT:
7273 		break;
7274 	case DTYPE_RODIRECT:
7275 		break;
7276 	case DTYPE_OPTICAL:
7277 		break;
7278 	case DTYPE_NOTPRESENT:
7279 	default:
7280 		/* Unsupported device type; fail the attach. */
7281 		goto probe_failed;
7282 	}
7283 
7284 	/*
7285 	 * Allocate the soft state structure for this unit.
7286 	 *
7287 	 * We rely upon this memory being set to all zeroes by
7288 	 * ddi_soft_state_zalloc().  We assume that any member of the
7289 	 * soft state structure that is not explicitly initialized by
7290 	 * this routine will have a value of zero.
7291 	 */
7292 	instance = ddi_get_instance(devp->sd_dev);
7293 #ifndef XPV_HVM_DRIVER
7294 	if (ddi_soft_state_zalloc(sd_state, instance) != DDI_SUCCESS) {
7295 		goto probe_failed;
7296 	}
7297 #endif /* !XPV_HVM_DRIVER */
7298 
7299 	/*
7300 	 * Retrieve a pointer to the newly-allocated soft state.
7301 	 *
7302 	 * This should NEVER fail if the ddi_soft_state_zalloc() call above
7303 	 * was successful, unless something has gone horribly wrong and the
7304 	 * ddi's soft state internals are corrupt (in which case it is
7305 	 * probably better to halt here than just fail the attach....)
7306 	 */
7307 	if ((un = ddi_get_soft_state(sd_state, instance)) == NULL) {
7308 		panic("sd_unit_attach: NULL soft state on instance:0x%x",
7309 		    instance);
7310 		/*NOTREACHED*/
7311 	}
7312 
7313 	/*
7314 	 * Link the back ptr of the driver soft state to the scsi_device
7315 	 * struct for this lun.
7316 	 * Save a pointer to the softstate in the driver-private area of
7317 	 * the scsi_device struct.
7318 	 * Note: We cannot call SD_INFO, SD_TRACE, SD_ERROR, or SD_DIAG until
7319 	 * we first set un->un_sd below.
7320 	 */
7321 	un->un_sd = devp;
7322 	devp->sd_private = (opaque_t)un;
7323 
7324 	/*
7325 	 * The following must be after devp is stored in the soft state struct.
7326 	 */
7327 #ifdef SDDEBUG
7328 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7329 	    "%s_unit_attach: un:0x%p instance:%d\n",
7330 	    ddi_driver_name(devi), un, instance);
7331 #endif
7332 
7333 	/*
7334 	 * Set up the device type and node type (for the minor nodes).
7335 	 * By default we assume that the device can at least support the
7336 	 * Common Command Set. Call it a CD-ROM if it reports itself
7337 	 * as a RODIRECT device.
7338 	 */
7339 	switch (devp->sd_inq->inq_dtype) {
7340 	case DTYPE_RODIRECT:
7341 		un->un_node_type = DDI_NT_CD_CHAN;
7342 		un->un_ctype	 = CTYPE_CDROM;
7343 		break;
7344 	case DTYPE_OPTICAL:
7345 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7346 		un->un_ctype	 = CTYPE_ROD;
7347 		break;
7348 	default:
7349 		un->un_node_type = DDI_NT_BLOCK_CHAN;
7350 		un->un_ctype	 = CTYPE_CCS;
7351 		break;
7352 	}
7353 
7354 	/*
7355 	 * Try to read the interconnect type from the HBA.
7356 	 *
7357 	 * Note: This driver is currently compiled as two binaries, a parallel
7358 	 * scsi version (sd) and a fibre channel version (ssd). All functional
7359 	 * differences are determined at compile time. In the future a single
7360 	 * binary will be provided and the interconnect type will be used to
7361 	 * differentiate between fibre and parallel scsi behaviors. At that time
7362 	 * it will be necessary for all fibre channel HBAs to support this
7363 	 * property.
7364 	 *
7365 	 * set un_f_is_fiber to TRUE ( default fiber )
7366 	 */
7367 	un->un_f_is_fibre = TRUE;
7368 	switch (scsi_ifgetcap(SD_ADDRESS(un), "interconnect-type", -1)) {
7369 	case INTERCONNECT_SSA:
7370 		un->un_interconnect_type = SD_INTERCONNECT_SSA;
7371 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7372 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SSA\n", un);
7373 		break;
7374 	case INTERCONNECT_PARALLEL:
7375 		un->un_f_is_fibre = FALSE;
7376 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7377 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7378 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_PARALLEL\n", un);
7379 		break;
7380 	case INTERCONNECT_SAS:
7381 		un->un_f_is_fibre = FALSE;
7382 		un->un_interconnect_type = SD_INTERCONNECT_SAS;
7383 		un->un_node_type = DDI_NT_BLOCK_SAS;
7384 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7385 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SAS\n", un);
7386 		break;
7387 	case INTERCONNECT_SATA:
7388 		un->un_f_is_fibre = FALSE;
7389 		un->un_interconnect_type = SD_INTERCONNECT_SATA;
7390 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7391 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_SATA\n", un);
7392 		break;
7393 	case INTERCONNECT_FIBRE:
7394 		un->un_interconnect_type = SD_INTERCONNECT_FIBRE;
7395 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7396 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FIBRE\n", un);
7397 		break;
7398 	case INTERCONNECT_FABRIC:
7399 		un->un_interconnect_type = SD_INTERCONNECT_FABRIC;
7400 		un->un_node_type = DDI_NT_BLOCK_FABRIC;
7401 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7402 		    "sd_unit_attach: un:0x%p SD_INTERCONNECT_FABRIC\n", un);
7403 		break;
7404 	default:
7405 #ifdef SD_DEFAULT_INTERCONNECT_TYPE
7406 		/*
7407 		 * The HBA does not support the "interconnect-type" property
7408 		 * (or did not provide a recognized type).
7409 		 *
7410 		 * Note: This will be obsoleted when a single fibre channel
7411 		 * and parallel scsi driver is delivered. In the meantime the
7412 		 * interconnect type will be set to the platform default.If that
7413 		 * type is not parallel SCSI, it means that we should be
7414 		 * assuming "ssd" semantics. However, here this also means that
7415 		 * the FC HBA is not supporting the "interconnect-type" property
7416 		 * like we expect it to, so log this occurrence.
7417 		 */
7418 		un->un_interconnect_type = SD_DEFAULT_INTERCONNECT_TYPE;
7419 		if (!SD_IS_PARALLEL_SCSI(un)) {
7420 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7421 			    "sd_unit_attach: un:0x%p Assuming "
7422 			    "INTERCONNECT_FIBRE\n", un);
7423 		} else {
7424 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7425 			    "sd_unit_attach: un:0x%p Assuming "
7426 			    "INTERCONNECT_PARALLEL\n", un);
7427 			un->un_f_is_fibre = FALSE;
7428 		}
7429 #else
7430 		/*
7431 		 * Note: This source will be implemented when a single fibre
7432 		 * channel and parallel scsi driver is delivered. The default
7433 		 * will be to assume that if a device does not support the
7434 		 * "interconnect-type" property it is a parallel SCSI HBA and
7435 		 * we will set the interconnect type for parallel scsi.
7436 		 */
7437 		un->un_interconnect_type = SD_INTERCONNECT_PARALLEL;
7438 		un->un_f_is_fibre = FALSE;
7439 #endif
7440 		break;
7441 	}
7442 
7443 	if (un->un_f_is_fibre == TRUE) {
7444 		if (scsi_ifgetcap(SD_ADDRESS(un), "scsi-version", 1) ==
7445 		    SCSI_VERSION_3) {
7446 			switch (un->un_interconnect_type) {
7447 			case SD_INTERCONNECT_FIBRE:
7448 			case SD_INTERCONNECT_SSA:
7449 				un->un_node_type = DDI_NT_BLOCK_WWN;
7450 				break;
7451 			default:
7452 				break;
7453 			}
7454 		}
7455 	}
7456 
7457 	/*
7458 	 * Initialize the Request Sense command for the target
7459 	 */
7460 	if (sd_alloc_rqs(devp, un) != DDI_SUCCESS) {
7461 		goto alloc_rqs_failed;
7462 	}
7463 
7464 	/*
7465 	 * Set un_retry_count with SD_RETRY_COUNT, this is ok for Sparc
7466 	 * with separate binary for sd and ssd.
7467 	 *
7468 	 * x86 has 1 binary, un_retry_count is set base on connection type.
7469 	 * The hardcoded values will go away when Sparc uses 1 binary
7470 	 * for sd and ssd.  This hardcoded values need to match
7471 	 * SD_RETRY_COUNT in sddef.h
7472 	 * The value used is base on interconnect type.
7473 	 * fibre = 3, parallel = 5
7474 	 */
7475 #if defined(__i386) || defined(__amd64)
7476 	un->un_retry_count = un->un_f_is_fibre ? 3 : 5;
7477 #else
7478 	un->un_retry_count = SD_RETRY_COUNT;
7479 #endif
7480 
7481 	/*
7482 	 * Set the per disk retry count to the default number of retries
7483 	 * for disks and CDROMs. This value can be overridden by the
7484 	 * disk property list or an entry in sd.conf.
7485 	 */
7486 	un->un_notready_retry_count =
7487 	    ISCD(un) ? CD_NOT_READY_RETRY_COUNT(un)
7488 	    : DISK_NOT_READY_RETRY_COUNT(un);
7489 
7490 	/*
7491 	 * Set the busy retry count to the default value of un_retry_count.
7492 	 * This can be overridden by entries in sd.conf or the device
7493 	 * config table.
7494 	 */
7495 	un->un_busy_retry_count = un->un_retry_count;
7496 
7497 	/*
7498 	 * Init the reset threshold for retries.  This number determines
7499 	 * how many retries must be performed before a reset can be issued
7500 	 * (for certain error conditions). This can be overridden by entries
7501 	 * in sd.conf or the device config table.
7502 	 */
7503 	un->un_reset_retry_count = (un->un_retry_count / 2);
7504 
7505 	/*
7506 	 * Set the victim_retry_count to the default un_retry_count
7507 	 */
7508 	un->un_victim_retry_count = (2 * un->un_retry_count);
7509 
7510 	/*
7511 	 * Set the reservation release timeout to the default value of
7512 	 * 5 seconds. This can be overridden by entries in ssd.conf or the
7513 	 * device config table.
7514 	 */
7515 	un->un_reserve_release_time = 5;
7516 
7517 	/*
7518 	 * Set up the default maximum transfer size. Note that this may
7519 	 * get updated later in the attach, when setting up default wide
7520 	 * operations for disks.
7521 	 */
7522 #if defined(__i386) || defined(__amd64)
7523 	un->un_max_xfer_size = (uint_t)SD_DEFAULT_MAX_XFER_SIZE;
7524 	un->un_partial_dma_supported = 1;
7525 #else
7526 	un->un_max_xfer_size = (uint_t)maxphys;
7527 #endif
7528 
7529 	/*
7530 	 * Get "allow bus device reset" property (defaults to "enabled" if
7531 	 * the property was not defined). This is to disable bus resets for
7532 	 * certain kinds of error recovery. Note: In the future when a run-time
7533 	 * fibre check is available the soft state flag should default to
7534 	 * enabled.
7535 	 */
7536 	if (un->un_f_is_fibre == TRUE) {
7537 		un->un_f_allow_bus_device_reset = TRUE;
7538 	} else {
7539 		if (ddi_getprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
7540 		    "allow-bus-device-reset", 1) != 0) {
7541 			un->un_f_allow_bus_device_reset = TRUE;
7542 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7543 			    "sd_unit_attach: un:0x%p Bus device reset "
7544 			    "enabled\n", un);
7545 		} else {
7546 			un->un_f_allow_bus_device_reset = FALSE;
7547 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7548 			    "sd_unit_attach: un:0x%p Bus device reset "
7549 			    "disabled\n", un);
7550 		}
7551 	}
7552 
7553 	/*
7554 	 * Check if this is an ATAPI device. ATAPI devices use Group 1
7555 	 * Read/Write commands and Group 2 Mode Sense/Select commands.
7556 	 *
7557 	 * Note: The "obsolete" way of doing this is to check for the "atapi"
7558 	 * property. The new "variant" property with a value of "atapi" has been
7559 	 * introduced so that future 'variants' of standard SCSI behavior (like
7560 	 * atapi) could be specified by the underlying HBA drivers by supplying
7561 	 * a new value for the "variant" property, instead of having to define a
7562 	 * new property.
7563 	 */
7564 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "atapi", -1) != -1) {
7565 		un->un_f_cfg_is_atapi = TRUE;
7566 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
7567 		    "sd_unit_attach: un:0x%p Atapi device\n", un);
7568 	}
7569 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, 0, "variant",
7570 	    &variantp) == DDI_PROP_SUCCESS) {
7571 		if (strcmp(variantp, "atapi") == 0) {
7572 			un->un_f_cfg_is_atapi = TRUE;
7573 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7574 			    "sd_unit_attach: un:0x%p Atapi device\n", un);
7575 		}
7576 		ddi_prop_free(variantp);
7577 	}
7578 
7579 	un->un_cmd_timeout	= SD_IO_TIME;
7580 
7581 	un->un_busy_timeout  = SD_BSY_TIMEOUT;
7582 
7583 	/* Info on current states, statuses, etc. (Updated frequently) */
7584 	un->un_state		= SD_STATE_NORMAL;
7585 	un->un_last_state	= SD_STATE_NORMAL;
7586 
7587 	/* Control & status info for command throttling */
7588 	un->un_throttle		= sd_max_throttle;
7589 	un->un_saved_throttle	= sd_max_throttle;
7590 	un->un_min_throttle	= sd_min_throttle;
7591 
7592 	if (un->un_f_is_fibre == TRUE) {
7593 		un->un_f_use_adaptive_throttle = TRUE;
7594 	} else {
7595 		un->un_f_use_adaptive_throttle = FALSE;
7596 	}
7597 
7598 	/* Removable media support. */
7599 	cv_init(&un->un_state_cv, NULL, CV_DRIVER, NULL);
7600 	un->un_mediastate		= DKIO_NONE;
7601 	un->un_specified_mediastate	= DKIO_NONE;
7602 
7603 	/* CVs for suspend/resume (PM or DR) */
7604 	cv_init(&un->un_suspend_cv,   NULL, CV_DRIVER, NULL);
7605 	cv_init(&un->un_disk_busy_cv, NULL, CV_DRIVER, NULL);
7606 
7607 	/* Power management support. */
7608 	un->un_power_level = SD_SPINDLE_UNINIT;
7609 
7610 	cv_init(&un->un_wcc_cv,   NULL, CV_DRIVER, NULL);
7611 	un->un_f_wcc_inprog = 0;
7612 
7613 	/*
7614 	 * The open/close semaphore is used to serialize threads executing
7615 	 * in the driver's open & close entry point routines for a given
7616 	 * instance.
7617 	 */
7618 	(void) sema_init(&un->un_semoclose, 1, NULL, SEMA_DRIVER, NULL);
7619 
7620 	/*
7621 	 * The conf file entry and softstate variable is a forceful override,
7622 	 * meaning a non-zero value must be entered to change the default.
7623 	 */
7624 	un->un_f_disksort_disabled = FALSE;
7625 	un->un_f_rmw_type = SD_RMW_TYPE_DEFAULT;
7626 	un->un_f_enable_rmw = FALSE;
7627 
7628 	/*
7629 	 * GET EVENT STATUS NOTIFICATION media polling enabled by default, but
7630 	 * can be overridden via [s]sd-config-list "mmc-gesn-polling" property.
7631 	 */
7632 	un->un_f_mmc_gesn_polling = TRUE;
7633 
7634 	/*
7635 	 * physical sector size defaults to DEV_BSIZE currently. We can
7636 	 * override this value via the driver configuration file so we must
7637 	 * set it before calling sd_read_unit_properties().
7638 	 */
7639 	un->un_phy_blocksize = DEV_BSIZE;
7640 
7641 	/*
7642 	 * Retrieve the properties from the static driver table or the driver
7643 	 * configuration file (.conf) for this unit and update the soft state
7644 	 * for the device as needed for the indicated properties.
7645 	 * Note: the property configuration needs to occur here as some of the
7646 	 * following routines may have dependencies on soft state flags set
7647 	 * as part of the driver property configuration.
7648 	 */
7649 	sd_read_unit_properties(un);
7650 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7651 	    "sd_unit_attach: un:0x%p property configuration complete.\n", un);
7652 
7653 	/*
7654 	 * Only if a device has "hotpluggable" property, it is
7655 	 * treated as hotpluggable device. Otherwise, it is
7656 	 * regarded as non-hotpluggable one.
7657 	 */
7658 	if (ddi_prop_get_int(DDI_DEV_T_ANY, devi, 0, "hotpluggable",
7659 	    -1) != -1) {
7660 		un->un_f_is_hotpluggable = TRUE;
7661 	}
7662 
7663 	/*
7664 	 * set unit's attributes(flags) according to "hotpluggable" and
7665 	 * RMB bit in INQUIRY data.
7666 	 */
7667 	sd_set_unit_attributes(un, devi);
7668 
7669 	/*
7670 	 * By default, we mark the capacity, lbasize, and geometry
7671 	 * as invalid. Only if we successfully read a valid capacity
7672 	 * will we update the un_blockcount and un_tgt_blocksize with the
7673 	 * valid values (the geometry will be validated later).
7674 	 */
7675 	un->un_f_blockcount_is_valid	= FALSE;
7676 	un->un_f_tgt_blocksize_is_valid	= FALSE;
7677 
7678 	/*
7679 	 * Use DEV_BSIZE and DEV_BSHIFT as defaults, until we can determine
7680 	 * otherwise.
7681 	 */
7682 	un->un_tgt_blocksize  = un->un_sys_blocksize  = DEV_BSIZE;
7683 	un->un_blockcount = 0;
7684 
7685 	/*
7686 	 * Set up the per-instance info needed to determine the correct
7687 	 * CDBs and other info for issuing commands to the target.
7688 	 */
7689 	sd_init_cdb_limits(un);
7690 
7691 	/*
7692 	 * Set up the IO chains to use, based upon the target type.
7693 	 */
7694 	if (un->un_f_non_devbsize_supported) {
7695 		un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA;
7696 	} else {
7697 		un->un_buf_chain_type = SD_CHAIN_INFO_DISK;
7698 	}
7699 	un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD;
7700 	un->un_direct_chain_type = SD_CHAIN_INFO_DIRECT_CMD;
7701 	un->un_priority_chain_type = SD_CHAIN_INFO_PRIORITY_CMD;
7702 
7703 	un->un_xbuf_attr = ddi_xbuf_attr_create(sizeof (struct sd_xbuf),
7704 	    sd_xbuf_strategy, un, sd_xbuf_active_limit,  sd_xbuf_reserve_limit,
7705 	    ddi_driver_major(devi), DDI_XBUF_QTHREAD_DRIVER);
7706 	ddi_xbuf_attr_register_devinfo(un->un_xbuf_attr, devi);
7707 
7708 
7709 	if (ISCD(un)) {
7710 		un->un_additional_codes = sd_additional_codes;
7711 	} else {
7712 		un->un_additional_codes = NULL;
7713 	}
7714 
7715 	/*
7716 	 * Create the kstats here so they can be available for attach-time
7717 	 * routines that send commands to the unit (either polled or via
7718 	 * sd_send_scsi_cmd).
7719 	 *
7720 	 * Note: This is a critical sequence that needs to be maintained:
7721 	 *	1) Instantiate the kstats here, before any routines using the
7722 	 *	   iopath (i.e. sd_send_scsi_cmd).
7723 	 *	2) Instantiate and initialize the partition stats
7724 	 *	   (sd_set_pstats).
7725 	 *	3) Initialize the error stats (sd_set_errstats), following
7726 	 *	   sd_validate_geometry(),sd_register_devid(),
7727 	 *	   and sd_cache_control().
7728 	 */
7729 
7730 	un->un_stats = kstat_create(sd_label, instance,
7731 	    NULL, "disk", KSTAT_TYPE_IO, 1, KSTAT_FLAG_PERSISTENT);
7732 	if (un->un_stats != NULL) {
7733 		un->un_stats->ks_lock = SD_MUTEX(un);
7734 		kstat_install(un->un_stats);
7735 	}
7736 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7737 	    "sd_unit_attach: un:0x%p un_stats created\n", un);
7738 
7739 	sd_create_errstats(un, instance);
7740 	if (un->un_errstats == NULL) {
7741 		goto create_errstats_failed;
7742 	}
7743 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7744 	    "sd_unit_attach: un:0x%p errstats created\n", un);
7745 
7746 	/*
7747 	 * The following if/else code was relocated here from below as part
7748 	 * of the fix for bug (4430280). However with the default setup added
7749 	 * on entry to this routine, it's no longer absolutely necessary for
7750 	 * this to be before the call to sd_spin_up_unit.
7751 	 */
7752 	if (SD_IS_PARALLEL_SCSI(un) || SD_IS_SERIAL(un)) {
7753 		int tq_trigger_flag = (((devp->sd_inq->inq_ansi == 4) ||
7754 		    (devp->sd_inq->inq_ansi == 5)) &&
7755 		    devp->sd_inq->inq_bque) || devp->sd_inq->inq_cmdque;
7756 
7757 		/*
7758 		 * If tagged queueing is supported by the target
7759 		 * and by the host adapter then we will enable it
7760 		 */
7761 		un->un_tagflags = 0;
7762 		if ((devp->sd_inq->inq_rdf == RDF_SCSI2) && tq_trigger_flag &&
7763 		    (un->un_f_arq_enabled == TRUE)) {
7764 			if (scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing",
7765 			    1, 1) == 1) {
7766 				un->un_tagflags = FLAG_STAG;
7767 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7768 				    "sd_unit_attach: un:0x%p tag queueing "
7769 				    "enabled\n", un);
7770 			} else if (scsi_ifgetcap(SD_ADDRESS(un),
7771 			    "untagged-qing", 0) == 1) {
7772 				un->un_f_opt_queueing = TRUE;
7773 				un->un_saved_throttle = un->un_throttle =
7774 				    min(un->un_throttle, 3);
7775 			} else {
7776 				un->un_f_opt_queueing = FALSE;
7777 				un->un_saved_throttle = un->un_throttle = 1;
7778 			}
7779 		} else if ((scsi_ifgetcap(SD_ADDRESS(un), "untagged-qing", 0)
7780 		    == 1) && (un->un_f_arq_enabled == TRUE)) {
7781 			/* The Host Adapter supports internal queueing. */
7782 			un->un_f_opt_queueing = TRUE;
7783 			un->un_saved_throttle = un->un_throttle =
7784 			    min(un->un_throttle, 3);
7785 		} else {
7786 			un->un_f_opt_queueing = FALSE;
7787 			un->un_saved_throttle = un->un_throttle = 1;
7788 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7789 			    "sd_unit_attach: un:0x%p no tag queueing\n", un);
7790 		}
7791 
7792 		/*
7793 		 * Enable large transfers for SATA/SAS drives
7794 		 */
7795 		if (SD_IS_SERIAL(un)) {
7796 			un->un_max_xfer_size =
7797 			    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7798 			    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7799 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
7800 			    "sd_unit_attach: un:0x%p max transfer "
7801 			    "size=0x%x\n", un, un->un_max_xfer_size);
7802 
7803 		}
7804 
7805 		/* Setup or tear down default wide operations for disks */
7806 
7807 		/*
7808 		 * Note: Legacy: it may be possible for both "sd_max_xfer_size"
7809 		 * and "ssd_max_xfer_size" to exist simultaneously on the same
7810 		 * system and be set to different values. In the future this
7811 		 * code may need to be updated when the ssd module is
7812 		 * obsoleted and removed from the system. (4299588)
7813 		 */
7814 		if (SD_IS_PARALLEL_SCSI(un) &&
7815 		    (devp->sd_inq->inq_rdf == RDF_SCSI2) &&
7816 		    (devp->sd_inq->inq_wbus16 || devp->sd_inq->inq_wbus32)) {
7817 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7818 			    1, 1) == 1) {
7819 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7820 				    "sd_unit_attach: un:0x%p Wide Transfer "
7821 				    "enabled\n", un);
7822 			}
7823 
7824 			/*
7825 			 * If tagged queuing has also been enabled, then
7826 			 * enable large xfers
7827 			 */
7828 			if (un->un_saved_throttle == sd_max_throttle) {
7829 				un->un_max_xfer_size =
7830 				    ddi_getprop(DDI_DEV_T_ANY, devi, 0,
7831 				    sd_max_xfer_size, SD_MAX_XFER_SIZE);
7832 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7833 				    "sd_unit_attach: un:0x%p max transfer "
7834 				    "size=0x%x\n", un, un->un_max_xfer_size);
7835 			}
7836 		} else {
7837 			if (scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer",
7838 			    0, 1) == 1) {
7839 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
7840 				    "sd_unit_attach: un:0x%p "
7841 				    "Wide Transfer disabled\n", un);
7842 			}
7843 		}
7844 	} else {
7845 		un->un_tagflags = FLAG_STAG;
7846 		un->un_max_xfer_size = ddi_getprop(DDI_DEV_T_ANY,
7847 		    devi, 0, sd_max_xfer_size, SD_MAX_XFER_SIZE);
7848 	}
7849 
7850 	/*
7851 	 * If this target supports LUN reset, try to enable it.
7852 	 */
7853 	if (un->un_f_lun_reset_enabled) {
7854 		if (scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 1, 1) == 1) {
7855 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7856 			    "un:0x%p lun_reset capability set\n", un);
7857 		} else {
7858 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7859 			    "un:0x%p lun-reset capability not set\n", un);
7860 		}
7861 	}
7862 
7863 	/*
7864 	 * Adjust the maximum transfer size. This is to fix
7865 	 * the problem of partial DMA support on SPARC. Some
7866 	 * HBA driver, like aac, has very small dma_attr_maxxfer
7867 	 * size, which requires partial DMA support on SPARC.
7868 	 * In the future the SPARC pci nexus driver may solve
7869 	 * the problem instead of this fix.
7870 	 */
7871 	max_xfer_size = scsi_ifgetcap(SD_ADDRESS(un), "dma-max", 1);
7872 	if ((max_xfer_size > 0) && (max_xfer_size < un->un_max_xfer_size)) {
7873 		/* We need DMA partial even on sparc to ensure sddump() works */
7874 		un->un_max_xfer_size = max_xfer_size;
7875 		if (un->un_partial_dma_supported == 0)
7876 			un->un_partial_dma_supported = 1;
7877 	}
7878 	if (ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7879 	    DDI_PROP_DONTPASS, "buf_break", 0) == 1) {
7880 		if (ddi_xbuf_attr_setup_brk(un->un_xbuf_attr,
7881 		    un->un_max_xfer_size) == 1) {
7882 			un->un_buf_breakup_supported = 1;
7883 			SD_INFO(SD_LOG_ATTACH_DETACH, un, "sd_unit_attach: "
7884 			    "un:0x%p Buf breakup enabled\n", un);
7885 		}
7886 	}
7887 
7888 	/*
7889 	 * Set PKT_DMA_PARTIAL flag.
7890 	 */
7891 	if (un->un_partial_dma_supported == 1) {
7892 		un->un_pkt_flags = PKT_DMA_PARTIAL;
7893 	} else {
7894 		un->un_pkt_flags = 0;
7895 	}
7896 
7897 	/* Initialize sd_ssc_t for internal uscsi commands */
7898 	ssc = sd_ssc_init(un);
7899 	scsi_fm_init(devp);
7900 
7901 	/*
7902 	 * Allocate memory for SCSI FMA stuffs.
7903 	 */
7904 	un->un_fm_private =
7905 	    kmem_zalloc(sizeof (struct sd_fm_internal), KM_SLEEP);
7906 	sfip = (struct sd_fm_internal *)un->un_fm_private;
7907 	sfip->fm_ssc.ssc_uscsi_cmd = &sfip->fm_ucmd;
7908 	sfip->fm_ssc.ssc_uscsi_info = &sfip->fm_uinfo;
7909 	sfip->fm_ssc.ssc_un = un;
7910 
7911 	if (ISCD(un) ||
7912 	    un->un_f_has_removable_media ||
7913 	    devp->sd_fm_capable == DDI_FM_NOT_CAPABLE) {
7914 		/*
7915 		 * We don't touch CDROM or the DDI_FM_NOT_CAPABLE device.
7916 		 * Their log are unchanged.
7917 		 */
7918 		sfip->fm_log_level = SD_FM_LOG_NSUP;
7919 	} else {
7920 		/*
7921 		 * If enter here, it should be non-CDROM and FM-capable
7922 		 * device, and it will not keep the old scsi_log as before
7923 		 * in /var/adm/messages. However, the property
7924 		 * "fm-scsi-log" will control whether the FM telemetry will
7925 		 * be logged in /var/adm/messages.
7926 		 */
7927 		int fm_scsi_log;
7928 		fm_scsi_log = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
7929 		    DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, "fm-scsi-log", 0);
7930 
7931 		if (fm_scsi_log)
7932 			sfip->fm_log_level = SD_FM_LOG_EREPORT;
7933 		else
7934 			sfip->fm_log_level = SD_FM_LOG_SILENT;
7935 	}
7936 
7937 	/*
7938 	 * At this point in the attach, we have enough info in the
7939 	 * soft state to be able to issue commands to the target.
7940 	 *
7941 	 * All command paths used below MUST issue their commands as
7942 	 * SD_PATH_DIRECT. This is important as intermediate layers
7943 	 * are not all initialized yet (such as PM).
7944 	 */
7945 
7946 	/*
7947 	 * Send a TEST UNIT READY command to the device. This should clear
7948 	 * any outstanding UNIT ATTENTION that may be present.
7949 	 *
7950 	 * Note: Don't check for success, just track if there is a reservation,
7951 	 * this is a throw away command to clear any unit attentions.
7952 	 *
7953 	 * Note: This MUST be the first command issued to the target during
7954 	 * attach to ensure power on UNIT ATTENTIONS are cleared.
7955 	 * Pass in flag SD_DONT_RETRY_TUR to prevent the long delays associated
7956 	 * with attempts at spinning up a device with no media.
7957 	 */
7958 	status = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
7959 	if (status != 0) {
7960 		if (status == EACCES)
7961 			reservation_flag = SD_TARGET_IS_RESERVED;
7962 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
7963 	}
7964 
7965 	/*
7966 	 * If the device is NOT a removable media device, attempt to spin
7967 	 * it up (using the START_STOP_UNIT command) and read its capacity
7968 	 * (using the READ CAPACITY command).  Note, however, that either
7969 	 * of these could fail and in some cases we would continue with
7970 	 * the attach despite the failure (see below).
7971 	 */
7972 	if (un->un_f_descr_format_supported) {
7973 
7974 		switch (sd_spin_up_unit(ssc)) {
7975 		case 0:
7976 			/*
7977 			 * Spin-up was successful; now try to read the
7978 			 * capacity.  If successful then save the results
7979 			 * and mark the capacity & lbasize as valid.
7980 			 */
7981 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
7982 			    "sd_unit_attach: un:0x%p spin-up successful\n", un);
7983 
7984 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
7985 			    &lbasize, SD_PATH_DIRECT);
7986 
7987 			switch (status) {
7988 			case 0: {
7989 				if (capacity > DK_MAX_BLOCKS) {
7990 #ifdef _LP64
7991 					if ((capacity + 1) >
7992 					    SD_GROUP1_MAX_ADDRESS) {
7993 						/*
7994 						 * Enable descriptor format
7995 						 * sense data so that we can
7996 						 * get 64 bit sense data
7997 						 * fields.
7998 						 */
7999 						sd_enable_descr_sense(ssc);
8000 					}
8001 #else
8002 					/* 32-bit kernels can't handle this */
8003 					scsi_log(SD_DEVINFO(un),
8004 					    sd_label, CE_WARN,
8005 					    "disk has %llu blocks, which "
8006 					    "is too large for a 32-bit "
8007 					    "kernel", capacity);
8008 
8009 #if defined(__i386) || defined(__amd64)
8010 					/*
8011 					 * 1TB disk was treated as (1T - 512)B
8012 					 * in the past, so that it might have
8013 					 * valid VTOC and solaris partitions,
8014 					 * we have to allow it to continue to
8015 					 * work.
8016 					 */
8017 					if (capacity -1 > DK_MAX_BLOCKS)
8018 #endif
8019 					goto spinup_failed;
8020 #endif
8021 				}
8022 
8023 				/*
8024 				 * Here it's not necessary to check the case:
8025 				 * the capacity of the device is bigger than
8026 				 * what the max hba cdb can support. Because
8027 				 * sd_send_scsi_READ_CAPACITY will retrieve
8028 				 * the capacity by sending USCSI command, which
8029 				 * is constrained by the max hba cdb. Actually,
8030 				 * sd_send_scsi_READ_CAPACITY will return
8031 				 * EINVAL when using bigger cdb than required
8032 				 * cdb length. Will handle this case in
8033 				 * "case EINVAL".
8034 				 */
8035 
8036 				/*
8037 				 * The following relies on
8038 				 * sd_send_scsi_READ_CAPACITY never
8039 				 * returning 0 for capacity and/or lbasize.
8040 				 */
8041 				sd_update_block_info(un, lbasize, capacity);
8042 
8043 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8044 				    "sd_unit_attach: un:0x%p capacity = %ld "
8045 				    "blocks; lbasize= %ld.\n", un,
8046 				    un->un_blockcount, un->un_tgt_blocksize);
8047 
8048 				break;
8049 			}
8050 			case EINVAL:
8051 				/*
8052 				 * In the case where the max-cdb-length property
8053 				 * is smaller than the required CDB length for
8054 				 * a SCSI device, a target driver can fail to
8055 				 * attach to that device.
8056 				 */
8057 				scsi_log(SD_DEVINFO(un),
8058 				    sd_label, CE_WARN,
8059 				    "disk capacity is too large "
8060 				    "for current cdb length");
8061 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8062 
8063 				goto spinup_failed;
8064 			case EACCES:
8065 				/*
8066 				 * Should never get here if the spin-up
8067 				 * succeeded, but code it in anyway.
8068 				 * From here, just continue with the attach...
8069 				 */
8070 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
8071 				    "sd_unit_attach: un:0x%p "
8072 				    "sd_send_scsi_READ_CAPACITY "
8073 				    "returned reservation conflict\n", un);
8074 				reservation_flag = SD_TARGET_IS_RESERVED;
8075 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8076 				break;
8077 			default:
8078 				/*
8079 				 * Likewise, should never get here if the
8080 				 * spin-up succeeded. Just continue with
8081 				 * the attach...
8082 				 */
8083 				if (status == EIO)
8084 					sd_ssc_assessment(ssc,
8085 					    SD_FMT_STATUS_CHECK);
8086 				else
8087 					sd_ssc_assessment(ssc,
8088 					    SD_FMT_IGNORE);
8089 				break;
8090 			}
8091 			break;
8092 		case EACCES:
8093 			/*
8094 			 * Device is reserved by another host.  In this case
8095 			 * we could not spin it up or read the capacity, but
8096 			 * we continue with the attach anyway.
8097 			 */
8098 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8099 			    "sd_unit_attach: un:0x%p spin-up reservation "
8100 			    "conflict.\n", un);
8101 			reservation_flag = SD_TARGET_IS_RESERVED;
8102 			break;
8103 		default:
8104 			/* Fail the attach if the spin-up failed. */
8105 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
8106 			    "sd_unit_attach: un:0x%p spin-up failed.", un);
8107 			goto spinup_failed;
8108 		}
8109 
8110 	}
8111 
8112 	/*
8113 	 * Check to see if this is a MMC drive
8114 	 */
8115 	if (ISCD(un)) {
8116 		sd_set_mmc_caps(ssc);
8117 	}
8118 
8119 	/*
8120 	 * Add a zero-length attribute to tell the world we support
8121 	 * kernel ioctls (for layered drivers)
8122 	 */
8123 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8124 	    DDI_KERNEL_IOCTL, NULL, 0);
8125 
8126 	/*
8127 	 * Add a boolean property to tell the world we support
8128 	 * the B_FAILFAST flag (for layered drivers)
8129 	 */
8130 	(void) ddi_prop_create(DDI_DEV_T_NONE, devi, DDI_PROP_CANSLEEP,
8131 	    "ddi-failfast-supported", NULL, 0);
8132 
8133 	/*
8134 	 * Initialize power management
8135 	 */
8136 	mutex_init(&un->un_pm_mutex, NULL, MUTEX_DRIVER, NULL);
8137 	cv_init(&un->un_pm_busy_cv, NULL, CV_DRIVER, NULL);
8138 	sd_setup_pm(ssc, devi);
8139 	if (un->un_f_pm_is_enabled == FALSE) {
8140 		/*
8141 		 * For performance, point to a jump table that does
8142 		 * not include pm.
8143 		 * The direct and priority chains don't change with PM.
8144 		 *
8145 		 * Note: this is currently done based on individual device
8146 		 * capabilities. When an interface for determining system
8147 		 * power enabled state becomes available, or when additional
8148 		 * layers are added to the command chain, these values will
8149 		 * have to be re-evaluated for correctness.
8150 		 */
8151 		if (un->un_f_non_devbsize_supported) {
8152 			un->un_buf_chain_type = SD_CHAIN_INFO_RMMEDIA_NO_PM;
8153 		} else {
8154 			un->un_buf_chain_type = SD_CHAIN_INFO_DISK_NO_PM;
8155 		}
8156 		un->un_uscsi_chain_type  = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
8157 	}
8158 
8159 	/*
8160 	 * This property is set to 0 by HA software to avoid retries
8161 	 * on a reserved disk. (The preferred property name is
8162 	 * "retry-on-reservation-conflict") (1189689)
8163 	 *
8164 	 * Note: The use of a global here can have unintended consequences. A
8165 	 * per instance variable is preferable to match the capabilities of
8166 	 * different underlying hba's (4402600)
8167 	 */
8168 	sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY, devi,
8169 	    DDI_PROP_DONTPASS, "retry-on-reservation-conflict",
8170 	    sd_retry_on_reservation_conflict);
8171 	if (sd_retry_on_reservation_conflict != 0) {
8172 		sd_retry_on_reservation_conflict = ddi_getprop(DDI_DEV_T_ANY,
8173 		    devi, DDI_PROP_DONTPASS, sd_resv_conflict_name,
8174 		    sd_retry_on_reservation_conflict);
8175 	}
8176 
8177 	/* Set up options for QFULL handling. */
8178 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8179 	    "qfull-retries", -1)) != -1) {
8180 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retries",
8181 		    rval, 1);
8182 	}
8183 	if ((rval = ddi_getprop(DDI_DEV_T_ANY, devi, 0,
8184 	    "qfull-retry-interval", -1)) != -1) {
8185 		(void) scsi_ifsetcap(SD_ADDRESS(un), "qfull-retry-interval",
8186 		    rval, 1);
8187 	}
8188 
8189 	/*
8190 	 * This just prints a message that announces the existence of the
8191 	 * device. The message is always printed in the system logfile, but
8192 	 * only appears on the console if the system is booted with the
8193 	 * -v (verbose) argument.
8194 	 */
8195 	ddi_report_dev(devi);
8196 
8197 	un->un_mediastate = DKIO_NONE;
8198 
8199 	/*
8200 	 * Check if this is a SSD(Solid State Drive).
8201 	 */
8202 	sd_check_solid_state(ssc);
8203 
8204 	/*
8205 	 * Check whether the drive is in emulation mode.
8206 	 */
8207 	sd_check_emulation_mode(ssc);
8208 
8209 	cmlb_alloc_handle(&un->un_cmlbhandle);
8210 
8211 #if defined(__i386) || defined(__amd64)
8212 	/*
8213 	 * On x86, compensate for off-by-1 legacy error
8214 	 */
8215 	if (!un->un_f_has_removable_media && !un->un_f_is_hotpluggable &&
8216 	    (lbasize == un->un_sys_blocksize))
8217 		offbyone = CMLB_OFF_BY_ONE;
8218 #endif
8219 
8220 	if (cmlb_attach(devi, &sd_tgops, (int)devp->sd_inq->inq_dtype,
8221 	    VOID2BOOLEAN(un->un_f_has_removable_media != 0),
8222 	    VOID2BOOLEAN(un->un_f_is_hotpluggable != 0),
8223 	    un->un_node_type, offbyone, un->un_cmlbhandle,
8224 	    (void *)SD_PATH_DIRECT) != 0) {
8225 		goto cmlb_attach_failed;
8226 	}
8227 
8228 
8229 	/*
8230 	 * Read and validate the device's geometry (ie, disk label)
8231 	 * A new unformatted drive will not have a valid geometry, but
8232 	 * the driver needs to successfully attach to this device so
8233 	 * the drive can be formatted via ioctls.
8234 	 */
8235 	geom_label_valid = (cmlb_validate(un->un_cmlbhandle, 0,
8236 	    (void *)SD_PATH_DIRECT) == 0) ? 1: 0;
8237 
8238 	mutex_enter(SD_MUTEX(un));
8239 
8240 	/*
8241 	 * Read and initialize the devid for the unit.
8242 	 */
8243 	if (un->un_f_devid_supported) {
8244 		sd_register_devid(ssc, devi, reservation_flag);
8245 	}
8246 	mutex_exit(SD_MUTEX(un));
8247 
8248 #if (defined(__fibre))
8249 	/*
8250 	 * Register callbacks for fibre only.  You can't do this solely
8251 	 * on the basis of the devid_type because this is hba specific.
8252 	 * We need to query our hba capabilities to find out whether to
8253 	 * register or not.
8254 	 */
8255 	if (un->un_f_is_fibre) {
8256 		if (strcmp(un->un_node_type, DDI_NT_BLOCK_CHAN)) {
8257 			sd_init_event_callbacks(un);
8258 			SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8259 			    "sd_unit_attach: un:0x%p event callbacks inserted",
8260 			    un);
8261 		}
8262 	}
8263 #endif
8264 
8265 	if (un->un_f_opt_disable_cache == TRUE) {
8266 		/*
8267 		 * Disable both read cache and write cache.  This is
8268 		 * the historic behavior of the keywords in the config file.
8269 		 */
8270 		if (sd_cache_control(ssc, SD_CACHE_DISABLE, SD_CACHE_DISABLE) !=
8271 		    0) {
8272 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8273 			    "sd_unit_attach: un:0x%p Could not disable "
8274 			    "caching", un);
8275 			goto devid_failed;
8276 		}
8277 	}
8278 
8279 	/*
8280 	 * Check the value of the WCE bit now and
8281 	 * set un_f_write_cache_enabled accordingly.
8282 	 */
8283 	(void) sd_get_write_cache_enabled(ssc, &wc_enabled);
8284 	mutex_enter(SD_MUTEX(un));
8285 	un->un_f_write_cache_enabled = (wc_enabled != 0);
8286 	mutex_exit(SD_MUTEX(un));
8287 
8288 	if ((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR &&
8289 	    un->un_tgt_blocksize != DEV_BSIZE) ||
8290 	    un->un_f_enable_rmw) {
8291 		if (!(un->un_wm_cache)) {
8292 			(void) snprintf(name_str, sizeof (name_str),
8293 			    "%s%d_cache",
8294 			    ddi_driver_name(SD_DEVINFO(un)),
8295 			    ddi_get_instance(SD_DEVINFO(un)));
8296 			un->un_wm_cache = kmem_cache_create(
8297 			    name_str, sizeof (struct sd_w_map),
8298 			    8, sd_wm_cache_constructor,
8299 			    sd_wm_cache_destructor, NULL,
8300 			    (void *)un, NULL, 0);
8301 			if (!(un->un_wm_cache)) {
8302 				goto wm_cache_failed;
8303 			}
8304 		}
8305 	}
8306 
8307 	/*
8308 	 * Check the value of the NV_SUP bit and set
8309 	 * un_f_suppress_cache_flush accordingly.
8310 	 */
8311 	sd_get_nv_sup(ssc);
8312 
8313 	/*
8314 	 * Find out what type of reservation this disk supports.
8315 	 */
8316 	status = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS, 0, NULL);
8317 
8318 	switch (status) {
8319 	case 0:
8320 		/*
8321 		 * SCSI-3 reservations are supported.
8322 		 */
8323 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8324 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8325 		    "sd_unit_attach: un:0x%p SCSI-3 reservations\n", un);
8326 		break;
8327 	case ENOTSUP:
8328 		/*
8329 		 * The PERSISTENT RESERVE IN command would not be recognized by
8330 		 * a SCSI-2 device, so assume the reservation type is SCSI-2.
8331 		 */
8332 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8333 		    "sd_unit_attach: un:0x%p SCSI-2 reservations\n", un);
8334 		un->un_reservation_type = SD_SCSI2_RESERVATION;
8335 
8336 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8337 		break;
8338 	default:
8339 		/*
8340 		 * default to SCSI-3 reservations
8341 		 */
8342 		SD_INFO(SD_LOG_ATTACH_DETACH, un,
8343 		    "sd_unit_attach: un:0x%p default SCSI3 reservations\n", un);
8344 		un->un_reservation_type = SD_SCSI3_RESERVATION;
8345 
8346 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
8347 		break;
8348 	}
8349 
8350 	/*
8351 	 * Set the pstat and error stat values here, so data obtained during the
8352 	 * previous attach-time routines is available.
8353 	 *
8354 	 * Note: This is a critical sequence that needs to be maintained:
8355 	 *	1) Instantiate the kstats before any routines using the iopath
8356 	 *	   (i.e. sd_send_scsi_cmd).
8357 	 *	2) Initialize the error stats (sd_set_errstats) and partition
8358 	 *	   stats (sd_set_pstats)here, following
8359 	 *	   cmlb_validate_geometry(), sd_register_devid(), and
8360 	 *	   sd_cache_control().
8361 	 */
8362 
8363 	if (un->un_f_pkstats_enabled && geom_label_valid) {
8364 		sd_set_pstats(un);
8365 		SD_TRACE(SD_LOG_IO_PARTITION, un,
8366 		    "sd_unit_attach: un:0x%p pstats created and set\n", un);
8367 	}
8368 
8369 	sd_set_errstats(un);
8370 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8371 	    "sd_unit_attach: un:0x%p errstats set\n", un);
8372 
8373 
8374 	/*
8375 	 * After successfully attaching an instance, we record the information
8376 	 * of how many luns have been attached on the relative target and
8377 	 * controller for parallel SCSI. This information is used when sd tries
8378 	 * to set the tagged queuing capability in HBA.
8379 	 */
8380 	if (SD_IS_PARALLEL_SCSI(un) && (tgt >= 0) && (tgt < NTARGETS_WIDE)) {
8381 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_ATTACH);
8382 	}
8383 
8384 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
8385 	    "sd_unit_attach: un:0x%p exit success\n", un);
8386 
8387 	/* Uninitialize sd_ssc_t pointer */
8388 	sd_ssc_fini(ssc);
8389 
8390 	return (DDI_SUCCESS);
8391 
8392 	/*
8393 	 * An error occurred during the attach; clean up & return failure.
8394 	 */
8395 wm_cache_failed:
8396 devid_failed:
8397 
8398 setup_pm_failed:
8399 	ddi_remove_minor_node(devi, NULL);
8400 
8401 cmlb_attach_failed:
8402 	/*
8403 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8404 	 */
8405 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8406 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8407 
8408 	/*
8409 	 * Refer to the comments of setting tagged-qing in the beginning of
8410 	 * sd_unit_attach. We can only disable tagged queuing when there is
8411 	 * no lun attached on the target.
8412 	 */
8413 	if (sd_scsi_get_target_lun_count(pdip, tgt) < 1) {
8414 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8415 	}
8416 
8417 	if (un->un_f_is_fibre == FALSE) {
8418 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8419 	}
8420 
8421 spinup_failed:
8422 
8423 	/* Uninitialize sd_ssc_t pointer */
8424 	sd_ssc_fini(ssc);
8425 
8426 	mutex_enter(SD_MUTEX(un));
8427 
8428 	/* Deallocate SCSI FMA memory spaces */
8429 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8430 
8431 	/* Cancel callback for SD_PATH_DIRECT_PRIORITY cmd. restart */
8432 	if (un->un_direct_priority_timeid != NULL) {
8433 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8434 		un->un_direct_priority_timeid = NULL;
8435 		mutex_exit(SD_MUTEX(un));
8436 		(void) untimeout(temp_id);
8437 		mutex_enter(SD_MUTEX(un));
8438 	}
8439 
8440 	/* Cancel any pending start/stop timeouts */
8441 	if (un->un_startstop_timeid != NULL) {
8442 		timeout_id_t temp_id = un->un_startstop_timeid;
8443 		un->un_startstop_timeid = NULL;
8444 		mutex_exit(SD_MUTEX(un));
8445 		(void) untimeout(temp_id);
8446 		mutex_enter(SD_MUTEX(un));
8447 	}
8448 
8449 	/* Cancel any pending reset-throttle timeouts */
8450 	if (un->un_reset_throttle_timeid != NULL) {
8451 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8452 		un->un_reset_throttle_timeid = NULL;
8453 		mutex_exit(SD_MUTEX(un));
8454 		(void) untimeout(temp_id);
8455 		mutex_enter(SD_MUTEX(un));
8456 	}
8457 
8458 	/* Cancel rmw warning message timeouts */
8459 	if (un->un_rmw_msg_timeid != NULL) {
8460 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
8461 		un->un_rmw_msg_timeid = NULL;
8462 		mutex_exit(SD_MUTEX(un));
8463 		(void) untimeout(temp_id);
8464 		mutex_enter(SD_MUTEX(un));
8465 	}
8466 
8467 	/* Cancel any pending retry timeouts */
8468 	if (un->un_retry_timeid != NULL) {
8469 		timeout_id_t temp_id = un->un_retry_timeid;
8470 		un->un_retry_timeid = NULL;
8471 		mutex_exit(SD_MUTEX(un));
8472 		(void) untimeout(temp_id);
8473 		mutex_enter(SD_MUTEX(un));
8474 	}
8475 
8476 	/* Cancel any pending delayed cv broadcast timeouts */
8477 	if (un->un_dcvb_timeid != NULL) {
8478 		timeout_id_t temp_id = un->un_dcvb_timeid;
8479 		un->un_dcvb_timeid = NULL;
8480 		mutex_exit(SD_MUTEX(un));
8481 		(void) untimeout(temp_id);
8482 		mutex_enter(SD_MUTEX(un));
8483 	}
8484 
8485 	mutex_exit(SD_MUTEX(un));
8486 
8487 	/* There should not be any in-progress I/O so ASSERT this check */
8488 	ASSERT(un->un_ncmds_in_transport == 0);
8489 	ASSERT(un->un_ncmds_in_driver == 0);
8490 
8491 	/* Do not free the softstate if the callback routine is active */
8492 	sd_sync_with_callback(un);
8493 
8494 	/*
8495 	 * Partition stats apparently are not used with removables. These would
8496 	 * not have been created during attach, so no need to clean them up...
8497 	 */
8498 	if (un->un_errstats != NULL) {
8499 		kstat_delete(un->un_errstats);
8500 		un->un_errstats = NULL;
8501 	}
8502 
8503 create_errstats_failed:
8504 
8505 	if (un->un_stats != NULL) {
8506 		kstat_delete(un->un_stats);
8507 		un->un_stats = NULL;
8508 	}
8509 
8510 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8511 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8512 
8513 	ddi_prop_remove_all(devi);
8514 	sema_destroy(&un->un_semoclose);
8515 	cv_destroy(&un->un_state_cv);
8516 
8517 getrbuf_failed:
8518 
8519 	sd_free_rqs(un);
8520 
8521 alloc_rqs_failed:
8522 
8523 	devp->sd_private = NULL;
8524 	bzero(un, sizeof (struct sd_lun));	/* Clear any stale data! */
8525 
8526 get_softstate_failed:
8527 	/*
8528 	 * Note: the man pages are unclear as to whether or not doing a
8529 	 * ddi_soft_state_free(sd_state, instance) is the right way to
8530 	 * clean up after the ddi_soft_state_zalloc() if the subsequent
8531 	 * ddi_get_soft_state() fails.  The implication seems to be
8532 	 * that the get_soft_state cannot fail if the zalloc succeeds.
8533 	 */
8534 #ifndef XPV_HVM_DRIVER
8535 	ddi_soft_state_free(sd_state, instance);
8536 #endif /* !XPV_HVM_DRIVER */
8537 
8538 probe_failed:
8539 	scsi_unprobe(devp);
8540 
8541 	return (DDI_FAILURE);
8542 }
8543 
8544 
8545 /*
8546  *    Function: sd_unit_detach
8547  *
8548  * Description: Performs DDI_DETACH processing for sddetach().
8549  *
8550  * Return Code: DDI_SUCCESS
8551  *		DDI_FAILURE
8552  *
8553  *     Context: Kernel thread context
8554  */
8555 
8556 static int
8557 sd_unit_detach(dev_info_t *devi)
8558 {
8559 	struct scsi_device	*devp;
8560 	struct sd_lun		*un;
8561 	int			i;
8562 	int			tgt;
8563 	dev_t			dev;
8564 	dev_info_t		*pdip = ddi_get_parent(devi);
8565 #ifndef XPV_HVM_DRIVER
8566 	int			instance = ddi_get_instance(devi);
8567 #endif /* !XPV_HVM_DRIVER */
8568 
8569 	mutex_enter(&sd_detach_mutex);
8570 
8571 	/*
8572 	 * Fail the detach for any of the following:
8573 	 *  - Unable to get the sd_lun struct for the instance
8574 	 *  - A layered driver has an outstanding open on the instance
8575 	 *  - Another thread is already detaching this instance
8576 	 *  - Another thread is currently performing an open
8577 	 */
8578 	devp = ddi_get_driver_private(devi);
8579 	if ((devp == NULL) ||
8580 	    ((un = (struct sd_lun *)devp->sd_private) == NULL) ||
8581 	    (un->un_ncmds_in_driver != 0) || (un->un_layer_count != 0) ||
8582 	    (un->un_detach_count != 0) || (un->un_opens_in_progress != 0)) {
8583 		mutex_exit(&sd_detach_mutex);
8584 		return (DDI_FAILURE);
8585 	}
8586 
8587 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: entry 0x%p\n", un);
8588 
8589 	/*
8590 	 * Mark this instance as currently in a detach, to inhibit any
8591 	 * opens from a layered driver.
8592 	 */
8593 	un->un_detach_count++;
8594 	mutex_exit(&sd_detach_mutex);
8595 
8596 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
8597 	    SCSI_ADDR_PROP_TARGET, -1);
8598 
8599 	dev = sd_make_device(SD_DEVINFO(un));
8600 
8601 #ifndef lint
8602 	_NOTE(COMPETING_THREADS_NOW);
8603 #endif
8604 
8605 	mutex_enter(SD_MUTEX(un));
8606 
8607 	/*
8608 	 * Fail the detach if there are any outstanding layered
8609 	 * opens on this device.
8610 	 */
8611 	for (i = 0; i < NDKMAP; i++) {
8612 		if (un->un_ocmap.lyropen[i] != 0) {
8613 			goto err_notclosed;
8614 		}
8615 	}
8616 
8617 	/*
8618 	 * Verify there are NO outstanding commands issued to this device.
8619 	 * ie, un_ncmds_in_transport == 0.
8620 	 * It's possible to have outstanding commands through the physio
8621 	 * code path, even though everything's closed.
8622 	 */
8623 	if ((un->un_ncmds_in_transport != 0) || (un->un_retry_timeid != NULL) ||
8624 	    (un->un_direct_priority_timeid != NULL) ||
8625 	    (un->un_state == SD_STATE_RWAIT)) {
8626 		mutex_exit(SD_MUTEX(un));
8627 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8628 		    "sd_dr_detach: Detach failure due to outstanding cmds\n");
8629 		goto err_stillbusy;
8630 	}
8631 
8632 	/*
8633 	 * If we have the device reserved, release the reservation.
8634 	 */
8635 	if ((un->un_resvd_status & SD_RESERVE) &&
8636 	    !(un->un_resvd_status & SD_LOST_RESERVE)) {
8637 		mutex_exit(SD_MUTEX(un));
8638 		/*
8639 		 * Note: sd_reserve_release sends a command to the device
8640 		 * via the sd_ioctlcmd() path, and can sleep.
8641 		 */
8642 		if (sd_reserve_release(dev, SD_RELEASE) != 0) {
8643 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8644 			    "sd_dr_detach: Cannot release reservation \n");
8645 		}
8646 	} else {
8647 		mutex_exit(SD_MUTEX(un));
8648 	}
8649 
8650 	/*
8651 	 * Untimeout any reserve recover, throttle reset, restart unit
8652 	 * and delayed broadcast timeout threads. Protect the timeout pointer
8653 	 * from getting nulled by their callback functions.
8654 	 */
8655 	mutex_enter(SD_MUTEX(un));
8656 	if (un->un_resvd_timeid != NULL) {
8657 		timeout_id_t temp_id = un->un_resvd_timeid;
8658 		un->un_resvd_timeid = NULL;
8659 		mutex_exit(SD_MUTEX(un));
8660 		(void) untimeout(temp_id);
8661 		mutex_enter(SD_MUTEX(un));
8662 	}
8663 
8664 	if (un->un_reset_throttle_timeid != NULL) {
8665 		timeout_id_t temp_id = un->un_reset_throttle_timeid;
8666 		un->un_reset_throttle_timeid = NULL;
8667 		mutex_exit(SD_MUTEX(un));
8668 		(void) untimeout(temp_id);
8669 		mutex_enter(SD_MUTEX(un));
8670 	}
8671 
8672 	if (un->un_startstop_timeid != NULL) {
8673 		timeout_id_t temp_id = un->un_startstop_timeid;
8674 		un->un_startstop_timeid = NULL;
8675 		mutex_exit(SD_MUTEX(un));
8676 		(void) untimeout(temp_id);
8677 		mutex_enter(SD_MUTEX(un));
8678 	}
8679 
8680 	if (un->un_rmw_msg_timeid != NULL) {
8681 		timeout_id_t temp_id = un->un_rmw_msg_timeid;
8682 		un->un_rmw_msg_timeid = NULL;
8683 		mutex_exit(SD_MUTEX(un));
8684 		(void) untimeout(temp_id);
8685 		mutex_enter(SD_MUTEX(un));
8686 	}
8687 
8688 	if (un->un_dcvb_timeid != NULL) {
8689 		timeout_id_t temp_id = un->un_dcvb_timeid;
8690 		un->un_dcvb_timeid = NULL;
8691 		mutex_exit(SD_MUTEX(un));
8692 		(void) untimeout(temp_id);
8693 	} else {
8694 		mutex_exit(SD_MUTEX(un));
8695 	}
8696 
8697 	/* Remove any pending reservation reclaim requests for this device */
8698 	sd_rmv_resv_reclaim_req(dev);
8699 
8700 	mutex_enter(SD_MUTEX(un));
8701 
8702 	/* Cancel any pending callbacks for SD_PATH_DIRECT_PRIORITY cmd. */
8703 	if (un->un_direct_priority_timeid != NULL) {
8704 		timeout_id_t temp_id = un->un_direct_priority_timeid;
8705 		un->un_direct_priority_timeid = NULL;
8706 		mutex_exit(SD_MUTEX(un));
8707 		(void) untimeout(temp_id);
8708 		mutex_enter(SD_MUTEX(un));
8709 	}
8710 
8711 	/* Cancel any active multi-host disk watch thread requests */
8712 	if (un->un_mhd_token != NULL) {
8713 		mutex_exit(SD_MUTEX(un));
8714 		 _NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_mhd_token));
8715 		if (scsi_watch_request_terminate(un->un_mhd_token,
8716 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8717 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8718 			    "sd_dr_detach: Cannot cancel mhd watch request\n");
8719 			/*
8720 			 * Note: We are returning here after having removed
8721 			 * some driver timeouts above. This is consistent with
8722 			 * the legacy implementation but perhaps the watch
8723 			 * terminate call should be made with the wait flag set.
8724 			 */
8725 			goto err_stillbusy;
8726 		}
8727 		mutex_enter(SD_MUTEX(un));
8728 		un->un_mhd_token = NULL;
8729 	}
8730 
8731 	if (un->un_swr_token != NULL) {
8732 		mutex_exit(SD_MUTEX(un));
8733 		_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_swr_token));
8734 		if (scsi_watch_request_terminate(un->un_swr_token,
8735 		    SCSI_WATCH_TERMINATE_NOWAIT)) {
8736 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8737 			    "sd_dr_detach: Cannot cancel swr watch request\n");
8738 			/*
8739 			 * Note: We are returning here after having removed
8740 			 * some driver timeouts above. This is consistent with
8741 			 * the legacy implementation but perhaps the watch
8742 			 * terminate call should be made with the wait flag set.
8743 			 */
8744 			goto err_stillbusy;
8745 		}
8746 		mutex_enter(SD_MUTEX(un));
8747 		un->un_swr_token = NULL;
8748 	}
8749 
8750 	mutex_exit(SD_MUTEX(un));
8751 
8752 	/*
8753 	 * Clear any scsi_reset_notifies. We clear the reset notifies
8754 	 * if we have not registered one.
8755 	 * Note: The sd_mhd_reset_notify_cb() fn tries to acquire SD_MUTEX!
8756 	 */
8757 	(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
8758 	    sd_mhd_reset_notify_cb, (caddr_t)un);
8759 
8760 	/*
8761 	 * protect the timeout pointers from getting nulled by
8762 	 * their callback functions during the cancellation process.
8763 	 * In such a scenario untimeout can be invoked with a null value.
8764 	 */
8765 	_NOTE(NO_COMPETING_THREADS_NOW);
8766 
8767 	mutex_enter(&un->un_pm_mutex);
8768 	if (un->un_pm_idle_timeid != NULL) {
8769 		timeout_id_t temp_id = un->un_pm_idle_timeid;
8770 		un->un_pm_idle_timeid = NULL;
8771 		mutex_exit(&un->un_pm_mutex);
8772 
8773 		/*
8774 		 * Timeout is active; cancel it.
8775 		 * Note that it'll never be active on a device
8776 		 * that does not support PM therefore we don't
8777 		 * have to check before calling pm_idle_component.
8778 		 */
8779 		(void) untimeout(temp_id);
8780 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8781 		mutex_enter(&un->un_pm_mutex);
8782 	}
8783 
8784 	/*
8785 	 * Check whether there is already a timeout scheduled for power
8786 	 * management. If yes then don't lower the power here, that's.
8787 	 * the timeout handler's job.
8788 	 */
8789 	if (un->un_pm_timeid != NULL) {
8790 		timeout_id_t temp_id = un->un_pm_timeid;
8791 		un->un_pm_timeid = NULL;
8792 		mutex_exit(&un->un_pm_mutex);
8793 		/*
8794 		 * Timeout is active; cancel it.
8795 		 * Note that it'll never be active on a device
8796 		 * that does not support PM therefore we don't
8797 		 * have to check before calling pm_idle_component.
8798 		 */
8799 		(void) untimeout(temp_id);
8800 		(void) pm_idle_component(SD_DEVINFO(un), 0);
8801 
8802 	} else {
8803 		mutex_exit(&un->un_pm_mutex);
8804 		if ((un->un_f_pm_is_enabled == TRUE) &&
8805 		    (pm_lower_power(SD_DEVINFO(un), 0, SD_PM_STATE_STOPPED(un))
8806 		    != DDI_SUCCESS)) {
8807 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8808 		    "sd_dr_detach: Lower power request failed, ignoring.\n");
8809 			/*
8810 			 * Fix for bug: 4297749, item # 13
8811 			 * The above test now includes a check to see if PM is
8812 			 * supported by this device before call
8813 			 * pm_lower_power().
8814 			 * Note, the following is not dead code. The call to
8815 			 * pm_lower_power above will generate a call back into
8816 			 * our sdpower routine which might result in a timeout
8817 			 * handler getting activated. Therefore the following
8818 			 * code is valid and necessary.
8819 			 */
8820 			mutex_enter(&un->un_pm_mutex);
8821 			if (un->un_pm_timeid != NULL) {
8822 				timeout_id_t temp_id = un->un_pm_timeid;
8823 				un->un_pm_timeid = NULL;
8824 				mutex_exit(&un->un_pm_mutex);
8825 				(void) untimeout(temp_id);
8826 				(void) pm_idle_component(SD_DEVINFO(un), 0);
8827 			} else {
8828 				mutex_exit(&un->un_pm_mutex);
8829 			}
8830 		}
8831 	}
8832 
8833 	/*
8834 	 * Cleanup from the scsi_ifsetcap() calls (437868)
8835 	 * Relocated here from above to be after the call to
8836 	 * pm_lower_power, which was getting errors.
8837 	 */
8838 	(void) scsi_ifsetcap(SD_ADDRESS(un), "lun-reset", 0, 1);
8839 	(void) scsi_ifsetcap(SD_ADDRESS(un), "wide-xfer", 0, 1);
8840 
8841 	/*
8842 	 * Currently, tagged queuing is supported per target based by HBA.
8843 	 * Setting this per lun instance actually sets the capability of this
8844 	 * target in HBA, which affects those luns already attached on the
8845 	 * same target. So during detach, we can only disable this capability
8846 	 * only when this is the only lun left on this target. By doing
8847 	 * this, we assume a target has the same tagged queuing capability
8848 	 * for every lun. The condition can be removed when HBA is changed to
8849 	 * support per lun based tagged queuing capability.
8850 	 */
8851 	if (sd_scsi_get_target_lun_count(pdip, tgt) <= 1) {
8852 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
8853 	}
8854 
8855 	if (un->un_f_is_fibre == FALSE) {
8856 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 0, 1);
8857 	}
8858 
8859 	/*
8860 	 * Remove any event callbacks, fibre only
8861 	 */
8862 	if (un->un_f_is_fibre == TRUE) {
8863 		if ((un->un_insert_event != NULL) &&
8864 		    (ddi_remove_event_handler(un->un_insert_cb_id) !=
8865 		    DDI_SUCCESS)) {
8866 			/*
8867 			 * Note: We are returning here after having done
8868 			 * substantial cleanup above. This is consistent
8869 			 * with the legacy implementation but this may not
8870 			 * be the right thing to do.
8871 			 */
8872 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8873 			    "sd_dr_detach: Cannot cancel insert event\n");
8874 			goto err_remove_event;
8875 		}
8876 		un->un_insert_event = NULL;
8877 
8878 		if ((un->un_remove_event != NULL) &&
8879 		    (ddi_remove_event_handler(un->un_remove_cb_id) !=
8880 		    DDI_SUCCESS)) {
8881 			/*
8882 			 * Note: We are returning here after having done
8883 			 * substantial cleanup above. This is consistent
8884 			 * with the legacy implementation but this may not
8885 			 * be the right thing to do.
8886 			 */
8887 			SD_ERROR(SD_LOG_ATTACH_DETACH, un,
8888 			    "sd_dr_detach: Cannot cancel remove event\n");
8889 			goto err_remove_event;
8890 		}
8891 		un->un_remove_event = NULL;
8892 	}
8893 
8894 	/* Do not free the softstate if the callback routine is active */
8895 	sd_sync_with_callback(un);
8896 
8897 	cmlb_detach(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
8898 	cmlb_free_handle(&un->un_cmlbhandle);
8899 
8900 	/*
8901 	 * Hold the detach mutex here, to make sure that no other threads ever
8902 	 * can access a (partially) freed soft state structure.
8903 	 */
8904 	mutex_enter(&sd_detach_mutex);
8905 
8906 	/*
8907 	 * Clean up the soft state struct.
8908 	 * Cleanup is done in reverse order of allocs/inits.
8909 	 * At this point there should be no competing threads anymore.
8910 	 */
8911 
8912 	scsi_fm_fini(devp);
8913 
8914 	/*
8915 	 * Deallocate memory for SCSI FMA.
8916 	 */
8917 	kmem_free(un->un_fm_private, sizeof (struct sd_fm_internal));
8918 
8919 	/*
8920 	 * Unregister and free device id if it was not registered
8921 	 * by the transport.
8922 	 */
8923 	if (un->un_f_devid_transport_defined == FALSE)
8924 		ddi_devid_unregister(devi);
8925 
8926 	/*
8927 	 * free the devid structure if allocated before (by ddi_devid_init()
8928 	 * or ddi_devid_get()).
8929 	 */
8930 	if (un->un_devid) {
8931 		ddi_devid_free(un->un_devid);
8932 		un->un_devid = NULL;
8933 	}
8934 
8935 	/*
8936 	 * Destroy wmap cache if it exists.
8937 	 */
8938 	if (un->un_wm_cache != NULL) {
8939 		kmem_cache_destroy(un->un_wm_cache);
8940 		un->un_wm_cache = NULL;
8941 	}
8942 
8943 	/*
8944 	 * kstat cleanup is done in detach for all device types (4363169).
8945 	 * We do not want to fail detach if the device kstats are not deleted
8946 	 * since there is a confusion about the devo_refcnt for the device.
8947 	 * We just delete the kstats and let detach complete successfully.
8948 	 */
8949 	if (un->un_stats != NULL) {
8950 		kstat_delete(un->un_stats);
8951 		un->un_stats = NULL;
8952 	}
8953 	if (un->un_errstats != NULL) {
8954 		kstat_delete(un->un_errstats);
8955 		un->un_errstats = NULL;
8956 	}
8957 
8958 	/* Remove partition stats */
8959 	if (un->un_f_pkstats_enabled) {
8960 		for (i = 0; i < NSDMAP; i++) {
8961 			if (un->un_pstats[i] != NULL) {
8962 				kstat_delete(un->un_pstats[i]);
8963 				un->un_pstats[i] = NULL;
8964 			}
8965 		}
8966 	}
8967 
8968 	/* Remove xbuf registration */
8969 	ddi_xbuf_attr_unregister_devinfo(un->un_xbuf_attr, devi);
8970 	ddi_xbuf_attr_destroy(un->un_xbuf_attr);
8971 
8972 	/* Remove driver properties */
8973 	ddi_prop_remove_all(devi);
8974 
8975 	mutex_destroy(&un->un_pm_mutex);
8976 	cv_destroy(&un->un_pm_busy_cv);
8977 
8978 	cv_destroy(&un->un_wcc_cv);
8979 
8980 	/* Open/close semaphore */
8981 	sema_destroy(&un->un_semoclose);
8982 
8983 	/* Removable media condvar. */
8984 	cv_destroy(&un->un_state_cv);
8985 
8986 	/* Suspend/resume condvar. */
8987 	cv_destroy(&un->un_suspend_cv);
8988 	cv_destroy(&un->un_disk_busy_cv);
8989 
8990 	sd_free_rqs(un);
8991 
8992 	/* Free up soft state */
8993 	devp->sd_private = NULL;
8994 
8995 	bzero(un, sizeof (struct sd_lun));
8996 #ifndef XPV_HVM_DRIVER
8997 	ddi_soft_state_free(sd_state, instance);
8998 #endif /* !XPV_HVM_DRIVER */
8999 
9000 	mutex_exit(&sd_detach_mutex);
9001 
9002 	/* This frees up the INQUIRY data associated with the device. */
9003 	scsi_unprobe(devp);
9004 
9005 	/*
9006 	 * After successfully detaching an instance, we update the information
9007 	 * of how many luns have been attached in the relative target and
9008 	 * controller for parallel SCSI. This information is used when sd tries
9009 	 * to set the tagged queuing capability in HBA.
9010 	 * Since un has been released, we can't use SD_IS_PARALLEL_SCSI(un) to
9011 	 * check if the device is parallel SCSI. However, we don't need to
9012 	 * check here because we've already checked during attach. No device
9013 	 * that is not parallel SCSI is in the chain.
9014 	 */
9015 	if ((tgt >= 0) && (tgt < NTARGETS_WIDE)) {
9016 		sd_scsi_update_lun_on_target(pdip, tgt, SD_SCSI_LUN_DETACH);
9017 	}
9018 
9019 	return (DDI_SUCCESS);
9020 
9021 err_notclosed:
9022 	mutex_exit(SD_MUTEX(un));
9023 
9024 err_stillbusy:
9025 	_NOTE(NO_COMPETING_THREADS_NOW);
9026 
9027 err_remove_event:
9028 	mutex_enter(&sd_detach_mutex);
9029 	un->un_detach_count--;
9030 	mutex_exit(&sd_detach_mutex);
9031 
9032 	SD_TRACE(SD_LOG_ATTACH_DETACH, un, "sd_unit_detach: exit failure\n");
9033 	return (DDI_FAILURE);
9034 }
9035 
9036 
9037 /*
9038  *    Function: sd_create_errstats
9039  *
9040  * Description: This routine instantiates the device error stats.
9041  *
9042  *		Note: During attach the stats are instantiated first so they are
9043  *		available for attach-time routines that utilize the driver
9044  *		iopath to send commands to the device. The stats are initialized
9045  *		separately so data obtained during some attach-time routines is
9046  *		available. (4362483)
9047  *
9048  *   Arguments: un - driver soft state (unit) structure
9049  *		instance - driver instance
9050  *
9051  *     Context: Kernel thread context
9052  */
9053 
9054 static void
9055 sd_create_errstats(struct sd_lun *un, int instance)
9056 {
9057 	struct	sd_errstats	*stp;
9058 	char	kstatmodule_err[KSTAT_STRLEN];
9059 	char	kstatname[KSTAT_STRLEN];
9060 	int	ndata = (sizeof (struct sd_errstats) / sizeof (kstat_named_t));
9061 
9062 	ASSERT(un != NULL);
9063 
9064 	if (un->un_errstats != NULL) {
9065 		return;
9066 	}
9067 
9068 	(void) snprintf(kstatmodule_err, sizeof (kstatmodule_err),
9069 	    "%serr", sd_label);
9070 	(void) snprintf(kstatname, sizeof (kstatname),
9071 	    "%s%d,err", sd_label, instance);
9072 
9073 	un->un_errstats = kstat_create(kstatmodule_err, instance, kstatname,
9074 	    "device_error", KSTAT_TYPE_NAMED, ndata, KSTAT_FLAG_PERSISTENT);
9075 
9076 	if (un->un_errstats == NULL) {
9077 		SD_ERROR(SD_LOG_ATTACH_DETACH, un,
9078 		    "sd_create_errstats: Failed kstat_create\n");
9079 		return;
9080 	}
9081 
9082 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9083 	kstat_named_init(&stp->sd_softerrs,	"Soft Errors",
9084 	    KSTAT_DATA_UINT32);
9085 	kstat_named_init(&stp->sd_harderrs,	"Hard Errors",
9086 	    KSTAT_DATA_UINT32);
9087 	kstat_named_init(&stp->sd_transerrs,	"Transport Errors",
9088 	    KSTAT_DATA_UINT32);
9089 	kstat_named_init(&stp->sd_vid,		"Vendor",
9090 	    KSTAT_DATA_CHAR);
9091 	kstat_named_init(&stp->sd_pid,		"Product",
9092 	    KSTAT_DATA_CHAR);
9093 	kstat_named_init(&stp->sd_revision,	"Revision",
9094 	    KSTAT_DATA_CHAR);
9095 	kstat_named_init(&stp->sd_serial,	"Serial No",
9096 	    KSTAT_DATA_CHAR);
9097 	kstat_named_init(&stp->sd_capacity,	"Size",
9098 	    KSTAT_DATA_ULONGLONG);
9099 	kstat_named_init(&stp->sd_rq_media_err,	"Media Error",
9100 	    KSTAT_DATA_UINT32);
9101 	kstat_named_init(&stp->sd_rq_ntrdy_err,	"Device Not Ready",
9102 	    KSTAT_DATA_UINT32);
9103 	kstat_named_init(&stp->sd_rq_nodev_err,	"No Device",
9104 	    KSTAT_DATA_UINT32);
9105 	kstat_named_init(&stp->sd_rq_recov_err,	"Recoverable",
9106 	    KSTAT_DATA_UINT32);
9107 	kstat_named_init(&stp->sd_rq_illrq_err,	"Illegal Request",
9108 	    KSTAT_DATA_UINT32);
9109 	kstat_named_init(&stp->sd_rq_pfa_err,	"Predictive Failure Analysis",
9110 	    KSTAT_DATA_UINT32);
9111 
9112 	un->un_errstats->ks_private = un;
9113 	un->un_errstats->ks_update  = nulldev;
9114 
9115 	kstat_install(un->un_errstats);
9116 }
9117 
9118 
9119 /*
9120  *    Function: sd_set_errstats
9121  *
9122  * Description: This routine sets the value of the vendor id, product id,
9123  *		revision, serial number, and capacity device error stats.
9124  *
9125  *		Note: During attach the stats are instantiated first so they are
9126  *		available for attach-time routines that utilize the driver
9127  *		iopath to send commands to the device. The stats are initialized
9128  *		separately so data obtained during some attach-time routines is
9129  *		available. (4362483)
9130  *
9131  *   Arguments: un - driver soft state (unit) structure
9132  *
9133  *     Context: Kernel thread context
9134  */
9135 
9136 static void
9137 sd_set_errstats(struct sd_lun *un)
9138 {
9139 	struct	sd_errstats	*stp;
9140 	char 			*sn;
9141 
9142 	ASSERT(un != NULL);
9143 	ASSERT(un->un_errstats != NULL);
9144 	stp = (struct sd_errstats *)un->un_errstats->ks_data;
9145 	ASSERT(stp != NULL);
9146 	(void) strncpy(stp->sd_vid.value.c, un->un_sd->sd_inq->inq_vid, 8);
9147 	(void) strncpy(stp->sd_pid.value.c, un->un_sd->sd_inq->inq_pid, 16);
9148 	(void) strncpy(stp->sd_revision.value.c,
9149 	    un->un_sd->sd_inq->inq_revision, 4);
9150 
9151 	/*
9152 	 * All the errstats are persistent across detach/attach,
9153 	 * so reset all the errstats here in case of the hot
9154 	 * replacement of disk drives, except for not changed
9155 	 * Sun qualified drives.
9156 	 */
9157 	if ((bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) != 0) ||
9158 	    (bcmp(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9159 	    sizeof (SD_INQUIRY(un)->inq_serial)) != 0)) {
9160 		stp->sd_softerrs.value.ui32 = 0;
9161 		stp->sd_harderrs.value.ui32 = 0;
9162 		stp->sd_transerrs.value.ui32 = 0;
9163 		stp->sd_rq_media_err.value.ui32 = 0;
9164 		stp->sd_rq_ntrdy_err.value.ui32 = 0;
9165 		stp->sd_rq_nodev_err.value.ui32 = 0;
9166 		stp->sd_rq_recov_err.value.ui32 = 0;
9167 		stp->sd_rq_illrq_err.value.ui32 = 0;
9168 		stp->sd_rq_pfa_err.value.ui32 = 0;
9169 	}
9170 
9171 	/*
9172 	 * Set the "Serial No" kstat for Sun qualified drives (indicated by
9173 	 * "SUN" in bytes 25-27 of the inquiry data (bytes 9-11 of the pid)
9174 	 * (4376302))
9175 	 */
9176 	if (bcmp(&SD_INQUIRY(un)->inq_pid[9], "SUN", 3) == 0) {
9177 		bcopy(&SD_INQUIRY(un)->inq_serial, stp->sd_serial.value.c,
9178 		    sizeof (SD_INQUIRY(un)->inq_serial));
9179 	} else {
9180 		/*
9181 		 * Set the "Serial No" kstat for non-Sun qualified drives
9182 		 */
9183 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, SD_DEVINFO(un),
9184 		    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS,
9185 		    INQUIRY_SERIAL_NO, &sn) == DDI_SUCCESS) {
9186 			(void) strlcpy(stp->sd_serial.value.c, sn,
9187 			    sizeof (stp->sd_serial.value.c));
9188 			ddi_prop_free(sn);
9189 		}
9190 	}
9191 
9192 	if (un->un_f_blockcount_is_valid != TRUE) {
9193 		/*
9194 		 * Set capacity error stat to 0 for no media. This ensures
9195 		 * a valid capacity is displayed in response to 'iostat -E'
9196 		 * when no media is present in the device.
9197 		 */
9198 		stp->sd_capacity.value.ui64 = 0;
9199 	} else {
9200 		/*
9201 		 * Multiply un_blockcount by un->un_sys_blocksize to get
9202 		 * capacity.
9203 		 *
9204 		 * Note: for non-512 blocksize devices "un_blockcount" has been
9205 		 * "scaled" in sd_send_scsi_READ_CAPACITY by multiplying by
9206 		 * (un_tgt_blocksize / un->un_sys_blocksize).
9207 		 */
9208 		stp->sd_capacity.value.ui64 = (uint64_t)
9209 		    ((uint64_t)un->un_blockcount * un->un_sys_blocksize);
9210 	}
9211 }
9212 
9213 
9214 /*
9215  *    Function: sd_set_pstats
9216  *
9217  * Description: This routine instantiates and initializes the partition
9218  *              stats for each partition with more than zero blocks.
9219  *		(4363169)
9220  *
9221  *   Arguments: un - driver soft state (unit) structure
9222  *
9223  *     Context: Kernel thread context
9224  */
9225 
9226 static void
9227 sd_set_pstats(struct sd_lun *un)
9228 {
9229 	char	kstatname[KSTAT_STRLEN];
9230 	int	instance;
9231 	int	i;
9232 	diskaddr_t	nblks = 0;
9233 	char	*partname = NULL;
9234 
9235 	ASSERT(un != NULL);
9236 
9237 	instance = ddi_get_instance(SD_DEVINFO(un));
9238 
9239 	/* Note:x86: is this a VTOC8/VTOC16 difference? */
9240 	for (i = 0; i < NSDMAP; i++) {
9241 
9242 		if (cmlb_partinfo(un->un_cmlbhandle, i,
9243 		    &nblks, NULL, &partname, NULL, (void *)SD_PATH_DIRECT) != 0)
9244 			continue;
9245 		mutex_enter(SD_MUTEX(un));
9246 
9247 		if ((un->un_pstats[i] == NULL) &&
9248 		    (nblks != 0)) {
9249 
9250 			(void) snprintf(kstatname, sizeof (kstatname),
9251 			    "%s%d,%s", sd_label, instance,
9252 			    partname);
9253 
9254 			un->un_pstats[i] = kstat_create(sd_label,
9255 			    instance, kstatname, "partition", KSTAT_TYPE_IO,
9256 			    1, KSTAT_FLAG_PERSISTENT);
9257 			if (un->un_pstats[i] != NULL) {
9258 				un->un_pstats[i]->ks_lock = SD_MUTEX(un);
9259 				kstat_install(un->un_pstats[i]);
9260 			}
9261 		}
9262 		mutex_exit(SD_MUTEX(un));
9263 	}
9264 }
9265 
9266 
9267 #if (defined(__fibre))
9268 /*
9269  *    Function: sd_init_event_callbacks
9270  *
9271  * Description: This routine initializes the insertion and removal event
9272  *		callbacks. (fibre only)
9273  *
9274  *   Arguments: un - driver soft state (unit) structure
9275  *
9276  *     Context: Kernel thread context
9277  */
9278 
9279 static void
9280 sd_init_event_callbacks(struct sd_lun *un)
9281 {
9282 	ASSERT(un != NULL);
9283 
9284 	if ((un->un_insert_event == NULL) &&
9285 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_INSERT_EVENT,
9286 	    &un->un_insert_event) == DDI_SUCCESS)) {
9287 		/*
9288 		 * Add the callback for an insertion event
9289 		 */
9290 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9291 		    un->un_insert_event, sd_event_callback, (void *)un,
9292 		    &(un->un_insert_cb_id));
9293 	}
9294 
9295 	if ((un->un_remove_event == NULL) &&
9296 	    (ddi_get_eventcookie(SD_DEVINFO(un), FCAL_REMOVE_EVENT,
9297 	    &un->un_remove_event) == DDI_SUCCESS)) {
9298 		/*
9299 		 * Add the callback for a removal event
9300 		 */
9301 		(void) ddi_add_event_handler(SD_DEVINFO(un),
9302 		    un->un_remove_event, sd_event_callback, (void *)un,
9303 		    &(un->un_remove_cb_id));
9304 	}
9305 }
9306 
9307 
9308 /*
9309  *    Function: sd_event_callback
9310  *
9311  * Description: This routine handles insert/remove events (photon). The
9312  *		state is changed to OFFLINE which can be used to supress
9313  *		error msgs. (fibre only)
9314  *
9315  *   Arguments: un - driver soft state (unit) structure
9316  *
9317  *     Context: Callout thread context
9318  */
9319 /* ARGSUSED */
9320 static void
9321 sd_event_callback(dev_info_t *dip, ddi_eventcookie_t event, void *arg,
9322     void *bus_impldata)
9323 {
9324 	struct sd_lun *un = (struct sd_lun *)arg;
9325 
9326 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_insert_event));
9327 	if (event == un->un_insert_event) {
9328 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: insert event");
9329 		mutex_enter(SD_MUTEX(un));
9330 		if (un->un_state == SD_STATE_OFFLINE) {
9331 			if (un->un_last_state != SD_STATE_SUSPENDED) {
9332 				un->un_state = un->un_last_state;
9333 			} else {
9334 				/*
9335 				 * We have gone through SUSPEND/RESUME while
9336 				 * we were offline. Restore the last state
9337 				 */
9338 				un->un_state = un->un_save_state;
9339 			}
9340 		}
9341 		mutex_exit(SD_MUTEX(un));
9342 
9343 	_NOTE(DATA_READABLE_WITHOUT_LOCK(sd_lun::un_remove_event));
9344 	} else if (event == un->un_remove_event) {
9345 		SD_TRACE(SD_LOG_COMMON, un, "sd_event_callback: remove event");
9346 		mutex_enter(SD_MUTEX(un));
9347 		/*
9348 		 * We need to handle an event callback that occurs during
9349 		 * the suspend operation, since we don't prevent it.
9350 		 */
9351 		if (un->un_state != SD_STATE_OFFLINE) {
9352 			if (un->un_state != SD_STATE_SUSPENDED) {
9353 				New_state(un, SD_STATE_OFFLINE);
9354 			} else {
9355 				un->un_last_state = SD_STATE_OFFLINE;
9356 			}
9357 		}
9358 		mutex_exit(SD_MUTEX(un));
9359 	} else {
9360 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
9361 		    "!Unknown event\n");
9362 	}
9363 
9364 }
9365 #endif
9366 
9367 /*
9368  *    Function: sd_cache_control()
9369  *
9370  * Description: This routine is the driver entry point for setting
9371  *		read and write caching by modifying the WCE (write cache
9372  *		enable) and RCD (read cache disable) bits of mode
9373  *		page 8 (MODEPAGE_CACHING).
9374  *
9375  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9376  *                      structure for this target.
9377  *		rcd_flag - flag for controlling the read cache
9378  *		wce_flag - flag for controlling the write cache
9379  *
9380  * Return Code: EIO
9381  *		code returned by sd_send_scsi_MODE_SENSE and
9382  *		sd_send_scsi_MODE_SELECT
9383  *
9384  *     Context: Kernel Thread
9385  */
9386 
9387 static int
9388 sd_cache_control(sd_ssc_t *ssc, int rcd_flag, int wce_flag)
9389 {
9390 	struct mode_caching	*mode_caching_page;
9391 	uchar_t			*header;
9392 	size_t			buflen;
9393 	int			hdrlen;
9394 	int			bd_len;
9395 	int			rval = 0;
9396 	struct mode_header_grp2	*mhp;
9397 	struct sd_lun		*un;
9398 	int			status;
9399 
9400 	ASSERT(ssc != NULL);
9401 	un = ssc->ssc_un;
9402 	ASSERT(un != NULL);
9403 
9404 	/*
9405 	 * Do a test unit ready, otherwise a mode sense may not work if this
9406 	 * is the first command sent to the device after boot.
9407 	 */
9408 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9409 	if (status != 0)
9410 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9411 
9412 	if (un->un_f_cfg_is_atapi == TRUE) {
9413 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9414 	} else {
9415 		hdrlen = MODE_HEADER_LENGTH;
9416 	}
9417 
9418 	/*
9419 	 * Allocate memory for the retrieved mode page and its headers.  Set
9420 	 * a pointer to the page itself.  Use mode_cache_scsi3 to insure
9421 	 * we get all of the mode sense data otherwise, the mode select
9422 	 * will fail.  mode_cache_scsi3 is a superset of mode_caching.
9423 	 */
9424 	buflen = hdrlen + MODE_BLK_DESC_LENGTH +
9425 	    sizeof (struct mode_cache_scsi3);
9426 
9427 	header = kmem_zalloc(buflen, KM_SLEEP);
9428 
9429 	/* Get the information from the device. */
9430 	if (un->un_f_cfg_is_atapi == TRUE) {
9431 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9432 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9433 	} else {
9434 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9435 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9436 	}
9437 
9438 	if (rval != 0) {
9439 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9440 		    "sd_cache_control: Mode Sense Failed\n");
9441 		goto mode_sense_failed;
9442 	}
9443 
9444 	/*
9445 	 * Determine size of Block Descriptors in order to locate
9446 	 * the mode page data. ATAPI devices return 0, SCSI devices
9447 	 * should return MODE_BLK_DESC_LENGTH.
9448 	 */
9449 	if (un->un_f_cfg_is_atapi == TRUE) {
9450 		mhp	= (struct mode_header_grp2 *)header;
9451 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9452 	} else {
9453 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9454 	}
9455 
9456 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9457 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9458 		    "sd_cache_control: Mode Sense returned invalid block "
9459 		    "descriptor length\n");
9460 		rval = EIO;
9461 		goto mode_sense_failed;
9462 	}
9463 
9464 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9465 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9466 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9467 		    "sd_cache_control: Mode Sense caching page code mismatch "
9468 		    "%d\n", mode_caching_page->mode_page.code);
9469 		rval = EIO;
9470 		goto mode_sense_failed;
9471 	}
9472 
9473 	/* Check the relevant bits on successful mode sense. */
9474 	if ((mode_caching_page->rcd && rcd_flag == SD_CACHE_ENABLE) ||
9475 	    (!mode_caching_page->rcd && rcd_flag == SD_CACHE_DISABLE) ||
9476 	    (mode_caching_page->wce && wce_flag == SD_CACHE_DISABLE) ||
9477 	    (!mode_caching_page->wce && wce_flag == SD_CACHE_ENABLE)) {
9478 
9479 		size_t sbuflen;
9480 		uchar_t save_pg;
9481 
9482 		/*
9483 		 * Construct select buffer length based on the
9484 		 * length of the sense data returned.
9485 		 */
9486 		sbuflen =  hdrlen + bd_len +
9487 		    sizeof (struct mode_page) +
9488 		    (int)mode_caching_page->mode_page.length;
9489 
9490 		/*
9491 		 * Set the caching bits as requested.
9492 		 */
9493 		if (rcd_flag == SD_CACHE_ENABLE)
9494 			mode_caching_page->rcd = 0;
9495 		else if (rcd_flag == SD_CACHE_DISABLE)
9496 			mode_caching_page->rcd = 1;
9497 
9498 		if (wce_flag == SD_CACHE_ENABLE)
9499 			mode_caching_page->wce = 1;
9500 		else if (wce_flag == SD_CACHE_DISABLE)
9501 			mode_caching_page->wce = 0;
9502 
9503 		/*
9504 		 * Save the page if the mode sense says the
9505 		 * drive supports it.
9506 		 */
9507 		save_pg = mode_caching_page->mode_page.ps ?
9508 		    SD_SAVE_PAGE : SD_DONTSAVE_PAGE;
9509 
9510 		/* Clear reserved bits before mode select. */
9511 		mode_caching_page->mode_page.ps = 0;
9512 
9513 		/*
9514 		 * Clear out mode header for mode select.
9515 		 * The rest of the retrieved page will be reused.
9516 		 */
9517 		bzero(header, hdrlen);
9518 
9519 		if (un->un_f_cfg_is_atapi == TRUE) {
9520 			mhp = (struct mode_header_grp2 *)header;
9521 			mhp->bdesc_length_hi = bd_len >> 8;
9522 			mhp->bdesc_length_lo = (uchar_t)bd_len & 0xff;
9523 		} else {
9524 			((struct mode_header *)header)->bdesc_length = bd_len;
9525 		}
9526 
9527 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9528 
9529 		/* Issue mode select to change the cache settings */
9530 		if (un->un_f_cfg_is_atapi == TRUE) {
9531 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, header,
9532 			    sbuflen, save_pg, SD_PATH_DIRECT);
9533 		} else {
9534 			rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, header,
9535 			    sbuflen, save_pg, SD_PATH_DIRECT);
9536 		}
9537 
9538 	}
9539 
9540 
9541 mode_sense_failed:
9542 
9543 	kmem_free(header, buflen);
9544 
9545 	if (rval != 0) {
9546 		if (rval == EIO)
9547 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9548 		else
9549 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9550 	}
9551 	return (rval);
9552 }
9553 
9554 
9555 /*
9556  *    Function: sd_get_write_cache_enabled()
9557  *
9558  * Description: This routine is the driver entry point for determining if
9559  *		write caching is enabled.  It examines the WCE (write cache
9560  *		enable) bits of mode page 8 (MODEPAGE_CACHING).
9561  *
9562  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
9563  *                      structure for this target.
9564  *		is_enabled - pointer to int where write cache enabled state
9565  *		is returned (non-zero -> write cache enabled)
9566  *
9567  *
9568  * Return Code: EIO
9569  *		code returned by sd_send_scsi_MODE_SENSE
9570  *
9571  *     Context: Kernel Thread
9572  *
9573  * NOTE: If ioctl is added to disable write cache, this sequence should
9574  * be followed so that no locking is required for accesses to
9575  * un->un_f_write_cache_enabled:
9576  * 	do mode select to clear wce
9577  * 	do synchronize cache to flush cache
9578  * 	set un->un_f_write_cache_enabled = FALSE
9579  *
9580  * Conversely, an ioctl to enable the write cache should be done
9581  * in this order:
9582  * 	set un->un_f_write_cache_enabled = TRUE
9583  * 	do mode select to set wce
9584  */
9585 
9586 static int
9587 sd_get_write_cache_enabled(sd_ssc_t *ssc, int *is_enabled)
9588 {
9589 	struct mode_caching	*mode_caching_page;
9590 	uchar_t			*header;
9591 	size_t			buflen;
9592 	int			hdrlen;
9593 	int			bd_len;
9594 	int			rval = 0;
9595 	struct sd_lun		*un;
9596 	int			status;
9597 
9598 	ASSERT(ssc != NULL);
9599 	un = ssc->ssc_un;
9600 	ASSERT(un != NULL);
9601 	ASSERT(is_enabled != NULL);
9602 
9603 	/* in case of error, flag as enabled */
9604 	*is_enabled = TRUE;
9605 
9606 	/*
9607 	 * Do a test unit ready, otherwise a mode sense may not work if this
9608 	 * is the first command sent to the device after boot.
9609 	 */
9610 	status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
9611 
9612 	if (status != 0)
9613 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9614 
9615 	if (un->un_f_cfg_is_atapi == TRUE) {
9616 		hdrlen = MODE_HEADER_LENGTH_GRP2;
9617 	} else {
9618 		hdrlen = MODE_HEADER_LENGTH;
9619 	}
9620 
9621 	/*
9622 	 * Allocate memory for the retrieved mode page and its headers.  Set
9623 	 * a pointer to the page itself.
9624 	 */
9625 	buflen = hdrlen + MODE_BLK_DESC_LENGTH + sizeof (struct mode_caching);
9626 	header = kmem_zalloc(buflen, KM_SLEEP);
9627 
9628 	/* Get the information from the device. */
9629 	if (un->un_f_cfg_is_atapi == TRUE) {
9630 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, header, buflen,
9631 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9632 	} else {
9633 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, header, buflen,
9634 		    MODEPAGE_CACHING, SD_PATH_DIRECT);
9635 	}
9636 
9637 	if (rval != 0) {
9638 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
9639 		    "sd_get_write_cache_enabled: Mode Sense Failed\n");
9640 		goto mode_sense_failed;
9641 	}
9642 
9643 	/*
9644 	 * Determine size of Block Descriptors in order to locate
9645 	 * the mode page data. ATAPI devices return 0, SCSI devices
9646 	 * should return MODE_BLK_DESC_LENGTH.
9647 	 */
9648 	if (un->un_f_cfg_is_atapi == TRUE) {
9649 		struct mode_header_grp2	*mhp;
9650 		mhp	= (struct mode_header_grp2 *)header;
9651 		bd_len  = (mhp->bdesc_length_hi << 8) | mhp->bdesc_length_lo;
9652 	} else {
9653 		bd_len  = ((struct mode_header *)header)->bdesc_length;
9654 	}
9655 
9656 	if (bd_len > MODE_BLK_DESC_LENGTH) {
9657 		/* FMA should make upset complain here */
9658 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, 0,
9659 		    "sd_get_write_cache_enabled: Mode Sense returned invalid "
9660 		    "block descriptor length\n");
9661 		rval = EIO;
9662 		goto mode_sense_failed;
9663 	}
9664 
9665 	mode_caching_page = (struct mode_caching *)(header + hdrlen + bd_len);
9666 	if (mode_caching_page->mode_page.code != MODEPAGE_CACHING) {
9667 		/* FMA could make upset complain here */
9668 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, SD_LOG_COMMON,
9669 		    "sd_get_write_cache_enabled: Mode Sense caching page "
9670 		    "code mismatch %d\n", mode_caching_page->mode_page.code);
9671 		rval = EIO;
9672 		goto mode_sense_failed;
9673 	}
9674 	*is_enabled = mode_caching_page->wce;
9675 
9676 mode_sense_failed:
9677 	if (rval == 0) {
9678 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
9679 	} else if (rval == EIO) {
9680 		/*
9681 		 * Some disks do not support mode sense(6), we
9682 		 * should ignore this kind of error(sense key is
9683 		 * 0x5 - illegal request).
9684 		 */
9685 		uint8_t *sensep;
9686 		int senlen;
9687 
9688 		sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
9689 		senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
9690 		    ssc->ssc_uscsi_cmd->uscsi_rqresid);
9691 
9692 		if (senlen > 0 &&
9693 		    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
9694 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
9695 		} else {
9696 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
9697 		}
9698 	} else {
9699 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9700 	}
9701 	kmem_free(header, buflen);
9702 	return (rval);
9703 }
9704 
9705 /*
9706  *    Function: sd_get_nv_sup()
9707  *
9708  * Description: This routine is the driver entry point for
9709  * determining whether non-volatile cache is supported. This
9710  * determination process works as follows:
9711  *
9712  * 1. sd first queries sd.conf on whether
9713  * suppress_cache_flush bit is set for this device.
9714  *
9715  * 2. if not there, then queries the internal disk table.
9716  *
9717  * 3. if either sd.conf or internal disk table specifies
9718  * cache flush be suppressed, we don't bother checking
9719  * NV_SUP bit.
9720  *
9721  * If SUPPRESS_CACHE_FLUSH bit is not set to 1, sd queries
9722  * the optional INQUIRY VPD page 0x86. If the device
9723  * supports VPD page 0x86, sd examines the NV_SUP
9724  * (non-volatile cache support) bit in the INQUIRY VPD page
9725  * 0x86:
9726  *   o If NV_SUP bit is set, sd assumes the device has a
9727  *   non-volatile cache and set the
9728  *   un_f_sync_nv_supported to TRUE.
9729  *   o Otherwise cache is not non-volatile,
9730  *   un_f_sync_nv_supported is set to FALSE.
9731  *
9732  * Arguments: un - driver soft state (unit) structure
9733  *
9734  * Return Code:
9735  *
9736  *     Context: Kernel Thread
9737  */
9738 
9739 static void
9740 sd_get_nv_sup(sd_ssc_t *ssc)
9741 {
9742 	int		rval		= 0;
9743 	uchar_t		*inq86		= NULL;
9744 	size_t		inq86_len	= MAX_INQUIRY_SIZE;
9745 	size_t		inq86_resid	= 0;
9746 	struct		dk_callback *dkc;
9747 	struct sd_lun	*un;
9748 
9749 	ASSERT(ssc != NULL);
9750 	un = ssc->ssc_un;
9751 	ASSERT(un != NULL);
9752 
9753 	mutex_enter(SD_MUTEX(un));
9754 
9755 	/*
9756 	 * Be conservative on the device's support of
9757 	 * SYNC_NV bit: un_f_sync_nv_supported is
9758 	 * initialized to be false.
9759 	 */
9760 	un->un_f_sync_nv_supported = FALSE;
9761 
9762 	/*
9763 	 * If either sd.conf or internal disk table
9764 	 * specifies cache flush be suppressed, then
9765 	 * we don't bother checking NV_SUP bit.
9766 	 */
9767 	if (un->un_f_suppress_cache_flush == TRUE) {
9768 		mutex_exit(SD_MUTEX(un));
9769 		return;
9770 	}
9771 
9772 	if (sd_check_vpd_page_support(ssc) == 0 &&
9773 	    un->un_vpd_page_mask & SD_VPD_EXTENDED_DATA_PG) {
9774 		mutex_exit(SD_MUTEX(un));
9775 		/* collect page 86 data if available */
9776 		inq86 = kmem_zalloc(inq86_len, KM_SLEEP);
9777 
9778 		rval = sd_send_scsi_INQUIRY(ssc, inq86, inq86_len,
9779 		    0x01, 0x86, &inq86_resid);
9780 
9781 		if (rval == 0 && (inq86_len - inq86_resid > 6)) {
9782 			SD_TRACE(SD_LOG_COMMON, un,
9783 			    "sd_get_nv_sup: \
9784 			    successfully get VPD page: %x \
9785 			    PAGE LENGTH: %x BYTE 6: %x\n",
9786 			    inq86[1], inq86[3], inq86[6]);
9787 
9788 			mutex_enter(SD_MUTEX(un));
9789 			/*
9790 			 * check the value of NV_SUP bit: only if the device
9791 			 * reports NV_SUP bit to be 1, the
9792 			 * un_f_sync_nv_supported bit will be set to true.
9793 			 */
9794 			if (inq86[6] & SD_VPD_NV_SUP) {
9795 				un->un_f_sync_nv_supported = TRUE;
9796 			}
9797 			mutex_exit(SD_MUTEX(un));
9798 		} else if (rval != 0) {
9799 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9800 		}
9801 
9802 		kmem_free(inq86, inq86_len);
9803 	} else {
9804 		mutex_exit(SD_MUTEX(un));
9805 	}
9806 
9807 	/*
9808 	 * Send a SYNC CACHE command to check whether
9809 	 * SYNC_NV bit is supported. This command should have
9810 	 * un_f_sync_nv_supported set to correct value.
9811 	 */
9812 	mutex_enter(SD_MUTEX(un));
9813 	if (un->un_f_sync_nv_supported) {
9814 		mutex_exit(SD_MUTEX(un));
9815 		dkc = kmem_zalloc(sizeof (struct dk_callback), KM_SLEEP);
9816 		dkc->dkc_flag = FLUSH_VOLATILE;
9817 		(void) sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
9818 
9819 		/*
9820 		 * Send a TEST UNIT READY command to the device. This should
9821 		 * clear any outstanding UNIT ATTENTION that may be present.
9822 		 */
9823 		rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_DONT_RETRY_TUR);
9824 		if (rval != 0)
9825 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
9826 
9827 		kmem_free(dkc, sizeof (struct dk_callback));
9828 	} else {
9829 		mutex_exit(SD_MUTEX(un));
9830 	}
9831 
9832 	SD_TRACE(SD_LOG_COMMON, un, "sd_get_nv_sup: \
9833 	    un_f_suppress_cache_flush is set to %d\n",
9834 	    un->un_f_suppress_cache_flush);
9835 }
9836 
9837 /*
9838  *    Function: sd_make_device
9839  *
9840  * Description: Utility routine to return the Solaris device number from
9841  *		the data in the device's dev_info structure.
9842  *
9843  * Return Code: The Solaris device number
9844  *
9845  *     Context: Any
9846  */
9847 
9848 static dev_t
9849 sd_make_device(dev_info_t *devi)
9850 {
9851 	return (makedevice(ddi_driver_major(devi),
9852 	    ddi_get_instance(devi) << SDUNIT_SHIFT));
9853 }
9854 
9855 
9856 /*
9857  *    Function: sd_pm_entry
9858  *
9859  * Description: Called at the start of a new command to manage power
9860  *		and busy status of a device. This includes determining whether
9861  *		the current power state of the device is sufficient for
9862  *		performing the command or whether it must be changed.
9863  *		The PM framework is notified appropriately.
9864  *		Only with a return status of DDI_SUCCESS will the
9865  *		component be busy to the framework.
9866  *
9867  *		All callers of sd_pm_entry must check the return status
9868  *		and only call sd_pm_exit it it was DDI_SUCCESS. A status
9869  *		of DDI_FAILURE indicates the device failed to power up.
9870  *		In this case un_pm_count has been adjusted so the result
9871  *		on exit is still powered down, ie. count is less than 0.
9872  *		Calling sd_pm_exit with this count value hits an ASSERT.
9873  *
9874  * Return Code: DDI_SUCCESS or DDI_FAILURE
9875  *
9876  *     Context: Kernel thread context.
9877  */
9878 
9879 static int
9880 sd_pm_entry(struct sd_lun *un)
9881 {
9882 	int return_status = DDI_SUCCESS;
9883 
9884 	ASSERT(!mutex_owned(SD_MUTEX(un)));
9885 	ASSERT(!mutex_owned(&un->un_pm_mutex));
9886 
9887 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: entry\n");
9888 
9889 	if (un->un_f_pm_is_enabled == FALSE) {
9890 		SD_TRACE(SD_LOG_IO_PM, un,
9891 		    "sd_pm_entry: exiting, PM not enabled\n");
9892 		return (return_status);
9893 	}
9894 
9895 	/*
9896 	 * Just increment a counter if PM is enabled. On the transition from
9897 	 * 0 ==> 1, mark the device as busy.  The iodone side will decrement
9898 	 * the count with each IO and mark the device as idle when the count
9899 	 * hits 0.
9900 	 *
9901 	 * If the count is less than 0 the device is powered down. If a powered
9902 	 * down device is successfully powered up then the count must be
9903 	 * incremented to reflect the power up. Note that it'll get incremented
9904 	 * a second time to become busy.
9905 	 *
9906 	 * Because the following has the potential to change the device state
9907 	 * and must release the un_pm_mutex to do so, only one thread can be
9908 	 * allowed through at a time.
9909 	 */
9910 
9911 	mutex_enter(&un->un_pm_mutex);
9912 	while (un->un_pm_busy == TRUE) {
9913 		cv_wait(&un->un_pm_busy_cv, &un->un_pm_mutex);
9914 	}
9915 	un->un_pm_busy = TRUE;
9916 
9917 	if (un->un_pm_count < 1) {
9918 
9919 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_entry: busy component\n");
9920 
9921 		/*
9922 		 * Indicate we are now busy so the framework won't attempt to
9923 		 * power down the device. This call will only fail if either
9924 		 * we passed a bad component number or the device has no
9925 		 * components. Neither of these should ever happen.
9926 		 */
9927 		mutex_exit(&un->un_pm_mutex);
9928 		return_status = pm_busy_component(SD_DEVINFO(un), 0);
9929 		ASSERT(return_status == DDI_SUCCESS);
9930 
9931 		mutex_enter(&un->un_pm_mutex);
9932 
9933 		if (un->un_pm_count < 0) {
9934 			mutex_exit(&un->un_pm_mutex);
9935 
9936 			SD_TRACE(SD_LOG_IO_PM, un,
9937 			    "sd_pm_entry: power up component\n");
9938 
9939 			/*
9940 			 * pm_raise_power will cause sdpower to be called
9941 			 * which brings the device power level to the
9942 			 * desired state, If successful, un_pm_count and
9943 			 * un_power_level will be updated appropriately.
9944 			 */
9945 			return_status = pm_raise_power(SD_DEVINFO(un), 0,
9946 			    SD_PM_STATE_ACTIVE(un));
9947 
9948 			mutex_enter(&un->un_pm_mutex);
9949 
9950 			if (return_status != DDI_SUCCESS) {
9951 				/*
9952 				 * Power up failed.
9953 				 * Idle the device and adjust the count
9954 				 * so the result on exit is that we're
9955 				 * still powered down, ie. count is less than 0.
9956 				 */
9957 				SD_TRACE(SD_LOG_IO_PM, un,
9958 				    "sd_pm_entry: power up failed,"
9959 				    " idle the component\n");
9960 
9961 				(void) pm_idle_component(SD_DEVINFO(un), 0);
9962 				un->un_pm_count--;
9963 			} else {
9964 				/*
9965 				 * Device is powered up, verify the
9966 				 * count is non-negative.
9967 				 * This is debug only.
9968 				 */
9969 				ASSERT(un->un_pm_count == 0);
9970 			}
9971 		}
9972 
9973 		if (return_status == DDI_SUCCESS) {
9974 			/*
9975 			 * For performance, now that the device has been tagged
9976 			 * as busy, and it's known to be powered up, update the
9977 			 * chain types to use jump tables that do not include
9978 			 * pm. This significantly lowers the overhead and
9979 			 * therefore improves performance.
9980 			 */
9981 
9982 			mutex_exit(&un->un_pm_mutex);
9983 			mutex_enter(SD_MUTEX(un));
9984 			SD_TRACE(SD_LOG_IO_PM, un,
9985 			    "sd_pm_entry: changing uscsi_chain_type from %d\n",
9986 			    un->un_uscsi_chain_type);
9987 
9988 			if (un->un_f_non_devbsize_supported) {
9989 				un->un_buf_chain_type =
9990 				    SD_CHAIN_INFO_RMMEDIA_NO_PM;
9991 			} else {
9992 				un->un_buf_chain_type =
9993 				    SD_CHAIN_INFO_DISK_NO_PM;
9994 			}
9995 			un->un_uscsi_chain_type = SD_CHAIN_INFO_USCSI_CMD_NO_PM;
9996 
9997 			SD_TRACE(SD_LOG_IO_PM, un,
9998 			    "             changed  uscsi_chain_type to   %d\n",
9999 			    un->un_uscsi_chain_type);
10000 			mutex_exit(SD_MUTEX(un));
10001 			mutex_enter(&un->un_pm_mutex);
10002 
10003 			if (un->un_pm_idle_timeid == NULL) {
10004 				/* 300 ms. */
10005 				un->un_pm_idle_timeid =
10006 				    timeout(sd_pm_idletimeout_handler, un,
10007 				    (drv_usectohz((clock_t)300000)));
10008 				/*
10009 				 * Include an extra call to busy which keeps the
10010 				 * device busy with-respect-to the PM layer
10011 				 * until the timer fires, at which time it'll
10012 				 * get the extra idle call.
10013 				 */
10014 				(void) pm_busy_component(SD_DEVINFO(un), 0);
10015 			}
10016 		}
10017 	}
10018 	un->un_pm_busy = FALSE;
10019 	/* Next... */
10020 	cv_signal(&un->un_pm_busy_cv);
10021 
10022 	un->un_pm_count++;
10023 
10024 	SD_TRACE(SD_LOG_IO_PM, un,
10025 	    "sd_pm_entry: exiting, un_pm_count = %d\n", un->un_pm_count);
10026 
10027 	mutex_exit(&un->un_pm_mutex);
10028 
10029 	return (return_status);
10030 }
10031 
10032 
10033 /*
10034  *    Function: sd_pm_exit
10035  *
10036  * Description: Called at the completion of a command to manage busy
10037  *		status for the device. If the device becomes idle the
10038  *		PM framework is notified.
10039  *
10040  *     Context: Kernel thread context
10041  */
10042 
10043 static void
10044 sd_pm_exit(struct sd_lun *un)
10045 {
10046 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10047 	ASSERT(!mutex_owned(&un->un_pm_mutex));
10048 
10049 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: entry\n");
10050 
10051 	/*
10052 	 * After attach the following flag is only read, so don't
10053 	 * take the penalty of acquiring a mutex for it.
10054 	 */
10055 	if (un->un_f_pm_is_enabled == TRUE) {
10056 
10057 		mutex_enter(&un->un_pm_mutex);
10058 		un->un_pm_count--;
10059 
10060 		SD_TRACE(SD_LOG_IO_PM, un,
10061 		    "sd_pm_exit: un_pm_count = %d\n", un->un_pm_count);
10062 
10063 		ASSERT(un->un_pm_count >= 0);
10064 		if (un->un_pm_count == 0) {
10065 			mutex_exit(&un->un_pm_mutex);
10066 
10067 			SD_TRACE(SD_LOG_IO_PM, un,
10068 			    "sd_pm_exit: idle component\n");
10069 
10070 			(void) pm_idle_component(SD_DEVINFO(un), 0);
10071 
10072 		} else {
10073 			mutex_exit(&un->un_pm_mutex);
10074 		}
10075 	}
10076 
10077 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_exit: exiting\n");
10078 }
10079 
10080 
10081 /*
10082  *    Function: sdopen
10083  *
10084  * Description: Driver's open(9e) entry point function.
10085  *
10086  *   Arguments: dev_i   - pointer to device number
10087  *		flag    - how to open file (FEXCL, FNDELAY, FREAD, FWRITE)
10088  *		otyp    - open type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10089  *		cred_p  - user credential pointer
10090  *
10091  * Return Code: EINVAL
10092  *		ENXIO
10093  *		EIO
10094  *		EROFS
10095  *		EBUSY
10096  *
10097  *     Context: Kernel thread context
10098  */
10099 /* ARGSUSED */
10100 static int
10101 sdopen(dev_t *dev_p, int flag, int otyp, cred_t *cred_p)
10102 {
10103 	struct sd_lun	*un;
10104 	int		nodelay;
10105 	int		part;
10106 	uint64_t	partmask;
10107 	int		instance;
10108 	dev_t		dev;
10109 	int		rval = EIO;
10110 	diskaddr_t	nblks = 0;
10111 	diskaddr_t	label_cap;
10112 
10113 	/* Validate the open type */
10114 	if (otyp >= OTYPCNT) {
10115 		return (EINVAL);
10116 	}
10117 
10118 	dev = *dev_p;
10119 	instance = SDUNIT(dev);
10120 	mutex_enter(&sd_detach_mutex);
10121 
10122 	/*
10123 	 * Fail the open if there is no softstate for the instance, or
10124 	 * if another thread somewhere is trying to detach the instance.
10125 	 */
10126 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
10127 	    (un->un_detach_count != 0)) {
10128 		mutex_exit(&sd_detach_mutex);
10129 		/*
10130 		 * The probe cache only needs to be cleared when open (9e) fails
10131 		 * with ENXIO (4238046).
10132 		 */
10133 		/*
10134 		 * un-conditionally clearing probe cache is ok with
10135 		 * separate sd/ssd binaries
10136 		 * x86 platform can be an issue with both parallel
10137 		 * and fibre in 1 binary
10138 		 */
10139 		sd_scsi_clear_probe_cache();
10140 		return (ENXIO);
10141 	}
10142 
10143 	/*
10144 	 * The un_layer_count is to prevent another thread in specfs from
10145 	 * trying to detach the instance, which can happen when we are
10146 	 * called from a higher-layer driver instead of thru specfs.
10147 	 * This will not be needed when DDI provides a layered driver
10148 	 * interface that allows specfs to know that an instance is in
10149 	 * use by a layered driver & should not be detached.
10150 	 *
10151 	 * Note: the semantics for layered driver opens are exactly one
10152 	 * close for every open.
10153 	 */
10154 	if (otyp == OTYP_LYR) {
10155 		un->un_layer_count++;
10156 	}
10157 
10158 	/*
10159 	 * Keep a count of the current # of opens in progress. This is because
10160 	 * some layered drivers try to call us as a regular open. This can
10161 	 * cause problems that we cannot prevent, however by keeping this count
10162 	 * we can at least keep our open and detach routines from racing against
10163 	 * each other under such conditions.
10164 	 */
10165 	un->un_opens_in_progress++;
10166 	mutex_exit(&sd_detach_mutex);
10167 
10168 	nodelay  = (flag & (FNDELAY | FNONBLOCK));
10169 	part	 = SDPART(dev);
10170 	partmask = 1 << part;
10171 
10172 	/*
10173 	 * We use a semaphore here in order to serialize
10174 	 * open and close requests on the device.
10175 	 */
10176 	sema_p(&un->un_semoclose);
10177 
10178 	mutex_enter(SD_MUTEX(un));
10179 
10180 	/*
10181 	 * All device accesses go thru sdstrategy() where we check
10182 	 * on suspend status but there could be a scsi_poll command,
10183 	 * which bypasses sdstrategy(), so we need to check pm
10184 	 * status.
10185 	 */
10186 
10187 	if (!nodelay) {
10188 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10189 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10190 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10191 		}
10192 
10193 		mutex_exit(SD_MUTEX(un));
10194 		if (sd_pm_entry(un) != DDI_SUCCESS) {
10195 			rval = EIO;
10196 			SD_ERROR(SD_LOG_OPEN_CLOSE, un,
10197 			    "sdopen: sd_pm_entry failed\n");
10198 			goto open_failed_with_pm;
10199 		}
10200 		mutex_enter(SD_MUTEX(un));
10201 	}
10202 
10203 	/* check for previous exclusive open */
10204 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: un=%p\n", (void *)un);
10205 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10206 	    "sdopen: exclopen=%x, flag=%x, regopen=%x\n",
10207 	    un->un_exclopen, flag, un->un_ocmap.regopen[otyp]);
10208 
10209 	if (un->un_exclopen & (partmask)) {
10210 		goto excl_open_fail;
10211 	}
10212 
10213 	if (flag & FEXCL) {
10214 		int i;
10215 		if (un->un_ocmap.lyropen[part]) {
10216 			goto excl_open_fail;
10217 		}
10218 		for (i = 0; i < (OTYPCNT - 1); i++) {
10219 			if (un->un_ocmap.regopen[i] & (partmask)) {
10220 				goto excl_open_fail;
10221 			}
10222 		}
10223 	}
10224 
10225 	/*
10226 	 * Check the write permission if this is a removable media device,
10227 	 * NDELAY has not been set, and writable permission is requested.
10228 	 *
10229 	 * Note: If NDELAY was set and this is write-protected media the WRITE
10230 	 * attempt will fail with EIO as part of the I/O processing. This is a
10231 	 * more permissive implementation that allows the open to succeed and
10232 	 * WRITE attempts to fail when appropriate.
10233 	 */
10234 	if (un->un_f_chk_wp_open) {
10235 		if ((flag & FWRITE) && (!nodelay)) {
10236 			mutex_exit(SD_MUTEX(un));
10237 			/*
10238 			 * Defer the check for write permission on writable
10239 			 * DVD drive till sdstrategy and will not fail open even
10240 			 * if FWRITE is set as the device can be writable
10241 			 * depending upon the media and the media can change
10242 			 * after the call to open().
10243 			 */
10244 			if (un->un_f_dvdram_writable_device == FALSE) {
10245 				if (ISCD(un) || sr_check_wp(dev)) {
10246 				rval = EROFS;
10247 				mutex_enter(SD_MUTEX(un));
10248 				SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10249 				    "write to cd or write protected media\n");
10250 				goto open_fail;
10251 				}
10252 			}
10253 			mutex_enter(SD_MUTEX(un));
10254 		}
10255 	}
10256 
10257 	/*
10258 	 * If opening in NDELAY/NONBLOCK mode, just return.
10259 	 * Check if disk is ready and has a valid geometry later.
10260 	 */
10261 	if (!nodelay) {
10262 		sd_ssc_t	*ssc;
10263 
10264 		mutex_exit(SD_MUTEX(un));
10265 		ssc = sd_ssc_init(un);
10266 		rval = sd_ready_and_valid(ssc, part);
10267 		sd_ssc_fini(ssc);
10268 		mutex_enter(SD_MUTEX(un));
10269 		/*
10270 		 * Fail if device is not ready or if the number of disk
10271 		 * blocks is zero or negative for non CD devices.
10272 		 */
10273 
10274 		nblks = 0;
10275 
10276 		if (rval == SD_READY_VALID && (!ISCD(un))) {
10277 			/* if cmlb_partinfo fails, nblks remains 0 */
10278 			mutex_exit(SD_MUTEX(un));
10279 			(void) cmlb_partinfo(un->un_cmlbhandle, part, &nblks,
10280 			    NULL, NULL, NULL, (void *)SD_PATH_DIRECT);
10281 			mutex_enter(SD_MUTEX(un));
10282 		}
10283 
10284 		if ((rval != SD_READY_VALID) ||
10285 		    (!ISCD(un) && nblks <= 0)) {
10286 			rval = un->un_f_has_removable_media ? ENXIO : EIO;
10287 			SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10288 			    "device not ready or invalid disk block value\n");
10289 			goto open_fail;
10290 		}
10291 #if defined(__i386) || defined(__amd64)
10292 	} else {
10293 		uchar_t *cp;
10294 		/*
10295 		 * x86 requires special nodelay handling, so that p0 is
10296 		 * always defined and accessible.
10297 		 * Invalidate geometry only if device is not already open.
10298 		 */
10299 		cp = &un->un_ocmap.chkd[0];
10300 		while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10301 			if (*cp != (uchar_t)0) {
10302 				break;
10303 			}
10304 			cp++;
10305 		}
10306 		if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10307 			mutex_exit(SD_MUTEX(un));
10308 			cmlb_invalidate(un->un_cmlbhandle,
10309 			    (void *)SD_PATH_DIRECT);
10310 			mutex_enter(SD_MUTEX(un));
10311 		}
10312 
10313 #endif
10314 	}
10315 
10316 	if (otyp == OTYP_LYR) {
10317 		un->un_ocmap.lyropen[part]++;
10318 	} else {
10319 		un->un_ocmap.regopen[otyp] |= partmask;
10320 	}
10321 
10322 	/* Set up open and exclusive open flags */
10323 	if (flag & FEXCL) {
10324 		un->un_exclopen |= (partmask);
10325 	}
10326 
10327 	/*
10328 	 * If the lun is EFI labeled and lun capacity is greater than the
10329 	 * capacity contained in the label, log a sys-event to notify the
10330 	 * interested module.
10331 	 * To avoid an infinite loop of logging sys-event, we only log the
10332 	 * event when the lun is not opened in NDELAY mode. The event handler
10333 	 * should open the lun in NDELAY mode.
10334 	 */
10335 	if (!nodelay) {
10336 		mutex_exit(SD_MUTEX(un));
10337 		if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
10338 		    (void*)SD_PATH_DIRECT) == 0) {
10339 			mutex_enter(SD_MUTEX(un));
10340 			if (un->un_f_blockcount_is_valid &&
10341 			    un->un_blockcount > label_cap &&
10342 			    un->un_f_expnevent == B_FALSE) {
10343 				un->un_f_expnevent = B_TRUE;
10344 				mutex_exit(SD_MUTEX(un));
10345 				sd_log_lun_expansion_event(un,
10346 				    (nodelay ? KM_NOSLEEP : KM_SLEEP));
10347 				mutex_enter(SD_MUTEX(un));
10348 			}
10349 		} else {
10350 			mutex_enter(SD_MUTEX(un));
10351 		}
10352 	}
10353 
10354 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: "
10355 	    "open of part %d type %d\n", part, otyp);
10356 
10357 	mutex_exit(SD_MUTEX(un));
10358 	if (!nodelay) {
10359 		sd_pm_exit(un);
10360 	}
10361 
10362 	sema_v(&un->un_semoclose);
10363 
10364 	mutex_enter(&sd_detach_mutex);
10365 	un->un_opens_in_progress--;
10366 	mutex_exit(&sd_detach_mutex);
10367 
10368 	SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdopen: exit success\n");
10369 	return (DDI_SUCCESS);
10370 
10371 excl_open_fail:
10372 	SD_ERROR(SD_LOG_OPEN_CLOSE, un, "sdopen: fail exclusive open\n");
10373 	rval = EBUSY;
10374 
10375 open_fail:
10376 	mutex_exit(SD_MUTEX(un));
10377 
10378 	/*
10379 	 * On a failed open we must exit the pm management.
10380 	 */
10381 	if (!nodelay) {
10382 		sd_pm_exit(un);
10383 	}
10384 open_failed_with_pm:
10385 	sema_v(&un->un_semoclose);
10386 
10387 	mutex_enter(&sd_detach_mutex);
10388 	un->un_opens_in_progress--;
10389 	if (otyp == OTYP_LYR) {
10390 		un->un_layer_count--;
10391 	}
10392 	mutex_exit(&sd_detach_mutex);
10393 
10394 	return (rval);
10395 }
10396 
10397 
10398 /*
10399  *    Function: sdclose
10400  *
10401  * Description: Driver's close(9e) entry point function.
10402  *
10403  *   Arguments: dev    - device number
10404  *		flag   - file status flag, informational only
10405  *		otyp   - close type (OTYP_BLK, OTYP_CHR, OTYP_LYR)
10406  *		cred_p - user credential pointer
10407  *
10408  * Return Code: ENXIO
10409  *
10410  *     Context: Kernel thread context
10411  */
10412 /* ARGSUSED */
10413 static int
10414 sdclose(dev_t dev, int flag, int otyp, cred_t *cred_p)
10415 {
10416 	struct sd_lun	*un;
10417 	uchar_t		*cp;
10418 	int		part;
10419 	int		nodelay;
10420 	int		rval = 0;
10421 
10422 	/* Validate the open type */
10423 	if (otyp >= OTYPCNT) {
10424 		return (ENXIO);
10425 	}
10426 
10427 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10428 		return (ENXIO);
10429 	}
10430 
10431 	part = SDPART(dev);
10432 	nodelay = flag & (FNDELAY | FNONBLOCK);
10433 
10434 	SD_TRACE(SD_LOG_OPEN_CLOSE, un,
10435 	    "sdclose: close of part %d type %d\n", part, otyp);
10436 
10437 	/*
10438 	 * We use a semaphore here in order to serialize
10439 	 * open and close requests on the device.
10440 	 */
10441 	sema_p(&un->un_semoclose);
10442 
10443 	mutex_enter(SD_MUTEX(un));
10444 
10445 	/* Don't proceed if power is being changed. */
10446 	while (un->un_state == SD_STATE_PM_CHANGING) {
10447 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10448 	}
10449 
10450 	if (un->un_exclopen & (1 << part)) {
10451 		un->un_exclopen &= ~(1 << part);
10452 	}
10453 
10454 	/* Update the open partition map */
10455 	if (otyp == OTYP_LYR) {
10456 		un->un_ocmap.lyropen[part] -= 1;
10457 	} else {
10458 		un->un_ocmap.regopen[otyp] &= ~(1 << part);
10459 	}
10460 
10461 	cp = &un->un_ocmap.chkd[0];
10462 	while (cp < &un->un_ocmap.chkd[OCSIZE]) {
10463 		if (*cp != NULL) {
10464 			break;
10465 		}
10466 		cp++;
10467 	}
10468 
10469 	if (cp == &un->un_ocmap.chkd[OCSIZE]) {
10470 		SD_TRACE(SD_LOG_OPEN_CLOSE, un, "sdclose: last close\n");
10471 
10472 		/*
10473 		 * We avoid persistance upon the last close, and set
10474 		 * the throttle back to the maximum.
10475 		 */
10476 		un->un_throttle = un->un_saved_throttle;
10477 
10478 		if (un->un_state == SD_STATE_OFFLINE) {
10479 			if (un->un_f_is_fibre == FALSE) {
10480 				scsi_log(SD_DEVINFO(un), sd_label,
10481 				    CE_WARN, "offline\n");
10482 			}
10483 			mutex_exit(SD_MUTEX(un));
10484 			cmlb_invalidate(un->un_cmlbhandle,
10485 			    (void *)SD_PATH_DIRECT);
10486 			mutex_enter(SD_MUTEX(un));
10487 
10488 		} else {
10489 			/*
10490 			 * Flush any outstanding writes in NVRAM cache.
10491 			 * Note: SYNCHRONIZE CACHE is an optional SCSI-2
10492 			 * cmd, it may not work for non-Pluto devices.
10493 			 * SYNCHRONIZE CACHE is not required for removables,
10494 			 * except DVD-RAM drives.
10495 			 *
10496 			 * Also note: because SYNCHRONIZE CACHE is currently
10497 			 * the only command issued here that requires the
10498 			 * drive be powered up, only do the power up before
10499 			 * sending the Sync Cache command. If additional
10500 			 * commands are added which require a powered up
10501 			 * drive, the following sequence may have to change.
10502 			 *
10503 			 * And finally, note that parallel SCSI on SPARC
10504 			 * only issues a Sync Cache to DVD-RAM, a newly
10505 			 * supported device.
10506 			 */
10507 #if defined(__i386) || defined(__amd64)
10508 			if ((un->un_f_sync_cache_supported &&
10509 			    un->un_f_sync_cache_required) ||
10510 			    un->un_f_dvdram_writable_device == TRUE) {
10511 #else
10512 			if (un->un_f_dvdram_writable_device == TRUE) {
10513 #endif
10514 				mutex_exit(SD_MUTEX(un));
10515 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10516 					rval =
10517 					    sd_send_scsi_SYNCHRONIZE_CACHE(un,
10518 					    NULL);
10519 					/* ignore error if not supported */
10520 					if (rval == ENOTSUP) {
10521 						rval = 0;
10522 					} else if (rval != 0) {
10523 						rval = EIO;
10524 					}
10525 					sd_pm_exit(un);
10526 				} else {
10527 					rval = EIO;
10528 				}
10529 				mutex_enter(SD_MUTEX(un));
10530 			}
10531 
10532 			/*
10533 			 * For devices which supports DOOR_LOCK, send an ALLOW
10534 			 * MEDIA REMOVAL command, but don't get upset if it
10535 			 * fails. We need to raise the power of the drive before
10536 			 * we can call sd_send_scsi_DOORLOCK()
10537 			 */
10538 			if (un->un_f_doorlock_supported) {
10539 				mutex_exit(SD_MUTEX(un));
10540 				if (sd_pm_entry(un) == DDI_SUCCESS) {
10541 					sd_ssc_t	*ssc;
10542 
10543 					ssc = sd_ssc_init(un);
10544 					rval = sd_send_scsi_DOORLOCK(ssc,
10545 					    SD_REMOVAL_ALLOW, SD_PATH_DIRECT);
10546 					if (rval != 0)
10547 						sd_ssc_assessment(ssc,
10548 						    SD_FMT_IGNORE);
10549 					sd_ssc_fini(ssc);
10550 
10551 					sd_pm_exit(un);
10552 					if (ISCD(un) && (rval != 0) &&
10553 					    (nodelay != 0)) {
10554 						rval = ENXIO;
10555 					}
10556 				} else {
10557 					rval = EIO;
10558 				}
10559 				mutex_enter(SD_MUTEX(un));
10560 			}
10561 
10562 			/*
10563 			 * If a device has removable media, invalidate all
10564 			 * parameters related to media, such as geometry,
10565 			 * blocksize, and blockcount.
10566 			 */
10567 			if (un->un_f_has_removable_media) {
10568 				sr_ejected(un);
10569 			}
10570 
10571 			/*
10572 			 * Destroy the cache (if it exists) which was
10573 			 * allocated for the write maps since this is
10574 			 * the last close for this media.
10575 			 */
10576 			if (un->un_wm_cache) {
10577 				/*
10578 				 * Check if there are pending commands.
10579 				 * and if there are give a warning and
10580 				 * do not destroy the cache.
10581 				 */
10582 				if (un->un_ncmds_in_driver > 0) {
10583 					scsi_log(SD_DEVINFO(un),
10584 					    sd_label, CE_WARN,
10585 					    "Unable to clean up memory "
10586 					    "because of pending I/O\n");
10587 				} else {
10588 					kmem_cache_destroy(
10589 					    un->un_wm_cache);
10590 					un->un_wm_cache = NULL;
10591 				}
10592 			}
10593 		}
10594 	}
10595 
10596 	mutex_exit(SD_MUTEX(un));
10597 	sema_v(&un->un_semoclose);
10598 
10599 	if (otyp == OTYP_LYR) {
10600 		mutex_enter(&sd_detach_mutex);
10601 		/*
10602 		 * The detach routine may run when the layer count
10603 		 * drops to zero.
10604 		 */
10605 		un->un_layer_count--;
10606 		mutex_exit(&sd_detach_mutex);
10607 	}
10608 
10609 	return (rval);
10610 }
10611 
10612 
10613 /*
10614  *    Function: sd_ready_and_valid
10615  *
10616  * Description: Test if device is ready and has a valid geometry.
10617  *
10618  *   Arguments: ssc - sd_ssc_t will contain un
10619  *		un  - driver soft state (unit) structure
10620  *
10621  * Return Code: SD_READY_VALID		ready and valid label
10622  *		SD_NOT_READY_VALID	not ready, no label
10623  *		SD_RESERVED_BY_OTHERS	reservation conflict
10624  *
10625  *     Context: Never called at interrupt context.
10626  */
10627 
10628 static int
10629 sd_ready_and_valid(sd_ssc_t *ssc, int part)
10630 {
10631 	struct sd_errstats	*stp;
10632 	uint64_t		capacity;
10633 	uint_t			lbasize;
10634 	int			rval = SD_READY_VALID;
10635 	char			name_str[48];
10636 	boolean_t		is_valid;
10637 	struct sd_lun		*un;
10638 	int			status;
10639 
10640 	ASSERT(ssc != NULL);
10641 	un = ssc->ssc_un;
10642 	ASSERT(un != NULL);
10643 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10644 
10645 	mutex_enter(SD_MUTEX(un));
10646 	/*
10647 	 * If a device has removable media, we must check if media is
10648 	 * ready when checking if this device is ready and valid.
10649 	 */
10650 	if (un->un_f_has_removable_media) {
10651 		mutex_exit(SD_MUTEX(un));
10652 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10653 
10654 		if (status != 0) {
10655 			rval = SD_NOT_READY_VALID;
10656 			mutex_enter(SD_MUTEX(un));
10657 
10658 			/* Ignore all failed status for removalbe media */
10659 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10660 
10661 			goto done;
10662 		}
10663 
10664 		is_valid = SD_IS_VALID_LABEL(un);
10665 		mutex_enter(SD_MUTEX(un));
10666 		if (!is_valid ||
10667 		    (un->un_f_blockcount_is_valid == FALSE) ||
10668 		    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
10669 
10670 			/* capacity has to be read every open. */
10671 			mutex_exit(SD_MUTEX(un));
10672 			status = sd_send_scsi_READ_CAPACITY(ssc, &capacity,
10673 			    &lbasize, SD_PATH_DIRECT);
10674 
10675 			if (status != 0) {
10676 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10677 
10678 				cmlb_invalidate(un->un_cmlbhandle,
10679 				    (void *)SD_PATH_DIRECT);
10680 				mutex_enter(SD_MUTEX(un));
10681 				rval = SD_NOT_READY_VALID;
10682 
10683 				goto done;
10684 			} else {
10685 				mutex_enter(SD_MUTEX(un));
10686 				sd_update_block_info(un, lbasize, capacity);
10687 			}
10688 		}
10689 
10690 		/*
10691 		 * Check if the media in the device is writable or not.
10692 		 */
10693 		if (!is_valid && ISCD(un)) {
10694 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
10695 		}
10696 
10697 	} else {
10698 		/*
10699 		 * Do a test unit ready to clear any unit attention from non-cd
10700 		 * devices.
10701 		 */
10702 		mutex_exit(SD_MUTEX(un));
10703 
10704 		status = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10705 		if (status != 0) {
10706 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10707 		}
10708 
10709 		mutex_enter(SD_MUTEX(un));
10710 	}
10711 
10712 
10713 	/*
10714 	 * If this is a non 512 block device, allocate space for
10715 	 * the wmap cache. This is being done here since every time
10716 	 * a media is changed this routine will be called and the
10717 	 * block size is a function of media rather than device.
10718 	 */
10719 	if (((un->un_f_rmw_type != SD_RMW_TYPE_RETURN_ERROR ||
10720 	    un->un_f_non_devbsize_supported) &&
10721 	    un->un_tgt_blocksize != DEV_BSIZE) ||
10722 	    un->un_f_enable_rmw) {
10723 		if (!(un->un_wm_cache)) {
10724 			(void) snprintf(name_str, sizeof (name_str),
10725 			    "%s%d_cache",
10726 			    ddi_driver_name(SD_DEVINFO(un)),
10727 			    ddi_get_instance(SD_DEVINFO(un)));
10728 			un->un_wm_cache = kmem_cache_create(
10729 			    name_str, sizeof (struct sd_w_map),
10730 			    8, sd_wm_cache_constructor,
10731 			    sd_wm_cache_destructor, NULL,
10732 			    (void *)un, NULL, 0);
10733 			if (!(un->un_wm_cache)) {
10734 				rval = ENOMEM;
10735 				goto done;
10736 			}
10737 		}
10738 	}
10739 
10740 	if (un->un_state == SD_STATE_NORMAL) {
10741 		/*
10742 		 * If the target is not yet ready here (defined by a TUR
10743 		 * failure), invalidate the geometry and print an 'offline'
10744 		 * message. This is a legacy message, as the state of the
10745 		 * target is not actually changed to SD_STATE_OFFLINE.
10746 		 *
10747 		 * If the TUR fails for EACCES (Reservation Conflict),
10748 		 * SD_RESERVED_BY_OTHERS will be returned to indicate
10749 		 * reservation conflict. If the TUR fails for other
10750 		 * reasons, SD_NOT_READY_VALID will be returned.
10751 		 */
10752 		int err;
10753 
10754 		mutex_exit(SD_MUTEX(un));
10755 		err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
10756 		mutex_enter(SD_MUTEX(un));
10757 
10758 		if (err != 0) {
10759 			mutex_exit(SD_MUTEX(un));
10760 			cmlb_invalidate(un->un_cmlbhandle,
10761 			    (void *)SD_PATH_DIRECT);
10762 			mutex_enter(SD_MUTEX(un));
10763 			if (err == EACCES) {
10764 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10765 				    "reservation conflict\n");
10766 				rval = SD_RESERVED_BY_OTHERS;
10767 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10768 			} else {
10769 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
10770 				    "drive offline\n");
10771 				rval = SD_NOT_READY_VALID;
10772 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
10773 			}
10774 			goto done;
10775 		}
10776 	}
10777 
10778 	if (un->un_f_format_in_progress == FALSE) {
10779 		mutex_exit(SD_MUTEX(un));
10780 
10781 		(void) cmlb_validate(un->un_cmlbhandle, 0,
10782 		    (void *)SD_PATH_DIRECT);
10783 		if (cmlb_partinfo(un->un_cmlbhandle, part, NULL, NULL, NULL,
10784 		    NULL, (void *) SD_PATH_DIRECT) != 0) {
10785 			rval = SD_NOT_READY_VALID;
10786 			mutex_enter(SD_MUTEX(un));
10787 
10788 			goto done;
10789 		}
10790 		if (un->un_f_pkstats_enabled) {
10791 			sd_set_pstats(un);
10792 			SD_TRACE(SD_LOG_IO_PARTITION, un,
10793 			    "sd_ready_and_valid: un:0x%p pstats created and "
10794 			    "set\n", un);
10795 		}
10796 		mutex_enter(SD_MUTEX(un));
10797 	}
10798 
10799 	/*
10800 	 * If this device supports DOOR_LOCK command, try and send
10801 	 * this command to PREVENT MEDIA REMOVAL, but don't get upset
10802 	 * if it fails. For a CD, however, it is an error
10803 	 */
10804 	if (un->un_f_doorlock_supported) {
10805 		mutex_exit(SD_MUTEX(un));
10806 		status = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
10807 		    SD_PATH_DIRECT);
10808 
10809 		if ((status != 0) && ISCD(un)) {
10810 			rval = SD_NOT_READY_VALID;
10811 			mutex_enter(SD_MUTEX(un));
10812 
10813 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10814 
10815 			goto done;
10816 		} else if (status != 0)
10817 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
10818 		mutex_enter(SD_MUTEX(un));
10819 	}
10820 
10821 	/* The state has changed, inform the media watch routines */
10822 	un->un_mediastate = DKIO_INSERTED;
10823 	cv_broadcast(&un->un_state_cv);
10824 	rval = SD_READY_VALID;
10825 
10826 done:
10827 
10828 	/*
10829 	 * Initialize the capacity kstat value, if no media previously
10830 	 * (capacity kstat is 0) and a media has been inserted
10831 	 * (un_blockcount > 0).
10832 	 */
10833 	if (un->un_errstats != NULL) {
10834 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
10835 		if ((stp->sd_capacity.value.ui64 == 0) &&
10836 		    (un->un_f_blockcount_is_valid == TRUE)) {
10837 			stp->sd_capacity.value.ui64 =
10838 			    (uint64_t)((uint64_t)un->un_blockcount *
10839 			    un->un_sys_blocksize);
10840 		}
10841 	}
10842 
10843 	mutex_exit(SD_MUTEX(un));
10844 	return (rval);
10845 }
10846 
10847 
10848 /*
10849  *    Function: sdmin
10850  *
10851  * Description: Routine to limit the size of a data transfer. Used in
10852  *		conjunction with physio(9F).
10853  *
10854  *   Arguments: bp - pointer to the indicated buf(9S) struct.
10855  *
10856  *     Context: Kernel thread context.
10857  */
10858 
10859 static void
10860 sdmin(struct buf *bp)
10861 {
10862 	struct sd_lun	*un;
10863 	int		instance;
10864 
10865 	instance = SDUNIT(bp->b_edev);
10866 
10867 	un = ddi_get_soft_state(sd_state, instance);
10868 	ASSERT(un != NULL);
10869 
10870 	/*
10871 	 * We depend on buf breakup to restrict
10872 	 * IO size if it is enabled.
10873 	 */
10874 	if (un->un_buf_breakup_supported) {
10875 		return;
10876 	}
10877 
10878 	if (bp->b_bcount > un->un_max_xfer_size) {
10879 		bp->b_bcount = un->un_max_xfer_size;
10880 	}
10881 }
10882 
10883 
10884 /*
10885  *    Function: sdread
10886  *
10887  * Description: Driver's read(9e) entry point function.
10888  *
10889  *   Arguments: dev   - device number
10890  *		uio   - structure pointer describing where data is to be stored
10891  *			in user's space
10892  *		cred_p  - user credential pointer
10893  *
10894  * Return Code: ENXIO
10895  *		EIO
10896  *		EINVAL
10897  *		value returned by physio
10898  *
10899  *     Context: Kernel thread context.
10900  */
10901 /* ARGSUSED */
10902 static int
10903 sdread(dev_t dev, struct uio *uio, cred_t *cred_p)
10904 {
10905 	struct sd_lun	*un = NULL;
10906 	int		secmask;
10907 	int		err = 0;
10908 	sd_ssc_t	*ssc;
10909 
10910 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
10911 		return (ENXIO);
10912 	}
10913 
10914 	ASSERT(!mutex_owned(SD_MUTEX(un)));
10915 
10916 
10917 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
10918 		mutex_enter(SD_MUTEX(un));
10919 		/*
10920 		 * Because the call to sd_ready_and_valid will issue I/O we
10921 		 * must wait here if either the device is suspended or
10922 		 * if it's power level is changing.
10923 		 */
10924 		while ((un->un_state == SD_STATE_SUSPENDED) ||
10925 		    (un->un_state == SD_STATE_PM_CHANGING)) {
10926 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
10927 		}
10928 		un->un_ncmds_in_driver++;
10929 		mutex_exit(SD_MUTEX(un));
10930 
10931 		/* Initialize sd_ssc_t for internal uscsi commands */
10932 		ssc = sd_ssc_init(un);
10933 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
10934 			err = EIO;
10935 		} else {
10936 			err = 0;
10937 		}
10938 		sd_ssc_fini(ssc);
10939 
10940 		mutex_enter(SD_MUTEX(un));
10941 		un->un_ncmds_in_driver--;
10942 		ASSERT(un->un_ncmds_in_driver >= 0);
10943 		mutex_exit(SD_MUTEX(un));
10944 		if (err != 0)
10945 			return (err);
10946 	}
10947 
10948 	/*
10949 	 * Read requests are restricted to multiples of the system block size.
10950 	 */
10951 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
10952 	    !un->un_f_enable_rmw)
10953 		secmask = un->un_tgt_blocksize - 1;
10954 	else
10955 		secmask = DEV_BSIZE - 1;
10956 
10957 	if (uio->uio_loffset & ((offset_t)(secmask))) {
10958 		SD_ERROR(SD_LOG_READ_WRITE, un,
10959 		    "sdread: file offset not modulo %d\n",
10960 		    secmask + 1);
10961 		err = EINVAL;
10962 	} else if (uio->uio_iov->iov_len & (secmask)) {
10963 		SD_ERROR(SD_LOG_READ_WRITE, un,
10964 		    "sdread: transfer length not modulo %d\n",
10965 		    secmask + 1);
10966 		err = EINVAL;
10967 	} else {
10968 		err = physio(sdstrategy, NULL, dev, B_READ, sdmin, uio);
10969 	}
10970 
10971 	return (err);
10972 }
10973 
10974 
10975 /*
10976  *    Function: sdwrite
10977  *
10978  * Description: Driver's write(9e) entry point function.
10979  *
10980  *   Arguments: dev   - device number
10981  *		uio   - structure pointer describing where data is stored in
10982  *			user's space
10983  *		cred_p  - user credential pointer
10984  *
10985  * Return Code: ENXIO
10986  *		EIO
10987  *		EINVAL
10988  *		value returned by physio
10989  *
10990  *     Context: Kernel thread context.
10991  */
10992 /* ARGSUSED */
10993 static int
10994 sdwrite(dev_t dev, struct uio *uio, cred_t *cred_p)
10995 {
10996 	struct sd_lun	*un = NULL;
10997 	int		secmask;
10998 	int		err = 0;
10999 	sd_ssc_t	*ssc;
11000 
11001 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11002 		return (ENXIO);
11003 	}
11004 
11005 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11006 
11007 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11008 		mutex_enter(SD_MUTEX(un));
11009 		/*
11010 		 * Because the call to sd_ready_and_valid will issue I/O we
11011 		 * must wait here if either the device is suspended or
11012 		 * if it's power level is changing.
11013 		 */
11014 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11015 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11016 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11017 		}
11018 		un->un_ncmds_in_driver++;
11019 		mutex_exit(SD_MUTEX(un));
11020 
11021 		/* Initialize sd_ssc_t for internal uscsi commands */
11022 		ssc = sd_ssc_init(un);
11023 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11024 			err = EIO;
11025 		} else {
11026 			err = 0;
11027 		}
11028 		sd_ssc_fini(ssc);
11029 
11030 		mutex_enter(SD_MUTEX(un));
11031 		un->un_ncmds_in_driver--;
11032 		ASSERT(un->un_ncmds_in_driver >= 0);
11033 		mutex_exit(SD_MUTEX(un));
11034 		if (err != 0)
11035 			return (err);
11036 	}
11037 
11038 	/*
11039 	 * Write requests are restricted to multiples of the system block size.
11040 	 */
11041 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11042 	    !un->un_f_enable_rmw)
11043 		secmask = un->un_tgt_blocksize - 1;
11044 	else
11045 		secmask = DEV_BSIZE - 1;
11046 
11047 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11048 		SD_ERROR(SD_LOG_READ_WRITE, un,
11049 		    "sdwrite: file offset not modulo %d\n",
11050 		    secmask + 1);
11051 		err = EINVAL;
11052 	} else if (uio->uio_iov->iov_len & (secmask)) {
11053 		SD_ERROR(SD_LOG_READ_WRITE, un,
11054 		    "sdwrite: transfer length not modulo %d\n",
11055 		    secmask + 1);
11056 		err = EINVAL;
11057 	} else {
11058 		err = physio(sdstrategy, NULL, dev, B_WRITE, sdmin, uio);
11059 	}
11060 
11061 	return (err);
11062 }
11063 
11064 
11065 /*
11066  *    Function: sdaread
11067  *
11068  * Description: Driver's aread(9e) entry point function.
11069  *
11070  *   Arguments: dev   - device number
11071  *		aio   - structure pointer describing where data is to be stored
11072  *		cred_p  - user credential pointer
11073  *
11074  * Return Code: ENXIO
11075  *		EIO
11076  *		EINVAL
11077  *		value returned by aphysio
11078  *
11079  *     Context: Kernel thread context.
11080  */
11081 /* ARGSUSED */
11082 static int
11083 sdaread(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11084 {
11085 	struct sd_lun	*un = NULL;
11086 	struct uio	*uio = aio->aio_uio;
11087 	int		secmask;
11088 	int		err = 0;
11089 	sd_ssc_t	*ssc;
11090 
11091 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11092 		return (ENXIO);
11093 	}
11094 
11095 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11096 
11097 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11098 		mutex_enter(SD_MUTEX(un));
11099 		/*
11100 		 * Because the call to sd_ready_and_valid will issue I/O we
11101 		 * must wait here if either the device is suspended or
11102 		 * if it's power level is changing.
11103 		 */
11104 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11105 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11106 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11107 		}
11108 		un->un_ncmds_in_driver++;
11109 		mutex_exit(SD_MUTEX(un));
11110 
11111 		/* Initialize sd_ssc_t for internal uscsi commands */
11112 		ssc = sd_ssc_init(un);
11113 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11114 			err = EIO;
11115 		} else {
11116 			err = 0;
11117 		}
11118 		sd_ssc_fini(ssc);
11119 
11120 		mutex_enter(SD_MUTEX(un));
11121 		un->un_ncmds_in_driver--;
11122 		ASSERT(un->un_ncmds_in_driver >= 0);
11123 		mutex_exit(SD_MUTEX(un));
11124 		if (err != 0)
11125 			return (err);
11126 	}
11127 
11128 	/*
11129 	 * Read requests are restricted to multiples of the system block size.
11130 	 */
11131 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11132 	    !un->un_f_enable_rmw)
11133 		secmask = un->un_tgt_blocksize - 1;
11134 	else
11135 		secmask = DEV_BSIZE - 1;
11136 
11137 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11138 		SD_ERROR(SD_LOG_READ_WRITE, un,
11139 		    "sdaread: file offset not modulo %d\n",
11140 		    secmask + 1);
11141 		err = EINVAL;
11142 	} else if (uio->uio_iov->iov_len & (secmask)) {
11143 		SD_ERROR(SD_LOG_READ_WRITE, un,
11144 		    "sdaread: transfer length not modulo %d\n",
11145 		    secmask + 1);
11146 		err = EINVAL;
11147 	} else {
11148 		err = aphysio(sdstrategy, anocancel, dev, B_READ, sdmin, aio);
11149 	}
11150 
11151 	return (err);
11152 }
11153 
11154 
11155 /*
11156  *    Function: sdawrite
11157  *
11158  * Description: Driver's awrite(9e) entry point function.
11159  *
11160  *   Arguments: dev   - device number
11161  *		aio   - structure pointer describing where data is stored
11162  *		cred_p  - user credential pointer
11163  *
11164  * Return Code: ENXIO
11165  *		EIO
11166  *		EINVAL
11167  *		value returned by aphysio
11168  *
11169  *     Context: Kernel thread context.
11170  */
11171 /* ARGSUSED */
11172 static int
11173 sdawrite(dev_t dev, struct aio_req *aio, cred_t *cred_p)
11174 {
11175 	struct sd_lun	*un = NULL;
11176 	struct uio	*uio = aio->aio_uio;
11177 	int		secmask;
11178 	int		err = 0;
11179 	sd_ssc_t	*ssc;
11180 
11181 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
11182 		return (ENXIO);
11183 	}
11184 
11185 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11186 
11187 	if (!SD_IS_VALID_LABEL(un) && !ISCD(un)) {
11188 		mutex_enter(SD_MUTEX(un));
11189 		/*
11190 		 * Because the call to sd_ready_and_valid will issue I/O we
11191 		 * must wait here if either the device is suspended or
11192 		 * if it's power level is changing.
11193 		 */
11194 		while ((un->un_state == SD_STATE_SUSPENDED) ||
11195 		    (un->un_state == SD_STATE_PM_CHANGING)) {
11196 			cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11197 		}
11198 		un->un_ncmds_in_driver++;
11199 		mutex_exit(SD_MUTEX(un));
11200 
11201 		/* Initialize sd_ssc_t for internal uscsi commands */
11202 		ssc = sd_ssc_init(un);
11203 		if ((sd_ready_and_valid(ssc, SDPART(dev))) != SD_READY_VALID) {
11204 			err = EIO;
11205 		} else {
11206 			err = 0;
11207 		}
11208 		sd_ssc_fini(ssc);
11209 
11210 		mutex_enter(SD_MUTEX(un));
11211 		un->un_ncmds_in_driver--;
11212 		ASSERT(un->un_ncmds_in_driver >= 0);
11213 		mutex_exit(SD_MUTEX(un));
11214 		if (err != 0)
11215 			return (err);
11216 	}
11217 
11218 	/*
11219 	 * Write requests are restricted to multiples of the system block size.
11220 	 */
11221 	if (un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR &&
11222 	    !un->un_f_enable_rmw)
11223 		secmask = un->un_tgt_blocksize - 1;
11224 	else
11225 		secmask = DEV_BSIZE - 1;
11226 
11227 	if (uio->uio_loffset & ((offset_t)(secmask))) {
11228 		SD_ERROR(SD_LOG_READ_WRITE, un,
11229 		    "sdawrite: file offset not modulo %d\n",
11230 		    secmask + 1);
11231 		err = EINVAL;
11232 	} else if (uio->uio_iov->iov_len & (secmask)) {
11233 		SD_ERROR(SD_LOG_READ_WRITE, un,
11234 		    "sdawrite: transfer length not modulo %d\n",
11235 		    secmask + 1);
11236 		err = EINVAL;
11237 	} else {
11238 		err = aphysio(sdstrategy, anocancel, dev, B_WRITE, sdmin, aio);
11239 	}
11240 
11241 	return (err);
11242 }
11243 
11244 
11245 
11246 
11247 
11248 /*
11249  * Driver IO processing follows the following sequence:
11250  *
11251  *     sdioctl(9E)     sdstrategy(9E)         biodone(9F)
11252  *         |                |                     ^
11253  *         v                v                     |
11254  * sd_send_scsi_cmd()  ddi_xbuf_qstrategy()       +-------------------+
11255  *         |                |                     |                   |
11256  *         v                |                     |                   |
11257  * sd_uscsi_strategy() sd_xbuf_strategy()   sd_buf_iodone()   sd_uscsi_iodone()
11258  *         |                |                     ^                   ^
11259  *         v                v                     |                   |
11260  * SD_BEGIN_IOSTART()  SD_BEGIN_IOSTART()         |                   |
11261  *         |                |                     |                   |
11262  *     +---+                |                     +------------+      +-------+
11263  *     |                    |                                  |              |
11264  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11265  *     |                    v                                  |              |
11266  *     |         sd_mapblockaddr_iostart()           sd_mapblockaddr_iodone() |
11267  *     |                    |                                  ^              |
11268  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11269  *     |                    v                                  |              |
11270  *     |         sd_mapblocksize_iostart()           sd_mapblocksize_iodone() |
11271  *     |                    |                                  ^              |
11272  *     |   SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()|              |
11273  *     |                    v                                  |              |
11274  *     |           sd_checksum_iostart()               sd_checksum_iodone()   |
11275  *     |                    |                                  ^              |
11276  *     +-> SD_NEXT_IOSTART()|                  SD_NEXT_IODONE()+------------->+
11277  *     |                    v                                  |              |
11278  *     |              sd_pm_iostart()                     sd_pm_iodone()      |
11279  *     |                    |                                  ^              |
11280  *     |                    |                                  |              |
11281  *     +-> SD_NEXT_IOSTART()|               SD_BEGIN_IODONE()--+--------------+
11282  *                          |                           ^
11283  *                          v                           |
11284  *                   sd_core_iostart()                  |
11285  *                          |                           |
11286  *                          |                           +------>(*destroypkt)()
11287  *                          +-> sd_start_cmds() <-+     |           |
11288  *                          |                     |     |           v
11289  *                          |                     |     |  scsi_destroy_pkt(9F)
11290  *                          |                     |     |
11291  *                          +->(*initpkt)()       +- sdintr()
11292  *                          |  |                        |  |
11293  *                          |  +-> scsi_init_pkt(9F)    |  +-> sd_handle_xxx()
11294  *                          |  +-> scsi_setup_cdb(9F)   |
11295  *                          |                           |
11296  *                          +--> scsi_transport(9F)     |
11297  *                                     |                |
11298  *                                     +----> SCSA ---->+
11299  *
11300  *
11301  * This code is based upon the following presumptions:
11302  *
11303  *   - iostart and iodone functions operate on buf(9S) structures. These
11304  *     functions perform the necessary operations on the buf(9S) and pass
11305  *     them along to the next function in the chain by using the macros
11306  *     SD_NEXT_IOSTART() (for iostart side functions) and SD_NEXT_IODONE()
11307  *     (for iodone side functions).
11308  *
11309  *   - The iostart side functions may sleep. The iodone side functions
11310  *     are called under interrupt context and may NOT sleep. Therefore
11311  *     iodone side functions also may not call iostart side functions.
11312  *     (NOTE: iostart side functions should NOT sleep for memory, as
11313  *     this could result in deadlock.)
11314  *
11315  *   - An iostart side function may call its corresponding iodone side
11316  *     function directly (if necessary).
11317  *
11318  *   - In the event of an error, an iostart side function can return a buf(9S)
11319  *     to its caller by calling SD_BEGIN_IODONE() (after setting B_ERROR and
11320  *     b_error in the usual way of course).
11321  *
11322  *   - The taskq mechanism may be used by the iodone side functions to dispatch
11323  *     requests to the iostart side functions.  The iostart side functions in
11324  *     this case would be called under the context of a taskq thread, so it's
11325  *     OK for them to block/sleep/spin in this case.
11326  *
11327  *   - iostart side functions may allocate "shadow" buf(9S) structs and
11328  *     pass them along to the next function in the chain.  The corresponding
11329  *     iodone side functions must coalesce the "shadow" bufs and return
11330  *     the "original" buf to the next higher layer.
11331  *
11332  *   - The b_private field of the buf(9S) struct holds a pointer to
11333  *     an sd_xbuf struct, which contains information needed to
11334  *     construct the scsi_pkt for the command.
11335  *
11336  *   - The SD_MUTEX(un) is NOT held across calls to the next layer. Each
11337  *     layer must acquire & release the SD_MUTEX(un) as needed.
11338  */
11339 
11340 
11341 /*
11342  * Create taskq for all targets in the system. This is created at
11343  * _init(9E) and destroyed at _fini(9E).
11344  *
11345  * Note: here we set the minalloc to a reasonably high number to ensure that
11346  * we will have an adequate supply of task entries available at interrupt time.
11347  * This is used in conjunction with the TASKQ_PREPOPULATE flag in
11348  * sd_create_taskq().  Since we do not want to sleep for allocations at
11349  * interrupt time, set maxalloc equal to minalloc. That way we will just fail
11350  * the command if we ever try to dispatch more than SD_TASKQ_MAXALLOC taskq
11351  * requests any one instant in time.
11352  */
11353 #define	SD_TASKQ_NUMTHREADS	8
11354 #define	SD_TASKQ_MINALLOC	256
11355 #define	SD_TASKQ_MAXALLOC	256
11356 
11357 static taskq_t	*sd_tq = NULL;
11358 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_tq))
11359 
11360 static int	sd_taskq_minalloc = SD_TASKQ_MINALLOC;
11361 static int	sd_taskq_maxalloc = SD_TASKQ_MAXALLOC;
11362 
11363 /*
11364  * The following task queue is being created for the write part of
11365  * read-modify-write of non-512 block size devices.
11366  * Limit the number of threads to 1 for now. This number has been chosen
11367  * considering the fact that it applies only to dvd ram drives/MO drives
11368  * currently. Performance for which is not main criteria at this stage.
11369  * Note: It needs to be explored if we can use a single taskq in future
11370  */
11371 #define	SD_WMR_TASKQ_NUMTHREADS	1
11372 static taskq_t	*sd_wmr_tq = NULL;
11373 _NOTE(SCHEME_PROTECTS_DATA("stable data", sd_wmr_tq))
11374 
11375 /*
11376  *    Function: sd_taskq_create
11377  *
11378  * Description: Create taskq thread(s) and preallocate task entries
11379  *
11380  * Return Code: Returns a pointer to the allocated taskq_t.
11381  *
11382  *     Context: Can sleep. Requires blockable context.
11383  *
11384  *       Notes: - The taskq() facility currently is NOT part of the DDI.
11385  *		  (definitely NOT recommeded for 3rd-party drivers!) :-)
11386  *		- taskq_create() will block for memory, also it will panic
11387  *		  if it cannot create the requested number of threads.
11388  *		- Currently taskq_create() creates threads that cannot be
11389  *		  swapped.
11390  *		- We use TASKQ_PREPOPULATE to ensure we have an adequate
11391  *		  supply of taskq entries at interrupt time (ie, so that we
11392  *		  do not have to sleep for memory)
11393  */
11394 
11395 static void
11396 sd_taskq_create(void)
11397 {
11398 	char	taskq_name[TASKQ_NAMELEN];
11399 
11400 	ASSERT(sd_tq == NULL);
11401 	ASSERT(sd_wmr_tq == NULL);
11402 
11403 	(void) snprintf(taskq_name, sizeof (taskq_name),
11404 	    "%s_drv_taskq", sd_label);
11405 	sd_tq = (taskq_create(taskq_name, SD_TASKQ_NUMTHREADS,
11406 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11407 	    TASKQ_PREPOPULATE));
11408 
11409 	(void) snprintf(taskq_name, sizeof (taskq_name),
11410 	    "%s_rmw_taskq", sd_label);
11411 	sd_wmr_tq = (taskq_create(taskq_name, SD_WMR_TASKQ_NUMTHREADS,
11412 	    (v.v_maxsyspri - 2), sd_taskq_minalloc, sd_taskq_maxalloc,
11413 	    TASKQ_PREPOPULATE));
11414 }
11415 
11416 
11417 /*
11418  *    Function: sd_taskq_delete
11419  *
11420  * Description: Complementary cleanup routine for sd_taskq_create().
11421  *
11422  *     Context: Kernel thread context.
11423  */
11424 
11425 static void
11426 sd_taskq_delete(void)
11427 {
11428 	ASSERT(sd_tq != NULL);
11429 	ASSERT(sd_wmr_tq != NULL);
11430 	taskq_destroy(sd_tq);
11431 	taskq_destroy(sd_wmr_tq);
11432 	sd_tq = NULL;
11433 	sd_wmr_tq = NULL;
11434 }
11435 
11436 
11437 /*
11438  *    Function: sdstrategy
11439  *
11440  * Description: Driver's strategy (9E) entry point function.
11441  *
11442  *   Arguments: bp - pointer to buf(9S)
11443  *
11444  * Return Code: Always returns zero
11445  *
11446  *     Context: Kernel thread context.
11447  */
11448 
11449 static int
11450 sdstrategy(struct buf *bp)
11451 {
11452 	struct sd_lun *un;
11453 
11454 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11455 	if (un == NULL) {
11456 		bioerror(bp, EIO);
11457 		bp->b_resid = bp->b_bcount;
11458 		biodone(bp);
11459 		return (0);
11460 	}
11461 
11462 	/* As was done in the past, fail new cmds. if state is dumping. */
11463 	if (un->un_state == SD_STATE_DUMPING) {
11464 		bioerror(bp, ENXIO);
11465 		bp->b_resid = bp->b_bcount;
11466 		biodone(bp);
11467 		return (0);
11468 	}
11469 
11470 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11471 
11472 	/*
11473 	 * Commands may sneak in while we released the mutex in
11474 	 * DDI_SUSPEND, we should block new commands. However, old
11475 	 * commands that are still in the driver at this point should
11476 	 * still be allowed to drain.
11477 	 */
11478 	mutex_enter(SD_MUTEX(un));
11479 	/*
11480 	 * Must wait here if either the device is suspended or
11481 	 * if it's power level is changing.
11482 	 */
11483 	while ((un->un_state == SD_STATE_SUSPENDED) ||
11484 	    (un->un_state == SD_STATE_PM_CHANGING)) {
11485 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
11486 	}
11487 
11488 	un->un_ncmds_in_driver++;
11489 
11490 	/*
11491 	 * atapi: Since we are running the CD for now in PIO mode we need to
11492 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11493 	 * the HBA's init_pkt routine.
11494 	 */
11495 	if (un->un_f_cfg_is_atapi == TRUE) {
11496 		mutex_exit(SD_MUTEX(un));
11497 		bp_mapin(bp);
11498 		mutex_enter(SD_MUTEX(un));
11499 	}
11500 	SD_INFO(SD_LOG_IO, un, "sdstrategy: un_ncmds_in_driver = %ld\n",
11501 	    un->un_ncmds_in_driver);
11502 
11503 	if (bp->b_flags & B_WRITE)
11504 		un->un_f_sync_cache_required = TRUE;
11505 
11506 	mutex_exit(SD_MUTEX(un));
11507 
11508 	/*
11509 	 * This will (eventually) allocate the sd_xbuf area and
11510 	 * call sd_xbuf_strategy().  We just want to return the
11511 	 * result of ddi_xbuf_qstrategy so that we have an opt-
11512 	 * imized tail call which saves us a stack frame.
11513 	 */
11514 	return (ddi_xbuf_qstrategy(bp, un->un_xbuf_attr));
11515 }
11516 
11517 
11518 /*
11519  *    Function: sd_xbuf_strategy
11520  *
11521  * Description: Function for initiating IO operations via the
11522  *		ddi_xbuf_qstrategy() mechanism.
11523  *
11524  *     Context: Kernel thread context.
11525  */
11526 
11527 static void
11528 sd_xbuf_strategy(struct buf *bp, ddi_xbuf_t xp, void *arg)
11529 {
11530 	struct sd_lun *un = arg;
11531 
11532 	ASSERT(bp != NULL);
11533 	ASSERT(xp != NULL);
11534 	ASSERT(un != NULL);
11535 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11536 
11537 	/*
11538 	 * Initialize the fields in the xbuf and save a pointer to the
11539 	 * xbuf in bp->b_private.
11540 	 */
11541 	sd_xbuf_init(un, bp, xp, SD_CHAIN_BUFIO, NULL);
11542 
11543 	/* Send the buf down the iostart chain */
11544 	SD_BEGIN_IOSTART(((struct sd_xbuf *)xp)->xb_chain_iostart, un, bp);
11545 }
11546 
11547 
11548 /*
11549  *    Function: sd_xbuf_init
11550  *
11551  * Description: Prepare the given sd_xbuf struct for use.
11552  *
11553  *   Arguments: un - ptr to softstate
11554  *		bp - ptr to associated buf(9S)
11555  *		xp - ptr to associated sd_xbuf
11556  *		chain_type - IO chain type to use:
11557  *			SD_CHAIN_NULL
11558  *			SD_CHAIN_BUFIO
11559  *			SD_CHAIN_USCSI
11560  *			SD_CHAIN_DIRECT
11561  *			SD_CHAIN_DIRECT_PRIORITY
11562  *		pktinfop - ptr to private data struct for scsi_pkt(9S)
11563  *			initialization; may be NULL if none.
11564  *
11565  *     Context: Kernel thread context
11566  */
11567 
11568 static void
11569 sd_xbuf_init(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
11570 	uchar_t chain_type, void *pktinfop)
11571 {
11572 	int index;
11573 
11574 	ASSERT(un != NULL);
11575 	ASSERT(bp != NULL);
11576 	ASSERT(xp != NULL);
11577 
11578 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: buf:0x%p chain type:0x%x\n",
11579 	    bp, chain_type);
11580 
11581 	xp->xb_un	= un;
11582 	xp->xb_pktp	= NULL;
11583 	xp->xb_pktinfo	= pktinfop;
11584 	xp->xb_private	= bp->b_private;
11585 	xp->xb_blkno	= (daddr_t)bp->b_blkno;
11586 
11587 	/*
11588 	 * Set up the iostart and iodone chain indexes in the xbuf, based
11589 	 * upon the specified chain type to use.
11590 	 */
11591 	switch (chain_type) {
11592 	case SD_CHAIN_NULL:
11593 		/*
11594 		 * Fall thru to just use the values for the buf type, even
11595 		 * tho for the NULL chain these values will never be used.
11596 		 */
11597 		/* FALLTHRU */
11598 	case SD_CHAIN_BUFIO:
11599 		index = un->un_buf_chain_type;
11600 		if ((!un->un_f_has_removable_media) &&
11601 		    (un->un_tgt_blocksize != 0) &&
11602 		    (un->un_tgt_blocksize != DEV_BSIZE ||
11603 		    un->un_f_enable_rmw)) {
11604 			int secmask = 0, blknomask = 0;
11605 			if (un->un_f_enable_rmw) {
11606 				blknomask =
11607 				    (un->un_phy_blocksize / DEV_BSIZE) - 1;
11608 				secmask = un->un_phy_blocksize - 1;
11609 			} else {
11610 				blknomask =
11611 				    (un->un_tgt_blocksize / DEV_BSIZE) - 1;
11612 				secmask = un->un_tgt_blocksize - 1;
11613 			}
11614 
11615 			if ((bp->b_lblkno & (blknomask)) ||
11616 			    (bp->b_bcount & (secmask))) {
11617 				if ((un->un_f_rmw_type !=
11618 				    SD_RMW_TYPE_RETURN_ERROR) ||
11619 				    un->un_f_enable_rmw) {
11620 					if (un->un_f_pm_is_enabled == FALSE)
11621 						index =
11622 						    SD_CHAIN_INFO_MSS_DSK_NO_PM;
11623 					else
11624 						index =
11625 						    SD_CHAIN_INFO_MSS_DISK;
11626 				}
11627 			}
11628 		}
11629 		break;
11630 	case SD_CHAIN_USCSI:
11631 		index = un->un_uscsi_chain_type;
11632 		break;
11633 	case SD_CHAIN_DIRECT:
11634 		index = un->un_direct_chain_type;
11635 		break;
11636 	case SD_CHAIN_DIRECT_PRIORITY:
11637 		index = un->un_priority_chain_type;
11638 		break;
11639 	default:
11640 		/* We're really broken if we ever get here... */
11641 		panic("sd_xbuf_init: illegal chain type!");
11642 		/*NOTREACHED*/
11643 	}
11644 
11645 	xp->xb_chain_iostart = sd_chain_index_map[index].sci_iostart_index;
11646 	xp->xb_chain_iodone = sd_chain_index_map[index].sci_iodone_index;
11647 
11648 	/*
11649 	 * It might be a bit easier to simply bzero the entire xbuf above,
11650 	 * but it turns out that since we init a fair number of members anyway,
11651 	 * we save a fair number cycles by doing explicit assignment of zero.
11652 	 */
11653 	xp->xb_pkt_flags	= 0;
11654 	xp->xb_dma_resid	= 0;
11655 	xp->xb_retry_count	= 0;
11656 	xp->xb_victim_retry_count = 0;
11657 	xp->xb_ua_retry_count	= 0;
11658 	xp->xb_nr_retry_count	= 0;
11659 	xp->xb_sense_bp		= NULL;
11660 	xp->xb_sense_status	= 0;
11661 	xp->xb_sense_state	= 0;
11662 	xp->xb_sense_resid	= 0;
11663 	xp->xb_ena		= 0;
11664 
11665 	bp->b_private	= xp;
11666 	bp->b_flags	&= ~(B_DONE | B_ERROR);
11667 	bp->b_resid	= 0;
11668 	bp->av_forw	= NULL;
11669 	bp->av_back	= NULL;
11670 	bioerror(bp, 0);
11671 
11672 	SD_INFO(SD_LOG_IO, un, "sd_xbuf_init: done.\n");
11673 }
11674 
11675 
11676 /*
11677  *    Function: sd_uscsi_strategy
11678  *
11679  * Description: Wrapper for calling into the USCSI chain via physio(9F)
11680  *
11681  *   Arguments: bp - buf struct ptr
11682  *
11683  * Return Code: Always returns 0
11684  *
11685  *     Context: Kernel thread context
11686  */
11687 
11688 static int
11689 sd_uscsi_strategy(struct buf *bp)
11690 {
11691 	struct sd_lun		*un;
11692 	struct sd_uscsi_info	*uip;
11693 	struct sd_xbuf		*xp;
11694 	uchar_t			chain_type;
11695 	uchar_t			cmd;
11696 
11697 	ASSERT(bp != NULL);
11698 
11699 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
11700 	if (un == NULL) {
11701 		bioerror(bp, EIO);
11702 		bp->b_resid = bp->b_bcount;
11703 		biodone(bp);
11704 		return (0);
11705 	}
11706 
11707 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11708 
11709 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: entry: buf:0x%p\n", bp);
11710 
11711 	/*
11712 	 * A pointer to a struct sd_uscsi_info is expected in bp->b_private
11713 	 */
11714 	ASSERT(bp->b_private != NULL);
11715 	uip = (struct sd_uscsi_info *)bp->b_private;
11716 	cmd = ((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_cdb[0];
11717 
11718 	mutex_enter(SD_MUTEX(un));
11719 	/*
11720 	 * atapi: Since we are running the CD for now in PIO mode we need to
11721 	 * call bp_mapin here to avoid bp_mapin called interrupt context under
11722 	 * the HBA's init_pkt routine.
11723 	 */
11724 	if (un->un_f_cfg_is_atapi == TRUE) {
11725 		mutex_exit(SD_MUTEX(un));
11726 		bp_mapin(bp);
11727 		mutex_enter(SD_MUTEX(un));
11728 	}
11729 	un->un_ncmds_in_driver++;
11730 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_strategy: un_ncmds_in_driver = %ld\n",
11731 	    un->un_ncmds_in_driver);
11732 
11733 	if ((bp->b_flags & B_WRITE) && (bp->b_bcount != 0) &&
11734 	    (cmd != SCMD_MODE_SELECT) && (cmd != SCMD_MODE_SELECT_G1))
11735 		un->un_f_sync_cache_required = TRUE;
11736 
11737 	mutex_exit(SD_MUTEX(un));
11738 
11739 	switch (uip->ui_flags) {
11740 	case SD_PATH_DIRECT:
11741 		chain_type = SD_CHAIN_DIRECT;
11742 		break;
11743 	case SD_PATH_DIRECT_PRIORITY:
11744 		chain_type = SD_CHAIN_DIRECT_PRIORITY;
11745 		break;
11746 	default:
11747 		chain_type = SD_CHAIN_USCSI;
11748 		break;
11749 	}
11750 
11751 	/*
11752 	 * We may allocate extra buf for external USCSI commands. If the
11753 	 * application asks for bigger than 20-byte sense data via USCSI,
11754 	 * SCSA layer will allocate 252 bytes sense buf for that command.
11755 	 */
11756 	if (((struct uscsi_cmd *)(uip->ui_cmdp))->uscsi_rqlen >
11757 	    SENSE_LENGTH) {
11758 		xp = kmem_zalloc(sizeof (struct sd_xbuf) - SENSE_LENGTH +
11759 		    MAX_SENSE_LENGTH, KM_SLEEP);
11760 	} else {
11761 		xp = kmem_zalloc(sizeof (struct sd_xbuf), KM_SLEEP);
11762 	}
11763 
11764 	sd_xbuf_init(un, bp, xp, chain_type, uip->ui_cmdp);
11765 
11766 	/* Use the index obtained within xbuf_init */
11767 	SD_BEGIN_IOSTART(xp->xb_chain_iostart, un, bp);
11768 
11769 	SD_TRACE(SD_LOG_IO, un, "sd_uscsi_strategy: exit: buf:0x%p\n", bp);
11770 
11771 	return (0);
11772 }
11773 
11774 /*
11775  *    Function: sd_send_scsi_cmd
11776  *
11777  * Description: Runs a USCSI command for user (when called thru sdioctl),
11778  *		or for the driver
11779  *
11780  *   Arguments: dev - the dev_t for the device
11781  *		incmd - ptr to a valid uscsi_cmd struct
11782  *		flag - bit flag, indicating open settings, 32/64 bit type
11783  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11784  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11785  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11786  *			to use the USCSI "direct" chain and bypass the normal
11787  *			command waitq.
11788  *
11789  * Return Code: 0 -  successful completion of the given command
11790  *		EIO - scsi_uscsi_handle_command() failed
11791  *		ENXIO  - soft state not found for specified dev
11792  *		EINVAL
11793  *		EFAULT - copyin/copyout error
11794  *		return code of scsi_uscsi_handle_command():
11795  *			EIO
11796  *			ENXIO
11797  *			EACCES
11798  *
11799  *     Context: Waits for command to complete. Can sleep.
11800  */
11801 
11802 static int
11803 sd_send_scsi_cmd(dev_t dev, struct uscsi_cmd *incmd, int flag,
11804 	enum uio_seg dataspace, int path_flag)
11805 {
11806 	struct sd_lun	*un;
11807 	sd_ssc_t	*ssc;
11808 	int		rval;
11809 
11810 	un = ddi_get_soft_state(sd_state, SDUNIT(dev));
11811 	if (un == NULL) {
11812 		return (ENXIO);
11813 	}
11814 
11815 	/*
11816 	 * Using sd_ssc_send to handle uscsi cmd
11817 	 */
11818 	ssc = sd_ssc_init(un);
11819 	rval = sd_ssc_send(ssc, incmd, flag, dataspace, path_flag);
11820 	sd_ssc_fini(ssc);
11821 
11822 	return (rval);
11823 }
11824 
11825 /*
11826  *    Function: sd_ssc_init
11827  *
11828  * Description: Uscsi end-user call this function to initialize necessary
11829  *              fields, such as uscsi_cmd and sd_uscsi_info struct.
11830  *
11831  *              The return value of sd_send_scsi_cmd will be treated as a
11832  *              fault in various conditions. Even it is not Zero, some
11833  *              callers may ignore the return value. That is to say, we can
11834  *              not make an accurate assessment in sdintr, since if a
11835  *              command is failed in sdintr it does not mean the caller of
11836  *              sd_send_scsi_cmd will treat it as a real failure.
11837  *
11838  *              To avoid printing too many error logs for a failed uscsi
11839  *              packet that the caller may not treat it as a failure, the
11840  *              sd will keep silent for handling all uscsi commands.
11841  *
11842  *              During detach->attach and attach-open, for some types of
11843  *              problems, the driver should be providing information about
11844  *              the problem encountered. Device use USCSI_SILENT, which
11845  *              suppresses all driver information. The result is that no
11846  *              information about the problem is available. Being
11847  *              completely silent during this time is inappropriate. The
11848  *              driver needs a more selective filter than USCSI_SILENT, so
11849  *              that information related to faults is provided.
11850  *
11851  *              To make the accurate accessment, the caller  of
11852  *              sd_send_scsi_USCSI_CMD should take the ownership and
11853  *              get necessary information to print error messages.
11854  *
11855  *              If we want to print necessary info of uscsi command, we need to
11856  *              keep the uscsi_cmd and sd_uscsi_info till we can make the
11857  *              assessment. We use sd_ssc_init to alloc necessary
11858  *              structs for sending an uscsi command and we are also
11859  *              responsible for free the memory by calling
11860  *              sd_ssc_fini.
11861  *
11862  *              The calling secquences will look like:
11863  *              sd_ssc_init->
11864  *
11865  *                  ...
11866  *
11867  *                  sd_send_scsi_USCSI_CMD->
11868  *                      sd_ssc_send-> - - - sdintr
11869  *                  ...
11870  *
11871  *                  if we think the return value should be treated as a
11872  *                  failure, we make the accessment here and print out
11873  *                  necessary by retrieving uscsi_cmd and sd_uscsi_info'
11874  *
11875  *                  ...
11876  *
11877  *              sd_ssc_fini
11878  *
11879  *
11880  *   Arguments: un - pointer to driver soft state (unit) structure for this
11881  *                   target.
11882  *
11883  * Return code: sd_ssc_t - pointer to allocated sd_ssc_t struct, it contains
11884  *                         uscsi_cmd and sd_uscsi_info.
11885  *                  NULL - if can not alloc memory for sd_ssc_t struct
11886  *
11887  *     Context: Kernel Thread.
11888  */
11889 static sd_ssc_t *
11890 sd_ssc_init(struct sd_lun *un)
11891 {
11892 	sd_ssc_t		*ssc;
11893 	struct uscsi_cmd	*ucmdp;
11894 	struct sd_uscsi_info	*uip;
11895 
11896 	ASSERT(un != NULL);
11897 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11898 
11899 	/*
11900 	 * Allocate sd_ssc_t structure
11901 	 */
11902 	ssc = kmem_zalloc(sizeof (sd_ssc_t), KM_SLEEP);
11903 
11904 	/*
11905 	 * Allocate uscsi_cmd by calling scsi_uscsi_alloc common routine
11906 	 */
11907 	ucmdp = scsi_uscsi_alloc();
11908 
11909 	/*
11910 	 * Allocate sd_uscsi_info structure
11911 	 */
11912 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
11913 
11914 	ssc->ssc_uscsi_cmd = ucmdp;
11915 	ssc->ssc_uscsi_info = uip;
11916 	ssc->ssc_un = un;
11917 
11918 	return (ssc);
11919 }
11920 
11921 /*
11922  * Function: sd_ssc_fini
11923  *
11924  * Description: To free sd_ssc_t and it's hanging off
11925  *
11926  * Arguments: ssc - struct pointer of sd_ssc_t.
11927  */
11928 static void
11929 sd_ssc_fini(sd_ssc_t *ssc)
11930 {
11931 	scsi_uscsi_free(ssc->ssc_uscsi_cmd);
11932 
11933 	if (ssc->ssc_uscsi_info != NULL) {
11934 		kmem_free(ssc->ssc_uscsi_info, sizeof (struct sd_uscsi_info));
11935 		ssc->ssc_uscsi_info = NULL;
11936 	}
11937 
11938 	kmem_free(ssc, sizeof (sd_ssc_t));
11939 	ssc = NULL;
11940 }
11941 
11942 /*
11943  * Function: sd_ssc_send
11944  *
11945  * Description: Runs a USCSI command for user when called through sdioctl,
11946  *              or for the driver.
11947  *
11948  *   Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
11949  *                    sd_uscsi_info in.
11950  *		incmd - ptr to a valid uscsi_cmd struct
11951  *		flag - bit flag, indicating open settings, 32/64 bit type
11952  *		dataspace - UIO_USERSPACE or UIO_SYSSPACE
11953  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
11954  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
11955  *			to use the USCSI "direct" chain and bypass the normal
11956  *			command waitq.
11957  *
11958  * Return Code: 0 -  successful completion of the given command
11959  *		EIO - scsi_uscsi_handle_command() failed
11960  *		ENXIO  - soft state not found for specified dev
11961  *		ECANCELED - command cancelled due to low power
11962  *		EINVAL
11963  *		EFAULT - copyin/copyout error
11964  *		return code of scsi_uscsi_handle_command():
11965  *			EIO
11966  *			ENXIO
11967  *			EACCES
11968  *
11969  *     Context: Kernel Thread;
11970  *              Waits for command to complete. Can sleep.
11971  */
11972 static int
11973 sd_ssc_send(sd_ssc_t *ssc, struct uscsi_cmd *incmd, int flag,
11974 	enum uio_seg dataspace, int path_flag)
11975 {
11976 	struct sd_uscsi_info	*uip;
11977 	struct uscsi_cmd	*uscmd;
11978 	struct sd_lun		*un;
11979 	dev_t			dev;
11980 
11981 	int	format = 0;
11982 	int	rval;
11983 
11984 	ASSERT(ssc != NULL);
11985 	un = ssc->ssc_un;
11986 	ASSERT(un != NULL);
11987 	uscmd = ssc->ssc_uscsi_cmd;
11988 	ASSERT(uscmd != NULL);
11989 	ASSERT(!mutex_owned(SD_MUTEX(un)));
11990 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
11991 		/*
11992 		 * If enter here, it indicates that the previous uscsi
11993 		 * command has not been processed by sd_ssc_assessment.
11994 		 * This is violating our rules of FMA telemetry processing.
11995 		 * We should print out this message and the last undisposed
11996 		 * uscsi command.
11997 		 */
11998 		if (uscmd->uscsi_cdb != NULL) {
11999 			SD_INFO(SD_LOG_SDTEST, un,
12000 			    "sd_ssc_send is missing the alternative "
12001 			    "sd_ssc_assessment when running command 0x%x.\n",
12002 			    uscmd->uscsi_cdb[0]);
12003 		}
12004 		/*
12005 		 * Set the ssc_flags to SSC_FLAGS_UNKNOWN, which should be
12006 		 * the initial status.
12007 		 */
12008 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12009 	}
12010 
12011 	/*
12012 	 * We need to make sure sd_ssc_send will have sd_ssc_assessment
12013 	 * followed to avoid missing FMA telemetries.
12014 	 */
12015 	ssc->ssc_flags |= SSC_FLAGS_NEED_ASSESSMENT;
12016 
12017 	/*
12018 	 * if USCSI_PMFAILFAST is set and un is in low power, fail the
12019 	 * command immediately.
12020 	 */
12021 	mutex_enter(SD_MUTEX(un));
12022 	mutex_enter(&un->un_pm_mutex);
12023 	if ((uscmd->uscsi_flags & USCSI_PMFAILFAST) &&
12024 	    SD_DEVICE_IS_IN_LOW_POWER(un)) {
12025 		SD_TRACE(SD_LOG_IO, un, "sd_ssc_send:"
12026 		    "un:0x%p is in low power\n", un);
12027 		mutex_exit(&un->un_pm_mutex);
12028 		mutex_exit(SD_MUTEX(un));
12029 		return (ECANCELED);
12030 	}
12031 	mutex_exit(&un->un_pm_mutex);
12032 	mutex_exit(SD_MUTEX(un));
12033 
12034 #ifdef SDDEBUG
12035 	switch (dataspace) {
12036 	case UIO_USERSPACE:
12037 		SD_TRACE(SD_LOG_IO, un,
12038 		    "sd_ssc_send: entry: un:0x%p UIO_USERSPACE\n", un);
12039 		break;
12040 	case UIO_SYSSPACE:
12041 		SD_TRACE(SD_LOG_IO, un,
12042 		    "sd_ssc_send: entry: un:0x%p UIO_SYSSPACE\n", un);
12043 		break;
12044 	default:
12045 		SD_TRACE(SD_LOG_IO, un,
12046 		    "sd_ssc_send: entry: un:0x%p UNEXPECTED SPACE\n", un);
12047 		break;
12048 	}
12049 #endif
12050 
12051 	rval = scsi_uscsi_copyin((intptr_t)incmd, flag,
12052 	    SD_ADDRESS(un), &uscmd);
12053 	if (rval != 0) {
12054 		SD_TRACE(SD_LOG_IO, un, "sd_sense_scsi_cmd: "
12055 		    "scsi_uscsi_alloc_and_copyin failed\n", un);
12056 		return (rval);
12057 	}
12058 
12059 	if ((uscmd->uscsi_cdb != NULL) &&
12060 	    (uscmd->uscsi_cdb[0] == SCMD_FORMAT)) {
12061 		mutex_enter(SD_MUTEX(un));
12062 		un->un_f_format_in_progress = TRUE;
12063 		mutex_exit(SD_MUTEX(un));
12064 		format = 1;
12065 	}
12066 
12067 	/*
12068 	 * Allocate an sd_uscsi_info struct and fill it with the info
12069 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
12070 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
12071 	 * since we allocate the buf here in this function, we do not
12072 	 * need to preserve the prior contents of b_private.
12073 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
12074 	 */
12075 	uip = ssc->ssc_uscsi_info;
12076 	uip->ui_flags = path_flag;
12077 	uip->ui_cmdp = uscmd;
12078 
12079 	/*
12080 	 * Commands sent with priority are intended for error recovery
12081 	 * situations, and do not have retries performed.
12082 	 */
12083 	if (path_flag == SD_PATH_DIRECT_PRIORITY) {
12084 		uscmd->uscsi_flags |= USCSI_DIAGNOSE;
12085 	}
12086 	uscmd->uscsi_flags &= ~USCSI_NOINTR;
12087 
12088 	dev = SD_GET_DEV(un);
12089 	rval = scsi_uscsi_handle_cmd(dev, dataspace, uscmd,
12090 	    sd_uscsi_strategy, NULL, uip);
12091 
12092 	/*
12093 	 * mark ssc_flags right after handle_cmd to make sure
12094 	 * the uscsi has been sent
12095 	 */
12096 	ssc->ssc_flags |= SSC_FLAGS_CMD_ISSUED;
12097 
12098 #ifdef SDDEBUG
12099 	SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
12100 	    "uscsi_status: 0x%02x  uscsi_resid:0x%x\n",
12101 	    uscmd->uscsi_status, uscmd->uscsi_resid);
12102 	if (uscmd->uscsi_bufaddr != NULL) {
12103 		SD_INFO(SD_LOG_IO, un, "sd_ssc_send: "
12104 		    "uscmd->uscsi_bufaddr: 0x%p  uscmd->uscsi_buflen:%d\n",
12105 		    uscmd->uscsi_bufaddr, uscmd->uscsi_buflen);
12106 		if (dataspace == UIO_SYSSPACE) {
12107 			SD_DUMP_MEMORY(un, SD_LOG_IO,
12108 			    "data", (uchar_t *)uscmd->uscsi_bufaddr,
12109 			    uscmd->uscsi_buflen, SD_LOG_HEX);
12110 		}
12111 	}
12112 #endif
12113 
12114 	if (format == 1) {
12115 		mutex_enter(SD_MUTEX(un));
12116 		un->un_f_format_in_progress = FALSE;
12117 		mutex_exit(SD_MUTEX(un));
12118 	}
12119 
12120 	(void) scsi_uscsi_copyout((intptr_t)incmd, uscmd);
12121 
12122 	return (rval);
12123 }
12124 
12125 /*
12126  *     Function: sd_ssc_print
12127  *
12128  * Description: Print information available to the console.
12129  *
12130  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12131  *                    sd_uscsi_info in.
12132  *            sd_severity - log level.
12133  *     Context: Kernel thread or interrupt context.
12134  */
12135 static void
12136 sd_ssc_print(sd_ssc_t *ssc, int sd_severity)
12137 {
12138 	struct uscsi_cmd	*ucmdp;
12139 	struct scsi_device	*devp;
12140 	dev_info_t 		*devinfo;
12141 	uchar_t			*sensep;
12142 	int			senlen;
12143 	union scsi_cdb		*cdbp;
12144 	uchar_t			com;
12145 	extern struct scsi_key_strings scsi_cmds[];
12146 
12147 	ASSERT(ssc != NULL);
12148 	ASSERT(ssc->ssc_un != NULL);
12149 
12150 	if (SD_FM_LOG(ssc->ssc_un) != SD_FM_LOG_EREPORT)
12151 		return;
12152 	ucmdp = ssc->ssc_uscsi_cmd;
12153 	devp = SD_SCSI_DEVP(ssc->ssc_un);
12154 	devinfo = SD_DEVINFO(ssc->ssc_un);
12155 	ASSERT(ucmdp != NULL);
12156 	ASSERT(devp != NULL);
12157 	ASSERT(devinfo != NULL);
12158 	sensep = (uint8_t *)ucmdp->uscsi_rqbuf;
12159 	senlen = ucmdp->uscsi_rqlen - ucmdp->uscsi_rqresid;
12160 	cdbp = (union scsi_cdb *)ucmdp->uscsi_cdb;
12161 
12162 	/* In certain case (like DOORLOCK), the cdb could be NULL. */
12163 	if (cdbp == NULL)
12164 		return;
12165 	/* We don't print log if no sense data available. */
12166 	if (senlen == 0)
12167 		sensep = NULL;
12168 	com = cdbp->scc_cmd;
12169 	scsi_generic_errmsg(devp, sd_label, sd_severity, 0, 0, com,
12170 	    scsi_cmds, sensep, ssc->ssc_un->un_additional_codes, NULL);
12171 }
12172 
12173 /*
12174  *     Function: sd_ssc_assessment
12175  *
12176  * Description: We use this function to make an assessment at the point
12177  *              where SD driver may encounter a potential error.
12178  *
12179  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12180  *                  sd_uscsi_info in.
12181  *            tp_assess - a hint of strategy for ereport posting.
12182  *            Possible values of tp_assess include:
12183  *                SD_FMT_IGNORE - we don't post any ereport because we're
12184  *                sure that it is ok to ignore the underlying problems.
12185  *                SD_FMT_IGNORE_COMPROMISE - we don't post any ereport for now
12186  *                but it might be not correct to ignore the underlying hardware
12187  *                error.
12188  *                SD_FMT_STATUS_CHECK - we will post an ereport with the
12189  *                payload driver-assessment of value "fail" or
12190  *                "fatal"(depending on what information we have here). This
12191  *                assessment value is usually set when SD driver think there
12192  *                is a potential error occurred(Typically, when return value
12193  *                of the SCSI command is EIO).
12194  *                SD_FMT_STANDARD - we will post an ereport with the payload
12195  *                driver-assessment of value "info". This assessment value is
12196  *                set when the SCSI command returned successfully and with
12197  *                sense data sent back.
12198  *
12199  *     Context: Kernel thread.
12200  */
12201 static void
12202 sd_ssc_assessment(sd_ssc_t *ssc, enum sd_type_assessment tp_assess)
12203 {
12204 	int senlen = 0;
12205 	struct uscsi_cmd *ucmdp = NULL;
12206 	struct sd_lun *un;
12207 
12208 	ASSERT(ssc != NULL);
12209 	un = ssc->ssc_un;
12210 	ASSERT(un != NULL);
12211 	ucmdp = ssc->ssc_uscsi_cmd;
12212 	ASSERT(ucmdp != NULL);
12213 
12214 	if (ssc->ssc_flags & SSC_FLAGS_NEED_ASSESSMENT) {
12215 		ssc->ssc_flags &= ~SSC_FLAGS_NEED_ASSESSMENT;
12216 	} else {
12217 		/*
12218 		 * If enter here, it indicates that we have a wrong
12219 		 * calling sequence of sd_ssc_send and sd_ssc_assessment,
12220 		 * both of which should be called in a pair in case of
12221 		 * loss of FMA telemetries.
12222 		 */
12223 		if (ucmdp->uscsi_cdb != NULL) {
12224 			SD_INFO(SD_LOG_SDTEST, un,
12225 			    "sd_ssc_assessment is missing the "
12226 			    "alternative sd_ssc_send when running 0x%x, "
12227 			    "or there are superfluous sd_ssc_assessment for "
12228 			    "the same sd_ssc_send.\n",
12229 			    ucmdp->uscsi_cdb[0]);
12230 		}
12231 		/*
12232 		 * Set the ssc_flags to the initial value to avoid passing
12233 		 * down dirty flags to the following sd_ssc_send function.
12234 		 */
12235 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12236 		return;
12237 	}
12238 
12239 	/*
12240 	 * Only handle an issued command which is waiting for assessment.
12241 	 * A command which is not issued will not have
12242 	 * SSC_FLAGS_INVALID_DATA set, so it'ok we just return here.
12243 	 */
12244 	if (!(ssc->ssc_flags & SSC_FLAGS_CMD_ISSUED)) {
12245 		sd_ssc_print(ssc, SCSI_ERR_INFO);
12246 		return;
12247 	} else {
12248 		/*
12249 		 * For an issued command, we should clear this flag in
12250 		 * order to make the sd_ssc_t structure be used off
12251 		 * multiple uscsi commands.
12252 		 */
12253 		ssc->ssc_flags &= ~SSC_FLAGS_CMD_ISSUED;
12254 	}
12255 
12256 	/*
12257 	 * We will not deal with non-retryable(flag USCSI_DIAGNOSE set)
12258 	 * commands here. And we should clear the ssc_flags before return.
12259 	 */
12260 	if (ucmdp->uscsi_flags & USCSI_DIAGNOSE) {
12261 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12262 		return;
12263 	}
12264 
12265 	switch (tp_assess) {
12266 	case SD_FMT_IGNORE:
12267 	case SD_FMT_IGNORE_COMPROMISE:
12268 		break;
12269 	case SD_FMT_STATUS_CHECK:
12270 		/*
12271 		 * For a failed command(including the succeeded command
12272 		 * with invalid data sent back).
12273 		 */
12274 		sd_ssc_post(ssc, SD_FM_DRV_FATAL);
12275 		break;
12276 	case SD_FMT_STANDARD:
12277 		/*
12278 		 * Always for the succeeded commands probably with sense
12279 		 * data sent back.
12280 		 * Limitation:
12281 		 *	We can only handle a succeeded command with sense
12282 		 *	data sent back when auto-request-sense is enabled.
12283 		 */
12284 		senlen = ssc->ssc_uscsi_cmd->uscsi_rqlen -
12285 		    ssc->ssc_uscsi_cmd->uscsi_rqresid;
12286 		if ((ssc->ssc_uscsi_info->ui_pkt_state & STATE_ARQ_DONE) &&
12287 		    (un->un_f_arq_enabled == TRUE) &&
12288 		    senlen > 0 &&
12289 		    ssc->ssc_uscsi_cmd->uscsi_rqbuf != NULL) {
12290 			sd_ssc_post(ssc, SD_FM_DRV_NOTICE);
12291 		}
12292 		break;
12293 	default:
12294 		/*
12295 		 * Should not have other type of assessment.
12296 		 */
12297 		scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
12298 		    "sd_ssc_assessment got wrong "
12299 		    "sd_type_assessment %d.\n", tp_assess);
12300 		break;
12301 	}
12302 	/*
12303 	 * Clear up the ssc_flags before return.
12304 	 */
12305 	ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12306 }
12307 
12308 /*
12309  *    Function: sd_ssc_post
12310  *
12311  * Description: 1. read the driver property to get fm-scsi-log flag.
12312  *              2. print log if fm_log_capable is non-zero.
12313  *              3. call sd_ssc_ereport_post to post ereport if possible.
12314  *
12315  *    Context: May be called from kernel thread or interrupt context.
12316  */
12317 static void
12318 sd_ssc_post(sd_ssc_t *ssc, enum sd_driver_assessment sd_assess)
12319 {
12320 	struct sd_lun	*un;
12321 	int		sd_severity;
12322 
12323 	ASSERT(ssc != NULL);
12324 	un = ssc->ssc_un;
12325 	ASSERT(un != NULL);
12326 
12327 	/*
12328 	 * We may enter here from sd_ssc_assessment(for USCSI command) or
12329 	 * by directly called from sdintr context.
12330 	 * We don't handle a non-disk drive(CD-ROM, removable media).
12331 	 * Clear the ssc_flags before return in case we've set
12332 	 * SSC_FLAGS_INVALID_XXX which should be skipped for a non-disk
12333 	 * driver.
12334 	 */
12335 	if (ISCD(un) || un->un_f_has_removable_media) {
12336 		ssc->ssc_flags = SSC_FLAGS_UNKNOWN;
12337 		return;
12338 	}
12339 
12340 	switch (sd_assess) {
12341 		case SD_FM_DRV_FATAL:
12342 			sd_severity = SCSI_ERR_FATAL;
12343 			break;
12344 		case SD_FM_DRV_RECOVERY:
12345 			sd_severity = SCSI_ERR_RECOVERED;
12346 			break;
12347 		case SD_FM_DRV_RETRY:
12348 			sd_severity = SCSI_ERR_RETRYABLE;
12349 			break;
12350 		case SD_FM_DRV_NOTICE:
12351 			sd_severity = SCSI_ERR_INFO;
12352 			break;
12353 		default:
12354 			sd_severity = SCSI_ERR_UNKNOWN;
12355 	}
12356 	/* print log */
12357 	sd_ssc_print(ssc, sd_severity);
12358 
12359 	/* always post ereport */
12360 	sd_ssc_ereport_post(ssc, sd_assess);
12361 }
12362 
12363 /*
12364  *    Function: sd_ssc_set_info
12365  *
12366  * Description: Mark ssc_flags and set ssc_info which would be the
12367  *              payload of uderr ereport. This function will cause
12368  *              sd_ssc_ereport_post to post uderr ereport only.
12369  *              Besides, when ssc_flags == SSC_FLAGS_INVALID_DATA(USCSI),
12370  *              the function will also call SD_ERROR or scsi_log for a
12371  *              CDROM/removable-media/DDI_FM_NOT_CAPABLE device.
12372  *
12373  * Arguments: ssc - the struct of sd_ssc_t will bring uscsi_cmd and
12374  *                  sd_uscsi_info in.
12375  *            ssc_flags - indicate the sub-category of a uderr.
12376  *            comp - this argument is meaningful only when
12377  *                   ssc_flags == SSC_FLAGS_INVALID_DATA, and its possible
12378  *                   values include:
12379  *                   > 0, SD_ERROR is used with comp as the driver logging
12380  *                   component;
12381  *                   = 0, scsi-log is used to log error telemetries;
12382  *                   < 0, no log available for this telemetry.
12383  *
12384  *    Context: Kernel thread or interrupt context
12385  */
12386 static void
12387 sd_ssc_set_info(sd_ssc_t *ssc, int ssc_flags, uint_t comp, const char *fmt, ...)
12388 {
12389 	va_list	ap;
12390 
12391 	ASSERT(ssc != NULL);
12392 	ASSERT(ssc->ssc_un != NULL);
12393 
12394 	ssc->ssc_flags |= ssc_flags;
12395 	va_start(ap, fmt);
12396 	(void) vsnprintf(ssc->ssc_info, sizeof (ssc->ssc_info), fmt, ap);
12397 	va_end(ap);
12398 
12399 	/*
12400 	 * If SSC_FLAGS_INVALID_DATA is set, it should be a uscsi command
12401 	 * with invalid data sent back. For non-uscsi command, the
12402 	 * following code will be bypassed.
12403 	 */
12404 	if (ssc_flags & SSC_FLAGS_INVALID_DATA) {
12405 		if (SD_FM_LOG(ssc->ssc_un) == SD_FM_LOG_NSUP) {
12406 			/*
12407 			 * If the error belong to certain component and we
12408 			 * do not want it to show up on the console, we
12409 			 * will use SD_ERROR, otherwise scsi_log is
12410 			 * preferred.
12411 			 */
12412 			if (comp > 0) {
12413 				SD_ERROR(comp, ssc->ssc_un, ssc->ssc_info);
12414 			} else if (comp == 0) {
12415 				scsi_log(SD_DEVINFO(ssc->ssc_un), sd_label,
12416 				    CE_WARN, ssc->ssc_info);
12417 			}
12418 		}
12419 	}
12420 }
12421 
12422 /*
12423  *    Function: sd_buf_iodone
12424  *
12425  * Description: Frees the sd_xbuf & returns the buf to its originator.
12426  *
12427  *     Context: May be called from interrupt context.
12428  */
12429 /* ARGSUSED */
12430 static void
12431 sd_buf_iodone(int index, struct sd_lun *un, struct buf *bp)
12432 {
12433 	struct sd_xbuf *xp;
12434 
12435 	ASSERT(un != NULL);
12436 	ASSERT(bp != NULL);
12437 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12438 
12439 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: entry.\n");
12440 
12441 	xp = SD_GET_XBUF(bp);
12442 	ASSERT(xp != NULL);
12443 
12444 	/* xbuf is gone after this */
12445 	if (ddi_xbuf_done(bp, un->un_xbuf_attr)) {
12446 		mutex_enter(SD_MUTEX(un));
12447 
12448 		/*
12449 		 * Grab time when the cmd completed.
12450 		 * This is used for determining if the system has been
12451 		 * idle long enough to make it idle to the PM framework.
12452 		 * This is for lowering the overhead, and therefore improving
12453 		 * performance per I/O operation.
12454 		 */
12455 		un->un_pm_idle_time = ddi_get_time();
12456 
12457 		un->un_ncmds_in_driver--;
12458 		ASSERT(un->un_ncmds_in_driver >= 0);
12459 		SD_INFO(SD_LOG_IO, un,
12460 		    "sd_buf_iodone: un_ncmds_in_driver = %ld\n",
12461 		    un->un_ncmds_in_driver);
12462 
12463 		mutex_exit(SD_MUTEX(un));
12464 	}
12465 
12466 	biodone(bp);				/* bp is gone after this */
12467 
12468 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_buf_iodone: exit.\n");
12469 }
12470 
12471 
12472 /*
12473  *    Function: sd_uscsi_iodone
12474  *
12475  * Description: Frees the sd_xbuf & returns the buf to its originator.
12476  *
12477  *     Context: May be called from interrupt context.
12478  */
12479 /* ARGSUSED */
12480 static void
12481 sd_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
12482 {
12483 	struct sd_xbuf *xp;
12484 
12485 	ASSERT(un != NULL);
12486 	ASSERT(bp != NULL);
12487 
12488 	xp = SD_GET_XBUF(bp);
12489 	ASSERT(xp != NULL);
12490 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12491 
12492 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: entry.\n");
12493 
12494 	bp->b_private = xp->xb_private;
12495 
12496 	mutex_enter(SD_MUTEX(un));
12497 
12498 	/*
12499 	 * Grab time when the cmd completed.
12500 	 * This is used for determining if the system has been
12501 	 * idle long enough to make it idle to the PM framework.
12502 	 * This is for lowering the overhead, and therefore improving
12503 	 * performance per I/O operation.
12504 	 */
12505 	un->un_pm_idle_time = ddi_get_time();
12506 
12507 	un->un_ncmds_in_driver--;
12508 	ASSERT(un->un_ncmds_in_driver >= 0);
12509 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: un_ncmds_in_driver = %ld\n",
12510 	    un->un_ncmds_in_driver);
12511 
12512 	mutex_exit(SD_MUTEX(un));
12513 
12514 	if (((struct uscsi_cmd *)(xp->xb_pktinfo))->uscsi_rqlen >
12515 	    SENSE_LENGTH) {
12516 		kmem_free(xp, sizeof (struct sd_xbuf) - SENSE_LENGTH +
12517 		    MAX_SENSE_LENGTH);
12518 	} else {
12519 		kmem_free(xp, sizeof (struct sd_xbuf));
12520 	}
12521 
12522 	biodone(bp);
12523 
12524 	SD_INFO(SD_LOG_IO, un, "sd_uscsi_iodone: exit.\n");
12525 }
12526 
12527 
12528 /*
12529  *    Function: sd_mapblockaddr_iostart
12530  *
12531  * Description: Verify request lies within the partition limits for
12532  *		the indicated minor device.  Issue "overrun" buf if
12533  *		request would exceed partition range.  Converts
12534  *		partition-relative block address to absolute.
12535  *
12536  *              Upon exit of this function:
12537  *              1.I/O is aligned
12538  *                 xp->xb_blkno represents the absolute sector address
12539  *              2.I/O is misaligned
12540  *                 xp->xb_blkno represents the absolute logical block address
12541  *                 based on DEV_BSIZE. The logical block address will be
12542  *                 converted to physical sector address in sd_mapblocksize_\
12543  *                 iostart.
12544  *              3.I/O is misaligned but is aligned in "overrun" buf
12545  *                 xp->xb_blkno represents the absolute logical block address
12546  *                 based on DEV_BSIZE. The logical block address will be
12547  *                 converted to physical sector address in sd_mapblocksize_\
12548  *                 iostart. But no RMW will be issued in this case.
12549  *
12550  *     Context: Can sleep
12551  *
12552  *      Issues: This follows what the old code did, in terms of accessing
12553  *		some of the partition info in the unit struct without holding
12554  *		the mutext.  This is a general issue, if the partition info
12555  *		can be altered while IO is in progress... as soon as we send
12556  *		a buf, its partitioning can be invalid before it gets to the
12557  *		device.  Probably the right fix is to move partitioning out
12558  *		of the driver entirely.
12559  */
12560 
12561 static void
12562 sd_mapblockaddr_iostart(int index, struct sd_lun *un, struct buf *bp)
12563 {
12564 	diskaddr_t	nblocks;	/* #blocks in the given partition */
12565 	daddr_t	blocknum;	/* Block number specified by the buf */
12566 	size_t	requested_nblocks;
12567 	size_t	available_nblocks;
12568 	int	partition;
12569 	diskaddr_t	partition_offset;
12570 	struct sd_xbuf *xp;
12571 	int secmask = 0, blknomask = 0;
12572 	ushort_t is_aligned = TRUE;
12573 
12574 	ASSERT(un != NULL);
12575 	ASSERT(bp != NULL);
12576 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12577 
12578 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12579 	    "sd_mapblockaddr_iostart: entry: buf:0x%p\n", bp);
12580 
12581 	xp = SD_GET_XBUF(bp);
12582 	ASSERT(xp != NULL);
12583 
12584 	/*
12585 	 * If the geometry is not indicated as valid, attempt to access
12586 	 * the unit & verify the geometry/label. This can be the case for
12587 	 * removable-media devices, of if the device was opened in
12588 	 * NDELAY/NONBLOCK mode.
12589 	 */
12590 	partition = SDPART(bp->b_edev);
12591 
12592 	if (!SD_IS_VALID_LABEL(un)) {
12593 		sd_ssc_t *ssc;
12594 		/*
12595 		 * Initialize sd_ssc_t for internal uscsi commands
12596 		 * In case of potential porformance issue, we need
12597 		 * to alloc memory only if there is invalid label
12598 		 */
12599 		ssc = sd_ssc_init(un);
12600 
12601 		if (sd_ready_and_valid(ssc, partition) != SD_READY_VALID) {
12602 			/*
12603 			 * For removable devices it is possible to start an
12604 			 * I/O without a media by opening the device in nodelay
12605 			 * mode. Also for writable CDs there can be many
12606 			 * scenarios where there is no geometry yet but volume
12607 			 * manager is trying to issue a read() just because
12608 			 * it can see TOC on the CD. So do not print a message
12609 			 * for removables.
12610 			 */
12611 			if (!un->un_f_has_removable_media) {
12612 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
12613 				    "i/o to invalid geometry\n");
12614 			}
12615 			bioerror(bp, EIO);
12616 			bp->b_resid = bp->b_bcount;
12617 			SD_BEGIN_IODONE(index, un, bp);
12618 
12619 			sd_ssc_fini(ssc);
12620 			return;
12621 		}
12622 		sd_ssc_fini(ssc);
12623 	}
12624 
12625 	nblocks = 0;
12626 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
12627 	    &nblocks, &partition_offset, NULL, NULL, (void *)SD_PATH_DIRECT);
12628 
12629 	if (un->un_f_enable_rmw) {
12630 		blknomask = (un->un_phy_blocksize / DEV_BSIZE) - 1;
12631 		secmask = un->un_phy_blocksize - 1;
12632 	} else {
12633 		blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1;
12634 		secmask = un->un_tgt_blocksize - 1;
12635 	}
12636 
12637 	if ((bp->b_lblkno & (blknomask)) || (bp->b_bcount & (secmask))) {
12638 		is_aligned = FALSE;
12639 	}
12640 
12641 	if (!(NOT_DEVBSIZE(un)) || un->un_f_enable_rmw) {
12642 		/*
12643 		 * If I/O is aligned, no need to involve RMW(Read Modify Write)
12644 		 * Convert the logical block number to target's physical sector
12645 		 * number.
12646 		 */
12647 		if (is_aligned) {
12648 			xp->xb_blkno = SD_SYS2TGTBLOCK(un, xp->xb_blkno);
12649 		} else {
12650 			/*
12651 			 * There is no RMW if we're just reading, so don't
12652 			 * warn or error out because of it.
12653 			 */
12654 			if (bp->b_flags & B_READ) {
12655 				/*EMPTY*/
12656 			} else if (!un->un_f_enable_rmw &&
12657 			    un->un_f_rmw_type == SD_RMW_TYPE_RETURN_ERROR) {
12658 				bp->b_flags |= B_ERROR;
12659 				goto error_exit;
12660 			} else if (un->un_f_rmw_type == SD_RMW_TYPE_DEFAULT) {
12661 				mutex_enter(SD_MUTEX(un));
12662 				if (!un->un_f_enable_rmw &&
12663 				    un->un_rmw_msg_timeid == NULL) {
12664 					scsi_log(SD_DEVINFO(un), sd_label,
12665 					    CE_WARN, "I/O request is not "
12666 					    "aligned with %d disk sector size. "
12667 					    "It is handled through Read Modify "
12668 					    "Write but the performance is "
12669 					    "very low.\n",
12670 					    un->un_tgt_blocksize);
12671 					un->un_rmw_msg_timeid =
12672 					    timeout(sd_rmw_msg_print_handler,
12673 					    un, SD_RMW_MSG_PRINT_TIMEOUT);
12674 				} else {
12675 					un->un_rmw_incre_count ++;
12676 				}
12677 				mutex_exit(SD_MUTEX(un));
12678 			}
12679 
12680 			nblocks = SD_TGT2SYSBLOCK(un, nblocks);
12681 			partition_offset = SD_TGT2SYSBLOCK(un,
12682 			    partition_offset);
12683 		}
12684 	}
12685 
12686 	/*
12687 	 * blocknum is the starting block number of the request. At this
12688 	 * point it is still relative to the start of the minor device.
12689 	 */
12690 	blocknum = xp->xb_blkno;
12691 
12692 	/*
12693 	 * Legacy: If the starting block number is one past the last block
12694 	 * in the partition, do not set B_ERROR in the buf.
12695 	 */
12696 	if (blocknum == nblocks)  {
12697 		goto error_exit;
12698 	}
12699 
12700 	/*
12701 	 * Confirm that the first block of the request lies within the
12702 	 * partition limits. Also the requested number of bytes must be
12703 	 * a multiple of the system block size.
12704 	 */
12705 	if ((blocknum < 0) || (blocknum >= nblocks) ||
12706 	    ((bp->b_bcount & (DEV_BSIZE - 1)) != 0)) {
12707 		bp->b_flags |= B_ERROR;
12708 		goto error_exit;
12709 	}
12710 
12711 	/*
12712 	 * If the requsted # blocks exceeds the available # blocks, that
12713 	 * is an overrun of the partition.
12714 	 */
12715 	if ((!NOT_DEVBSIZE(un)) && is_aligned) {
12716 		requested_nblocks = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
12717 	} else {
12718 		requested_nblocks = SD_BYTES2SYSBLOCKS(bp->b_bcount);
12719 	}
12720 
12721 	available_nblocks = (size_t)(nblocks - blocknum);
12722 	ASSERT(nblocks >= blocknum);
12723 
12724 	if (requested_nblocks > available_nblocks) {
12725 		size_t resid;
12726 
12727 		/*
12728 		 * Allocate an "overrun" buf to allow the request to proceed
12729 		 * for the amount of space available in the partition. The
12730 		 * amount not transferred will be added into the b_resid
12731 		 * when the operation is complete. The overrun buf
12732 		 * replaces the original buf here, and the original buf
12733 		 * is saved inside the overrun buf, for later use.
12734 		 */
12735 		if ((!NOT_DEVBSIZE(un)) && is_aligned) {
12736 			resid = SD_TGTBLOCKS2BYTES(un,
12737 			    (offset_t)(requested_nblocks - available_nblocks));
12738 		} else {
12739 			resid = SD_SYSBLOCKS2BYTES(
12740 			    (offset_t)(requested_nblocks - available_nblocks));
12741 		}
12742 
12743 		size_t count = bp->b_bcount - resid;
12744 		/*
12745 		 * Note: count is an unsigned entity thus it'll NEVER
12746 		 * be less than 0 so ASSERT the original values are
12747 		 * correct.
12748 		 */
12749 		ASSERT(bp->b_bcount >= resid);
12750 
12751 		bp = sd_bioclone_alloc(bp, count, blocknum,
12752 		    (int (*)(struct buf *)) sd_mapblockaddr_iodone);
12753 		xp = SD_GET_XBUF(bp); /* Update for 'new' bp! */
12754 		ASSERT(xp != NULL);
12755 	}
12756 
12757 	/* At this point there should be no residual for this buf. */
12758 	ASSERT(bp->b_resid == 0);
12759 
12760 	/* Convert the block number to an absolute address. */
12761 	xp->xb_blkno += partition_offset;
12762 
12763 	SD_NEXT_IOSTART(index, un, bp);
12764 
12765 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12766 	    "sd_mapblockaddr_iostart: exit 0: buf:0x%p\n", bp);
12767 
12768 	return;
12769 
12770 error_exit:
12771 	bp->b_resid = bp->b_bcount;
12772 	SD_BEGIN_IODONE(index, un, bp);
12773 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12774 	    "sd_mapblockaddr_iostart: exit 1: buf:0x%p\n", bp);
12775 }
12776 
12777 
12778 /*
12779  *    Function: sd_mapblockaddr_iodone
12780  *
12781  * Description: Completion-side processing for partition management.
12782  *
12783  *     Context: May be called under interrupt context
12784  */
12785 
12786 static void
12787 sd_mapblockaddr_iodone(int index, struct sd_lun *un, struct buf *bp)
12788 {
12789 	/* int	partition; */	/* Not used, see below. */
12790 	ASSERT(un != NULL);
12791 	ASSERT(bp != NULL);
12792 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12793 
12794 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12795 	    "sd_mapblockaddr_iodone: entry: buf:0x%p\n", bp);
12796 
12797 	if (bp->b_iodone == (int (*)(struct buf *)) sd_mapblockaddr_iodone) {
12798 		/*
12799 		 * We have an "overrun" buf to deal with...
12800 		 */
12801 		struct sd_xbuf	*xp;
12802 		struct buf	*obp;	/* ptr to the original buf */
12803 
12804 		xp = SD_GET_XBUF(bp);
12805 		ASSERT(xp != NULL);
12806 
12807 		/* Retrieve the pointer to the original buf */
12808 		obp = (struct buf *)xp->xb_private;
12809 		ASSERT(obp != NULL);
12810 
12811 		obp->b_resid = obp->b_bcount - (bp->b_bcount - bp->b_resid);
12812 		bioerror(obp, bp->b_error);
12813 
12814 		sd_bioclone_free(bp);
12815 
12816 		/*
12817 		 * Get back the original buf.
12818 		 * Note that since the restoration of xb_blkno below
12819 		 * was removed, the sd_xbuf is not needed.
12820 		 */
12821 		bp = obp;
12822 		/*
12823 		 * xp = SD_GET_XBUF(bp);
12824 		 * ASSERT(xp != NULL);
12825 		 */
12826 	}
12827 
12828 	/*
12829 	 * Convert sd->xb_blkno back to a minor-device relative value.
12830 	 * Note: this has been commented out, as it is not needed in the
12831 	 * current implementation of the driver (ie, since this function
12832 	 * is at the top of the layering chains, so the info will be
12833 	 * discarded) and it is in the "hot" IO path.
12834 	 *
12835 	 * partition = getminor(bp->b_edev) & SDPART_MASK;
12836 	 * xp->xb_blkno -= un->un_offset[partition];
12837 	 */
12838 
12839 	SD_NEXT_IODONE(index, un, bp);
12840 
12841 	SD_TRACE(SD_LOG_IO_PARTITION, un,
12842 	    "sd_mapblockaddr_iodone: exit: buf:0x%p\n", bp);
12843 }
12844 
12845 
12846 /*
12847  *    Function: sd_mapblocksize_iostart
12848  *
12849  * Description: Convert between system block size (un->un_sys_blocksize)
12850  *		and target block size (un->un_tgt_blocksize).
12851  *
12852  *     Context: Can sleep to allocate resources.
12853  *
12854  * Assumptions: A higher layer has already performed any partition validation,
12855  *		and converted the xp->xb_blkno to an absolute value relative
12856  *		to the start of the device.
12857  *
12858  *		It is also assumed that the higher layer has implemented
12859  *		an "overrun" mechanism for the case where the request would
12860  *		read/write beyond the end of a partition.  In this case we
12861  *		assume (and ASSERT) that bp->b_resid == 0.
12862  *
12863  *		Note: The implementation for this routine assumes the target
12864  *		block size remains constant between allocation and transport.
12865  */
12866 
12867 static void
12868 sd_mapblocksize_iostart(int index, struct sd_lun *un, struct buf *bp)
12869 {
12870 	struct sd_mapblocksize_info	*bsp;
12871 	struct sd_xbuf			*xp;
12872 	offset_t first_byte;
12873 	daddr_t	start_block, end_block;
12874 	daddr_t	request_bytes;
12875 	ushort_t is_aligned = FALSE;
12876 
12877 	ASSERT(un != NULL);
12878 	ASSERT(bp != NULL);
12879 	ASSERT(!mutex_owned(SD_MUTEX(un)));
12880 	ASSERT(bp->b_resid == 0);
12881 
12882 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
12883 	    "sd_mapblocksize_iostart: entry: buf:0x%p\n", bp);
12884 
12885 	/*
12886 	 * For a non-writable CD, a write request is an error
12887 	 */
12888 	if (ISCD(un) && ((bp->b_flags & B_READ) == 0) &&
12889 	    (un->un_f_mmc_writable_media == FALSE)) {
12890 		bioerror(bp, EIO);
12891 		bp->b_resid = bp->b_bcount;
12892 		SD_BEGIN_IODONE(index, un, bp);
12893 		return;
12894 	}
12895 
12896 	/*
12897 	 * We do not need a shadow buf if the device is using
12898 	 * un->un_sys_blocksize as its block size or if bcount == 0.
12899 	 * In this case there is no layer-private data block allocated.
12900 	 */
12901 	if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) ||
12902 	    (bp->b_bcount == 0)) {
12903 		goto done;
12904 	}
12905 
12906 #if defined(__i386) || defined(__amd64)
12907 	/* We do not support non-block-aligned transfers for ROD devices */
12908 	ASSERT(!ISROD(un));
12909 #endif
12910 
12911 	xp = SD_GET_XBUF(bp);
12912 	ASSERT(xp != NULL);
12913 
12914 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12915 	    "tgt_blocksize:0x%x sys_blocksize: 0x%x\n",
12916 	    un->un_tgt_blocksize, DEV_BSIZE);
12917 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12918 	    "request start block:0x%x\n", xp->xb_blkno);
12919 	SD_INFO(SD_LOG_IO_RMMEDIA, un, "sd_mapblocksize_iostart: "
12920 	    "request len:0x%x\n", bp->b_bcount);
12921 
12922 	/*
12923 	 * Allocate the layer-private data area for the mapblocksize layer.
12924 	 * Layers are allowed to use the xp_private member of the sd_xbuf
12925 	 * struct to store the pointer to their layer-private data block, but
12926 	 * each layer also has the responsibility of restoring the prior
12927 	 * contents of xb_private before returning the buf/xbuf to the
12928 	 * higher layer that sent it.
12929 	 *
12930 	 * Here we save the prior contents of xp->xb_private into the
12931 	 * bsp->mbs_oprivate field of our layer-private data area. This value
12932 	 * is restored by sd_mapblocksize_iodone() just prior to freeing up
12933 	 * the layer-private area and returning the buf/xbuf to the layer
12934 	 * that sent it.
12935 	 *
12936 	 * Note that here we use kmem_zalloc for the allocation as there are
12937 	 * parts of the mapblocksize code that expect certain fields to be
12938 	 * zero unless explicitly set to a required value.
12939 	 */
12940 	bsp = kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
12941 	bsp->mbs_oprivate = xp->xb_private;
12942 	xp->xb_private = bsp;
12943 
12944 	/*
12945 	 * This treats the data on the disk (target) as an array of bytes.
12946 	 * first_byte is the byte offset, from the beginning of the device,
12947 	 * to the location of the request. This is converted from a
12948 	 * un->un_sys_blocksize block address to a byte offset, and then back
12949 	 * to a block address based upon a un->un_tgt_blocksize block size.
12950 	 *
12951 	 * xp->xb_blkno should be absolute upon entry into this function,
12952 	 * but, but it is based upon partitions that use the "system"
12953 	 * block size. It must be adjusted to reflect the block size of
12954 	 * the target.
12955 	 *
12956 	 * Note that end_block is actually the block that follows the last
12957 	 * block of the request, but that's what is needed for the computation.
12958 	 */
12959 	first_byte  = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno);
12960 	if (un->un_f_enable_rmw) {
12961 		start_block = xp->xb_blkno =
12962 		    (first_byte / un->un_phy_blocksize) *
12963 		    (un->un_phy_blocksize / DEV_BSIZE);
12964 		end_block   = ((first_byte + bp->b_bcount +
12965 		    un->un_phy_blocksize - 1) / un->un_phy_blocksize) *
12966 		    (un->un_phy_blocksize / DEV_BSIZE);
12967 	} else {
12968 		start_block = xp->xb_blkno = first_byte / un->un_tgt_blocksize;
12969 		end_block   = (first_byte + bp->b_bcount +
12970 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
12971 	}
12972 
12973 	/* request_bytes is rounded up to a multiple of the target block size */
12974 	request_bytes = (end_block - start_block) * un->un_tgt_blocksize;
12975 
12976 	/*
12977 	 * See if the starting address of the request and the request
12978 	 * length are aligned on a un->un_tgt_blocksize boundary. If aligned
12979 	 * then we do not need to allocate a shadow buf to handle the request.
12980 	 */
12981 	if (un->un_f_enable_rmw) {
12982 		if (((first_byte % un->un_phy_blocksize) == 0) &&
12983 		    ((bp->b_bcount % un->un_phy_blocksize) == 0)) {
12984 			is_aligned = TRUE;
12985 		}
12986 	} else {
12987 		if (((first_byte % un->un_tgt_blocksize) == 0) &&
12988 		    ((bp->b_bcount % un->un_tgt_blocksize) == 0)) {
12989 			is_aligned = TRUE;
12990 		}
12991 	}
12992 
12993 	if ((bp->b_flags & B_READ) == 0) {
12994 		/*
12995 		 * Lock the range for a write operation. An aligned request is
12996 		 * considered a simple write; otherwise the request must be a
12997 		 * read-modify-write.
12998 		 */
12999 		bsp->mbs_wmp = sd_range_lock(un, start_block, end_block - 1,
13000 		    (is_aligned == TRUE) ? SD_WTYPE_SIMPLE : SD_WTYPE_RMW);
13001 	}
13002 
13003 	/*
13004 	 * Alloc a shadow buf if the request is not aligned. Also, this is
13005 	 * where the READ command is generated for a read-modify-write. (The
13006 	 * write phase is deferred until after the read completes.)
13007 	 */
13008 	if (is_aligned == FALSE) {
13009 
13010 		struct sd_mapblocksize_info	*shadow_bsp;
13011 		struct sd_xbuf	*shadow_xp;
13012 		struct buf	*shadow_bp;
13013 
13014 		/*
13015 		 * Allocate the shadow buf and it associated xbuf. Note that
13016 		 * after this call the xb_blkno value in both the original
13017 		 * buf's sd_xbuf _and_ the shadow buf's sd_xbuf will be the
13018 		 * same: absolute relative to the start of the device, and
13019 		 * adjusted for the target block size. The b_blkno in the
13020 		 * shadow buf will also be set to this value. We should never
13021 		 * change b_blkno in the original bp however.
13022 		 *
13023 		 * Note also that the shadow buf will always need to be a
13024 		 * READ command, regardless of whether the incoming command
13025 		 * is a READ or a WRITE.
13026 		 */
13027 		shadow_bp = sd_shadow_buf_alloc(bp, request_bytes, B_READ,
13028 		    xp->xb_blkno,
13029 		    (int (*)(struct buf *)) sd_mapblocksize_iodone);
13030 
13031 		shadow_xp = SD_GET_XBUF(shadow_bp);
13032 
13033 		/*
13034 		 * Allocate the layer-private data for the shadow buf.
13035 		 * (No need to preserve xb_private in the shadow xbuf.)
13036 		 */
13037 		shadow_xp->xb_private = shadow_bsp =
13038 		    kmem_zalloc(sizeof (struct sd_mapblocksize_info), KM_SLEEP);
13039 
13040 		/*
13041 		 * bsp->mbs_copy_offset is used later by sd_mapblocksize_iodone
13042 		 * to figure out where the start of the user data is (based upon
13043 		 * the system block size) in the data returned by the READ
13044 		 * command (which will be based upon the target blocksize). Note
13045 		 * that this is only really used if the request is unaligned.
13046 		 */
13047 		if (un->un_f_enable_rmw) {
13048 			bsp->mbs_copy_offset = (ssize_t)(first_byte -
13049 			    ((offset_t)xp->xb_blkno * un->un_sys_blocksize));
13050 			ASSERT((bsp->mbs_copy_offset >= 0) &&
13051 			    (bsp->mbs_copy_offset < un->un_phy_blocksize));
13052 		} else {
13053 			bsp->mbs_copy_offset = (ssize_t)(first_byte -
13054 			    ((offset_t)xp->xb_blkno * un->un_tgt_blocksize));
13055 			ASSERT((bsp->mbs_copy_offset >= 0) &&
13056 			    (bsp->mbs_copy_offset < un->un_tgt_blocksize));
13057 		}
13058 
13059 		shadow_bsp->mbs_copy_offset = bsp->mbs_copy_offset;
13060 
13061 		shadow_bsp->mbs_layer_index = bsp->mbs_layer_index = index;
13062 
13063 		/* Transfer the wmap (if any) to the shadow buf */
13064 		shadow_bsp->mbs_wmp = bsp->mbs_wmp;
13065 		bsp->mbs_wmp = NULL;
13066 
13067 		/*
13068 		 * The shadow buf goes on from here in place of the
13069 		 * original buf.
13070 		 */
13071 		shadow_bsp->mbs_orig_bp = bp;
13072 		bp = shadow_bp;
13073 	}
13074 
13075 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13076 	    "sd_mapblocksize_iostart: tgt start block:0x%x\n", xp->xb_blkno);
13077 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13078 	    "sd_mapblocksize_iostart: tgt request len:0x%x\n",
13079 	    request_bytes);
13080 	SD_INFO(SD_LOG_IO_RMMEDIA, un,
13081 	    "sd_mapblocksize_iostart: shadow buf:0x%x\n", bp);
13082 
13083 done:
13084 	SD_NEXT_IOSTART(index, un, bp);
13085 
13086 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13087 	    "sd_mapblocksize_iostart: exit: buf:0x%p\n", bp);
13088 }
13089 
13090 
13091 /*
13092  *    Function: sd_mapblocksize_iodone
13093  *
13094  * Description: Completion side processing for block-size mapping.
13095  *
13096  *     Context: May be called under interrupt context
13097  */
13098 
13099 static void
13100 sd_mapblocksize_iodone(int index, struct sd_lun *un, struct buf *bp)
13101 {
13102 	struct sd_mapblocksize_info	*bsp;
13103 	struct sd_xbuf	*xp;
13104 	struct sd_xbuf	*orig_xp;	/* sd_xbuf for the original buf */
13105 	struct buf	*orig_bp;	/* ptr to the original buf */
13106 	offset_t	shadow_end;
13107 	offset_t	request_end;
13108 	offset_t	shadow_start;
13109 	ssize_t		copy_offset;
13110 	size_t		copy_length;
13111 	size_t		shortfall;
13112 	uint_t		is_write;	/* TRUE if this bp is a WRITE */
13113 	uint_t		has_wmap;	/* TRUE is this bp has a wmap */
13114 
13115 	ASSERT(un != NULL);
13116 	ASSERT(bp != NULL);
13117 
13118 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
13119 	    "sd_mapblocksize_iodone: entry: buf:0x%p\n", bp);
13120 
13121 	/*
13122 	 * There is no shadow buf or layer-private data if the target is
13123 	 * using un->un_sys_blocksize as its block size or if bcount == 0.
13124 	 */
13125 	if ((un->un_tgt_blocksize == DEV_BSIZE && !un->un_f_enable_rmw) ||
13126 	    (bp->b_bcount == 0)) {
13127 		goto exit;
13128 	}
13129 
13130 	xp = SD_GET_XBUF(bp);
13131 	ASSERT(xp != NULL);
13132 
13133 	/* Retrieve the pointer to the layer-private data area from the xbuf. */
13134 	bsp = xp->xb_private;
13135 
13136 	is_write = ((bp->b_flags & B_READ) == 0) ? TRUE : FALSE;
13137 	has_wmap = (bsp->mbs_wmp != NULL) ? TRUE : FALSE;
13138 
13139 	if (is_write) {
13140 		/*
13141 		 * For a WRITE request we must free up the block range that
13142 		 * we have locked up.  This holds regardless of whether this is
13143 		 * an aligned write request or a read-modify-write request.
13144 		 */
13145 		sd_range_unlock(un, bsp->mbs_wmp);
13146 		bsp->mbs_wmp = NULL;
13147 	}
13148 
13149 	if ((bp->b_iodone != (int(*)(struct buf *))sd_mapblocksize_iodone)) {
13150 		/*
13151 		 * An aligned read or write command will have no shadow buf;
13152 		 * there is not much else to do with it.
13153 		 */
13154 		goto done;
13155 	}
13156 
13157 	orig_bp = bsp->mbs_orig_bp;
13158 	ASSERT(orig_bp != NULL);
13159 	orig_xp = SD_GET_XBUF(orig_bp);
13160 	ASSERT(orig_xp != NULL);
13161 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13162 
13163 	if (!is_write && has_wmap) {
13164 		/*
13165 		 * A READ with a wmap means this is the READ phase of a
13166 		 * read-modify-write. If an error occurred on the READ then
13167 		 * we do not proceed with the WRITE phase or copy any data.
13168 		 * Just release the write maps and return with an error.
13169 		 */
13170 		if ((bp->b_resid != 0) || (bp->b_error != 0)) {
13171 			orig_bp->b_resid = orig_bp->b_bcount;
13172 			bioerror(orig_bp, bp->b_error);
13173 			sd_range_unlock(un, bsp->mbs_wmp);
13174 			goto freebuf_done;
13175 		}
13176 	}
13177 
13178 	/*
13179 	 * Here is where we set up to copy the data from the shadow buf
13180 	 * into the space associated with the original buf.
13181 	 *
13182 	 * To deal with the conversion between block sizes, these
13183 	 * computations treat the data as an array of bytes, with the
13184 	 * first byte (byte 0) corresponding to the first byte in the
13185 	 * first block on the disk.
13186 	 */
13187 
13188 	/*
13189 	 * shadow_start and shadow_len indicate the location and size of
13190 	 * the data returned with the shadow IO request.
13191 	 */
13192 	if (un->un_f_enable_rmw) {
13193 		shadow_start  = SD_SYSBLOCKS2BYTES((offset_t)xp->xb_blkno);
13194 	} else {
13195 		shadow_start  = SD_TGTBLOCKS2BYTES(un, (offset_t)xp->xb_blkno);
13196 	}
13197 	shadow_end    = shadow_start + bp->b_bcount - bp->b_resid;
13198 
13199 	/*
13200 	 * copy_offset gives the offset (in bytes) from the start of the first
13201 	 * block of the READ request to the beginning of the data.  We retrieve
13202 	 * this value from xb_pktp in the ORIGINAL xbuf, as it has been saved
13203 	 * there by sd_mapblockize_iostart(). copy_length gives the amount of
13204 	 * data to be copied (in bytes).
13205 	 */
13206 	copy_offset  = bsp->mbs_copy_offset;
13207 	if (un->un_f_enable_rmw) {
13208 		ASSERT((copy_offset >= 0) &&
13209 		    (copy_offset < un->un_phy_blocksize));
13210 	} else {
13211 		ASSERT((copy_offset >= 0) &&
13212 		    (copy_offset < un->un_tgt_blocksize));
13213 	}
13214 
13215 	copy_length  = orig_bp->b_bcount;
13216 	request_end  = shadow_start + copy_offset + orig_bp->b_bcount;
13217 
13218 	/*
13219 	 * Set up the resid and error fields of orig_bp as appropriate.
13220 	 */
13221 	if (shadow_end >= request_end) {
13222 		/* We got all the requested data; set resid to zero */
13223 		orig_bp->b_resid = 0;
13224 	} else {
13225 		/*
13226 		 * We failed to get enough data to fully satisfy the original
13227 		 * request. Just copy back whatever data we got and set
13228 		 * up the residual and error code as required.
13229 		 *
13230 		 * 'shortfall' is the amount by which the data received with the
13231 		 * shadow buf has "fallen short" of the requested amount.
13232 		 */
13233 		shortfall = (size_t)(request_end - shadow_end);
13234 
13235 		if (shortfall > orig_bp->b_bcount) {
13236 			/*
13237 			 * We did not get enough data to even partially
13238 			 * fulfill the original request.  The residual is
13239 			 * equal to the amount requested.
13240 			 */
13241 			orig_bp->b_resid = orig_bp->b_bcount;
13242 		} else {
13243 			/*
13244 			 * We did not get all the data that we requested
13245 			 * from the device, but we will try to return what
13246 			 * portion we did get.
13247 			 */
13248 			orig_bp->b_resid = shortfall;
13249 		}
13250 		ASSERT(copy_length >= orig_bp->b_resid);
13251 		copy_length  -= orig_bp->b_resid;
13252 	}
13253 
13254 	/* Propagate the error code from the shadow buf to the original buf */
13255 	bioerror(orig_bp, bp->b_error);
13256 
13257 	if (is_write) {
13258 		goto freebuf_done;	/* No data copying for a WRITE */
13259 	}
13260 
13261 	if (has_wmap) {
13262 		/*
13263 		 * This is a READ command from the READ phase of a
13264 		 * read-modify-write request. We have to copy the data given
13265 		 * by the user OVER the data returned by the READ command,
13266 		 * then convert the command from a READ to a WRITE and send
13267 		 * it back to the target.
13268 		 */
13269 		bcopy(orig_bp->b_un.b_addr, bp->b_un.b_addr + copy_offset,
13270 		    copy_length);
13271 
13272 		bp->b_flags &= ~((int)B_READ);	/* Convert to a WRITE */
13273 
13274 		/*
13275 		 * Dispatch the WRITE command to the taskq thread, which
13276 		 * will in turn send the command to the target. When the
13277 		 * WRITE command completes, we (sd_mapblocksize_iodone())
13278 		 * will get called again as part of the iodone chain
13279 		 * processing for it. Note that we will still be dealing
13280 		 * with the shadow buf at that point.
13281 		 */
13282 		if (taskq_dispatch(sd_wmr_tq, sd_read_modify_write_task, bp,
13283 		    KM_NOSLEEP) != 0) {
13284 			/*
13285 			 * Dispatch was successful so we are done. Return
13286 			 * without going any higher up the iodone chain. Do
13287 			 * not free up any layer-private data until after the
13288 			 * WRITE completes.
13289 			 */
13290 			return;
13291 		}
13292 
13293 		/*
13294 		 * Dispatch of the WRITE command failed; set up the error
13295 		 * condition and send this IO back up the iodone chain.
13296 		 */
13297 		bioerror(orig_bp, EIO);
13298 		orig_bp->b_resid = orig_bp->b_bcount;
13299 
13300 	} else {
13301 		/*
13302 		 * This is a regular READ request (ie, not a RMW). Copy the
13303 		 * data from the shadow buf into the original buf. The
13304 		 * copy_offset compensates for any "misalignment" between the
13305 		 * shadow buf (with its un->un_tgt_blocksize blocks) and the
13306 		 * original buf (with its un->un_sys_blocksize blocks).
13307 		 */
13308 		bcopy(bp->b_un.b_addr + copy_offset, orig_bp->b_un.b_addr,
13309 		    copy_length);
13310 	}
13311 
13312 freebuf_done:
13313 
13314 	/*
13315 	 * At this point we still have both the shadow buf AND the original
13316 	 * buf to deal with, as well as the layer-private data area in each.
13317 	 * Local variables are as follows:
13318 	 *
13319 	 * bp -- points to shadow buf
13320 	 * xp -- points to xbuf of shadow buf
13321 	 * bsp -- points to layer-private data area of shadow buf
13322 	 * orig_bp -- points to original buf
13323 	 *
13324 	 * First free the shadow buf and its associated xbuf, then free the
13325 	 * layer-private data area from the shadow buf. There is no need to
13326 	 * restore xb_private in the shadow xbuf.
13327 	 */
13328 	sd_shadow_buf_free(bp);
13329 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13330 
13331 	/*
13332 	 * Now update the local variables to point to the original buf, xbuf,
13333 	 * and layer-private area.
13334 	 */
13335 	bp = orig_bp;
13336 	xp = SD_GET_XBUF(bp);
13337 	ASSERT(xp != NULL);
13338 	ASSERT(xp == orig_xp);
13339 	bsp = xp->xb_private;
13340 	ASSERT(bsp != NULL);
13341 
13342 done:
13343 	/*
13344 	 * Restore xb_private to whatever it was set to by the next higher
13345 	 * layer in the chain, then free the layer-private data area.
13346 	 */
13347 	xp->xb_private = bsp->mbs_oprivate;
13348 	kmem_free(bsp, sizeof (struct sd_mapblocksize_info));
13349 
13350 exit:
13351 	SD_TRACE(SD_LOG_IO_RMMEDIA, SD_GET_UN(bp),
13352 	    "sd_mapblocksize_iodone: calling SD_NEXT_IODONE: buf:0x%p\n", bp);
13353 
13354 	SD_NEXT_IODONE(index, un, bp);
13355 }
13356 
13357 
13358 /*
13359  *    Function: sd_checksum_iostart
13360  *
13361  * Description: A stub function for a layer that's currently not used.
13362  *		For now just a placeholder.
13363  *
13364  *     Context: Kernel thread context
13365  */
13366 
13367 static void
13368 sd_checksum_iostart(int index, struct sd_lun *un, struct buf *bp)
13369 {
13370 	ASSERT(un != NULL);
13371 	ASSERT(bp != NULL);
13372 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13373 	SD_NEXT_IOSTART(index, un, bp);
13374 }
13375 
13376 
13377 /*
13378  *    Function: sd_checksum_iodone
13379  *
13380  * Description: A stub function for a layer that's currently not used.
13381  *		For now just a placeholder.
13382  *
13383  *     Context: May be called under interrupt context
13384  */
13385 
13386 static void
13387 sd_checksum_iodone(int index, struct sd_lun *un, struct buf *bp)
13388 {
13389 	ASSERT(un != NULL);
13390 	ASSERT(bp != NULL);
13391 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13392 	SD_NEXT_IODONE(index, un, bp);
13393 }
13394 
13395 
13396 /*
13397  *    Function: sd_checksum_uscsi_iostart
13398  *
13399  * Description: A stub function for a layer that's currently not used.
13400  *		For now just a placeholder.
13401  *
13402  *     Context: Kernel thread context
13403  */
13404 
13405 static void
13406 sd_checksum_uscsi_iostart(int index, struct sd_lun *un, struct buf *bp)
13407 {
13408 	ASSERT(un != NULL);
13409 	ASSERT(bp != NULL);
13410 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13411 	SD_NEXT_IOSTART(index, un, bp);
13412 }
13413 
13414 
13415 /*
13416  *    Function: sd_checksum_uscsi_iodone
13417  *
13418  * Description: A stub function for a layer that's currently not used.
13419  *		For now just a placeholder.
13420  *
13421  *     Context: May be called under interrupt context
13422  */
13423 
13424 static void
13425 sd_checksum_uscsi_iodone(int index, struct sd_lun *un, struct buf *bp)
13426 {
13427 	ASSERT(un != NULL);
13428 	ASSERT(bp != NULL);
13429 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13430 	SD_NEXT_IODONE(index, un, bp);
13431 }
13432 
13433 
13434 /*
13435  *    Function: sd_pm_iostart
13436  *
13437  * Description: iostart-side routine for Power mangement.
13438  *
13439  *     Context: Kernel thread context
13440  */
13441 
13442 static void
13443 sd_pm_iostart(int index, struct sd_lun *un, struct buf *bp)
13444 {
13445 	ASSERT(un != NULL);
13446 	ASSERT(bp != NULL);
13447 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13448 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13449 
13450 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: entry\n");
13451 
13452 	if (sd_pm_entry(un) != DDI_SUCCESS) {
13453 		/*
13454 		 * Set up to return the failed buf back up the 'iodone'
13455 		 * side of the calling chain.
13456 		 */
13457 		bioerror(bp, EIO);
13458 		bp->b_resid = bp->b_bcount;
13459 
13460 		SD_BEGIN_IODONE(index, un, bp);
13461 
13462 		SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13463 		return;
13464 	}
13465 
13466 	SD_NEXT_IOSTART(index, un, bp);
13467 
13468 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iostart: exit\n");
13469 }
13470 
13471 
13472 /*
13473  *    Function: sd_pm_iodone
13474  *
13475  * Description: iodone-side routine for power mangement.
13476  *
13477  *     Context: may be called from interrupt context
13478  */
13479 
13480 static void
13481 sd_pm_iodone(int index, struct sd_lun *un, struct buf *bp)
13482 {
13483 	ASSERT(un != NULL);
13484 	ASSERT(bp != NULL);
13485 	ASSERT(!mutex_owned(&un->un_pm_mutex));
13486 
13487 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: entry\n");
13488 
13489 	/*
13490 	 * After attach the following flag is only read, so don't
13491 	 * take the penalty of acquiring a mutex for it.
13492 	 */
13493 	if (un->un_f_pm_is_enabled == TRUE) {
13494 		sd_pm_exit(un);
13495 	}
13496 
13497 	SD_NEXT_IODONE(index, un, bp);
13498 
13499 	SD_TRACE(SD_LOG_IO_PM, un, "sd_pm_iodone: exit\n");
13500 }
13501 
13502 
13503 /*
13504  *    Function: sd_core_iostart
13505  *
13506  * Description: Primary driver function for enqueuing buf(9S) structs from
13507  *		the system and initiating IO to the target device
13508  *
13509  *     Context: Kernel thread context. Can sleep.
13510  *
13511  * Assumptions:  - The given xp->xb_blkno is absolute
13512  *		   (ie, relative to the start of the device).
13513  *		 - The IO is to be done using the native blocksize of
13514  *		   the device, as specified in un->un_tgt_blocksize.
13515  */
13516 /* ARGSUSED */
13517 static void
13518 sd_core_iostart(int index, struct sd_lun *un, struct buf *bp)
13519 {
13520 	struct sd_xbuf *xp;
13521 
13522 	ASSERT(un != NULL);
13523 	ASSERT(bp != NULL);
13524 	ASSERT(!mutex_owned(SD_MUTEX(un)));
13525 	ASSERT(bp->b_resid == 0);
13526 
13527 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: entry: bp:0x%p\n", bp);
13528 
13529 	xp = SD_GET_XBUF(bp);
13530 	ASSERT(xp != NULL);
13531 
13532 	mutex_enter(SD_MUTEX(un));
13533 
13534 	/*
13535 	 * If we are currently in the failfast state, fail any new IO
13536 	 * that has B_FAILFAST set, then return.
13537 	 */
13538 	if ((bp->b_flags & B_FAILFAST) &&
13539 	    (un->un_failfast_state == SD_FAILFAST_ACTIVE)) {
13540 		mutex_exit(SD_MUTEX(un));
13541 		bioerror(bp, EIO);
13542 		bp->b_resid = bp->b_bcount;
13543 		SD_BEGIN_IODONE(index, un, bp);
13544 		return;
13545 	}
13546 
13547 	if (SD_IS_DIRECT_PRIORITY(xp)) {
13548 		/*
13549 		 * Priority command -- transport it immediately.
13550 		 *
13551 		 * Note: We may want to assert that USCSI_DIAGNOSE is set,
13552 		 * because all direct priority commands should be associated
13553 		 * with error recovery actions which we don't want to retry.
13554 		 */
13555 		sd_start_cmds(un, bp);
13556 	} else {
13557 		/*
13558 		 * Normal command -- add it to the wait queue, then start
13559 		 * transporting commands from the wait queue.
13560 		 */
13561 		sd_add_buf_to_waitq(un, bp);
13562 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
13563 		sd_start_cmds(un, NULL);
13564 	}
13565 
13566 	mutex_exit(SD_MUTEX(un));
13567 
13568 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_core_iostart: exit: bp:0x%p\n", bp);
13569 }
13570 
13571 
13572 /*
13573  *    Function: sd_init_cdb_limits
13574  *
13575  * Description: This is to handle scsi_pkt initialization differences
13576  *		between the driver platforms.
13577  *
13578  *		Legacy behaviors:
13579  *
13580  *		If the block number or the sector count exceeds the
13581  *		capabilities of a Group 0 command, shift over to a
13582  *		Group 1 command. We don't blindly use Group 1
13583  *		commands because a) some drives (CDC Wren IVs) get a
13584  *		bit confused, and b) there is probably a fair amount
13585  *		of speed difference for a target to receive and decode
13586  *		a 10 byte command instead of a 6 byte command.
13587  *
13588  *		The xfer time difference of 6 vs 10 byte CDBs is
13589  *		still significant so this code is still worthwhile.
13590  *		10 byte CDBs are very inefficient with the fas HBA driver
13591  *		and older disks. Each CDB byte took 1 usec with some
13592  *		popular disks.
13593  *
13594  *     Context: Must be called at attach time
13595  */
13596 
13597 static void
13598 sd_init_cdb_limits(struct sd_lun *un)
13599 {
13600 	int hba_cdb_limit;
13601 
13602 	/*
13603 	 * Use CDB_GROUP1 commands for most devices except for
13604 	 * parallel SCSI fixed drives in which case we get better
13605 	 * performance using CDB_GROUP0 commands (where applicable).
13606 	 */
13607 	un->un_mincdb = SD_CDB_GROUP1;
13608 #if !defined(__fibre)
13609 	if (!un->un_f_is_fibre && !un->un_f_cfg_is_atapi && !ISROD(un) &&
13610 	    !un->un_f_has_removable_media) {
13611 		un->un_mincdb = SD_CDB_GROUP0;
13612 	}
13613 #endif
13614 
13615 	/*
13616 	 * Try to read the max-cdb-length supported by HBA.
13617 	 */
13618 	un->un_max_hba_cdb = scsi_ifgetcap(SD_ADDRESS(un), "max-cdb-length", 1);
13619 	if (0 >= un->un_max_hba_cdb) {
13620 		un->un_max_hba_cdb = CDB_GROUP4;
13621 		hba_cdb_limit = SD_CDB_GROUP4;
13622 	} else if (0 < un->un_max_hba_cdb &&
13623 	    un->un_max_hba_cdb < CDB_GROUP1) {
13624 		hba_cdb_limit = SD_CDB_GROUP0;
13625 	} else if (CDB_GROUP1 <= un->un_max_hba_cdb &&
13626 	    un->un_max_hba_cdb < CDB_GROUP5) {
13627 		hba_cdb_limit = SD_CDB_GROUP1;
13628 	} else if (CDB_GROUP5 <= un->un_max_hba_cdb &&
13629 	    un->un_max_hba_cdb < CDB_GROUP4) {
13630 		hba_cdb_limit = SD_CDB_GROUP5;
13631 	} else {
13632 		hba_cdb_limit = SD_CDB_GROUP4;
13633 	}
13634 
13635 	/*
13636 	 * Use CDB_GROUP5 commands for removable devices.  Use CDB_GROUP4
13637 	 * commands for fixed disks unless we are building for a 32 bit
13638 	 * kernel.
13639 	 */
13640 #ifdef _LP64
13641 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13642 	    min(hba_cdb_limit, SD_CDB_GROUP4);
13643 #else
13644 	un->un_maxcdb = (un->un_f_has_removable_media) ? SD_CDB_GROUP5 :
13645 	    min(hba_cdb_limit, SD_CDB_GROUP1);
13646 #endif
13647 
13648 	un->un_status_len = (int)((un->un_f_arq_enabled == TRUE)
13649 	    ? sizeof (struct scsi_arq_status) : 1);
13650 	un->un_cmd_timeout = (ushort_t)sd_io_time;
13651 	un->un_uscsi_timeout = ((ISCD(un)) ? 2 : 1) * un->un_cmd_timeout;
13652 }
13653 
13654 
13655 /*
13656  *    Function: sd_initpkt_for_buf
13657  *
13658  * Description: Allocate and initialize for transport a scsi_pkt struct,
13659  *		based upon the info specified in the given buf struct.
13660  *
13661  *		Assumes the xb_blkno in the request is absolute (ie,
13662  *		relative to the start of the device (NOT partition!).
13663  *		Also assumes that the request is using the native block
13664  *		size of the device (as returned by the READ CAPACITY
13665  *		command).
13666  *
13667  * Return Code: SD_PKT_ALLOC_SUCCESS
13668  *		SD_PKT_ALLOC_FAILURE
13669  *		SD_PKT_ALLOC_FAILURE_NO_DMA
13670  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13671  *
13672  *     Context: Kernel thread and may be called from software interrupt context
13673  *		as part of a sdrunout callback. This function may not block or
13674  *		call routines that block
13675  */
13676 
13677 static int
13678 sd_initpkt_for_buf(struct buf *bp, struct scsi_pkt **pktpp)
13679 {
13680 	struct sd_xbuf	*xp;
13681 	struct scsi_pkt *pktp = NULL;
13682 	struct sd_lun	*un;
13683 	size_t		blockcount;
13684 	daddr_t		startblock;
13685 	int		rval;
13686 	int		cmd_flags;
13687 
13688 	ASSERT(bp != NULL);
13689 	ASSERT(pktpp != NULL);
13690 	xp = SD_GET_XBUF(bp);
13691 	ASSERT(xp != NULL);
13692 	un = SD_GET_UN(bp);
13693 	ASSERT(un != NULL);
13694 	ASSERT(mutex_owned(SD_MUTEX(un)));
13695 	ASSERT(bp->b_resid == 0);
13696 
13697 	SD_TRACE(SD_LOG_IO_CORE, un,
13698 	    "sd_initpkt_for_buf: entry: buf:0x%p\n", bp);
13699 
13700 	mutex_exit(SD_MUTEX(un));
13701 
13702 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13703 	if (xp->xb_pkt_flags & SD_XB_DMA_FREED) {
13704 		/*
13705 		 * Already have a scsi_pkt -- just need DMA resources.
13706 		 * We must recompute the CDB in case the mapping returns
13707 		 * a nonzero pkt_resid.
13708 		 * Note: if this is a portion of a PKT_DMA_PARTIAL transfer
13709 		 * that is being retried, the unmap/remap of the DMA resouces
13710 		 * will result in the entire transfer starting over again
13711 		 * from the very first block.
13712 		 */
13713 		ASSERT(xp->xb_pktp != NULL);
13714 		pktp = xp->xb_pktp;
13715 	} else {
13716 		pktp = NULL;
13717 	}
13718 #endif /* __i386 || __amd64 */
13719 
13720 	startblock = xp->xb_blkno;	/* Absolute block num. */
13721 	blockcount = SD_BYTES2TGTBLOCKS(un, bp->b_bcount);
13722 
13723 	cmd_flags = un->un_pkt_flags | (xp->xb_pkt_flags & SD_XB_INITPKT_MASK);
13724 
13725 	/*
13726 	 * sd_setup_rw_pkt will determine the appropriate CDB group to use,
13727 	 * call scsi_init_pkt, and build the CDB.
13728 	 */
13729 	rval = sd_setup_rw_pkt(un, &pktp, bp,
13730 	    cmd_flags, sdrunout, (caddr_t)un,
13731 	    startblock, blockcount);
13732 
13733 	if (rval == 0) {
13734 		/*
13735 		 * Success.
13736 		 *
13737 		 * If partial DMA is being used and required for this transfer.
13738 		 * set it up here.
13739 		 */
13740 		if ((un->un_pkt_flags & PKT_DMA_PARTIAL) != 0 &&
13741 		    (pktp->pkt_resid != 0)) {
13742 
13743 			/*
13744 			 * Save the CDB length and pkt_resid for the
13745 			 * next xfer
13746 			 */
13747 			xp->xb_dma_resid = pktp->pkt_resid;
13748 
13749 			/* rezero resid */
13750 			pktp->pkt_resid = 0;
13751 
13752 		} else {
13753 			xp->xb_dma_resid = 0;
13754 		}
13755 
13756 		pktp->pkt_flags = un->un_tagflags;
13757 		pktp->pkt_time  = un->un_cmd_timeout;
13758 		pktp->pkt_comp  = sdintr;
13759 
13760 		pktp->pkt_private = bp;
13761 		*pktpp = pktp;
13762 
13763 		SD_TRACE(SD_LOG_IO_CORE, un,
13764 		    "sd_initpkt_for_buf: exit: buf:0x%p\n", bp);
13765 
13766 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
13767 		xp->xb_pkt_flags &= ~SD_XB_DMA_FREED;
13768 #endif
13769 
13770 		mutex_enter(SD_MUTEX(un));
13771 		return (SD_PKT_ALLOC_SUCCESS);
13772 
13773 	}
13774 
13775 	/*
13776 	 * SD_PKT_ALLOC_FAILURE is the only expected failure code
13777 	 * from sd_setup_rw_pkt.
13778 	 */
13779 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
13780 
13781 	if (rval == SD_PKT_ALLOC_FAILURE) {
13782 		*pktpp = NULL;
13783 		/*
13784 		 * Set the driver state to RWAIT to indicate the driver
13785 		 * is waiting on resource allocations. The driver will not
13786 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
13787 		 */
13788 		mutex_enter(SD_MUTEX(un));
13789 		New_state(un, SD_STATE_RWAIT);
13790 
13791 		SD_ERROR(SD_LOG_IO_CORE, un,
13792 		    "sd_initpkt_for_buf: No pktp. exit bp:0x%p\n", bp);
13793 
13794 		if ((bp->b_flags & B_ERROR) != 0) {
13795 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
13796 		}
13797 		return (SD_PKT_ALLOC_FAILURE);
13798 	} else {
13799 		/*
13800 		 * PKT_ALLOC_FAILURE_CDB_TOO_SMALL
13801 		 *
13802 		 * This should never happen.  Maybe someone messed with the
13803 		 * kernel's minphys?
13804 		 */
13805 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
13806 		    "Request rejected: too large for CDB: "
13807 		    "lba:0x%08lx  len:0x%08lx\n", startblock, blockcount);
13808 		SD_ERROR(SD_LOG_IO_CORE, un,
13809 		    "sd_initpkt_for_buf: No cp. exit bp:0x%p\n", bp);
13810 		mutex_enter(SD_MUTEX(un));
13811 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13812 
13813 	}
13814 }
13815 
13816 
13817 /*
13818  *    Function: sd_destroypkt_for_buf
13819  *
13820  * Description: Free the scsi_pkt(9S) for the given bp (buf IO processing).
13821  *
13822  *     Context: Kernel thread or interrupt context
13823  */
13824 
13825 static void
13826 sd_destroypkt_for_buf(struct buf *bp)
13827 {
13828 	ASSERT(bp != NULL);
13829 	ASSERT(SD_GET_UN(bp) != NULL);
13830 
13831 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13832 	    "sd_destroypkt_for_buf: entry: buf:0x%p\n", bp);
13833 
13834 	ASSERT(SD_GET_PKTP(bp) != NULL);
13835 	scsi_destroy_pkt(SD_GET_PKTP(bp));
13836 
13837 	SD_TRACE(SD_LOG_IO_CORE, SD_GET_UN(bp),
13838 	    "sd_destroypkt_for_buf: exit: buf:0x%p\n", bp);
13839 }
13840 
13841 /*
13842  *    Function: sd_setup_rw_pkt
13843  *
13844  * Description: Determines appropriate CDB group for the requested LBA
13845  *		and transfer length, calls scsi_init_pkt, and builds
13846  *		the CDB.  Do not use for partial DMA transfers except
13847  *		for the initial transfer since the CDB size must
13848  *		remain constant.
13849  *
13850  *     Context: Kernel thread and may be called from software interrupt
13851  *		context as part of a sdrunout callback. This function may not
13852  *		block or call routines that block
13853  */
13854 
13855 
13856 int
13857 sd_setup_rw_pkt(struct sd_lun *un,
13858     struct scsi_pkt **pktpp, struct buf *bp, int flags,
13859     int (*callback)(caddr_t), caddr_t callback_arg,
13860     diskaddr_t lba, uint32_t blockcount)
13861 {
13862 	struct scsi_pkt *return_pktp;
13863 	union scsi_cdb *cdbp;
13864 	struct sd_cdbinfo *cp = NULL;
13865 	int i;
13866 
13867 	/*
13868 	 * See which size CDB to use, based upon the request.
13869 	 */
13870 	for (i = un->un_mincdb; i <= un->un_maxcdb; i++) {
13871 
13872 		/*
13873 		 * Check lba and block count against sd_cdbtab limits.
13874 		 * In the partial DMA case, we have to use the same size
13875 		 * CDB for all the transfers.  Check lba + blockcount
13876 		 * against the max LBA so we know that segment of the
13877 		 * transfer can use the CDB we select.
13878 		 */
13879 		if ((lba + blockcount - 1 <= sd_cdbtab[i].sc_maxlba) &&
13880 		    (blockcount <= sd_cdbtab[i].sc_maxlen)) {
13881 
13882 			/*
13883 			 * The command will fit into the CDB type
13884 			 * specified by sd_cdbtab[i].
13885 			 */
13886 			cp = sd_cdbtab + i;
13887 
13888 			/*
13889 			 * Call scsi_init_pkt so we can fill in the
13890 			 * CDB.
13891 			 */
13892 			return_pktp = scsi_init_pkt(SD_ADDRESS(un), *pktpp,
13893 			    bp, cp->sc_grpcode, un->un_status_len, 0,
13894 			    flags, callback, callback_arg);
13895 
13896 			if (return_pktp != NULL) {
13897 
13898 				/*
13899 				 * Return new value of pkt
13900 				 */
13901 				*pktpp = return_pktp;
13902 
13903 				/*
13904 				 * To be safe, zero the CDB insuring there is
13905 				 * no leftover data from a previous command.
13906 				 */
13907 				bzero(return_pktp->pkt_cdbp, cp->sc_grpcode);
13908 
13909 				/*
13910 				 * Handle partial DMA mapping
13911 				 */
13912 				if (return_pktp->pkt_resid != 0) {
13913 
13914 					/*
13915 					 * Not going to xfer as many blocks as
13916 					 * originally expected
13917 					 */
13918 					blockcount -=
13919 					    SD_BYTES2TGTBLOCKS(un,
13920 					    return_pktp->pkt_resid);
13921 				}
13922 
13923 				cdbp = (union scsi_cdb *)return_pktp->pkt_cdbp;
13924 
13925 				/*
13926 				 * Set command byte based on the CDB
13927 				 * type we matched.
13928 				 */
13929 				cdbp->scc_cmd = cp->sc_grpmask |
13930 				    ((bp->b_flags & B_READ) ?
13931 				    SCMD_READ : SCMD_WRITE);
13932 
13933 				SD_FILL_SCSI1_LUN(un, return_pktp);
13934 
13935 				/*
13936 				 * Fill in LBA and length
13937 				 */
13938 				ASSERT((cp->sc_grpcode == CDB_GROUP1) ||
13939 				    (cp->sc_grpcode == CDB_GROUP4) ||
13940 				    (cp->sc_grpcode == CDB_GROUP0) ||
13941 				    (cp->sc_grpcode == CDB_GROUP5));
13942 
13943 				if (cp->sc_grpcode == CDB_GROUP1) {
13944 					FORMG1ADDR(cdbp, lba);
13945 					FORMG1COUNT(cdbp, blockcount);
13946 					return (0);
13947 				} else if (cp->sc_grpcode == CDB_GROUP4) {
13948 					FORMG4LONGADDR(cdbp, lba);
13949 					FORMG4COUNT(cdbp, blockcount);
13950 					return (0);
13951 				} else if (cp->sc_grpcode == CDB_GROUP0) {
13952 					FORMG0ADDR(cdbp, lba);
13953 					FORMG0COUNT(cdbp, blockcount);
13954 					return (0);
13955 				} else if (cp->sc_grpcode == CDB_GROUP5) {
13956 					FORMG5ADDR(cdbp, lba);
13957 					FORMG5COUNT(cdbp, blockcount);
13958 					return (0);
13959 				}
13960 
13961 				/*
13962 				 * It should be impossible to not match one
13963 				 * of the CDB types above, so we should never
13964 				 * reach this point.  Set the CDB command byte
13965 				 * to test-unit-ready to avoid writing
13966 				 * to somewhere we don't intend.
13967 				 */
13968 				cdbp->scc_cmd = SCMD_TEST_UNIT_READY;
13969 				return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13970 			} else {
13971 				/*
13972 				 * Couldn't get scsi_pkt
13973 				 */
13974 				return (SD_PKT_ALLOC_FAILURE);
13975 			}
13976 		}
13977 	}
13978 
13979 	/*
13980 	 * None of the available CDB types were suitable.  This really
13981 	 * should never happen:  on a 64 bit system we support
13982 	 * READ16/WRITE16 which will hold an entire 64 bit disk address
13983 	 * and on a 32 bit system we will refuse to bind to a device
13984 	 * larger than 2TB so addresses will never be larger than 32 bits.
13985 	 */
13986 	return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
13987 }
13988 
13989 /*
13990  *    Function: sd_setup_next_rw_pkt
13991  *
13992  * Description: Setup packet for partial DMA transfers, except for the
13993  * 		initial transfer.  sd_setup_rw_pkt should be used for
13994  *		the initial transfer.
13995  *
13996  *     Context: Kernel thread and may be called from interrupt context.
13997  */
13998 
13999 int
14000 sd_setup_next_rw_pkt(struct sd_lun *un,
14001     struct scsi_pkt *pktp, struct buf *bp,
14002     diskaddr_t lba, uint32_t blockcount)
14003 {
14004 	uchar_t com;
14005 	union scsi_cdb *cdbp;
14006 	uchar_t cdb_group_id;
14007 
14008 	ASSERT(pktp != NULL);
14009 	ASSERT(pktp->pkt_cdbp != NULL);
14010 
14011 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
14012 	com = cdbp->scc_cmd;
14013 	cdb_group_id = CDB_GROUPID(com);
14014 
14015 	ASSERT((cdb_group_id == CDB_GROUPID_0) ||
14016 	    (cdb_group_id == CDB_GROUPID_1) ||
14017 	    (cdb_group_id == CDB_GROUPID_4) ||
14018 	    (cdb_group_id == CDB_GROUPID_5));
14019 
14020 	/*
14021 	 * Move pkt to the next portion of the xfer.
14022 	 * func is NULL_FUNC so we do not have to release
14023 	 * the disk mutex here.
14024 	 */
14025 	if (scsi_init_pkt(SD_ADDRESS(un), pktp, bp, 0, 0, 0, 0,
14026 	    NULL_FUNC, NULL) == pktp) {
14027 		/* Success.  Handle partial DMA */
14028 		if (pktp->pkt_resid != 0) {
14029 			blockcount -=
14030 			    SD_BYTES2TGTBLOCKS(un, pktp->pkt_resid);
14031 		}
14032 
14033 		cdbp->scc_cmd = com;
14034 		SD_FILL_SCSI1_LUN(un, pktp);
14035 		if (cdb_group_id == CDB_GROUPID_1) {
14036 			FORMG1ADDR(cdbp, lba);
14037 			FORMG1COUNT(cdbp, blockcount);
14038 			return (0);
14039 		} else if (cdb_group_id == CDB_GROUPID_4) {
14040 			FORMG4LONGADDR(cdbp, lba);
14041 			FORMG4COUNT(cdbp, blockcount);
14042 			return (0);
14043 		} else if (cdb_group_id == CDB_GROUPID_0) {
14044 			FORMG0ADDR(cdbp, lba);
14045 			FORMG0COUNT(cdbp, blockcount);
14046 			return (0);
14047 		} else if (cdb_group_id == CDB_GROUPID_5) {
14048 			FORMG5ADDR(cdbp, lba);
14049 			FORMG5COUNT(cdbp, blockcount);
14050 			return (0);
14051 		}
14052 
14053 		/* Unreachable */
14054 		return (SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL);
14055 	}
14056 
14057 	/*
14058 	 * Error setting up next portion of cmd transfer.
14059 	 * Something is definitely very wrong and this
14060 	 * should not happen.
14061 	 */
14062 	return (SD_PKT_ALLOC_FAILURE);
14063 }
14064 
14065 /*
14066  *    Function: sd_initpkt_for_uscsi
14067  *
14068  * Description: Allocate and initialize for transport a scsi_pkt struct,
14069  *		based upon the info specified in the given uscsi_cmd struct.
14070  *
14071  * Return Code: SD_PKT_ALLOC_SUCCESS
14072  *		SD_PKT_ALLOC_FAILURE
14073  *		SD_PKT_ALLOC_FAILURE_NO_DMA
14074  *		SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL
14075  *
14076  *     Context: Kernel thread and may be called from software interrupt context
14077  *		as part of a sdrunout callback. This function may not block or
14078  *		call routines that block
14079  */
14080 
14081 static int
14082 sd_initpkt_for_uscsi(struct buf *bp, struct scsi_pkt **pktpp)
14083 {
14084 	struct uscsi_cmd *uscmd;
14085 	struct sd_xbuf	*xp;
14086 	struct scsi_pkt	*pktp;
14087 	struct sd_lun	*un;
14088 	uint32_t	flags = 0;
14089 
14090 	ASSERT(bp != NULL);
14091 	ASSERT(pktpp != NULL);
14092 	xp = SD_GET_XBUF(bp);
14093 	ASSERT(xp != NULL);
14094 	un = SD_GET_UN(bp);
14095 	ASSERT(un != NULL);
14096 	ASSERT(mutex_owned(SD_MUTEX(un)));
14097 
14098 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14099 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14100 	ASSERT(uscmd != NULL);
14101 
14102 	SD_TRACE(SD_LOG_IO_CORE, un,
14103 	    "sd_initpkt_for_uscsi: entry: buf:0x%p\n", bp);
14104 
14105 	/*
14106 	 * Allocate the scsi_pkt for the command.
14107 	 * Note: If PKT_DMA_PARTIAL flag is set, scsi_vhci binds a path
14108 	 *	 during scsi_init_pkt time and will continue to use the
14109 	 *	 same path as long as the same scsi_pkt is used without
14110 	 *	 intervening scsi_dma_free(). Since uscsi command does
14111 	 *	 not call scsi_dmafree() before retry failed command, it
14112 	 *	 is necessary to make sure PKT_DMA_PARTIAL flag is NOT
14113 	 *	 set such that scsi_vhci can use other available path for
14114 	 *	 retry. Besides, ucsci command does not allow DMA breakup,
14115 	 *	 so there is no need to set PKT_DMA_PARTIAL flag.
14116 	 */
14117 	if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
14118 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14119 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14120 		    ((int)(uscmd->uscsi_rqlen) + sizeof (struct scsi_arq_status)
14121 		    - sizeof (struct scsi_extended_sense)), 0,
14122 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL) | PKT_XARQ,
14123 		    sdrunout, (caddr_t)un);
14124 	} else {
14125 		pktp = scsi_init_pkt(SD_ADDRESS(un), NULL,
14126 		    ((bp->b_bcount != 0) ? bp : NULL), uscmd->uscsi_cdblen,
14127 		    sizeof (struct scsi_arq_status), 0,
14128 		    (un->un_pkt_flags & ~PKT_DMA_PARTIAL),
14129 		    sdrunout, (caddr_t)un);
14130 	}
14131 
14132 	if (pktp == NULL) {
14133 		*pktpp = NULL;
14134 		/*
14135 		 * Set the driver state to RWAIT to indicate the driver
14136 		 * is waiting on resource allocations. The driver will not
14137 		 * suspend, pm_suspend, or detatch while the state is RWAIT.
14138 		 */
14139 		New_state(un, SD_STATE_RWAIT);
14140 
14141 		SD_ERROR(SD_LOG_IO_CORE, un,
14142 		    "sd_initpkt_for_uscsi: No pktp. exit bp:0x%p\n", bp);
14143 
14144 		if ((bp->b_flags & B_ERROR) != 0) {
14145 			return (SD_PKT_ALLOC_FAILURE_NO_DMA);
14146 		}
14147 		return (SD_PKT_ALLOC_FAILURE);
14148 	}
14149 
14150 	/*
14151 	 * We do not do DMA breakup for USCSI commands, so return failure
14152 	 * here if all the needed DMA resources were not allocated.
14153 	 */
14154 	if ((un->un_pkt_flags & PKT_DMA_PARTIAL) &&
14155 	    (bp->b_bcount != 0) && (pktp->pkt_resid != 0)) {
14156 		scsi_destroy_pkt(pktp);
14157 		SD_ERROR(SD_LOG_IO_CORE, un, "sd_initpkt_for_uscsi: "
14158 		    "No partial DMA for USCSI. exit: buf:0x%p\n", bp);
14159 		return (SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL);
14160 	}
14161 
14162 	/* Init the cdb from the given uscsi struct */
14163 	(void) scsi_setup_cdb((union scsi_cdb *)pktp->pkt_cdbp,
14164 	    uscmd->uscsi_cdb[0], 0, 0, 0);
14165 
14166 	SD_FILL_SCSI1_LUN(un, pktp);
14167 
14168 	/*
14169 	 * Set up the optional USCSI flags. See the uscsi (7I) man page
14170 	 * for listing of the supported flags.
14171 	 */
14172 
14173 	if (uscmd->uscsi_flags & USCSI_SILENT) {
14174 		flags |= FLAG_SILENT;
14175 	}
14176 
14177 	if (uscmd->uscsi_flags & USCSI_DIAGNOSE) {
14178 		flags |= FLAG_DIAGNOSE;
14179 	}
14180 
14181 	if (uscmd->uscsi_flags & USCSI_ISOLATE) {
14182 		flags |= FLAG_ISOLATE;
14183 	}
14184 
14185 	if (un->un_f_is_fibre == FALSE) {
14186 		if (uscmd->uscsi_flags & USCSI_RENEGOT) {
14187 			flags |= FLAG_RENEGOTIATE_WIDE_SYNC;
14188 		}
14189 	}
14190 
14191 	/*
14192 	 * Set the pkt flags here so we save time later.
14193 	 * Note: These flags are NOT in the uscsi man page!!!
14194 	 */
14195 	if (uscmd->uscsi_flags & USCSI_HEAD) {
14196 		flags |= FLAG_HEAD;
14197 	}
14198 
14199 	if (uscmd->uscsi_flags & USCSI_NOINTR) {
14200 		flags |= FLAG_NOINTR;
14201 	}
14202 
14203 	/*
14204 	 * For tagged queueing, things get a bit complicated.
14205 	 * Check first for head of queue and last for ordered queue.
14206 	 * If neither head nor order, use the default driver tag flags.
14207 	 */
14208 	if ((uscmd->uscsi_flags & USCSI_NOTAG) == 0) {
14209 		if (uscmd->uscsi_flags & USCSI_HTAG) {
14210 			flags |= FLAG_HTAG;
14211 		} else if (uscmd->uscsi_flags & USCSI_OTAG) {
14212 			flags |= FLAG_OTAG;
14213 		} else {
14214 			flags |= un->un_tagflags & FLAG_TAGMASK;
14215 		}
14216 	}
14217 
14218 	if (uscmd->uscsi_flags & USCSI_NODISCON) {
14219 		flags = (flags & ~FLAG_TAGMASK) | FLAG_NODISCON;
14220 	}
14221 
14222 	pktp->pkt_flags = flags;
14223 
14224 	/* Transfer uscsi information to scsi_pkt */
14225 	(void) scsi_uscsi_pktinit(uscmd, pktp);
14226 
14227 	/* Copy the caller's CDB into the pkt... */
14228 	bcopy(uscmd->uscsi_cdb, pktp->pkt_cdbp, uscmd->uscsi_cdblen);
14229 
14230 	if (uscmd->uscsi_timeout == 0) {
14231 		pktp->pkt_time = un->un_uscsi_timeout;
14232 	} else {
14233 		pktp->pkt_time = uscmd->uscsi_timeout;
14234 	}
14235 
14236 	/* need it later to identify USCSI request in sdintr */
14237 	xp->xb_pkt_flags |= SD_XB_USCSICMD;
14238 
14239 	xp->xb_sense_resid = uscmd->uscsi_rqresid;
14240 
14241 	pktp->pkt_private = bp;
14242 	pktp->pkt_comp = sdintr;
14243 	*pktpp = pktp;
14244 
14245 	SD_TRACE(SD_LOG_IO_CORE, un,
14246 	    "sd_initpkt_for_uscsi: exit: buf:0x%p\n", bp);
14247 
14248 	return (SD_PKT_ALLOC_SUCCESS);
14249 }
14250 
14251 
14252 /*
14253  *    Function: sd_destroypkt_for_uscsi
14254  *
14255  * Description: Free the scsi_pkt(9S) struct for the given bp, for uscsi
14256  *		IOs.. Also saves relevant info into the associated uscsi_cmd
14257  *		struct.
14258  *
14259  *     Context: May be called under interrupt context
14260  */
14261 
14262 static void
14263 sd_destroypkt_for_uscsi(struct buf *bp)
14264 {
14265 	struct uscsi_cmd *uscmd;
14266 	struct sd_xbuf	*xp;
14267 	struct scsi_pkt	*pktp;
14268 	struct sd_lun	*un;
14269 	struct sd_uscsi_info *suip;
14270 
14271 	ASSERT(bp != NULL);
14272 	xp = SD_GET_XBUF(bp);
14273 	ASSERT(xp != NULL);
14274 	un = SD_GET_UN(bp);
14275 	ASSERT(un != NULL);
14276 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14277 	pktp = SD_GET_PKTP(bp);
14278 	ASSERT(pktp != NULL);
14279 
14280 	SD_TRACE(SD_LOG_IO_CORE, un,
14281 	    "sd_destroypkt_for_uscsi: entry: buf:0x%p\n", bp);
14282 
14283 	/* The pointer to the uscsi_cmd struct is expected in xb_pktinfo */
14284 	uscmd = (struct uscsi_cmd *)xp->xb_pktinfo;
14285 	ASSERT(uscmd != NULL);
14286 
14287 	/* Save the status and the residual into the uscsi_cmd struct */
14288 	uscmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
14289 	uscmd->uscsi_resid  = bp->b_resid;
14290 
14291 	/* Transfer scsi_pkt information to uscsi */
14292 	(void) scsi_uscsi_pktfini(pktp, uscmd);
14293 
14294 	/*
14295 	 * If enabled, copy any saved sense data into the area specified
14296 	 * by the uscsi command.
14297 	 */
14298 	if (((uscmd->uscsi_flags & USCSI_RQENABLE) != 0) &&
14299 	    (uscmd->uscsi_rqlen != 0) && (uscmd->uscsi_rqbuf != NULL)) {
14300 		/*
14301 		 * Note: uscmd->uscsi_rqbuf should always point to a buffer
14302 		 * at least SENSE_LENGTH bytes in size (see sd_send_scsi_cmd())
14303 		 */
14304 		uscmd->uscsi_rqstatus = xp->xb_sense_status;
14305 		uscmd->uscsi_rqresid  = xp->xb_sense_resid;
14306 		if (uscmd->uscsi_rqlen > SENSE_LENGTH) {
14307 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
14308 			    MAX_SENSE_LENGTH);
14309 		} else {
14310 			bcopy(xp->xb_sense_data, uscmd->uscsi_rqbuf,
14311 			    SENSE_LENGTH);
14312 		}
14313 	}
14314 	/*
14315 	 * The following assignments are for SCSI FMA.
14316 	 */
14317 	ASSERT(xp->xb_private != NULL);
14318 	suip = (struct sd_uscsi_info *)xp->xb_private;
14319 	suip->ui_pkt_reason = pktp->pkt_reason;
14320 	suip->ui_pkt_state = pktp->pkt_state;
14321 	suip->ui_pkt_statistics = pktp->pkt_statistics;
14322 	suip->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
14323 
14324 	/* We are done with the scsi_pkt; free it now */
14325 	ASSERT(SD_GET_PKTP(bp) != NULL);
14326 	scsi_destroy_pkt(SD_GET_PKTP(bp));
14327 
14328 	SD_TRACE(SD_LOG_IO_CORE, un,
14329 	    "sd_destroypkt_for_uscsi: exit: buf:0x%p\n", bp);
14330 }
14331 
14332 
14333 /*
14334  *    Function: sd_bioclone_alloc
14335  *
14336  * Description: Allocate a buf(9S) and init it as per the given buf
14337  *		and the various arguments.  The associated sd_xbuf
14338  *		struct is (nearly) duplicated.  The struct buf *bp
14339  *		argument is saved in new_xp->xb_private.
14340  *
14341  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14342  *		datalen - size of data area for the shadow bp
14343  *		blkno - starting LBA
14344  *		func - function pointer for b_iodone in the shadow buf. (May
14345  *			be NULL if none.)
14346  *
14347  * Return Code: Pointer to allocates buf(9S) struct
14348  *
14349  *     Context: Can sleep.
14350  */
14351 
14352 static struct buf *
14353 sd_bioclone_alloc(struct buf *bp, size_t datalen,
14354 	daddr_t blkno, int (*func)(struct buf *))
14355 {
14356 	struct	sd_lun	*un;
14357 	struct	sd_xbuf	*xp;
14358 	struct	sd_xbuf	*new_xp;
14359 	struct	buf	*new_bp;
14360 
14361 	ASSERT(bp != NULL);
14362 	xp = SD_GET_XBUF(bp);
14363 	ASSERT(xp != NULL);
14364 	un = SD_GET_UN(bp);
14365 	ASSERT(un != NULL);
14366 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14367 
14368 	new_bp = bioclone(bp, 0, datalen, SD_GET_DEV(un), blkno, func,
14369 	    NULL, KM_SLEEP);
14370 
14371 	new_bp->b_lblkno	= blkno;
14372 
14373 	/*
14374 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14375 	 * original xbuf into it.
14376 	 */
14377 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14378 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14379 
14380 	/*
14381 	 * The given bp is automatically saved in the xb_private member
14382 	 * of the new xbuf.  Callers are allowed to depend on this.
14383 	 */
14384 	new_xp->xb_private = bp;
14385 
14386 	new_bp->b_private  = new_xp;
14387 
14388 	return (new_bp);
14389 }
14390 
14391 /*
14392  *    Function: sd_shadow_buf_alloc
14393  *
14394  * Description: Allocate a buf(9S) and init it as per the given buf
14395  *		and the various arguments.  The associated sd_xbuf
14396  *		struct is (nearly) duplicated.  The struct buf *bp
14397  *		argument is saved in new_xp->xb_private.
14398  *
14399  *   Arguments: bp - ptr the the buf(9S) to be "shadowed"
14400  *		datalen - size of data area for the shadow bp
14401  *		bflags - B_READ or B_WRITE (pseudo flag)
14402  *		blkno - starting LBA
14403  *		func - function pointer for b_iodone in the shadow buf. (May
14404  *			be NULL if none.)
14405  *
14406  * Return Code: Pointer to allocates buf(9S) struct
14407  *
14408  *     Context: Can sleep.
14409  */
14410 
14411 static struct buf *
14412 sd_shadow_buf_alloc(struct buf *bp, size_t datalen, uint_t bflags,
14413 	daddr_t blkno, int (*func)(struct buf *))
14414 {
14415 	struct	sd_lun	*un;
14416 	struct	sd_xbuf	*xp;
14417 	struct	sd_xbuf	*new_xp;
14418 	struct	buf	*new_bp;
14419 
14420 	ASSERT(bp != NULL);
14421 	xp = SD_GET_XBUF(bp);
14422 	ASSERT(xp != NULL);
14423 	un = SD_GET_UN(bp);
14424 	ASSERT(un != NULL);
14425 	ASSERT(!mutex_owned(SD_MUTEX(un)));
14426 
14427 	if (bp->b_flags & (B_PAGEIO | B_PHYS)) {
14428 		bp_mapin(bp);
14429 	}
14430 
14431 	bflags &= (B_READ | B_WRITE);
14432 #if defined(__i386) || defined(__amd64)
14433 	new_bp = getrbuf(KM_SLEEP);
14434 	new_bp->b_un.b_addr = kmem_zalloc(datalen, KM_SLEEP);
14435 	new_bp->b_bcount = datalen;
14436 	new_bp->b_flags = bflags |
14437 	    (bp->b_flags & ~(B_PAGEIO | B_PHYS | B_REMAPPED | B_SHADOW));
14438 #else
14439 	new_bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), NULL,
14440 	    datalen, bflags, SLEEP_FUNC, NULL);
14441 #endif
14442 	new_bp->av_forw	= NULL;
14443 	new_bp->av_back	= NULL;
14444 	new_bp->b_dev	= bp->b_dev;
14445 	new_bp->b_blkno	= blkno;
14446 	new_bp->b_iodone = func;
14447 	new_bp->b_edev	= bp->b_edev;
14448 	new_bp->b_resid	= 0;
14449 
14450 	/* We need to preserve the B_FAILFAST flag */
14451 	if (bp->b_flags & B_FAILFAST) {
14452 		new_bp->b_flags |= B_FAILFAST;
14453 	}
14454 
14455 	/*
14456 	 * Allocate an xbuf for the shadow bp and copy the contents of the
14457 	 * original xbuf into it.
14458 	 */
14459 	new_xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
14460 	bcopy(xp, new_xp, sizeof (struct sd_xbuf));
14461 
14462 	/* Need later to copy data between the shadow buf & original buf! */
14463 	new_xp->xb_pkt_flags |= PKT_CONSISTENT;
14464 
14465 	/*
14466 	 * The given bp is automatically saved in the xb_private member
14467 	 * of the new xbuf.  Callers are allowed to depend on this.
14468 	 */
14469 	new_xp->xb_private = bp;
14470 
14471 	new_bp->b_private  = new_xp;
14472 
14473 	return (new_bp);
14474 }
14475 
14476 /*
14477  *    Function: sd_bioclone_free
14478  *
14479  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations
14480  *		in the larger than partition operation.
14481  *
14482  *     Context: May be called under interrupt context
14483  */
14484 
14485 static void
14486 sd_bioclone_free(struct buf *bp)
14487 {
14488 	struct sd_xbuf	*xp;
14489 
14490 	ASSERT(bp != NULL);
14491 	xp = SD_GET_XBUF(bp);
14492 	ASSERT(xp != NULL);
14493 
14494 	/*
14495 	 * Call bp_mapout() before freeing the buf,  in case a lower
14496 	 * layer or HBA  had done a bp_mapin().  we must do this here
14497 	 * as we are the "originator" of the shadow buf.
14498 	 */
14499 	bp_mapout(bp);
14500 
14501 	/*
14502 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14503 	 * never gets confused by a stale value in this field. (Just a little
14504 	 * extra defensiveness here.)
14505 	 */
14506 	bp->b_iodone = NULL;
14507 
14508 	freerbuf(bp);
14509 
14510 	kmem_free(xp, sizeof (struct sd_xbuf));
14511 }
14512 
14513 /*
14514  *    Function: sd_shadow_buf_free
14515  *
14516  * Description: Deallocate a buf(9S) that was used for 'shadow' IO operations.
14517  *
14518  *     Context: May be called under interrupt context
14519  */
14520 
14521 static void
14522 sd_shadow_buf_free(struct buf *bp)
14523 {
14524 	struct sd_xbuf	*xp;
14525 
14526 	ASSERT(bp != NULL);
14527 	xp = SD_GET_XBUF(bp);
14528 	ASSERT(xp != NULL);
14529 
14530 #if defined(__sparc)
14531 	/*
14532 	 * Call bp_mapout() before freeing the buf,  in case a lower
14533 	 * layer or HBA  had done a bp_mapin().  we must do this here
14534 	 * as we are the "originator" of the shadow buf.
14535 	 */
14536 	bp_mapout(bp);
14537 #endif
14538 
14539 	/*
14540 	 * Null out b_iodone before freeing the bp, to ensure that the driver
14541 	 * never gets confused by a stale value in this field. (Just a little
14542 	 * extra defensiveness here.)
14543 	 */
14544 	bp->b_iodone = NULL;
14545 
14546 #if defined(__i386) || defined(__amd64)
14547 	kmem_free(bp->b_un.b_addr, bp->b_bcount);
14548 	freerbuf(bp);
14549 #else
14550 	scsi_free_consistent_buf(bp);
14551 #endif
14552 
14553 	kmem_free(xp, sizeof (struct sd_xbuf));
14554 }
14555 
14556 
14557 /*
14558  *    Function: sd_print_transport_rejected_message
14559  *
14560  * Description: This implements the ludicrously complex rules for printing
14561  *		a "transport rejected" message.  This is to address the
14562  *		specific problem of having a flood of this error message
14563  *		produced when a failover occurs.
14564  *
14565  *     Context: Any.
14566  */
14567 
14568 static void
14569 sd_print_transport_rejected_message(struct sd_lun *un, struct sd_xbuf *xp,
14570 	int code)
14571 {
14572 	ASSERT(un != NULL);
14573 	ASSERT(mutex_owned(SD_MUTEX(un)));
14574 	ASSERT(xp != NULL);
14575 
14576 	/*
14577 	 * Print the "transport rejected" message under the following
14578 	 * conditions:
14579 	 *
14580 	 * - Whenever the SD_LOGMASK_DIAG bit of sd_level_mask is set
14581 	 * - The error code from scsi_transport() is NOT a TRAN_FATAL_ERROR.
14582 	 * - If the error code IS a TRAN_FATAL_ERROR, then the message is
14583 	 *   printed the FIRST time a TRAN_FATAL_ERROR is returned from
14584 	 *   scsi_transport(9F) (which indicates that the target might have
14585 	 *   gone off-line).  This uses the un->un_tran_fatal_count
14586 	 *   count, which is incremented whenever a TRAN_FATAL_ERROR is
14587 	 *   received, and reset to zero whenver a TRAN_ACCEPT is returned
14588 	 *   from scsi_transport().
14589 	 *
14590 	 * The FLAG_SILENT in the scsi_pkt must be CLEARED in ALL of
14591 	 * the preceeding cases in order for the message to be printed.
14592 	 */
14593 	if (((xp->xb_pktp->pkt_flags & FLAG_SILENT) == 0) &&
14594 	    (SD_FM_LOG(un) == SD_FM_LOG_NSUP)) {
14595 		if ((sd_level_mask & SD_LOGMASK_DIAG) ||
14596 		    (code != TRAN_FATAL_ERROR) ||
14597 		    (un->un_tran_fatal_count == 1)) {
14598 			switch (code) {
14599 			case TRAN_BADPKT:
14600 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14601 				    "transport rejected bad packet\n");
14602 				break;
14603 			case TRAN_FATAL_ERROR:
14604 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14605 				    "transport rejected fatal error\n");
14606 				break;
14607 			default:
14608 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
14609 				    "transport rejected (%d)\n", code);
14610 				break;
14611 			}
14612 		}
14613 	}
14614 }
14615 
14616 
14617 /*
14618  *    Function: sd_add_buf_to_waitq
14619  *
14620  * Description: Add the given buf(9S) struct to the wait queue for the
14621  *		instance.  If sorting is enabled, then the buf is added
14622  *		to the queue via an elevator sort algorithm (a la
14623  *		disksort(9F)).  The SD_GET_BLKNO(bp) is used as the sort key.
14624  *		If sorting is not enabled, then the buf is just added
14625  *		to the end of the wait queue.
14626  *
14627  * Return Code: void
14628  *
14629  *     Context: Does not sleep/block, therefore technically can be called
14630  *		from any context.  However if sorting is enabled then the
14631  *		execution time is indeterminate, and may take long if
14632  *		the wait queue grows large.
14633  */
14634 
14635 static void
14636 sd_add_buf_to_waitq(struct sd_lun *un, struct buf *bp)
14637 {
14638 	struct buf *ap;
14639 
14640 	ASSERT(bp != NULL);
14641 	ASSERT(un != NULL);
14642 	ASSERT(mutex_owned(SD_MUTEX(un)));
14643 
14644 	/* If the queue is empty, add the buf as the only entry & return. */
14645 	if (un->un_waitq_headp == NULL) {
14646 		ASSERT(un->un_waitq_tailp == NULL);
14647 		un->un_waitq_headp = un->un_waitq_tailp = bp;
14648 		bp->av_forw = NULL;
14649 		return;
14650 	}
14651 
14652 	ASSERT(un->un_waitq_tailp != NULL);
14653 
14654 	/*
14655 	 * If sorting is disabled, just add the buf to the tail end of
14656 	 * the wait queue and return.
14657 	 */
14658 	if (un->un_f_disksort_disabled || un->un_f_enable_rmw) {
14659 		un->un_waitq_tailp->av_forw = bp;
14660 		un->un_waitq_tailp = bp;
14661 		bp->av_forw = NULL;
14662 		return;
14663 	}
14664 
14665 	/*
14666 	 * Sort thru the list of requests currently on the wait queue
14667 	 * and add the new buf request at the appropriate position.
14668 	 *
14669 	 * The un->un_waitq_headp is an activity chain pointer on which
14670 	 * we keep two queues, sorted in ascending SD_GET_BLKNO() order. The
14671 	 * first queue holds those requests which are positioned after
14672 	 * the current SD_GET_BLKNO() (in the first request); the second holds
14673 	 * requests which came in after their SD_GET_BLKNO() number was passed.
14674 	 * Thus we implement a one way scan, retracting after reaching
14675 	 * the end of the drive to the first request on the second
14676 	 * queue, at which time it becomes the first queue.
14677 	 * A one-way scan is natural because of the way UNIX read-ahead
14678 	 * blocks are allocated.
14679 	 *
14680 	 * If we lie after the first request, then we must locate the
14681 	 * second request list and add ourselves to it.
14682 	 */
14683 	ap = un->un_waitq_headp;
14684 	if (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap)) {
14685 		while (ap->av_forw != NULL) {
14686 			/*
14687 			 * Look for an "inversion" in the (normally
14688 			 * ascending) block numbers. This indicates
14689 			 * the start of the second request list.
14690 			 */
14691 			if (SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) {
14692 				/*
14693 				 * Search the second request list for the
14694 				 * first request at a larger block number.
14695 				 * We go before that; however if there is
14696 				 * no such request, we go at the end.
14697 				 */
14698 				do {
14699 					if (SD_GET_BLKNO(bp) <
14700 					    SD_GET_BLKNO(ap->av_forw)) {
14701 						goto insert;
14702 					}
14703 					ap = ap->av_forw;
14704 				} while (ap->av_forw != NULL);
14705 				goto insert;		/* after last */
14706 			}
14707 			ap = ap->av_forw;
14708 		}
14709 
14710 		/*
14711 		 * No inversions... we will go after the last, and
14712 		 * be the first request in the second request list.
14713 		 */
14714 		goto insert;
14715 	}
14716 
14717 	/*
14718 	 * Request is at/after the current request...
14719 	 * sort in the first request list.
14720 	 */
14721 	while (ap->av_forw != NULL) {
14722 		/*
14723 		 * We want to go after the current request (1) if
14724 		 * there is an inversion after it (i.e. it is the end
14725 		 * of the first request list), or (2) if the next
14726 		 * request is a larger block no. than our request.
14727 		 */
14728 		if ((SD_GET_BLKNO(ap->av_forw) < SD_GET_BLKNO(ap)) ||
14729 		    (SD_GET_BLKNO(bp) < SD_GET_BLKNO(ap->av_forw))) {
14730 			goto insert;
14731 		}
14732 		ap = ap->av_forw;
14733 	}
14734 
14735 	/*
14736 	 * Neither a second list nor a larger request, therefore
14737 	 * we go at the end of the first list (which is the same
14738 	 * as the end of the whole schebang).
14739 	 */
14740 insert:
14741 	bp->av_forw = ap->av_forw;
14742 	ap->av_forw = bp;
14743 
14744 	/*
14745 	 * If we inserted onto the tail end of the waitq, make sure the
14746 	 * tail pointer is updated.
14747 	 */
14748 	if (ap == un->un_waitq_tailp) {
14749 		un->un_waitq_tailp = bp;
14750 	}
14751 }
14752 
14753 
14754 /*
14755  *    Function: sd_start_cmds
14756  *
14757  * Description: Remove and transport cmds from the driver queues.
14758  *
14759  *   Arguments: un - pointer to the unit (soft state) struct for the target.
14760  *
14761  *		immed_bp - ptr to a buf to be transported immediately. Only
14762  *		the immed_bp is transported; bufs on the waitq are not
14763  *		processed and the un_retry_bp is not checked.  If immed_bp is
14764  *		NULL, then normal queue processing is performed.
14765  *
14766  *     Context: May be called from kernel thread context, interrupt context,
14767  *		or runout callback context. This function may not block or
14768  *		call routines that block.
14769  */
14770 
14771 static void
14772 sd_start_cmds(struct sd_lun *un, struct buf *immed_bp)
14773 {
14774 	struct	sd_xbuf	*xp;
14775 	struct	buf	*bp;
14776 	void	(*statp)(kstat_io_t *);
14777 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14778 	void	(*saved_statp)(kstat_io_t *);
14779 #endif
14780 	int	rval;
14781 	struct sd_fm_internal *sfip = NULL;
14782 
14783 	ASSERT(un != NULL);
14784 	ASSERT(mutex_owned(SD_MUTEX(un)));
14785 	ASSERT(un->un_ncmds_in_transport >= 0);
14786 	ASSERT(un->un_throttle >= 0);
14787 
14788 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: entry\n");
14789 
14790 	do {
14791 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14792 		saved_statp = NULL;
14793 #endif
14794 
14795 		/*
14796 		 * If we are syncing or dumping, fail the command to
14797 		 * avoid recursively calling back into scsi_transport().
14798 		 * The dump I/O itself uses a separate code path so this
14799 		 * only prevents non-dump I/O from being sent while dumping.
14800 		 * File system sync takes place before dumping begins.
14801 		 * During panic, filesystem I/O is allowed provided
14802 		 * un_in_callback is <= 1.  This is to prevent recursion
14803 		 * such as sd_start_cmds -> scsi_transport -> sdintr ->
14804 		 * sd_start_cmds and so on.  See panic.c for more information
14805 		 * about the states the system can be in during panic.
14806 		 */
14807 		if ((un->un_state == SD_STATE_DUMPING) ||
14808 		    (ddi_in_panic() && (un->un_in_callback > 1))) {
14809 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14810 			    "sd_start_cmds: panicking\n");
14811 			goto exit;
14812 		}
14813 
14814 		if ((bp = immed_bp) != NULL) {
14815 			/*
14816 			 * We have a bp that must be transported immediately.
14817 			 * It's OK to transport the immed_bp here without doing
14818 			 * the throttle limit check because the immed_bp is
14819 			 * always used in a retry/recovery case. This means
14820 			 * that we know we are not at the throttle limit by
14821 			 * virtue of the fact that to get here we must have
14822 			 * already gotten a command back via sdintr(). This also
14823 			 * relies on (1) the command on un_retry_bp preventing
14824 			 * further commands from the waitq from being issued;
14825 			 * and (2) the code in sd_retry_command checking the
14826 			 * throttle limit before issuing a delayed or immediate
14827 			 * retry. This holds even if the throttle limit is
14828 			 * currently ratcheted down from its maximum value.
14829 			 */
14830 			statp = kstat_runq_enter;
14831 			if (bp == un->un_retry_bp) {
14832 				ASSERT((un->un_retry_statp == NULL) ||
14833 				    (un->un_retry_statp == kstat_waitq_enter) ||
14834 				    (un->un_retry_statp ==
14835 				    kstat_runq_back_to_waitq));
14836 				/*
14837 				 * If the waitq kstat was incremented when
14838 				 * sd_set_retry_bp() queued this bp for a retry,
14839 				 * then we must set up statp so that the waitq
14840 				 * count will get decremented correctly below.
14841 				 * Also we must clear un->un_retry_statp to
14842 				 * ensure that we do not act on a stale value
14843 				 * in this field.
14844 				 */
14845 				if ((un->un_retry_statp == kstat_waitq_enter) ||
14846 				    (un->un_retry_statp ==
14847 				    kstat_runq_back_to_waitq)) {
14848 					statp = kstat_waitq_to_runq;
14849 				}
14850 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14851 				saved_statp = un->un_retry_statp;
14852 #endif
14853 				un->un_retry_statp = NULL;
14854 
14855 				SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
14856 				    "sd_start_cmds: un:0x%p: GOT retry_bp:0x%p "
14857 				    "un_throttle:%d un_ncmds_in_transport:%d\n",
14858 				    un, un->un_retry_bp, un->un_throttle,
14859 				    un->un_ncmds_in_transport);
14860 			} else {
14861 				SD_TRACE(SD_LOG_IO_CORE, un, "sd_start_cmds: "
14862 				    "processing priority bp:0x%p\n", bp);
14863 			}
14864 
14865 		} else if ((bp = un->un_waitq_headp) != NULL) {
14866 			/*
14867 			 * A command on the waitq is ready to go, but do not
14868 			 * send it if:
14869 			 *
14870 			 * (1) the throttle limit has been reached, or
14871 			 * (2) a retry is pending, or
14872 			 * (3) a START_STOP_UNIT callback pending, or
14873 			 * (4) a callback for a SD_PATH_DIRECT_PRIORITY
14874 			 *	command is pending.
14875 			 *
14876 			 * For all of these conditions, IO processing will
14877 			 * restart after the condition is cleared.
14878 			 */
14879 			if (un->un_ncmds_in_transport >= un->un_throttle) {
14880 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14881 				    "sd_start_cmds: exiting, "
14882 				    "throttle limit reached!\n");
14883 				goto exit;
14884 			}
14885 			if (un->un_retry_bp != NULL) {
14886 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14887 				    "sd_start_cmds: exiting, retry pending!\n");
14888 				goto exit;
14889 			}
14890 			if (un->un_startstop_timeid != NULL) {
14891 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14892 				    "sd_start_cmds: exiting, "
14893 				    "START_STOP pending!\n");
14894 				goto exit;
14895 			}
14896 			if (un->un_direct_priority_timeid != NULL) {
14897 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
14898 				    "sd_start_cmds: exiting, "
14899 				    "SD_PATH_DIRECT_PRIORITY cmd. pending!\n");
14900 				goto exit;
14901 			}
14902 
14903 			/* Dequeue the command */
14904 			un->un_waitq_headp = bp->av_forw;
14905 			if (un->un_waitq_headp == NULL) {
14906 				un->un_waitq_tailp = NULL;
14907 			}
14908 			bp->av_forw = NULL;
14909 			statp = kstat_waitq_to_runq;
14910 			SD_TRACE(SD_LOG_IO_CORE, un,
14911 			    "sd_start_cmds: processing waitq bp:0x%p\n", bp);
14912 
14913 		} else {
14914 			/* No work to do so bail out now */
14915 			SD_TRACE(SD_LOG_IO_CORE, un,
14916 			    "sd_start_cmds: no more work, exiting!\n");
14917 			goto exit;
14918 		}
14919 
14920 		/*
14921 		 * Reset the state to normal. This is the mechanism by which
14922 		 * the state transitions from either SD_STATE_RWAIT or
14923 		 * SD_STATE_OFFLINE to SD_STATE_NORMAL.
14924 		 * If state is SD_STATE_PM_CHANGING then this command is
14925 		 * part of the device power control and the state must
14926 		 * not be put back to normal. Doing so would would
14927 		 * allow new commands to proceed when they shouldn't,
14928 		 * the device may be going off.
14929 		 */
14930 		if ((un->un_state != SD_STATE_SUSPENDED) &&
14931 		    (un->un_state != SD_STATE_PM_CHANGING)) {
14932 			New_state(un, SD_STATE_NORMAL);
14933 		}
14934 
14935 		xp = SD_GET_XBUF(bp);
14936 		ASSERT(xp != NULL);
14937 
14938 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
14939 		/*
14940 		 * Allocate the scsi_pkt if we need one, or attach DMA
14941 		 * resources if we have a scsi_pkt that needs them. The
14942 		 * latter should only occur for commands that are being
14943 		 * retried.
14944 		 */
14945 		if ((xp->xb_pktp == NULL) ||
14946 		    ((xp->xb_pkt_flags & SD_XB_DMA_FREED) != 0)) {
14947 #else
14948 		if (xp->xb_pktp == NULL) {
14949 #endif
14950 			/*
14951 			 * There is no scsi_pkt allocated for this buf. Call
14952 			 * the initpkt function to allocate & init one.
14953 			 *
14954 			 * The scsi_init_pkt runout callback functionality is
14955 			 * implemented as follows:
14956 			 *
14957 			 * 1) The initpkt function always calls
14958 			 *    scsi_init_pkt(9F) with sdrunout specified as the
14959 			 *    callback routine.
14960 			 * 2) A successful packet allocation is initialized and
14961 			 *    the I/O is transported.
14962 			 * 3) The I/O associated with an allocation resource
14963 			 *    failure is left on its queue to be retried via
14964 			 *    runout or the next I/O.
14965 			 * 4) The I/O associated with a DMA error is removed
14966 			 *    from the queue and failed with EIO. Processing of
14967 			 *    the transport queues is also halted to be
14968 			 *    restarted via runout or the next I/O.
14969 			 * 5) The I/O associated with a CDB size or packet
14970 			 *    size error is removed from the queue and failed
14971 			 *    with EIO. Processing of the transport queues is
14972 			 *    continued.
14973 			 *
14974 			 * Note: there is no interface for canceling a runout
14975 			 * callback. To prevent the driver from detaching or
14976 			 * suspending while a runout is pending the driver
14977 			 * state is set to SD_STATE_RWAIT
14978 			 *
14979 			 * Note: using the scsi_init_pkt callback facility can
14980 			 * result in an I/O request persisting at the head of
14981 			 * the list which cannot be satisfied even after
14982 			 * multiple retries. In the future the driver may
14983 			 * implement some kind of maximum runout count before
14984 			 * failing an I/O.
14985 			 *
14986 			 * Note: the use of funcp below may seem superfluous,
14987 			 * but it helps warlock figure out the correct
14988 			 * initpkt function calls (see [s]sd.wlcmd).
14989 			 */
14990 			struct scsi_pkt	*pktp;
14991 			int (*funcp)(struct buf *bp, struct scsi_pkt **pktp);
14992 
14993 			ASSERT(bp != un->un_rqs_bp);
14994 
14995 			funcp = sd_initpkt_map[xp->xb_chain_iostart];
14996 			switch ((*funcp)(bp, &pktp)) {
14997 			case  SD_PKT_ALLOC_SUCCESS:
14998 				xp->xb_pktp = pktp;
14999 				SD_TRACE(SD_LOG_IO_CORE, un,
15000 				    "sd_start_cmd: SD_PKT_ALLOC_SUCCESS 0x%p\n",
15001 				    pktp);
15002 				goto got_pkt;
15003 
15004 			case SD_PKT_ALLOC_FAILURE:
15005 				/*
15006 				 * Temporary (hopefully) resource depletion.
15007 				 * Since retries and RQS commands always have a
15008 				 * scsi_pkt allocated, these cases should never
15009 				 * get here. So the only cases this needs to
15010 				 * handle is a bp from the waitq (which we put
15011 				 * back onto the waitq for sdrunout), or a bp
15012 				 * sent as an immed_bp (which we just fail).
15013 				 */
15014 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15015 				    "sd_start_cmds: SD_PKT_ALLOC_FAILURE\n");
15016 
15017 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
15018 
15019 				if (bp == immed_bp) {
15020 					/*
15021 					 * If SD_XB_DMA_FREED is clear, then
15022 					 * this is a failure to allocate a
15023 					 * scsi_pkt, and we must fail the
15024 					 * command.
15025 					 */
15026 					if ((xp->xb_pkt_flags &
15027 					    SD_XB_DMA_FREED) == 0) {
15028 						break;
15029 					}
15030 
15031 					/*
15032 					 * If this immediate command is NOT our
15033 					 * un_retry_bp, then we must fail it.
15034 					 */
15035 					if (bp != un->un_retry_bp) {
15036 						break;
15037 					}
15038 
15039 					/*
15040 					 * We get here if this cmd is our
15041 					 * un_retry_bp that was DMAFREED, but
15042 					 * scsi_init_pkt() failed to reallocate
15043 					 * DMA resources when we attempted to
15044 					 * retry it. This can happen when an
15045 					 * mpxio failover is in progress, but
15046 					 * we don't want to just fail the
15047 					 * command in this case.
15048 					 *
15049 					 * Use timeout(9F) to restart it after
15050 					 * a 100ms delay.  We don't want to
15051 					 * let sdrunout() restart it, because
15052 					 * sdrunout() is just supposed to start
15053 					 * commands that are sitting on the
15054 					 * wait queue.  The un_retry_bp stays
15055 					 * set until the command completes, but
15056 					 * sdrunout can be called many times
15057 					 * before that happens.  Since sdrunout
15058 					 * cannot tell if the un_retry_bp is
15059 					 * already in the transport, it could
15060 					 * end up calling scsi_transport() for
15061 					 * the un_retry_bp multiple times.
15062 					 *
15063 					 * Also: don't schedule the callback
15064 					 * if some other callback is already
15065 					 * pending.
15066 					 */
15067 					if (un->un_retry_statp == NULL) {
15068 						/*
15069 						 * restore the kstat pointer to
15070 						 * keep kstat counts coherent
15071 						 * when we do retry the command.
15072 						 */
15073 						un->un_retry_statp =
15074 						    saved_statp;
15075 					}
15076 
15077 					if ((un->un_startstop_timeid == NULL) &&
15078 					    (un->un_retry_timeid == NULL) &&
15079 					    (un->un_direct_priority_timeid ==
15080 					    NULL)) {
15081 
15082 						un->un_retry_timeid =
15083 						    timeout(
15084 						    sd_start_retry_command,
15085 						    un, SD_RESTART_TIMEOUT);
15086 					}
15087 					goto exit;
15088 				}
15089 
15090 #else
15091 				if (bp == immed_bp) {
15092 					break;	/* Just fail the command */
15093 				}
15094 #endif
15095 
15096 				/* Add the buf back to the head of the waitq */
15097 				bp->av_forw = un->un_waitq_headp;
15098 				un->un_waitq_headp = bp;
15099 				if (un->un_waitq_tailp == NULL) {
15100 					un->un_waitq_tailp = bp;
15101 				}
15102 				goto exit;
15103 
15104 			case SD_PKT_ALLOC_FAILURE_NO_DMA:
15105 				/*
15106 				 * HBA DMA resource failure. Fail the command
15107 				 * and continue processing of the queues.
15108 				 */
15109 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15110 				    "sd_start_cmds: "
15111 				    "SD_PKT_ALLOC_FAILURE_NO_DMA\n");
15112 				break;
15113 
15114 			case SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL:
15115 				/*
15116 				 * Note:x86: Partial DMA mapping not supported
15117 				 * for USCSI commands, and all the needed DMA
15118 				 * resources were not allocated.
15119 				 */
15120 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15121 				    "sd_start_cmds: "
15122 				    "SD_PKT_ALLOC_FAILURE_PKT_TOO_SMALL\n");
15123 				break;
15124 
15125 			case SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL:
15126 				/*
15127 				 * Note:x86: Request cannot fit into CDB based
15128 				 * on lba and len.
15129 				 */
15130 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15131 				    "sd_start_cmds: "
15132 				    "SD_PKT_ALLOC_FAILURE_CDB_TOO_SMALL\n");
15133 				break;
15134 
15135 			default:
15136 				/* Should NEVER get here! */
15137 				panic("scsi_initpkt error");
15138 				/*NOTREACHED*/
15139 			}
15140 
15141 			/*
15142 			 * Fatal error in allocating a scsi_pkt for this buf.
15143 			 * Update kstats & return the buf with an error code.
15144 			 * We must use sd_return_failed_command_no_restart() to
15145 			 * avoid a recursive call back into sd_start_cmds().
15146 			 * However this also means that we must keep processing
15147 			 * the waitq here in order to avoid stalling.
15148 			 */
15149 			if (statp == kstat_waitq_to_runq) {
15150 				SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
15151 			}
15152 			sd_return_failed_command_no_restart(un, bp, EIO);
15153 			if (bp == immed_bp) {
15154 				/* immed_bp is gone by now, so clear this */
15155 				immed_bp = NULL;
15156 			}
15157 			continue;
15158 		}
15159 got_pkt:
15160 		if (bp == immed_bp) {
15161 			/* goto the head of the class.... */
15162 			xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15163 		}
15164 
15165 		un->un_ncmds_in_transport++;
15166 		SD_UPDATE_KSTATS(un, statp, bp);
15167 
15168 		/*
15169 		 * Call scsi_transport() to send the command to the target.
15170 		 * According to SCSA architecture, we must drop the mutex here
15171 		 * before calling scsi_transport() in order to avoid deadlock.
15172 		 * Note that the scsi_pkt's completion routine can be executed
15173 		 * (from interrupt context) even before the call to
15174 		 * scsi_transport() returns.
15175 		 */
15176 		SD_TRACE(SD_LOG_IO_CORE, un,
15177 		    "sd_start_cmds: calling scsi_transport()\n");
15178 		DTRACE_PROBE1(scsi__transport__dispatch, struct buf *, bp);
15179 
15180 		mutex_exit(SD_MUTEX(un));
15181 		rval = scsi_transport(xp->xb_pktp);
15182 		mutex_enter(SD_MUTEX(un));
15183 
15184 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15185 		    "sd_start_cmds: scsi_transport() returned %d\n", rval);
15186 
15187 		switch (rval) {
15188 		case TRAN_ACCEPT:
15189 			/* Clear this with every pkt accepted by the HBA */
15190 			un->un_tran_fatal_count = 0;
15191 			break;	/* Success; try the next cmd (if any) */
15192 
15193 		case TRAN_BUSY:
15194 			un->un_ncmds_in_transport--;
15195 			ASSERT(un->un_ncmds_in_transport >= 0);
15196 
15197 			/*
15198 			 * Don't retry request sense, the sense data
15199 			 * is lost when another request is sent.
15200 			 * Free up the rqs buf and retry
15201 			 * the original failed cmd.  Update kstat.
15202 			 */
15203 			if (bp == un->un_rqs_bp) {
15204 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15205 				bp = sd_mark_rqs_idle(un, xp);
15206 				sd_retry_command(un, bp, SD_RETRIES_STANDARD,
15207 				    NULL, NULL, EIO, un->un_busy_timeout / 500,
15208 				    kstat_waitq_enter);
15209 				goto exit;
15210 			}
15211 
15212 #if defined(__i386) || defined(__amd64)	/* DMAFREE for x86 only */
15213 			/*
15214 			 * Free the DMA resources for the  scsi_pkt. This will
15215 			 * allow mpxio to select another path the next time
15216 			 * we call scsi_transport() with this scsi_pkt.
15217 			 * See sdintr() for the rationalization behind this.
15218 			 */
15219 			if ((un->un_f_is_fibre == TRUE) &&
15220 			    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
15221 			    ((xp->xb_pktp->pkt_flags & FLAG_SENSING) == 0)) {
15222 				scsi_dmafree(xp->xb_pktp);
15223 				xp->xb_pkt_flags |= SD_XB_DMA_FREED;
15224 			}
15225 #endif
15226 
15227 			if (SD_IS_DIRECT_PRIORITY(SD_GET_XBUF(bp))) {
15228 				/*
15229 				 * Commands that are SD_PATH_DIRECT_PRIORITY
15230 				 * are for error recovery situations. These do
15231 				 * not use the normal command waitq, so if they
15232 				 * get a TRAN_BUSY we cannot put them back onto
15233 				 * the waitq for later retry. One possible
15234 				 * problem is that there could already be some
15235 				 * other command on un_retry_bp that is waiting
15236 				 * for this one to complete, so we would be
15237 				 * deadlocked if we put this command back onto
15238 				 * the waitq for later retry (since un_retry_bp
15239 				 * must complete before the driver gets back to
15240 				 * commands on the waitq).
15241 				 *
15242 				 * To avoid deadlock we must schedule a callback
15243 				 * that will restart this command after a set
15244 				 * interval.  This should keep retrying for as
15245 				 * long as the underlying transport keeps
15246 				 * returning TRAN_BUSY (just like for other
15247 				 * commands).  Use the same timeout interval as
15248 				 * for the ordinary TRAN_BUSY retry.
15249 				 */
15250 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15251 				    "sd_start_cmds: scsi_transport() returned "
15252 				    "TRAN_BUSY for DIRECT_PRIORITY cmd!\n");
15253 
15254 				SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15255 				un->un_direct_priority_timeid =
15256 				    timeout(sd_start_direct_priority_command,
15257 				    bp, un->un_busy_timeout / 500);
15258 
15259 				goto exit;
15260 			}
15261 
15262 			/*
15263 			 * For TRAN_BUSY, we want to reduce the throttle value,
15264 			 * unless we are retrying a command.
15265 			 */
15266 			if (bp != un->un_retry_bp) {
15267 				sd_reduce_throttle(un, SD_THROTTLE_TRAN_BUSY);
15268 			}
15269 
15270 			/*
15271 			 * Set up the bp to be tried again 10 ms later.
15272 			 * Note:x86: Is there a timeout value in the sd_lun
15273 			 * for this condition?
15274 			 */
15275 			sd_set_retry_bp(un, bp, un->un_busy_timeout / 500,
15276 			    kstat_runq_back_to_waitq);
15277 			goto exit;
15278 
15279 		case TRAN_FATAL_ERROR:
15280 			un->un_tran_fatal_count++;
15281 			/* FALLTHRU */
15282 
15283 		case TRAN_BADPKT:
15284 		default:
15285 			un->un_ncmds_in_transport--;
15286 			ASSERT(un->un_ncmds_in_transport >= 0);
15287 
15288 			/*
15289 			 * If this is our REQUEST SENSE command with a
15290 			 * transport error, we must get back the pointers
15291 			 * to the original buf, and mark the REQUEST
15292 			 * SENSE command as "available".
15293 			 */
15294 			if (bp == un->un_rqs_bp) {
15295 				bp = sd_mark_rqs_idle(un, xp);
15296 				xp = SD_GET_XBUF(bp);
15297 			} else {
15298 				/*
15299 				 * Legacy behavior: do not update transport
15300 				 * error count for request sense commands.
15301 				 */
15302 				SD_UPDATE_ERRSTATS(un, sd_transerrs);
15303 			}
15304 
15305 			SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
15306 			sd_print_transport_rejected_message(un, xp, rval);
15307 
15308 			/*
15309 			 * This command will be terminated by SD driver due
15310 			 * to a fatal transport error. We should post
15311 			 * ereport.io.scsi.cmd.disk.tran with driver-assessment
15312 			 * of "fail" for any command to indicate this
15313 			 * situation.
15314 			 */
15315 			if (xp->xb_ena > 0) {
15316 				ASSERT(un->un_fm_private != NULL);
15317 				sfip = un->un_fm_private;
15318 				sfip->fm_ssc.ssc_flags |= SSC_FLAGS_TRAN_ABORT;
15319 				sd_ssc_extract_info(&sfip->fm_ssc, un,
15320 				    xp->xb_pktp, bp, xp);
15321 				sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
15322 			}
15323 
15324 			/*
15325 			 * We must use sd_return_failed_command_no_restart() to
15326 			 * avoid a recursive call back into sd_start_cmds().
15327 			 * However this also means that we must keep processing
15328 			 * the waitq here in order to avoid stalling.
15329 			 */
15330 			sd_return_failed_command_no_restart(un, bp, EIO);
15331 
15332 			/*
15333 			 * Notify any threads waiting in sd_ddi_suspend() that
15334 			 * a command completion has occurred.
15335 			 */
15336 			if (un->un_state == SD_STATE_SUSPENDED) {
15337 				cv_broadcast(&un->un_disk_busy_cv);
15338 			}
15339 
15340 			if (bp == immed_bp) {
15341 				/* immed_bp is gone by now, so clear this */
15342 				immed_bp = NULL;
15343 			}
15344 			break;
15345 		}
15346 
15347 	} while (immed_bp == NULL);
15348 
15349 exit:
15350 	ASSERT(mutex_owned(SD_MUTEX(un)));
15351 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_start_cmds: exit\n");
15352 }
15353 
15354 
15355 /*
15356  *    Function: sd_return_command
15357  *
15358  * Description: Returns a command to its originator (with or without an
15359  *		error).  Also starts commands waiting to be transported
15360  *		to the target.
15361  *
15362  *     Context: May be called from interrupt, kernel, or timeout context
15363  */
15364 
15365 static void
15366 sd_return_command(struct sd_lun *un, struct buf *bp)
15367 {
15368 	struct sd_xbuf *xp;
15369 	struct scsi_pkt *pktp;
15370 	struct sd_fm_internal *sfip;
15371 
15372 	ASSERT(bp != NULL);
15373 	ASSERT(un != NULL);
15374 	ASSERT(mutex_owned(SD_MUTEX(un)));
15375 	ASSERT(bp != un->un_rqs_bp);
15376 	xp = SD_GET_XBUF(bp);
15377 	ASSERT(xp != NULL);
15378 
15379 	pktp = SD_GET_PKTP(bp);
15380 	sfip = (struct sd_fm_internal *)un->un_fm_private;
15381 	ASSERT(sfip != NULL);
15382 
15383 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: entry\n");
15384 
15385 	/*
15386 	 * Note: check for the "sdrestart failed" case.
15387 	 */
15388 	if ((un->un_partial_dma_supported == 1) &&
15389 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) != SD_XB_USCSICMD) &&
15390 	    (geterror(bp) == 0) && (xp->xb_dma_resid != 0) &&
15391 	    (xp->xb_pktp->pkt_resid == 0)) {
15392 
15393 		if (sd_setup_next_xfer(un, bp, pktp, xp) != 0) {
15394 			/*
15395 			 * Successfully set up next portion of cmd
15396 			 * transfer, try sending it
15397 			 */
15398 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
15399 			    NULL, NULL, 0, (clock_t)0, NULL);
15400 			sd_start_cmds(un, NULL);
15401 			return;	/* Note:x86: need a return here? */
15402 		}
15403 	}
15404 
15405 	/*
15406 	 * If this is the failfast bp, clear it from un_failfast_bp. This
15407 	 * can happen if upon being re-tried the failfast bp either
15408 	 * succeeded or encountered another error (possibly even a different
15409 	 * error than the one that precipitated the failfast state, but in
15410 	 * that case it would have had to exhaust retries as well). Regardless,
15411 	 * this should not occur whenever the instance is in the active
15412 	 * failfast state.
15413 	 */
15414 	if (bp == un->un_failfast_bp) {
15415 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15416 		un->un_failfast_bp = NULL;
15417 	}
15418 
15419 	/*
15420 	 * Clear the failfast state upon successful completion of ANY cmd.
15421 	 */
15422 	if (bp->b_error == 0) {
15423 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15424 		/*
15425 		 * If this is a successful command, but used to be retried,
15426 		 * we will take it as a recovered command and post an
15427 		 * ereport with driver-assessment of "recovered".
15428 		 */
15429 		if (xp->xb_ena > 0) {
15430 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15431 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RECOVERY);
15432 		}
15433 	} else {
15434 		/*
15435 		 * If this is a failed non-USCSI command we will post an
15436 		 * ereport with driver-assessment set accordingly("fail" or
15437 		 * "fatal").
15438 		 */
15439 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15440 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15441 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_FATAL);
15442 		}
15443 	}
15444 
15445 	/*
15446 	 * This is used if the command was retried one or more times. Show that
15447 	 * we are done with it, and allow processing of the waitq to resume.
15448 	 */
15449 	if (bp == un->un_retry_bp) {
15450 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15451 		    "sd_return_command: un:0x%p: "
15452 		    "RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15453 		un->un_retry_bp = NULL;
15454 		un->un_retry_statp = NULL;
15455 	}
15456 
15457 	SD_UPDATE_RDWR_STATS(un, bp);
15458 	SD_UPDATE_PARTITION_STATS(un, bp);
15459 
15460 	switch (un->un_state) {
15461 	case SD_STATE_SUSPENDED:
15462 		/*
15463 		 * Notify any threads waiting in sd_ddi_suspend() that
15464 		 * a command completion has occurred.
15465 		 */
15466 		cv_broadcast(&un->un_disk_busy_cv);
15467 		break;
15468 	default:
15469 		sd_start_cmds(un, NULL);
15470 		break;
15471 	}
15472 
15473 	/* Return this command up the iodone chain to its originator. */
15474 	mutex_exit(SD_MUTEX(un));
15475 
15476 	(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15477 	xp->xb_pktp = NULL;
15478 
15479 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15480 
15481 	ASSERT(!mutex_owned(SD_MUTEX(un)));
15482 	mutex_enter(SD_MUTEX(un));
15483 
15484 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_return_command: exit\n");
15485 }
15486 
15487 
15488 /*
15489  *    Function: sd_return_failed_command
15490  *
15491  * Description: Command completion when an error occurred.
15492  *
15493  *     Context: May be called from interrupt context
15494  */
15495 
15496 static void
15497 sd_return_failed_command(struct sd_lun *un, struct buf *bp, int errcode)
15498 {
15499 	ASSERT(bp != NULL);
15500 	ASSERT(un != NULL);
15501 	ASSERT(mutex_owned(SD_MUTEX(un)));
15502 
15503 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15504 	    "sd_return_failed_command: entry\n");
15505 
15506 	/*
15507 	 * b_resid could already be nonzero due to a partial data
15508 	 * transfer, so do not change it here.
15509 	 */
15510 	SD_BIOERROR(bp, errcode);
15511 
15512 	sd_return_command(un, bp);
15513 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15514 	    "sd_return_failed_command: exit\n");
15515 }
15516 
15517 
15518 /*
15519  *    Function: sd_return_failed_command_no_restart
15520  *
15521  * Description: Same as sd_return_failed_command, but ensures that no
15522  *		call back into sd_start_cmds will be issued.
15523  *
15524  *     Context: May be called from interrupt context
15525  */
15526 
15527 static void
15528 sd_return_failed_command_no_restart(struct sd_lun *un, struct buf *bp,
15529 	int errcode)
15530 {
15531 	struct sd_xbuf *xp;
15532 
15533 	ASSERT(bp != NULL);
15534 	ASSERT(un != NULL);
15535 	ASSERT(mutex_owned(SD_MUTEX(un)));
15536 	xp = SD_GET_XBUF(bp);
15537 	ASSERT(xp != NULL);
15538 	ASSERT(errcode != 0);
15539 
15540 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15541 	    "sd_return_failed_command_no_restart: entry\n");
15542 
15543 	/*
15544 	 * b_resid could already be nonzero due to a partial data
15545 	 * transfer, so do not change it here.
15546 	 */
15547 	SD_BIOERROR(bp, errcode);
15548 
15549 	/*
15550 	 * If this is the failfast bp, clear it. This can happen if the
15551 	 * failfast bp encounterd a fatal error when we attempted to
15552 	 * re-try it (such as a scsi_transport(9F) failure).  However
15553 	 * we should NOT be in an active failfast state if the failfast
15554 	 * bp is not NULL.
15555 	 */
15556 	if (bp == un->un_failfast_bp) {
15557 		ASSERT(un->un_failfast_state == SD_FAILFAST_INACTIVE);
15558 		un->un_failfast_bp = NULL;
15559 	}
15560 
15561 	if (bp == un->un_retry_bp) {
15562 		/*
15563 		 * This command was retried one or more times. Show that we are
15564 		 * done with it, and allow processing of the waitq to resume.
15565 		 */
15566 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15567 		    "sd_return_failed_command_no_restart: "
15568 		    " un:0x%p: RETURNING retry_bp:0x%p\n", un, un->un_retry_bp);
15569 		un->un_retry_bp = NULL;
15570 		un->un_retry_statp = NULL;
15571 	}
15572 
15573 	SD_UPDATE_RDWR_STATS(un, bp);
15574 	SD_UPDATE_PARTITION_STATS(un, bp);
15575 
15576 	mutex_exit(SD_MUTEX(un));
15577 
15578 	if (xp->xb_pktp != NULL) {
15579 		(*(sd_destroypkt_map[xp->xb_chain_iodone]))(bp);
15580 		xp->xb_pktp = NULL;
15581 	}
15582 
15583 	SD_BEGIN_IODONE(xp->xb_chain_iodone, un, bp);
15584 
15585 	mutex_enter(SD_MUTEX(un));
15586 
15587 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15588 	    "sd_return_failed_command_no_restart: exit\n");
15589 }
15590 
15591 
15592 /*
15593  *    Function: sd_retry_command
15594  *
15595  * Description: queue up a command for retry, or (optionally) fail it
15596  *		if retry counts are exhausted.
15597  *
15598  *   Arguments: un - Pointer to the sd_lun struct for the target.
15599  *
15600  *		bp - Pointer to the buf for the command to be retried.
15601  *
15602  *		retry_check_flag - Flag to see which (if any) of the retry
15603  *		   counts should be decremented/checked. If the indicated
15604  *		   retry count is exhausted, then the command will not be
15605  *		   retried; it will be failed instead. This should use a
15606  *		   value equal to one of the following:
15607  *
15608  *			SD_RETRIES_NOCHECK
15609  *			SD_RESD_RETRIES_STANDARD
15610  *			SD_RETRIES_VICTIM
15611  *
15612  *		   Optionally may be bitwise-OR'ed with SD_RETRIES_ISOLATE
15613  *		   if the check should be made to see of FLAG_ISOLATE is set
15614  *		   in the pkt. If FLAG_ISOLATE is set, then the command is
15615  *		   not retried, it is simply failed.
15616  *
15617  *		user_funcp - Ptr to function to call before dispatching the
15618  *		   command. May be NULL if no action needs to be performed.
15619  *		   (Primarily intended for printing messages.)
15620  *
15621  *		user_arg - Optional argument to be passed along to
15622  *		   the user_funcp call.
15623  *
15624  *		failure_code - errno return code to set in the bp if the
15625  *		   command is going to be failed.
15626  *
15627  *		retry_delay - Retry delay interval in (clock_t) units. May
15628  *		   be zero which indicates that the retry should be retried
15629  *		   immediately (ie, without an intervening delay).
15630  *
15631  *		statp - Ptr to kstat function to be updated if the command
15632  *		   is queued for a delayed retry. May be NULL if no kstat
15633  *		   update is desired.
15634  *
15635  *     Context: May be called from interrupt context.
15636  */
15637 
15638 static void
15639 sd_retry_command(struct sd_lun *un, struct buf *bp, int retry_check_flag,
15640 	void (*user_funcp)(struct sd_lun *un, struct buf *bp, void *argp, int
15641 	code), void *user_arg, int failure_code,  clock_t retry_delay,
15642 	void (*statp)(kstat_io_t *))
15643 {
15644 	struct sd_xbuf	*xp;
15645 	struct scsi_pkt	*pktp;
15646 	struct sd_fm_internal *sfip;
15647 
15648 	ASSERT(un != NULL);
15649 	ASSERT(mutex_owned(SD_MUTEX(un)));
15650 	ASSERT(bp != NULL);
15651 	xp = SD_GET_XBUF(bp);
15652 	ASSERT(xp != NULL);
15653 	pktp = SD_GET_PKTP(bp);
15654 	ASSERT(pktp != NULL);
15655 
15656 	sfip = (struct sd_fm_internal *)un->un_fm_private;
15657 	ASSERT(sfip != NULL);
15658 
15659 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
15660 	    "sd_retry_command: entry: bp:0x%p xp:0x%p\n", bp, xp);
15661 
15662 	/*
15663 	 * If we are syncing or dumping, fail the command to avoid
15664 	 * recursively calling back into scsi_transport().
15665 	 */
15666 	if (ddi_in_panic()) {
15667 		goto fail_command_no_log;
15668 	}
15669 
15670 	/*
15671 	 * We should never be be retrying a command with FLAG_DIAGNOSE set, so
15672 	 * log an error and fail the command.
15673 	 */
15674 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
15675 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
15676 		    "ERROR, retrying FLAG_DIAGNOSE command.\n");
15677 		sd_dump_memory(un, SD_LOG_IO, "CDB",
15678 		    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
15679 		sd_dump_memory(un, SD_LOG_IO, "Sense Data",
15680 		    (uchar_t *)xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
15681 		goto fail_command;
15682 	}
15683 
15684 	/*
15685 	 * If we are suspended, then put the command onto head of the
15686 	 * wait queue since we don't want to start more commands, and
15687 	 * clear the un_retry_bp. Next time when we are resumed, will
15688 	 * handle the command in the wait queue.
15689 	 */
15690 	switch (un->un_state) {
15691 	case SD_STATE_SUSPENDED:
15692 	case SD_STATE_DUMPING:
15693 		bp->av_forw = un->un_waitq_headp;
15694 		un->un_waitq_headp = bp;
15695 		if (un->un_waitq_tailp == NULL) {
15696 			un->un_waitq_tailp = bp;
15697 		}
15698 		if (bp == un->un_retry_bp) {
15699 			un->un_retry_bp = NULL;
15700 			un->un_retry_statp = NULL;
15701 		}
15702 		SD_UPDATE_KSTATS(un, kstat_waitq_enter, bp);
15703 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: "
15704 		    "exiting; cmd bp:0x%p requeued for SUSPEND/DUMP\n", bp);
15705 		return;
15706 	default:
15707 		break;
15708 	}
15709 
15710 	/*
15711 	 * If the caller wants us to check FLAG_ISOLATE, then see if that
15712 	 * is set; if it is then we do not want to retry the command.
15713 	 * Normally, FLAG_ISOLATE is only used with USCSI cmds.
15714 	 */
15715 	if ((retry_check_flag & SD_RETRIES_ISOLATE) != 0) {
15716 		if ((pktp->pkt_flags & FLAG_ISOLATE) != 0) {
15717 			goto fail_command;
15718 		}
15719 	}
15720 
15721 
15722 	/*
15723 	 * If SD_RETRIES_FAILFAST is set, it indicates that either a
15724 	 * command timeout or a selection timeout has occurred. This means
15725 	 * that we were unable to establish an kind of communication with
15726 	 * the target, and subsequent retries and/or commands are likely
15727 	 * to encounter similar results and take a long time to complete.
15728 	 *
15729 	 * If this is a failfast error condition, we need to update the
15730 	 * failfast state, even if this bp does not have B_FAILFAST set.
15731 	 */
15732 	if (retry_check_flag & SD_RETRIES_FAILFAST) {
15733 		if (un->un_failfast_state == SD_FAILFAST_ACTIVE) {
15734 			ASSERT(un->un_failfast_bp == NULL);
15735 			/*
15736 			 * If we are already in the active failfast state, and
15737 			 * another failfast error condition has been detected,
15738 			 * then fail this command if it has B_FAILFAST set.
15739 			 * If B_FAILFAST is clear, then maintain the legacy
15740 			 * behavior of retrying heroically, even tho this will
15741 			 * take a lot more time to fail the command.
15742 			 */
15743 			if (bp->b_flags & B_FAILFAST) {
15744 				goto fail_command;
15745 			}
15746 		} else {
15747 			/*
15748 			 * We're not in the active failfast state, but we
15749 			 * have a failfast error condition, so we must begin
15750 			 * transition to the next state. We do this regardless
15751 			 * of whether or not this bp has B_FAILFAST set.
15752 			 */
15753 			if (un->un_failfast_bp == NULL) {
15754 				/*
15755 				 * This is the first bp to meet a failfast
15756 				 * condition so save it on un_failfast_bp &
15757 				 * do normal retry processing. Do not enter
15758 				 * active failfast state yet. This marks
15759 				 * entry into the "failfast pending" state.
15760 				 */
15761 				un->un_failfast_bp = bp;
15762 
15763 			} else if (un->un_failfast_bp == bp) {
15764 				/*
15765 				 * This is the second time *this* bp has
15766 				 * encountered a failfast error condition,
15767 				 * so enter active failfast state & flush
15768 				 * queues as appropriate.
15769 				 */
15770 				un->un_failfast_state = SD_FAILFAST_ACTIVE;
15771 				un->un_failfast_bp = NULL;
15772 				sd_failfast_flushq(un);
15773 
15774 				/*
15775 				 * Fail this bp now if B_FAILFAST set;
15776 				 * otherwise continue with retries. (It would
15777 				 * be pretty ironic if this bp succeeded on a
15778 				 * subsequent retry after we just flushed all
15779 				 * the queues).
15780 				 */
15781 				if (bp->b_flags & B_FAILFAST) {
15782 					goto fail_command;
15783 				}
15784 
15785 #if !defined(lint) && !defined(__lint)
15786 			} else {
15787 				/*
15788 				 * If neither of the preceeding conditionals
15789 				 * was true, it means that there is some
15790 				 * *other* bp that has met an inital failfast
15791 				 * condition and is currently either being
15792 				 * retried or is waiting to be retried. In
15793 				 * that case we should perform normal retry
15794 				 * processing on *this* bp, since there is a
15795 				 * chance that the current failfast condition
15796 				 * is transient and recoverable. If that does
15797 				 * not turn out to be the case, then retries
15798 				 * will be cleared when the wait queue is
15799 				 * flushed anyway.
15800 				 */
15801 #endif
15802 			}
15803 		}
15804 	} else {
15805 		/*
15806 		 * SD_RETRIES_FAILFAST is clear, which indicates that we
15807 		 * likely were able to at least establish some level of
15808 		 * communication with the target and subsequent commands
15809 		 * and/or retries are likely to get through to the target,
15810 		 * In this case we want to be aggressive about clearing
15811 		 * the failfast state. Note that this does not affect
15812 		 * the "failfast pending" condition.
15813 		 */
15814 		un->un_failfast_state = SD_FAILFAST_INACTIVE;
15815 	}
15816 
15817 
15818 	/*
15819 	 * Check the specified retry count to see if we can still do
15820 	 * any retries with this pkt before we should fail it.
15821 	 */
15822 	switch (retry_check_flag & SD_RETRIES_MASK) {
15823 	case SD_RETRIES_VICTIM:
15824 		/*
15825 		 * Check the victim retry count. If exhausted, then fall
15826 		 * thru & check against the standard retry count.
15827 		 */
15828 		if (xp->xb_victim_retry_count < un->un_victim_retry_count) {
15829 			/* Increment count & proceed with the retry */
15830 			xp->xb_victim_retry_count++;
15831 			break;
15832 		}
15833 		/* Victim retries exhausted, fall back to std. retries... */
15834 		/* FALLTHRU */
15835 
15836 	case SD_RETRIES_STANDARD:
15837 		if (xp->xb_retry_count >= un->un_retry_count) {
15838 			/* Retries exhausted, fail the command */
15839 			SD_TRACE(SD_LOG_IO_CORE, un,
15840 			    "sd_retry_command: retries exhausted!\n");
15841 			/*
15842 			 * update b_resid for failed SCMD_READ & SCMD_WRITE
15843 			 * commands with nonzero pkt_resid.
15844 			 */
15845 			if ((pktp->pkt_reason == CMD_CMPLT) &&
15846 			    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD) &&
15847 			    (pktp->pkt_resid != 0)) {
15848 				uchar_t op = SD_GET_PKT_OPCODE(pktp) & 0x1F;
15849 				if ((op == SCMD_READ) || (op == SCMD_WRITE)) {
15850 					SD_UPDATE_B_RESID(bp, pktp);
15851 				}
15852 			}
15853 			goto fail_command;
15854 		}
15855 		xp->xb_retry_count++;
15856 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15857 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15858 		break;
15859 
15860 	case SD_RETRIES_UA:
15861 		if (xp->xb_ua_retry_count >= sd_ua_retry_count) {
15862 			/* Retries exhausted, fail the command */
15863 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
15864 			    "Unit Attention retries exhausted. "
15865 			    "Check the target.\n");
15866 			goto fail_command;
15867 		}
15868 		xp->xb_ua_retry_count++;
15869 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15870 		    "sd_retry_command: retry count:%d\n",
15871 		    xp->xb_ua_retry_count);
15872 		break;
15873 
15874 	case SD_RETRIES_BUSY:
15875 		if (xp->xb_retry_count >= un->un_busy_retry_count) {
15876 			/* Retries exhausted, fail the command */
15877 			SD_TRACE(SD_LOG_IO_CORE, un,
15878 			    "sd_retry_command: retries exhausted!\n");
15879 			goto fail_command;
15880 		}
15881 		xp->xb_retry_count++;
15882 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15883 		    "sd_retry_command: retry count:%d\n", xp->xb_retry_count);
15884 		break;
15885 
15886 	case SD_RETRIES_NOCHECK:
15887 	default:
15888 		/* No retry count to check. Just proceed with the retry */
15889 		break;
15890 	}
15891 
15892 	xp->xb_pktp->pkt_flags |= FLAG_HEAD;
15893 
15894 	/*
15895 	 * If this is a non-USCSI command being retried
15896 	 * during execution last time, we should post an ereport with
15897 	 * driver-assessment of the value "retry".
15898 	 * For partial DMA, request sense and STATUS_QFULL, there are no
15899 	 * hardware errors, we bypass ereport posting.
15900 	 */
15901 	if (failure_code != 0) {
15902 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
15903 			sd_ssc_extract_info(&sfip->fm_ssc, un, pktp, bp, xp);
15904 			sd_ssc_post(&sfip->fm_ssc, SD_FM_DRV_RETRY);
15905 		}
15906 	}
15907 
15908 	/*
15909 	 * If we were given a zero timeout, we must attempt to retry the
15910 	 * command immediately (ie, without a delay).
15911 	 */
15912 	if (retry_delay == 0) {
15913 		/*
15914 		 * Check some limiting conditions to see if we can actually
15915 		 * do the immediate retry.  If we cannot, then we must
15916 		 * fall back to queueing up a delayed retry.
15917 		 */
15918 		if (un->un_ncmds_in_transport >= un->un_throttle) {
15919 			/*
15920 			 * We are at the throttle limit for the target,
15921 			 * fall back to delayed retry.
15922 			 */
15923 			retry_delay = un->un_busy_timeout;
15924 			statp = kstat_waitq_enter;
15925 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15926 			    "sd_retry_command: immed. retry hit "
15927 			    "throttle!\n");
15928 		} else {
15929 			/*
15930 			 * We're clear to proceed with the immediate retry.
15931 			 * First call the user-provided function (if any)
15932 			 */
15933 			if (user_funcp != NULL) {
15934 				(*user_funcp)(un, bp, user_arg,
15935 				    SD_IMMEDIATE_RETRY_ISSUED);
15936 #ifdef __lock_lint
15937 				sd_print_incomplete_msg(un, bp, user_arg,
15938 				    SD_IMMEDIATE_RETRY_ISSUED);
15939 				sd_print_cmd_incomplete_msg(un, bp, user_arg,
15940 				    SD_IMMEDIATE_RETRY_ISSUED);
15941 				sd_print_sense_failed_msg(un, bp, user_arg,
15942 				    SD_IMMEDIATE_RETRY_ISSUED);
15943 #endif
15944 			}
15945 
15946 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15947 			    "sd_retry_command: issuing immediate retry\n");
15948 
15949 			/*
15950 			 * Call sd_start_cmds() to transport the command to
15951 			 * the target.
15952 			 */
15953 			sd_start_cmds(un, bp);
15954 
15955 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15956 			    "sd_retry_command exit\n");
15957 			return;
15958 		}
15959 	}
15960 
15961 	/*
15962 	 * Set up to retry the command after a delay.
15963 	 * First call the user-provided function (if any)
15964 	 */
15965 	if (user_funcp != NULL) {
15966 		(*user_funcp)(un, bp, user_arg, SD_DELAYED_RETRY_ISSUED);
15967 	}
15968 
15969 	sd_set_retry_bp(un, bp, retry_delay, statp);
15970 
15971 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15972 	return;
15973 
15974 fail_command:
15975 
15976 	if (user_funcp != NULL) {
15977 		(*user_funcp)(un, bp, user_arg, SD_NO_RETRY_ISSUED);
15978 	}
15979 
15980 fail_command_no_log:
15981 
15982 	SD_INFO(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
15983 	    "sd_retry_command: returning failed command\n");
15984 
15985 	sd_return_failed_command(un, bp, failure_code);
15986 
15987 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_retry_command: exit\n");
15988 }
15989 
15990 
15991 /*
15992  *    Function: sd_set_retry_bp
15993  *
15994  * Description: Set up the given bp for retry.
15995  *
15996  *   Arguments: un - ptr to associated softstate
15997  *		bp - ptr to buf(9S) for the command
15998  *		retry_delay - time interval before issuing retry (may be 0)
15999  *		statp - optional pointer to kstat function
16000  *
16001  *     Context: May be called under interrupt context
16002  */
16003 
16004 static void
16005 sd_set_retry_bp(struct sd_lun *un, struct buf *bp, clock_t retry_delay,
16006 	void (*statp)(kstat_io_t *))
16007 {
16008 	ASSERT(un != NULL);
16009 	ASSERT(mutex_owned(SD_MUTEX(un)));
16010 	ASSERT(bp != NULL);
16011 
16012 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16013 	    "sd_set_retry_bp: entry: un:0x%p bp:0x%p\n", un, bp);
16014 
16015 	/*
16016 	 * Indicate that the command is being retried. This will not allow any
16017 	 * other commands on the wait queue to be transported to the target
16018 	 * until this command has been completed (success or failure). The
16019 	 * "retry command" is not transported to the target until the given
16020 	 * time delay expires, unless the user specified a 0 retry_delay.
16021 	 *
16022 	 * Note: the timeout(9F) callback routine is what actually calls
16023 	 * sd_start_cmds() to transport the command, with the exception of a
16024 	 * zero retry_delay. The only current implementor of a zero retry delay
16025 	 * is the case where a START_STOP_UNIT is sent to spin-up a device.
16026 	 */
16027 	if (un->un_retry_bp == NULL) {
16028 		ASSERT(un->un_retry_statp == NULL);
16029 		un->un_retry_bp = bp;
16030 
16031 		/*
16032 		 * If the user has not specified a delay the command should
16033 		 * be queued and no timeout should be scheduled.
16034 		 */
16035 		if (retry_delay == 0) {
16036 			/*
16037 			 * Save the kstat pointer that will be used in the
16038 			 * call to SD_UPDATE_KSTATS() below, so that
16039 			 * sd_start_cmds() can correctly decrement the waitq
16040 			 * count when it is time to transport this command.
16041 			 */
16042 			un->un_retry_statp = statp;
16043 			goto done;
16044 		}
16045 	}
16046 
16047 	if (un->un_retry_bp == bp) {
16048 		/*
16049 		 * Save the kstat pointer that will be used in the call to
16050 		 * SD_UPDATE_KSTATS() below, so that sd_start_cmds() can
16051 		 * correctly decrement the waitq count when it is time to
16052 		 * transport this command.
16053 		 */
16054 		un->un_retry_statp = statp;
16055 
16056 		/*
16057 		 * Schedule a timeout if:
16058 		 *   1) The user has specified a delay.
16059 		 *   2) There is not a START_STOP_UNIT callback pending.
16060 		 *
16061 		 * If no delay has been specified, then it is up to the caller
16062 		 * to ensure that IO processing continues without stalling.
16063 		 * Effectively, this means that the caller will issue the
16064 		 * required call to sd_start_cmds(). The START_STOP_UNIT
16065 		 * callback does this after the START STOP UNIT command has
16066 		 * completed. In either of these cases we should not schedule
16067 		 * a timeout callback here.  Also don't schedule the timeout if
16068 		 * an SD_PATH_DIRECT_PRIORITY command is waiting to restart.
16069 		 */
16070 		if ((retry_delay != 0) && (un->un_startstop_timeid == NULL) &&
16071 		    (un->un_direct_priority_timeid == NULL)) {
16072 			un->un_retry_timeid =
16073 			    timeout(sd_start_retry_command, un, retry_delay);
16074 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16075 			    "sd_set_retry_bp: setting timeout: un: 0x%p"
16076 			    " bp:0x%p un_retry_timeid:0x%p\n",
16077 			    un, bp, un->un_retry_timeid);
16078 		}
16079 	} else {
16080 		/*
16081 		 * We only get in here if there is already another command
16082 		 * waiting to be retried.  In this case, we just put the
16083 		 * given command onto the wait queue, so it can be transported
16084 		 * after the current retry command has completed.
16085 		 *
16086 		 * Also we have to make sure that if the command at the head
16087 		 * of the wait queue is the un_failfast_bp, that we do not
16088 		 * put ahead of it any other commands that are to be retried.
16089 		 */
16090 		if ((un->un_failfast_bp != NULL) &&
16091 		    (un->un_failfast_bp == un->un_waitq_headp)) {
16092 			/*
16093 			 * Enqueue this command AFTER the first command on
16094 			 * the wait queue (which is also un_failfast_bp).
16095 			 */
16096 			bp->av_forw = un->un_waitq_headp->av_forw;
16097 			un->un_waitq_headp->av_forw = bp;
16098 			if (un->un_waitq_headp == un->un_waitq_tailp) {
16099 				un->un_waitq_tailp = bp;
16100 			}
16101 		} else {
16102 			/* Enqueue this command at the head of the waitq. */
16103 			bp->av_forw = un->un_waitq_headp;
16104 			un->un_waitq_headp = bp;
16105 			if (un->un_waitq_tailp == NULL) {
16106 				un->un_waitq_tailp = bp;
16107 			}
16108 		}
16109 
16110 		if (statp == NULL) {
16111 			statp = kstat_waitq_enter;
16112 		}
16113 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16114 		    "sd_set_retry_bp: un:0x%p already delayed retry\n", un);
16115 	}
16116 
16117 done:
16118 	if (statp != NULL) {
16119 		SD_UPDATE_KSTATS(un, statp, bp);
16120 	}
16121 
16122 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16123 	    "sd_set_retry_bp: exit un:0x%p\n", un);
16124 }
16125 
16126 
16127 /*
16128  *    Function: sd_start_retry_command
16129  *
16130  * Description: Start the command that has been waiting on the target's
16131  *		retry queue.  Called from timeout(9F) context after the
16132  *		retry delay interval has expired.
16133  *
16134  *   Arguments: arg - pointer to associated softstate for the device.
16135  *
16136  *     Context: timeout(9F) thread context.  May not sleep.
16137  */
16138 
16139 static void
16140 sd_start_retry_command(void *arg)
16141 {
16142 	struct sd_lun *un = arg;
16143 
16144 	ASSERT(un != NULL);
16145 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16146 
16147 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16148 	    "sd_start_retry_command: entry\n");
16149 
16150 	mutex_enter(SD_MUTEX(un));
16151 
16152 	un->un_retry_timeid = NULL;
16153 
16154 	if (un->un_retry_bp != NULL) {
16155 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16156 		    "sd_start_retry_command: un:0x%p STARTING bp:0x%p\n",
16157 		    un, un->un_retry_bp);
16158 		sd_start_cmds(un, un->un_retry_bp);
16159 	}
16160 
16161 	mutex_exit(SD_MUTEX(un));
16162 
16163 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16164 	    "sd_start_retry_command: exit\n");
16165 }
16166 
16167 /*
16168  *    Function: sd_rmw_msg_print_handler
16169  *
16170  * Description: If RMW mode is enabled and warning message is triggered
16171  *              print I/O count during a fixed interval.
16172  *
16173  *   Arguments: arg - pointer to associated softstate for the device.
16174  *
16175  *     Context: timeout(9F) thread context. May not sleep.
16176  */
16177 static void
16178 sd_rmw_msg_print_handler(void *arg)
16179 {
16180 	struct sd_lun *un = arg;
16181 
16182 	ASSERT(un != NULL);
16183 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16184 
16185 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16186 	    "sd_rmw_msg_print_handler: entry\n");
16187 
16188 	mutex_enter(SD_MUTEX(un));
16189 
16190 	if (un->un_rmw_incre_count > 0) {
16191 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16192 		    "%"PRIu64" I/O requests are not aligned with %d disk "
16193 		    "sector size in %ld seconds. They are handled through "
16194 		    "Read Modify Write but the performance is very low!\n",
16195 		    un->un_rmw_incre_count, un->un_tgt_blocksize,
16196 		    drv_hztousec(SD_RMW_MSG_PRINT_TIMEOUT) / 1000000);
16197 		un->un_rmw_incre_count = 0;
16198 		un->un_rmw_msg_timeid = timeout(sd_rmw_msg_print_handler,
16199 		    un, SD_RMW_MSG_PRINT_TIMEOUT);
16200 	} else {
16201 		un->un_rmw_msg_timeid = NULL;
16202 	}
16203 
16204 	mutex_exit(SD_MUTEX(un));
16205 
16206 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16207 	    "sd_rmw_msg_print_handler: exit\n");
16208 }
16209 
16210 /*
16211  *    Function: sd_start_direct_priority_command
16212  *
16213  * Description: Used to re-start an SD_PATH_DIRECT_PRIORITY command that had
16214  *		received TRAN_BUSY when we called scsi_transport() to send it
16215  *		to the underlying HBA. This function is called from timeout(9F)
16216  *		context after the delay interval has expired.
16217  *
16218  *   Arguments: arg - pointer to associated buf(9S) to be restarted.
16219  *
16220  *     Context: timeout(9F) thread context.  May not sleep.
16221  */
16222 
16223 static void
16224 sd_start_direct_priority_command(void *arg)
16225 {
16226 	struct buf	*priority_bp = arg;
16227 	struct sd_lun	*un;
16228 
16229 	ASSERT(priority_bp != NULL);
16230 	un = SD_GET_UN(priority_bp);
16231 	ASSERT(un != NULL);
16232 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16233 
16234 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16235 	    "sd_start_direct_priority_command: entry\n");
16236 
16237 	mutex_enter(SD_MUTEX(un));
16238 	un->un_direct_priority_timeid = NULL;
16239 	sd_start_cmds(un, priority_bp);
16240 	mutex_exit(SD_MUTEX(un));
16241 
16242 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16243 	    "sd_start_direct_priority_command: exit\n");
16244 }
16245 
16246 
16247 /*
16248  *    Function: sd_send_request_sense_command
16249  *
16250  * Description: Sends a REQUEST SENSE command to the target
16251  *
16252  *     Context: May be called from interrupt context.
16253  */
16254 
16255 static void
16256 sd_send_request_sense_command(struct sd_lun *un, struct buf *bp,
16257 	struct scsi_pkt *pktp)
16258 {
16259 	ASSERT(bp != NULL);
16260 	ASSERT(un != NULL);
16261 	ASSERT(mutex_owned(SD_MUTEX(un)));
16262 
16263 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_send_request_sense_command: "
16264 	    "entry: buf:0x%p\n", bp);
16265 
16266 	/*
16267 	 * If we are syncing or dumping, then fail the command to avoid a
16268 	 * recursive callback into scsi_transport(). Also fail the command
16269 	 * if we are suspended (legacy behavior).
16270 	 */
16271 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
16272 	    (un->un_state == SD_STATE_DUMPING)) {
16273 		sd_return_failed_command(un, bp, EIO);
16274 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16275 		    "sd_send_request_sense_command: syncing/dumping, exit\n");
16276 		return;
16277 	}
16278 
16279 	/*
16280 	 * Retry the failed command and don't issue the request sense if:
16281 	 *    1) the sense buf is busy
16282 	 *    2) we have 1 or more outstanding commands on the target
16283 	 *    (the sense data will be cleared or invalidated any way)
16284 	 *
16285 	 * Note: There could be an issue with not checking a retry limit here,
16286 	 * the problem is determining which retry limit to check.
16287 	 */
16288 	if ((un->un_sense_isbusy != 0) || (un->un_ncmds_in_transport > 0)) {
16289 		/* Don't retry if the command is flagged as non-retryable */
16290 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
16291 			sd_retry_command(un, bp, SD_RETRIES_NOCHECK,
16292 			    NULL, NULL, 0, un->un_busy_timeout,
16293 			    kstat_waitq_enter);
16294 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16295 			    "sd_send_request_sense_command: "
16296 			    "at full throttle, retrying exit\n");
16297 		} else {
16298 			sd_return_failed_command(un, bp, EIO);
16299 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16300 			    "sd_send_request_sense_command: "
16301 			    "at full throttle, non-retryable exit\n");
16302 		}
16303 		return;
16304 	}
16305 
16306 	sd_mark_rqs_busy(un, bp);
16307 	sd_start_cmds(un, un->un_rqs_bp);
16308 
16309 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16310 	    "sd_send_request_sense_command: exit\n");
16311 }
16312 
16313 
16314 /*
16315  *    Function: sd_mark_rqs_busy
16316  *
16317  * Description: Indicate that the request sense bp for this instance is
16318  *		in use.
16319  *
16320  *     Context: May be called under interrupt context
16321  */
16322 
16323 static void
16324 sd_mark_rqs_busy(struct sd_lun *un, struct buf *bp)
16325 {
16326 	struct sd_xbuf	*sense_xp;
16327 
16328 	ASSERT(un != NULL);
16329 	ASSERT(bp != NULL);
16330 	ASSERT(mutex_owned(SD_MUTEX(un)));
16331 	ASSERT(un->un_sense_isbusy == 0);
16332 
16333 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: entry: "
16334 	    "buf:0x%p xp:0x%p un:0x%p\n", bp, SD_GET_XBUF(bp), un);
16335 
16336 	sense_xp = SD_GET_XBUF(un->un_rqs_bp);
16337 	ASSERT(sense_xp != NULL);
16338 
16339 	SD_INFO(SD_LOG_IO, un,
16340 	    "sd_mark_rqs_busy: entry: sense_xp:0x%p\n", sense_xp);
16341 
16342 	ASSERT(sense_xp->xb_pktp != NULL);
16343 	ASSERT((sense_xp->xb_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD))
16344 	    == (FLAG_SENSING | FLAG_HEAD));
16345 
16346 	un->un_sense_isbusy = 1;
16347 	un->un_rqs_bp->b_resid = 0;
16348 	sense_xp->xb_pktp->pkt_resid  = 0;
16349 	sense_xp->xb_pktp->pkt_reason = 0;
16350 
16351 	/* So we can get back the bp at interrupt time! */
16352 	sense_xp->xb_sense_bp = bp;
16353 
16354 	bzero(un->un_rqs_bp->b_un.b_addr, SENSE_LENGTH);
16355 
16356 	/*
16357 	 * Mark this buf as awaiting sense data. (This is already set in
16358 	 * the pkt_flags for the RQS packet.)
16359 	 */
16360 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags |= FLAG_SENSING;
16361 
16362 	/* Request sense down same path */
16363 	if (scsi_pkt_allocated_correctly((SD_GET_XBUF(bp))->xb_pktp) &&
16364 	    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance)
16365 		sense_xp->xb_pktp->pkt_path_instance =
16366 		    ((SD_GET_XBUF(bp))->xb_pktp)->pkt_path_instance;
16367 
16368 	sense_xp->xb_retry_count	= 0;
16369 	sense_xp->xb_victim_retry_count = 0;
16370 	sense_xp->xb_ua_retry_count	= 0;
16371 	sense_xp->xb_nr_retry_count 	= 0;
16372 	sense_xp->xb_dma_resid  = 0;
16373 
16374 	/* Clean up the fields for auto-request sense */
16375 	sense_xp->xb_sense_status = 0;
16376 	sense_xp->xb_sense_state  = 0;
16377 	sense_xp->xb_sense_resid  = 0;
16378 	bzero(sense_xp->xb_sense_data, sizeof (sense_xp->xb_sense_data));
16379 
16380 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_mark_rqs_busy: exit\n");
16381 }
16382 
16383 
16384 /*
16385  *    Function: sd_mark_rqs_idle
16386  *
16387  * Description: SD_MUTEX must be held continuously through this routine
16388  *		to prevent reuse of the rqs struct before the caller can
16389  *		complete it's processing.
16390  *
16391  * Return Code: Pointer to the RQS buf
16392  *
16393  *     Context: May be called under interrupt context
16394  */
16395 
16396 static struct buf *
16397 sd_mark_rqs_idle(struct sd_lun *un, struct sd_xbuf *sense_xp)
16398 {
16399 	struct buf *bp;
16400 	ASSERT(un != NULL);
16401 	ASSERT(sense_xp != NULL);
16402 	ASSERT(mutex_owned(SD_MUTEX(un)));
16403 	ASSERT(un->un_sense_isbusy != 0);
16404 
16405 	un->un_sense_isbusy = 0;
16406 	bp = sense_xp->xb_sense_bp;
16407 	sense_xp->xb_sense_bp = NULL;
16408 
16409 	/* This pkt is no longer interested in getting sense data */
16410 	((SD_GET_XBUF(bp))->xb_pktp)->pkt_flags &= ~FLAG_SENSING;
16411 
16412 	return (bp);
16413 }
16414 
16415 
16416 
16417 /*
16418  *    Function: sd_alloc_rqs
16419  *
16420  * Description: Set up the unit to receive auto request sense data
16421  *
16422  * Return Code: DDI_SUCCESS or DDI_FAILURE
16423  *
16424  *     Context: Called under attach(9E) context
16425  */
16426 
16427 static int
16428 sd_alloc_rqs(struct scsi_device *devp, struct sd_lun *un)
16429 {
16430 	struct sd_xbuf *xp;
16431 
16432 	ASSERT(un != NULL);
16433 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16434 	ASSERT(un->un_rqs_bp == NULL);
16435 	ASSERT(un->un_rqs_pktp == NULL);
16436 
16437 	/*
16438 	 * First allocate the required buf and scsi_pkt structs, then set up
16439 	 * the CDB in the scsi_pkt for a REQUEST SENSE command.
16440 	 */
16441 	un->un_rqs_bp = scsi_alloc_consistent_buf(&devp->sd_address, NULL,
16442 	    MAX_SENSE_LENGTH, B_READ, SLEEP_FUNC, NULL);
16443 	if (un->un_rqs_bp == NULL) {
16444 		return (DDI_FAILURE);
16445 	}
16446 
16447 	un->un_rqs_pktp = scsi_init_pkt(&devp->sd_address, NULL, un->un_rqs_bp,
16448 	    CDB_GROUP0, 1, 0, PKT_CONSISTENT, SLEEP_FUNC, NULL);
16449 
16450 	if (un->un_rqs_pktp == NULL) {
16451 		sd_free_rqs(un);
16452 		return (DDI_FAILURE);
16453 	}
16454 
16455 	/* Set up the CDB in the scsi_pkt for a REQUEST SENSE command. */
16456 	(void) scsi_setup_cdb((union scsi_cdb *)un->un_rqs_pktp->pkt_cdbp,
16457 	    SCMD_REQUEST_SENSE, 0, MAX_SENSE_LENGTH, 0);
16458 
16459 	SD_FILL_SCSI1_LUN(un, un->un_rqs_pktp);
16460 
16461 	/* Set up the other needed members in the ARQ scsi_pkt. */
16462 	un->un_rqs_pktp->pkt_comp   = sdintr;
16463 	un->un_rqs_pktp->pkt_time   = sd_io_time;
16464 	un->un_rqs_pktp->pkt_flags |=
16465 	    (FLAG_SENSING | FLAG_HEAD);	/* (1222170) */
16466 
16467 	/*
16468 	 * Allocate  & init the sd_xbuf struct for the RQS command. Do not
16469 	 * provide any intpkt, destroypkt routines as we take care of
16470 	 * scsi_pkt allocation/freeing here and in sd_free_rqs().
16471 	 */
16472 	xp = kmem_alloc(sizeof (struct sd_xbuf), KM_SLEEP);
16473 	sd_xbuf_init(un, un->un_rqs_bp, xp, SD_CHAIN_NULL, NULL);
16474 	xp->xb_pktp = un->un_rqs_pktp;
16475 	SD_INFO(SD_LOG_ATTACH_DETACH, un,
16476 	    "sd_alloc_rqs: un 0x%p, rqs  xp 0x%p,  pkt 0x%p,  buf 0x%p\n",
16477 	    un, xp, un->un_rqs_pktp, un->un_rqs_bp);
16478 
16479 	/*
16480 	 * Save the pointer to the request sense private bp so it can
16481 	 * be retrieved in sdintr.
16482 	 */
16483 	un->un_rqs_pktp->pkt_private = un->un_rqs_bp;
16484 	ASSERT(un->un_rqs_bp->b_private == xp);
16485 
16486 	/*
16487 	 * See if the HBA supports auto-request sense for the specified
16488 	 * target/lun. If it does, then try to enable it (if not already
16489 	 * enabled).
16490 	 *
16491 	 * Note: For some HBAs (ifp & sf), scsi_ifsetcap will always return
16492 	 * failure, while for other HBAs (pln) scsi_ifsetcap will always
16493 	 * return success.  However, in both of these cases ARQ is always
16494 	 * enabled and scsi_ifgetcap will always return true. The best approach
16495 	 * is to issue the scsi_ifgetcap() first, then try the scsi_ifsetcap().
16496 	 *
16497 	 * The 3rd case is the HBA (adp) always return enabled on
16498 	 * scsi_ifgetgetcap even when it's not enable, the best approach
16499 	 * is issue a scsi_ifsetcap then a scsi_ifgetcap
16500 	 * Note: this case is to circumvent the Adaptec bug. (x86 only)
16501 	 */
16502 
16503 	if (un->un_f_is_fibre == TRUE) {
16504 		un->un_f_arq_enabled = TRUE;
16505 	} else {
16506 #if defined(__i386) || defined(__amd64)
16507 		/*
16508 		 * Circumvent the Adaptec bug, remove this code when
16509 		 * the bug is fixed
16510 		 */
16511 		(void) scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1);
16512 #endif
16513 		switch (scsi_ifgetcap(SD_ADDRESS(un), "auto-rqsense", 1)) {
16514 		case 0:
16515 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16516 			    "sd_alloc_rqs: HBA supports ARQ\n");
16517 			/*
16518 			 * ARQ is supported by this HBA but currently is not
16519 			 * enabled. Attempt to enable it and if successful then
16520 			 * mark this instance as ARQ enabled.
16521 			 */
16522 			if (scsi_ifsetcap(SD_ADDRESS(un), "auto-rqsense", 1, 1)
16523 			    == 1) {
16524 				/* Successfully enabled ARQ in the HBA */
16525 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16526 				    "sd_alloc_rqs: ARQ enabled\n");
16527 				un->un_f_arq_enabled = TRUE;
16528 			} else {
16529 				/* Could not enable ARQ in the HBA */
16530 				SD_INFO(SD_LOG_ATTACH_DETACH, un,
16531 				    "sd_alloc_rqs: failed ARQ enable\n");
16532 				un->un_f_arq_enabled = FALSE;
16533 			}
16534 			break;
16535 		case 1:
16536 			/*
16537 			 * ARQ is supported by this HBA and is already enabled.
16538 			 * Just mark ARQ as enabled for this instance.
16539 			 */
16540 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16541 			    "sd_alloc_rqs: ARQ already enabled\n");
16542 			un->un_f_arq_enabled = TRUE;
16543 			break;
16544 		default:
16545 			/*
16546 			 * ARQ is not supported by this HBA; disable it for this
16547 			 * instance.
16548 			 */
16549 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
16550 			    "sd_alloc_rqs: HBA does not support ARQ\n");
16551 			un->un_f_arq_enabled = FALSE;
16552 			break;
16553 		}
16554 	}
16555 
16556 	return (DDI_SUCCESS);
16557 }
16558 
16559 
16560 /*
16561  *    Function: sd_free_rqs
16562  *
16563  * Description: Cleanup for the pre-instance RQS command.
16564  *
16565  *     Context: Kernel thread context
16566  */
16567 
16568 static void
16569 sd_free_rqs(struct sd_lun *un)
16570 {
16571 	ASSERT(un != NULL);
16572 
16573 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: entry\n");
16574 
16575 	/*
16576 	 * If consistent memory is bound to a scsi_pkt, the pkt
16577 	 * has to be destroyed *before* freeing the consistent memory.
16578 	 * Don't change the sequence of this operations.
16579 	 * scsi_destroy_pkt() might access memory, which isn't allowed,
16580 	 * after it was freed in scsi_free_consistent_buf().
16581 	 */
16582 	if (un->un_rqs_pktp != NULL) {
16583 		scsi_destroy_pkt(un->un_rqs_pktp);
16584 		un->un_rqs_pktp = NULL;
16585 	}
16586 
16587 	if (un->un_rqs_bp != NULL) {
16588 		struct sd_xbuf *xp = SD_GET_XBUF(un->un_rqs_bp);
16589 		if (xp != NULL) {
16590 			kmem_free(xp, sizeof (struct sd_xbuf));
16591 		}
16592 		scsi_free_consistent_buf(un->un_rqs_bp);
16593 		un->un_rqs_bp = NULL;
16594 	}
16595 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_free_rqs: exit\n");
16596 }
16597 
16598 
16599 
16600 /*
16601  *    Function: sd_reduce_throttle
16602  *
16603  * Description: Reduces the maximum # of outstanding commands on a
16604  *		target to the current number of outstanding commands.
16605  *		Queues a tiemout(9F) callback to restore the limit
16606  *		after a specified interval has elapsed.
16607  *		Typically used when we get a TRAN_BUSY return code
16608  *		back from scsi_transport().
16609  *
16610  *   Arguments: un - ptr to the sd_lun softstate struct
16611  *		throttle_type: SD_THROTTLE_TRAN_BUSY or SD_THROTTLE_QFULL
16612  *
16613  *     Context: May be called from interrupt context
16614  */
16615 
16616 static void
16617 sd_reduce_throttle(struct sd_lun *un, int throttle_type)
16618 {
16619 	ASSERT(un != NULL);
16620 	ASSERT(mutex_owned(SD_MUTEX(un)));
16621 	ASSERT(un->un_ncmds_in_transport >= 0);
16622 
16623 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16624 	    "entry: un:0x%p un_throttle:%d un_ncmds_in_transport:%d\n",
16625 	    un, un->un_throttle, un->un_ncmds_in_transport);
16626 
16627 	if (un->un_throttle > 1) {
16628 		if (un->un_f_use_adaptive_throttle == TRUE) {
16629 			switch (throttle_type) {
16630 			case SD_THROTTLE_TRAN_BUSY:
16631 				if (un->un_busy_throttle == 0) {
16632 					un->un_busy_throttle = un->un_throttle;
16633 				}
16634 				break;
16635 			case SD_THROTTLE_QFULL:
16636 				un->un_busy_throttle = 0;
16637 				break;
16638 			default:
16639 				ASSERT(FALSE);
16640 			}
16641 
16642 			if (un->un_ncmds_in_transport > 0) {
16643 				un->un_throttle = un->un_ncmds_in_transport;
16644 			}
16645 
16646 		} else {
16647 			if (un->un_ncmds_in_transport == 0) {
16648 				un->un_throttle = 1;
16649 			} else {
16650 				un->un_throttle = un->un_ncmds_in_transport;
16651 			}
16652 		}
16653 	}
16654 
16655 	/* Reschedule the timeout if none is currently active */
16656 	if (un->un_reset_throttle_timeid == NULL) {
16657 		un->un_reset_throttle_timeid = timeout(sd_restore_throttle,
16658 		    un, SD_THROTTLE_RESET_INTERVAL);
16659 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16660 		    "sd_reduce_throttle: timeout scheduled!\n");
16661 	}
16662 
16663 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reduce_throttle: "
16664 	    "exit: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16665 }
16666 
16667 
16668 
16669 /*
16670  *    Function: sd_restore_throttle
16671  *
16672  * Description: Callback function for timeout(9F).  Resets the current
16673  *		value of un->un_throttle to its default.
16674  *
16675  *   Arguments: arg - pointer to associated softstate for the device.
16676  *
16677  *     Context: May be called from interrupt context
16678  */
16679 
16680 static void
16681 sd_restore_throttle(void *arg)
16682 {
16683 	struct sd_lun	*un = arg;
16684 
16685 	ASSERT(un != NULL);
16686 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16687 
16688 	mutex_enter(SD_MUTEX(un));
16689 
16690 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16691 	    "entry: un:0x%p un_throttle:%d\n", un, un->un_throttle);
16692 
16693 	un->un_reset_throttle_timeid = NULL;
16694 
16695 	if (un->un_f_use_adaptive_throttle == TRUE) {
16696 		/*
16697 		 * If un_busy_throttle is nonzero, then it contains the
16698 		 * value that un_throttle was when we got a TRAN_BUSY back
16699 		 * from scsi_transport(). We want to revert back to this
16700 		 * value.
16701 		 *
16702 		 * In the QFULL case, the throttle limit will incrementally
16703 		 * increase until it reaches max throttle.
16704 		 */
16705 		if (un->un_busy_throttle > 0) {
16706 			un->un_throttle = un->un_busy_throttle;
16707 			un->un_busy_throttle = 0;
16708 		} else {
16709 			/*
16710 			 * increase throttle by 10% open gate slowly, schedule
16711 			 * another restore if saved throttle has not been
16712 			 * reached
16713 			 */
16714 			short throttle;
16715 			if (sd_qfull_throttle_enable) {
16716 				throttle = un->un_throttle +
16717 				    max((un->un_throttle / 10), 1);
16718 				un->un_throttle =
16719 				    (throttle < un->un_saved_throttle) ?
16720 				    throttle : un->un_saved_throttle;
16721 				if (un->un_throttle < un->un_saved_throttle) {
16722 					un->un_reset_throttle_timeid =
16723 					    timeout(sd_restore_throttle,
16724 					    un,
16725 					    SD_QFULL_THROTTLE_RESET_INTERVAL);
16726 				}
16727 			}
16728 		}
16729 
16730 		/*
16731 		 * If un_throttle has fallen below the low-water mark, we
16732 		 * restore the maximum value here (and allow it to ratchet
16733 		 * down again if necessary).
16734 		 */
16735 		if (un->un_throttle < un->un_min_throttle) {
16736 			un->un_throttle = un->un_saved_throttle;
16737 		}
16738 	} else {
16739 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: "
16740 		    "restoring limit from 0x%x to 0x%x\n",
16741 		    un->un_throttle, un->un_saved_throttle);
16742 		un->un_throttle = un->un_saved_throttle;
16743 	}
16744 
16745 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16746 	    "sd_restore_throttle: calling sd_start_cmds!\n");
16747 
16748 	sd_start_cmds(un, NULL);
16749 
16750 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un,
16751 	    "sd_restore_throttle: exit: un:0x%p un_throttle:%d\n",
16752 	    un, un->un_throttle);
16753 
16754 	mutex_exit(SD_MUTEX(un));
16755 
16756 	SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sd_restore_throttle: exit\n");
16757 }
16758 
16759 /*
16760  *    Function: sdrunout
16761  *
16762  * Description: Callback routine for scsi_init_pkt when a resource allocation
16763  *		fails.
16764  *
16765  *   Arguments: arg - a pointer to the sd_lun unit struct for the particular
16766  *		soft state instance.
16767  *
16768  * Return Code: The scsi_init_pkt routine allows for the callback function to
16769  *		return a 0 indicating the callback should be rescheduled or a 1
16770  *		indicating not to reschedule. This routine always returns 1
16771  *		because the driver always provides a callback function to
16772  *		scsi_init_pkt. This results in a callback always being scheduled
16773  *		(via the scsi_init_pkt callback implementation) if a resource
16774  *		failure occurs.
16775  *
16776  *     Context: This callback function may not block or call routines that block
16777  *
16778  *        Note: Using the scsi_init_pkt callback facility can result in an I/O
16779  *		request persisting at the head of the list which cannot be
16780  *		satisfied even after multiple retries. In the future the driver
16781  *		may implement some time of maximum runout count before failing
16782  *		an I/O.
16783  */
16784 
16785 static int
16786 sdrunout(caddr_t arg)
16787 {
16788 	struct sd_lun	*un = (struct sd_lun *)arg;
16789 
16790 	ASSERT(un != NULL);
16791 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16792 
16793 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: entry\n");
16794 
16795 	mutex_enter(SD_MUTEX(un));
16796 	sd_start_cmds(un, NULL);
16797 	mutex_exit(SD_MUTEX(un));
16798 	/*
16799 	 * This callback routine always returns 1 (i.e. do not reschedule)
16800 	 * because we always specify sdrunout as the callback handler for
16801 	 * scsi_init_pkt inside the call to sd_start_cmds.
16802 	 */
16803 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdrunout: exit\n");
16804 	return (1);
16805 }
16806 
16807 
16808 /*
16809  *    Function: sdintr
16810  *
16811  * Description: Completion callback routine for scsi_pkt(9S) structs
16812  *		sent to the HBA driver via scsi_transport(9F).
16813  *
16814  *     Context: Interrupt context
16815  */
16816 
16817 static void
16818 sdintr(struct scsi_pkt *pktp)
16819 {
16820 	struct buf	*bp;
16821 	struct sd_xbuf	*xp;
16822 	struct sd_lun	*un;
16823 	size_t		actual_len;
16824 	sd_ssc_t	*sscp;
16825 
16826 	ASSERT(pktp != NULL);
16827 	bp = (struct buf *)pktp->pkt_private;
16828 	ASSERT(bp != NULL);
16829 	xp = SD_GET_XBUF(bp);
16830 	ASSERT(xp != NULL);
16831 	ASSERT(xp->xb_pktp != NULL);
16832 	un = SD_GET_UN(bp);
16833 	ASSERT(un != NULL);
16834 	ASSERT(!mutex_owned(SD_MUTEX(un)));
16835 
16836 #ifdef SD_FAULT_INJECTION
16837 
16838 	SD_INFO(SD_LOG_IOERR, un, "sdintr: sdintr calling Fault injection\n");
16839 	/* SD FaultInjection */
16840 	sd_faultinjection(pktp);
16841 
16842 #endif /* SD_FAULT_INJECTION */
16843 
16844 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: entry: buf:0x%p,"
16845 	    " xp:0x%p, un:0x%p\n", bp, xp, un);
16846 
16847 	mutex_enter(SD_MUTEX(un));
16848 
16849 	ASSERT(un->un_fm_private != NULL);
16850 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
16851 	ASSERT(sscp != NULL);
16852 
16853 	/* Reduce the count of the #commands currently in transport */
16854 	un->un_ncmds_in_transport--;
16855 	ASSERT(un->un_ncmds_in_transport >= 0);
16856 
16857 	/* Increment counter to indicate that the callback routine is active */
16858 	un->un_in_callback++;
16859 
16860 	SD_UPDATE_KSTATS(un, kstat_runq_exit, bp);
16861 
16862 #ifdef	SDDEBUG
16863 	if (bp == un->un_retry_bp) {
16864 		SD_TRACE(SD_LOG_IO | SD_LOG_ERROR, un, "sdintr: "
16865 		    "un:0x%p: GOT retry_bp:0x%p un_ncmds_in_transport:%d\n",
16866 		    un, un->un_retry_bp, un->un_ncmds_in_transport);
16867 	}
16868 #endif
16869 
16870 	/*
16871 	 * If pkt_reason is CMD_DEV_GONE, fail the command, and update the media
16872 	 * state if needed.
16873 	 */
16874 	if (pktp->pkt_reason == CMD_DEV_GONE) {
16875 		/* Prevent multiple console messages for the same failure. */
16876 		if (un->un_last_pkt_reason != CMD_DEV_GONE) {
16877 			un->un_last_pkt_reason = CMD_DEV_GONE;
16878 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
16879 			    "Command failed to complete...Device is gone\n");
16880 		}
16881 		if (un->un_mediastate != DKIO_DEV_GONE) {
16882 			un->un_mediastate = DKIO_DEV_GONE;
16883 			cv_broadcast(&un->un_state_cv);
16884 		}
16885 		/*
16886 		 * If the command happens to be the REQUEST SENSE command,
16887 		 * free up the rqs buf and fail the original command.
16888 		 */
16889 		if (bp == un->un_rqs_bp) {
16890 			bp = sd_mark_rqs_idle(un, xp);
16891 		}
16892 		sd_return_failed_command(un, bp, EIO);
16893 		goto exit;
16894 	}
16895 
16896 	if (pktp->pkt_state & STATE_XARQ_DONE) {
16897 		SD_TRACE(SD_LOG_COMMON, un,
16898 		    "sdintr: extra sense data received. pkt=%p\n", pktp);
16899 	}
16900 
16901 	/*
16902 	 * First see if the pkt has auto-request sense data with it....
16903 	 * Look at the packet state first so we don't take a performance
16904 	 * hit looking at the arq enabled flag unless absolutely necessary.
16905 	 */
16906 	if ((pktp->pkt_state & STATE_ARQ_DONE) &&
16907 	    (un->un_f_arq_enabled == TRUE)) {
16908 		/*
16909 		 * The HBA did an auto request sense for this command so check
16910 		 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
16911 		 * driver command that should not be retried.
16912 		 */
16913 		if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
16914 			/*
16915 			 * Save the relevant sense info into the xp for the
16916 			 * original cmd.
16917 			 */
16918 			struct scsi_arq_status *asp;
16919 			asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
16920 			xp->xb_sense_status =
16921 			    *((uchar_t *)(&(asp->sts_rqpkt_status)));
16922 			xp->xb_sense_state  = asp->sts_rqpkt_state;
16923 			xp->xb_sense_resid  = asp->sts_rqpkt_resid;
16924 			if (pktp->pkt_state & STATE_XARQ_DONE) {
16925 				actual_len = MAX_SENSE_LENGTH -
16926 				    xp->xb_sense_resid;
16927 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16928 				    MAX_SENSE_LENGTH);
16929 			} else {
16930 				if (xp->xb_sense_resid > SENSE_LENGTH) {
16931 					actual_len = MAX_SENSE_LENGTH -
16932 					    xp->xb_sense_resid;
16933 				} else {
16934 					actual_len = SENSE_LENGTH -
16935 					    xp->xb_sense_resid;
16936 				}
16937 				if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
16938 					if ((((struct uscsi_cmd *)
16939 					    (xp->xb_pktinfo))->uscsi_rqlen) >
16940 					    actual_len) {
16941 						xp->xb_sense_resid =
16942 						    (((struct uscsi_cmd *)
16943 						    (xp->xb_pktinfo))->
16944 						    uscsi_rqlen) - actual_len;
16945 					} else {
16946 						xp->xb_sense_resid = 0;
16947 					}
16948 				}
16949 				bcopy(&asp->sts_sensedata, xp->xb_sense_data,
16950 				    SENSE_LENGTH);
16951 			}
16952 
16953 			/* fail the command */
16954 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16955 			    "sdintr: arq done and FLAG_DIAGNOSE set\n");
16956 			sd_return_failed_command(un, bp, EIO);
16957 			goto exit;
16958 		}
16959 
16960 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
16961 		/*
16962 		 * We want to either retry or fail this command, so free
16963 		 * the DMA resources here.  If we retry the command then
16964 		 * the DMA resources will be reallocated in sd_start_cmds().
16965 		 * Note that when PKT_DMA_PARTIAL is used, this reallocation
16966 		 * causes the *entire* transfer to start over again from the
16967 		 * beginning of the request, even for PARTIAL chunks that
16968 		 * have already transferred successfully.
16969 		 */
16970 		if ((un->un_f_is_fibre == TRUE) &&
16971 		    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
16972 		    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
16973 			scsi_dmafree(pktp);
16974 			xp->xb_pkt_flags |= SD_XB_DMA_FREED;
16975 		}
16976 #endif
16977 
16978 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16979 		    "sdintr: arq done, sd_handle_auto_request_sense\n");
16980 
16981 		sd_handle_auto_request_sense(un, bp, xp, pktp);
16982 		goto exit;
16983 	}
16984 
16985 	/* Next see if this is the REQUEST SENSE pkt for the instance */
16986 	if (pktp->pkt_flags & FLAG_SENSING)  {
16987 		/* This pktp is from the unit's REQUEST_SENSE command */
16988 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
16989 		    "sdintr: sd_handle_request_sense\n");
16990 		sd_handle_request_sense(un, bp, xp, pktp);
16991 		goto exit;
16992 	}
16993 
16994 	/*
16995 	 * Check to see if the command successfully completed as requested;
16996 	 * this is the most common case (and also the hot performance path).
16997 	 *
16998 	 * Requirements for successful completion are:
16999 	 * pkt_reason is CMD_CMPLT and packet status is status good.
17000 	 * In addition:
17001 	 * - A residual of zero indicates successful completion no matter what
17002 	 *   the command is.
17003 	 * - If the residual is not zero and the command is not a read or
17004 	 *   write, then it's still defined as successful completion. In other
17005 	 *   words, if the command is a read or write the residual must be
17006 	 *   zero for successful completion.
17007 	 * - If the residual is not zero and the command is a read or
17008 	 *   write, and it's a USCSICMD, then it's still defined as
17009 	 *   successful completion.
17010 	 */
17011 	if ((pktp->pkt_reason == CMD_CMPLT) &&
17012 	    (SD_GET_PKT_STATUS(pktp) == STATUS_GOOD)) {
17013 
17014 		/*
17015 		 * Since this command is returned with a good status, we
17016 		 * can reset the count for Sonoma failover.
17017 		 */
17018 		un->un_sonoma_failure_count = 0;
17019 
17020 		/*
17021 		 * Return all USCSI commands on good status
17022 		 */
17023 		if (pktp->pkt_resid == 0) {
17024 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17025 			    "sdintr: returning command for resid == 0\n");
17026 		} else if (((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_READ) &&
17027 		    ((SD_GET_PKT_OPCODE(pktp) & 0x1F) != SCMD_WRITE)) {
17028 			SD_UPDATE_B_RESID(bp, pktp);
17029 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17030 			    "sdintr: returning command for resid != 0\n");
17031 		} else if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
17032 			SD_UPDATE_B_RESID(bp, pktp);
17033 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17034 			    "sdintr: returning uscsi command\n");
17035 		} else {
17036 			goto not_successful;
17037 		}
17038 		sd_return_command(un, bp);
17039 
17040 		/*
17041 		 * Decrement counter to indicate that the callback routine
17042 		 * is done.
17043 		 */
17044 		un->un_in_callback--;
17045 		ASSERT(un->un_in_callback >= 0);
17046 		mutex_exit(SD_MUTEX(un));
17047 
17048 		return;
17049 	}
17050 
17051 not_successful:
17052 
17053 #if (defined(__i386) || defined(__amd64))	/* DMAFREE for x86 only */
17054 	/*
17055 	 * The following is based upon knowledge of the underlying transport
17056 	 * and its use of DMA resources.  This code should be removed when
17057 	 * PKT_DMA_PARTIAL support is taken out of the disk driver in favor
17058 	 * of the new PKT_CMD_BREAKUP protocol. See also sd_initpkt_for_buf()
17059 	 * and sd_start_cmds().
17060 	 *
17061 	 * Free any DMA resources associated with this command if there
17062 	 * is a chance it could be retried or enqueued for later retry.
17063 	 * If we keep the DMA binding then mpxio cannot reissue the
17064 	 * command on another path whenever a path failure occurs.
17065 	 *
17066 	 * Note that when PKT_DMA_PARTIAL is used, free/reallocation
17067 	 * causes the *entire* transfer to start over again from the
17068 	 * beginning of the request, even for PARTIAL chunks that
17069 	 * have already transferred successfully.
17070 	 *
17071 	 * This is only done for non-uscsi commands (and also skipped for the
17072 	 * driver's internal RQS command). Also just do this for Fibre Channel
17073 	 * devices as these are the only ones that support mpxio.
17074 	 */
17075 	if ((un->un_f_is_fibre == TRUE) &&
17076 	    ((xp->xb_pkt_flags & SD_XB_USCSICMD) == 0) &&
17077 	    ((pktp->pkt_flags & FLAG_SENSING) == 0))  {
17078 		scsi_dmafree(pktp);
17079 		xp->xb_pkt_flags |= SD_XB_DMA_FREED;
17080 	}
17081 #endif
17082 
17083 	/*
17084 	 * The command did not successfully complete as requested so check
17085 	 * for FLAG_DIAGNOSE. If set this indicates a uscsi or internal
17086 	 * driver command that should not be retried so just return. If
17087 	 * FLAG_DIAGNOSE is not set the error will be processed below.
17088 	 */
17089 	if ((pktp->pkt_flags & FLAG_DIAGNOSE) != 0) {
17090 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17091 		    "sdintr: FLAG_DIAGNOSE: sd_return_failed_command\n");
17092 		/*
17093 		 * Issue a request sense if a check condition caused the error
17094 		 * (we handle the auto request sense case above), otherwise
17095 		 * just fail the command.
17096 		 */
17097 		if ((pktp->pkt_reason == CMD_CMPLT) &&
17098 		    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK)) {
17099 			sd_send_request_sense_command(un, bp, pktp);
17100 		} else {
17101 			sd_return_failed_command(un, bp, EIO);
17102 		}
17103 		goto exit;
17104 	}
17105 
17106 	/*
17107 	 * The command did not successfully complete as requested so process
17108 	 * the error, retry, and/or attempt recovery.
17109 	 */
17110 	switch (pktp->pkt_reason) {
17111 	case CMD_CMPLT:
17112 		switch (SD_GET_PKT_STATUS(pktp)) {
17113 		case STATUS_GOOD:
17114 			/*
17115 			 * The command completed successfully with a non-zero
17116 			 * residual
17117 			 */
17118 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17119 			    "sdintr: STATUS_GOOD \n");
17120 			sd_pkt_status_good(un, bp, xp, pktp);
17121 			break;
17122 
17123 		case STATUS_CHECK:
17124 		case STATUS_TERMINATED:
17125 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17126 			    "sdintr: STATUS_TERMINATED | STATUS_CHECK\n");
17127 			sd_pkt_status_check_condition(un, bp, xp, pktp);
17128 			break;
17129 
17130 		case STATUS_BUSY:
17131 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17132 			    "sdintr: STATUS_BUSY\n");
17133 			sd_pkt_status_busy(un, bp, xp, pktp);
17134 			break;
17135 
17136 		case STATUS_RESERVATION_CONFLICT:
17137 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17138 			    "sdintr: STATUS_RESERVATION_CONFLICT\n");
17139 			sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17140 			break;
17141 
17142 		case STATUS_QFULL:
17143 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17144 			    "sdintr: STATUS_QFULL\n");
17145 			sd_pkt_status_qfull(un, bp, xp, pktp);
17146 			break;
17147 
17148 		case STATUS_MET:
17149 		case STATUS_INTERMEDIATE:
17150 		case STATUS_SCSI2:
17151 		case STATUS_INTERMEDIATE_MET:
17152 		case STATUS_ACA_ACTIVE:
17153 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17154 			    "Unexpected SCSI status received: 0x%x\n",
17155 			    SD_GET_PKT_STATUS(pktp));
17156 			/*
17157 			 * Mark the ssc_flags when detected invalid status
17158 			 * code for non-USCSI command.
17159 			 */
17160 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17161 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
17162 				    0, "stat-code");
17163 			}
17164 			sd_return_failed_command(un, bp, EIO);
17165 			break;
17166 
17167 		default:
17168 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17169 			    "Invalid SCSI status received: 0x%x\n",
17170 			    SD_GET_PKT_STATUS(pktp));
17171 			if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17172 				sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_STATUS,
17173 				    0, "stat-code");
17174 			}
17175 			sd_return_failed_command(un, bp, EIO);
17176 			break;
17177 
17178 		}
17179 		break;
17180 
17181 	case CMD_INCOMPLETE:
17182 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17183 		    "sdintr:  CMD_INCOMPLETE\n");
17184 		sd_pkt_reason_cmd_incomplete(un, bp, xp, pktp);
17185 		break;
17186 	case CMD_TRAN_ERR:
17187 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17188 		    "sdintr: CMD_TRAN_ERR\n");
17189 		sd_pkt_reason_cmd_tran_err(un, bp, xp, pktp);
17190 		break;
17191 	case CMD_RESET:
17192 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17193 		    "sdintr: CMD_RESET \n");
17194 		sd_pkt_reason_cmd_reset(un, bp, xp, pktp);
17195 		break;
17196 	case CMD_ABORTED:
17197 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17198 		    "sdintr: CMD_ABORTED \n");
17199 		sd_pkt_reason_cmd_aborted(un, bp, xp, pktp);
17200 		break;
17201 	case CMD_TIMEOUT:
17202 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17203 		    "sdintr: CMD_TIMEOUT\n");
17204 		sd_pkt_reason_cmd_timeout(un, bp, xp, pktp);
17205 		break;
17206 	case CMD_UNX_BUS_FREE:
17207 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17208 		    "sdintr: CMD_UNX_BUS_FREE \n");
17209 		sd_pkt_reason_cmd_unx_bus_free(un, bp, xp, pktp);
17210 		break;
17211 	case CMD_TAG_REJECT:
17212 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17213 		    "sdintr: CMD_TAG_REJECT\n");
17214 		sd_pkt_reason_cmd_tag_reject(un, bp, xp, pktp);
17215 		break;
17216 	default:
17217 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
17218 		    "sdintr: default\n");
17219 		/*
17220 		 * Mark the ssc_flags for detecting invliad pkt_reason.
17221 		 */
17222 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17223 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_PKT_REASON,
17224 			    0, "pkt-reason");
17225 		}
17226 		sd_pkt_reason_default(un, bp, xp, pktp);
17227 		break;
17228 	}
17229 
17230 exit:
17231 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sdintr: exit\n");
17232 
17233 	/* Decrement counter to indicate that the callback routine is done. */
17234 	un->un_in_callback--;
17235 	ASSERT(un->un_in_callback >= 0);
17236 
17237 	/*
17238 	 * At this point, the pkt has been dispatched, ie, it is either
17239 	 * being re-tried or has been returned to its caller and should
17240 	 * not be referenced.
17241 	 */
17242 
17243 	mutex_exit(SD_MUTEX(un));
17244 }
17245 
17246 
17247 /*
17248  *    Function: sd_print_incomplete_msg
17249  *
17250  * Description: Prints the error message for a CMD_INCOMPLETE error.
17251  *
17252  *   Arguments: un - ptr to associated softstate for the device.
17253  *		bp - ptr to the buf(9S) for the command.
17254  *		arg - message string ptr
17255  *		code - SD_DELAYED_RETRY_ISSUED, SD_IMMEDIATE_RETRY_ISSUED,
17256  *			or SD_NO_RETRY_ISSUED.
17257  *
17258  *     Context: May be called under interrupt context
17259  */
17260 
17261 static void
17262 sd_print_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17263 {
17264 	struct scsi_pkt	*pktp;
17265 	char	*msgp;
17266 	char	*cmdp = arg;
17267 
17268 	ASSERT(un != NULL);
17269 	ASSERT(mutex_owned(SD_MUTEX(un)));
17270 	ASSERT(bp != NULL);
17271 	ASSERT(arg != NULL);
17272 	pktp = SD_GET_PKTP(bp);
17273 	ASSERT(pktp != NULL);
17274 
17275 	switch (code) {
17276 	case SD_DELAYED_RETRY_ISSUED:
17277 	case SD_IMMEDIATE_RETRY_ISSUED:
17278 		msgp = "retrying";
17279 		break;
17280 	case SD_NO_RETRY_ISSUED:
17281 	default:
17282 		msgp = "giving up";
17283 		break;
17284 	}
17285 
17286 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17287 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17288 		    "incomplete %s- %s\n", cmdp, msgp);
17289 	}
17290 }
17291 
17292 
17293 
17294 /*
17295  *    Function: sd_pkt_status_good
17296  *
17297  * Description: Processing for a STATUS_GOOD code in pkt_status.
17298  *
17299  *     Context: May be called under interrupt context
17300  */
17301 
17302 static void
17303 sd_pkt_status_good(struct sd_lun *un, struct buf *bp,
17304 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17305 {
17306 	char	*cmdp;
17307 
17308 	ASSERT(un != NULL);
17309 	ASSERT(mutex_owned(SD_MUTEX(un)));
17310 	ASSERT(bp != NULL);
17311 	ASSERT(xp != NULL);
17312 	ASSERT(pktp != NULL);
17313 	ASSERT(pktp->pkt_reason == CMD_CMPLT);
17314 	ASSERT(SD_GET_PKT_STATUS(pktp) == STATUS_GOOD);
17315 	ASSERT(pktp->pkt_resid != 0);
17316 
17317 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: entry\n");
17318 
17319 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
17320 	switch (SD_GET_PKT_OPCODE(pktp) & 0x1F) {
17321 	case SCMD_READ:
17322 		cmdp = "read";
17323 		break;
17324 	case SCMD_WRITE:
17325 		cmdp = "write";
17326 		break;
17327 	default:
17328 		SD_UPDATE_B_RESID(bp, pktp);
17329 		sd_return_command(un, bp);
17330 		SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17331 		return;
17332 	}
17333 
17334 	/*
17335 	 * See if we can retry the read/write, preferrably immediately.
17336 	 * If retries are exhaused, then sd_retry_command() will update
17337 	 * the b_resid count.
17338 	 */
17339 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_incomplete_msg,
17340 	    cmdp, EIO, (clock_t)0, NULL);
17341 
17342 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_good: exit\n");
17343 }
17344 
17345 
17346 
17347 
17348 
17349 /*
17350  *    Function: sd_handle_request_sense
17351  *
17352  * Description: Processing for non-auto Request Sense command.
17353  *
17354  *   Arguments: un - ptr to associated softstate
17355  *		sense_bp - ptr to buf(9S) for the RQS command
17356  *		sense_xp - ptr to the sd_xbuf for the RQS command
17357  *		sense_pktp - ptr to the scsi_pkt(9S) for the RQS command
17358  *
17359  *     Context: May be called under interrupt context
17360  */
17361 
17362 static void
17363 sd_handle_request_sense(struct sd_lun *un, struct buf *sense_bp,
17364 	struct sd_xbuf *sense_xp, struct scsi_pkt *sense_pktp)
17365 {
17366 	struct buf	*cmd_bp;	/* buf for the original command */
17367 	struct sd_xbuf	*cmd_xp;	/* sd_xbuf for the original command */
17368 	struct scsi_pkt *cmd_pktp;	/* pkt for the original command */
17369 	size_t		actual_len;	/* actual sense data length */
17370 
17371 	ASSERT(un != NULL);
17372 	ASSERT(mutex_owned(SD_MUTEX(un)));
17373 	ASSERT(sense_bp != NULL);
17374 	ASSERT(sense_xp != NULL);
17375 	ASSERT(sense_pktp != NULL);
17376 
17377 	/*
17378 	 * Note the sense_bp, sense_xp, and sense_pktp here are for the
17379 	 * RQS command and not the original command.
17380 	 */
17381 	ASSERT(sense_pktp == un->un_rqs_pktp);
17382 	ASSERT(sense_bp   == un->un_rqs_bp);
17383 	ASSERT((sense_pktp->pkt_flags & (FLAG_SENSING | FLAG_HEAD)) ==
17384 	    (FLAG_SENSING | FLAG_HEAD));
17385 	ASSERT((((SD_GET_XBUF(sense_xp->xb_sense_bp))->xb_pktp->pkt_flags) &
17386 	    FLAG_SENSING) == FLAG_SENSING);
17387 
17388 	/* These are the bp, xp, and pktp for the original command */
17389 	cmd_bp = sense_xp->xb_sense_bp;
17390 	cmd_xp = SD_GET_XBUF(cmd_bp);
17391 	cmd_pktp = SD_GET_PKTP(cmd_bp);
17392 
17393 	if (sense_pktp->pkt_reason != CMD_CMPLT) {
17394 		/*
17395 		 * The REQUEST SENSE command failed.  Release the REQUEST
17396 		 * SENSE command for re-use, get back the bp for the original
17397 		 * command, and attempt to re-try the original command if
17398 		 * FLAG_DIAGNOSE is not set in the original packet.
17399 		 */
17400 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
17401 		if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17402 			cmd_bp = sd_mark_rqs_idle(un, sense_xp);
17403 			sd_retry_command(un, cmd_bp, SD_RETRIES_STANDARD,
17404 			    NULL, NULL, EIO, (clock_t)0, NULL);
17405 			return;
17406 		}
17407 	}
17408 
17409 	/*
17410 	 * Save the relevant sense info into the xp for the original cmd.
17411 	 *
17412 	 * Note: if the request sense failed the state info will be zero
17413 	 * as set in sd_mark_rqs_busy()
17414 	 */
17415 	cmd_xp->xb_sense_status = *(sense_pktp->pkt_scbp);
17416 	cmd_xp->xb_sense_state  = sense_pktp->pkt_state;
17417 	actual_len = MAX_SENSE_LENGTH - sense_pktp->pkt_resid;
17418 	if ((cmd_xp->xb_pkt_flags & SD_XB_USCSICMD) &&
17419 	    (((struct uscsi_cmd *)cmd_xp->xb_pktinfo)->uscsi_rqlen >
17420 	    SENSE_LENGTH)) {
17421 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
17422 		    MAX_SENSE_LENGTH);
17423 		cmd_xp->xb_sense_resid = sense_pktp->pkt_resid;
17424 	} else {
17425 		bcopy(sense_bp->b_un.b_addr, cmd_xp->xb_sense_data,
17426 		    SENSE_LENGTH);
17427 		if (actual_len < SENSE_LENGTH) {
17428 			cmd_xp->xb_sense_resid = SENSE_LENGTH - actual_len;
17429 		} else {
17430 			cmd_xp->xb_sense_resid = 0;
17431 		}
17432 	}
17433 
17434 	/*
17435 	 *  Free up the RQS command....
17436 	 *  NOTE:
17437 	 *	Must do this BEFORE calling sd_validate_sense_data!
17438 	 *	sd_validate_sense_data may return the original command in
17439 	 *	which case the pkt will be freed and the flags can no
17440 	 *	longer be touched.
17441 	 *	SD_MUTEX is held through this process until the command
17442 	 *	is dispatched based upon the sense data, so there are
17443 	 *	no race conditions.
17444 	 */
17445 	(void) sd_mark_rqs_idle(un, sense_xp);
17446 
17447 	/*
17448 	 * For a retryable command see if we have valid sense data, if so then
17449 	 * turn it over to sd_decode_sense() to figure out the right course of
17450 	 * action. Just fail a non-retryable command.
17451 	 */
17452 	if ((cmd_pktp->pkt_flags & FLAG_DIAGNOSE) == 0) {
17453 		if (sd_validate_sense_data(un, cmd_bp, cmd_xp, actual_len) ==
17454 		    SD_SENSE_DATA_IS_VALID) {
17455 			sd_decode_sense(un, cmd_bp, cmd_xp, cmd_pktp);
17456 		}
17457 	} else {
17458 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Failed CDB",
17459 		    (uchar_t *)cmd_pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
17460 		SD_DUMP_MEMORY(un, SD_LOG_IO_CORE, "Sense Data",
17461 		    (uchar_t *)cmd_xp->xb_sense_data, SENSE_LENGTH, SD_LOG_HEX);
17462 		sd_return_failed_command(un, cmd_bp, EIO);
17463 	}
17464 }
17465 
17466 
17467 
17468 
17469 /*
17470  *    Function: sd_handle_auto_request_sense
17471  *
17472  * Description: Processing for auto-request sense information.
17473  *
17474  *   Arguments: un - ptr to associated softstate
17475  *		bp - ptr to buf(9S) for the command
17476  *		xp - ptr to the sd_xbuf for the command
17477  *		pktp - ptr to the scsi_pkt(9S) for the command
17478  *
17479  *     Context: May be called under interrupt context
17480  */
17481 
17482 static void
17483 sd_handle_auto_request_sense(struct sd_lun *un, struct buf *bp,
17484 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
17485 {
17486 	struct scsi_arq_status *asp;
17487 	size_t actual_len;
17488 
17489 	ASSERT(un != NULL);
17490 	ASSERT(mutex_owned(SD_MUTEX(un)));
17491 	ASSERT(bp != NULL);
17492 	ASSERT(xp != NULL);
17493 	ASSERT(pktp != NULL);
17494 	ASSERT(pktp != un->un_rqs_pktp);
17495 	ASSERT(bp   != un->un_rqs_bp);
17496 
17497 	/*
17498 	 * For auto-request sense, we get a scsi_arq_status back from
17499 	 * the HBA, with the sense data in the sts_sensedata member.
17500 	 * The pkt_scbp of the packet points to this scsi_arq_status.
17501 	 */
17502 	asp = (struct scsi_arq_status *)(pktp->pkt_scbp);
17503 
17504 	if (asp->sts_rqpkt_reason != CMD_CMPLT) {
17505 		/*
17506 		 * The auto REQUEST SENSE failed; see if we can re-try
17507 		 * the original command.
17508 		 */
17509 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17510 		    "auto request sense failed (reason=%s)\n",
17511 		    scsi_rname(asp->sts_rqpkt_reason));
17512 
17513 		sd_reset_target(un, pktp);
17514 
17515 		sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17516 		    NULL, NULL, EIO, (clock_t)0, NULL);
17517 		return;
17518 	}
17519 
17520 	/* Save the relevant sense info into the xp for the original cmd. */
17521 	xp->xb_sense_status = *((uchar_t *)(&(asp->sts_rqpkt_status)));
17522 	xp->xb_sense_state  = asp->sts_rqpkt_state;
17523 	xp->xb_sense_resid  = asp->sts_rqpkt_resid;
17524 	if (xp->xb_sense_state & STATE_XARQ_DONE) {
17525 		actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
17526 		bcopy(&asp->sts_sensedata, xp->xb_sense_data,
17527 		    MAX_SENSE_LENGTH);
17528 	} else {
17529 		if (xp->xb_sense_resid > SENSE_LENGTH) {
17530 			actual_len = MAX_SENSE_LENGTH - xp->xb_sense_resid;
17531 		} else {
17532 			actual_len = SENSE_LENGTH - xp->xb_sense_resid;
17533 		}
17534 		if (xp->xb_pkt_flags & SD_XB_USCSICMD) {
17535 			if ((((struct uscsi_cmd *)
17536 			    (xp->xb_pktinfo))->uscsi_rqlen) > actual_len) {
17537 				xp->xb_sense_resid = (((struct uscsi_cmd *)
17538 				    (xp->xb_pktinfo))->uscsi_rqlen) -
17539 				    actual_len;
17540 			} else {
17541 				xp->xb_sense_resid = 0;
17542 			}
17543 		}
17544 		bcopy(&asp->sts_sensedata, xp->xb_sense_data, SENSE_LENGTH);
17545 	}
17546 
17547 	/*
17548 	 * See if we have valid sense data, if so then turn it over to
17549 	 * sd_decode_sense() to figure out the right course of action.
17550 	 */
17551 	if (sd_validate_sense_data(un, bp, xp, actual_len) ==
17552 	    SD_SENSE_DATA_IS_VALID) {
17553 		sd_decode_sense(un, bp, xp, pktp);
17554 	}
17555 }
17556 
17557 
17558 /*
17559  *    Function: sd_print_sense_failed_msg
17560  *
17561  * Description: Print log message when RQS has failed.
17562  *
17563  *   Arguments: un - ptr to associated softstate
17564  *		bp - ptr to buf(9S) for the command
17565  *		arg - generic message string ptr
17566  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17567  *			or SD_NO_RETRY_ISSUED
17568  *
17569  *     Context: May be called from interrupt context
17570  */
17571 
17572 static void
17573 sd_print_sense_failed_msg(struct sd_lun *un, struct buf *bp, void *arg,
17574 	int code)
17575 {
17576 	char	*msgp = arg;
17577 
17578 	ASSERT(un != NULL);
17579 	ASSERT(mutex_owned(SD_MUTEX(un)));
17580 	ASSERT(bp != NULL);
17581 
17582 	if ((code == SD_NO_RETRY_ISSUED) && (msgp != NULL)) {
17583 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, msgp);
17584 	}
17585 }
17586 
17587 
17588 /*
17589  *    Function: sd_validate_sense_data
17590  *
17591  * Description: Check the given sense data for validity.
17592  *		If the sense data is not valid, the command will
17593  *		be either failed or retried!
17594  *
17595  * Return Code: SD_SENSE_DATA_IS_INVALID
17596  *		SD_SENSE_DATA_IS_VALID
17597  *
17598  *     Context: May be called from interrupt context
17599  */
17600 
17601 static int
17602 sd_validate_sense_data(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17603 	size_t actual_len)
17604 {
17605 	struct scsi_extended_sense *esp;
17606 	struct	scsi_pkt *pktp;
17607 	char	*msgp = NULL;
17608 	sd_ssc_t *sscp;
17609 
17610 	ASSERT(un != NULL);
17611 	ASSERT(mutex_owned(SD_MUTEX(un)));
17612 	ASSERT(bp != NULL);
17613 	ASSERT(bp != un->un_rqs_bp);
17614 	ASSERT(xp != NULL);
17615 	ASSERT(un->un_fm_private != NULL);
17616 
17617 	pktp = SD_GET_PKTP(bp);
17618 	ASSERT(pktp != NULL);
17619 
17620 	sscp = &((struct sd_fm_internal *)(un->un_fm_private))->fm_ssc;
17621 	ASSERT(sscp != NULL);
17622 
17623 	/*
17624 	 * Check the status of the RQS command (auto or manual).
17625 	 */
17626 	switch (xp->xb_sense_status & STATUS_MASK) {
17627 	case STATUS_GOOD:
17628 		break;
17629 
17630 	case STATUS_RESERVATION_CONFLICT:
17631 		sd_pkt_status_reservation_conflict(un, bp, xp, pktp);
17632 		return (SD_SENSE_DATA_IS_INVALID);
17633 
17634 	case STATUS_BUSY:
17635 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17636 		    "Busy Status on REQUEST SENSE\n");
17637 		sd_retry_command(un, bp, SD_RETRIES_BUSY, NULL,
17638 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
17639 		return (SD_SENSE_DATA_IS_INVALID);
17640 
17641 	case STATUS_QFULL:
17642 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
17643 		    "QFULL Status on REQUEST SENSE\n");
17644 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL,
17645 		    NULL, EIO, un->un_busy_timeout / 500, kstat_waitq_enter);
17646 		return (SD_SENSE_DATA_IS_INVALID);
17647 
17648 	case STATUS_CHECK:
17649 	case STATUS_TERMINATED:
17650 		msgp = "Check Condition on REQUEST SENSE\n";
17651 		goto sense_failed;
17652 
17653 	default:
17654 		msgp = "Not STATUS_GOOD on REQUEST_SENSE\n";
17655 		goto sense_failed;
17656 	}
17657 
17658 	/*
17659 	 * See if we got the minimum required amount of sense data.
17660 	 * Note: We are assuming the returned sense data is SENSE_LENGTH bytes
17661 	 * or less.
17662 	 */
17663 	if (((xp->xb_sense_state & STATE_XFERRED_DATA) == 0) ||
17664 	    (actual_len == 0)) {
17665 		msgp = "Request Sense couldn't get sense data\n";
17666 		goto sense_failed;
17667 	}
17668 
17669 	if (actual_len < SUN_MIN_SENSE_LENGTH) {
17670 		msgp = "Not enough sense information\n";
17671 		/* Mark the ssc_flags for detecting invalid sense data */
17672 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17673 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17674 			    "sense-data");
17675 		}
17676 		goto sense_failed;
17677 	}
17678 
17679 	/*
17680 	 * We require the extended sense data
17681 	 */
17682 	esp = (struct scsi_extended_sense *)xp->xb_sense_data;
17683 	if (esp->es_class != CLASS_EXTENDED_SENSE) {
17684 		if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
17685 			static char tmp[8];
17686 			static char buf[148];
17687 			char *p = (char *)(xp->xb_sense_data);
17688 			int i;
17689 
17690 			mutex_enter(&sd_sense_mutex);
17691 			(void) strcpy(buf, "undecodable sense information:");
17692 			for (i = 0; i < actual_len; i++) {
17693 				(void) sprintf(tmp, " 0x%x", *(p++)&0xff);
17694 				(void) strcpy(&buf[strlen(buf)], tmp);
17695 			}
17696 			i = strlen(buf);
17697 			(void) strcpy(&buf[i], "-(assumed fatal)\n");
17698 
17699 			if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
17700 				scsi_log(SD_DEVINFO(un), sd_label,
17701 				    CE_WARN, buf);
17702 			}
17703 			mutex_exit(&sd_sense_mutex);
17704 		}
17705 
17706 		/* Mark the ssc_flags for detecting invalid sense data */
17707 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17708 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17709 			    "sense-data");
17710 		}
17711 
17712 		/* Note: Legacy behavior, fail the command with no retry */
17713 		sd_return_failed_command(un, bp, EIO);
17714 		return (SD_SENSE_DATA_IS_INVALID);
17715 	}
17716 
17717 	/*
17718 	 * Check that es_code is valid (es_class concatenated with es_code
17719 	 * make up the "response code" field.  es_class will always be 7, so
17720 	 * make sure es_code is 0, 1, 2, 3 or 0xf.  es_code will indicate the
17721 	 * format.
17722 	 */
17723 	if ((esp->es_code != CODE_FMT_FIXED_CURRENT) &&
17724 	    (esp->es_code != CODE_FMT_FIXED_DEFERRED) &&
17725 	    (esp->es_code != CODE_FMT_DESCR_CURRENT) &&
17726 	    (esp->es_code != CODE_FMT_DESCR_DEFERRED) &&
17727 	    (esp->es_code != CODE_FMT_VENDOR_SPECIFIC)) {
17728 		/* Mark the ssc_flags for detecting invalid sense data */
17729 		if (!(xp->xb_pkt_flags & SD_XB_USCSICMD)) {
17730 			sd_ssc_set_info(sscp, SSC_FLAGS_INVALID_SENSE, 0,
17731 			    "sense-data");
17732 		}
17733 		goto sense_failed;
17734 	}
17735 
17736 	return (SD_SENSE_DATA_IS_VALID);
17737 
17738 sense_failed:
17739 	/*
17740 	 * If the request sense failed (for whatever reason), attempt
17741 	 * to retry the original command.
17742 	 */
17743 #if defined(__i386) || defined(__amd64)
17744 	/*
17745 	 * SD_RETRY_DELAY is conditionally compile (#if fibre) in
17746 	 * sddef.h for Sparc platform, and x86 uses 1 binary
17747 	 * for both SCSI/FC.
17748 	 * The SD_RETRY_DELAY value need to be adjusted here
17749 	 * when SD_RETRY_DELAY change in sddef.h
17750 	 */
17751 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17752 	    sd_print_sense_failed_msg, msgp, EIO,
17753 	    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0, NULL);
17754 #else
17755 	sd_retry_command(un, bp, SD_RETRIES_STANDARD,
17756 	    sd_print_sense_failed_msg, msgp, EIO, SD_RETRY_DELAY, NULL);
17757 #endif
17758 
17759 	return (SD_SENSE_DATA_IS_INVALID);
17760 }
17761 
17762 /*
17763  *    Function: sd_decode_sense
17764  *
17765  * Description: Take recovery action(s) when SCSI Sense Data is received.
17766  *
17767  *     Context: Interrupt context.
17768  */
17769 
17770 static void
17771 sd_decode_sense(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
17772 	struct scsi_pkt *pktp)
17773 {
17774 	uint8_t sense_key;
17775 
17776 	ASSERT(un != NULL);
17777 	ASSERT(mutex_owned(SD_MUTEX(un)));
17778 	ASSERT(bp != NULL);
17779 	ASSERT(bp != un->un_rqs_bp);
17780 	ASSERT(xp != NULL);
17781 	ASSERT(pktp != NULL);
17782 
17783 	sense_key = scsi_sense_key(xp->xb_sense_data);
17784 
17785 	switch (sense_key) {
17786 	case KEY_NO_SENSE:
17787 		sd_sense_key_no_sense(un, bp, xp, pktp);
17788 		break;
17789 	case KEY_RECOVERABLE_ERROR:
17790 		sd_sense_key_recoverable_error(un, xp->xb_sense_data,
17791 		    bp, xp, pktp);
17792 		break;
17793 	case KEY_NOT_READY:
17794 		sd_sense_key_not_ready(un, xp->xb_sense_data,
17795 		    bp, xp, pktp);
17796 		break;
17797 	case KEY_MEDIUM_ERROR:
17798 	case KEY_HARDWARE_ERROR:
17799 		sd_sense_key_medium_or_hardware_error(un,
17800 		    xp->xb_sense_data, bp, xp, pktp);
17801 		break;
17802 	case KEY_ILLEGAL_REQUEST:
17803 		sd_sense_key_illegal_request(un, bp, xp, pktp);
17804 		break;
17805 	case KEY_UNIT_ATTENTION:
17806 		sd_sense_key_unit_attention(un, xp->xb_sense_data,
17807 		    bp, xp, pktp);
17808 		break;
17809 	case KEY_WRITE_PROTECT:
17810 	case KEY_VOLUME_OVERFLOW:
17811 	case KEY_MISCOMPARE:
17812 		sd_sense_key_fail_command(un, bp, xp, pktp);
17813 		break;
17814 	case KEY_BLANK_CHECK:
17815 		sd_sense_key_blank_check(un, bp, xp, pktp);
17816 		break;
17817 	case KEY_ABORTED_COMMAND:
17818 		sd_sense_key_aborted_command(un, bp, xp, pktp);
17819 		break;
17820 	case KEY_VENDOR_UNIQUE:
17821 	case KEY_COPY_ABORTED:
17822 	case KEY_EQUAL:
17823 	case KEY_RESERVED:
17824 	default:
17825 		sd_sense_key_default(un, xp->xb_sense_data,
17826 		    bp, xp, pktp);
17827 		break;
17828 	}
17829 }
17830 
17831 
17832 /*
17833  *    Function: sd_dump_memory
17834  *
17835  * Description: Debug logging routine to print the contents of a user provided
17836  *		buffer. The output of the buffer is broken up into 256 byte
17837  *		segments due to a size constraint of the scsi_log.
17838  *		implementation.
17839  *
17840  *   Arguments: un - ptr to softstate
17841  *		comp - component mask
17842  *		title - "title" string to preceed data when printed
17843  *		data - ptr to data block to be printed
17844  *		len - size of data block to be printed
17845  *		fmt - SD_LOG_HEX (use 0x%02x format) or SD_LOG_CHAR (use %c)
17846  *
17847  *     Context: May be called from interrupt context
17848  */
17849 
17850 #define	SD_DUMP_MEMORY_BUF_SIZE	256
17851 
17852 static char *sd_dump_format_string[] = {
17853 		" 0x%02x",
17854 		" %c"
17855 };
17856 
17857 static void
17858 sd_dump_memory(struct sd_lun *un, uint_t comp, char *title, uchar_t *data,
17859     int len, int fmt)
17860 {
17861 	int	i, j;
17862 	int	avail_count;
17863 	int	start_offset;
17864 	int	end_offset;
17865 	size_t	entry_len;
17866 	char	*bufp;
17867 	char	*local_buf;
17868 	char	*format_string;
17869 
17870 	ASSERT((fmt == SD_LOG_HEX) || (fmt == SD_LOG_CHAR));
17871 
17872 	/*
17873 	 * In the debug version of the driver, this function is called from a
17874 	 * number of places which are NOPs in the release driver.
17875 	 * The debug driver therefore has additional methods of filtering
17876 	 * debug output.
17877 	 */
17878 #ifdef SDDEBUG
17879 	/*
17880 	 * In the debug version of the driver we can reduce the amount of debug
17881 	 * messages by setting sd_error_level to something other than
17882 	 * SCSI_ERR_ALL and clearing bits in sd_level_mask and
17883 	 * sd_component_mask.
17884 	 */
17885 	if (((sd_level_mask & (SD_LOGMASK_DUMP_MEM | SD_LOGMASK_DIAG)) == 0) ||
17886 	    (sd_error_level != SCSI_ERR_ALL)) {
17887 		return;
17888 	}
17889 	if (((sd_component_mask & comp) == 0) ||
17890 	    (sd_error_level != SCSI_ERR_ALL)) {
17891 		return;
17892 	}
17893 #else
17894 	if (sd_error_level != SCSI_ERR_ALL) {
17895 		return;
17896 	}
17897 #endif
17898 
17899 	local_buf = kmem_zalloc(SD_DUMP_MEMORY_BUF_SIZE, KM_SLEEP);
17900 	bufp = local_buf;
17901 	/*
17902 	 * Available length is the length of local_buf[], minus the
17903 	 * length of the title string, minus one for the ":", minus
17904 	 * one for the newline, minus one for the NULL terminator.
17905 	 * This gives the #bytes available for holding the printed
17906 	 * values from the given data buffer.
17907 	 */
17908 	if (fmt == SD_LOG_HEX) {
17909 		format_string = sd_dump_format_string[0];
17910 	} else /* SD_LOG_CHAR */ {
17911 		format_string = sd_dump_format_string[1];
17912 	}
17913 	/*
17914 	 * Available count is the number of elements from the given
17915 	 * data buffer that we can fit into the available length.
17916 	 * This is based upon the size of the format string used.
17917 	 * Make one entry and find it's size.
17918 	 */
17919 	(void) sprintf(bufp, format_string, data[0]);
17920 	entry_len = strlen(bufp);
17921 	avail_count = (SD_DUMP_MEMORY_BUF_SIZE - strlen(title) - 3) / entry_len;
17922 
17923 	j = 0;
17924 	while (j < len) {
17925 		bufp = local_buf;
17926 		bzero(bufp, SD_DUMP_MEMORY_BUF_SIZE);
17927 		start_offset = j;
17928 
17929 		end_offset = start_offset + avail_count;
17930 
17931 		(void) sprintf(bufp, "%s:", title);
17932 		bufp += strlen(bufp);
17933 		for (i = start_offset; ((i < end_offset) && (j < len));
17934 		    i++, j++) {
17935 			(void) sprintf(bufp, format_string, data[i]);
17936 			bufp += entry_len;
17937 		}
17938 		(void) sprintf(bufp, "\n");
17939 
17940 		scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE, "%s", local_buf);
17941 	}
17942 	kmem_free(local_buf, SD_DUMP_MEMORY_BUF_SIZE);
17943 }
17944 
17945 /*
17946  *    Function: sd_print_sense_msg
17947  *
17948  * Description: Log a message based upon the given sense data.
17949  *
17950  *   Arguments: un - ptr to associated softstate
17951  *		bp - ptr to buf(9S) for the command
17952  *		arg - ptr to associate sd_sense_info struct
17953  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
17954  *			or SD_NO_RETRY_ISSUED
17955  *
17956  *     Context: May be called from interrupt context
17957  */
17958 
17959 static void
17960 sd_print_sense_msg(struct sd_lun *un, struct buf *bp, void *arg, int code)
17961 {
17962 	struct sd_xbuf	*xp;
17963 	struct scsi_pkt	*pktp;
17964 	uint8_t *sensep;
17965 	daddr_t request_blkno;
17966 	diskaddr_t err_blkno;
17967 	int severity;
17968 	int pfa_flag;
17969 	extern struct scsi_key_strings scsi_cmds[];
17970 
17971 	ASSERT(un != NULL);
17972 	ASSERT(mutex_owned(SD_MUTEX(un)));
17973 	ASSERT(bp != NULL);
17974 	xp = SD_GET_XBUF(bp);
17975 	ASSERT(xp != NULL);
17976 	pktp = SD_GET_PKTP(bp);
17977 	ASSERT(pktp != NULL);
17978 	ASSERT(arg != NULL);
17979 
17980 	severity = ((struct sd_sense_info *)(arg))->ssi_severity;
17981 	pfa_flag = ((struct sd_sense_info *)(arg))->ssi_pfa_flag;
17982 
17983 	if ((code == SD_DELAYED_RETRY_ISSUED) ||
17984 	    (code == SD_IMMEDIATE_RETRY_ISSUED)) {
17985 		severity = SCSI_ERR_RETRYABLE;
17986 	}
17987 
17988 	/* Use absolute block number for the request block number */
17989 	request_blkno = xp->xb_blkno;
17990 
17991 	/*
17992 	 * Now try to get the error block number from the sense data
17993 	 */
17994 	sensep = xp->xb_sense_data;
17995 
17996 	if (scsi_sense_info_uint64(sensep, SENSE_LENGTH,
17997 	    (uint64_t *)&err_blkno)) {
17998 		/*
17999 		 * We retrieved the error block number from the information
18000 		 * portion of the sense data.
18001 		 *
18002 		 * For USCSI commands we are better off using the error
18003 		 * block no. as the requested block no. (This is the best
18004 		 * we can estimate.)
18005 		 */
18006 		if ((SD_IS_BUFIO(xp) == FALSE) &&
18007 		    ((pktp->pkt_flags & FLAG_SILENT) == 0)) {
18008 			request_blkno = err_blkno;
18009 		}
18010 	} else {
18011 		/*
18012 		 * Without the es_valid bit set (for fixed format) or an
18013 		 * information descriptor (for descriptor format) we cannot
18014 		 * be certain of the error blkno, so just use the
18015 		 * request_blkno.
18016 		 */
18017 		err_blkno = (diskaddr_t)request_blkno;
18018 	}
18019 
18020 	/*
18021 	 * The following will log the buffer contents for the release driver
18022 	 * if the SD_LOGMASK_DIAG bit of sd_level_mask is set, or the error
18023 	 * level is set to verbose.
18024 	 */
18025 	sd_dump_memory(un, SD_LOG_IO, "Failed CDB",
18026 	    (uchar_t *)pktp->pkt_cdbp, CDB_SIZE, SD_LOG_HEX);
18027 	sd_dump_memory(un, SD_LOG_IO, "Sense Data",
18028 	    (uchar_t *)sensep, SENSE_LENGTH, SD_LOG_HEX);
18029 
18030 	if (pfa_flag == FALSE) {
18031 		/* This is normally only set for USCSI */
18032 		if ((pktp->pkt_flags & FLAG_SILENT) != 0) {
18033 			return;
18034 		}
18035 
18036 		if ((SD_IS_BUFIO(xp) == TRUE) &&
18037 		    (((sd_level_mask & SD_LOGMASK_DIAG) == 0) &&
18038 		    (severity < sd_error_level))) {
18039 			return;
18040 		}
18041 	}
18042 	/*
18043 	 * Check for Sonoma Failover and keep a count of how many failed I/O's
18044 	 */
18045 	if ((SD_IS_LSI(un)) &&
18046 	    (scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) &&
18047 	    (scsi_sense_asc(sensep) == 0x94) &&
18048 	    (scsi_sense_ascq(sensep) == 0x01)) {
18049 		un->un_sonoma_failure_count++;
18050 		if (un->un_sonoma_failure_count > 1) {
18051 			return;
18052 		}
18053 	}
18054 
18055 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP ||
18056 	    ((scsi_sense_key(sensep) == KEY_RECOVERABLE_ERROR) &&
18057 	    (pktp->pkt_resid == 0))) {
18058 		scsi_vu_errmsg(SD_SCSI_DEVP(un), pktp, sd_label, severity,
18059 		    request_blkno, err_blkno, scsi_cmds,
18060 		    (struct scsi_extended_sense *)sensep,
18061 		    un->un_additional_codes, NULL);
18062 	}
18063 }
18064 
18065 /*
18066  *    Function: sd_sense_key_no_sense
18067  *
18068  * Description: Recovery action when sense data was not received.
18069  *
18070  *     Context: May be called from interrupt context
18071  */
18072 
18073 static void
18074 sd_sense_key_no_sense(struct sd_lun *un, struct buf *bp,
18075 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18076 {
18077 	struct sd_sense_info	si;
18078 
18079 	ASSERT(un != NULL);
18080 	ASSERT(mutex_owned(SD_MUTEX(un)));
18081 	ASSERT(bp != NULL);
18082 	ASSERT(xp != NULL);
18083 	ASSERT(pktp != NULL);
18084 
18085 	si.ssi_severity = SCSI_ERR_FATAL;
18086 	si.ssi_pfa_flag = FALSE;
18087 
18088 	SD_UPDATE_ERRSTATS(un, sd_softerrs);
18089 
18090 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18091 	    &si, EIO, (clock_t)0, NULL);
18092 }
18093 
18094 
18095 /*
18096  *    Function: sd_sense_key_recoverable_error
18097  *
18098  * Description: Recovery actions for a SCSI "Recovered Error" sense key.
18099  *
18100  *     Context: May be called from interrupt context
18101  */
18102 
18103 static void
18104 sd_sense_key_recoverable_error(struct sd_lun *un,
18105 	uint8_t *sense_datap,
18106 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18107 {
18108 	struct sd_sense_info	si;
18109 	uint8_t asc = scsi_sense_asc(sense_datap);
18110 
18111 	ASSERT(un != NULL);
18112 	ASSERT(mutex_owned(SD_MUTEX(un)));
18113 	ASSERT(bp != NULL);
18114 	ASSERT(xp != NULL);
18115 	ASSERT(pktp != NULL);
18116 
18117 	/*
18118 	 * 0x5D: FAILURE PREDICTION THRESHOLD EXCEEDED
18119 	 */
18120 	if ((asc == 0x5D) && (sd_report_pfa != 0)) {
18121 		SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18122 		si.ssi_severity = SCSI_ERR_INFO;
18123 		si.ssi_pfa_flag = TRUE;
18124 	} else {
18125 		SD_UPDATE_ERRSTATS(un, sd_softerrs);
18126 		SD_UPDATE_ERRSTATS(un, sd_rq_recov_err);
18127 		si.ssi_severity = SCSI_ERR_RECOVERED;
18128 		si.ssi_pfa_flag = FALSE;
18129 	}
18130 
18131 	if (pktp->pkt_resid == 0) {
18132 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18133 		sd_return_command(un, bp);
18134 		return;
18135 	}
18136 
18137 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18138 	    &si, EIO, (clock_t)0, NULL);
18139 }
18140 
18141 
18142 
18143 
18144 /*
18145  *    Function: sd_sense_key_not_ready
18146  *
18147  * Description: Recovery actions for a SCSI "Not Ready" sense key.
18148  *
18149  *     Context: May be called from interrupt context
18150  */
18151 
18152 static void
18153 sd_sense_key_not_ready(struct sd_lun *un,
18154 	uint8_t *sense_datap,
18155 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18156 {
18157 	struct sd_sense_info	si;
18158 	uint8_t asc = scsi_sense_asc(sense_datap);
18159 	uint8_t ascq = scsi_sense_ascq(sense_datap);
18160 
18161 	ASSERT(un != NULL);
18162 	ASSERT(mutex_owned(SD_MUTEX(un)));
18163 	ASSERT(bp != NULL);
18164 	ASSERT(xp != NULL);
18165 	ASSERT(pktp != NULL);
18166 
18167 	si.ssi_severity = SCSI_ERR_FATAL;
18168 	si.ssi_pfa_flag = FALSE;
18169 
18170 	/*
18171 	 * Update error stats after first NOT READY error. Disks may have
18172 	 * been powered down and may need to be restarted.  For CDROMs,
18173 	 * report NOT READY errors only if media is present.
18174 	 */
18175 	if ((ISCD(un) && (asc == 0x3A)) ||
18176 	    (xp->xb_nr_retry_count > 0)) {
18177 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18178 		SD_UPDATE_ERRSTATS(un, sd_rq_ntrdy_err);
18179 	}
18180 
18181 	/*
18182 	 * Just fail if the "not ready" retry limit has been reached.
18183 	 */
18184 	if (xp->xb_nr_retry_count >= un->un_notready_retry_count) {
18185 		/* Special check for error message printing for removables. */
18186 		if (un->un_f_has_removable_media && (asc == 0x04) &&
18187 		    (ascq >= 0x04)) {
18188 			si.ssi_severity = SCSI_ERR_ALL;
18189 		}
18190 		goto fail_command;
18191 	}
18192 
18193 	/*
18194 	 * Check the ASC and ASCQ in the sense data as needed, to determine
18195 	 * what to do.
18196 	 */
18197 	switch (asc) {
18198 	case 0x04:	/* LOGICAL UNIT NOT READY */
18199 		/*
18200 		 * disk drives that don't spin up result in a very long delay
18201 		 * in format without warning messages. We will log a message
18202 		 * if the error level is set to verbose.
18203 		 */
18204 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18205 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18206 			    "logical unit not ready, resetting disk\n");
18207 		}
18208 
18209 		/*
18210 		 * There are different requirements for CDROMs and disks for
18211 		 * the number of retries.  If a CD-ROM is giving this, it is
18212 		 * probably reading TOC and is in the process of getting
18213 		 * ready, so we should keep on trying for a long time to make
18214 		 * sure that all types of media are taken in account (for
18215 		 * some media the drive takes a long time to read TOC).  For
18216 		 * disks we do not want to retry this too many times as this
18217 		 * can cause a long hang in format when the drive refuses to
18218 		 * spin up (a very common failure).
18219 		 */
18220 		switch (ascq) {
18221 		case 0x00:  /* LUN NOT READY, CAUSE NOT REPORTABLE */
18222 			/*
18223 			 * Disk drives frequently refuse to spin up which
18224 			 * results in a very long hang in format without
18225 			 * warning messages.
18226 			 *
18227 			 * Note: This code preserves the legacy behavior of
18228 			 * comparing xb_nr_retry_count against zero for fibre
18229 			 * channel targets instead of comparing against the
18230 			 * un_reset_retry_count value.  The reason for this
18231 			 * discrepancy has been so utterly lost beneath the
18232 			 * Sands of Time that even Indiana Jones could not
18233 			 * find it.
18234 			 */
18235 			if (un->un_f_is_fibre == TRUE) {
18236 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
18237 				    (xp->xb_nr_retry_count > 0)) &&
18238 				    (un->un_startstop_timeid == NULL)) {
18239 					scsi_log(SD_DEVINFO(un), sd_label,
18240 					    CE_WARN, "logical unit not ready, "
18241 					    "resetting disk\n");
18242 					sd_reset_target(un, pktp);
18243 				}
18244 			} else {
18245 				if (((sd_level_mask & SD_LOGMASK_DIAG) ||
18246 				    (xp->xb_nr_retry_count >
18247 				    un->un_reset_retry_count)) &&
18248 				    (un->un_startstop_timeid == NULL)) {
18249 					scsi_log(SD_DEVINFO(un), sd_label,
18250 					    CE_WARN, "logical unit not ready, "
18251 					    "resetting disk\n");
18252 					sd_reset_target(un, pktp);
18253 				}
18254 			}
18255 			break;
18256 
18257 		case 0x01:  /* LUN IS IN PROCESS OF BECOMING READY */
18258 			/*
18259 			 * If the target is in the process of becoming
18260 			 * ready, just proceed with the retry. This can
18261 			 * happen with CD-ROMs that take a long time to
18262 			 * read TOC after a power cycle or reset.
18263 			 */
18264 			goto do_retry;
18265 
18266 		case 0x02:  /* LUN NOT READY, INITITIALIZING CMD REQUIRED */
18267 			break;
18268 
18269 		case 0x03:  /* LUN NOT READY, MANUAL INTERVENTION REQUIRED */
18270 			/*
18271 			 * Retries cannot help here so just fail right away.
18272 			 */
18273 			goto fail_command;
18274 
18275 		case 0x88:
18276 			/*
18277 			 * Vendor-unique code for T3/T4: it indicates a
18278 			 * path problem in a mutipathed config, but as far as
18279 			 * the target driver is concerned it equates to a fatal
18280 			 * error, so we should just fail the command right away
18281 			 * (without printing anything to the console). If this
18282 			 * is not a T3/T4, fall thru to the default recovery
18283 			 * action.
18284 			 * T3/T4 is FC only, don't need to check is_fibre
18285 			 */
18286 			if (SD_IS_T3(un) || SD_IS_T4(un)) {
18287 				sd_return_failed_command(un, bp, EIO);
18288 				return;
18289 			}
18290 			/* FALLTHRU */
18291 
18292 		case 0x04:  /* LUN NOT READY, FORMAT IN PROGRESS */
18293 		case 0x05:  /* LUN NOT READY, REBUILD IN PROGRESS */
18294 		case 0x06:  /* LUN NOT READY, RECALCULATION IN PROGRESS */
18295 		case 0x07:  /* LUN NOT READY, OPERATION IN PROGRESS */
18296 		case 0x08:  /* LUN NOT READY, LONG WRITE IN PROGRESS */
18297 		default:    /* Possible future codes in SCSI spec? */
18298 			/*
18299 			 * For removable-media devices, do not retry if
18300 			 * ASCQ > 2 as these result mostly from USCSI commands
18301 			 * on MMC devices issued to check status of an
18302 			 * operation initiated in immediate mode.  Also for
18303 			 * ASCQ >= 4 do not print console messages as these
18304 			 * mainly represent a user-initiated operation
18305 			 * instead of a system failure.
18306 			 */
18307 			if (un->un_f_has_removable_media) {
18308 				si.ssi_severity = SCSI_ERR_ALL;
18309 				goto fail_command;
18310 			}
18311 			break;
18312 		}
18313 
18314 		/*
18315 		 * As part of our recovery attempt for the NOT READY
18316 		 * condition, we issue a START STOP UNIT command. However
18317 		 * we want to wait for a short delay before attempting this
18318 		 * as there may still be more commands coming back from the
18319 		 * target with the check condition. To do this we use
18320 		 * timeout(9F) to call sd_start_stop_unit_callback() after
18321 		 * the delay interval expires. (sd_start_stop_unit_callback()
18322 		 * dispatches sd_start_stop_unit_task(), which will issue
18323 		 * the actual START STOP UNIT command. The delay interval
18324 		 * is one-half of the delay that we will use to retry the
18325 		 * command that generated the NOT READY condition.
18326 		 *
18327 		 * Note that we could just dispatch sd_start_stop_unit_task()
18328 		 * from here and allow it to sleep for the delay interval,
18329 		 * but then we would be tying up the taskq thread
18330 		 * uncesessarily for the duration of the delay.
18331 		 *
18332 		 * Do not issue the START STOP UNIT if the current command
18333 		 * is already a START STOP UNIT.
18334 		 */
18335 		if (pktp->pkt_cdbp[0] == SCMD_START_STOP) {
18336 			break;
18337 		}
18338 
18339 		/*
18340 		 * Do not schedule the timeout if one is already pending.
18341 		 */
18342 		if (un->un_startstop_timeid != NULL) {
18343 			SD_INFO(SD_LOG_ERROR, un,
18344 			    "sd_sense_key_not_ready: restart already issued to"
18345 			    " %s%d\n", ddi_driver_name(SD_DEVINFO(un)),
18346 			    ddi_get_instance(SD_DEVINFO(un)));
18347 			break;
18348 		}
18349 
18350 		/*
18351 		 * Schedule the START STOP UNIT command, then queue the command
18352 		 * for a retry.
18353 		 *
18354 		 * Note: A timeout is not scheduled for this retry because we
18355 		 * want the retry to be serial with the START_STOP_UNIT. The
18356 		 * retry will be started when the START_STOP_UNIT is completed
18357 		 * in sd_start_stop_unit_task.
18358 		 */
18359 		un->un_startstop_timeid = timeout(sd_start_stop_unit_callback,
18360 		    un, un->un_busy_timeout / 2);
18361 		xp->xb_nr_retry_count++;
18362 		sd_set_retry_bp(un, bp, 0, kstat_waitq_enter);
18363 		return;
18364 
18365 	case 0x05:	/* LOGICAL UNIT DOES NOT RESPOND TO SELECTION */
18366 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18367 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18368 			    "unit does not respond to selection\n");
18369 		}
18370 		break;
18371 
18372 	case 0x3A:	/* MEDIUM NOT PRESENT */
18373 		if (sd_error_level >= SCSI_ERR_FATAL) {
18374 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18375 			    "Caddy not inserted in drive\n");
18376 		}
18377 
18378 		sr_ejected(un);
18379 		un->un_mediastate = DKIO_EJECTED;
18380 		/* The state has changed, inform the media watch routines */
18381 		cv_broadcast(&un->un_state_cv);
18382 		/* Just fail if no media is present in the drive. */
18383 		goto fail_command;
18384 
18385 	default:
18386 		if (sd_error_level < SCSI_ERR_RETRYABLE) {
18387 			scsi_log(SD_DEVINFO(un), sd_label, CE_NOTE,
18388 			    "Unit not Ready. Additional sense code 0x%x\n",
18389 			    asc);
18390 		}
18391 		break;
18392 	}
18393 
18394 do_retry:
18395 
18396 	/*
18397 	 * Retry the command, as some targets may report NOT READY for
18398 	 * several seconds after being reset.
18399 	 */
18400 	xp->xb_nr_retry_count++;
18401 	si.ssi_severity = SCSI_ERR_RETRYABLE;
18402 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, sd_print_sense_msg,
18403 	    &si, EIO, un->un_busy_timeout, NULL);
18404 
18405 	return;
18406 
18407 fail_command:
18408 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18409 	sd_return_failed_command(un, bp, EIO);
18410 }
18411 
18412 
18413 
18414 /*
18415  *    Function: sd_sense_key_medium_or_hardware_error
18416  *
18417  * Description: Recovery actions for a SCSI "Medium Error" or "Hardware Error"
18418  *		sense key.
18419  *
18420  *     Context: May be called from interrupt context
18421  */
18422 
18423 static void
18424 sd_sense_key_medium_or_hardware_error(struct sd_lun *un,
18425 	uint8_t *sense_datap,
18426 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18427 {
18428 	struct sd_sense_info	si;
18429 	uint8_t sense_key = scsi_sense_key(sense_datap);
18430 	uint8_t asc = scsi_sense_asc(sense_datap);
18431 
18432 	ASSERT(un != NULL);
18433 	ASSERT(mutex_owned(SD_MUTEX(un)));
18434 	ASSERT(bp != NULL);
18435 	ASSERT(xp != NULL);
18436 	ASSERT(pktp != NULL);
18437 
18438 	si.ssi_severity = SCSI_ERR_FATAL;
18439 	si.ssi_pfa_flag = FALSE;
18440 
18441 	if (sense_key == KEY_MEDIUM_ERROR) {
18442 		SD_UPDATE_ERRSTATS(un, sd_rq_media_err);
18443 	}
18444 
18445 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18446 
18447 	if ((un->un_reset_retry_count != 0) &&
18448 	    (xp->xb_retry_count == un->un_reset_retry_count)) {
18449 		mutex_exit(SD_MUTEX(un));
18450 		/* Do NOT do a RESET_ALL here: too intrusive. (4112858) */
18451 		if (un->un_f_allow_bus_device_reset == TRUE) {
18452 
18453 			boolean_t try_resetting_target = B_TRUE;
18454 
18455 			/*
18456 			 * We need to be able to handle specific ASC when we are
18457 			 * handling a KEY_HARDWARE_ERROR. In particular
18458 			 * taking the default action of resetting the target may
18459 			 * not be the appropriate way to attempt recovery.
18460 			 * Resetting a target because of a single LUN failure
18461 			 * victimizes all LUNs on that target.
18462 			 *
18463 			 * This is true for the LSI arrays, if an LSI
18464 			 * array controller returns an ASC of 0x84 (LUN Dead) we
18465 			 * should trust it.
18466 			 */
18467 
18468 			if (sense_key == KEY_HARDWARE_ERROR) {
18469 				switch (asc) {
18470 				case 0x84:
18471 					if (SD_IS_LSI(un)) {
18472 						try_resetting_target = B_FALSE;
18473 					}
18474 					break;
18475 				default:
18476 					break;
18477 				}
18478 			}
18479 
18480 			if (try_resetting_target == B_TRUE) {
18481 				int reset_retval = 0;
18482 				if (un->un_f_lun_reset_enabled == TRUE) {
18483 					SD_TRACE(SD_LOG_IO_CORE, un,
18484 					    "sd_sense_key_medium_or_hardware_"
18485 					    "error: issuing RESET_LUN\n");
18486 					reset_retval =
18487 					    scsi_reset(SD_ADDRESS(un),
18488 					    RESET_LUN);
18489 				}
18490 				if (reset_retval == 0) {
18491 					SD_TRACE(SD_LOG_IO_CORE, un,
18492 					    "sd_sense_key_medium_or_hardware_"
18493 					    "error: issuing RESET_TARGET\n");
18494 					(void) scsi_reset(SD_ADDRESS(un),
18495 					    RESET_TARGET);
18496 				}
18497 			}
18498 		}
18499 		mutex_enter(SD_MUTEX(un));
18500 	}
18501 
18502 	/*
18503 	 * This really ought to be a fatal error, but we will retry anyway
18504 	 * as some drives report this as a spurious error.
18505 	 */
18506 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18507 	    &si, EIO, (clock_t)0, NULL);
18508 }
18509 
18510 
18511 
18512 /*
18513  *    Function: sd_sense_key_illegal_request
18514  *
18515  * Description: Recovery actions for a SCSI "Illegal Request" sense key.
18516  *
18517  *     Context: May be called from interrupt context
18518  */
18519 
18520 static void
18521 sd_sense_key_illegal_request(struct sd_lun *un, struct buf *bp,
18522 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18523 {
18524 	struct sd_sense_info	si;
18525 
18526 	ASSERT(un != NULL);
18527 	ASSERT(mutex_owned(SD_MUTEX(un)));
18528 	ASSERT(bp != NULL);
18529 	ASSERT(xp != NULL);
18530 	ASSERT(pktp != NULL);
18531 
18532 	SD_UPDATE_ERRSTATS(un, sd_rq_illrq_err);
18533 
18534 	si.ssi_severity = SCSI_ERR_INFO;
18535 	si.ssi_pfa_flag = FALSE;
18536 
18537 	/* Pointless to retry if the target thinks it's an illegal request */
18538 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18539 	sd_return_failed_command(un, bp, EIO);
18540 }
18541 
18542 
18543 
18544 
18545 /*
18546  *    Function: sd_sense_key_unit_attention
18547  *
18548  * Description: Recovery actions for a SCSI "Unit Attention" sense key.
18549  *
18550  *     Context: May be called from interrupt context
18551  */
18552 
18553 static void
18554 sd_sense_key_unit_attention(struct sd_lun *un,
18555 	uint8_t *sense_datap,
18556 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18557 {
18558 	/*
18559 	 * For UNIT ATTENTION we allow retries for one minute. Devices
18560 	 * like Sonoma can return UNIT ATTENTION close to a minute
18561 	 * under certain conditions.
18562 	 */
18563 	int	retry_check_flag = SD_RETRIES_UA;
18564 	boolean_t	kstat_updated = B_FALSE;
18565 	struct	sd_sense_info		si;
18566 	uint8_t asc = scsi_sense_asc(sense_datap);
18567 	uint8_t	ascq = scsi_sense_ascq(sense_datap);
18568 
18569 	ASSERT(un != NULL);
18570 	ASSERT(mutex_owned(SD_MUTEX(un)));
18571 	ASSERT(bp != NULL);
18572 	ASSERT(xp != NULL);
18573 	ASSERT(pktp != NULL);
18574 
18575 	si.ssi_severity = SCSI_ERR_INFO;
18576 	si.ssi_pfa_flag = FALSE;
18577 
18578 
18579 	switch (asc) {
18580 	case 0x5D:  /* FAILURE PREDICTION THRESHOLD EXCEEDED */
18581 		if (sd_report_pfa != 0) {
18582 			SD_UPDATE_ERRSTATS(un, sd_rq_pfa_err);
18583 			si.ssi_pfa_flag = TRUE;
18584 			retry_check_flag = SD_RETRIES_STANDARD;
18585 			goto do_retry;
18586 		}
18587 
18588 		break;
18589 
18590 	case 0x29:  /* POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */
18591 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
18592 			un->un_resvd_status |=
18593 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
18594 		}
18595 #ifdef _LP64
18596 		if (un->un_blockcount + 1 > SD_GROUP1_MAX_ADDRESS) {
18597 			if (taskq_dispatch(sd_tq, sd_reenable_dsense_task,
18598 			    un, KM_NOSLEEP) == 0) {
18599 				/*
18600 				 * If we can't dispatch the task we'll just
18601 				 * live without descriptor sense.  We can
18602 				 * try again on the next "unit attention"
18603 				 */
18604 				SD_ERROR(SD_LOG_ERROR, un,
18605 				    "sd_sense_key_unit_attention: "
18606 				    "Could not dispatch "
18607 				    "sd_reenable_dsense_task\n");
18608 			}
18609 		}
18610 #endif /* _LP64 */
18611 		/* FALLTHRU */
18612 
18613 	case 0x28: /* NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */
18614 		if (!un->un_f_has_removable_media) {
18615 			break;
18616 		}
18617 
18618 		/*
18619 		 * When we get a unit attention from a removable-media device,
18620 		 * it may be in a state that will take a long time to recover
18621 		 * (e.g., from a reset).  Since we are executing in interrupt
18622 		 * context here, we cannot wait around for the device to come
18623 		 * back. So hand this command off to sd_media_change_task()
18624 		 * for deferred processing under taskq thread context. (Note
18625 		 * that the command still may be failed if a problem is
18626 		 * encountered at a later time.)
18627 		 */
18628 		if (taskq_dispatch(sd_tq, sd_media_change_task, pktp,
18629 		    KM_NOSLEEP) == 0) {
18630 			/*
18631 			 * Cannot dispatch the request so fail the command.
18632 			 */
18633 			SD_UPDATE_ERRSTATS(un, sd_harderrs);
18634 			SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18635 			si.ssi_severity = SCSI_ERR_FATAL;
18636 			sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18637 			sd_return_failed_command(un, bp, EIO);
18638 		}
18639 
18640 		/*
18641 		 * If failed to dispatch sd_media_change_task(), we already
18642 		 * updated kstat. If succeed to dispatch sd_media_change_task(),
18643 		 * we should update kstat later if it encounters an error. So,
18644 		 * we update kstat_updated flag here.
18645 		 */
18646 		kstat_updated = B_TRUE;
18647 
18648 		/*
18649 		 * Either the command has been successfully dispatched to a
18650 		 * task Q for retrying, or the dispatch failed. In either case
18651 		 * do NOT retry again by calling sd_retry_command. This sets up
18652 		 * two retries of the same command and when one completes and
18653 		 * frees the resources the other will access freed memory,
18654 		 * a bad thing.
18655 		 */
18656 		return;
18657 
18658 	default:
18659 		break;
18660 	}
18661 
18662 	/*
18663 	 * ASC  ASCQ
18664 	 *  2A   09	Capacity data has changed
18665 	 *  2A   01	Mode parameters changed
18666 	 *  3F   0E	Reported luns data has changed
18667 	 * Arrays that support logical unit expansion should report
18668 	 * capacity changes(2Ah/09). Mode parameters changed and
18669 	 * reported luns data has changed are the approximation.
18670 	 */
18671 	if (((asc == 0x2a) && (ascq == 0x09)) ||
18672 	    ((asc == 0x2a) && (ascq == 0x01)) ||
18673 	    ((asc == 0x3f) && (ascq == 0x0e))) {
18674 		if (taskq_dispatch(sd_tq, sd_target_change_task, un,
18675 		    KM_NOSLEEP) == 0) {
18676 			SD_ERROR(SD_LOG_ERROR, un,
18677 			    "sd_sense_key_unit_attention: "
18678 			    "Could not dispatch sd_target_change_task\n");
18679 		}
18680 	}
18681 
18682 	/*
18683 	 * Update kstat if we haven't done that.
18684 	 */
18685 	if (!kstat_updated) {
18686 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
18687 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
18688 	}
18689 
18690 do_retry:
18691 	sd_retry_command(un, bp, retry_check_flag, sd_print_sense_msg, &si,
18692 	    EIO, SD_UA_RETRY_DELAY, NULL);
18693 }
18694 
18695 
18696 
18697 /*
18698  *    Function: sd_sense_key_fail_command
18699  *
18700  * Description: Use to fail a command when we don't like the sense key that
18701  *		was returned.
18702  *
18703  *     Context: May be called from interrupt context
18704  */
18705 
18706 static void
18707 sd_sense_key_fail_command(struct sd_lun *un, struct buf *bp,
18708 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18709 {
18710 	struct sd_sense_info	si;
18711 
18712 	ASSERT(un != NULL);
18713 	ASSERT(mutex_owned(SD_MUTEX(un)));
18714 	ASSERT(bp != NULL);
18715 	ASSERT(xp != NULL);
18716 	ASSERT(pktp != NULL);
18717 
18718 	si.ssi_severity = SCSI_ERR_FATAL;
18719 	si.ssi_pfa_flag = FALSE;
18720 
18721 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18722 	sd_return_failed_command(un, bp, EIO);
18723 }
18724 
18725 
18726 
18727 /*
18728  *    Function: sd_sense_key_blank_check
18729  *
18730  * Description: Recovery actions for a SCSI "Blank Check" sense key.
18731  *		Has no monetary connotation.
18732  *
18733  *     Context: May be called from interrupt context
18734  */
18735 
18736 static void
18737 sd_sense_key_blank_check(struct sd_lun *un, struct buf *bp,
18738 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18739 {
18740 	struct sd_sense_info	si;
18741 
18742 	ASSERT(un != NULL);
18743 	ASSERT(mutex_owned(SD_MUTEX(un)));
18744 	ASSERT(bp != NULL);
18745 	ASSERT(xp != NULL);
18746 	ASSERT(pktp != NULL);
18747 
18748 	/*
18749 	 * Blank check is not fatal for removable devices, therefore
18750 	 * it does not require a console message.
18751 	 */
18752 	si.ssi_severity = (un->un_f_has_removable_media) ? SCSI_ERR_ALL :
18753 	    SCSI_ERR_FATAL;
18754 	si.ssi_pfa_flag = FALSE;
18755 
18756 	sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
18757 	sd_return_failed_command(un, bp, EIO);
18758 }
18759 
18760 
18761 
18762 
18763 /*
18764  *    Function: sd_sense_key_aborted_command
18765  *
18766  * Description: Recovery actions for a SCSI "Aborted Command" sense key.
18767  *
18768  *     Context: May be called from interrupt context
18769  */
18770 
18771 static void
18772 sd_sense_key_aborted_command(struct sd_lun *un, struct buf *bp,
18773 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18774 {
18775 	struct sd_sense_info	si;
18776 
18777 	ASSERT(un != NULL);
18778 	ASSERT(mutex_owned(SD_MUTEX(un)));
18779 	ASSERT(bp != NULL);
18780 	ASSERT(xp != NULL);
18781 	ASSERT(pktp != NULL);
18782 
18783 	si.ssi_severity = SCSI_ERR_FATAL;
18784 	si.ssi_pfa_flag = FALSE;
18785 
18786 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18787 
18788 	/*
18789 	 * This really ought to be a fatal error, but we will retry anyway
18790 	 * as some drives report this as a spurious error.
18791 	 */
18792 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18793 	    &si, EIO, drv_usectohz(100000), NULL);
18794 }
18795 
18796 
18797 
18798 /*
18799  *    Function: sd_sense_key_default
18800  *
18801  * Description: Default recovery action for several SCSI sense keys (basically
18802  *		attempts a retry).
18803  *
18804  *     Context: May be called from interrupt context
18805  */
18806 
18807 static void
18808 sd_sense_key_default(struct sd_lun *un,
18809 	uint8_t *sense_datap,
18810 	struct buf *bp, struct sd_xbuf *xp, struct scsi_pkt *pktp)
18811 {
18812 	struct sd_sense_info	si;
18813 	uint8_t sense_key = scsi_sense_key(sense_datap);
18814 
18815 	ASSERT(un != NULL);
18816 	ASSERT(mutex_owned(SD_MUTEX(un)));
18817 	ASSERT(bp != NULL);
18818 	ASSERT(xp != NULL);
18819 	ASSERT(pktp != NULL);
18820 
18821 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
18822 
18823 	/*
18824 	 * Undecoded sense key.	Attempt retries and hope that will fix
18825 	 * the problem.  Otherwise, we're dead.
18826 	 */
18827 	if ((pktp->pkt_flags & FLAG_SILENT) == 0) {
18828 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18829 		    "Unhandled Sense Key '%s'\n", sense_keys[sense_key]);
18830 	}
18831 
18832 	si.ssi_severity = SCSI_ERR_FATAL;
18833 	si.ssi_pfa_flag = FALSE;
18834 
18835 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, sd_print_sense_msg,
18836 	    &si, EIO, (clock_t)0, NULL);
18837 }
18838 
18839 
18840 
18841 /*
18842  *    Function: sd_print_retry_msg
18843  *
18844  * Description: Print a message indicating the retry action being taken.
18845  *
18846  *   Arguments: un - ptr to associated softstate
18847  *		bp - ptr to buf(9S) for the command
18848  *		arg - not used.
18849  *		flag - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18850  *			or SD_NO_RETRY_ISSUED
18851  *
18852  *     Context: May be called from interrupt context
18853  */
18854 /* ARGSUSED */
18855 static void
18856 sd_print_retry_msg(struct sd_lun *un, struct buf *bp, void *arg, int flag)
18857 {
18858 	struct sd_xbuf	*xp;
18859 	struct scsi_pkt *pktp;
18860 	char *reasonp;
18861 	char *msgp;
18862 
18863 	ASSERT(un != NULL);
18864 	ASSERT(mutex_owned(SD_MUTEX(un)));
18865 	ASSERT(bp != NULL);
18866 	pktp = SD_GET_PKTP(bp);
18867 	ASSERT(pktp != NULL);
18868 	xp = SD_GET_XBUF(bp);
18869 	ASSERT(xp != NULL);
18870 
18871 	ASSERT(!mutex_owned(&un->un_pm_mutex));
18872 	mutex_enter(&un->un_pm_mutex);
18873 	if ((un->un_state == SD_STATE_SUSPENDED) ||
18874 	    (SD_DEVICE_IS_IN_LOW_POWER(un)) ||
18875 	    (pktp->pkt_flags & FLAG_SILENT)) {
18876 		mutex_exit(&un->un_pm_mutex);
18877 		goto update_pkt_reason;
18878 	}
18879 	mutex_exit(&un->un_pm_mutex);
18880 
18881 	/*
18882 	 * Suppress messages if they are all the same pkt_reason; with
18883 	 * TQ, many (up to 256) are returned with the same pkt_reason.
18884 	 * If we are in panic, then suppress the retry messages.
18885 	 */
18886 	switch (flag) {
18887 	case SD_NO_RETRY_ISSUED:
18888 		msgp = "giving up";
18889 		break;
18890 	case SD_IMMEDIATE_RETRY_ISSUED:
18891 	case SD_DELAYED_RETRY_ISSUED:
18892 		if (ddi_in_panic() || (un->un_state == SD_STATE_OFFLINE) ||
18893 		    ((pktp->pkt_reason == un->un_last_pkt_reason) &&
18894 		    (sd_error_level != SCSI_ERR_ALL))) {
18895 			return;
18896 		}
18897 		msgp = "retrying command";
18898 		break;
18899 	default:
18900 		goto update_pkt_reason;
18901 	}
18902 
18903 	reasonp = (((pktp->pkt_statistics & STAT_PERR) != 0) ? "parity error" :
18904 	    scsi_rname(pktp->pkt_reason));
18905 
18906 	if (SD_FM_LOG(un) == SD_FM_LOG_NSUP) {
18907 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18908 		    "SCSI transport failed: reason '%s': %s\n", reasonp, msgp);
18909 	}
18910 
18911 update_pkt_reason:
18912 	/*
18913 	 * Update un->un_last_pkt_reason with the value in pktp->pkt_reason.
18914 	 * This is to prevent multiple console messages for the same failure
18915 	 * condition.  Note that un->un_last_pkt_reason is NOT restored if &
18916 	 * when the command is retried successfully because there still may be
18917 	 * more commands coming back with the same value of pktp->pkt_reason.
18918 	 */
18919 	if ((pktp->pkt_reason != CMD_CMPLT) || (xp->xb_retry_count == 0)) {
18920 		un->un_last_pkt_reason = pktp->pkt_reason;
18921 	}
18922 }
18923 
18924 
18925 /*
18926  *    Function: sd_print_cmd_incomplete_msg
18927  *
18928  * Description: Message logging fn. for a SCSA "CMD_INCOMPLETE" pkt_reason.
18929  *
18930  *   Arguments: un - ptr to associated softstate
18931  *		bp - ptr to buf(9S) for the command
18932  *		arg - passed to sd_print_retry_msg()
18933  *		code - SD_IMMEDIATE_RETRY_ISSUED, SD_DELAYED_RETRY_ISSUED,
18934  *			or SD_NO_RETRY_ISSUED
18935  *
18936  *     Context: May be called from interrupt context
18937  */
18938 
18939 static void
18940 sd_print_cmd_incomplete_msg(struct sd_lun *un, struct buf *bp, void *arg,
18941 	int code)
18942 {
18943 	dev_info_t	*dip;
18944 
18945 	ASSERT(un != NULL);
18946 	ASSERT(mutex_owned(SD_MUTEX(un)));
18947 	ASSERT(bp != NULL);
18948 
18949 	switch (code) {
18950 	case SD_NO_RETRY_ISSUED:
18951 		/* Command was failed. Someone turned off this target? */
18952 		if (un->un_state != SD_STATE_OFFLINE) {
18953 			/*
18954 			 * Suppress message if we are detaching and
18955 			 * device has been disconnected
18956 			 * Note that DEVI_IS_DEVICE_REMOVED is a consolidation
18957 			 * private interface and not part of the DDI
18958 			 */
18959 			dip = un->un_sd->sd_dev;
18960 			if (!(DEVI_IS_DETACHING(dip) &&
18961 			    DEVI_IS_DEVICE_REMOVED(dip))) {
18962 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
18963 				"disk not responding to selection\n");
18964 			}
18965 			New_state(un, SD_STATE_OFFLINE);
18966 		}
18967 		break;
18968 
18969 	case SD_DELAYED_RETRY_ISSUED:
18970 	case SD_IMMEDIATE_RETRY_ISSUED:
18971 	default:
18972 		/* Command was successfully queued for retry */
18973 		sd_print_retry_msg(un, bp, arg, code);
18974 		break;
18975 	}
18976 }
18977 
18978 
18979 /*
18980  *    Function: sd_pkt_reason_cmd_incomplete
18981  *
18982  * Description: Recovery actions for a SCSA "CMD_INCOMPLETE" pkt_reason.
18983  *
18984  *     Context: May be called from interrupt context
18985  */
18986 
18987 static void
18988 sd_pkt_reason_cmd_incomplete(struct sd_lun *un, struct buf *bp,
18989 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
18990 {
18991 	int flag = SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE;
18992 
18993 	ASSERT(un != NULL);
18994 	ASSERT(mutex_owned(SD_MUTEX(un)));
18995 	ASSERT(bp != NULL);
18996 	ASSERT(xp != NULL);
18997 	ASSERT(pktp != NULL);
18998 
18999 	/* Do not do a reset if selection did not complete */
19000 	/* Note: Should this not just check the bit? */
19001 	if (pktp->pkt_state != STATE_GOT_BUS) {
19002 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
19003 		sd_reset_target(un, pktp);
19004 	}
19005 
19006 	/*
19007 	 * If the target was not successfully selected, then set
19008 	 * SD_RETRIES_FAILFAST to indicate that we lost communication
19009 	 * with the target, and further retries and/or commands are
19010 	 * likely to take a long time.
19011 	 */
19012 	if ((pktp->pkt_state & STATE_GOT_TARGET) == 0) {
19013 		flag |= SD_RETRIES_FAILFAST;
19014 	}
19015 
19016 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19017 
19018 	sd_retry_command(un, bp, flag,
19019 	    sd_print_cmd_incomplete_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19020 }
19021 
19022 
19023 
19024 /*
19025  *    Function: sd_pkt_reason_cmd_tran_err
19026  *
19027  * Description: Recovery actions for a SCSA "CMD_TRAN_ERR" pkt_reason.
19028  *
19029  *     Context: May be called from interrupt context
19030  */
19031 
19032 static void
19033 sd_pkt_reason_cmd_tran_err(struct sd_lun *un, struct buf *bp,
19034 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19035 {
19036 	ASSERT(un != NULL);
19037 	ASSERT(mutex_owned(SD_MUTEX(un)));
19038 	ASSERT(bp != NULL);
19039 	ASSERT(xp != NULL);
19040 	ASSERT(pktp != NULL);
19041 
19042 	/*
19043 	 * Do not reset if we got a parity error, or if
19044 	 * selection did not complete.
19045 	 */
19046 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19047 	/* Note: Should this not just check the bit for pkt_state? */
19048 	if (((pktp->pkt_statistics & STAT_PERR) == 0) &&
19049 	    (pktp->pkt_state != STATE_GOT_BUS)) {
19050 		SD_UPDATE_ERRSTATS(un, sd_transerrs);
19051 		sd_reset_target(un, pktp);
19052 	}
19053 
19054 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19055 
19056 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19057 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19058 }
19059 
19060 
19061 
19062 /*
19063  *    Function: sd_pkt_reason_cmd_reset
19064  *
19065  * Description: Recovery actions for a SCSA "CMD_RESET" pkt_reason.
19066  *
19067  *     Context: May be called from interrupt context
19068  */
19069 
19070 static void
19071 sd_pkt_reason_cmd_reset(struct sd_lun *un, struct buf *bp,
19072 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19073 {
19074 	ASSERT(un != NULL);
19075 	ASSERT(mutex_owned(SD_MUTEX(un)));
19076 	ASSERT(bp != NULL);
19077 	ASSERT(xp != NULL);
19078 	ASSERT(pktp != NULL);
19079 
19080 	/* The target may still be running the command, so try to reset. */
19081 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19082 	sd_reset_target(un, pktp);
19083 
19084 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19085 
19086 	/*
19087 	 * If pkt_reason is CMD_RESET chances are that this pkt got
19088 	 * reset because another target on this bus caused it. The target
19089 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
19090 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
19091 	 */
19092 
19093 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
19094 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19095 }
19096 
19097 
19098 
19099 
19100 /*
19101  *    Function: sd_pkt_reason_cmd_aborted
19102  *
19103  * Description: Recovery actions for a SCSA "CMD_ABORTED" pkt_reason.
19104  *
19105  *     Context: May be called from interrupt context
19106  */
19107 
19108 static void
19109 sd_pkt_reason_cmd_aborted(struct sd_lun *un, struct buf *bp,
19110 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19111 {
19112 	ASSERT(un != NULL);
19113 	ASSERT(mutex_owned(SD_MUTEX(un)));
19114 	ASSERT(bp != NULL);
19115 	ASSERT(xp != NULL);
19116 	ASSERT(pktp != NULL);
19117 
19118 	/* The target may still be running the command, so try to reset. */
19119 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19120 	sd_reset_target(un, pktp);
19121 
19122 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19123 
19124 	/*
19125 	 * If pkt_reason is CMD_ABORTED chances are that this pkt got
19126 	 * aborted because another target on this bus caused it. The target
19127 	 * that caused it should get CMD_TIMEOUT with pkt_statistics
19128 	 * of STAT_TIMEOUT/STAT_DEV_RESET.
19129 	 */
19130 
19131 	sd_retry_command(un, bp, (SD_RETRIES_VICTIM | SD_RETRIES_ISOLATE),
19132 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19133 }
19134 
19135 
19136 
19137 /*
19138  *    Function: sd_pkt_reason_cmd_timeout
19139  *
19140  * Description: Recovery actions for a SCSA "CMD_TIMEOUT" pkt_reason.
19141  *
19142  *     Context: May be called from interrupt context
19143  */
19144 
19145 static void
19146 sd_pkt_reason_cmd_timeout(struct sd_lun *un, struct buf *bp,
19147 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19148 {
19149 	ASSERT(un != NULL);
19150 	ASSERT(mutex_owned(SD_MUTEX(un)));
19151 	ASSERT(bp != NULL);
19152 	ASSERT(xp != NULL);
19153 	ASSERT(pktp != NULL);
19154 
19155 
19156 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19157 	sd_reset_target(un, pktp);
19158 
19159 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19160 
19161 	/*
19162 	 * A command timeout indicates that we could not establish
19163 	 * communication with the target, so set SD_RETRIES_FAILFAST
19164 	 * as further retries/commands are likely to take a long time.
19165 	 */
19166 	sd_retry_command(un, bp,
19167 	    (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE | SD_RETRIES_FAILFAST),
19168 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19169 }
19170 
19171 
19172 
19173 /*
19174  *    Function: sd_pkt_reason_cmd_unx_bus_free
19175  *
19176  * Description: Recovery actions for a SCSA "CMD_UNX_BUS_FREE" pkt_reason.
19177  *
19178  *     Context: May be called from interrupt context
19179  */
19180 
19181 static void
19182 sd_pkt_reason_cmd_unx_bus_free(struct sd_lun *un, struct buf *bp,
19183 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19184 {
19185 	void (*funcp)(struct sd_lun *un, struct buf *bp, void *arg, int code);
19186 
19187 	ASSERT(un != NULL);
19188 	ASSERT(mutex_owned(SD_MUTEX(un)));
19189 	ASSERT(bp != NULL);
19190 	ASSERT(xp != NULL);
19191 	ASSERT(pktp != NULL);
19192 
19193 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19194 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19195 
19196 	funcp = ((pktp->pkt_statistics & STAT_PERR) == 0) ?
19197 	    sd_print_retry_msg : NULL;
19198 
19199 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19200 	    funcp, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19201 }
19202 
19203 
19204 /*
19205  *    Function: sd_pkt_reason_cmd_tag_reject
19206  *
19207  * Description: Recovery actions for a SCSA "CMD_TAG_REJECT" pkt_reason.
19208  *
19209  *     Context: May be called from interrupt context
19210  */
19211 
19212 static void
19213 sd_pkt_reason_cmd_tag_reject(struct sd_lun *un, struct buf *bp,
19214 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19215 {
19216 	ASSERT(un != NULL);
19217 	ASSERT(mutex_owned(SD_MUTEX(un)));
19218 	ASSERT(bp != NULL);
19219 	ASSERT(xp != NULL);
19220 	ASSERT(pktp != NULL);
19221 
19222 	SD_UPDATE_ERRSTATS(un, sd_harderrs);
19223 	pktp->pkt_flags = 0;
19224 	un->un_tagflags = 0;
19225 	if (un->un_f_opt_queueing == TRUE) {
19226 		un->un_throttle = min(un->un_throttle, 3);
19227 	} else {
19228 		un->un_throttle = 1;
19229 	}
19230 	mutex_exit(SD_MUTEX(un));
19231 	(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
19232 	mutex_enter(SD_MUTEX(un));
19233 
19234 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19235 
19236 	/* Legacy behavior not to check retry counts here. */
19237 	sd_retry_command(un, bp, (SD_RETRIES_NOCHECK | SD_RETRIES_ISOLATE),
19238 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19239 }
19240 
19241 
19242 /*
19243  *    Function: sd_pkt_reason_default
19244  *
19245  * Description: Default recovery actions for SCSA pkt_reason values that
19246  *		do not have more explicit recovery actions.
19247  *
19248  *     Context: May be called from interrupt context
19249  */
19250 
19251 static void
19252 sd_pkt_reason_default(struct sd_lun *un, struct buf *bp,
19253 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19254 {
19255 	ASSERT(un != NULL);
19256 	ASSERT(mutex_owned(SD_MUTEX(un)));
19257 	ASSERT(bp != NULL);
19258 	ASSERT(xp != NULL);
19259 	ASSERT(pktp != NULL);
19260 
19261 	SD_UPDATE_ERRSTATS(un, sd_transerrs);
19262 	sd_reset_target(un, pktp);
19263 
19264 	SD_UPDATE_RESERVATION_STATUS(un, pktp);
19265 
19266 	sd_retry_command(un, bp, (SD_RETRIES_STANDARD | SD_RETRIES_ISOLATE),
19267 	    sd_print_retry_msg, NULL, EIO, SD_RESTART_TIMEOUT, NULL);
19268 }
19269 
19270 
19271 
19272 /*
19273  *    Function: sd_pkt_status_check_condition
19274  *
19275  * Description: Recovery actions for a "STATUS_CHECK" SCSI command status.
19276  *
19277  *     Context: May be called from interrupt context
19278  */
19279 
19280 static void
19281 sd_pkt_status_check_condition(struct sd_lun *un, struct buf *bp,
19282 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19283 {
19284 	ASSERT(un != NULL);
19285 	ASSERT(mutex_owned(SD_MUTEX(un)));
19286 	ASSERT(bp != NULL);
19287 	ASSERT(xp != NULL);
19288 	ASSERT(pktp != NULL);
19289 
19290 	SD_TRACE(SD_LOG_IO, un, "sd_pkt_status_check_condition: "
19291 	    "entry: buf:0x%p xp:0x%p\n", bp, xp);
19292 
19293 	/*
19294 	 * If ARQ is NOT enabled, then issue a REQUEST SENSE command (the
19295 	 * command will be retried after the request sense). Otherwise, retry
19296 	 * the command. Note: we are issuing the request sense even though the
19297 	 * retry limit may have been reached for the failed command.
19298 	 */
19299 	if (un->un_f_arq_enabled == FALSE) {
19300 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
19301 		    "no ARQ, sending request sense command\n");
19302 		sd_send_request_sense_command(un, bp, pktp);
19303 	} else {
19304 		SD_INFO(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: "
19305 		    "ARQ,retrying request sense command\n");
19306 #if defined(__i386) || defined(__amd64)
19307 		/*
19308 		 * The SD_RETRY_DELAY value need to be adjusted here
19309 		 * when SD_RETRY_DELAY change in sddef.h
19310 		 */
19311 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19312 		    un->un_f_is_fibre?drv_usectohz(100000):(clock_t)0,
19313 		    NULL);
19314 #else
19315 		sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL,
19316 		    EIO, SD_RETRY_DELAY, NULL);
19317 #endif
19318 	}
19319 
19320 	SD_TRACE(SD_LOG_IO_CORE, un, "sd_pkt_status_check_condition: exit\n");
19321 }
19322 
19323 
19324 /*
19325  *    Function: sd_pkt_status_busy
19326  *
19327  * Description: Recovery actions for a "STATUS_BUSY" SCSI command status.
19328  *
19329  *     Context: May be called from interrupt context
19330  */
19331 
19332 static void
19333 sd_pkt_status_busy(struct sd_lun *un, struct buf *bp, struct sd_xbuf *xp,
19334 	struct scsi_pkt *pktp)
19335 {
19336 	ASSERT(un != NULL);
19337 	ASSERT(mutex_owned(SD_MUTEX(un)));
19338 	ASSERT(bp != NULL);
19339 	ASSERT(xp != NULL);
19340 	ASSERT(pktp != NULL);
19341 
19342 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19343 	    "sd_pkt_status_busy: entry\n");
19344 
19345 	/* If retries are exhausted, just fail the command. */
19346 	if (xp->xb_retry_count >= un->un_busy_retry_count) {
19347 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
19348 		    "device busy too long\n");
19349 		sd_return_failed_command(un, bp, EIO);
19350 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19351 		    "sd_pkt_status_busy: exit\n");
19352 		return;
19353 	}
19354 	xp->xb_retry_count++;
19355 
19356 	/*
19357 	 * Try to reset the target. However, we do not want to perform
19358 	 * more than one reset if the device continues to fail. The reset
19359 	 * will be performed when the retry count reaches the reset
19360 	 * threshold.  This threshold should be set such that at least
19361 	 * one retry is issued before the reset is performed.
19362 	 */
19363 	if (xp->xb_retry_count ==
19364 	    ((un->un_reset_retry_count < 2) ? 2 : un->un_reset_retry_count)) {
19365 		int rval = 0;
19366 		mutex_exit(SD_MUTEX(un));
19367 		if (un->un_f_allow_bus_device_reset == TRUE) {
19368 			/*
19369 			 * First try to reset the LUN; if we cannot then
19370 			 * try to reset the target.
19371 			 */
19372 			if (un->un_f_lun_reset_enabled == TRUE) {
19373 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19374 				    "sd_pkt_status_busy: RESET_LUN\n");
19375 				rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19376 			}
19377 			if (rval == 0) {
19378 				SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19379 				    "sd_pkt_status_busy: RESET_TARGET\n");
19380 				rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19381 			}
19382 		}
19383 		if (rval == 0) {
19384 			/*
19385 			 * If the RESET_LUN and/or RESET_TARGET failed,
19386 			 * try RESET_ALL
19387 			 */
19388 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19389 			    "sd_pkt_status_busy: RESET_ALL\n");
19390 			rval = scsi_reset(SD_ADDRESS(un), RESET_ALL);
19391 		}
19392 		mutex_enter(SD_MUTEX(un));
19393 		if (rval == 0) {
19394 			/*
19395 			 * The RESET_LUN, RESET_TARGET, and/or RESET_ALL failed.
19396 			 * At this point we give up & fail the command.
19397 			 */
19398 			sd_return_failed_command(un, bp, EIO);
19399 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19400 			    "sd_pkt_status_busy: exit (failed cmd)\n");
19401 			return;
19402 		}
19403 	}
19404 
19405 	/*
19406 	 * Retry the command. Be sure to specify SD_RETRIES_NOCHECK as
19407 	 * we have already checked the retry counts above.
19408 	 */
19409 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL,
19410 	    EIO, un->un_busy_timeout, NULL);
19411 
19412 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19413 	    "sd_pkt_status_busy: exit\n");
19414 }
19415 
19416 
19417 /*
19418  *    Function: sd_pkt_status_reservation_conflict
19419  *
19420  * Description: Recovery actions for a "STATUS_RESERVATION_CONFLICT" SCSI
19421  *		command status.
19422  *
19423  *     Context: May be called from interrupt context
19424  */
19425 
19426 static void
19427 sd_pkt_status_reservation_conflict(struct sd_lun *un, struct buf *bp,
19428 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19429 {
19430 	ASSERT(un != NULL);
19431 	ASSERT(mutex_owned(SD_MUTEX(un)));
19432 	ASSERT(bp != NULL);
19433 	ASSERT(xp != NULL);
19434 	ASSERT(pktp != NULL);
19435 
19436 	/*
19437 	 * If the command was PERSISTENT_RESERVATION_[IN|OUT] then reservation
19438 	 * conflict could be due to various reasons like incorrect keys, not
19439 	 * registered or not reserved etc. So, we return EACCES to the caller.
19440 	 */
19441 	if (un->un_reservation_type == SD_SCSI3_RESERVATION) {
19442 		int cmd = SD_GET_PKT_OPCODE(pktp);
19443 		if ((cmd == SCMD_PERSISTENT_RESERVE_IN) ||
19444 		    (cmd == SCMD_PERSISTENT_RESERVE_OUT)) {
19445 			sd_return_failed_command(un, bp, EACCES);
19446 			return;
19447 		}
19448 	}
19449 
19450 	un->un_resvd_status |= SD_RESERVATION_CONFLICT;
19451 
19452 	if ((un->un_resvd_status & SD_FAILFAST) != 0) {
19453 		if (sd_failfast_enable != 0) {
19454 			/* By definition, we must panic here.... */
19455 			sd_panic_for_res_conflict(un);
19456 			/*NOTREACHED*/
19457 		}
19458 		SD_ERROR(SD_LOG_IO, un,
19459 		    "sd_handle_resv_conflict: Disk Reserved\n");
19460 		sd_return_failed_command(un, bp, EACCES);
19461 		return;
19462 	}
19463 
19464 	/*
19465 	 * 1147670: retry only if sd_retry_on_reservation_conflict
19466 	 * property is set (default is 1). Retries will not succeed
19467 	 * on a disk reserved by another initiator. HA systems
19468 	 * may reset this via sd.conf to avoid these retries.
19469 	 *
19470 	 * Note: The legacy return code for this failure is EIO, however EACCES
19471 	 * seems more appropriate for a reservation conflict.
19472 	 */
19473 	if (sd_retry_on_reservation_conflict == 0) {
19474 		SD_ERROR(SD_LOG_IO, un,
19475 		    "sd_handle_resv_conflict: Device Reserved\n");
19476 		sd_return_failed_command(un, bp, EIO);
19477 		return;
19478 	}
19479 
19480 	/*
19481 	 * Retry the command if we can.
19482 	 *
19483 	 * Note: The legacy return code for this failure is EIO, however EACCES
19484 	 * seems more appropriate for a reservation conflict.
19485 	 */
19486 	sd_retry_command(un, bp, SD_RETRIES_STANDARD, NULL, NULL, EIO,
19487 	    (clock_t)2, NULL);
19488 }
19489 
19490 
19491 
19492 /*
19493  *    Function: sd_pkt_status_qfull
19494  *
19495  * Description: Handle a QUEUE FULL condition from the target.  This can
19496  *		occur if the HBA does not handle the queue full condition.
19497  *		(Basically this means third-party HBAs as Sun HBAs will
19498  *		handle the queue full condition.)  Note that if there are
19499  *		some commands already in the transport, then the queue full
19500  *		has occurred because the queue for this nexus is actually
19501  *		full. If there are no commands in the transport, then the
19502  *		queue full is resulting from some other initiator or lun
19503  *		consuming all the resources at the target.
19504  *
19505  *     Context: May be called from interrupt context
19506  */
19507 
19508 static void
19509 sd_pkt_status_qfull(struct sd_lun *un, struct buf *bp,
19510 	struct sd_xbuf *xp, struct scsi_pkt *pktp)
19511 {
19512 	ASSERT(un != NULL);
19513 	ASSERT(mutex_owned(SD_MUTEX(un)));
19514 	ASSERT(bp != NULL);
19515 	ASSERT(xp != NULL);
19516 	ASSERT(pktp != NULL);
19517 
19518 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19519 	    "sd_pkt_status_qfull: entry\n");
19520 
19521 	/*
19522 	 * Just lower the QFULL throttle and retry the command.  Note that
19523 	 * we do not limit the number of retries here.
19524 	 */
19525 	sd_reduce_throttle(un, SD_THROTTLE_QFULL);
19526 	sd_retry_command(un, bp, SD_RETRIES_NOCHECK, NULL, NULL, 0,
19527 	    SD_RESTART_TIMEOUT, NULL);
19528 
19529 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19530 	    "sd_pkt_status_qfull: exit\n");
19531 }
19532 
19533 
19534 /*
19535  *    Function: sd_reset_target
19536  *
19537  * Description: Issue a scsi_reset(9F), with either RESET_LUN,
19538  *		RESET_TARGET, or RESET_ALL.
19539  *
19540  *     Context: May be called under interrupt context.
19541  */
19542 
19543 static void
19544 sd_reset_target(struct sd_lun *un, struct scsi_pkt *pktp)
19545 {
19546 	int rval = 0;
19547 
19548 	ASSERT(un != NULL);
19549 	ASSERT(mutex_owned(SD_MUTEX(un)));
19550 	ASSERT(pktp != NULL);
19551 
19552 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: entry\n");
19553 
19554 	/*
19555 	 * No need to reset if the transport layer has already done so.
19556 	 */
19557 	if ((pktp->pkt_statistics &
19558 	    (STAT_BUS_RESET | STAT_DEV_RESET | STAT_ABORTED)) != 0) {
19559 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19560 		    "sd_reset_target: no reset\n");
19561 		return;
19562 	}
19563 
19564 	mutex_exit(SD_MUTEX(un));
19565 
19566 	if (un->un_f_allow_bus_device_reset == TRUE) {
19567 		if (un->un_f_lun_reset_enabled == TRUE) {
19568 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19569 			    "sd_reset_target: RESET_LUN\n");
19570 			rval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
19571 		}
19572 		if (rval == 0) {
19573 			SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19574 			    "sd_reset_target: RESET_TARGET\n");
19575 			rval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
19576 		}
19577 	}
19578 
19579 	if (rval == 0) {
19580 		SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
19581 		    "sd_reset_target: RESET_ALL\n");
19582 		(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
19583 	}
19584 
19585 	mutex_enter(SD_MUTEX(un));
19586 
19587 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un, "sd_reset_target: exit\n");
19588 }
19589 
19590 /*
19591  *    Function: sd_target_change_task
19592  *
19593  * Description: Handle dynamic target change
19594  *
19595  *     Context: Executes in a taskq() thread context
19596  */
19597 static void
19598 sd_target_change_task(void *arg)
19599 {
19600 	struct sd_lun		*un = arg;
19601 	uint64_t		capacity;
19602 	diskaddr_t		label_cap;
19603 	uint_t			lbasize;
19604 	sd_ssc_t		*ssc;
19605 
19606 	ASSERT(un != NULL);
19607 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19608 
19609 	if ((un->un_f_blockcount_is_valid == FALSE) ||
19610 	    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
19611 		return;
19612 	}
19613 
19614 	ssc = sd_ssc_init(un);
19615 
19616 	if (sd_send_scsi_READ_CAPACITY(ssc, &capacity,
19617 	    &lbasize, SD_PATH_DIRECT) != 0) {
19618 		SD_ERROR(SD_LOG_ERROR, un,
19619 		    "sd_target_change_task: fail to read capacity\n");
19620 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19621 		goto task_exit;
19622 	}
19623 
19624 	mutex_enter(SD_MUTEX(un));
19625 	if (capacity <= un->un_blockcount) {
19626 		mutex_exit(SD_MUTEX(un));
19627 		goto task_exit;
19628 	}
19629 
19630 	sd_update_block_info(un, lbasize, capacity);
19631 	mutex_exit(SD_MUTEX(un));
19632 
19633 	/*
19634 	 * If lun is EFI labeled and lun capacity is greater than the
19635 	 * capacity contained in the label, log a sys event.
19636 	 */
19637 	if (cmlb_efi_label_capacity(un->un_cmlbhandle, &label_cap,
19638 	    (void*)SD_PATH_DIRECT) == 0) {
19639 		mutex_enter(SD_MUTEX(un));
19640 		if (un->un_f_blockcount_is_valid &&
19641 		    un->un_blockcount > label_cap) {
19642 			mutex_exit(SD_MUTEX(un));
19643 			sd_log_lun_expansion_event(un, KM_SLEEP);
19644 		} else {
19645 			mutex_exit(SD_MUTEX(un));
19646 		}
19647 	}
19648 
19649 task_exit:
19650 	sd_ssc_fini(ssc);
19651 }
19652 
19653 
19654 /*
19655  *    Function: sd_log_dev_status_event
19656  *
19657  * Description: Log EC_dev_status sysevent
19658  *
19659  *     Context: Never called from interrupt context
19660  */
19661 static void
19662 sd_log_dev_status_event(struct sd_lun *un, char *esc, int km_flag)
19663 {
19664 	int err;
19665 	char			*path;
19666 	nvlist_t		*attr_list;
19667 
19668 	/* Allocate and build sysevent attribute list */
19669 	err = nvlist_alloc(&attr_list, NV_UNIQUE_NAME_TYPE, km_flag);
19670 	if (err != 0) {
19671 		SD_ERROR(SD_LOG_ERROR, un,
19672 		    "sd_log_dev_status_event: fail to allocate space\n");
19673 		return;
19674 	}
19675 
19676 	path = kmem_alloc(MAXPATHLEN, km_flag);
19677 	if (path == NULL) {
19678 		nvlist_free(attr_list);
19679 		SD_ERROR(SD_LOG_ERROR, un,
19680 		    "sd_log_dev_status_event: fail to allocate space\n");
19681 		return;
19682 	}
19683 	/*
19684 	 * Add path attribute to identify the lun.
19685 	 * We are using minor node 'a' as the sysevent attribute.
19686 	 */
19687 	(void) snprintf(path, MAXPATHLEN, "/devices");
19688 	(void) ddi_pathname(SD_DEVINFO(un), path + strlen(path));
19689 	(void) snprintf(path + strlen(path), MAXPATHLEN - strlen(path),
19690 	    ":a");
19691 
19692 	err = nvlist_add_string(attr_list, DEV_PHYS_PATH, path);
19693 	if (err != 0) {
19694 		nvlist_free(attr_list);
19695 		kmem_free(path, MAXPATHLEN);
19696 		SD_ERROR(SD_LOG_ERROR, un,
19697 		    "sd_log_dev_status_event: fail to add attribute\n");
19698 		return;
19699 	}
19700 
19701 	/* Log dynamic lun expansion sysevent */
19702 	err = ddi_log_sysevent(SD_DEVINFO(un), SUNW_VENDOR, EC_DEV_STATUS,
19703 	    esc, attr_list, NULL, km_flag);
19704 	if (err != DDI_SUCCESS) {
19705 		SD_ERROR(SD_LOG_ERROR, un,
19706 		    "sd_log_dev_status_event: fail to log sysevent\n");
19707 	}
19708 
19709 	nvlist_free(attr_list);
19710 	kmem_free(path, MAXPATHLEN);
19711 }
19712 
19713 
19714 /*
19715  *    Function: sd_log_lun_expansion_event
19716  *
19717  * Description: Log lun expansion sys event
19718  *
19719  *     Context: Never called from interrupt context
19720  */
19721 static void
19722 sd_log_lun_expansion_event(struct sd_lun *un, int km_flag)
19723 {
19724 	sd_log_dev_status_event(un, ESC_DEV_DLE, km_flag);
19725 }
19726 
19727 
19728 /*
19729  *    Function: sd_log_eject_request_event
19730  *
19731  * Description: Log eject request sysevent
19732  *
19733  *     Context: Never called from interrupt context
19734  */
19735 static void
19736 sd_log_eject_request_event(struct sd_lun *un, int km_flag)
19737 {
19738 	sd_log_dev_status_event(un, ESC_DEV_EJECT_REQUEST, km_flag);
19739 }
19740 
19741 
19742 /*
19743  *    Function: sd_media_change_task
19744  *
19745  * Description: Recovery action for CDROM to become available.
19746  *
19747  *     Context: Executes in a taskq() thread context
19748  */
19749 
19750 static void
19751 sd_media_change_task(void *arg)
19752 {
19753 	struct	scsi_pkt	*pktp = arg;
19754 	struct	sd_lun		*un;
19755 	struct	buf		*bp;
19756 	struct	sd_xbuf		*xp;
19757 	int	err		= 0;
19758 	int	retry_count	= 0;
19759 	int	retry_limit	= SD_UNIT_ATTENTION_RETRY/10;
19760 	struct	sd_sense_info	si;
19761 
19762 	ASSERT(pktp != NULL);
19763 	bp = (struct buf *)pktp->pkt_private;
19764 	ASSERT(bp != NULL);
19765 	xp = SD_GET_XBUF(bp);
19766 	ASSERT(xp != NULL);
19767 	un = SD_GET_UN(bp);
19768 	ASSERT(un != NULL);
19769 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19770 	ASSERT(un->un_f_monitor_media_state);
19771 
19772 	si.ssi_severity = SCSI_ERR_INFO;
19773 	si.ssi_pfa_flag = FALSE;
19774 
19775 	/*
19776 	 * When a reset is issued on a CDROM, it takes a long time to
19777 	 * recover. First few attempts to read capacity and other things
19778 	 * related to handling unit attention fail (with a ASC 0x4 and
19779 	 * ASCQ 0x1). In that case we want to do enough retries and we want
19780 	 * to limit the retries in other cases of genuine failures like
19781 	 * no media in drive.
19782 	 */
19783 	while (retry_count++ < retry_limit) {
19784 		if ((err = sd_handle_mchange(un)) == 0) {
19785 			break;
19786 		}
19787 		if (err == EAGAIN) {
19788 			retry_limit = SD_UNIT_ATTENTION_RETRY;
19789 		}
19790 		/* Sleep for 0.5 sec. & try again */
19791 		delay(drv_usectohz(500000));
19792 	}
19793 
19794 	/*
19795 	 * Dispatch (retry or fail) the original command here,
19796 	 * along with appropriate console messages....
19797 	 *
19798 	 * Must grab the mutex before calling sd_retry_command,
19799 	 * sd_print_sense_msg and sd_return_failed_command.
19800 	 */
19801 	mutex_enter(SD_MUTEX(un));
19802 	if (err != SD_CMD_SUCCESS) {
19803 		SD_UPDATE_ERRSTATS(un, sd_harderrs);
19804 		SD_UPDATE_ERRSTATS(un, sd_rq_nodev_err);
19805 		si.ssi_severity = SCSI_ERR_FATAL;
19806 		sd_print_sense_msg(un, bp, &si, SD_NO_RETRY_ISSUED);
19807 		sd_return_failed_command(un, bp, EIO);
19808 	} else {
19809 		sd_retry_command(un, bp, SD_RETRIES_UA, sd_print_sense_msg,
19810 		    &si, EIO, (clock_t)0, NULL);
19811 	}
19812 	mutex_exit(SD_MUTEX(un));
19813 }
19814 
19815 
19816 
19817 /*
19818  *    Function: sd_handle_mchange
19819  *
19820  * Description: Perform geometry validation & other recovery when CDROM
19821  *		has been removed from drive.
19822  *
19823  * Return Code: 0 for success
19824  *		errno-type return code of either sd_send_scsi_DOORLOCK() or
19825  *		sd_send_scsi_READ_CAPACITY()
19826  *
19827  *     Context: Executes in a taskq() thread context
19828  */
19829 
19830 static int
19831 sd_handle_mchange(struct sd_lun *un)
19832 {
19833 	uint64_t	capacity;
19834 	uint32_t	lbasize;
19835 	int		rval;
19836 	sd_ssc_t	*ssc;
19837 
19838 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19839 	ASSERT(un->un_f_monitor_media_state);
19840 
19841 	ssc = sd_ssc_init(un);
19842 	rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
19843 	    SD_PATH_DIRECT_PRIORITY);
19844 
19845 	if (rval != 0)
19846 		goto failed;
19847 
19848 	mutex_enter(SD_MUTEX(un));
19849 	sd_update_block_info(un, lbasize, capacity);
19850 
19851 	if (un->un_errstats != NULL) {
19852 		struct	sd_errstats *stp =
19853 		    (struct sd_errstats *)un->un_errstats->ks_data;
19854 		stp->sd_capacity.value.ui64 = (uint64_t)
19855 		    ((uint64_t)un->un_blockcount *
19856 		    (uint64_t)un->un_tgt_blocksize);
19857 	}
19858 
19859 	/*
19860 	 * Check if the media in the device is writable or not
19861 	 */
19862 	if (ISCD(un)) {
19863 		sd_check_for_writable_cd(ssc, SD_PATH_DIRECT_PRIORITY);
19864 	}
19865 
19866 	/*
19867 	 * Note: Maybe let the strategy/partitioning chain worry about getting
19868 	 * valid geometry.
19869 	 */
19870 	mutex_exit(SD_MUTEX(un));
19871 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
19872 
19873 
19874 	if (cmlb_validate(un->un_cmlbhandle, 0,
19875 	    (void *)SD_PATH_DIRECT_PRIORITY) != 0) {
19876 		sd_ssc_fini(ssc);
19877 		return (EIO);
19878 	} else {
19879 		if (un->un_f_pkstats_enabled) {
19880 			sd_set_pstats(un);
19881 			SD_TRACE(SD_LOG_IO_PARTITION, un,
19882 			    "sd_handle_mchange: un:0x%p pstats created and "
19883 			    "set\n", un);
19884 		}
19885 	}
19886 
19887 	/*
19888 	 * Try to lock the door
19889 	 */
19890 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
19891 	    SD_PATH_DIRECT_PRIORITY);
19892 failed:
19893 	if (rval != 0)
19894 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19895 	sd_ssc_fini(ssc);
19896 	return (rval);
19897 }
19898 
19899 
19900 /*
19901  *    Function: sd_send_scsi_DOORLOCK
19902  *
19903  * Description: Issue the scsi DOOR LOCK command
19904  *
19905  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
19906  *                      structure for this target.
19907  *		flag  - SD_REMOVAL_ALLOW
19908  *			SD_REMOVAL_PREVENT
19909  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
19910  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
19911  *			to use the USCSI "direct" chain and bypass the normal
19912  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
19913  *			command is issued as part of an error recovery action.
19914  *
19915  * Return Code: 0   - Success
19916  *		errno return code from sd_ssc_send()
19917  *
19918  *     Context: Can sleep.
19919  */
19920 
19921 static int
19922 sd_send_scsi_DOORLOCK(sd_ssc_t *ssc, int flag, int path_flag)
19923 {
19924 	struct scsi_extended_sense	sense_buf;
19925 	union scsi_cdb		cdb;
19926 	struct uscsi_cmd	ucmd_buf;
19927 	int			status;
19928 	struct sd_lun		*un;
19929 
19930 	ASSERT(ssc != NULL);
19931 	un = ssc->ssc_un;
19932 	ASSERT(un != NULL);
19933 	ASSERT(!mutex_owned(SD_MUTEX(un)));
19934 
19935 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_DOORLOCK: entry: un:0x%p\n", un);
19936 
19937 	/* already determined doorlock is not supported, fake success */
19938 	if (un->un_f_doorlock_supported == FALSE) {
19939 		return (0);
19940 	}
19941 
19942 	/*
19943 	 * If we are ejecting and see an SD_REMOVAL_PREVENT
19944 	 * ignore the command so we can complete the eject
19945 	 * operation.
19946 	 */
19947 	if (flag == SD_REMOVAL_PREVENT) {
19948 		mutex_enter(SD_MUTEX(un));
19949 		if (un->un_f_ejecting == TRUE) {
19950 			mutex_exit(SD_MUTEX(un));
19951 			return (EAGAIN);
19952 		}
19953 		mutex_exit(SD_MUTEX(un));
19954 	}
19955 
19956 	bzero(&cdb, sizeof (cdb));
19957 	bzero(&ucmd_buf, sizeof (ucmd_buf));
19958 
19959 	cdb.scc_cmd = SCMD_DOORLOCK;
19960 	cdb.cdb_opaque[4] = (uchar_t)flag;
19961 
19962 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
19963 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
19964 	ucmd_buf.uscsi_bufaddr	= NULL;
19965 	ucmd_buf.uscsi_buflen	= 0;
19966 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
19967 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
19968 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
19969 	ucmd_buf.uscsi_timeout	= 15;
19970 
19971 	SD_TRACE(SD_LOG_IO, un,
19972 	    "sd_send_scsi_DOORLOCK: returning sd_ssc_send\n");
19973 
19974 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
19975 	    UIO_SYSSPACE, path_flag);
19976 
19977 	if (status == 0)
19978 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
19979 
19980 	if ((status == EIO) && (ucmd_buf.uscsi_status == STATUS_CHECK) &&
19981 	    (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
19982 	    (scsi_sense_key((uint8_t *)&sense_buf) == KEY_ILLEGAL_REQUEST)) {
19983 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
19984 
19985 		/* fake success and skip subsequent doorlock commands */
19986 		un->un_f_doorlock_supported = FALSE;
19987 		return (0);
19988 	}
19989 
19990 	return (status);
19991 }
19992 
19993 /*
19994  *    Function: sd_send_scsi_READ_CAPACITY
19995  *
19996  * Description: This routine uses the scsi READ CAPACITY command to determine
19997  *		the device capacity in number of blocks and the device native
19998  *		block size. If this function returns a failure, then the
19999  *		values in *capp and *lbap are undefined.  If the capacity
20000  *		returned is 0xffffffff then the lun is too large for a
20001  *		normal READ CAPACITY command and the results of a
20002  *		READ CAPACITY 16 will be used instead.
20003  *
20004  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
20005  *		capp - ptr to unsigned 64-bit variable to receive the
20006  *			capacity value from the command.
20007  *		lbap - ptr to unsigned 32-bit varaible to receive the
20008  *			block size value from the command
20009  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20010  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20011  *			to use the USCSI "direct" chain and bypass the normal
20012  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
20013  *			command is issued as part of an error recovery action.
20014  *
20015  * Return Code: 0   - Success
20016  *		EIO - IO error
20017  *		EACCES - Reservation conflict detected
20018  *		EAGAIN - Device is becoming ready
20019  *		errno return code from sd_ssc_send()
20020  *
20021  *     Context: Can sleep.  Blocks until command completes.
20022  */
20023 
20024 #define	SD_CAPACITY_SIZE	sizeof (struct scsi_capacity)
20025 
20026 static int
20027 sd_send_scsi_READ_CAPACITY(sd_ssc_t *ssc, uint64_t *capp, uint32_t *lbap,
20028 	int path_flag)
20029 {
20030 	struct	scsi_extended_sense	sense_buf;
20031 	struct	uscsi_cmd	ucmd_buf;
20032 	union	scsi_cdb	cdb;
20033 	uint32_t		*capacity_buf;
20034 	uint64_t		capacity;
20035 	uint32_t		lbasize;
20036 	uint32_t		pbsize;
20037 	int			status;
20038 	struct sd_lun		*un;
20039 
20040 	ASSERT(ssc != NULL);
20041 
20042 	un = ssc->ssc_un;
20043 	ASSERT(un != NULL);
20044 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20045 	ASSERT(capp != NULL);
20046 	ASSERT(lbap != NULL);
20047 
20048 	SD_TRACE(SD_LOG_IO, un,
20049 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
20050 
20051 	/*
20052 	 * First send a READ_CAPACITY command to the target.
20053 	 * (This command is mandatory under SCSI-2.)
20054 	 *
20055 	 * Set up the CDB for the READ_CAPACITY command.  The Partial
20056 	 * Medium Indicator bit is cleared.  The address field must be
20057 	 * zero if the PMI bit is zero.
20058 	 */
20059 	bzero(&cdb, sizeof (cdb));
20060 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20061 
20062 	capacity_buf = kmem_zalloc(SD_CAPACITY_SIZE, KM_SLEEP);
20063 
20064 	cdb.scc_cmd = SCMD_READ_CAPACITY;
20065 
20066 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20067 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20068 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity_buf;
20069 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_SIZE;
20070 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20071 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
20072 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20073 	ucmd_buf.uscsi_timeout	= 60;
20074 
20075 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20076 	    UIO_SYSSPACE, path_flag);
20077 
20078 	switch (status) {
20079 	case 0:
20080 		/* Return failure if we did not get valid capacity data. */
20081 		if (ucmd_buf.uscsi_resid != 0) {
20082 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20083 			    "sd_send_scsi_READ_CAPACITY received invalid "
20084 			    "capacity data");
20085 			kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20086 			return (EIO);
20087 		}
20088 		/*
20089 		 * Read capacity and block size from the READ CAPACITY 10 data.
20090 		 * This data may be adjusted later due to device specific
20091 		 * issues.
20092 		 *
20093 		 * According to the SCSI spec, the READ CAPACITY 10
20094 		 * command returns the following:
20095 		 *
20096 		 *  bytes 0-3: Maximum logical block address available.
20097 		 *		(MSB in byte:0 & LSB in byte:3)
20098 		 *
20099 		 *  bytes 4-7: Block length in bytes
20100 		 *		(MSB in byte:4 & LSB in byte:7)
20101 		 *
20102 		 */
20103 		capacity = BE_32(capacity_buf[0]);
20104 		lbasize = BE_32(capacity_buf[1]);
20105 
20106 		/*
20107 		 * Done with capacity_buf
20108 		 */
20109 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20110 
20111 		/*
20112 		 * if the reported capacity is set to all 0xf's, then
20113 		 * this disk is too large and requires SBC-2 commands.
20114 		 * Reissue the request using READ CAPACITY 16.
20115 		 */
20116 		if (capacity == 0xffffffff) {
20117 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20118 			status = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity,
20119 			    &lbasize, &pbsize, path_flag);
20120 			if (status != 0) {
20121 				return (status);
20122 			} else {
20123 				goto rc16_done;
20124 			}
20125 		}
20126 		break;	/* Success! */
20127 	case EIO:
20128 		switch (ucmd_buf.uscsi_status) {
20129 		case STATUS_RESERVATION_CONFLICT:
20130 			status = EACCES;
20131 			break;
20132 		case STATUS_CHECK:
20133 			/*
20134 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
20135 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
20136 			 */
20137 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20138 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
20139 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
20140 				kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20141 				return (EAGAIN);
20142 			}
20143 			break;
20144 		default:
20145 			break;
20146 		}
20147 		/* FALLTHRU */
20148 	default:
20149 		kmem_free(capacity_buf, SD_CAPACITY_SIZE);
20150 		return (status);
20151 	}
20152 
20153 	/*
20154 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
20155 	 * (2352 and 0 are common) so for these devices always force the value
20156 	 * to 2048 as required by the ATAPI specs.
20157 	 */
20158 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
20159 		lbasize = 2048;
20160 	}
20161 
20162 	/*
20163 	 * Get the maximum LBA value from the READ CAPACITY data.
20164 	 * Here we assume that the Partial Medium Indicator (PMI) bit
20165 	 * was cleared when issuing the command. This means that the LBA
20166 	 * returned from the device is the LBA of the last logical block
20167 	 * on the logical unit.  The actual logical block count will be
20168 	 * this value plus one.
20169 	 */
20170 	capacity += 1;
20171 
20172 	/*
20173 	 * Currently, for removable media, the capacity is saved in terms
20174 	 * of un->un_sys_blocksize, so scale the capacity value to reflect this.
20175 	 */
20176 	if (un->un_f_has_removable_media)
20177 		capacity *= (lbasize / un->un_sys_blocksize);
20178 
20179 rc16_done:
20180 
20181 	/*
20182 	 * Copy the values from the READ CAPACITY command into the space
20183 	 * provided by the caller.
20184 	 */
20185 	*capp = capacity;
20186 	*lbap = lbasize;
20187 
20188 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY: "
20189 	    "capacity:0x%llx  lbasize:0x%x\n", capacity, lbasize);
20190 
20191 	/*
20192 	 * Both the lbasize and capacity from the device must be nonzero,
20193 	 * otherwise we assume that the values are not valid and return
20194 	 * failure to the caller. (4203735)
20195 	 */
20196 	if ((capacity == 0) || (lbasize == 0)) {
20197 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20198 		    "sd_send_scsi_READ_CAPACITY received invalid value "
20199 		    "capacity %llu lbasize %d", capacity, lbasize);
20200 		return (EIO);
20201 	}
20202 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20203 	return (0);
20204 }
20205 
20206 /*
20207  *    Function: sd_send_scsi_READ_CAPACITY_16
20208  *
20209  * Description: This routine uses the scsi READ CAPACITY 16 command to
20210  *		determine the device capacity in number of blocks and the
20211  *		device native block size.  If this function returns a failure,
20212  *		then the values in *capp and *lbap are undefined.
20213  *		This routine should be called by sd_send_scsi_READ_CAPACITY
20214  *              which will apply any device specific adjustments to capacity
20215  *              and lbasize. One exception is it is also called by
20216  *              sd_get_media_info_ext. In that function, there is no need to
20217  *              adjust the capacity and lbasize.
20218  *
20219  *   Arguments: ssc   - ssc contains ptr to soft state struct for the target
20220  *		capp - ptr to unsigned 64-bit variable to receive the
20221  *			capacity value from the command.
20222  *		lbap - ptr to unsigned 32-bit varaible to receive the
20223  *			block size value from the command
20224  *              psp  - ptr to unsigned 32-bit variable to receive the
20225  *                      physical block size value from the command
20226  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20227  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20228  *			to use the USCSI "direct" chain and bypass the normal
20229  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when
20230  *			this command is issued as part of an error recovery
20231  *			action.
20232  *
20233  * Return Code: 0   - Success
20234  *		EIO - IO error
20235  *		EACCES - Reservation conflict detected
20236  *		EAGAIN - Device is becoming ready
20237  *		errno return code from sd_ssc_send()
20238  *
20239  *     Context: Can sleep.  Blocks until command completes.
20240  */
20241 
20242 #define	SD_CAPACITY_16_SIZE	sizeof (struct scsi_capacity_16)
20243 
20244 static int
20245 sd_send_scsi_READ_CAPACITY_16(sd_ssc_t *ssc, uint64_t *capp,
20246 	uint32_t *lbap, uint32_t *psp, int path_flag)
20247 {
20248 	struct	scsi_extended_sense	sense_buf;
20249 	struct	uscsi_cmd	ucmd_buf;
20250 	union	scsi_cdb	cdb;
20251 	uint64_t		*capacity16_buf;
20252 	uint64_t		capacity;
20253 	uint32_t		lbasize;
20254 	uint32_t		pbsize;
20255 	uint32_t		lbpb_exp;
20256 	int			status;
20257 	struct sd_lun		*un;
20258 
20259 	ASSERT(ssc != NULL);
20260 
20261 	un = ssc->ssc_un;
20262 	ASSERT(un != NULL);
20263 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20264 	ASSERT(capp != NULL);
20265 	ASSERT(lbap != NULL);
20266 
20267 	SD_TRACE(SD_LOG_IO, un,
20268 	    "sd_send_scsi_READ_CAPACITY: entry: un:0x%p\n", un);
20269 
20270 	/*
20271 	 * First send a READ_CAPACITY_16 command to the target.
20272 	 *
20273 	 * Set up the CDB for the READ_CAPACITY_16 command.  The Partial
20274 	 * Medium Indicator bit is cleared.  The address field must be
20275 	 * zero if the PMI bit is zero.
20276 	 */
20277 	bzero(&cdb, sizeof (cdb));
20278 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20279 
20280 	capacity16_buf = kmem_zalloc(SD_CAPACITY_16_SIZE, KM_SLEEP);
20281 
20282 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20283 	ucmd_buf.uscsi_cdblen	= CDB_GROUP4;
20284 	ucmd_buf.uscsi_bufaddr	= (caddr_t)capacity16_buf;
20285 	ucmd_buf.uscsi_buflen	= SD_CAPACITY_16_SIZE;
20286 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20287 	ucmd_buf.uscsi_rqlen	= sizeof (sense_buf);
20288 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20289 	ucmd_buf.uscsi_timeout	= 60;
20290 
20291 	/*
20292 	 * Read Capacity (16) is a Service Action In command.  One
20293 	 * command byte (0x9E) is overloaded for multiple operations,
20294 	 * with the second CDB byte specifying the desired operation
20295 	 */
20296 	cdb.scc_cmd = SCMD_SVC_ACTION_IN_G4;
20297 	cdb.cdb_opaque[1] = SSVC_ACTION_READ_CAPACITY_G4;
20298 
20299 	/*
20300 	 * Fill in allocation length field
20301 	 */
20302 	FORMG4COUNT(&cdb, ucmd_buf.uscsi_buflen);
20303 
20304 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20305 	    UIO_SYSSPACE, path_flag);
20306 
20307 	switch (status) {
20308 	case 0:
20309 		/* Return failure if we did not get valid capacity data. */
20310 		if (ucmd_buf.uscsi_resid > 20) {
20311 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20312 			    "sd_send_scsi_READ_CAPACITY_16 received invalid "
20313 			    "capacity data");
20314 			kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20315 			return (EIO);
20316 		}
20317 
20318 		/*
20319 		 * Read capacity and block size from the READ CAPACITY 16 data.
20320 		 * This data may be adjusted later due to device specific
20321 		 * issues.
20322 		 *
20323 		 * According to the SCSI spec, the READ CAPACITY 16
20324 		 * command returns the following:
20325 		 *
20326 		 *  bytes 0-7: Maximum logical block address available.
20327 		 *		(MSB in byte:0 & LSB in byte:7)
20328 		 *
20329 		 *  bytes 8-11: Block length in bytes
20330 		 *		(MSB in byte:8 & LSB in byte:11)
20331 		 *
20332 		 *  byte 13: LOGICAL BLOCKS PER PHYSICAL BLOCK EXPONENT
20333 		 */
20334 		capacity = BE_64(capacity16_buf[0]);
20335 		lbasize = BE_32(*(uint32_t *)&capacity16_buf[1]);
20336 		lbpb_exp = (BE_64(capacity16_buf[1]) >> 16) & 0x0f;
20337 
20338 		pbsize = lbasize << lbpb_exp;
20339 
20340 		/*
20341 		 * Done with capacity16_buf
20342 		 */
20343 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20344 
20345 		/*
20346 		 * if the reported capacity is set to all 0xf's, then
20347 		 * this disk is too large.  This could only happen with
20348 		 * a device that supports LBAs larger than 64 bits which
20349 		 * are not defined by any current T10 standards.
20350 		 */
20351 		if (capacity == 0xffffffffffffffff) {
20352 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20353 			    "disk is too large");
20354 			return (EIO);
20355 		}
20356 		break;	/* Success! */
20357 	case EIO:
20358 		switch (ucmd_buf.uscsi_status) {
20359 		case STATUS_RESERVATION_CONFLICT:
20360 			status = EACCES;
20361 			break;
20362 		case STATUS_CHECK:
20363 			/*
20364 			 * Check condition; look for ASC/ASCQ of 0x04/0x01
20365 			 * (LOGICAL UNIT IS IN PROCESS OF BECOMING READY)
20366 			 */
20367 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20368 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x04) &&
20369 			    (scsi_sense_ascq((uint8_t *)&sense_buf) == 0x01)) {
20370 				kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20371 				return (EAGAIN);
20372 			}
20373 			break;
20374 		default:
20375 			break;
20376 		}
20377 		/* FALLTHRU */
20378 	default:
20379 		kmem_free(capacity16_buf, SD_CAPACITY_16_SIZE);
20380 		return (status);
20381 	}
20382 
20383 	/*
20384 	 * Some ATAPI CD-ROM drives report inaccurate LBA size values
20385 	 * (2352 and 0 are common) so for these devices always force the value
20386 	 * to 2048 as required by the ATAPI specs.
20387 	 */
20388 	if ((un->un_f_cfg_is_atapi == TRUE) && (ISCD(un))) {
20389 		lbasize = 2048;
20390 	}
20391 
20392 	/*
20393 	 * Get the maximum LBA value from the READ CAPACITY 16 data.
20394 	 * Here we assume that the Partial Medium Indicator (PMI) bit
20395 	 * was cleared when issuing the command. This means that the LBA
20396 	 * returned from the device is the LBA of the last logical block
20397 	 * on the logical unit.  The actual logical block count will be
20398 	 * this value plus one.
20399 	 */
20400 	capacity += 1;
20401 
20402 	/*
20403 	 * Currently, for removable media, the capacity is saved in terms
20404 	 * of un->un_sys_blocksize, so scale the capacity value to reflect this.
20405 	 */
20406 	if (un->un_f_has_removable_media)
20407 		capacity *= (lbasize / un->un_sys_blocksize);
20408 
20409 	*capp = capacity;
20410 	*lbap = lbasize;
20411 	*psp = pbsize;
20412 
20413 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_READ_CAPACITY_16: "
20414 	    "capacity:0x%llx  lbasize:0x%x, pbsize: 0x%x\n",
20415 	    capacity, lbasize, pbsize);
20416 
20417 	if ((capacity == 0) || (lbasize == 0) || (pbsize == 0)) {
20418 		sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
20419 		    "sd_send_scsi_READ_CAPACITY_16 received invalid value "
20420 		    "capacity %llu lbasize %d pbsize %d", capacity, lbasize);
20421 		return (EIO);
20422 	}
20423 
20424 	sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20425 	return (0);
20426 }
20427 
20428 
20429 /*
20430  *    Function: sd_send_scsi_START_STOP_UNIT
20431  *
20432  * Description: Issue a scsi START STOP UNIT command to the target.
20433  *
20434  *   Arguments: ssc    - ssc contatins pointer to driver soft state (unit)
20435  *                       structure for this target.
20436  *      pc_flag - SD_POWER_CONDITION
20437  *                SD_START_STOP
20438  *		flag  - SD_TARGET_START
20439  *			SD_TARGET_STOP
20440  *			SD_TARGET_EJECT
20441  *			SD_TARGET_CLOSE
20442  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
20443  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
20444  *			to use the USCSI "direct" chain and bypass the normal
20445  *			command waitq. SD_PATH_DIRECT_PRIORITY is used when this
20446  *			command is issued as part of an error recovery action.
20447  *
20448  * Return Code: 0   - Success
20449  *		EIO - IO error
20450  *		EACCES - Reservation conflict detected
20451  *		ENXIO  - Not Ready, medium not present
20452  *		errno return code from sd_ssc_send()
20453  *
20454  *     Context: Can sleep.
20455  */
20456 
20457 static int
20458 sd_send_scsi_START_STOP_UNIT(sd_ssc_t *ssc, int pc_flag, int flag,
20459     int path_flag)
20460 {
20461 	struct	scsi_extended_sense	sense_buf;
20462 	union scsi_cdb		cdb;
20463 	struct uscsi_cmd	ucmd_buf;
20464 	int			status;
20465 	struct sd_lun		*un;
20466 
20467 	ASSERT(ssc != NULL);
20468 	un = ssc->ssc_un;
20469 	ASSERT(un != NULL);
20470 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20471 
20472 	SD_TRACE(SD_LOG_IO, un,
20473 	    "sd_send_scsi_START_STOP_UNIT: entry: un:0x%p\n", un);
20474 
20475 	if (un->un_f_check_start_stop &&
20476 	    (pc_flag == SD_START_STOP) &&
20477 	    ((flag == SD_TARGET_START) || (flag == SD_TARGET_STOP)) &&
20478 	    (un->un_f_start_stop_supported != TRUE)) {
20479 		return (0);
20480 	}
20481 
20482 	/*
20483 	 * If we are performing an eject operation and
20484 	 * we receive any command other than SD_TARGET_EJECT
20485 	 * we should immediately return.
20486 	 */
20487 	if (flag != SD_TARGET_EJECT) {
20488 		mutex_enter(SD_MUTEX(un));
20489 		if (un->un_f_ejecting == TRUE) {
20490 			mutex_exit(SD_MUTEX(un));
20491 			return (EAGAIN);
20492 		}
20493 		mutex_exit(SD_MUTEX(un));
20494 	}
20495 
20496 	bzero(&cdb, sizeof (cdb));
20497 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20498 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20499 
20500 	cdb.scc_cmd = SCMD_START_STOP;
20501 	cdb.cdb_opaque[4] = (pc_flag == SD_POWER_CONDITION) ?
20502 	    (uchar_t)(flag << 4) : (uchar_t)flag;
20503 
20504 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20505 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20506 	ucmd_buf.uscsi_bufaddr	= NULL;
20507 	ucmd_buf.uscsi_buflen	= 0;
20508 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20509 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20510 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20511 	ucmd_buf.uscsi_timeout	= 200;
20512 
20513 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20514 	    UIO_SYSSPACE, path_flag);
20515 
20516 	switch (status) {
20517 	case 0:
20518 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20519 		break;	/* Success! */
20520 	case EIO:
20521 		switch (ucmd_buf.uscsi_status) {
20522 		case STATUS_RESERVATION_CONFLICT:
20523 			status = EACCES;
20524 			break;
20525 		case STATUS_CHECK:
20526 			if (ucmd_buf.uscsi_rqstatus == STATUS_GOOD) {
20527 				switch (scsi_sense_key(
20528 				    (uint8_t *)&sense_buf)) {
20529 				case KEY_ILLEGAL_REQUEST:
20530 					status = ENOTSUP;
20531 					break;
20532 				case KEY_NOT_READY:
20533 					if (scsi_sense_asc(
20534 					    (uint8_t *)&sense_buf)
20535 					    == 0x3A) {
20536 						status = ENXIO;
20537 					}
20538 					break;
20539 				default:
20540 					break;
20541 				}
20542 			}
20543 			break;
20544 		default:
20545 			break;
20546 		}
20547 		break;
20548 	default:
20549 		break;
20550 	}
20551 
20552 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_START_STOP_UNIT: exit\n");
20553 
20554 	return (status);
20555 }
20556 
20557 
20558 /*
20559  *    Function: sd_start_stop_unit_callback
20560  *
20561  * Description: timeout(9F) callback to begin recovery process for a
20562  *		device that has spun down.
20563  *
20564  *   Arguments: arg - pointer to associated softstate struct.
20565  *
20566  *     Context: Executes in a timeout(9F) thread context
20567  */
20568 
20569 static void
20570 sd_start_stop_unit_callback(void *arg)
20571 {
20572 	struct sd_lun	*un = arg;
20573 	ASSERT(un != NULL);
20574 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20575 
20576 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_callback: entry\n");
20577 
20578 	(void) taskq_dispatch(sd_tq, sd_start_stop_unit_task, un, KM_NOSLEEP);
20579 }
20580 
20581 
20582 /*
20583  *    Function: sd_start_stop_unit_task
20584  *
20585  * Description: Recovery procedure when a drive is spun down.
20586  *
20587  *   Arguments: arg - pointer to associated softstate struct.
20588  *
20589  *     Context: Executes in a taskq() thread context
20590  */
20591 
20592 static void
20593 sd_start_stop_unit_task(void *arg)
20594 {
20595 	struct sd_lun	*un = arg;
20596 	sd_ssc_t	*ssc;
20597 	int		power_level;
20598 	int		rval;
20599 
20600 	ASSERT(un != NULL);
20601 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20602 
20603 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: entry\n");
20604 
20605 	/*
20606 	 * Some unformatted drives report not ready error, no need to
20607 	 * restart if format has been initiated.
20608 	 */
20609 	mutex_enter(SD_MUTEX(un));
20610 	if (un->un_f_format_in_progress == TRUE) {
20611 		mutex_exit(SD_MUTEX(un));
20612 		return;
20613 	}
20614 	mutex_exit(SD_MUTEX(un));
20615 
20616 	ssc = sd_ssc_init(un);
20617 	/*
20618 	 * When a START STOP command is issued from here, it is part of a
20619 	 * failure recovery operation and must be issued before any other
20620 	 * commands, including any pending retries. Thus it must be sent
20621 	 * using SD_PATH_DIRECT_PRIORITY. It doesn't matter if the spin up
20622 	 * succeeds or not, we will start I/O after the attempt.
20623 	 * If power condition is supported and the current power level
20624 	 * is capable of performing I/O, we should set the power condition
20625 	 * to that level. Otherwise, set the power condition to ACTIVE.
20626 	 */
20627 	if (un->un_f_power_condition_supported) {
20628 		mutex_enter(SD_MUTEX(un));
20629 		ASSERT(SD_PM_IS_LEVEL_VALID(un, un->un_power_level));
20630 		power_level = sd_pwr_pc.ran_perf[un->un_power_level]
20631 		    > 0 ? un->un_power_level : SD_SPINDLE_ACTIVE;
20632 		mutex_exit(SD_MUTEX(un));
20633 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_POWER_CONDITION,
20634 		    sd_pl2pc[power_level], SD_PATH_DIRECT_PRIORITY);
20635 	} else {
20636 		rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
20637 		    SD_TARGET_START, SD_PATH_DIRECT_PRIORITY);
20638 	}
20639 
20640 	if (rval != 0)
20641 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
20642 	sd_ssc_fini(ssc);
20643 	/*
20644 	 * The above call blocks until the START_STOP_UNIT command completes.
20645 	 * Now that it has completed, we must re-try the original IO that
20646 	 * received the NOT READY condition in the first place. There are
20647 	 * three possible conditions here:
20648 	 *
20649 	 *  (1) The original IO is on un_retry_bp.
20650 	 *  (2) The original IO is on the regular wait queue, and un_retry_bp
20651 	 *	is NULL.
20652 	 *  (3) The original IO is on the regular wait queue, and un_retry_bp
20653 	 *	points to some other, unrelated bp.
20654 	 *
20655 	 * For each case, we must call sd_start_cmds() with un_retry_bp
20656 	 * as the argument. If un_retry_bp is NULL, this will initiate
20657 	 * processing of the regular wait queue.  If un_retry_bp is not NULL,
20658 	 * then this will process the bp on un_retry_bp. That may or may not
20659 	 * be the original IO, but that does not matter: the important thing
20660 	 * is to keep the IO processing going at this point.
20661 	 *
20662 	 * Note: This is a very specific error recovery sequence associated
20663 	 * with a drive that is not spun up. We attempt a START_STOP_UNIT and
20664 	 * serialize the I/O with completion of the spin-up.
20665 	 */
20666 	mutex_enter(SD_MUTEX(un));
20667 	SD_TRACE(SD_LOG_IO_CORE | SD_LOG_ERROR, un,
20668 	    "sd_start_stop_unit_task: un:0x%p starting bp:0x%p\n",
20669 	    un, un->un_retry_bp);
20670 	un->un_startstop_timeid = NULL;	/* Timeout is no longer pending */
20671 	sd_start_cmds(un, un->un_retry_bp);
20672 	mutex_exit(SD_MUTEX(un));
20673 
20674 	SD_TRACE(SD_LOG_IO, un, "sd_start_stop_unit_task: exit\n");
20675 }
20676 
20677 
20678 /*
20679  *    Function: sd_send_scsi_INQUIRY
20680  *
20681  * Description: Issue the scsi INQUIRY command.
20682  *
20683  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20684  *                      structure for this target.
20685  *		bufaddr
20686  *		buflen
20687  *		evpd
20688  *		page_code
20689  *		page_length
20690  *
20691  * Return Code: 0   - Success
20692  *		errno return code from sd_ssc_send()
20693  *
20694  *     Context: Can sleep. Does not return until command is completed.
20695  */
20696 
20697 static int
20698 sd_send_scsi_INQUIRY(sd_ssc_t *ssc, uchar_t *bufaddr, size_t buflen,
20699 	uchar_t evpd, uchar_t page_code, size_t *residp)
20700 {
20701 	union scsi_cdb		cdb;
20702 	struct uscsi_cmd	ucmd_buf;
20703 	int			status;
20704 	struct sd_lun		*un;
20705 
20706 	ASSERT(ssc != NULL);
20707 	un = ssc->ssc_un;
20708 	ASSERT(un != NULL);
20709 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20710 	ASSERT(bufaddr != NULL);
20711 
20712 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: entry: un:0x%p\n", un);
20713 
20714 	bzero(&cdb, sizeof (cdb));
20715 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20716 	bzero(bufaddr, buflen);
20717 
20718 	cdb.scc_cmd = SCMD_INQUIRY;
20719 	cdb.cdb_opaque[1] = evpd;
20720 	cdb.cdb_opaque[2] = page_code;
20721 	FORMG0COUNT(&cdb, buflen);
20722 
20723 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20724 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20725 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
20726 	ucmd_buf.uscsi_buflen	= buflen;
20727 	ucmd_buf.uscsi_rqbuf	= NULL;
20728 	ucmd_buf.uscsi_rqlen	= 0;
20729 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
20730 	ucmd_buf.uscsi_timeout	= 200;	/* Excessive legacy value */
20731 
20732 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20733 	    UIO_SYSSPACE, SD_PATH_DIRECT);
20734 
20735 	/*
20736 	 * Only handle status == 0, the upper-level caller
20737 	 * will put different assessment based on the context.
20738 	 */
20739 	if (status == 0)
20740 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20741 
20742 	if ((status == 0) && (residp != NULL)) {
20743 		*residp = ucmd_buf.uscsi_resid;
20744 	}
20745 
20746 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_INQUIRY: exit\n");
20747 
20748 	return (status);
20749 }
20750 
20751 
20752 /*
20753  *    Function: sd_send_scsi_TEST_UNIT_READY
20754  *
20755  * Description: Issue the scsi TEST UNIT READY command.
20756  *		This routine can be told to set the flag USCSI_DIAGNOSE to
20757  *		prevent retrying failed commands. Use this when the intent
20758  *		is either to check for device readiness, to clear a Unit
20759  *		Attention, or to clear any outstanding sense data.
20760  *		However under specific conditions the expected behavior
20761  *		is for retries to bring a device ready, so use the flag
20762  *		with caution.
20763  *
20764  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20765  *                      structure for this target.
20766  *		flag:   SD_CHECK_FOR_MEDIA: return ENXIO if no media present
20767  *			SD_DONT_RETRY_TUR: include uscsi flag USCSI_DIAGNOSE.
20768  *			0: dont check for media present, do retries on cmd.
20769  *
20770  * Return Code: 0   - Success
20771  *		EIO - IO error
20772  *		EACCES - Reservation conflict detected
20773  *		ENXIO  - Not Ready, medium not present
20774  *		errno return code from sd_ssc_send()
20775  *
20776  *     Context: Can sleep. Does not return until command is completed.
20777  */
20778 
20779 static int
20780 sd_send_scsi_TEST_UNIT_READY(sd_ssc_t *ssc, int flag)
20781 {
20782 	struct	scsi_extended_sense	sense_buf;
20783 	union scsi_cdb		cdb;
20784 	struct uscsi_cmd	ucmd_buf;
20785 	int			status;
20786 	struct sd_lun		*un;
20787 
20788 	ASSERT(ssc != NULL);
20789 	un = ssc->ssc_un;
20790 	ASSERT(un != NULL);
20791 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20792 
20793 	SD_TRACE(SD_LOG_IO, un,
20794 	    "sd_send_scsi_TEST_UNIT_READY: entry: un:0x%p\n", un);
20795 
20796 	/*
20797 	 * Some Seagate elite1 TQ devices get hung with disconnect/reconnect
20798 	 * timeouts when they receive a TUR and the queue is not empty. Check
20799 	 * the configuration flag set during attach (indicating the drive has
20800 	 * this firmware bug) and un_ncmds_in_transport before issuing the
20801 	 * TUR. If there are
20802 	 * pending commands return success, this is a bit arbitrary but is ok
20803 	 * for non-removables (i.e. the eliteI disks) and non-clustering
20804 	 * configurations.
20805 	 */
20806 	if (un->un_f_cfg_tur_check == TRUE) {
20807 		mutex_enter(SD_MUTEX(un));
20808 		if (un->un_ncmds_in_transport != 0) {
20809 			mutex_exit(SD_MUTEX(un));
20810 			return (0);
20811 		}
20812 		mutex_exit(SD_MUTEX(un));
20813 	}
20814 
20815 	bzero(&cdb, sizeof (cdb));
20816 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20817 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20818 
20819 	cdb.scc_cmd = SCMD_TEST_UNIT_READY;
20820 
20821 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20822 	ucmd_buf.uscsi_cdblen	= CDB_GROUP0;
20823 	ucmd_buf.uscsi_bufaddr	= NULL;
20824 	ucmd_buf.uscsi_buflen	= 0;
20825 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20826 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20827 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_SILENT;
20828 
20829 	/* Use flag USCSI_DIAGNOSE to prevent retries if it fails. */
20830 	if ((flag & SD_DONT_RETRY_TUR) != 0) {
20831 		ucmd_buf.uscsi_flags |= USCSI_DIAGNOSE;
20832 	}
20833 	ucmd_buf.uscsi_timeout	= 60;
20834 
20835 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20836 	    UIO_SYSSPACE, ((flag & SD_BYPASS_PM) ? SD_PATH_DIRECT :
20837 	    SD_PATH_STANDARD));
20838 
20839 	switch (status) {
20840 	case 0:
20841 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20842 		break;	/* Success! */
20843 	case EIO:
20844 		switch (ucmd_buf.uscsi_status) {
20845 		case STATUS_RESERVATION_CONFLICT:
20846 			status = EACCES;
20847 			break;
20848 		case STATUS_CHECK:
20849 			if ((flag & SD_CHECK_FOR_MEDIA) == 0) {
20850 				break;
20851 			}
20852 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20853 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20854 			    KEY_NOT_READY) &&
20855 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x3A)) {
20856 				status = ENXIO;
20857 			}
20858 			break;
20859 		default:
20860 			break;
20861 		}
20862 		break;
20863 	default:
20864 		break;
20865 	}
20866 
20867 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_TEST_UNIT_READY: exit\n");
20868 
20869 	return (status);
20870 }
20871 
20872 /*
20873  *    Function: sd_send_scsi_PERSISTENT_RESERVE_IN
20874  *
20875  * Description: Issue the scsi PERSISTENT RESERVE IN command.
20876  *
20877  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
20878  *                      structure for this target.
20879  *
20880  * Return Code: 0   - Success
20881  *		EACCES
20882  *		ENOTSUP
20883  *		errno return code from sd_ssc_send()
20884  *
20885  *     Context: Can sleep. Does not return until command is completed.
20886  */
20887 
20888 static int
20889 sd_send_scsi_PERSISTENT_RESERVE_IN(sd_ssc_t *ssc, uchar_t  usr_cmd,
20890 	uint16_t data_len, uchar_t *data_bufp)
20891 {
20892 	struct scsi_extended_sense	sense_buf;
20893 	union scsi_cdb		cdb;
20894 	struct uscsi_cmd	ucmd_buf;
20895 	int			status;
20896 	int			no_caller_buf = FALSE;
20897 	struct sd_lun		*un;
20898 
20899 	ASSERT(ssc != NULL);
20900 	un = ssc->ssc_un;
20901 	ASSERT(un != NULL);
20902 	ASSERT(!mutex_owned(SD_MUTEX(un)));
20903 	ASSERT((usr_cmd == SD_READ_KEYS) || (usr_cmd == SD_READ_RESV));
20904 
20905 	SD_TRACE(SD_LOG_IO, un,
20906 	    "sd_send_scsi_PERSISTENT_RESERVE_IN: entry: un:0x%p\n", un);
20907 
20908 	bzero(&cdb, sizeof (cdb));
20909 	bzero(&ucmd_buf, sizeof (ucmd_buf));
20910 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
20911 	if (data_bufp == NULL) {
20912 		/* Allocate a default buf if the caller did not give one */
20913 		ASSERT(data_len == 0);
20914 		data_len  = MHIOC_RESV_KEY_SIZE;
20915 		data_bufp = kmem_zalloc(MHIOC_RESV_KEY_SIZE, KM_SLEEP);
20916 		no_caller_buf = TRUE;
20917 	}
20918 
20919 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_IN;
20920 	cdb.cdb_opaque[1] = usr_cmd;
20921 	FORMG1COUNT(&cdb, data_len);
20922 
20923 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
20924 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
20925 	ucmd_buf.uscsi_bufaddr	= (caddr_t)data_bufp;
20926 	ucmd_buf.uscsi_buflen	= data_len;
20927 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
20928 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
20929 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
20930 	ucmd_buf.uscsi_timeout	= 60;
20931 
20932 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
20933 	    UIO_SYSSPACE, SD_PATH_STANDARD);
20934 
20935 	switch (status) {
20936 	case 0:
20937 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
20938 
20939 		break;	/* Success! */
20940 	case EIO:
20941 		switch (ucmd_buf.uscsi_status) {
20942 		case STATUS_RESERVATION_CONFLICT:
20943 			status = EACCES;
20944 			break;
20945 		case STATUS_CHECK:
20946 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
20947 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
20948 			    KEY_ILLEGAL_REQUEST)) {
20949 				status = ENOTSUP;
20950 			}
20951 			break;
20952 		default:
20953 			break;
20954 		}
20955 		break;
20956 	default:
20957 		break;
20958 	}
20959 
20960 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_IN: exit\n");
20961 
20962 	if (no_caller_buf == TRUE) {
20963 		kmem_free(data_bufp, data_len);
20964 	}
20965 
20966 	return (status);
20967 }
20968 
20969 
20970 /*
20971  *    Function: sd_send_scsi_PERSISTENT_RESERVE_OUT
20972  *
20973  * Description: This routine is the driver entry point for handling CD-ROM
20974  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS,
20975  *		MHIOCGRP_INRESV) by sending the SCSI-3 PROUT commands to the
20976  *		device.
20977  *
20978  *   Arguments: ssc  -  ssc contains un - pointer to soft state struct
20979  *                      for the target.
20980  *		usr_cmd SCSI-3 reservation facility command (one of
20981  *			SD_SCSI3_REGISTER, SD_SCSI3_RESERVE, SD_SCSI3_RELEASE,
20982  *			SD_SCSI3_PREEMPTANDABORT, SD_SCSI3_CLEAR)
20983  *		usr_bufp - user provided pointer register, reserve descriptor or
20984  *			preempt and abort structure (mhioc_register_t,
20985  *                      mhioc_resv_desc_t, mhioc_preemptandabort_t)
20986  *
20987  * Return Code: 0   - Success
20988  *		EACCES
20989  *		ENOTSUP
20990  *		errno return code from sd_ssc_send()
20991  *
20992  *     Context: Can sleep. Does not return until command is completed.
20993  */
20994 
20995 static int
20996 sd_send_scsi_PERSISTENT_RESERVE_OUT(sd_ssc_t *ssc, uchar_t usr_cmd,
20997 	uchar_t	*usr_bufp)
20998 {
20999 	struct scsi_extended_sense	sense_buf;
21000 	union scsi_cdb		cdb;
21001 	struct uscsi_cmd	ucmd_buf;
21002 	int			status;
21003 	uchar_t			data_len = sizeof (sd_prout_t);
21004 	sd_prout_t		*prp;
21005 	struct sd_lun		*un;
21006 
21007 	ASSERT(ssc != NULL);
21008 	un = ssc->ssc_un;
21009 	ASSERT(un != NULL);
21010 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21011 	ASSERT(data_len == 24);	/* required by scsi spec */
21012 
21013 	SD_TRACE(SD_LOG_IO, un,
21014 	    "sd_send_scsi_PERSISTENT_RESERVE_OUT: entry: un:0x%p\n", un);
21015 
21016 	if (usr_bufp == NULL) {
21017 		return (EINVAL);
21018 	}
21019 
21020 	bzero(&cdb, sizeof (cdb));
21021 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21022 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21023 	prp = kmem_zalloc(data_len, KM_SLEEP);
21024 
21025 	cdb.scc_cmd = SCMD_PERSISTENT_RESERVE_OUT;
21026 	cdb.cdb_opaque[1] = usr_cmd;
21027 	FORMG1COUNT(&cdb, data_len);
21028 
21029 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21030 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21031 	ucmd_buf.uscsi_bufaddr	= (caddr_t)prp;
21032 	ucmd_buf.uscsi_buflen	= data_len;
21033 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21034 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21035 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
21036 	ucmd_buf.uscsi_timeout	= 60;
21037 
21038 	switch (usr_cmd) {
21039 	case SD_SCSI3_REGISTER: {
21040 		mhioc_register_t *ptr = (mhioc_register_t *)usr_bufp;
21041 
21042 		bcopy(ptr->oldkey.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21043 		bcopy(ptr->newkey.key, prp->service_key,
21044 		    MHIOC_RESV_KEY_SIZE);
21045 		prp->aptpl = ptr->aptpl;
21046 		break;
21047 	}
21048 	case SD_SCSI3_CLEAR: {
21049 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
21050 
21051 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21052 		break;
21053 	}
21054 	case SD_SCSI3_RESERVE:
21055 	case SD_SCSI3_RELEASE: {
21056 		mhioc_resv_desc_t *ptr = (mhioc_resv_desc_t *)usr_bufp;
21057 
21058 		bcopy(ptr->key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21059 		prp->scope_address = BE_32(ptr->scope_specific_addr);
21060 		cdb.cdb_opaque[2] = ptr->type;
21061 		break;
21062 	}
21063 	case SD_SCSI3_PREEMPTANDABORT: {
21064 		mhioc_preemptandabort_t *ptr =
21065 		    (mhioc_preemptandabort_t *)usr_bufp;
21066 
21067 		bcopy(ptr->resvdesc.key.key, prp->res_key, MHIOC_RESV_KEY_SIZE);
21068 		bcopy(ptr->victim_key.key, prp->service_key,
21069 		    MHIOC_RESV_KEY_SIZE);
21070 		prp->scope_address = BE_32(ptr->resvdesc.scope_specific_addr);
21071 		cdb.cdb_opaque[2] = ptr->resvdesc.type;
21072 		ucmd_buf.uscsi_flags |= USCSI_HEAD;
21073 		break;
21074 	}
21075 	case SD_SCSI3_REGISTERANDIGNOREKEY:
21076 	{
21077 		mhioc_registerandignorekey_t *ptr;
21078 		ptr = (mhioc_registerandignorekey_t *)usr_bufp;
21079 		bcopy(ptr->newkey.key,
21080 		    prp->service_key, MHIOC_RESV_KEY_SIZE);
21081 		prp->aptpl = ptr->aptpl;
21082 		break;
21083 	}
21084 	default:
21085 		ASSERT(FALSE);
21086 		break;
21087 	}
21088 
21089 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21090 	    UIO_SYSSPACE, SD_PATH_STANDARD);
21091 
21092 	switch (status) {
21093 	case 0:
21094 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21095 		break;	/* Success! */
21096 	case EIO:
21097 		switch (ucmd_buf.uscsi_status) {
21098 		case STATUS_RESERVATION_CONFLICT:
21099 			status = EACCES;
21100 			break;
21101 		case STATUS_CHECK:
21102 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
21103 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
21104 			    KEY_ILLEGAL_REQUEST)) {
21105 				status = ENOTSUP;
21106 			}
21107 			break;
21108 		default:
21109 			break;
21110 		}
21111 		break;
21112 	default:
21113 		break;
21114 	}
21115 
21116 	kmem_free(prp, data_len);
21117 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_PERSISTENT_RESERVE_OUT: exit\n");
21118 	return (status);
21119 }
21120 
21121 
21122 /*
21123  *    Function: sd_send_scsi_SYNCHRONIZE_CACHE
21124  *
21125  * Description: Issues a scsi SYNCHRONIZE CACHE command to the target
21126  *
21127  *   Arguments: un - pointer to the target's soft state struct
21128  *              dkc - pointer to the callback structure
21129  *
21130  * Return Code: 0 - success
21131  *		errno-type error code
21132  *
21133  *     Context: kernel thread context only.
21134  *
21135  *  _______________________________________________________________
21136  * | dkc_flag &   | dkc_callback | DKIOCFLUSHWRITECACHE            |
21137  * |FLUSH_VOLATILE|              | operation                       |
21138  * |______________|______________|_________________________________|
21139  * | 0            | NULL         | Synchronous flush on both       |
21140  * |              |              | volatile and non-volatile cache |
21141  * |______________|______________|_________________________________|
21142  * | 1            | NULL         | Synchronous flush on volatile   |
21143  * |              |              | cache; disk drivers may suppress|
21144  * |              |              | flush if disk table indicates   |
21145  * |              |              | non-volatile cache              |
21146  * |______________|______________|_________________________________|
21147  * | 0            | !NULL        | Asynchronous flush on both      |
21148  * |              |              | volatile and non-volatile cache;|
21149  * |______________|______________|_________________________________|
21150  * | 1            | !NULL        | Asynchronous flush on volatile  |
21151  * |              |              | cache; disk drivers may suppress|
21152  * |              |              | flush if disk table indicates   |
21153  * |              |              | non-volatile cache              |
21154  * |______________|______________|_________________________________|
21155  *
21156  */
21157 
21158 static int
21159 sd_send_scsi_SYNCHRONIZE_CACHE(struct sd_lun *un, struct dk_callback *dkc)
21160 {
21161 	struct sd_uscsi_info	*uip;
21162 	struct uscsi_cmd	*uscmd;
21163 	union scsi_cdb		*cdb;
21164 	struct buf		*bp;
21165 	int			rval = 0;
21166 	int			is_async;
21167 
21168 	SD_TRACE(SD_LOG_IO, un,
21169 	    "sd_send_scsi_SYNCHRONIZE_CACHE: entry: un:0x%p\n", un);
21170 
21171 	ASSERT(un != NULL);
21172 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21173 
21174 	if (dkc == NULL || dkc->dkc_callback == NULL) {
21175 		is_async = FALSE;
21176 	} else {
21177 		is_async = TRUE;
21178 	}
21179 
21180 	mutex_enter(SD_MUTEX(un));
21181 	/* check whether cache flush should be suppressed */
21182 	if (un->un_f_suppress_cache_flush == TRUE) {
21183 		mutex_exit(SD_MUTEX(un));
21184 		/*
21185 		 * suppress the cache flush if the device is told to do
21186 		 * so by sd.conf or disk table
21187 		 */
21188 		SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_SYNCHRONIZE_CACHE: \
21189 		    skip the cache flush since suppress_cache_flush is %d!\n",
21190 		    un->un_f_suppress_cache_flush);
21191 
21192 		if (is_async == TRUE) {
21193 			/* invoke callback for asynchronous flush */
21194 			(*dkc->dkc_callback)(dkc->dkc_cookie, 0);
21195 		}
21196 		return (rval);
21197 	}
21198 	mutex_exit(SD_MUTEX(un));
21199 
21200 	/*
21201 	 * check dkc_flag & FLUSH_VOLATILE so SYNC_NV bit can be
21202 	 * set properly
21203 	 */
21204 	cdb = kmem_zalloc(CDB_GROUP1, KM_SLEEP);
21205 	cdb->scc_cmd = SCMD_SYNCHRONIZE_CACHE;
21206 
21207 	mutex_enter(SD_MUTEX(un));
21208 	if (dkc != NULL && un->un_f_sync_nv_supported &&
21209 	    (dkc->dkc_flag & FLUSH_VOLATILE)) {
21210 		/*
21211 		 * if the device supports SYNC_NV bit, turn on
21212 		 * the SYNC_NV bit to only flush volatile cache
21213 		 */
21214 		cdb->cdb_un.tag |= SD_SYNC_NV_BIT;
21215 	}
21216 	mutex_exit(SD_MUTEX(un));
21217 
21218 	/*
21219 	 * First get some memory for the uscsi_cmd struct and cdb
21220 	 * and initialize for SYNCHRONIZE_CACHE cmd.
21221 	 */
21222 	uscmd = kmem_zalloc(sizeof (struct uscsi_cmd), KM_SLEEP);
21223 	uscmd->uscsi_cdblen = CDB_GROUP1;
21224 	uscmd->uscsi_cdb = (caddr_t)cdb;
21225 	uscmd->uscsi_bufaddr = NULL;
21226 	uscmd->uscsi_buflen = 0;
21227 	uscmd->uscsi_rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
21228 	uscmd->uscsi_rqlen = SENSE_LENGTH;
21229 	uscmd->uscsi_rqresid = SENSE_LENGTH;
21230 	uscmd->uscsi_flags = USCSI_RQENABLE | USCSI_SILENT;
21231 	uscmd->uscsi_timeout = sd_io_time;
21232 
21233 	/*
21234 	 * Allocate an sd_uscsi_info struct and fill it with the info
21235 	 * needed by sd_initpkt_for_uscsi().  Then put the pointer into
21236 	 * b_private in the buf for sd_initpkt_for_uscsi().  Note that
21237 	 * since we allocate the buf here in this function, we do not
21238 	 * need to preserve the prior contents of b_private.
21239 	 * The sd_uscsi_info struct is also used by sd_uscsi_strategy()
21240 	 */
21241 	uip = kmem_zalloc(sizeof (struct sd_uscsi_info), KM_SLEEP);
21242 	uip->ui_flags = SD_PATH_DIRECT;
21243 	uip->ui_cmdp  = uscmd;
21244 
21245 	bp = getrbuf(KM_SLEEP);
21246 	bp->b_private = uip;
21247 
21248 	/*
21249 	 * Setup buffer to carry uscsi request.
21250 	 */
21251 	bp->b_flags  = B_BUSY;
21252 	bp->b_bcount = 0;
21253 	bp->b_blkno  = 0;
21254 
21255 	if (is_async == TRUE) {
21256 		bp->b_iodone = sd_send_scsi_SYNCHRONIZE_CACHE_biodone;
21257 		uip->ui_dkc = *dkc;
21258 	}
21259 
21260 	bp->b_edev = SD_GET_DEV(un);
21261 	bp->b_dev = cmpdev(bp->b_edev);	/* maybe unnecessary? */
21262 
21263 	/*
21264 	 * Unset un_f_sync_cache_required flag
21265 	 */
21266 	mutex_enter(SD_MUTEX(un));
21267 	un->un_f_sync_cache_required = FALSE;
21268 	mutex_exit(SD_MUTEX(un));
21269 
21270 	(void) sd_uscsi_strategy(bp);
21271 
21272 	/*
21273 	 * If synchronous request, wait for completion
21274 	 * If async just return and let b_iodone callback
21275 	 * cleanup.
21276 	 * NOTE: On return, u_ncmds_in_driver will be decremented,
21277 	 * but it was also incremented in sd_uscsi_strategy(), so
21278 	 * we should be ok.
21279 	 */
21280 	if (is_async == FALSE) {
21281 		(void) biowait(bp);
21282 		rval = sd_send_scsi_SYNCHRONIZE_CACHE_biodone(bp);
21283 	}
21284 
21285 	return (rval);
21286 }
21287 
21288 
21289 static int
21290 sd_send_scsi_SYNCHRONIZE_CACHE_biodone(struct buf *bp)
21291 {
21292 	struct sd_uscsi_info *uip;
21293 	struct uscsi_cmd *uscmd;
21294 	uint8_t *sense_buf;
21295 	struct sd_lun *un;
21296 	int status;
21297 	union scsi_cdb *cdb;
21298 
21299 	uip = (struct sd_uscsi_info *)(bp->b_private);
21300 	ASSERT(uip != NULL);
21301 
21302 	uscmd = uip->ui_cmdp;
21303 	ASSERT(uscmd != NULL);
21304 
21305 	sense_buf = (uint8_t *)uscmd->uscsi_rqbuf;
21306 	ASSERT(sense_buf != NULL);
21307 
21308 	un = ddi_get_soft_state(sd_state, SD_GET_INSTANCE_FROM_BUF(bp));
21309 	ASSERT(un != NULL);
21310 
21311 	cdb = (union scsi_cdb *)uscmd->uscsi_cdb;
21312 
21313 	status = geterror(bp);
21314 	switch (status) {
21315 	case 0:
21316 		break;	/* Success! */
21317 	case EIO:
21318 		switch (uscmd->uscsi_status) {
21319 		case STATUS_RESERVATION_CONFLICT:
21320 			/* Ignore reservation conflict */
21321 			status = 0;
21322 			goto done;
21323 
21324 		case STATUS_CHECK:
21325 			if ((uscmd->uscsi_rqstatus == STATUS_GOOD) &&
21326 			    (scsi_sense_key(sense_buf) ==
21327 			    KEY_ILLEGAL_REQUEST)) {
21328 				/* Ignore Illegal Request error */
21329 				if (cdb->cdb_un.tag&SD_SYNC_NV_BIT) {
21330 					mutex_enter(SD_MUTEX(un));
21331 					un->un_f_sync_nv_supported = FALSE;
21332 					mutex_exit(SD_MUTEX(un));
21333 					status = 0;
21334 					SD_TRACE(SD_LOG_IO, un,
21335 					    "un_f_sync_nv_supported \
21336 					    is set to false.\n");
21337 					goto done;
21338 				}
21339 
21340 				mutex_enter(SD_MUTEX(un));
21341 				un->un_f_sync_cache_supported = FALSE;
21342 				mutex_exit(SD_MUTEX(un));
21343 				SD_TRACE(SD_LOG_IO, un,
21344 				    "sd_send_scsi_SYNCHRONIZE_CACHE_biodone: \
21345 				    un_f_sync_cache_supported set to false \
21346 				    with asc = %x, ascq = %x\n",
21347 				    scsi_sense_asc(sense_buf),
21348 				    scsi_sense_ascq(sense_buf));
21349 				status = ENOTSUP;
21350 				goto done;
21351 			}
21352 			break;
21353 		default:
21354 			break;
21355 		}
21356 		/* FALLTHRU */
21357 	default:
21358 		/*
21359 		 * Turn on the un_f_sync_cache_required flag
21360 		 * since the SYNC CACHE command failed
21361 		 */
21362 		mutex_enter(SD_MUTEX(un));
21363 		un->un_f_sync_cache_required = TRUE;
21364 		mutex_exit(SD_MUTEX(un));
21365 
21366 		/*
21367 		 * Don't log an error message if this device
21368 		 * has removable media.
21369 		 */
21370 		if (!un->un_f_has_removable_media) {
21371 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
21372 			    "SYNCHRONIZE CACHE command failed (%d)\n", status);
21373 		}
21374 		break;
21375 	}
21376 
21377 done:
21378 	if (uip->ui_dkc.dkc_callback != NULL) {
21379 		(*uip->ui_dkc.dkc_callback)(uip->ui_dkc.dkc_cookie, status);
21380 	}
21381 
21382 	ASSERT((bp->b_flags & B_REMAPPED) == 0);
21383 	freerbuf(bp);
21384 	kmem_free(uip, sizeof (struct sd_uscsi_info));
21385 	kmem_free(uscmd->uscsi_rqbuf, SENSE_LENGTH);
21386 	kmem_free(uscmd->uscsi_cdb, (size_t)uscmd->uscsi_cdblen);
21387 	kmem_free(uscmd, sizeof (struct uscsi_cmd));
21388 
21389 	return (status);
21390 }
21391 
21392 
21393 /*
21394  *    Function: sd_send_scsi_GET_CONFIGURATION
21395  *
21396  * Description: Issues the get configuration command to the device.
21397  *		Called from sd_check_for_writable_cd & sd_get_media_info
21398  *		caller needs to ensure that buflen = SD_PROFILE_HEADER_LEN
21399  *   Arguments: ssc
21400  *		ucmdbuf
21401  *		rqbuf
21402  *		rqbuflen
21403  *		bufaddr
21404  *		buflen
21405  *		path_flag
21406  *
21407  * Return Code: 0   - Success
21408  *		errno return code from sd_ssc_send()
21409  *
21410  *     Context: Can sleep. Does not return until command is completed.
21411  *
21412  */
21413 
21414 static int
21415 sd_send_scsi_GET_CONFIGURATION(sd_ssc_t *ssc, struct uscsi_cmd *ucmdbuf,
21416 	uchar_t *rqbuf, uint_t rqbuflen, uchar_t *bufaddr, uint_t buflen,
21417 	int path_flag)
21418 {
21419 	char	cdb[CDB_GROUP1];
21420 	int	status;
21421 	struct sd_lun	*un;
21422 
21423 	ASSERT(ssc != NULL);
21424 	un = ssc->ssc_un;
21425 	ASSERT(un != NULL);
21426 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21427 	ASSERT(bufaddr != NULL);
21428 	ASSERT(ucmdbuf != NULL);
21429 	ASSERT(rqbuf != NULL);
21430 
21431 	SD_TRACE(SD_LOG_IO, un,
21432 	    "sd_send_scsi_GET_CONFIGURATION: entry: un:0x%p\n", un);
21433 
21434 	bzero(cdb, sizeof (cdb));
21435 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
21436 	bzero(rqbuf, rqbuflen);
21437 	bzero(bufaddr, buflen);
21438 
21439 	/*
21440 	 * Set up cdb field for the get configuration command.
21441 	 */
21442 	cdb[0] = SCMD_GET_CONFIGURATION;
21443 	cdb[1] = 0x02;  /* Requested Type */
21444 	cdb[8] = SD_PROFILE_HEADER_LEN;
21445 	ucmdbuf->uscsi_cdb = cdb;
21446 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
21447 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
21448 	ucmdbuf->uscsi_buflen = buflen;
21449 	ucmdbuf->uscsi_timeout = sd_io_time;
21450 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
21451 	ucmdbuf->uscsi_rqlen = rqbuflen;
21452 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
21453 
21454 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
21455 	    UIO_SYSSPACE, path_flag);
21456 
21457 	switch (status) {
21458 	case 0:
21459 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21460 		break;  /* Success! */
21461 	case EIO:
21462 		switch (ucmdbuf->uscsi_status) {
21463 		case STATUS_RESERVATION_CONFLICT:
21464 			status = EACCES;
21465 			break;
21466 		default:
21467 			break;
21468 		}
21469 		break;
21470 	default:
21471 		break;
21472 	}
21473 
21474 	if (status == 0) {
21475 		SD_DUMP_MEMORY(un, SD_LOG_IO,
21476 		    "sd_send_scsi_GET_CONFIGURATION: data",
21477 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
21478 	}
21479 
21480 	SD_TRACE(SD_LOG_IO, un,
21481 	    "sd_send_scsi_GET_CONFIGURATION: exit\n");
21482 
21483 	return (status);
21484 }
21485 
21486 /*
21487  *    Function: sd_send_scsi_feature_GET_CONFIGURATION
21488  *
21489  * Description: Issues the get configuration command to the device to
21490  *              retrieve a specific feature. Called from
21491  *		sd_check_for_writable_cd & sd_set_mmc_caps.
21492  *   Arguments: ssc
21493  *              ucmdbuf
21494  *              rqbuf
21495  *              rqbuflen
21496  *              bufaddr
21497  *              buflen
21498  *		feature
21499  *
21500  * Return Code: 0   - Success
21501  *              errno return code from sd_ssc_send()
21502  *
21503  *     Context: Can sleep. Does not return until command is completed.
21504  *
21505  */
21506 static int
21507 sd_send_scsi_feature_GET_CONFIGURATION(sd_ssc_t *ssc,
21508 	struct uscsi_cmd *ucmdbuf, uchar_t *rqbuf, uint_t rqbuflen,
21509 	uchar_t *bufaddr, uint_t buflen, char feature, int path_flag)
21510 {
21511 	char    cdb[CDB_GROUP1];
21512 	int	status;
21513 	struct sd_lun	*un;
21514 
21515 	ASSERT(ssc != NULL);
21516 	un = ssc->ssc_un;
21517 	ASSERT(un != NULL);
21518 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21519 	ASSERT(bufaddr != NULL);
21520 	ASSERT(ucmdbuf != NULL);
21521 	ASSERT(rqbuf != NULL);
21522 
21523 	SD_TRACE(SD_LOG_IO, un,
21524 	    "sd_send_scsi_feature_GET_CONFIGURATION: entry: un:0x%p\n", un);
21525 
21526 	bzero(cdb, sizeof (cdb));
21527 	bzero(ucmdbuf, sizeof (struct uscsi_cmd));
21528 	bzero(rqbuf, rqbuflen);
21529 	bzero(bufaddr, buflen);
21530 
21531 	/*
21532 	 * Set up cdb field for the get configuration command.
21533 	 */
21534 	cdb[0] = SCMD_GET_CONFIGURATION;
21535 	cdb[1] = 0x02;  /* Requested Type */
21536 	cdb[3] = feature;
21537 	cdb[8] = buflen;
21538 	ucmdbuf->uscsi_cdb = cdb;
21539 	ucmdbuf->uscsi_cdblen = CDB_GROUP1;
21540 	ucmdbuf->uscsi_bufaddr = (caddr_t)bufaddr;
21541 	ucmdbuf->uscsi_buflen = buflen;
21542 	ucmdbuf->uscsi_timeout = sd_io_time;
21543 	ucmdbuf->uscsi_rqbuf = (caddr_t)rqbuf;
21544 	ucmdbuf->uscsi_rqlen = rqbuflen;
21545 	ucmdbuf->uscsi_flags = USCSI_RQENABLE|USCSI_SILENT|USCSI_READ;
21546 
21547 	status = sd_ssc_send(ssc, ucmdbuf, FKIOCTL,
21548 	    UIO_SYSSPACE, path_flag);
21549 
21550 	switch (status) {
21551 	case 0:
21552 
21553 		break;  /* Success! */
21554 	case EIO:
21555 		switch (ucmdbuf->uscsi_status) {
21556 		case STATUS_RESERVATION_CONFLICT:
21557 			status = EACCES;
21558 			break;
21559 		default:
21560 			break;
21561 		}
21562 		break;
21563 	default:
21564 		break;
21565 	}
21566 
21567 	if (status == 0) {
21568 		SD_DUMP_MEMORY(un, SD_LOG_IO,
21569 		    "sd_send_scsi_feature_GET_CONFIGURATION: data",
21570 		    (uchar_t *)bufaddr, SD_PROFILE_HEADER_LEN, SD_LOG_HEX);
21571 	}
21572 
21573 	SD_TRACE(SD_LOG_IO, un,
21574 	    "sd_send_scsi_feature_GET_CONFIGURATION: exit\n");
21575 
21576 	return (status);
21577 }
21578 
21579 
21580 /*
21581  *    Function: sd_send_scsi_MODE_SENSE
21582  *
21583  * Description: Utility function for issuing a scsi MODE SENSE command.
21584  *		Note: This routine uses a consistent implementation for Group0,
21585  *		Group1, and Group2 commands across all platforms. ATAPI devices
21586  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
21587  *
21588  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21589  *                      structure for this target.
21590  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
21591  *			  CDB_GROUP[1|2] (10 byte).
21592  *		bufaddr - buffer for page data retrieved from the target.
21593  *		buflen - size of page to be retrieved.
21594  *		page_code - page code of data to be retrieved from the target.
21595  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21596  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21597  *			to use the USCSI "direct" chain and bypass the normal
21598  *			command waitq.
21599  *
21600  * Return Code: 0   - Success
21601  *		errno return code from sd_ssc_send()
21602  *
21603  *     Context: Can sleep. Does not return until command is completed.
21604  */
21605 
21606 static int
21607 sd_send_scsi_MODE_SENSE(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
21608 	size_t buflen,  uchar_t page_code, int path_flag)
21609 {
21610 	struct	scsi_extended_sense	sense_buf;
21611 	union scsi_cdb		cdb;
21612 	struct uscsi_cmd	ucmd_buf;
21613 	int			status;
21614 	int			headlen;
21615 	struct sd_lun		*un;
21616 
21617 	ASSERT(ssc != NULL);
21618 	un = ssc->ssc_un;
21619 	ASSERT(un != NULL);
21620 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21621 	ASSERT(bufaddr != NULL);
21622 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
21623 	    (cdbsize == CDB_GROUP2));
21624 
21625 	SD_TRACE(SD_LOG_IO, un,
21626 	    "sd_send_scsi_MODE_SENSE: entry: un:0x%p\n", un);
21627 
21628 	bzero(&cdb, sizeof (cdb));
21629 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21630 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21631 	bzero(bufaddr, buflen);
21632 
21633 	if (cdbsize == CDB_GROUP0) {
21634 		cdb.scc_cmd = SCMD_MODE_SENSE;
21635 		cdb.cdb_opaque[2] = page_code;
21636 		FORMG0COUNT(&cdb, buflen);
21637 		headlen = MODE_HEADER_LENGTH;
21638 	} else {
21639 		cdb.scc_cmd = SCMD_MODE_SENSE_G1;
21640 		cdb.cdb_opaque[2] = page_code;
21641 		FORMG1COUNT(&cdb, buflen);
21642 		headlen = MODE_HEADER_LENGTH_GRP2;
21643 	}
21644 
21645 	ASSERT(headlen <= buflen);
21646 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21647 
21648 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21649 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21650 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21651 	ucmd_buf.uscsi_buflen	= buflen;
21652 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21653 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21654 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21655 	ucmd_buf.uscsi_timeout	= 60;
21656 
21657 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21658 	    UIO_SYSSPACE, path_flag);
21659 
21660 	switch (status) {
21661 	case 0:
21662 		/*
21663 		 * sr_check_wp() uses 0x3f page code and check the header of
21664 		 * mode page to determine if target device is write-protected.
21665 		 * But some USB devices return 0 bytes for 0x3f page code. For
21666 		 * this case, make sure that mode page header is returned at
21667 		 * least.
21668 		 */
21669 		if (buflen - ucmd_buf.uscsi_resid <  headlen) {
21670 			status = EIO;
21671 			sd_ssc_set_info(ssc, SSC_FLAGS_INVALID_DATA, -1,
21672 			    "mode page header is not returned");
21673 		}
21674 		break;	/* Success! */
21675 	case EIO:
21676 		switch (ucmd_buf.uscsi_status) {
21677 		case STATUS_RESERVATION_CONFLICT:
21678 			status = EACCES;
21679 			break;
21680 		default:
21681 			break;
21682 		}
21683 		break;
21684 	default:
21685 		break;
21686 	}
21687 
21688 	if (status == 0) {
21689 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SENSE: data",
21690 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21691 	}
21692 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SENSE: exit\n");
21693 
21694 	return (status);
21695 }
21696 
21697 
21698 /*
21699  *    Function: sd_send_scsi_MODE_SELECT
21700  *
21701  * Description: Utility function for issuing a scsi MODE SELECT command.
21702  *		Note: This routine uses a consistent implementation for Group0,
21703  *		Group1, and Group2 commands across all platforms. ATAPI devices
21704  *		use Group 1 Read/Write commands and Group 2 Mode Sense/Select
21705  *
21706  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21707  *                      structure for this target.
21708  *		cdbsize - size CDB to be used (CDB_GROUP0 (6 byte), or
21709  *			  CDB_GROUP[1|2] (10 byte).
21710  *		bufaddr - buffer for page data retrieved from the target.
21711  *		buflen - size of page to be retrieved.
21712  *		save_page - boolean to determin if SP bit should be set.
21713  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21714  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21715  *			to use the USCSI "direct" chain and bypass the normal
21716  *			command waitq.
21717  *
21718  * Return Code: 0   - Success
21719  *		errno return code from sd_ssc_send()
21720  *
21721  *     Context: Can sleep. Does not return until command is completed.
21722  */
21723 
21724 static int
21725 sd_send_scsi_MODE_SELECT(sd_ssc_t *ssc, int cdbsize, uchar_t *bufaddr,
21726 	size_t buflen,  uchar_t save_page, int path_flag)
21727 {
21728 	struct	scsi_extended_sense	sense_buf;
21729 	union scsi_cdb		cdb;
21730 	struct uscsi_cmd	ucmd_buf;
21731 	int			status;
21732 	struct sd_lun		*un;
21733 
21734 	ASSERT(ssc != NULL);
21735 	un = ssc->ssc_un;
21736 	ASSERT(un != NULL);
21737 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21738 	ASSERT(bufaddr != NULL);
21739 	ASSERT((cdbsize == CDB_GROUP0) || (cdbsize == CDB_GROUP1) ||
21740 	    (cdbsize == CDB_GROUP2));
21741 
21742 	SD_TRACE(SD_LOG_IO, un,
21743 	    "sd_send_scsi_MODE_SELECT: entry: un:0x%p\n", un);
21744 
21745 	bzero(&cdb, sizeof (cdb));
21746 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21747 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21748 
21749 	/* Set the PF bit for many third party drives */
21750 	cdb.cdb_opaque[1] = 0x10;
21751 
21752 	/* Set the savepage(SP) bit if given */
21753 	if (save_page == SD_SAVE_PAGE) {
21754 		cdb.cdb_opaque[1] |= 0x01;
21755 	}
21756 
21757 	if (cdbsize == CDB_GROUP0) {
21758 		cdb.scc_cmd = SCMD_MODE_SELECT;
21759 		FORMG0COUNT(&cdb, buflen);
21760 	} else {
21761 		cdb.scc_cmd = SCMD_MODE_SELECT_G1;
21762 		FORMG1COUNT(&cdb, buflen);
21763 	}
21764 
21765 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21766 
21767 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21768 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21769 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21770 	ucmd_buf.uscsi_buflen	= buflen;
21771 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21772 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21773 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_WRITE | USCSI_SILENT;
21774 	ucmd_buf.uscsi_timeout	= 60;
21775 
21776 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21777 	    UIO_SYSSPACE, path_flag);
21778 
21779 	switch (status) {
21780 	case 0:
21781 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21782 		break;	/* Success! */
21783 	case EIO:
21784 		switch (ucmd_buf.uscsi_status) {
21785 		case STATUS_RESERVATION_CONFLICT:
21786 			status = EACCES;
21787 			break;
21788 		default:
21789 			break;
21790 		}
21791 		break;
21792 	default:
21793 		break;
21794 	}
21795 
21796 	if (status == 0) {
21797 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_MODE_SELECT: data",
21798 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21799 	}
21800 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_MODE_SELECT: exit\n");
21801 
21802 	return (status);
21803 }
21804 
21805 
21806 /*
21807  *    Function: sd_send_scsi_RDWR
21808  *
21809  * Description: Issue a scsi READ or WRITE command with the given parameters.
21810  *
21811  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21812  *                      structure for this target.
21813  *		cmd:	 SCMD_READ or SCMD_WRITE
21814  *		bufaddr: Address of caller's buffer to receive the RDWR data
21815  *		buflen:  Length of caller's buffer receive the RDWR data.
21816  *		start_block: Block number for the start of the RDWR operation.
21817  *			 (Assumes target-native block size.)
21818  *		residp:  Pointer to variable to receive the redisual of the
21819  *			 RDWR operation (may be NULL of no residual requested).
21820  *		path_flag - SD_PATH_DIRECT to use the USCSI "direct" chain and
21821  *			the normal command waitq, or SD_PATH_DIRECT_PRIORITY
21822  *			to use the USCSI "direct" chain and bypass the normal
21823  *			command waitq.
21824  *
21825  * Return Code: 0   - Success
21826  *		errno return code from sd_ssc_send()
21827  *
21828  *     Context: Can sleep. Does not return until command is completed.
21829  */
21830 
21831 static int
21832 sd_send_scsi_RDWR(sd_ssc_t *ssc, uchar_t cmd, void *bufaddr,
21833 	size_t buflen, daddr_t start_block, int path_flag)
21834 {
21835 	struct	scsi_extended_sense	sense_buf;
21836 	union scsi_cdb		cdb;
21837 	struct uscsi_cmd	ucmd_buf;
21838 	uint32_t		block_count;
21839 	int			status;
21840 	int			cdbsize;
21841 	uchar_t			flag;
21842 	struct sd_lun		*un;
21843 
21844 	ASSERT(ssc != NULL);
21845 	un = ssc->ssc_un;
21846 	ASSERT(un != NULL);
21847 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21848 	ASSERT(bufaddr != NULL);
21849 	ASSERT((cmd == SCMD_READ) || (cmd == SCMD_WRITE));
21850 
21851 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: entry: un:0x%p\n", un);
21852 
21853 	if (un->un_f_tgt_blocksize_is_valid != TRUE) {
21854 		return (EINVAL);
21855 	}
21856 
21857 	mutex_enter(SD_MUTEX(un));
21858 	block_count = SD_BYTES2TGTBLOCKS(un, buflen);
21859 	mutex_exit(SD_MUTEX(un));
21860 
21861 	flag = (cmd == SCMD_READ) ? USCSI_READ : USCSI_WRITE;
21862 
21863 	SD_INFO(SD_LOG_IO, un, "sd_send_scsi_RDWR: "
21864 	    "bufaddr:0x%p buflen:0x%x start_block:0x%p block_count:0x%x\n",
21865 	    bufaddr, buflen, start_block, block_count);
21866 
21867 	bzero(&cdb, sizeof (cdb));
21868 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21869 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21870 
21871 	/* Compute CDB size to use */
21872 	if (start_block > 0xffffffff)
21873 		cdbsize = CDB_GROUP4;
21874 	else if ((start_block & 0xFFE00000) ||
21875 	    (un->un_f_cfg_is_atapi == TRUE))
21876 		cdbsize = CDB_GROUP1;
21877 	else
21878 		cdbsize = CDB_GROUP0;
21879 
21880 	switch (cdbsize) {
21881 	case CDB_GROUP0:	/* 6-byte CDBs */
21882 		cdb.scc_cmd = cmd;
21883 		FORMG0ADDR(&cdb, start_block);
21884 		FORMG0COUNT(&cdb, block_count);
21885 		break;
21886 	case CDB_GROUP1:	/* 10-byte CDBs */
21887 		cdb.scc_cmd = cmd | SCMD_GROUP1;
21888 		FORMG1ADDR(&cdb, start_block);
21889 		FORMG1COUNT(&cdb, block_count);
21890 		break;
21891 	case CDB_GROUP4:	/* 16-byte CDBs */
21892 		cdb.scc_cmd = cmd | SCMD_GROUP4;
21893 		FORMG4LONGADDR(&cdb, (uint64_t)start_block);
21894 		FORMG4COUNT(&cdb, block_count);
21895 		break;
21896 	case CDB_GROUP5:	/* 12-byte CDBs (currently unsupported) */
21897 	default:
21898 		/* All others reserved */
21899 		return (EINVAL);
21900 	}
21901 
21902 	/* Set LUN bit(s) in CDB if this is a SCSI-1 device */
21903 	SD_FILL_SCSI1_LUN_CDB(un, &cdb);
21904 
21905 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21906 	ucmd_buf.uscsi_cdblen	= (uchar_t)cdbsize;
21907 	ucmd_buf.uscsi_bufaddr	= bufaddr;
21908 	ucmd_buf.uscsi_buflen	= buflen;
21909 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21910 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21911 	ucmd_buf.uscsi_flags	= flag | USCSI_RQENABLE | USCSI_SILENT;
21912 	ucmd_buf.uscsi_timeout	= 60;
21913 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21914 	    UIO_SYSSPACE, path_flag);
21915 
21916 	switch (status) {
21917 	case 0:
21918 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
21919 		break;	/* Success! */
21920 	case EIO:
21921 		switch (ucmd_buf.uscsi_status) {
21922 		case STATUS_RESERVATION_CONFLICT:
21923 			status = EACCES;
21924 			break;
21925 		default:
21926 			break;
21927 		}
21928 		break;
21929 	default:
21930 		break;
21931 	}
21932 
21933 	if (status == 0) {
21934 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_RDWR: data",
21935 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
21936 	}
21937 
21938 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_RDWR: exit\n");
21939 
21940 	return (status);
21941 }
21942 
21943 
21944 /*
21945  *    Function: sd_send_scsi_LOG_SENSE
21946  *
21947  * Description: Issue a scsi LOG_SENSE command with the given parameters.
21948  *
21949  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
21950  *                      structure for this target.
21951  *
21952  * Return Code: 0   - Success
21953  *		errno return code from sd_ssc_send()
21954  *
21955  *     Context: Can sleep. Does not return until command is completed.
21956  */
21957 
21958 static int
21959 sd_send_scsi_LOG_SENSE(sd_ssc_t *ssc, uchar_t *bufaddr, uint16_t buflen,
21960 	uchar_t page_code, uchar_t page_control, uint16_t param_ptr,
21961 	int path_flag)
21962 
21963 {
21964 	struct scsi_extended_sense	sense_buf;
21965 	union scsi_cdb		cdb;
21966 	struct uscsi_cmd	ucmd_buf;
21967 	int			status;
21968 	struct sd_lun		*un;
21969 
21970 	ASSERT(ssc != NULL);
21971 	un = ssc->ssc_un;
21972 	ASSERT(un != NULL);
21973 	ASSERT(!mutex_owned(SD_MUTEX(un)));
21974 
21975 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: entry: un:0x%p\n", un);
21976 
21977 	bzero(&cdb, sizeof (cdb));
21978 	bzero(&ucmd_buf, sizeof (ucmd_buf));
21979 	bzero(&sense_buf, sizeof (struct scsi_extended_sense));
21980 
21981 	cdb.scc_cmd = SCMD_LOG_SENSE_G1;
21982 	cdb.cdb_opaque[2] = (page_control << 6) | page_code;
21983 	cdb.cdb_opaque[5] = (uchar_t)((param_ptr & 0xFF00) >> 8);
21984 	cdb.cdb_opaque[6] = (uchar_t)(param_ptr  & 0x00FF);
21985 	FORMG1COUNT(&cdb, buflen);
21986 
21987 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
21988 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
21989 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
21990 	ucmd_buf.uscsi_buflen	= buflen;
21991 	ucmd_buf.uscsi_rqbuf	= (caddr_t)&sense_buf;
21992 	ucmd_buf.uscsi_rqlen	= sizeof (struct scsi_extended_sense);
21993 	ucmd_buf.uscsi_flags	= USCSI_RQENABLE | USCSI_READ | USCSI_SILENT;
21994 	ucmd_buf.uscsi_timeout	= 60;
21995 
21996 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
21997 	    UIO_SYSSPACE, path_flag);
21998 
21999 	switch (status) {
22000 	case 0:
22001 		break;
22002 	case EIO:
22003 		switch (ucmd_buf.uscsi_status) {
22004 		case STATUS_RESERVATION_CONFLICT:
22005 			status = EACCES;
22006 			break;
22007 		case STATUS_CHECK:
22008 			if ((ucmd_buf.uscsi_rqstatus == STATUS_GOOD) &&
22009 			    (scsi_sense_key((uint8_t *)&sense_buf) ==
22010 				KEY_ILLEGAL_REQUEST) &&
22011 			    (scsi_sense_asc((uint8_t *)&sense_buf) == 0x24)) {
22012 				/*
22013 				 * ASC 0x24: INVALID FIELD IN CDB
22014 				 */
22015 				switch (page_code) {
22016 				case START_STOP_CYCLE_PAGE:
22017 					/*
22018 					 * The start stop cycle counter is
22019 					 * implemented as page 0x31 in earlier
22020 					 * generation disks. In new generation
22021 					 * disks the start stop cycle counter is
22022 					 * implemented as page 0xE. To properly
22023 					 * handle this case if an attempt for
22024 					 * log page 0xE is made and fails we
22025 					 * will try again using page 0x31.
22026 					 *
22027 					 * Network storage BU committed to
22028 					 * maintain the page 0x31 for this
22029 					 * purpose and will not have any other
22030 					 * page implemented with page code 0x31
22031 					 * until all disks transition to the
22032 					 * standard page.
22033 					 */
22034 					mutex_enter(SD_MUTEX(un));
22035 					un->un_start_stop_cycle_page =
22036 					    START_STOP_CYCLE_VU_PAGE;
22037 					cdb.cdb_opaque[2] =
22038 					    (char)(page_control << 6) |
22039 					    un->un_start_stop_cycle_page;
22040 					mutex_exit(SD_MUTEX(un));
22041 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22042 					status = sd_ssc_send(
22043 					    ssc, &ucmd_buf, FKIOCTL,
22044 					    UIO_SYSSPACE, path_flag);
22045 
22046 					break;
22047 				case TEMPERATURE_PAGE:
22048 					status = ENOTTY;
22049 					break;
22050 				default:
22051 					break;
22052 				}
22053 			}
22054 			break;
22055 		default:
22056 			break;
22057 		}
22058 		break;
22059 	default:
22060 		break;
22061 	}
22062 
22063 	if (status == 0) {
22064 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22065 		SD_DUMP_MEMORY(un, SD_LOG_IO, "sd_send_scsi_LOG_SENSE: data",
22066 		    (uchar_t *)bufaddr, buflen, SD_LOG_HEX);
22067 	}
22068 
22069 	SD_TRACE(SD_LOG_IO, un, "sd_send_scsi_LOG_SENSE: exit\n");
22070 
22071 	return (status);
22072 }
22073 
22074 
22075 /*
22076  *    Function: sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION
22077  *
22078  * Description: Issue the scsi GET EVENT STATUS NOTIFICATION command.
22079  *
22080  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
22081  *                      structure for this target.
22082  *		bufaddr
22083  *		buflen
22084  *		class_req
22085  *
22086  * Return Code: 0   - Success
22087  *		errno return code from sd_ssc_send()
22088  *
22089  *     Context: Can sleep. Does not return until command is completed.
22090  */
22091 
22092 static int
22093 sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION(sd_ssc_t *ssc, uchar_t *bufaddr,
22094 	size_t buflen, uchar_t class_req)
22095 {
22096 	union scsi_cdb		cdb;
22097 	struct uscsi_cmd	ucmd_buf;
22098 	int			status;
22099 	struct sd_lun		*un;
22100 
22101 	ASSERT(ssc != NULL);
22102 	un = ssc->ssc_un;
22103 	ASSERT(un != NULL);
22104 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22105 	ASSERT(bufaddr != NULL);
22106 
22107 	SD_TRACE(SD_LOG_IO, un,
22108 	    "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: entry: un:0x%p\n", un);
22109 
22110 	bzero(&cdb, sizeof (cdb));
22111 	bzero(&ucmd_buf, sizeof (ucmd_buf));
22112 	bzero(bufaddr, buflen);
22113 
22114 	cdb.scc_cmd = SCMD_GET_EVENT_STATUS_NOTIFICATION;
22115 	cdb.cdb_opaque[1] = 1; /* polled */
22116 	cdb.cdb_opaque[4] = class_req;
22117 	FORMG1COUNT(&cdb, buflen);
22118 
22119 	ucmd_buf.uscsi_cdb	= (char *)&cdb;
22120 	ucmd_buf.uscsi_cdblen	= CDB_GROUP1;
22121 	ucmd_buf.uscsi_bufaddr	= (caddr_t)bufaddr;
22122 	ucmd_buf.uscsi_buflen	= buflen;
22123 	ucmd_buf.uscsi_rqbuf	= NULL;
22124 	ucmd_buf.uscsi_rqlen	= 0;
22125 	ucmd_buf.uscsi_flags	= USCSI_READ | USCSI_SILENT;
22126 	ucmd_buf.uscsi_timeout	= 60;
22127 
22128 	status = sd_ssc_send(ssc, &ucmd_buf, FKIOCTL,
22129 	    UIO_SYSSPACE, SD_PATH_DIRECT);
22130 
22131 	/*
22132 	 * Only handle status == 0, the upper-level caller
22133 	 * will put different assessment based on the context.
22134 	 */
22135 	if (status == 0) {
22136 		sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22137 
22138 		if (ucmd_buf.uscsi_resid != 0) {
22139 			status = EIO;
22140 		}
22141 	}
22142 
22143 	SD_TRACE(SD_LOG_IO, un,
22144 	    "sd_send_scsi_GET_EVENT_STATUS_NOTIFICATION: exit\n");
22145 
22146 	return (status);
22147 }
22148 
22149 
22150 static boolean_t
22151 sd_gesn_media_data_valid(uchar_t *data)
22152 {
22153 	uint16_t			len;
22154 
22155 	len = (data[1] << 8) | data[0];
22156 	return ((len >= 6) &&
22157 	    ((data[2] & SD_GESN_HEADER_NEA) == 0) &&
22158 	    ((data[2] & SD_GESN_HEADER_CLASS) == SD_GESN_MEDIA_CLASS) &&
22159 	    ((data[3] & (1 << SD_GESN_MEDIA_CLASS)) != 0));
22160 }
22161 
22162 
22163 /*
22164  *    Function: sdioctl
22165  *
22166  * Description: Driver's ioctl(9e) entry point function.
22167  *
22168  *   Arguments: dev     - device number
22169  *		cmd     - ioctl operation to be performed
22170  *		arg     - user argument, contains data to be set or reference
22171  *			  parameter for get
22172  *		flag    - bit flag, indicating open settings, 32/64 bit type
22173  *		cred_p  - user credential pointer
22174  *		rval_p  - calling process return value (OPT)
22175  *
22176  * Return Code: EINVAL
22177  *		ENOTTY
22178  *		ENXIO
22179  *		EIO
22180  *		EFAULT
22181  *		ENOTSUP
22182  *		EPERM
22183  *
22184  *     Context: Called from the device switch at normal priority.
22185  */
22186 
22187 static int
22188 sdioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cred_p, int *rval_p)
22189 {
22190 	struct sd_lun	*un = NULL;
22191 	int		err = 0;
22192 	int		i = 0;
22193 	cred_t		*cr;
22194 	int		tmprval = EINVAL;
22195 	boolean_t	is_valid;
22196 	sd_ssc_t	*ssc;
22197 
22198 	/*
22199 	 * All device accesses go thru sdstrategy where we check on suspend
22200 	 * status
22201 	 */
22202 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
22203 		return (ENXIO);
22204 	}
22205 
22206 	ASSERT(!mutex_owned(SD_MUTEX(un)));
22207 
22208 	/* Initialize sd_ssc_t for internal uscsi commands */
22209 	ssc = sd_ssc_init(un);
22210 
22211 	is_valid = SD_IS_VALID_LABEL(un);
22212 
22213 	/*
22214 	 * Moved this wait from sd_uscsi_strategy to here for
22215 	 * reasons of deadlock prevention. Internal driver commands,
22216 	 * specifically those to change a devices power level, result
22217 	 * in a call to sd_uscsi_strategy.
22218 	 */
22219 	mutex_enter(SD_MUTEX(un));
22220 	while ((un->un_state == SD_STATE_SUSPENDED) ||
22221 	    (un->un_state == SD_STATE_PM_CHANGING)) {
22222 		cv_wait(&un->un_suspend_cv, SD_MUTEX(un));
22223 	}
22224 	/*
22225 	 * Twiddling the counter here protects commands from now
22226 	 * through to the top of sd_uscsi_strategy. Without the
22227 	 * counter inc. a power down, for example, could get in
22228 	 * after the above check for state is made and before
22229 	 * execution gets to the top of sd_uscsi_strategy.
22230 	 * That would cause problems.
22231 	 */
22232 	un->un_ncmds_in_driver++;
22233 
22234 	if (!is_valid &&
22235 	    (flag & (FNDELAY | FNONBLOCK))) {
22236 		switch (cmd) {
22237 		case DKIOCGGEOM:	/* SD_PATH_DIRECT */
22238 		case DKIOCGVTOC:
22239 		case DKIOCGEXTVTOC:
22240 		case DKIOCGAPART:
22241 		case DKIOCPARTINFO:
22242 		case DKIOCEXTPARTINFO:
22243 		case DKIOCSGEOM:
22244 		case DKIOCSAPART:
22245 		case DKIOCGETEFI:
22246 		case DKIOCPARTITION:
22247 		case DKIOCSVTOC:
22248 		case DKIOCSEXTVTOC:
22249 		case DKIOCSETEFI:
22250 		case DKIOCGMBOOT:
22251 		case DKIOCSMBOOT:
22252 		case DKIOCG_PHYGEOM:
22253 		case DKIOCG_VIRTGEOM:
22254 #if defined(__i386) || defined(__amd64)
22255 		case DKIOCSETEXTPART:
22256 #endif
22257 			/* let cmlb handle it */
22258 			goto skip_ready_valid;
22259 
22260 		case CDROMPAUSE:
22261 		case CDROMRESUME:
22262 		case CDROMPLAYMSF:
22263 		case CDROMPLAYTRKIND:
22264 		case CDROMREADTOCHDR:
22265 		case CDROMREADTOCENTRY:
22266 		case CDROMSTOP:
22267 		case CDROMSTART:
22268 		case CDROMVOLCTRL:
22269 		case CDROMSUBCHNL:
22270 		case CDROMREADMODE2:
22271 		case CDROMREADMODE1:
22272 		case CDROMREADOFFSET:
22273 		case CDROMSBLKMODE:
22274 		case CDROMGBLKMODE:
22275 		case CDROMGDRVSPEED:
22276 		case CDROMSDRVSPEED:
22277 		case CDROMCDDA:
22278 		case CDROMCDXA:
22279 		case CDROMSUBCODE:
22280 			if (!ISCD(un)) {
22281 				un->un_ncmds_in_driver--;
22282 				ASSERT(un->un_ncmds_in_driver >= 0);
22283 				mutex_exit(SD_MUTEX(un));
22284 				err = ENOTTY;
22285 				goto done_without_assess;
22286 			}
22287 			break;
22288 		case FDEJECT:
22289 		case DKIOCEJECT:
22290 		case CDROMEJECT:
22291 			if (!un->un_f_eject_media_supported) {
22292 				un->un_ncmds_in_driver--;
22293 				ASSERT(un->un_ncmds_in_driver >= 0);
22294 				mutex_exit(SD_MUTEX(un));
22295 				err = ENOTTY;
22296 				goto done_without_assess;
22297 			}
22298 			break;
22299 		case DKIOCFLUSHWRITECACHE:
22300 			mutex_exit(SD_MUTEX(un));
22301 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
22302 			if (err != 0) {
22303 				mutex_enter(SD_MUTEX(un));
22304 				un->un_ncmds_in_driver--;
22305 				ASSERT(un->un_ncmds_in_driver >= 0);
22306 				mutex_exit(SD_MUTEX(un));
22307 				err = EIO;
22308 				goto done_quick_assess;
22309 			}
22310 			mutex_enter(SD_MUTEX(un));
22311 			/* FALLTHROUGH */
22312 		case DKIOCREMOVABLE:
22313 		case DKIOCHOTPLUGGABLE:
22314 		case DKIOCINFO:
22315 		case DKIOCGMEDIAINFO:
22316 		case DKIOCGMEDIAINFOEXT:
22317 		case MHIOCENFAILFAST:
22318 		case MHIOCSTATUS:
22319 		case MHIOCTKOWN:
22320 		case MHIOCRELEASE:
22321 		case MHIOCGRP_INKEYS:
22322 		case MHIOCGRP_INRESV:
22323 		case MHIOCGRP_REGISTER:
22324 		case MHIOCGRP_CLEAR:
22325 		case MHIOCGRP_RESERVE:
22326 		case MHIOCGRP_PREEMPTANDABORT:
22327 		case MHIOCGRP_REGISTERANDIGNOREKEY:
22328 		case CDROMCLOSETRAY:
22329 		case USCSICMD:
22330 			goto skip_ready_valid;
22331 		default:
22332 			break;
22333 		}
22334 
22335 		mutex_exit(SD_MUTEX(un));
22336 		err = sd_ready_and_valid(ssc, SDPART(dev));
22337 		mutex_enter(SD_MUTEX(un));
22338 
22339 		if (err != SD_READY_VALID) {
22340 			switch (cmd) {
22341 			case DKIOCSTATE:
22342 			case CDROMGDRVSPEED:
22343 			case CDROMSDRVSPEED:
22344 			case FDEJECT:	/* for eject command */
22345 			case DKIOCEJECT:
22346 			case CDROMEJECT:
22347 			case DKIOCREMOVABLE:
22348 			case DKIOCHOTPLUGGABLE:
22349 				break;
22350 			default:
22351 				if (un->un_f_has_removable_media) {
22352 					err = ENXIO;
22353 				} else {
22354 				/* Do not map SD_RESERVED_BY_OTHERS to EIO */
22355 					if (err == SD_RESERVED_BY_OTHERS) {
22356 						err = EACCES;
22357 					} else {
22358 						err = EIO;
22359 					}
22360 				}
22361 				un->un_ncmds_in_driver--;
22362 				ASSERT(un->un_ncmds_in_driver >= 0);
22363 				mutex_exit(SD_MUTEX(un));
22364 
22365 				goto done_without_assess;
22366 			}
22367 		}
22368 	}
22369 
22370 skip_ready_valid:
22371 	mutex_exit(SD_MUTEX(un));
22372 
22373 	switch (cmd) {
22374 	case DKIOCINFO:
22375 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCINFO\n");
22376 		err = sd_dkio_ctrl_info(dev, (caddr_t)arg, flag);
22377 		break;
22378 
22379 	case DKIOCGMEDIAINFO:
22380 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFO\n");
22381 		err = sd_get_media_info(dev, (caddr_t)arg, flag);
22382 		break;
22383 
22384 	case DKIOCGMEDIAINFOEXT:
22385 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGMEDIAINFOEXT\n");
22386 		err = sd_get_media_info_ext(dev, (caddr_t)arg, flag);
22387 		break;
22388 
22389 	case DKIOCGGEOM:
22390 	case DKIOCGVTOC:
22391 	case DKIOCGEXTVTOC:
22392 	case DKIOCGAPART:
22393 	case DKIOCPARTINFO:
22394 	case DKIOCEXTPARTINFO:
22395 	case DKIOCSGEOM:
22396 	case DKIOCSAPART:
22397 	case DKIOCGETEFI:
22398 	case DKIOCPARTITION:
22399 	case DKIOCSVTOC:
22400 	case DKIOCSEXTVTOC:
22401 	case DKIOCSETEFI:
22402 	case DKIOCGMBOOT:
22403 	case DKIOCSMBOOT:
22404 	case DKIOCG_PHYGEOM:
22405 	case DKIOCG_VIRTGEOM:
22406 #if defined(__i386) || defined(__amd64)
22407 	case DKIOCSETEXTPART:
22408 #endif
22409 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOC %d\n", cmd);
22410 
22411 		/* TUR should spin up */
22412 
22413 		if (un->un_f_has_removable_media)
22414 			err = sd_send_scsi_TEST_UNIT_READY(ssc,
22415 			    SD_CHECK_FOR_MEDIA);
22416 
22417 		else
22418 			err = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
22419 
22420 		if (err != 0)
22421 			goto done_with_assess;
22422 
22423 		err = cmlb_ioctl(un->un_cmlbhandle, dev,
22424 		    cmd, arg, flag, cred_p, rval_p, (void *)SD_PATH_DIRECT);
22425 
22426 		if ((err == 0) &&
22427 		    ((cmd == DKIOCSETEFI) ||
22428 		    (un->un_f_pkstats_enabled) &&
22429 		    (cmd == DKIOCSAPART || cmd == DKIOCSVTOC ||
22430 		    cmd == DKIOCSEXTVTOC))) {
22431 
22432 			tmprval = cmlb_validate(un->un_cmlbhandle, CMLB_SILENT,
22433 			    (void *)SD_PATH_DIRECT);
22434 			if ((tmprval == 0) && un->un_f_pkstats_enabled) {
22435 				sd_set_pstats(un);
22436 				SD_TRACE(SD_LOG_IO_PARTITION, un,
22437 				    "sd_ioctl: un:0x%p pstats created and "
22438 				    "set\n", un);
22439 			}
22440 		}
22441 
22442 		if ((cmd == DKIOCSVTOC || cmd == DKIOCSEXTVTOC) ||
22443 		    ((cmd == DKIOCSETEFI) && (tmprval == 0))) {
22444 
22445 			mutex_enter(SD_MUTEX(un));
22446 			if (un->un_f_devid_supported &&
22447 			    (un->un_f_opt_fab_devid == TRUE)) {
22448 				if (un->un_devid == NULL) {
22449 					sd_register_devid(ssc, SD_DEVINFO(un),
22450 					    SD_TARGET_IS_UNRESERVED);
22451 				} else {
22452 					/*
22453 					 * The device id for this disk
22454 					 * has been fabricated. The
22455 					 * device id must be preserved
22456 					 * by writing it back out to
22457 					 * disk.
22458 					 */
22459 					if (sd_write_deviceid(ssc) != 0) {
22460 						ddi_devid_free(un->un_devid);
22461 						un->un_devid = NULL;
22462 					}
22463 				}
22464 			}
22465 			mutex_exit(SD_MUTEX(un));
22466 		}
22467 
22468 		break;
22469 
22470 	case DKIOCLOCK:
22471 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCLOCK\n");
22472 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
22473 		    SD_PATH_STANDARD);
22474 		goto done_with_assess;
22475 
22476 	case DKIOCUNLOCK:
22477 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCUNLOCK\n");
22478 		err = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
22479 		    SD_PATH_STANDARD);
22480 		goto done_with_assess;
22481 
22482 	case DKIOCSTATE: {
22483 		enum dkio_state		state;
22484 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCSTATE\n");
22485 
22486 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag) != 0) {
22487 			err = EFAULT;
22488 		} else {
22489 			err = sd_check_media(dev, state);
22490 			if (err == 0) {
22491 				if (ddi_copyout(&un->un_mediastate, (void *)arg,
22492 				    sizeof (int), flag) != 0)
22493 					err = EFAULT;
22494 			}
22495 		}
22496 		break;
22497 	}
22498 
22499 	case DKIOCREMOVABLE:
22500 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREMOVABLE\n");
22501 		i = un->un_f_has_removable_media ? 1 : 0;
22502 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22503 			err = EFAULT;
22504 		} else {
22505 			err = 0;
22506 		}
22507 		break;
22508 
22509 	case DKIOCHOTPLUGGABLE:
22510 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCHOTPLUGGABLE\n");
22511 		i = un->un_f_is_hotpluggable ? 1 : 0;
22512 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22513 			err = EFAULT;
22514 		} else {
22515 			err = 0;
22516 		}
22517 		break;
22518 
22519 	case DKIOCREADONLY:
22520 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCREADONLY\n");
22521 		i = 0;
22522 		if ((ISCD(un) && !un->un_f_mmc_writable_media) ||
22523 		    (sr_check_wp(dev) != 0)) {
22524 			i = 1;
22525 		}
22526 		if (ddi_copyout(&i, (void *)arg, sizeof (int), flag) != 0) {
22527 			err = EFAULT;
22528 		} else {
22529 			err = 0;
22530 		}
22531 		break;
22532 
22533 	case DKIOCGTEMPERATURE:
22534 		SD_TRACE(SD_LOG_IOCTL, un, "DKIOCGTEMPERATURE\n");
22535 		err = sd_dkio_get_temp(dev, (caddr_t)arg, flag);
22536 		break;
22537 
22538 	case MHIOCENFAILFAST:
22539 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCENFAILFAST\n");
22540 		if ((err = drv_priv(cred_p)) == 0) {
22541 			err = sd_mhdioc_failfast(dev, (caddr_t)arg, flag);
22542 		}
22543 		break;
22544 
22545 	case MHIOCTKOWN:
22546 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCTKOWN\n");
22547 		if ((err = drv_priv(cred_p)) == 0) {
22548 			err = sd_mhdioc_takeown(dev, (caddr_t)arg, flag);
22549 		}
22550 		break;
22551 
22552 	case MHIOCRELEASE:
22553 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCRELEASE\n");
22554 		if ((err = drv_priv(cred_p)) == 0) {
22555 			err = sd_mhdioc_release(dev);
22556 		}
22557 		break;
22558 
22559 	case MHIOCSTATUS:
22560 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCSTATUS\n");
22561 		if ((err = drv_priv(cred_p)) == 0) {
22562 			switch (sd_send_scsi_TEST_UNIT_READY(ssc, 0)) {
22563 			case 0:
22564 				err = 0;
22565 				break;
22566 			case EACCES:
22567 				*rval_p = 1;
22568 				err = 0;
22569 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
22570 				break;
22571 			default:
22572 				err = EIO;
22573 				goto done_with_assess;
22574 			}
22575 		}
22576 		break;
22577 
22578 	case MHIOCQRESERVE:
22579 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCQRESERVE\n");
22580 		if ((err = drv_priv(cred_p)) == 0) {
22581 			err = sd_reserve_release(dev, SD_RESERVE);
22582 		}
22583 		break;
22584 
22585 	case MHIOCREREGISTERDEVID:
22586 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCREREGISTERDEVID\n");
22587 		if (drv_priv(cred_p) == EPERM) {
22588 			err = EPERM;
22589 		} else if (!un->un_f_devid_supported) {
22590 			err = ENOTTY;
22591 		} else {
22592 			err = sd_mhdioc_register_devid(dev);
22593 		}
22594 		break;
22595 
22596 	case MHIOCGRP_INKEYS:
22597 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INKEYS\n");
22598 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
22599 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22600 				err = ENOTSUP;
22601 			} else {
22602 				err = sd_mhdioc_inkeys(dev, (caddr_t)arg,
22603 				    flag);
22604 			}
22605 		}
22606 		break;
22607 
22608 	case MHIOCGRP_INRESV:
22609 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_INRESV\n");
22610 		if (((err = drv_priv(cred_p)) != EPERM) && arg != NULL) {
22611 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22612 				err = ENOTSUP;
22613 			} else {
22614 				err = sd_mhdioc_inresv(dev, (caddr_t)arg, flag);
22615 			}
22616 		}
22617 		break;
22618 
22619 	case MHIOCGRP_REGISTER:
22620 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTER\n");
22621 		if ((err = drv_priv(cred_p)) != EPERM) {
22622 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22623 				err = ENOTSUP;
22624 			} else if (arg != NULL) {
22625 				mhioc_register_t reg;
22626 				if (ddi_copyin((void *)arg, &reg,
22627 				    sizeof (mhioc_register_t), flag) != 0) {
22628 					err = EFAULT;
22629 				} else {
22630 					err =
22631 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22632 					    ssc, SD_SCSI3_REGISTER,
22633 					    (uchar_t *)&reg);
22634 					if (err != 0)
22635 						goto done_with_assess;
22636 				}
22637 			}
22638 		}
22639 		break;
22640 
22641 	case MHIOCGRP_CLEAR:
22642 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_CLEAR\n");
22643 		if ((err = drv_priv(cred_p)) != EPERM) {
22644 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22645 				err = ENOTSUP;
22646 			} else if (arg != NULL) {
22647 				mhioc_register_t reg;
22648 				if (ddi_copyin((void *)arg, &reg,
22649 				    sizeof (mhioc_register_t), flag) != 0) {
22650 					err = EFAULT;
22651 				} else {
22652 					err =
22653 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22654 					    ssc, SD_SCSI3_CLEAR,
22655 					    (uchar_t *)&reg);
22656 					if (err != 0)
22657 						goto done_with_assess;
22658 				}
22659 			}
22660 		}
22661 		break;
22662 
22663 	case MHIOCGRP_RESERVE:
22664 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_RESERVE\n");
22665 		if ((err = drv_priv(cred_p)) != EPERM) {
22666 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22667 				err = ENOTSUP;
22668 			} else if (arg != NULL) {
22669 				mhioc_resv_desc_t resv_desc;
22670 				if (ddi_copyin((void *)arg, &resv_desc,
22671 				    sizeof (mhioc_resv_desc_t), flag) != 0) {
22672 					err = EFAULT;
22673 				} else {
22674 					err =
22675 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22676 					    ssc, SD_SCSI3_RESERVE,
22677 					    (uchar_t *)&resv_desc);
22678 					if (err != 0)
22679 						goto done_with_assess;
22680 				}
22681 			}
22682 		}
22683 		break;
22684 
22685 	case MHIOCGRP_PREEMPTANDABORT:
22686 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_PREEMPTANDABORT\n");
22687 		if ((err = drv_priv(cred_p)) != EPERM) {
22688 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22689 				err = ENOTSUP;
22690 			} else if (arg != NULL) {
22691 				mhioc_preemptandabort_t preempt_abort;
22692 				if (ddi_copyin((void *)arg, &preempt_abort,
22693 				    sizeof (mhioc_preemptandabort_t),
22694 				    flag) != 0) {
22695 					err = EFAULT;
22696 				} else {
22697 					err =
22698 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22699 					    ssc, SD_SCSI3_PREEMPTANDABORT,
22700 					    (uchar_t *)&preempt_abort);
22701 					if (err != 0)
22702 						goto done_with_assess;
22703 				}
22704 			}
22705 		}
22706 		break;
22707 
22708 	case MHIOCGRP_REGISTERANDIGNOREKEY:
22709 		SD_TRACE(SD_LOG_IOCTL, un, "MHIOCGRP_REGISTERANDIGNOREKEY\n");
22710 		if ((err = drv_priv(cred_p)) != EPERM) {
22711 			if (un->un_reservation_type == SD_SCSI2_RESERVATION) {
22712 				err = ENOTSUP;
22713 			} else if (arg != NULL) {
22714 				mhioc_registerandignorekey_t r_and_i;
22715 				if (ddi_copyin((void *)arg, (void *)&r_and_i,
22716 				    sizeof (mhioc_registerandignorekey_t),
22717 				    flag) != 0) {
22718 					err = EFAULT;
22719 				} else {
22720 					err =
22721 					    sd_send_scsi_PERSISTENT_RESERVE_OUT(
22722 					    ssc, SD_SCSI3_REGISTERANDIGNOREKEY,
22723 					    (uchar_t *)&r_and_i);
22724 					if (err != 0)
22725 						goto done_with_assess;
22726 				}
22727 			}
22728 		}
22729 		break;
22730 
22731 	case USCSICMD:
22732 		SD_TRACE(SD_LOG_IOCTL, un, "USCSICMD\n");
22733 		cr = ddi_get_cred();
22734 		if ((drv_priv(cred_p) != 0) && (drv_priv(cr) != 0)) {
22735 			err = EPERM;
22736 		} else {
22737 			enum uio_seg	uioseg;
22738 
22739 			uioseg = (flag & FKIOCTL) ? UIO_SYSSPACE :
22740 			    UIO_USERSPACE;
22741 			if (un->un_f_format_in_progress == TRUE) {
22742 				err = EAGAIN;
22743 				break;
22744 			}
22745 
22746 			err = sd_ssc_send(ssc,
22747 			    (struct uscsi_cmd *)arg,
22748 			    flag, uioseg, SD_PATH_STANDARD);
22749 			if (err != 0)
22750 				goto done_with_assess;
22751 			else
22752 				sd_ssc_assessment(ssc, SD_FMT_STANDARD);
22753 		}
22754 		break;
22755 
22756 	case CDROMPAUSE:
22757 	case CDROMRESUME:
22758 		SD_TRACE(SD_LOG_IOCTL, un, "PAUSE-RESUME\n");
22759 		if (!ISCD(un)) {
22760 			err = ENOTTY;
22761 		} else {
22762 			err = sr_pause_resume(dev, cmd);
22763 		}
22764 		break;
22765 
22766 	case CDROMPLAYMSF:
22767 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYMSF\n");
22768 		if (!ISCD(un)) {
22769 			err = ENOTTY;
22770 		} else {
22771 			err = sr_play_msf(dev, (caddr_t)arg, flag);
22772 		}
22773 		break;
22774 
22775 	case CDROMPLAYTRKIND:
22776 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMPLAYTRKIND\n");
22777 #if defined(__i386) || defined(__amd64)
22778 		/*
22779 		 * not supported on ATAPI CD drives, use CDROMPLAYMSF instead
22780 		 */
22781 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
22782 #else
22783 		if (!ISCD(un)) {
22784 #endif
22785 			err = ENOTTY;
22786 		} else {
22787 			err = sr_play_trkind(dev, (caddr_t)arg, flag);
22788 		}
22789 		break;
22790 
22791 	case CDROMREADTOCHDR:
22792 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCHDR\n");
22793 		if (!ISCD(un)) {
22794 			err = ENOTTY;
22795 		} else {
22796 			err = sr_read_tochdr(dev, (caddr_t)arg, flag);
22797 		}
22798 		break;
22799 
22800 	case CDROMREADTOCENTRY:
22801 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADTOCENTRY\n");
22802 		if (!ISCD(un)) {
22803 			err = ENOTTY;
22804 		} else {
22805 			err = sr_read_tocentry(dev, (caddr_t)arg, flag);
22806 		}
22807 		break;
22808 
22809 	case CDROMSTOP:
22810 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTOP\n");
22811 		if (!ISCD(un)) {
22812 			err = ENOTTY;
22813 		} else {
22814 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22815 			    SD_TARGET_STOP, SD_PATH_STANDARD);
22816 			goto done_with_assess;
22817 		}
22818 		break;
22819 
22820 	case CDROMSTART:
22821 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSTART\n");
22822 		if (!ISCD(un)) {
22823 			err = ENOTTY;
22824 		} else {
22825 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22826 			    SD_TARGET_START, SD_PATH_STANDARD);
22827 			goto done_with_assess;
22828 		}
22829 		break;
22830 
22831 	case CDROMCLOSETRAY:
22832 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCLOSETRAY\n");
22833 		if (!ISCD(un)) {
22834 			err = ENOTTY;
22835 		} else {
22836 			err = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
22837 			    SD_TARGET_CLOSE, SD_PATH_STANDARD);
22838 			goto done_with_assess;
22839 		}
22840 		break;
22841 
22842 	case FDEJECT:	/* for eject command */
22843 	case DKIOCEJECT:
22844 	case CDROMEJECT:
22845 		SD_TRACE(SD_LOG_IOCTL, un, "EJECT\n");
22846 		if (!un->un_f_eject_media_supported) {
22847 			err = ENOTTY;
22848 		} else {
22849 			err = sr_eject(dev);
22850 		}
22851 		break;
22852 
22853 	case CDROMVOLCTRL:
22854 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMVOLCTRL\n");
22855 		if (!ISCD(un)) {
22856 			err = ENOTTY;
22857 		} else {
22858 			err = sr_volume_ctrl(dev, (caddr_t)arg, flag);
22859 		}
22860 		break;
22861 
22862 	case CDROMSUBCHNL:
22863 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCHNL\n");
22864 		if (!ISCD(un)) {
22865 			err = ENOTTY;
22866 		} else {
22867 			err = sr_read_subchannel(dev, (caddr_t)arg, flag);
22868 		}
22869 		break;
22870 
22871 	case CDROMREADMODE2:
22872 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE2\n");
22873 		if (!ISCD(un)) {
22874 			err = ENOTTY;
22875 		} else if (un->un_f_cfg_is_atapi == TRUE) {
22876 			/*
22877 			 * If the drive supports READ CD, use that instead of
22878 			 * switching the LBA size via a MODE SELECT
22879 			 * Block Descriptor
22880 			 */
22881 			err = sr_read_cd_mode2(dev, (caddr_t)arg, flag);
22882 		} else {
22883 			err = sr_read_mode2(dev, (caddr_t)arg, flag);
22884 		}
22885 		break;
22886 
22887 	case CDROMREADMODE1:
22888 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADMODE1\n");
22889 		if (!ISCD(un)) {
22890 			err = ENOTTY;
22891 		} else {
22892 			err = sr_read_mode1(dev, (caddr_t)arg, flag);
22893 		}
22894 		break;
22895 
22896 	case CDROMREADOFFSET:
22897 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMREADOFFSET\n");
22898 		if (!ISCD(un)) {
22899 			err = ENOTTY;
22900 		} else {
22901 			err = sr_read_sony_session_offset(dev, (caddr_t)arg,
22902 			    flag);
22903 		}
22904 		break;
22905 
22906 	case CDROMSBLKMODE:
22907 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSBLKMODE\n");
22908 		/*
22909 		 * There is no means of changing block size in case of atapi
22910 		 * drives, thus return ENOTTY if drive type is atapi
22911 		 */
22912 		if (!ISCD(un) || (un->un_f_cfg_is_atapi == TRUE)) {
22913 			err = ENOTTY;
22914 		} else if (un->un_f_mmc_cap == TRUE) {
22915 
22916 			/*
22917 			 * MMC Devices do not support changing the
22918 			 * logical block size
22919 			 *
22920 			 * Note: EINVAL is being returned instead of ENOTTY to
22921 			 * maintain consistancy with the original mmc
22922 			 * driver update.
22923 			 */
22924 			err = EINVAL;
22925 		} else {
22926 			mutex_enter(SD_MUTEX(un));
22927 			if ((!(un->un_exclopen & (1<<SDPART(dev)))) ||
22928 			    (un->un_ncmds_in_transport > 0)) {
22929 				mutex_exit(SD_MUTEX(un));
22930 				err = EINVAL;
22931 			} else {
22932 				mutex_exit(SD_MUTEX(un));
22933 				err = sr_change_blkmode(dev, cmd, arg, flag);
22934 			}
22935 		}
22936 		break;
22937 
22938 	case CDROMGBLKMODE:
22939 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMGBLKMODE\n");
22940 		if (!ISCD(un)) {
22941 			err = ENOTTY;
22942 		} else if ((un->un_f_cfg_is_atapi != FALSE) &&
22943 		    (un->un_f_blockcount_is_valid != FALSE)) {
22944 			/*
22945 			 * Drive is an ATAPI drive so return target block
22946 			 * size for ATAPI drives since we cannot change the
22947 			 * blocksize on ATAPI drives. Used primarily to detect
22948 			 * if an ATAPI cdrom is present.
22949 			 */
22950 			if (ddi_copyout(&un->un_tgt_blocksize, (void *)arg,
22951 			    sizeof (int), flag) != 0) {
22952 				err = EFAULT;
22953 			} else {
22954 				err = 0;
22955 			}
22956 
22957 		} else {
22958 			/*
22959 			 * Drive supports changing block sizes via a Mode
22960 			 * Select.
22961 			 */
22962 			err = sr_change_blkmode(dev, cmd, arg, flag);
22963 		}
22964 		break;
22965 
22966 	case CDROMGDRVSPEED:
22967 	case CDROMSDRVSPEED:
22968 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMXDRVSPEED\n");
22969 		if (!ISCD(un)) {
22970 			err = ENOTTY;
22971 		} else if (un->un_f_mmc_cap == TRUE) {
22972 			/*
22973 			 * Note: In the future the driver implementation
22974 			 * for getting and
22975 			 * setting cd speed should entail:
22976 			 * 1) If non-mmc try the Toshiba mode page
22977 			 *    (sr_change_speed)
22978 			 * 2) If mmc but no support for Real Time Streaming try
22979 			 *    the SET CD SPEED (0xBB) command
22980 			 *   (sr_atapi_change_speed)
22981 			 * 3) If mmc and support for Real Time Streaming
22982 			 *    try the GET PERFORMANCE and SET STREAMING
22983 			 *    commands (not yet implemented, 4380808)
22984 			 */
22985 			/*
22986 			 * As per recent MMC spec, CD-ROM speed is variable
22987 			 * and changes with LBA. Since there is no such
22988 			 * things as drive speed now, fail this ioctl.
22989 			 *
22990 			 * Note: EINVAL is returned for consistancy of original
22991 			 * implementation which included support for getting
22992 			 * the drive speed of mmc devices but not setting
22993 			 * the drive speed. Thus EINVAL would be returned
22994 			 * if a set request was made for an mmc device.
22995 			 * We no longer support get or set speed for
22996 			 * mmc but need to remain consistent with regard
22997 			 * to the error code returned.
22998 			 */
22999 			err = EINVAL;
23000 		} else if (un->un_f_cfg_is_atapi == TRUE) {
23001 			err = sr_atapi_change_speed(dev, cmd, arg, flag);
23002 		} else {
23003 			err = sr_change_speed(dev, cmd, arg, flag);
23004 		}
23005 		break;
23006 
23007 	case CDROMCDDA:
23008 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDDA\n");
23009 		if (!ISCD(un)) {
23010 			err = ENOTTY;
23011 		} else {
23012 			err = sr_read_cdda(dev, (void *)arg, flag);
23013 		}
23014 		break;
23015 
23016 	case CDROMCDXA:
23017 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMCDXA\n");
23018 		if (!ISCD(un)) {
23019 			err = ENOTTY;
23020 		} else {
23021 			err = sr_read_cdxa(dev, (caddr_t)arg, flag);
23022 		}
23023 		break;
23024 
23025 	case CDROMSUBCODE:
23026 		SD_TRACE(SD_LOG_IOCTL, un, "CDROMSUBCODE\n");
23027 		if (!ISCD(un)) {
23028 			err = ENOTTY;
23029 		} else {
23030 			err = sr_read_all_subcodes(dev, (caddr_t)arg, flag);
23031 		}
23032 		break;
23033 
23034 
23035 #ifdef SDDEBUG
23036 /* RESET/ABORTS testing ioctls */
23037 	case DKIOCRESET: {
23038 		int	reset_level;
23039 
23040 		if (ddi_copyin((void *)arg, &reset_level, sizeof (int), flag)) {
23041 			err = EFAULT;
23042 		} else {
23043 			SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCRESET: "
23044 			    "reset_level = 0x%lx\n", reset_level);
23045 			if (scsi_reset(SD_ADDRESS(un), reset_level)) {
23046 				err = 0;
23047 			} else {
23048 				err = EIO;
23049 			}
23050 		}
23051 		break;
23052 	}
23053 
23054 	case DKIOCABORT:
23055 		SD_INFO(SD_LOG_IOCTL, un, "sdioctl: DKIOCABORT:\n");
23056 		if (scsi_abort(SD_ADDRESS(un), NULL)) {
23057 			err = 0;
23058 		} else {
23059 			err = EIO;
23060 		}
23061 		break;
23062 #endif
23063 
23064 #ifdef SD_FAULT_INJECTION
23065 /* SDIOC FaultInjection testing ioctls */
23066 	case SDIOCSTART:
23067 	case SDIOCSTOP:
23068 	case SDIOCINSERTPKT:
23069 	case SDIOCINSERTXB:
23070 	case SDIOCINSERTUN:
23071 	case SDIOCINSERTARQ:
23072 	case SDIOCPUSH:
23073 	case SDIOCRETRIEVE:
23074 	case SDIOCRUN:
23075 		SD_INFO(SD_LOG_SDTEST, un, "sdioctl:"
23076 		    "SDIOC detected cmd:0x%X:\n", cmd);
23077 		/* call error generator */
23078 		sd_faultinjection_ioctl(cmd, arg, un);
23079 		err = 0;
23080 		break;
23081 
23082 #endif /* SD_FAULT_INJECTION */
23083 
23084 	case DKIOCFLUSHWRITECACHE:
23085 		{
23086 			struct dk_callback *dkc = (struct dk_callback *)arg;
23087 
23088 			mutex_enter(SD_MUTEX(un));
23089 			if (!un->un_f_sync_cache_supported ||
23090 			    !un->un_f_write_cache_enabled) {
23091 				err = un->un_f_sync_cache_supported ?
23092 				    0 : ENOTSUP;
23093 				mutex_exit(SD_MUTEX(un));
23094 				if ((flag & FKIOCTL) && dkc != NULL &&
23095 				    dkc->dkc_callback != NULL) {
23096 					(*dkc->dkc_callback)(dkc->dkc_cookie,
23097 					    err);
23098 					/*
23099 					 * Did callback and reported error.
23100 					 * Since we did a callback, ioctl
23101 					 * should return 0.
23102 					 */
23103 					err = 0;
23104 				}
23105 				break;
23106 			}
23107 			mutex_exit(SD_MUTEX(un));
23108 
23109 			if ((flag & FKIOCTL) && dkc != NULL &&
23110 			    dkc->dkc_callback != NULL) {
23111 				/* async SYNC CACHE request */
23112 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, dkc);
23113 			} else {
23114 				/* synchronous SYNC CACHE request */
23115 				err = sd_send_scsi_SYNCHRONIZE_CACHE(un, NULL);
23116 			}
23117 		}
23118 		break;
23119 
23120 	case DKIOCGETWCE: {
23121 
23122 		int wce;
23123 
23124 		if ((err = sd_get_write_cache_enabled(ssc, &wce)) != 0) {
23125 			break;
23126 		}
23127 
23128 		if (ddi_copyout(&wce, (void *)arg, sizeof (wce), flag)) {
23129 			err = EFAULT;
23130 		}
23131 		break;
23132 	}
23133 
23134 	case DKIOCSETWCE: {
23135 
23136 		int wce, sync_supported;
23137 		int cur_wce = 0;
23138 
23139 		if (ddi_copyin((void *)arg, &wce, sizeof (wce), flag)) {
23140 			err = EFAULT;
23141 			break;
23142 		}
23143 
23144 		/*
23145 		 * Synchronize multiple threads trying to enable
23146 		 * or disable the cache via the un_f_wcc_cv
23147 		 * condition variable.
23148 		 */
23149 		mutex_enter(SD_MUTEX(un));
23150 
23151 		/*
23152 		 * Don't allow the cache to be enabled if the
23153 		 * config file has it disabled.
23154 		 */
23155 		if (un->un_f_opt_disable_cache && wce) {
23156 			mutex_exit(SD_MUTEX(un));
23157 			err = EINVAL;
23158 			break;
23159 		}
23160 
23161 		/*
23162 		 * Wait for write cache change in progress
23163 		 * bit to be clear before proceeding.
23164 		 */
23165 		while (un->un_f_wcc_inprog)
23166 			cv_wait(&un->un_wcc_cv, SD_MUTEX(un));
23167 
23168 		un->un_f_wcc_inprog = 1;
23169 
23170 		mutex_exit(SD_MUTEX(un));
23171 
23172 		/*
23173 		 * Get the current write cache state
23174 		 */
23175 		if ((err = sd_get_write_cache_enabled(ssc, &cur_wce)) != 0) {
23176 			mutex_enter(SD_MUTEX(un));
23177 			un->un_f_wcc_inprog = 0;
23178 			cv_broadcast(&un->un_wcc_cv);
23179 			mutex_exit(SD_MUTEX(un));
23180 			break;
23181 		}
23182 
23183 		mutex_enter(SD_MUTEX(un));
23184 		un->un_f_write_cache_enabled = (cur_wce != 0);
23185 
23186 		if (un->un_f_write_cache_enabled && wce == 0) {
23187 			/*
23188 			 * Disable the write cache.  Don't clear
23189 			 * un_f_write_cache_enabled until after
23190 			 * the mode select and flush are complete.
23191 			 */
23192 			sync_supported = un->un_f_sync_cache_supported;
23193 
23194 			/*
23195 			 * If cache flush is suppressed, we assume that the
23196 			 * controller firmware will take care of managing the
23197 			 * write cache for us: no need to explicitly
23198 			 * disable it.
23199 			 */
23200 			if (!un->un_f_suppress_cache_flush) {
23201 				mutex_exit(SD_MUTEX(un));
23202 				if ((err = sd_cache_control(ssc,
23203 				    SD_CACHE_NOCHANGE,
23204 				    SD_CACHE_DISABLE)) == 0 &&
23205 				    sync_supported) {
23206 					err = sd_send_scsi_SYNCHRONIZE_CACHE(un,
23207 					    NULL);
23208 				}
23209 			} else {
23210 				mutex_exit(SD_MUTEX(un));
23211 			}
23212 
23213 			mutex_enter(SD_MUTEX(un));
23214 			if (err == 0) {
23215 				un->un_f_write_cache_enabled = 0;
23216 			}
23217 
23218 		} else if (!un->un_f_write_cache_enabled && wce != 0) {
23219 			/*
23220 			 * Set un_f_write_cache_enabled first, so there is
23221 			 * no window where the cache is enabled, but the
23222 			 * bit says it isn't.
23223 			 */
23224 			un->un_f_write_cache_enabled = 1;
23225 
23226 			/*
23227 			 * If cache flush is suppressed, we assume that the
23228 			 * controller firmware will take care of managing the
23229 			 * write cache for us: no need to explicitly
23230 			 * enable it.
23231 			 */
23232 			if (!un->un_f_suppress_cache_flush) {
23233 				mutex_exit(SD_MUTEX(un));
23234 				err = sd_cache_control(ssc, SD_CACHE_NOCHANGE,
23235 				    SD_CACHE_ENABLE);
23236 			} else {
23237 				mutex_exit(SD_MUTEX(un));
23238 			}
23239 
23240 			mutex_enter(SD_MUTEX(un));
23241 
23242 			if (err) {
23243 				un->un_f_write_cache_enabled = 0;
23244 			}
23245 		}
23246 
23247 		un->un_f_wcc_inprog = 0;
23248 		cv_broadcast(&un->un_wcc_cv);
23249 		mutex_exit(SD_MUTEX(un));
23250 		break;
23251 	}
23252 
23253 	default:
23254 		err = ENOTTY;
23255 		break;
23256 	}
23257 	mutex_enter(SD_MUTEX(un));
23258 	un->un_ncmds_in_driver--;
23259 	ASSERT(un->un_ncmds_in_driver >= 0);
23260 	mutex_exit(SD_MUTEX(un));
23261 
23262 
23263 done_without_assess:
23264 	sd_ssc_fini(ssc);
23265 
23266 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
23267 	return (err);
23268 
23269 done_with_assess:
23270 	mutex_enter(SD_MUTEX(un));
23271 	un->un_ncmds_in_driver--;
23272 	ASSERT(un->un_ncmds_in_driver >= 0);
23273 	mutex_exit(SD_MUTEX(un));
23274 
23275 done_quick_assess:
23276 	if (err != 0)
23277 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23278 	/* Uninitialize sd_ssc_t pointer */
23279 	sd_ssc_fini(ssc);
23280 
23281 	SD_TRACE(SD_LOG_IOCTL, un, "sdioctl: exit: %d\n", err);
23282 	return (err);
23283 }
23284 
23285 
23286 /*
23287  *    Function: sd_dkio_ctrl_info
23288  *
23289  * Description: This routine is the driver entry point for handling controller
23290  *		information ioctl requests (DKIOCINFO).
23291  *
23292  *   Arguments: dev  - the device number
23293  *		arg  - pointer to user provided dk_cinfo structure
23294  *		       specifying the controller type and attributes.
23295  *		flag - this argument is a pass through to ddi_copyxxx()
23296  *		       directly from the mode argument of ioctl().
23297  *
23298  * Return Code: 0
23299  *		EFAULT
23300  *		ENXIO
23301  */
23302 
23303 static int
23304 sd_dkio_ctrl_info(dev_t dev, caddr_t arg, int flag)
23305 {
23306 	struct sd_lun	*un = NULL;
23307 	struct dk_cinfo	*info;
23308 	dev_info_t	*pdip;
23309 	int		lun, tgt;
23310 
23311 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23312 		return (ENXIO);
23313 	}
23314 
23315 	info = (struct dk_cinfo *)
23316 	    kmem_zalloc(sizeof (struct dk_cinfo), KM_SLEEP);
23317 
23318 	switch (un->un_ctype) {
23319 	case CTYPE_CDROM:
23320 		info->dki_ctype = DKC_CDROM;
23321 		break;
23322 	default:
23323 		info->dki_ctype = DKC_SCSI_CCS;
23324 		break;
23325 	}
23326 	pdip = ddi_get_parent(SD_DEVINFO(un));
23327 	info->dki_cnum = ddi_get_instance(pdip);
23328 	if (strlen(ddi_get_name(pdip)) < DK_DEVLEN) {
23329 		(void) strcpy(info->dki_cname, ddi_get_name(pdip));
23330 	} else {
23331 		(void) strncpy(info->dki_cname, ddi_node_name(pdip),
23332 		    DK_DEVLEN - 1);
23333 	}
23334 
23335 	lun = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
23336 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_LUN, 0);
23337 	tgt = ddi_prop_get_int(DDI_DEV_T_ANY, SD_DEVINFO(un),
23338 	    DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET, 0);
23339 
23340 	/* Unit Information */
23341 	info->dki_unit = ddi_get_instance(SD_DEVINFO(un));
23342 	info->dki_slave = ((tgt << 3) | lun);
23343 	(void) strncpy(info->dki_dname, ddi_driver_name(SD_DEVINFO(un)),
23344 	    DK_DEVLEN - 1);
23345 	info->dki_flags = DKI_FMTVOL;
23346 	info->dki_partition = SDPART(dev);
23347 
23348 	/* Max Transfer size of this device in blocks */
23349 	info->dki_maxtransfer = un->un_max_xfer_size / un->un_sys_blocksize;
23350 	info->dki_addr = 0;
23351 	info->dki_space = 0;
23352 	info->dki_prio = 0;
23353 	info->dki_vec = 0;
23354 
23355 	if (ddi_copyout(info, arg, sizeof (struct dk_cinfo), flag) != 0) {
23356 		kmem_free(info, sizeof (struct dk_cinfo));
23357 		return (EFAULT);
23358 	} else {
23359 		kmem_free(info, sizeof (struct dk_cinfo));
23360 		return (0);
23361 	}
23362 }
23363 
23364 /*
23365  *    Function: sd_get_media_info_com
23366  *
23367  * Description: This routine returns the information required to populate
23368  *		the fields for the dk_minfo/dk_minfo_ext structures.
23369  *
23370  *   Arguments: dev		- the device number
23371  *		dki_media_type	- media_type
23372  *		dki_lbsize	- logical block size
23373  *		dki_capacity	- capacity in blocks
23374  *		dki_pbsize	- physical block size (if requested)
23375  *
23376  * Return Code: 0
23377  *		EACCESS
23378  *		EFAULT
23379  *		ENXIO
23380  *		EIO
23381  */
23382 static int
23383 sd_get_media_info_com(dev_t dev, uint_t *dki_media_type, uint_t *dki_lbsize,
23384 	diskaddr_t *dki_capacity, uint_t *dki_pbsize)
23385 {
23386 	struct sd_lun		*un = NULL;
23387 	struct uscsi_cmd	com;
23388 	struct scsi_inquiry	*sinq;
23389 	u_longlong_t		media_capacity;
23390 	uint64_t		capacity;
23391 	uint_t			lbasize;
23392 	uint_t			pbsize;
23393 	uchar_t			*out_data;
23394 	uchar_t			*rqbuf;
23395 	int			rval = 0;
23396 	int			rtn;
23397 	sd_ssc_t		*ssc;
23398 
23399 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
23400 	    (un->un_state == SD_STATE_OFFLINE)) {
23401 		return (ENXIO);
23402 	}
23403 
23404 	SD_TRACE(SD_LOG_IOCTL_DKIO, un, "sd_get_media_info_com: entry\n");
23405 
23406 	out_data = kmem_zalloc(SD_PROFILE_HEADER_LEN, KM_SLEEP);
23407 	rqbuf = kmem_zalloc(SENSE_LENGTH, KM_SLEEP);
23408 	ssc = sd_ssc_init(un);
23409 
23410 	/* Issue a TUR to determine if the drive is ready with media present */
23411 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, SD_CHECK_FOR_MEDIA);
23412 	if (rval == ENXIO) {
23413 		goto done;
23414 	} else if (rval != 0) {
23415 		sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23416 	}
23417 
23418 	/* Now get configuration data */
23419 	if (ISCD(un)) {
23420 		*dki_media_type = DK_CDROM;
23421 
23422 		/* Allow SCMD_GET_CONFIGURATION to MMC devices only */
23423 		if (un->un_f_mmc_cap == TRUE) {
23424 			rtn = sd_send_scsi_GET_CONFIGURATION(ssc, &com, rqbuf,
23425 			    SENSE_LENGTH, out_data, SD_PROFILE_HEADER_LEN,
23426 			    SD_PATH_STANDARD);
23427 
23428 			if (rtn) {
23429 				/*
23430 				 * We ignore all failures for CD and need to
23431 				 * put the assessment before processing code
23432 				 * to avoid missing assessment for FMA.
23433 				 */
23434 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23435 				/*
23436 				 * Failed for other than an illegal request
23437 				 * or command not supported
23438 				 */
23439 				if ((com.uscsi_status == STATUS_CHECK) &&
23440 				    (com.uscsi_rqstatus == STATUS_GOOD)) {
23441 					if ((rqbuf[2] != KEY_ILLEGAL_REQUEST) ||
23442 					    (rqbuf[12] != 0x20)) {
23443 						rval = EIO;
23444 						goto no_assessment;
23445 					}
23446 				}
23447 			} else {
23448 				/*
23449 				 * The GET CONFIGURATION command succeeded
23450 				 * so set the media type according to the
23451 				 * returned data
23452 				 */
23453 				*dki_media_type = out_data[6];
23454 				*dki_media_type <<= 8;
23455 				*dki_media_type |= out_data[7];
23456 			}
23457 		}
23458 	} else {
23459 		/*
23460 		 * The profile list is not available, so we attempt to identify
23461 		 * the media type based on the inquiry data
23462 		 */
23463 		sinq = un->un_sd->sd_inq;
23464 		if ((sinq->inq_dtype == DTYPE_DIRECT) ||
23465 		    (sinq->inq_dtype == DTYPE_OPTICAL)) {
23466 			/* This is a direct access device  or optical disk */
23467 			*dki_media_type = DK_FIXED_DISK;
23468 
23469 			if ((bcmp(sinq->inq_vid, "IOMEGA", 6) == 0) ||
23470 			    (bcmp(sinq->inq_vid, "iomega", 6) == 0)) {
23471 				if ((bcmp(sinq->inq_pid, "ZIP", 3) == 0)) {
23472 					*dki_media_type = DK_ZIP;
23473 				} else if (
23474 				    (bcmp(sinq->inq_pid, "jaz", 3) == 0)) {
23475 					*dki_media_type = DK_JAZ;
23476 				}
23477 			}
23478 		} else {
23479 			/*
23480 			 * Not a CD, direct access or optical disk so return
23481 			 * unknown media
23482 			 */
23483 			*dki_media_type = DK_UNKNOWN;
23484 		}
23485 	}
23486 
23487 	/*
23488 	 * Now read the capacity so we can provide the lbasize,
23489 	 * pbsize and capacity.
23490 	 */
23491 	if (dki_pbsize && un->un_f_descr_format_supported) {
23492 		rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize,
23493 		    &pbsize, SD_PATH_DIRECT);
23494 
23495 		/*
23496 		 * Override the physical blocksize if the instance already
23497 		 * has a larger value.
23498 		 */
23499 		pbsize = MAX(pbsize, un->un_phy_blocksize);
23500 	}
23501 
23502 	if (dki_pbsize == NULL || rval != 0 ||
23503 	    !un->un_f_descr_format_supported) {
23504 		rval = sd_send_scsi_READ_CAPACITY(ssc, &capacity, &lbasize,
23505 		    SD_PATH_DIRECT);
23506 
23507 		switch (rval) {
23508 		case 0:
23509 			if (un->un_f_enable_rmw &&
23510 			    un->un_phy_blocksize != 0) {
23511 				pbsize = un->un_phy_blocksize;
23512 			} else {
23513 				pbsize = lbasize;
23514 			}
23515 			media_capacity = capacity;
23516 
23517 			/*
23518 			 * sd_send_scsi_READ_CAPACITY() reports capacity in
23519 			 * un->un_sys_blocksize chunks. So we need to convert
23520 			 * it into cap.lbsize chunks.
23521 			 */
23522 			if (un->un_f_has_removable_media) {
23523 				media_capacity *= un->un_sys_blocksize;
23524 				media_capacity /= lbasize;
23525 			}
23526 			break;
23527 		case EACCES:
23528 			rval = EACCES;
23529 			goto done;
23530 		default:
23531 			rval = EIO;
23532 			goto done;
23533 		}
23534 	} else {
23535 		if (un->un_f_enable_rmw &&
23536 		    !ISP2(pbsize % DEV_BSIZE)) {
23537 			pbsize = SSD_SECSIZE;
23538 		} else if (!ISP2(lbasize % DEV_BSIZE) ||
23539 		    !ISP2(pbsize % DEV_BSIZE)) {
23540 			pbsize = lbasize = DEV_BSIZE;
23541 		}
23542 		media_capacity = capacity;
23543 	}
23544 
23545 	/*
23546 	 * If lun is expanded dynamically, update the un structure.
23547 	 */
23548 	mutex_enter(SD_MUTEX(un));
23549 	if ((un->un_f_blockcount_is_valid == TRUE) &&
23550 	    (un->un_f_tgt_blocksize_is_valid == TRUE) &&
23551 	    (capacity > un->un_blockcount)) {
23552 		un->un_f_expnevent = B_FALSE;
23553 		sd_update_block_info(un, lbasize, capacity);
23554 	}
23555 	mutex_exit(SD_MUTEX(un));
23556 
23557 	*dki_lbsize = lbasize;
23558 	*dki_capacity = media_capacity;
23559 	if (dki_pbsize)
23560 		*dki_pbsize = pbsize;
23561 
23562 done:
23563 	if (rval != 0) {
23564 		if (rval == EIO)
23565 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23566 		else
23567 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23568 	}
23569 no_assessment:
23570 	sd_ssc_fini(ssc);
23571 	kmem_free(out_data, SD_PROFILE_HEADER_LEN);
23572 	kmem_free(rqbuf, SENSE_LENGTH);
23573 	return (rval);
23574 }
23575 
23576 /*
23577  *    Function: sd_get_media_info
23578  *
23579  * Description: This routine is the driver entry point for handling ioctl
23580  *		requests for the media type or command set profile used by the
23581  *		drive to operate on the media (DKIOCGMEDIAINFO).
23582  *
23583  *   Arguments: dev	- the device number
23584  *		arg	- pointer to user provided dk_minfo structure
23585  *			  specifying the media type, logical block size and
23586  *			  drive capacity.
23587  *		flag	- this argument is a pass through to ddi_copyxxx()
23588  *			  directly from the mode argument of ioctl().
23589  *
23590  * Return Code: returns the value from sd_get_media_info_com
23591  */
23592 static int
23593 sd_get_media_info(dev_t dev, caddr_t arg, int flag)
23594 {
23595 	struct dk_minfo		mi;
23596 	int			rval;
23597 
23598 	rval = sd_get_media_info_com(dev, &mi.dki_media_type,
23599 	    &mi.dki_lbsize, &mi.dki_capacity, NULL);
23600 
23601 	if (rval)
23602 		return (rval);
23603 	if (ddi_copyout(&mi, arg, sizeof (struct dk_minfo), flag))
23604 		rval = EFAULT;
23605 	return (rval);
23606 }
23607 
23608 /*
23609  *    Function: sd_get_media_info_ext
23610  *
23611  * Description: This routine is the driver entry point for handling ioctl
23612  *		requests for the media type or command set profile used by the
23613  *		drive to operate on the media (DKIOCGMEDIAINFOEXT). The
23614  *		difference this ioctl and DKIOCGMEDIAINFO is the return value
23615  *		of this ioctl contains both logical block size and physical
23616  *		block size.
23617  *
23618  *
23619  *   Arguments: dev	- the device number
23620  *		arg	- pointer to user provided dk_minfo_ext structure
23621  *			  specifying the media type, logical block size,
23622  *			  physical block size and disk capacity.
23623  *		flag	- this argument is a pass through to ddi_copyxxx()
23624  *			  directly from the mode argument of ioctl().
23625  *
23626  * Return Code: returns the value from sd_get_media_info_com
23627  */
23628 static int
23629 sd_get_media_info_ext(dev_t dev, caddr_t arg, int flag)
23630 {
23631 	struct dk_minfo_ext	mie;
23632 	int			rval = 0;
23633 
23634 	rval = sd_get_media_info_com(dev, &mie.dki_media_type,
23635 	    &mie.dki_lbsize, &mie.dki_capacity, &mie.dki_pbsize);
23636 
23637 	if (rval)
23638 		return (rval);
23639 	if (ddi_copyout(&mie, arg, sizeof (struct dk_minfo_ext), flag))
23640 		rval = EFAULT;
23641 	return (rval);
23642 
23643 }
23644 
23645 /*
23646  *    Function: sd_watch_request_submit
23647  *
23648  * Description: Call scsi_watch_request_submit or scsi_mmc_watch_request_submit
23649  *		depending on which is supported by device.
23650  */
23651 static opaque_t
23652 sd_watch_request_submit(struct sd_lun *un)
23653 {
23654 	dev_t			dev;
23655 
23656 	/* All submissions are unified to use same device number */
23657 	dev = sd_make_device(SD_DEVINFO(un));
23658 
23659 	if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) {
23660 		return (scsi_mmc_watch_request_submit(SD_SCSI_DEVP(un),
23661 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23662 		    (caddr_t)dev));
23663 	} else {
23664 		return (scsi_watch_request_submit(SD_SCSI_DEVP(un),
23665 		    sd_check_media_time, SENSE_LENGTH, sd_media_watch_cb,
23666 		    (caddr_t)dev));
23667 	}
23668 }
23669 
23670 
23671 /*
23672  *    Function: sd_check_media
23673  *
23674  * Description: This utility routine implements the functionality for the
23675  *		DKIOCSTATE ioctl. This ioctl blocks the user thread until the
23676  *		driver state changes from that specified by the user
23677  *		(inserted or ejected). For example, if the user specifies
23678  *		DKIO_EJECTED and the current media state is inserted this
23679  *		routine will immediately return DKIO_INSERTED. However, if the
23680  *		current media state is not inserted the user thread will be
23681  *		blocked until the drive state changes. If DKIO_NONE is specified
23682  *		the user thread will block until a drive state change occurs.
23683  *
23684  *   Arguments: dev  - the device number
23685  *		state  - user pointer to a dkio_state, updated with the current
23686  *			drive state at return.
23687  *
23688  * Return Code: ENXIO
23689  *		EIO
23690  *		EAGAIN
23691  *		EINTR
23692  */
23693 
23694 static int
23695 sd_check_media(dev_t dev, enum dkio_state state)
23696 {
23697 	struct sd_lun		*un = NULL;
23698 	enum dkio_state		prev_state;
23699 	opaque_t		token = NULL;
23700 	int			rval = 0;
23701 	sd_ssc_t		*ssc;
23702 
23703 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23704 		return (ENXIO);
23705 	}
23706 
23707 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: entry\n");
23708 
23709 	ssc = sd_ssc_init(un);
23710 
23711 	mutex_enter(SD_MUTEX(un));
23712 
23713 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: "
23714 	    "state=%x, mediastate=%x\n", state, un->un_mediastate);
23715 
23716 	prev_state = un->un_mediastate;
23717 
23718 	/* is there anything to do? */
23719 	if (state == un->un_mediastate || un->un_mediastate == DKIO_NONE) {
23720 		/*
23721 		 * submit the request to the scsi_watch service;
23722 		 * scsi_media_watch_cb() does the real work
23723 		 */
23724 		mutex_exit(SD_MUTEX(un));
23725 
23726 		/*
23727 		 * This change handles the case where a scsi watch request is
23728 		 * added to a device that is powered down. To accomplish this
23729 		 * we power up the device before adding the scsi watch request,
23730 		 * since the scsi watch sends a TUR directly to the device
23731 		 * which the device cannot handle if it is powered down.
23732 		 */
23733 		if (sd_pm_entry(un) != DDI_SUCCESS) {
23734 			mutex_enter(SD_MUTEX(un));
23735 			goto done;
23736 		}
23737 
23738 		token = sd_watch_request_submit(un);
23739 
23740 		sd_pm_exit(un);
23741 
23742 		mutex_enter(SD_MUTEX(un));
23743 		if (token == NULL) {
23744 			rval = EAGAIN;
23745 			goto done;
23746 		}
23747 
23748 		/*
23749 		 * This is a special case IOCTL that doesn't return
23750 		 * until the media state changes. Routine sdpower
23751 		 * knows about and handles this so don't count it
23752 		 * as an active cmd in the driver, which would
23753 		 * keep the device busy to the pm framework.
23754 		 * If the count isn't decremented the device can't
23755 		 * be powered down.
23756 		 */
23757 		un->un_ncmds_in_driver--;
23758 		ASSERT(un->un_ncmds_in_driver >= 0);
23759 
23760 		/*
23761 		 * if a prior request had been made, this will be the same
23762 		 * token, as scsi_watch was designed that way.
23763 		 */
23764 		un->un_swr_token = token;
23765 		un->un_specified_mediastate = state;
23766 
23767 		/*
23768 		 * now wait for media change
23769 		 * we will not be signalled unless mediastate == state but it is
23770 		 * still better to test for this condition, since there is a
23771 		 * 2 sec cv_broadcast delay when mediastate == DKIO_INSERTED
23772 		 */
23773 		SD_TRACE(SD_LOG_COMMON, un,
23774 		    "sd_check_media: waiting for media state change\n");
23775 		while (un->un_mediastate == state) {
23776 			if (cv_wait_sig(&un->un_state_cv, SD_MUTEX(un)) == 0) {
23777 				SD_TRACE(SD_LOG_COMMON, un,
23778 				    "sd_check_media: waiting for media state "
23779 				    "was interrupted\n");
23780 				un->un_ncmds_in_driver++;
23781 				rval = EINTR;
23782 				goto done;
23783 			}
23784 			SD_TRACE(SD_LOG_COMMON, un,
23785 			    "sd_check_media: received signal, state=%x\n",
23786 			    un->un_mediastate);
23787 		}
23788 		/*
23789 		 * Inc the counter to indicate the device once again
23790 		 * has an active outstanding cmd.
23791 		 */
23792 		un->un_ncmds_in_driver++;
23793 	}
23794 
23795 	/* invalidate geometry */
23796 	if (prev_state == DKIO_INSERTED && un->un_mediastate == DKIO_EJECTED) {
23797 		sr_ejected(un);
23798 	}
23799 
23800 	if (un->un_mediastate == DKIO_INSERTED && prev_state != DKIO_INSERTED) {
23801 		uint64_t	capacity;
23802 		uint_t		lbasize;
23803 
23804 		SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: media inserted\n");
23805 		mutex_exit(SD_MUTEX(un));
23806 		/*
23807 		 * Since the following routines use SD_PATH_DIRECT, we must
23808 		 * call PM directly before the upcoming disk accesses. This
23809 		 * may cause the disk to be power/spin up.
23810 		 */
23811 
23812 		if (sd_pm_entry(un) == DDI_SUCCESS) {
23813 			rval = sd_send_scsi_READ_CAPACITY(ssc,
23814 			    &capacity, &lbasize, SD_PATH_DIRECT);
23815 			if (rval != 0) {
23816 				sd_pm_exit(un);
23817 				if (rval == EIO)
23818 					sd_ssc_assessment(ssc,
23819 					    SD_FMT_STATUS_CHECK);
23820 				else
23821 					sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23822 				mutex_enter(SD_MUTEX(un));
23823 				goto done;
23824 			}
23825 		} else {
23826 			rval = EIO;
23827 			mutex_enter(SD_MUTEX(un));
23828 			goto done;
23829 		}
23830 		mutex_enter(SD_MUTEX(un));
23831 
23832 		sd_update_block_info(un, lbasize, capacity);
23833 
23834 		/*
23835 		 *  Check if the media in the device is writable or not
23836 		 */
23837 		if (ISCD(un)) {
23838 			sd_check_for_writable_cd(ssc, SD_PATH_DIRECT);
23839 		}
23840 
23841 		mutex_exit(SD_MUTEX(un));
23842 		cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT);
23843 		if ((cmlb_validate(un->un_cmlbhandle, 0,
23844 		    (void *)SD_PATH_DIRECT) == 0) && un->un_f_pkstats_enabled) {
23845 			sd_set_pstats(un);
23846 			SD_TRACE(SD_LOG_IO_PARTITION, un,
23847 			    "sd_check_media: un:0x%p pstats created and "
23848 			    "set\n", un);
23849 		}
23850 
23851 		rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_PREVENT,
23852 		    SD_PATH_DIRECT);
23853 
23854 		sd_pm_exit(un);
23855 
23856 		if (rval != 0) {
23857 			if (rval == EIO)
23858 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
23859 			else
23860 				sd_ssc_assessment(ssc, SD_FMT_IGNORE);
23861 		}
23862 
23863 		mutex_enter(SD_MUTEX(un));
23864 	}
23865 done:
23866 	sd_ssc_fini(ssc);
23867 	un->un_f_watcht_stopped = FALSE;
23868 	if (token != NULL && un->un_swr_token != NULL) {
23869 		/*
23870 		 * Use of this local token and the mutex ensures that we avoid
23871 		 * some race conditions associated with terminating the
23872 		 * scsi watch.
23873 		 */
23874 		token = un->un_swr_token;
23875 		mutex_exit(SD_MUTEX(un));
23876 		(void) scsi_watch_request_terminate(token,
23877 		    SCSI_WATCH_TERMINATE_WAIT);
23878 		if (scsi_watch_get_ref_count(token) == 0) {
23879 			mutex_enter(SD_MUTEX(un));
23880 			un->un_swr_token = (opaque_t)NULL;
23881 		} else {
23882 			mutex_enter(SD_MUTEX(un));
23883 		}
23884 	}
23885 
23886 	/*
23887 	 * Update the capacity kstat value, if no media previously
23888 	 * (capacity kstat is 0) and a media has been inserted
23889 	 * (un_f_blockcount_is_valid == TRUE)
23890 	 */
23891 	if (un->un_errstats) {
23892 		struct sd_errstats	*stp = NULL;
23893 
23894 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
23895 		if ((stp->sd_capacity.value.ui64 == 0) &&
23896 		    (un->un_f_blockcount_is_valid == TRUE)) {
23897 			stp->sd_capacity.value.ui64 =
23898 			    (uint64_t)((uint64_t)un->un_blockcount *
23899 			    un->un_sys_blocksize);
23900 		}
23901 	}
23902 	mutex_exit(SD_MUTEX(un));
23903 	SD_TRACE(SD_LOG_COMMON, un, "sd_check_media: done\n");
23904 	return (rval);
23905 }
23906 
23907 
23908 /*
23909  *    Function: sd_delayed_cv_broadcast
23910  *
23911  * Description: Delayed cv_broadcast to allow for target to recover from media
23912  *		insertion.
23913  *
23914  *   Arguments: arg - driver soft state (unit) structure
23915  */
23916 
23917 static void
23918 sd_delayed_cv_broadcast(void *arg)
23919 {
23920 	struct sd_lun *un = arg;
23921 
23922 	SD_TRACE(SD_LOG_COMMON, un, "sd_delayed_cv_broadcast\n");
23923 
23924 	mutex_enter(SD_MUTEX(un));
23925 	un->un_dcvb_timeid = NULL;
23926 	cv_broadcast(&un->un_state_cv);
23927 	mutex_exit(SD_MUTEX(un));
23928 }
23929 
23930 
23931 /*
23932  *    Function: sd_media_watch_cb
23933  *
23934  * Description: Callback routine used for support of the DKIOCSTATE ioctl. This
23935  *		routine processes the TUR sense data and updates the driver
23936  *		state if a transition has occurred. The user thread
23937  *		(sd_check_media) is then signalled.
23938  *
23939  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
23940  *			among multiple watches that share this callback function
23941  *		resultp - scsi watch facility result packet containing scsi
23942  *			  packet, status byte and sense data
23943  *
23944  * Return Code: 0 for success, -1 for failure
23945  */
23946 
23947 static int
23948 sd_media_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
23949 {
23950 	struct sd_lun			*un;
23951 	struct scsi_status		*statusp = resultp->statusp;
23952 	uint8_t				*sensep = (uint8_t *)resultp->sensep;
23953 	enum dkio_state			state = DKIO_NONE;
23954 	dev_t				dev = (dev_t)arg;
23955 	uchar_t				actual_sense_length;
23956 	uint8_t				skey, asc, ascq;
23957 
23958 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
23959 		return (-1);
23960 	}
23961 	actual_sense_length = resultp->actual_sense_length;
23962 
23963 	mutex_enter(SD_MUTEX(un));
23964 	SD_TRACE(SD_LOG_COMMON, un,
23965 	    "sd_media_watch_cb: status=%x, sensep=%p, len=%x\n",
23966 	    *((char *)statusp), (void *)sensep, actual_sense_length);
23967 
23968 	if (resultp->pkt->pkt_reason == CMD_DEV_GONE) {
23969 		un->un_mediastate = DKIO_DEV_GONE;
23970 		cv_broadcast(&un->un_state_cv);
23971 		mutex_exit(SD_MUTEX(un));
23972 
23973 		return (0);
23974 	}
23975 
23976 	if (un->un_f_mmc_cap && un->un_f_mmc_gesn_polling) {
23977 		if (sd_gesn_media_data_valid(resultp->mmc_data)) {
23978 			if ((resultp->mmc_data[5] &
23979 			    SD_GESN_MEDIA_EVENT_STATUS_PRESENT) != 0) {
23980 				state = DKIO_INSERTED;
23981 			} else {
23982 				state = DKIO_EJECTED;
23983 			}
23984 			if ((resultp->mmc_data[4] & SD_GESN_MEDIA_EVENT_CODE) ==
23985 			    SD_GESN_MEDIA_EVENT_EJECTREQUEST) {
23986 				sd_log_eject_request_event(un, KM_NOSLEEP);
23987 			}
23988 		}
23989 	} else if (sensep != NULL) {
23990 		/*
23991 		 * If there was a check condition then sensep points to valid
23992 		 * sense data. If status was not a check condition but a
23993 		 * reservation or busy status then the new state is DKIO_NONE.
23994 		 */
23995 		skey = scsi_sense_key(sensep);
23996 		asc = scsi_sense_asc(sensep);
23997 		ascq = scsi_sense_ascq(sensep);
23998 
23999 		SD_INFO(SD_LOG_COMMON, un,
24000 		    "sd_media_watch_cb: sense KEY=%x, ASC=%x, ASCQ=%x\n",
24001 		    skey, asc, ascq);
24002 		/* This routine only uses up to 13 bytes of sense data. */
24003 		if (actual_sense_length >= 13) {
24004 			if (skey == KEY_UNIT_ATTENTION) {
24005 				if (asc == 0x28) {
24006 					state = DKIO_INSERTED;
24007 				}
24008 			} else if (skey == KEY_NOT_READY) {
24009 				/*
24010 				 * Sense data of 02/06/00 means that the
24011 				 * drive could not read the media (No
24012 				 * reference position found). In this case
24013 				 * to prevent a hang on the DKIOCSTATE IOCTL
24014 				 * we set the media state to DKIO_INSERTED.
24015 				 */
24016 				if (asc == 0x06 && ascq == 0x00)
24017 					state = DKIO_INSERTED;
24018 
24019 				/*
24020 				 * if 02/04/02  means that the host
24021 				 * should send start command. Explicitly
24022 				 * leave the media state as is
24023 				 * (inserted) as the media is inserted
24024 				 * and host has stopped device for PM
24025 				 * reasons. Upon next true read/write
24026 				 * to this media will bring the
24027 				 * device to the right state good for
24028 				 * media access.
24029 				 */
24030 				if (asc == 0x3a) {
24031 					state = DKIO_EJECTED;
24032 				} else {
24033 					/*
24034 					 * If the drive is busy with an
24035 					 * operation or long write, keep the
24036 					 * media in an inserted state.
24037 					 */
24038 
24039 					if ((asc == 0x04) &&
24040 					    ((ascq == 0x02) ||
24041 					    (ascq == 0x07) ||
24042 					    (ascq == 0x08))) {
24043 						state = DKIO_INSERTED;
24044 					}
24045 				}
24046 			} else if (skey == KEY_NO_SENSE) {
24047 				if ((asc == 0x00) && (ascq == 0x00)) {
24048 					/*
24049 					 * Sense Data 00/00/00 does not provide
24050 					 * any information about the state of
24051 					 * the media. Ignore it.
24052 					 */
24053 					mutex_exit(SD_MUTEX(un));
24054 					return (0);
24055 				}
24056 			}
24057 		}
24058 	} else if ((*((char *)statusp) == STATUS_GOOD) &&
24059 	    (resultp->pkt->pkt_reason == CMD_CMPLT)) {
24060 		state = DKIO_INSERTED;
24061 	}
24062 
24063 	SD_TRACE(SD_LOG_COMMON, un,
24064 	    "sd_media_watch_cb: state=%x, specified=%x\n",
24065 	    state, un->un_specified_mediastate);
24066 
24067 	/*
24068 	 * now signal the waiting thread if this is *not* the specified state;
24069 	 * delay the signal if the state is DKIO_INSERTED to allow the target
24070 	 * to recover
24071 	 */
24072 	if (state != un->un_specified_mediastate) {
24073 		un->un_mediastate = state;
24074 		if (state == DKIO_INSERTED) {
24075 			/*
24076 			 * delay the signal to give the drive a chance
24077 			 * to do what it apparently needs to do
24078 			 */
24079 			SD_TRACE(SD_LOG_COMMON, un,
24080 			    "sd_media_watch_cb: delayed cv_broadcast\n");
24081 			if (un->un_dcvb_timeid == NULL) {
24082 				un->un_dcvb_timeid =
24083 				    timeout(sd_delayed_cv_broadcast, un,
24084 				    drv_usectohz((clock_t)MEDIA_ACCESS_DELAY));
24085 			}
24086 		} else {
24087 			SD_TRACE(SD_LOG_COMMON, un,
24088 			    "sd_media_watch_cb: immediate cv_broadcast\n");
24089 			cv_broadcast(&un->un_state_cv);
24090 		}
24091 	}
24092 	mutex_exit(SD_MUTEX(un));
24093 	return (0);
24094 }
24095 
24096 
24097 /*
24098  *    Function: sd_dkio_get_temp
24099  *
24100  * Description: This routine is the driver entry point for handling ioctl
24101  *		requests to get the disk temperature.
24102  *
24103  *   Arguments: dev  - the device number
24104  *		arg  - pointer to user provided dk_temperature structure.
24105  *		flag - this argument is a pass through to ddi_copyxxx()
24106  *		       directly from the mode argument of ioctl().
24107  *
24108  * Return Code: 0
24109  *		EFAULT
24110  *		ENXIO
24111  *		EAGAIN
24112  */
24113 
24114 static int
24115 sd_dkio_get_temp(dev_t dev, caddr_t arg, int flag)
24116 {
24117 	struct sd_lun		*un = NULL;
24118 	struct dk_temperature	*dktemp = NULL;
24119 	uchar_t			*temperature_page;
24120 	int			rval = 0;
24121 	int			path_flag = SD_PATH_STANDARD;
24122 	sd_ssc_t		*ssc;
24123 
24124 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24125 		return (ENXIO);
24126 	}
24127 
24128 	ssc = sd_ssc_init(un);
24129 	dktemp = kmem_zalloc(sizeof (struct dk_temperature), KM_SLEEP);
24130 
24131 	/* copyin the disk temp argument to get the user flags */
24132 	if (ddi_copyin((void *)arg, dktemp,
24133 	    sizeof (struct dk_temperature), flag) != 0) {
24134 		rval = EFAULT;
24135 		goto done;
24136 	}
24137 
24138 	/* Initialize the temperature to invalid. */
24139 	dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24140 	dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24141 
24142 	/*
24143 	 * Note: Investigate removing the "bypass pm" semantic.
24144 	 * Can we just bypass PM always?
24145 	 */
24146 	if (dktemp->dkt_flags & DKT_BYPASS_PM) {
24147 		path_flag = SD_PATH_DIRECT;
24148 		ASSERT(!mutex_owned(&un->un_pm_mutex));
24149 		mutex_enter(&un->un_pm_mutex);
24150 		if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
24151 			/*
24152 			 * If DKT_BYPASS_PM is set, and the drive happens to be
24153 			 * in low power mode, we can not wake it up, Need to
24154 			 * return EAGAIN.
24155 			 */
24156 			mutex_exit(&un->un_pm_mutex);
24157 			rval = EAGAIN;
24158 			goto done;
24159 		} else {
24160 			/*
24161 			 * Indicate to PM the device is busy. This is required
24162 			 * to avoid a race - i.e. the ioctl is issuing a
24163 			 * command and the pm framework brings down the device
24164 			 * to low power mode (possible power cut-off on some
24165 			 * platforms).
24166 			 */
24167 			mutex_exit(&un->un_pm_mutex);
24168 			if (sd_pm_entry(un) != DDI_SUCCESS) {
24169 				rval = EAGAIN;
24170 				goto done;
24171 			}
24172 		}
24173 	}
24174 
24175 	temperature_page = kmem_zalloc(TEMPERATURE_PAGE_SIZE, KM_SLEEP);
24176 
24177 	rval = sd_send_scsi_LOG_SENSE(ssc, temperature_page,
24178 	    TEMPERATURE_PAGE_SIZE, TEMPERATURE_PAGE, 1, 0, path_flag);
24179 	if (rval != 0)
24180 		goto done2;
24181 
24182 	/*
24183 	 * For the current temperature verify that the parameter length is 0x02
24184 	 * and the parameter code is 0x00
24185 	 */
24186 	if ((temperature_page[7] == 0x02) && (temperature_page[4] == 0x00) &&
24187 	    (temperature_page[5] == 0x00)) {
24188 		if (temperature_page[9] == 0xFF) {
24189 			dktemp->dkt_cur_temp = (short)DKT_INVALID_TEMP;
24190 		} else {
24191 			dktemp->dkt_cur_temp = (short)(temperature_page[9]);
24192 		}
24193 	}
24194 
24195 	/*
24196 	 * For the reference temperature verify that the parameter
24197 	 * length is 0x02 and the parameter code is 0x01
24198 	 */
24199 	if ((temperature_page[13] == 0x02) && (temperature_page[10] == 0x00) &&
24200 	    (temperature_page[11] == 0x01)) {
24201 		if (temperature_page[15] == 0xFF) {
24202 			dktemp->dkt_ref_temp = (short)DKT_INVALID_TEMP;
24203 		} else {
24204 			dktemp->dkt_ref_temp = (short)(temperature_page[15]);
24205 		}
24206 	}
24207 
24208 	/* Do the copyout regardless of the temperature commands status. */
24209 	if (ddi_copyout(dktemp, (void *)arg, sizeof (struct dk_temperature),
24210 	    flag) != 0) {
24211 		rval = EFAULT;
24212 		goto done1;
24213 	}
24214 
24215 done2:
24216 	if (rval != 0) {
24217 		if (rval == EIO)
24218 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24219 		else
24220 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24221 	}
24222 done1:
24223 	if (path_flag == SD_PATH_DIRECT) {
24224 		sd_pm_exit(un);
24225 	}
24226 
24227 	kmem_free(temperature_page, TEMPERATURE_PAGE_SIZE);
24228 done:
24229 	sd_ssc_fini(ssc);
24230 	if (dktemp != NULL) {
24231 		kmem_free(dktemp, sizeof (struct dk_temperature));
24232 	}
24233 
24234 	return (rval);
24235 }
24236 
24237 
24238 /*
24239  *    Function: sd_log_page_supported
24240  *
24241  * Description: This routine uses sd_send_scsi_LOG_SENSE to find the list of
24242  *		supported log pages.
24243  *
24244  *   Arguments: ssc   - ssc contains pointer to driver soft state (unit)
24245  *                      structure for this target.
24246  *		log_page -
24247  *
24248  * Return Code: -1 - on error (log sense is optional and may not be supported).
24249  *		0  - log page not found.
24250  *  		1  - log page found.
24251  */
24252 
24253 static int
24254 sd_log_page_supported(sd_ssc_t *ssc, int log_page)
24255 {
24256 	uchar_t *log_page_data;
24257 	int	i;
24258 	int	match = 0;
24259 	int	log_size;
24260 	int	status = 0;
24261 	struct sd_lun	*un;
24262 
24263 	ASSERT(ssc != NULL);
24264 	un = ssc->ssc_un;
24265 	ASSERT(un != NULL);
24266 
24267 	log_page_data = kmem_zalloc(0xFF, KM_SLEEP);
24268 
24269 	status = sd_send_scsi_LOG_SENSE(ssc, log_page_data, 0xFF, 0, 0x01, 0,
24270 	    SD_PATH_DIRECT);
24271 
24272 	if (status != 0) {
24273 		if (status == EIO) {
24274 			/*
24275 			 * Some disks do not support log sense, we
24276 			 * should ignore this kind of error(sense key is
24277 			 * 0x5 - illegal request).
24278 			 */
24279 			uint8_t *sensep;
24280 			int senlen;
24281 
24282 			sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
24283 			senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
24284 			    ssc->ssc_uscsi_cmd->uscsi_rqresid);
24285 
24286 			if (senlen > 0 &&
24287 			    scsi_sense_key(sensep) == KEY_ILLEGAL_REQUEST) {
24288 				sd_ssc_assessment(ssc,
24289 				    SD_FMT_IGNORE_COMPROMISE);
24290 			} else {
24291 				sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24292 			}
24293 		} else {
24294 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24295 		}
24296 
24297 		SD_ERROR(SD_LOG_COMMON, un,
24298 		    "sd_log_page_supported: failed log page retrieval\n");
24299 		kmem_free(log_page_data, 0xFF);
24300 		return (-1);
24301 	}
24302 
24303 	log_size = log_page_data[3];
24304 
24305 	/*
24306 	 * The list of supported log pages start from the fourth byte. Check
24307 	 * until we run out of log pages or a match is found.
24308 	 */
24309 	for (i = 4; (i < (log_size + 4)) && !match; i++) {
24310 		if (log_page_data[i] == log_page) {
24311 			match++;
24312 		}
24313 	}
24314 	kmem_free(log_page_data, 0xFF);
24315 	return (match);
24316 }
24317 
24318 
24319 /*
24320  *    Function: sd_mhdioc_failfast
24321  *
24322  * Description: This routine is the driver entry point for handling ioctl
24323  *		requests to enable/disable the multihost failfast option.
24324  *		(MHIOCENFAILFAST)
24325  *
24326  *   Arguments: dev	- the device number
24327  *		arg	- user specified probing interval.
24328  *		flag	- this argument is a pass through to ddi_copyxxx()
24329  *			  directly from the mode argument of ioctl().
24330  *
24331  * Return Code: 0
24332  *		EFAULT
24333  *		ENXIO
24334  */
24335 
24336 static int
24337 sd_mhdioc_failfast(dev_t dev, caddr_t arg, int flag)
24338 {
24339 	struct sd_lun	*un = NULL;
24340 	int		mh_time;
24341 	int		rval = 0;
24342 
24343 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24344 		return (ENXIO);
24345 	}
24346 
24347 	if (ddi_copyin((void *)arg, &mh_time, sizeof (int), flag))
24348 		return (EFAULT);
24349 
24350 	if (mh_time) {
24351 		mutex_enter(SD_MUTEX(un));
24352 		un->un_resvd_status |= SD_FAILFAST;
24353 		mutex_exit(SD_MUTEX(un));
24354 		/*
24355 		 * If mh_time is INT_MAX, then this ioctl is being used for
24356 		 * SCSI-3 PGR purposes, and we don't need to spawn watch thread.
24357 		 */
24358 		if (mh_time != INT_MAX) {
24359 			rval = sd_check_mhd(dev, mh_time);
24360 		}
24361 	} else {
24362 		(void) sd_check_mhd(dev, 0);
24363 		mutex_enter(SD_MUTEX(un));
24364 		un->un_resvd_status &= ~SD_FAILFAST;
24365 		mutex_exit(SD_MUTEX(un));
24366 	}
24367 	return (rval);
24368 }
24369 
24370 
24371 /*
24372  *    Function: sd_mhdioc_takeown
24373  *
24374  * Description: This routine is the driver entry point for handling ioctl
24375  *		requests to forcefully acquire exclusive access rights to the
24376  *		multihost disk (MHIOCTKOWN).
24377  *
24378  *   Arguments: dev	- the device number
24379  *		arg	- user provided structure specifying the delay
24380  *			  parameters in milliseconds
24381  *		flag	- this argument is a pass through to ddi_copyxxx()
24382  *			  directly from the mode argument of ioctl().
24383  *
24384  * Return Code: 0
24385  *		EFAULT
24386  *		ENXIO
24387  */
24388 
24389 static int
24390 sd_mhdioc_takeown(dev_t dev, caddr_t arg, int flag)
24391 {
24392 	struct sd_lun		*un = NULL;
24393 	struct mhioctkown	*tkown = NULL;
24394 	int			rval = 0;
24395 
24396 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24397 		return (ENXIO);
24398 	}
24399 
24400 	if (arg != NULL) {
24401 		tkown = (struct mhioctkown *)
24402 		    kmem_zalloc(sizeof (struct mhioctkown), KM_SLEEP);
24403 		rval = ddi_copyin(arg, tkown, sizeof (struct mhioctkown), flag);
24404 		if (rval != 0) {
24405 			rval = EFAULT;
24406 			goto error;
24407 		}
24408 	}
24409 
24410 	rval = sd_take_ownership(dev, tkown);
24411 	mutex_enter(SD_MUTEX(un));
24412 	if (rval == 0) {
24413 		un->un_resvd_status |= SD_RESERVE;
24414 		if (tkown != NULL && tkown->reinstate_resv_delay != 0) {
24415 			sd_reinstate_resv_delay =
24416 			    tkown->reinstate_resv_delay * 1000;
24417 		} else {
24418 			sd_reinstate_resv_delay = SD_REINSTATE_RESV_DELAY;
24419 		}
24420 		/*
24421 		 * Give the scsi_watch routine interval set by
24422 		 * the MHIOCENFAILFAST ioctl precedence here.
24423 		 */
24424 		if ((un->un_resvd_status & SD_FAILFAST) == 0) {
24425 			mutex_exit(SD_MUTEX(un));
24426 			(void) sd_check_mhd(dev, sd_reinstate_resv_delay/1000);
24427 			SD_TRACE(SD_LOG_IOCTL_MHD, un,
24428 			    "sd_mhdioc_takeown : %d\n",
24429 			    sd_reinstate_resv_delay);
24430 		} else {
24431 			mutex_exit(SD_MUTEX(un));
24432 		}
24433 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_NOTIFY,
24434 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24435 	} else {
24436 		un->un_resvd_status &= ~SD_RESERVE;
24437 		mutex_exit(SD_MUTEX(un));
24438 	}
24439 
24440 error:
24441 	if (tkown != NULL) {
24442 		kmem_free(tkown, sizeof (struct mhioctkown));
24443 	}
24444 	return (rval);
24445 }
24446 
24447 
24448 /*
24449  *    Function: sd_mhdioc_release
24450  *
24451  * Description: This routine is the driver entry point for handling ioctl
24452  *		requests to release exclusive access rights to the multihost
24453  *		disk (MHIOCRELEASE).
24454  *
24455  *   Arguments: dev	- the device number
24456  *
24457  * Return Code: 0
24458  *		ENXIO
24459  */
24460 
24461 static int
24462 sd_mhdioc_release(dev_t dev)
24463 {
24464 	struct sd_lun		*un = NULL;
24465 	timeout_id_t		resvd_timeid_save;
24466 	int			resvd_status_save;
24467 	int			rval = 0;
24468 
24469 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24470 		return (ENXIO);
24471 	}
24472 
24473 	mutex_enter(SD_MUTEX(un));
24474 	resvd_status_save = un->un_resvd_status;
24475 	un->un_resvd_status &=
24476 	    ~(SD_RESERVE | SD_LOST_RESERVE | SD_WANT_RESERVE);
24477 	if (un->un_resvd_timeid) {
24478 		resvd_timeid_save = un->un_resvd_timeid;
24479 		un->un_resvd_timeid = NULL;
24480 		mutex_exit(SD_MUTEX(un));
24481 		(void) untimeout(resvd_timeid_save);
24482 	} else {
24483 		mutex_exit(SD_MUTEX(un));
24484 	}
24485 
24486 	/*
24487 	 * destroy any pending timeout thread that may be attempting to
24488 	 * reinstate reservation on this device.
24489 	 */
24490 	sd_rmv_resv_reclaim_req(dev);
24491 
24492 	if ((rval = sd_reserve_release(dev, SD_RELEASE)) == 0) {
24493 		mutex_enter(SD_MUTEX(un));
24494 		if ((un->un_mhd_token) &&
24495 		    ((un->un_resvd_status & SD_FAILFAST) == 0)) {
24496 			mutex_exit(SD_MUTEX(un));
24497 			(void) sd_check_mhd(dev, 0);
24498 		} else {
24499 			mutex_exit(SD_MUTEX(un));
24500 		}
24501 		(void) scsi_reset_notify(SD_ADDRESS(un), SCSI_RESET_CANCEL,
24502 		    sd_mhd_reset_notify_cb, (caddr_t)un);
24503 	} else {
24504 		/*
24505 		 * sd_mhd_watch_cb will restart the resvd recover timeout thread
24506 		 */
24507 		mutex_enter(SD_MUTEX(un));
24508 		un->un_resvd_status = resvd_status_save;
24509 		mutex_exit(SD_MUTEX(un));
24510 	}
24511 	return (rval);
24512 }
24513 
24514 
24515 /*
24516  *    Function: sd_mhdioc_register_devid
24517  *
24518  * Description: This routine is the driver entry point for handling ioctl
24519  *		requests to register the device id (MHIOCREREGISTERDEVID).
24520  *
24521  *		Note: The implementation for this ioctl has been updated to
24522  *		be consistent with the original PSARC case (1999/357)
24523  *		(4375899, 4241671, 4220005)
24524  *
24525  *   Arguments: dev	- the device number
24526  *
24527  * Return Code: 0
24528  *		ENXIO
24529  */
24530 
24531 static int
24532 sd_mhdioc_register_devid(dev_t dev)
24533 {
24534 	struct sd_lun	*un = NULL;
24535 	int		rval = 0;
24536 	sd_ssc_t	*ssc;
24537 
24538 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24539 		return (ENXIO);
24540 	}
24541 
24542 	ASSERT(!mutex_owned(SD_MUTEX(un)));
24543 
24544 	mutex_enter(SD_MUTEX(un));
24545 
24546 	/* If a devid already exists, de-register it */
24547 	if (un->un_devid != NULL) {
24548 		ddi_devid_unregister(SD_DEVINFO(un));
24549 		/*
24550 		 * After unregister devid, needs to free devid memory
24551 		 */
24552 		ddi_devid_free(un->un_devid);
24553 		un->un_devid = NULL;
24554 	}
24555 
24556 	/* Check for reservation conflict */
24557 	mutex_exit(SD_MUTEX(un));
24558 	ssc = sd_ssc_init(un);
24559 	rval = sd_send_scsi_TEST_UNIT_READY(ssc, 0);
24560 	mutex_enter(SD_MUTEX(un));
24561 
24562 	switch (rval) {
24563 	case 0:
24564 		sd_register_devid(ssc, SD_DEVINFO(un), SD_TARGET_IS_UNRESERVED);
24565 		break;
24566 	case EACCES:
24567 		break;
24568 	default:
24569 		rval = EIO;
24570 	}
24571 
24572 	mutex_exit(SD_MUTEX(un));
24573 	if (rval != 0) {
24574 		if (rval == EIO)
24575 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
24576 		else
24577 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
24578 	}
24579 	sd_ssc_fini(ssc);
24580 	return (rval);
24581 }
24582 
24583 
24584 /*
24585  *    Function: sd_mhdioc_inkeys
24586  *
24587  * Description: This routine is the driver entry point for handling ioctl
24588  *		requests to issue the SCSI-3 Persistent In Read Keys command
24589  *		to the device (MHIOCGRP_INKEYS).
24590  *
24591  *   Arguments: dev	- the device number
24592  *		arg	- user provided in_keys structure
24593  *		flag	- this argument is a pass through to ddi_copyxxx()
24594  *			  directly from the mode argument of ioctl().
24595  *
24596  * Return Code: code returned by sd_persistent_reservation_in_read_keys()
24597  *		ENXIO
24598  *		EFAULT
24599  */
24600 
24601 static int
24602 sd_mhdioc_inkeys(dev_t dev, caddr_t arg, int flag)
24603 {
24604 	struct sd_lun		*un;
24605 	mhioc_inkeys_t		inkeys;
24606 	int			rval = 0;
24607 
24608 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24609 		return (ENXIO);
24610 	}
24611 
24612 #ifdef _MULTI_DATAMODEL
24613 	switch (ddi_model_convert_from(flag & FMODELS)) {
24614 	case DDI_MODEL_ILP32: {
24615 		struct mhioc_inkeys32	inkeys32;
24616 
24617 		if (ddi_copyin(arg, &inkeys32,
24618 		    sizeof (struct mhioc_inkeys32), flag) != 0) {
24619 			return (EFAULT);
24620 		}
24621 		inkeys.li = (mhioc_key_list_t *)(uintptr_t)inkeys32.li;
24622 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24623 		    &inkeys, flag)) != 0) {
24624 			return (rval);
24625 		}
24626 		inkeys32.generation = inkeys.generation;
24627 		if (ddi_copyout(&inkeys32, arg, sizeof (struct mhioc_inkeys32),
24628 		    flag) != 0) {
24629 			return (EFAULT);
24630 		}
24631 		break;
24632 	}
24633 	case DDI_MODEL_NONE:
24634 		if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t),
24635 		    flag) != 0) {
24636 			return (EFAULT);
24637 		}
24638 		if ((rval = sd_persistent_reservation_in_read_keys(un,
24639 		    &inkeys, flag)) != 0) {
24640 			return (rval);
24641 		}
24642 		if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t),
24643 		    flag) != 0) {
24644 			return (EFAULT);
24645 		}
24646 		break;
24647 	}
24648 
24649 #else /* ! _MULTI_DATAMODEL */
24650 
24651 	if (ddi_copyin(arg, &inkeys, sizeof (mhioc_inkeys_t), flag) != 0) {
24652 		return (EFAULT);
24653 	}
24654 	rval = sd_persistent_reservation_in_read_keys(un, &inkeys, flag);
24655 	if (rval != 0) {
24656 		return (rval);
24657 	}
24658 	if (ddi_copyout(&inkeys, arg, sizeof (mhioc_inkeys_t), flag) != 0) {
24659 		return (EFAULT);
24660 	}
24661 
24662 #endif /* _MULTI_DATAMODEL */
24663 
24664 	return (rval);
24665 }
24666 
24667 
24668 /*
24669  *    Function: sd_mhdioc_inresv
24670  *
24671  * Description: This routine is the driver entry point for handling ioctl
24672  *		requests to issue the SCSI-3 Persistent In Read Reservations
24673  *		command to the device (MHIOCGRP_INKEYS).
24674  *
24675  *   Arguments: dev	- the device number
24676  *		arg	- user provided in_resv structure
24677  *		flag	- this argument is a pass through to ddi_copyxxx()
24678  *			  directly from the mode argument of ioctl().
24679  *
24680  * Return Code: code returned by sd_persistent_reservation_in_read_resv()
24681  *		ENXIO
24682  *		EFAULT
24683  */
24684 
24685 static int
24686 sd_mhdioc_inresv(dev_t dev, caddr_t arg, int flag)
24687 {
24688 	struct sd_lun		*un;
24689 	mhioc_inresvs_t		inresvs;
24690 	int			rval = 0;
24691 
24692 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24693 		return (ENXIO);
24694 	}
24695 
24696 #ifdef _MULTI_DATAMODEL
24697 
24698 	switch (ddi_model_convert_from(flag & FMODELS)) {
24699 	case DDI_MODEL_ILP32: {
24700 		struct mhioc_inresvs32	inresvs32;
24701 
24702 		if (ddi_copyin(arg, &inresvs32,
24703 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24704 			return (EFAULT);
24705 		}
24706 		inresvs.li = (mhioc_resv_desc_list_t *)(uintptr_t)inresvs32.li;
24707 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24708 		    &inresvs, flag)) != 0) {
24709 			return (rval);
24710 		}
24711 		inresvs32.generation = inresvs.generation;
24712 		if (ddi_copyout(&inresvs32, arg,
24713 		    sizeof (struct mhioc_inresvs32), flag) != 0) {
24714 			return (EFAULT);
24715 		}
24716 		break;
24717 	}
24718 	case DDI_MODEL_NONE:
24719 		if (ddi_copyin(arg, &inresvs,
24720 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24721 			return (EFAULT);
24722 		}
24723 		if ((rval = sd_persistent_reservation_in_read_resv(un,
24724 		    &inresvs, flag)) != 0) {
24725 			return (rval);
24726 		}
24727 		if (ddi_copyout(&inresvs, arg,
24728 		    sizeof (mhioc_inresvs_t), flag) != 0) {
24729 			return (EFAULT);
24730 		}
24731 		break;
24732 	}
24733 
24734 #else /* ! _MULTI_DATAMODEL */
24735 
24736 	if (ddi_copyin(arg, &inresvs, sizeof (mhioc_inresvs_t), flag) != 0) {
24737 		return (EFAULT);
24738 	}
24739 	rval = sd_persistent_reservation_in_read_resv(un, &inresvs, flag);
24740 	if (rval != 0) {
24741 		return (rval);
24742 	}
24743 	if (ddi_copyout(&inresvs, arg, sizeof (mhioc_inresvs_t), flag)) {
24744 		return (EFAULT);
24745 	}
24746 
24747 #endif /* ! _MULTI_DATAMODEL */
24748 
24749 	return (rval);
24750 }
24751 
24752 
24753 /*
24754  * The following routines support the clustering functionality described below
24755  * and implement lost reservation reclaim functionality.
24756  *
24757  * Clustering
24758  * ----------
24759  * The clustering code uses two different, independent forms of SCSI
24760  * reservation. Traditional SCSI-2 Reserve/Release and the newer SCSI-3
24761  * Persistent Group Reservations. For any particular disk, it will use either
24762  * SCSI-2 or SCSI-3 PGR but never both at the same time for the same disk.
24763  *
24764  * SCSI-2
24765  * The cluster software takes ownership of a multi-hosted disk by issuing the
24766  * MHIOCTKOWN ioctl to the disk driver. It releases ownership by issuing the
24767  * MHIOCRELEASE ioctl.  Closely related is the MHIOCENFAILFAST ioctl -- a
24768  * cluster, just after taking ownership of the disk with the MHIOCTKOWN ioctl
24769  * then issues the MHIOCENFAILFAST ioctl.  This ioctl "enables failfast" in the
24770  * driver. The meaning of failfast is that if the driver (on this host) ever
24771  * encounters the scsi error return code RESERVATION_CONFLICT from the device,
24772  * it should immediately panic the host. The motivation for this ioctl is that
24773  * if this host does encounter reservation conflict, the underlying cause is
24774  * that some other host of the cluster has decided that this host is no longer
24775  * in the cluster and has seized control of the disks for itself. Since this
24776  * host is no longer in the cluster, it ought to panic itself. The
24777  * MHIOCENFAILFAST ioctl does two things:
24778  *	(a) it sets a flag that will cause any returned RESERVATION_CONFLICT
24779  *      error to panic the host
24780  *      (b) it sets up a periodic timer to test whether this host still has
24781  *      "access" (in that no other host has reserved the device):  if the
24782  *      periodic timer gets RESERVATION_CONFLICT, the host is panicked. The
24783  *      purpose of that periodic timer is to handle scenarios where the host is
24784  *      otherwise temporarily quiescent, temporarily doing no real i/o.
24785  * The MHIOCTKOWN ioctl will "break" a reservation that is held by another host,
24786  * by issuing a SCSI Bus Device Reset.  It will then issue a SCSI Reserve for
24787  * the device itself.
24788  *
24789  * SCSI-3 PGR
24790  * A direct semantic implementation of the SCSI-3 Persistent Reservation
24791  * facility is supported through the shared multihost disk ioctls
24792  * (MHIOCGRP_INKEYS, MHIOCGRP_INRESV, MHIOCGRP_REGISTER, MHIOCGRP_RESERVE,
24793  * MHIOCGRP_PREEMPTANDABORT, MHIOCGRP_CLEAR)
24794  *
24795  * Reservation Reclaim:
24796  * --------------------
24797  * To support the lost reservation reclaim operations this driver creates a
24798  * single thread to handle reinstating reservations on all devices that have
24799  * lost reservations sd_resv_reclaim_requests are logged for all devices that
24800  * have LOST RESERVATIONS when the scsi watch facility callsback sd_mhd_watch_cb
24801  * and the reservation reclaim thread loops through the requests to regain the
24802  * lost reservations.
24803  */
24804 
24805 /*
24806  *    Function: sd_check_mhd()
24807  *
24808  * Description: This function sets up and submits a scsi watch request or
24809  *		terminates an existing watch request. This routine is used in
24810  *		support of reservation reclaim.
24811  *
24812  *   Arguments: dev    - the device 'dev_t' is used for context to discriminate
24813  *			 among multiple watches that share the callback function
24814  *		interval - the number of microseconds specifying the watch
24815  *			   interval for issuing TEST UNIT READY commands. If
24816  *			   set to 0 the watch should be terminated. If the
24817  *			   interval is set to 0 and if the device is required
24818  *			   to hold reservation while disabling failfast, the
24819  *			   watch is restarted with an interval of
24820  *			   reinstate_resv_delay.
24821  *
24822  * Return Code: 0	   - Successful submit/terminate of scsi watch request
24823  *		ENXIO      - Indicates an invalid device was specified
24824  *		EAGAIN     - Unable to submit the scsi watch request
24825  */
24826 
24827 static int
24828 sd_check_mhd(dev_t dev, int interval)
24829 {
24830 	struct sd_lun	*un;
24831 	opaque_t	token;
24832 
24833 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24834 		return (ENXIO);
24835 	}
24836 
24837 	/* is this a watch termination request? */
24838 	if (interval == 0) {
24839 		mutex_enter(SD_MUTEX(un));
24840 		/* if there is an existing watch task then terminate it */
24841 		if (un->un_mhd_token) {
24842 			token = un->un_mhd_token;
24843 			un->un_mhd_token = NULL;
24844 			mutex_exit(SD_MUTEX(un));
24845 			(void) scsi_watch_request_terminate(token,
24846 			    SCSI_WATCH_TERMINATE_ALL_WAIT);
24847 			mutex_enter(SD_MUTEX(un));
24848 		} else {
24849 			mutex_exit(SD_MUTEX(un));
24850 			/*
24851 			 * Note: If we return here we don't check for the
24852 			 * failfast case. This is the original legacy
24853 			 * implementation but perhaps we should be checking
24854 			 * the failfast case.
24855 			 */
24856 			return (0);
24857 		}
24858 		/*
24859 		 * If the device is required to hold reservation while
24860 		 * disabling failfast, we need to restart the scsi_watch
24861 		 * routine with an interval of reinstate_resv_delay.
24862 		 */
24863 		if (un->un_resvd_status & SD_RESERVE) {
24864 			interval = sd_reinstate_resv_delay/1000;
24865 		} else {
24866 			/* no failfast so bail */
24867 			mutex_exit(SD_MUTEX(un));
24868 			return (0);
24869 		}
24870 		mutex_exit(SD_MUTEX(un));
24871 	}
24872 
24873 	/*
24874 	 * adjust minimum time interval to 1 second,
24875 	 * and convert from msecs to usecs
24876 	 */
24877 	if (interval > 0 && interval < 1000) {
24878 		interval = 1000;
24879 	}
24880 	interval *= 1000;
24881 
24882 	/*
24883 	 * submit the request to the scsi_watch service
24884 	 */
24885 	token = scsi_watch_request_submit(SD_SCSI_DEVP(un), interval,
24886 	    SENSE_LENGTH, sd_mhd_watch_cb, (caddr_t)dev);
24887 	if (token == NULL) {
24888 		return (EAGAIN);
24889 	}
24890 
24891 	/*
24892 	 * save token for termination later on
24893 	 */
24894 	mutex_enter(SD_MUTEX(un));
24895 	un->un_mhd_token = token;
24896 	mutex_exit(SD_MUTEX(un));
24897 	return (0);
24898 }
24899 
24900 
24901 /*
24902  *    Function: sd_mhd_watch_cb()
24903  *
24904  * Description: This function is the call back function used by the scsi watch
24905  *		facility. The scsi watch facility sends the "Test Unit Ready"
24906  *		and processes the status. If applicable (i.e. a "Unit Attention"
24907  *		status and automatic "Request Sense" not used) the scsi watch
24908  *		facility will send a "Request Sense" and retrieve the sense data
24909  *		to be passed to this callback function. In either case the
24910  *		automatic "Request Sense" or the facility submitting one, this
24911  *		callback is passed the status and sense data.
24912  *
24913  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
24914  *			among multiple watches that share this callback function
24915  *		resultp - scsi watch facility result packet containing scsi
24916  *			  packet, status byte and sense data
24917  *
24918  * Return Code: 0 - continue the watch task
24919  *		non-zero - terminate the watch task
24920  */
24921 
24922 static int
24923 sd_mhd_watch_cb(caddr_t arg, struct scsi_watch_result *resultp)
24924 {
24925 	struct sd_lun			*un;
24926 	struct scsi_status		*statusp;
24927 	uint8_t				*sensep;
24928 	struct scsi_pkt			*pkt;
24929 	uchar_t				actual_sense_length;
24930 	dev_t  				dev = (dev_t)arg;
24931 
24932 	ASSERT(resultp != NULL);
24933 	statusp			= resultp->statusp;
24934 	sensep			= (uint8_t *)resultp->sensep;
24935 	pkt			= resultp->pkt;
24936 	actual_sense_length	= resultp->actual_sense_length;
24937 
24938 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
24939 		return (ENXIO);
24940 	}
24941 
24942 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
24943 	    "sd_mhd_watch_cb: reason '%s', status '%s'\n",
24944 	    scsi_rname(pkt->pkt_reason), sd_sname(*((unsigned char *)statusp)));
24945 
24946 	/* Begin processing of the status and/or sense data */
24947 	if (pkt->pkt_reason != CMD_CMPLT) {
24948 		/* Handle the incomplete packet */
24949 		sd_mhd_watch_incomplete(un, pkt);
24950 		return (0);
24951 	} else if (*((unsigned char *)statusp) != STATUS_GOOD) {
24952 		if (*((unsigned char *)statusp)
24953 		    == STATUS_RESERVATION_CONFLICT) {
24954 			/*
24955 			 * Handle a reservation conflict by panicking if
24956 			 * configured for failfast or by logging the conflict
24957 			 * and updating the reservation status
24958 			 */
24959 			mutex_enter(SD_MUTEX(un));
24960 			if ((un->un_resvd_status & SD_FAILFAST) &&
24961 			    (sd_failfast_enable)) {
24962 				sd_panic_for_res_conflict(un);
24963 				/*NOTREACHED*/
24964 			}
24965 			SD_INFO(SD_LOG_IOCTL_MHD, un,
24966 			    "sd_mhd_watch_cb: Reservation Conflict\n");
24967 			un->un_resvd_status |= SD_RESERVATION_CONFLICT;
24968 			mutex_exit(SD_MUTEX(un));
24969 		}
24970 	}
24971 
24972 	if (sensep != NULL) {
24973 		if (actual_sense_length >= (SENSE_LENGTH - 2)) {
24974 			mutex_enter(SD_MUTEX(un));
24975 			if ((scsi_sense_asc(sensep) ==
24976 			    SD_SCSI_RESET_SENSE_CODE) &&
24977 			    (un->un_resvd_status & SD_RESERVE)) {
24978 				/*
24979 				 * The additional sense code indicates a power
24980 				 * on or bus device reset has occurred; update
24981 				 * the reservation status.
24982 				 */
24983 				un->un_resvd_status |=
24984 				    (SD_LOST_RESERVE | SD_WANT_RESERVE);
24985 				SD_INFO(SD_LOG_IOCTL_MHD, un,
24986 				    "sd_mhd_watch_cb: Lost Reservation\n");
24987 			}
24988 		} else {
24989 			return (0);
24990 		}
24991 	} else {
24992 		mutex_enter(SD_MUTEX(un));
24993 	}
24994 
24995 	if ((un->un_resvd_status & SD_RESERVE) &&
24996 	    (un->un_resvd_status & SD_LOST_RESERVE)) {
24997 		if (un->un_resvd_status & SD_WANT_RESERVE) {
24998 			/*
24999 			 * A reset occurred in between the last probe and this
25000 			 * one so if a timeout is pending cancel it.
25001 			 */
25002 			if (un->un_resvd_timeid) {
25003 				timeout_id_t temp_id = un->un_resvd_timeid;
25004 				un->un_resvd_timeid = NULL;
25005 				mutex_exit(SD_MUTEX(un));
25006 				(void) untimeout(temp_id);
25007 				mutex_enter(SD_MUTEX(un));
25008 			}
25009 			un->un_resvd_status &= ~SD_WANT_RESERVE;
25010 		}
25011 		if (un->un_resvd_timeid == 0) {
25012 			/* Schedule a timeout to handle the lost reservation */
25013 			un->un_resvd_timeid = timeout(sd_mhd_resvd_recover,
25014 			    (void *)dev,
25015 			    drv_usectohz(sd_reinstate_resv_delay));
25016 		}
25017 	}
25018 	mutex_exit(SD_MUTEX(un));
25019 	return (0);
25020 }
25021 
25022 
25023 /*
25024  *    Function: sd_mhd_watch_incomplete()
25025  *
25026  * Description: This function is used to find out why a scsi pkt sent by the
25027  *		scsi watch facility was not completed. Under some scenarios this
25028  *		routine will return. Otherwise it will send a bus reset to see
25029  *		if the drive is still online.
25030  *
25031  *   Arguments: un  - driver soft state (unit) structure
25032  *		pkt - incomplete scsi pkt
25033  */
25034 
25035 static void
25036 sd_mhd_watch_incomplete(struct sd_lun *un, struct scsi_pkt *pkt)
25037 {
25038 	int	be_chatty;
25039 	int	perr;
25040 
25041 	ASSERT(pkt != NULL);
25042 	ASSERT(un != NULL);
25043 	be_chatty	= (!(pkt->pkt_flags & FLAG_SILENT));
25044 	perr		= (pkt->pkt_statistics & STAT_PERR);
25045 
25046 	mutex_enter(SD_MUTEX(un));
25047 	if (un->un_state == SD_STATE_DUMPING) {
25048 		mutex_exit(SD_MUTEX(un));
25049 		return;
25050 	}
25051 
25052 	switch (pkt->pkt_reason) {
25053 	case CMD_UNX_BUS_FREE:
25054 		/*
25055 		 * If we had a parity error that caused the target to drop BSY*,
25056 		 * don't be chatty about it.
25057 		 */
25058 		if (perr && be_chatty) {
25059 			be_chatty = 0;
25060 		}
25061 		break;
25062 	case CMD_TAG_REJECT:
25063 		/*
25064 		 * The SCSI-2 spec states that a tag reject will be sent by the
25065 		 * target if tagged queuing is not supported. A tag reject may
25066 		 * also be sent during certain initialization periods or to
25067 		 * control internal resources. For the latter case the target
25068 		 * may also return Queue Full.
25069 		 *
25070 		 * If this driver receives a tag reject from a target that is
25071 		 * going through an init period or controlling internal
25072 		 * resources tagged queuing will be disabled. This is a less
25073 		 * than optimal behavior but the driver is unable to determine
25074 		 * the target state and assumes tagged queueing is not supported
25075 		 */
25076 		pkt->pkt_flags = 0;
25077 		un->un_tagflags = 0;
25078 
25079 		if (un->un_f_opt_queueing == TRUE) {
25080 			un->un_throttle = min(un->un_throttle, 3);
25081 		} else {
25082 			un->un_throttle = 1;
25083 		}
25084 		mutex_exit(SD_MUTEX(un));
25085 		(void) scsi_ifsetcap(SD_ADDRESS(un), "tagged-qing", 0, 1);
25086 		mutex_enter(SD_MUTEX(un));
25087 		break;
25088 	case CMD_INCOMPLETE:
25089 		/*
25090 		 * The transport stopped with an abnormal state, fallthrough and
25091 		 * reset the target and/or bus unless selection did not complete
25092 		 * (indicated by STATE_GOT_BUS) in which case we don't want to
25093 		 * go through a target/bus reset
25094 		 */
25095 		if (pkt->pkt_state == STATE_GOT_BUS) {
25096 			break;
25097 		}
25098 		/*FALLTHROUGH*/
25099 
25100 	case CMD_TIMEOUT:
25101 	default:
25102 		/*
25103 		 * The lun may still be running the command, so a lun reset
25104 		 * should be attempted. If the lun reset fails or cannot be
25105 		 * issued, than try a target reset. Lastly try a bus reset.
25106 		 */
25107 		if ((pkt->pkt_statistics &
25108 		    (STAT_BUS_RESET|STAT_DEV_RESET|STAT_ABORTED)) == 0) {
25109 			int reset_retval = 0;
25110 			mutex_exit(SD_MUTEX(un));
25111 			if (un->un_f_allow_bus_device_reset == TRUE) {
25112 				if (un->un_f_lun_reset_enabled == TRUE) {
25113 					reset_retval =
25114 					    scsi_reset(SD_ADDRESS(un),
25115 					    RESET_LUN);
25116 				}
25117 				if (reset_retval == 0) {
25118 					reset_retval =
25119 					    scsi_reset(SD_ADDRESS(un),
25120 					    RESET_TARGET);
25121 				}
25122 			}
25123 			if (reset_retval == 0) {
25124 				(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
25125 			}
25126 			mutex_enter(SD_MUTEX(un));
25127 		}
25128 		break;
25129 	}
25130 
25131 	/* A device/bus reset has occurred; update the reservation status. */
25132 	if ((pkt->pkt_reason == CMD_RESET) || (pkt->pkt_statistics &
25133 	    (STAT_BUS_RESET | STAT_DEV_RESET))) {
25134 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25135 			un->un_resvd_status |=
25136 			    (SD_LOST_RESERVE | SD_WANT_RESERVE);
25137 			SD_INFO(SD_LOG_IOCTL_MHD, un,
25138 			    "sd_mhd_watch_incomplete: Lost Reservation\n");
25139 		}
25140 	}
25141 
25142 	/*
25143 	 * The disk has been turned off; Update the device state.
25144 	 *
25145 	 * Note: Should we be offlining the disk here?
25146 	 */
25147 	if (pkt->pkt_state == STATE_GOT_BUS) {
25148 		SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_watch_incomplete: "
25149 		    "Disk not responding to selection\n");
25150 		if (un->un_state != SD_STATE_OFFLINE) {
25151 			New_state(un, SD_STATE_OFFLINE);
25152 		}
25153 	} else if (be_chatty) {
25154 		/*
25155 		 * suppress messages if they are all the same pkt reason;
25156 		 * with TQ, many (up to 256) are returned with the same
25157 		 * pkt_reason
25158 		 */
25159 		if (pkt->pkt_reason != un->un_last_pkt_reason) {
25160 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
25161 			    "sd_mhd_watch_incomplete: "
25162 			    "SCSI transport failed: reason '%s'\n",
25163 			    scsi_rname(pkt->pkt_reason));
25164 		}
25165 	}
25166 	un->un_last_pkt_reason = pkt->pkt_reason;
25167 	mutex_exit(SD_MUTEX(un));
25168 }
25169 
25170 
25171 /*
25172  *    Function: sd_sname()
25173  *
25174  * Description: This is a simple little routine to return a string containing
25175  *		a printable description of command status byte for use in
25176  *		logging.
25177  *
25178  *   Arguments: status - pointer to a status byte
25179  *
25180  * Return Code: char * - string containing status description.
25181  */
25182 
25183 static char *
25184 sd_sname(uchar_t status)
25185 {
25186 	switch (status & STATUS_MASK) {
25187 	case STATUS_GOOD:
25188 		return ("good status");
25189 	case STATUS_CHECK:
25190 		return ("check condition");
25191 	case STATUS_MET:
25192 		return ("condition met");
25193 	case STATUS_BUSY:
25194 		return ("busy");
25195 	case STATUS_INTERMEDIATE:
25196 		return ("intermediate");
25197 	case STATUS_INTERMEDIATE_MET:
25198 		return ("intermediate - condition met");
25199 	case STATUS_RESERVATION_CONFLICT:
25200 		return ("reservation_conflict");
25201 	case STATUS_TERMINATED:
25202 		return ("command terminated");
25203 	case STATUS_QFULL:
25204 		return ("queue full");
25205 	default:
25206 		return ("<unknown status>");
25207 	}
25208 }
25209 
25210 
25211 /*
25212  *    Function: sd_mhd_resvd_recover()
25213  *
25214  * Description: This function adds a reservation entry to the
25215  *		sd_resv_reclaim_request list and signals the reservation
25216  *		reclaim thread that there is work pending. If the reservation
25217  *		reclaim thread has not been previously created this function
25218  *		will kick it off.
25219  *
25220  *   Arguments: arg -   the device 'dev_t' is used for context to discriminate
25221  *			among multiple watches that share this callback function
25222  *
25223  *     Context: This routine is called by timeout() and is run in interrupt
25224  *		context. It must not sleep or call other functions which may
25225  *		sleep.
25226  */
25227 
25228 static void
25229 sd_mhd_resvd_recover(void *arg)
25230 {
25231 	dev_t			dev = (dev_t)arg;
25232 	struct sd_lun		*un;
25233 	struct sd_thr_request	*sd_treq = NULL;
25234 	struct sd_thr_request	*sd_cur = NULL;
25235 	struct sd_thr_request	*sd_prev = NULL;
25236 	int			already_there = 0;
25237 
25238 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25239 		return;
25240 	}
25241 
25242 	mutex_enter(SD_MUTEX(un));
25243 	un->un_resvd_timeid = NULL;
25244 	if (un->un_resvd_status & SD_WANT_RESERVE) {
25245 		/*
25246 		 * There was a reset so don't issue the reserve, allow the
25247 		 * sd_mhd_watch_cb callback function to notice this and
25248 		 * reschedule the timeout for reservation.
25249 		 */
25250 		mutex_exit(SD_MUTEX(un));
25251 		return;
25252 	}
25253 	mutex_exit(SD_MUTEX(un));
25254 
25255 	/*
25256 	 * Add this device to the sd_resv_reclaim_request list and the
25257 	 * sd_resv_reclaim_thread should take care of the rest.
25258 	 *
25259 	 * Note: We can't sleep in this context so if the memory allocation
25260 	 * fails allow the sd_mhd_watch_cb callback function to notice this and
25261 	 * reschedule the timeout for reservation.  (4378460)
25262 	 */
25263 	sd_treq = (struct sd_thr_request *)
25264 	    kmem_zalloc(sizeof (struct sd_thr_request), KM_NOSLEEP);
25265 	if (sd_treq == NULL) {
25266 		return;
25267 	}
25268 
25269 	sd_treq->sd_thr_req_next = NULL;
25270 	sd_treq->dev = dev;
25271 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25272 	if (sd_tr.srq_thr_req_head == NULL) {
25273 		sd_tr.srq_thr_req_head = sd_treq;
25274 	} else {
25275 		sd_cur = sd_prev = sd_tr.srq_thr_req_head;
25276 		for (; sd_cur != NULL; sd_cur = sd_cur->sd_thr_req_next) {
25277 			if (sd_cur->dev == dev) {
25278 				/*
25279 				 * already in Queue so don't log
25280 				 * another request for the device
25281 				 */
25282 				already_there = 1;
25283 				break;
25284 			}
25285 			sd_prev = sd_cur;
25286 		}
25287 		if (!already_there) {
25288 			SD_INFO(SD_LOG_IOCTL_MHD, un, "sd_mhd_resvd_recover: "
25289 			    "logging request for %lx\n", dev);
25290 			sd_prev->sd_thr_req_next = sd_treq;
25291 		} else {
25292 			kmem_free(sd_treq, sizeof (struct sd_thr_request));
25293 		}
25294 	}
25295 
25296 	/*
25297 	 * Create a kernel thread to do the reservation reclaim and free up this
25298 	 * thread. We cannot block this thread while we go away to do the
25299 	 * reservation reclaim
25300 	 */
25301 	if (sd_tr.srq_resv_reclaim_thread == NULL)
25302 		sd_tr.srq_resv_reclaim_thread = thread_create(NULL, 0,
25303 		    sd_resv_reclaim_thread, NULL,
25304 		    0, &p0, TS_RUN, v.v_maxsyspri - 2);
25305 
25306 	/* Tell the reservation reclaim thread that it has work to do */
25307 	cv_signal(&sd_tr.srq_resv_reclaim_cv);
25308 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25309 }
25310 
25311 /*
25312  *    Function: sd_resv_reclaim_thread()
25313  *
25314  * Description: This function implements the reservation reclaim operations
25315  *
25316  *   Arguments: arg - the device 'dev_t' is used for context to discriminate
25317  *		      among multiple watches that share this callback function
25318  */
25319 
25320 static void
25321 sd_resv_reclaim_thread()
25322 {
25323 	struct sd_lun		*un;
25324 	struct sd_thr_request	*sd_mhreq;
25325 
25326 	/* Wait for work */
25327 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25328 	if (sd_tr.srq_thr_req_head == NULL) {
25329 		cv_wait(&sd_tr.srq_resv_reclaim_cv,
25330 		    &sd_tr.srq_resv_reclaim_mutex);
25331 	}
25332 
25333 	/* Loop while we have work */
25334 	while ((sd_tr.srq_thr_cur_req = sd_tr.srq_thr_req_head) != NULL) {
25335 		un = ddi_get_soft_state(sd_state,
25336 		    SDUNIT(sd_tr.srq_thr_cur_req->dev));
25337 		if (un == NULL) {
25338 			/*
25339 			 * softstate structure is NULL so just
25340 			 * dequeue the request and continue
25341 			 */
25342 			sd_tr.srq_thr_req_head =
25343 			    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25344 			kmem_free(sd_tr.srq_thr_cur_req,
25345 			    sizeof (struct sd_thr_request));
25346 			continue;
25347 		}
25348 
25349 		/* dequeue the request */
25350 		sd_mhreq = sd_tr.srq_thr_cur_req;
25351 		sd_tr.srq_thr_req_head =
25352 		    sd_tr.srq_thr_cur_req->sd_thr_req_next;
25353 		mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25354 
25355 		/*
25356 		 * Reclaim reservation only if SD_RESERVE is still set. There
25357 		 * may have been a call to MHIOCRELEASE before we got here.
25358 		 */
25359 		mutex_enter(SD_MUTEX(un));
25360 		if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25361 			/*
25362 			 * Note: The SD_LOST_RESERVE flag is cleared before
25363 			 * reclaiming the reservation. If this is done after the
25364 			 * call to sd_reserve_release a reservation loss in the
25365 			 * window between pkt completion of reserve cmd and
25366 			 * mutex_enter below may not be recognized
25367 			 */
25368 			un->un_resvd_status &= ~SD_LOST_RESERVE;
25369 			mutex_exit(SD_MUTEX(un));
25370 
25371 			if (sd_reserve_release(sd_mhreq->dev,
25372 			    SD_RESERVE) == 0) {
25373 				mutex_enter(SD_MUTEX(un));
25374 				un->un_resvd_status |= SD_RESERVE;
25375 				mutex_exit(SD_MUTEX(un));
25376 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25377 				    "sd_resv_reclaim_thread: "
25378 				    "Reservation Recovered\n");
25379 			} else {
25380 				mutex_enter(SD_MUTEX(un));
25381 				un->un_resvd_status |= SD_LOST_RESERVE;
25382 				mutex_exit(SD_MUTEX(un));
25383 				SD_INFO(SD_LOG_IOCTL_MHD, un,
25384 				    "sd_resv_reclaim_thread: Failed "
25385 				    "Reservation Recovery\n");
25386 			}
25387 		} else {
25388 			mutex_exit(SD_MUTEX(un));
25389 		}
25390 		mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25391 		ASSERT(sd_mhreq == sd_tr.srq_thr_cur_req);
25392 		kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25393 		sd_mhreq = sd_tr.srq_thr_cur_req = NULL;
25394 		/*
25395 		 * wakeup the destroy thread if anyone is waiting on
25396 		 * us to complete.
25397 		 */
25398 		cv_signal(&sd_tr.srq_inprocess_cv);
25399 		SD_TRACE(SD_LOG_IOCTL_MHD, un,
25400 		    "sd_resv_reclaim_thread: cv_signalling current request \n");
25401 	}
25402 
25403 	/*
25404 	 * cleanup the sd_tr structure now that this thread will not exist
25405 	 */
25406 	ASSERT(sd_tr.srq_thr_req_head == NULL);
25407 	ASSERT(sd_tr.srq_thr_cur_req == NULL);
25408 	sd_tr.srq_resv_reclaim_thread = NULL;
25409 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25410 	thread_exit();
25411 }
25412 
25413 
25414 /*
25415  *    Function: sd_rmv_resv_reclaim_req()
25416  *
25417  * Description: This function removes any pending reservation reclaim requests
25418  *		for the specified device.
25419  *
25420  *   Arguments: dev - the device 'dev_t'
25421  */
25422 
25423 static void
25424 sd_rmv_resv_reclaim_req(dev_t dev)
25425 {
25426 	struct sd_thr_request *sd_mhreq;
25427 	struct sd_thr_request *sd_prev;
25428 
25429 	/* Remove a reservation reclaim request from the list */
25430 	mutex_enter(&sd_tr.srq_resv_reclaim_mutex);
25431 	if (sd_tr.srq_thr_cur_req && sd_tr.srq_thr_cur_req->dev == dev) {
25432 		/*
25433 		 * We are attempting to reinstate reservation for
25434 		 * this device. We wait for sd_reserve_release()
25435 		 * to return before we return.
25436 		 */
25437 		cv_wait(&sd_tr.srq_inprocess_cv,
25438 		    &sd_tr.srq_resv_reclaim_mutex);
25439 	} else {
25440 		sd_prev = sd_mhreq = sd_tr.srq_thr_req_head;
25441 		if (sd_mhreq && sd_mhreq->dev == dev) {
25442 			sd_tr.srq_thr_req_head = sd_mhreq->sd_thr_req_next;
25443 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25444 			mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25445 			return;
25446 		}
25447 		for (; sd_mhreq != NULL; sd_mhreq = sd_mhreq->sd_thr_req_next) {
25448 			if (sd_mhreq && sd_mhreq->dev == dev) {
25449 				break;
25450 			}
25451 			sd_prev = sd_mhreq;
25452 		}
25453 		if (sd_mhreq != NULL) {
25454 			sd_prev->sd_thr_req_next = sd_mhreq->sd_thr_req_next;
25455 			kmem_free(sd_mhreq, sizeof (struct sd_thr_request));
25456 		}
25457 	}
25458 	mutex_exit(&sd_tr.srq_resv_reclaim_mutex);
25459 }
25460 
25461 
25462 /*
25463  *    Function: sd_mhd_reset_notify_cb()
25464  *
25465  * Description: This is a call back function for scsi_reset_notify. This
25466  *		function updates the softstate reserved status and logs the
25467  *		reset. The driver scsi watch facility callback function
25468  *		(sd_mhd_watch_cb) and reservation reclaim thread functionality
25469  *		will reclaim the reservation.
25470  *
25471  *   Arguments: arg  - driver soft state (unit) structure
25472  */
25473 
25474 static void
25475 sd_mhd_reset_notify_cb(caddr_t arg)
25476 {
25477 	struct sd_lun *un = (struct sd_lun *)arg;
25478 
25479 	mutex_enter(SD_MUTEX(un));
25480 	if ((un->un_resvd_status & SD_RESERVE) == SD_RESERVE) {
25481 		un->un_resvd_status |= (SD_LOST_RESERVE | SD_WANT_RESERVE);
25482 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25483 		    "sd_mhd_reset_notify_cb: Lost Reservation\n");
25484 	}
25485 	mutex_exit(SD_MUTEX(un));
25486 }
25487 
25488 
25489 /*
25490  *    Function: sd_take_ownership()
25491  *
25492  * Description: This routine implements an algorithm to achieve a stable
25493  *		reservation on disks which don't implement priority reserve,
25494  *		and makes sure that other host lose re-reservation attempts.
25495  *		This algorithm contains of a loop that keeps issuing the RESERVE
25496  *		for some period of time (min_ownership_delay, default 6 seconds)
25497  *		During that loop, it looks to see if there has been a bus device
25498  *		reset or bus reset (both of which cause an existing reservation
25499  *		to be lost). If the reservation is lost issue RESERVE until a
25500  *		period of min_ownership_delay with no resets has gone by, or
25501  *		until max_ownership_delay has expired. This loop ensures that
25502  *		the host really did manage to reserve the device, in spite of
25503  *		resets. The looping for min_ownership_delay (default six
25504  *		seconds) is important to early generation clustering products,
25505  *		Solstice HA 1.x and Sun Cluster 2.x. Those products use an
25506  *		MHIOCENFAILFAST periodic timer of two seconds. By having
25507  *		MHIOCTKOWN issue Reserves in a loop for six seconds, and having
25508  *		MHIOCENFAILFAST poll every two seconds, the idea is that by the
25509  *		time the MHIOCTKOWN ioctl returns, the other host (if any) will
25510  *		have already noticed, via the MHIOCENFAILFAST polling, that it
25511  *		no longer "owns" the disk and will have panicked itself.  Thus,
25512  *		the host issuing the MHIOCTKOWN is assured (with timing
25513  *		dependencies) that by the time it actually starts to use the
25514  *		disk for real work, the old owner is no longer accessing it.
25515  *
25516  *		min_ownership_delay is the minimum amount of time for which the
25517  *		disk must be reserved continuously devoid of resets before the
25518  *		MHIOCTKOWN ioctl will return success.
25519  *
25520  *		max_ownership_delay indicates the amount of time by which the
25521  *		take ownership should succeed or timeout with an error.
25522  *
25523  *   Arguments: dev - the device 'dev_t'
25524  *		*p  - struct containing timing info.
25525  *
25526  * Return Code: 0 for success or error code
25527  */
25528 
25529 static int
25530 sd_take_ownership(dev_t dev, struct mhioctkown *p)
25531 {
25532 	struct sd_lun	*un;
25533 	int		rval;
25534 	int		err;
25535 	int		reservation_count   = 0;
25536 	int		min_ownership_delay =  6000000; /* in usec */
25537 	int		max_ownership_delay = 30000000; /* in usec */
25538 	clock_t		start_time;	/* starting time of this algorithm */
25539 	clock_t		end_time;	/* time limit for giving up */
25540 	clock_t		ownership_time;	/* time limit for stable ownership */
25541 	clock_t		current_time;
25542 	clock_t		previous_current_time;
25543 
25544 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25545 		return (ENXIO);
25546 	}
25547 
25548 	/*
25549 	 * Attempt a device reservation. A priority reservation is requested.
25550 	 */
25551 	if ((rval = sd_reserve_release(dev, SD_PRIORITY_RESERVE))
25552 	    != SD_SUCCESS) {
25553 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
25554 		    "sd_take_ownership: return(1)=%d\n", rval);
25555 		return (rval);
25556 	}
25557 
25558 	/* Update the softstate reserved status to indicate the reservation */
25559 	mutex_enter(SD_MUTEX(un));
25560 	un->un_resvd_status |= SD_RESERVE;
25561 	un->un_resvd_status &=
25562 	    ~(SD_LOST_RESERVE | SD_WANT_RESERVE | SD_RESERVATION_CONFLICT);
25563 	mutex_exit(SD_MUTEX(un));
25564 
25565 	if (p != NULL) {
25566 		if (p->min_ownership_delay != 0) {
25567 			min_ownership_delay = p->min_ownership_delay * 1000;
25568 		}
25569 		if (p->max_ownership_delay != 0) {
25570 			max_ownership_delay = p->max_ownership_delay * 1000;
25571 		}
25572 	}
25573 	SD_INFO(SD_LOG_IOCTL_MHD, un,
25574 	    "sd_take_ownership: min, max delays: %d, %d\n",
25575 	    min_ownership_delay, max_ownership_delay);
25576 
25577 	start_time = ddi_get_lbolt();
25578 	current_time	= start_time;
25579 	ownership_time	= current_time + drv_usectohz(min_ownership_delay);
25580 	end_time	= start_time + drv_usectohz(max_ownership_delay);
25581 
25582 	while (current_time - end_time < 0) {
25583 		delay(drv_usectohz(500000));
25584 
25585 		if ((err = sd_reserve_release(dev, SD_RESERVE)) != 0) {
25586 			if ((sd_reserve_release(dev, SD_RESERVE)) != 0) {
25587 				mutex_enter(SD_MUTEX(un));
25588 				rval = (un->un_resvd_status &
25589 				    SD_RESERVATION_CONFLICT) ? EACCES : EIO;
25590 				mutex_exit(SD_MUTEX(un));
25591 				break;
25592 			}
25593 		}
25594 		previous_current_time = current_time;
25595 		current_time = ddi_get_lbolt();
25596 		mutex_enter(SD_MUTEX(un));
25597 		if (err || (un->un_resvd_status & SD_LOST_RESERVE)) {
25598 			ownership_time = ddi_get_lbolt() +
25599 			    drv_usectohz(min_ownership_delay);
25600 			reservation_count = 0;
25601 		} else {
25602 			reservation_count++;
25603 		}
25604 		un->un_resvd_status |= SD_RESERVE;
25605 		un->un_resvd_status &= ~(SD_LOST_RESERVE | SD_WANT_RESERVE);
25606 		mutex_exit(SD_MUTEX(un));
25607 
25608 		SD_INFO(SD_LOG_IOCTL_MHD, un,
25609 		    "sd_take_ownership: ticks for loop iteration=%ld, "
25610 		    "reservation=%s\n", (current_time - previous_current_time),
25611 		    reservation_count ? "ok" : "reclaimed");
25612 
25613 		if (current_time - ownership_time >= 0 &&
25614 		    reservation_count >= 4) {
25615 			rval = 0; /* Achieved a stable ownership */
25616 			break;
25617 		}
25618 		if (current_time - end_time >= 0) {
25619 			rval = EACCES; /* No ownership in max possible time */
25620 			break;
25621 		}
25622 	}
25623 	SD_TRACE(SD_LOG_IOCTL_MHD, un,
25624 	    "sd_take_ownership: return(2)=%d\n", rval);
25625 	return (rval);
25626 }
25627 
25628 
25629 /*
25630  *    Function: sd_reserve_release()
25631  *
25632  * Description: This function builds and sends scsi RESERVE, RELEASE, and
25633  *		PRIORITY RESERVE commands based on a user specified command type
25634  *
25635  *   Arguments: dev - the device 'dev_t'
25636  *		cmd - user specified command type; one of SD_PRIORITY_RESERVE,
25637  *		      SD_RESERVE, SD_RELEASE
25638  *
25639  * Return Code: 0 or Error Code
25640  */
25641 
25642 static int
25643 sd_reserve_release(dev_t dev, int cmd)
25644 {
25645 	struct uscsi_cmd	*com = NULL;
25646 	struct sd_lun		*un = NULL;
25647 	char			cdb[CDB_GROUP0];
25648 	int			rval;
25649 
25650 	ASSERT((cmd == SD_RELEASE) || (cmd == SD_RESERVE) ||
25651 	    (cmd == SD_PRIORITY_RESERVE));
25652 
25653 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
25654 		return (ENXIO);
25655 	}
25656 
25657 	/* instantiate and initialize the command and cdb */
25658 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
25659 	bzero(cdb, CDB_GROUP0);
25660 	com->uscsi_flags   = USCSI_SILENT;
25661 	com->uscsi_timeout = un->un_reserve_release_time;
25662 	com->uscsi_cdblen  = CDB_GROUP0;
25663 	com->uscsi_cdb	   = cdb;
25664 	if (cmd == SD_RELEASE) {
25665 		cdb[0] = SCMD_RELEASE;
25666 	} else {
25667 		cdb[0] = SCMD_RESERVE;
25668 	}
25669 
25670 	/* Send the command. */
25671 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25672 	    SD_PATH_STANDARD);
25673 
25674 	/*
25675 	 * "break" a reservation that is held by another host, by issuing a
25676 	 * reset if priority reserve is desired, and we could not get the
25677 	 * device.
25678 	 */
25679 	if ((cmd == SD_PRIORITY_RESERVE) &&
25680 	    (rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25681 		/*
25682 		 * First try to reset the LUN. If we cannot, then try a target
25683 		 * reset, followed by a bus reset if the target reset fails.
25684 		 */
25685 		int reset_retval = 0;
25686 		if (un->un_f_lun_reset_enabled == TRUE) {
25687 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_LUN);
25688 		}
25689 		if (reset_retval == 0) {
25690 			/* The LUN reset either failed or was not issued */
25691 			reset_retval = scsi_reset(SD_ADDRESS(un), RESET_TARGET);
25692 		}
25693 		if ((reset_retval == 0) &&
25694 		    (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0)) {
25695 			rval = EIO;
25696 			kmem_free(com, sizeof (*com));
25697 			return (rval);
25698 		}
25699 
25700 		bzero(com, sizeof (struct uscsi_cmd));
25701 		com->uscsi_flags   = USCSI_SILENT;
25702 		com->uscsi_cdb	   = cdb;
25703 		com->uscsi_cdblen  = CDB_GROUP0;
25704 		com->uscsi_timeout = 5;
25705 
25706 		/*
25707 		 * Reissue the last reserve command, this time without request
25708 		 * sense.  Assume that it is just a regular reserve command.
25709 		 */
25710 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
25711 		    SD_PATH_STANDARD);
25712 	}
25713 
25714 	/* Return an error if still getting a reservation conflict. */
25715 	if ((rval != 0) && (com->uscsi_status == STATUS_RESERVATION_CONFLICT)) {
25716 		rval = EACCES;
25717 	}
25718 
25719 	kmem_free(com, sizeof (*com));
25720 	return (rval);
25721 }
25722 
25723 
25724 #define	SD_NDUMP_RETRIES	12
25725 /*
25726  *	System Crash Dump routine
25727  */
25728 
25729 static int
25730 sddump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
25731 {
25732 	int		instance;
25733 	int		partition;
25734 	int		i;
25735 	int		err;
25736 	struct sd_lun	*un;
25737 	struct scsi_pkt *wr_pktp;
25738 	struct buf	*wr_bp;
25739 	struct buf	wr_buf;
25740 	daddr_t		tgt_byte_offset; /* rmw - byte offset for target */
25741 	daddr_t		tgt_blkno;	/* rmw - blkno for target */
25742 	size_t		tgt_byte_count; /* rmw -  # of bytes to xfer */
25743 	size_t		tgt_nblk; /* rmw -  # of tgt blks to xfer */
25744 	size_t		io_start_offset;
25745 	int		doing_rmw = FALSE;
25746 	int		rval;
25747 	ssize_t		dma_resid;
25748 	daddr_t		oblkno;
25749 	diskaddr_t	nblks = 0;
25750 	diskaddr_t	start_block;
25751 
25752 	instance = SDUNIT(dev);
25753 	if (((un = ddi_get_soft_state(sd_state, instance)) == NULL) ||
25754 	    !SD_IS_VALID_LABEL(un) || ISCD(un)) {
25755 		return (ENXIO);
25756 	}
25757 
25758 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*un))
25759 
25760 	SD_TRACE(SD_LOG_DUMP, un, "sddump: entry\n");
25761 
25762 	partition = SDPART(dev);
25763 	SD_INFO(SD_LOG_DUMP, un, "sddump: partition = %d\n", partition);
25764 
25765 	if (!(NOT_DEVBSIZE(un))) {
25766 		int secmask = 0;
25767 		int blknomask = 0;
25768 
25769 		blknomask = (un->un_tgt_blocksize / DEV_BSIZE) - 1;
25770 		secmask = un->un_tgt_blocksize - 1;
25771 
25772 		if (blkno & blknomask) {
25773 			SD_TRACE(SD_LOG_DUMP, un,
25774 			    "sddump: dump start block not modulo %d\n",
25775 			    un->un_tgt_blocksize);
25776 			return (EINVAL);
25777 		}
25778 
25779 		if ((nblk * DEV_BSIZE) & secmask) {
25780 			SD_TRACE(SD_LOG_DUMP, un,
25781 			    "sddump: dump length not modulo %d\n",
25782 			    un->un_tgt_blocksize);
25783 			return (EINVAL);
25784 		}
25785 
25786 	}
25787 
25788 	/* Validate blocks to dump at against partition size. */
25789 
25790 	(void) cmlb_partinfo(un->un_cmlbhandle, partition,
25791 	    &nblks, &start_block, NULL, NULL, (void *)SD_PATH_DIRECT);
25792 
25793 	if (NOT_DEVBSIZE(un)) {
25794 		if ((blkno + nblk) > nblks) {
25795 			SD_TRACE(SD_LOG_DUMP, un,
25796 			    "sddump: dump range larger than partition: "
25797 			    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25798 			    blkno, nblk, nblks);
25799 			return (EINVAL);
25800 		}
25801 	} else {
25802 		if (((blkno / (un->un_tgt_blocksize / DEV_BSIZE)) +
25803 		    (nblk / (un->un_tgt_blocksize / DEV_BSIZE))) > nblks) {
25804 			SD_TRACE(SD_LOG_DUMP, un,
25805 			    "sddump: dump range larger than partition: "
25806 			    "blkno = 0x%x, nblk = 0x%x, dkl_nblk = 0x%x\n",
25807 			    blkno, nblk, nblks);
25808 			return (EINVAL);
25809 		}
25810 	}
25811 
25812 	mutex_enter(&un->un_pm_mutex);
25813 	if (SD_DEVICE_IS_IN_LOW_POWER(un)) {
25814 		struct scsi_pkt *start_pktp;
25815 
25816 		mutex_exit(&un->un_pm_mutex);
25817 
25818 		/*
25819 		 * use pm framework to power on HBA 1st
25820 		 */
25821 		(void) pm_raise_power(SD_DEVINFO(un), 0,
25822 		    SD_PM_STATE_ACTIVE(un));
25823 
25824 		/*
25825 		 * Dump no long uses sdpower to power on a device, it's
25826 		 * in-line here so it can be done in polled mode.
25827 		 */
25828 
25829 		SD_INFO(SD_LOG_DUMP, un, "sddump: starting device\n");
25830 
25831 		start_pktp = scsi_init_pkt(SD_ADDRESS(un), NULL, NULL,
25832 		    CDB_GROUP0, un->un_status_len, 0, 0, NULL_FUNC, NULL);
25833 
25834 		if (start_pktp == NULL) {
25835 			/* We were not given a SCSI packet, fail. */
25836 			return (EIO);
25837 		}
25838 		bzero(start_pktp->pkt_cdbp, CDB_GROUP0);
25839 		start_pktp->pkt_cdbp[0] = SCMD_START_STOP;
25840 		start_pktp->pkt_cdbp[4] = SD_TARGET_START;
25841 		start_pktp->pkt_flags = FLAG_NOINTR;
25842 
25843 		mutex_enter(SD_MUTEX(un));
25844 		SD_FILL_SCSI1_LUN(un, start_pktp);
25845 		mutex_exit(SD_MUTEX(un));
25846 		/*
25847 		 * Scsi_poll returns 0 (success) if the command completes and
25848 		 * the status block is STATUS_GOOD.
25849 		 */
25850 		if (sd_scsi_poll(un, start_pktp) != 0) {
25851 			scsi_destroy_pkt(start_pktp);
25852 			return (EIO);
25853 		}
25854 		scsi_destroy_pkt(start_pktp);
25855 		(void) sd_pm_state_change(un, SD_PM_STATE_ACTIVE(un),
25856 		    SD_PM_STATE_CHANGE);
25857 	} else {
25858 		mutex_exit(&un->un_pm_mutex);
25859 	}
25860 
25861 	mutex_enter(SD_MUTEX(un));
25862 	un->un_throttle = 0;
25863 
25864 	/*
25865 	 * The first time through, reset the specific target device.
25866 	 * However, when cpr calls sddump we know that sd is in a
25867 	 * a good state so no bus reset is required.
25868 	 * Clear sense data via Request Sense cmd.
25869 	 * In sddump we don't care about allow_bus_device_reset anymore
25870 	 */
25871 
25872 	if ((un->un_state != SD_STATE_SUSPENDED) &&
25873 	    (un->un_state != SD_STATE_DUMPING)) {
25874 
25875 		New_state(un, SD_STATE_DUMPING);
25876 
25877 		if (un->un_f_is_fibre == FALSE) {
25878 			mutex_exit(SD_MUTEX(un));
25879 			/*
25880 			 * Attempt a bus reset for parallel scsi.
25881 			 *
25882 			 * Note: A bus reset is required because on some host
25883 			 * systems (i.e. E420R) a bus device reset is
25884 			 * insufficient to reset the state of the target.
25885 			 *
25886 			 * Note: Don't issue the reset for fibre-channel,
25887 			 * because this tends to hang the bus (loop) for
25888 			 * too long while everyone is logging out and in
25889 			 * and the deadman timer for dumping will fire
25890 			 * before the dump is complete.
25891 			 */
25892 			if (scsi_reset(SD_ADDRESS(un), RESET_ALL) == 0) {
25893 				mutex_enter(SD_MUTEX(un));
25894 				Restore_state(un);
25895 				mutex_exit(SD_MUTEX(un));
25896 				return (EIO);
25897 			}
25898 
25899 			/* Delay to give the device some recovery time. */
25900 			drv_usecwait(10000);
25901 
25902 			if (sd_send_polled_RQS(un) == SD_FAILURE) {
25903 				SD_INFO(SD_LOG_DUMP, un,
25904 				    "sddump: sd_send_polled_RQS failed\n");
25905 			}
25906 			mutex_enter(SD_MUTEX(un));
25907 		}
25908 	}
25909 
25910 	/*
25911 	 * Convert the partition-relative block number to a
25912 	 * disk physical block number.
25913 	 */
25914 	if (NOT_DEVBSIZE(un)) {
25915 		blkno += start_block;
25916 	} else {
25917 		blkno = blkno / (un->un_tgt_blocksize / DEV_BSIZE);
25918 		blkno += start_block;
25919 	}
25920 
25921 	SD_INFO(SD_LOG_DUMP, un, "sddump: disk blkno = 0x%x\n", blkno);
25922 
25923 
25924 	/*
25925 	 * Check if the device has a non-512 block size.
25926 	 */
25927 	wr_bp = NULL;
25928 	if (NOT_DEVBSIZE(un)) {
25929 		tgt_byte_offset = blkno * un->un_sys_blocksize;
25930 		tgt_byte_count = nblk * un->un_sys_blocksize;
25931 		if ((tgt_byte_offset % un->un_tgt_blocksize) ||
25932 		    (tgt_byte_count % un->un_tgt_blocksize)) {
25933 			doing_rmw = TRUE;
25934 			/*
25935 			 * Calculate the block number and number of block
25936 			 * in terms of the media block size.
25937 			 */
25938 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25939 			tgt_nblk =
25940 			    ((tgt_byte_offset + tgt_byte_count +
25941 			    (un->un_tgt_blocksize - 1)) /
25942 			    un->un_tgt_blocksize) - tgt_blkno;
25943 
25944 			/*
25945 			 * Invoke the routine which is going to do read part
25946 			 * of read-modify-write.
25947 			 * Note that this routine returns a pointer to
25948 			 * a valid bp in wr_bp.
25949 			 */
25950 			err = sddump_do_read_of_rmw(un, tgt_blkno, tgt_nblk,
25951 			    &wr_bp);
25952 			if (err) {
25953 				mutex_exit(SD_MUTEX(un));
25954 				return (err);
25955 			}
25956 			/*
25957 			 * Offset is being calculated as -
25958 			 * (original block # * system block size) -
25959 			 * (new block # * target block size)
25960 			 */
25961 			io_start_offset =
25962 			    ((uint64_t)(blkno * un->un_sys_blocksize)) -
25963 			    ((uint64_t)(tgt_blkno * un->un_tgt_blocksize));
25964 
25965 			ASSERT((io_start_offset >= 0) &&
25966 			    (io_start_offset < un->un_tgt_blocksize));
25967 			/*
25968 			 * Do the modify portion of read modify write.
25969 			 */
25970 			bcopy(addr, &wr_bp->b_un.b_addr[io_start_offset],
25971 			    (size_t)nblk * un->un_sys_blocksize);
25972 		} else {
25973 			doing_rmw = FALSE;
25974 			tgt_blkno = tgt_byte_offset / un->un_tgt_blocksize;
25975 			tgt_nblk = tgt_byte_count / un->un_tgt_blocksize;
25976 		}
25977 
25978 		/* Convert blkno and nblk to target blocks */
25979 		blkno = tgt_blkno;
25980 		nblk = tgt_nblk;
25981 	} else {
25982 		wr_bp = &wr_buf;
25983 		bzero(wr_bp, sizeof (struct buf));
25984 		wr_bp->b_flags		= B_BUSY;
25985 		wr_bp->b_un.b_addr	= addr;
25986 		wr_bp->b_bcount		= nblk << DEV_BSHIFT;
25987 		wr_bp->b_resid		= 0;
25988 	}
25989 
25990 	mutex_exit(SD_MUTEX(un));
25991 
25992 	/*
25993 	 * Obtain a SCSI packet for the write command.
25994 	 * It should be safe to call the allocator here without
25995 	 * worrying about being locked for DVMA mapping because
25996 	 * the address we're passed is already a DVMA mapping
25997 	 *
25998 	 * We are also not going to worry about semaphore ownership
25999 	 * in the dump buffer. Dumping is single threaded at present.
26000 	 */
26001 
26002 	wr_pktp = NULL;
26003 
26004 	dma_resid = wr_bp->b_bcount;
26005 	oblkno = blkno;
26006 
26007 	if (!(NOT_DEVBSIZE(un))) {
26008 		nblk = nblk / (un->un_tgt_blocksize / DEV_BSIZE);
26009 	}
26010 
26011 	while (dma_resid != 0) {
26012 
26013 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26014 		wr_bp->b_flags &= ~B_ERROR;
26015 
26016 		if (un->un_partial_dma_supported == 1) {
26017 			blkno = oblkno +
26018 			    ((wr_bp->b_bcount - dma_resid) /
26019 			    un->un_tgt_blocksize);
26020 			nblk = dma_resid / un->un_tgt_blocksize;
26021 
26022 			if (wr_pktp) {
26023 				/*
26024 				 * Partial DMA transfers after initial transfer
26025 				 */
26026 				rval = sd_setup_next_rw_pkt(un, wr_pktp, wr_bp,
26027 				    blkno, nblk);
26028 			} else {
26029 				/* Initial transfer */
26030 				rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26031 				    un->un_pkt_flags, NULL_FUNC, NULL,
26032 				    blkno, nblk);
26033 			}
26034 		} else {
26035 			rval = sd_setup_rw_pkt(un, &wr_pktp, wr_bp,
26036 			    0, NULL_FUNC, NULL, blkno, nblk);
26037 		}
26038 
26039 		if (rval == 0) {
26040 			/* We were given a SCSI packet, continue. */
26041 			break;
26042 		}
26043 
26044 		if (i == 0) {
26045 			if (wr_bp->b_flags & B_ERROR) {
26046 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26047 				    "no resources for dumping; "
26048 				    "error code: 0x%x, retrying",
26049 				    geterror(wr_bp));
26050 			} else {
26051 				scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26052 				    "no resources for dumping; retrying");
26053 			}
26054 		} else if (i != (SD_NDUMP_RETRIES - 1)) {
26055 			if (wr_bp->b_flags & B_ERROR) {
26056 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26057 				    "no resources for dumping; error code: "
26058 				    "0x%x, retrying\n", geterror(wr_bp));
26059 			}
26060 		} else {
26061 			if (wr_bp->b_flags & B_ERROR) {
26062 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26063 				    "no resources for dumping; "
26064 				    "error code: 0x%x, retries failed, "
26065 				    "giving up.\n", geterror(wr_bp));
26066 			} else {
26067 				scsi_log(SD_DEVINFO(un), sd_label, CE_CONT,
26068 				    "no resources for dumping; "
26069 				    "retries failed, giving up.\n");
26070 			}
26071 			mutex_enter(SD_MUTEX(un));
26072 			Restore_state(un);
26073 			if (NOT_DEVBSIZE(un) && (doing_rmw == TRUE)) {
26074 				mutex_exit(SD_MUTEX(un));
26075 				scsi_free_consistent_buf(wr_bp);
26076 			} else {
26077 				mutex_exit(SD_MUTEX(un));
26078 			}
26079 			return (EIO);
26080 		}
26081 		drv_usecwait(10000);
26082 	}
26083 
26084 	if (un->un_partial_dma_supported == 1) {
26085 		/*
26086 		 * save the resid from PARTIAL_DMA
26087 		 */
26088 		dma_resid = wr_pktp->pkt_resid;
26089 		if (dma_resid != 0)
26090 			nblk -= SD_BYTES2TGTBLOCKS(un, dma_resid);
26091 		wr_pktp->pkt_resid = 0;
26092 	} else {
26093 		dma_resid = 0;
26094 	}
26095 
26096 	/* SunBug 1222170 */
26097 	wr_pktp->pkt_flags = FLAG_NOINTR;
26098 
26099 	err = EIO;
26100 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
26101 
26102 		/*
26103 		 * Scsi_poll returns 0 (success) if the command completes and
26104 		 * the status block is STATUS_GOOD.  We should only check
26105 		 * errors if this condition is not true.  Even then we should
26106 		 * send our own request sense packet only if we have a check
26107 		 * condition and auto request sense has not been performed by
26108 		 * the hba.
26109 		 */
26110 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending write\n");
26111 
26112 		if ((sd_scsi_poll(un, wr_pktp) == 0) &&
26113 		    (wr_pktp->pkt_resid == 0)) {
26114 			err = SD_SUCCESS;
26115 			break;
26116 		}
26117 
26118 		/*
26119 		 * Check CMD_DEV_GONE 1st, give up if device is gone.
26120 		 */
26121 		if (wr_pktp->pkt_reason == CMD_DEV_GONE) {
26122 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26123 			    "Error while dumping state...Device is gone\n");
26124 			break;
26125 		}
26126 
26127 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_CHECK) {
26128 			SD_INFO(SD_LOG_DUMP, un,
26129 			    "sddump: write failed with CHECK, try # %d\n", i);
26130 			if (((wr_pktp->pkt_state & STATE_ARQ_DONE) == 0)) {
26131 				(void) sd_send_polled_RQS(un);
26132 			}
26133 
26134 			continue;
26135 		}
26136 
26137 		if (SD_GET_PKT_STATUS(wr_pktp) == STATUS_BUSY) {
26138 			int reset_retval = 0;
26139 
26140 			SD_INFO(SD_LOG_DUMP, un,
26141 			    "sddump: write failed with BUSY, try # %d\n", i);
26142 
26143 			if (un->un_f_lun_reset_enabled == TRUE) {
26144 				reset_retval = scsi_reset(SD_ADDRESS(un),
26145 				    RESET_LUN);
26146 			}
26147 			if (reset_retval == 0) {
26148 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
26149 			}
26150 			(void) sd_send_polled_RQS(un);
26151 
26152 		} else {
26153 			SD_INFO(SD_LOG_DUMP, un,
26154 			    "sddump: write failed with 0x%x, try # %d\n",
26155 			    SD_GET_PKT_STATUS(wr_pktp), i);
26156 			mutex_enter(SD_MUTEX(un));
26157 			sd_reset_target(un, wr_pktp);
26158 			mutex_exit(SD_MUTEX(un));
26159 		}
26160 
26161 		/*
26162 		 * If we are not getting anywhere with lun/target resets,
26163 		 * let's reset the bus.
26164 		 */
26165 		if (i == SD_NDUMP_RETRIES/2) {
26166 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
26167 			(void) sd_send_polled_RQS(un);
26168 		}
26169 	}
26170 	}
26171 
26172 	scsi_destroy_pkt(wr_pktp);
26173 	mutex_enter(SD_MUTEX(un));
26174 	if ((NOT_DEVBSIZE(un)) && (doing_rmw == TRUE)) {
26175 		mutex_exit(SD_MUTEX(un));
26176 		scsi_free_consistent_buf(wr_bp);
26177 	} else {
26178 		mutex_exit(SD_MUTEX(un));
26179 	}
26180 	SD_TRACE(SD_LOG_DUMP, un, "sddump: exit: err = %d\n", err);
26181 	return (err);
26182 }
26183 
26184 /*
26185  *    Function: sd_scsi_poll()
26186  *
26187  * Description: This is a wrapper for the scsi_poll call.
26188  *
26189  *   Arguments: sd_lun - The unit structure
26190  *              scsi_pkt - The scsi packet being sent to the device.
26191  *
26192  * Return Code: 0 - Command completed successfully with good status
26193  *             -1 - Command failed.  This could indicate a check condition
26194  *                  or other status value requiring recovery action.
26195  *
26196  * NOTE: This code is only called off sddump().
26197  */
26198 
26199 static int
26200 sd_scsi_poll(struct sd_lun *un, struct scsi_pkt *pktp)
26201 {
26202 	int status;
26203 
26204 	ASSERT(un != NULL);
26205 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26206 	ASSERT(pktp != NULL);
26207 
26208 	status = SD_SUCCESS;
26209 
26210 	if (scsi_ifgetcap(&pktp->pkt_address, "tagged-qing", 1) == 1) {
26211 		pktp->pkt_flags |= un->un_tagflags;
26212 		pktp->pkt_flags &= ~FLAG_NODISCON;
26213 	}
26214 
26215 	status = sd_ddi_scsi_poll(pktp);
26216 	/*
26217 	 * Scsi_poll returns 0 (success) if the command completes and the
26218 	 * status block is STATUS_GOOD.  We should only check errors if this
26219 	 * condition is not true.  Even then we should send our own request
26220 	 * sense packet only if we have a check condition and auto
26221 	 * request sense has not been performed by the hba.
26222 	 * Don't get RQS data if pkt_reason is CMD_DEV_GONE.
26223 	 */
26224 	if ((status != SD_SUCCESS) &&
26225 	    (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK) &&
26226 	    (pktp->pkt_state & STATE_ARQ_DONE) == 0 &&
26227 	    (pktp->pkt_reason != CMD_DEV_GONE))
26228 		(void) sd_send_polled_RQS(un);
26229 
26230 	return (status);
26231 }
26232 
26233 /*
26234  *    Function: sd_send_polled_RQS()
26235  *
26236  * Description: This sends the request sense command to a device.
26237  *
26238  *   Arguments: sd_lun - The unit structure
26239  *
26240  * Return Code: 0 - Command completed successfully with good status
26241  *             -1 - Command failed.
26242  *
26243  */
26244 
26245 static int
26246 sd_send_polled_RQS(struct sd_lun *un)
26247 {
26248 	int	ret_val;
26249 	struct	scsi_pkt	*rqs_pktp;
26250 	struct	buf		*rqs_bp;
26251 
26252 	ASSERT(un != NULL);
26253 	ASSERT(!mutex_owned(SD_MUTEX(un)));
26254 
26255 	ret_val = SD_SUCCESS;
26256 
26257 	rqs_pktp = un->un_rqs_pktp;
26258 	rqs_bp	 = un->un_rqs_bp;
26259 
26260 	mutex_enter(SD_MUTEX(un));
26261 
26262 	if (un->un_sense_isbusy) {
26263 		ret_val = SD_FAILURE;
26264 		mutex_exit(SD_MUTEX(un));
26265 		return (ret_val);
26266 	}
26267 
26268 	/*
26269 	 * If the request sense buffer (and packet) is not in use,
26270 	 * let's set the un_sense_isbusy and send our packet
26271 	 */
26272 	un->un_sense_isbusy 	= 1;
26273 	rqs_pktp->pkt_resid  	= 0;
26274 	rqs_pktp->pkt_reason 	= 0;
26275 	rqs_pktp->pkt_flags |= FLAG_NOINTR;
26276 	bzero(rqs_bp->b_un.b_addr, SENSE_LENGTH);
26277 
26278 	mutex_exit(SD_MUTEX(un));
26279 
26280 	SD_INFO(SD_LOG_COMMON, un, "sd_send_polled_RQS: req sense buf at"
26281 	    " 0x%p\n", rqs_bp->b_un.b_addr);
26282 
26283 	/*
26284 	 * Can't send this to sd_scsi_poll, we wrap ourselves around the
26285 	 * axle - it has a call into us!
26286 	 */
26287 	if ((ret_val = sd_ddi_scsi_poll(rqs_pktp)) != 0) {
26288 		SD_INFO(SD_LOG_COMMON, un,
26289 		    "sd_send_polled_RQS: RQS failed\n");
26290 	}
26291 
26292 	SD_DUMP_MEMORY(un, SD_LOG_COMMON, "sd_send_polled_RQS:",
26293 	    (uchar_t *)rqs_bp->b_un.b_addr, SENSE_LENGTH, SD_LOG_HEX);
26294 
26295 	mutex_enter(SD_MUTEX(un));
26296 	un->un_sense_isbusy = 0;
26297 	mutex_exit(SD_MUTEX(un));
26298 
26299 	return (ret_val);
26300 }
26301 
26302 /*
26303  * Defines needed for localized version of the scsi_poll routine.
26304  */
26305 #define	CSEC		10000			/* usecs */
26306 #define	SEC_TO_CSEC	(1000000/CSEC)
26307 
26308 /*
26309  *    Function: sd_ddi_scsi_poll()
26310  *
26311  * Description: Localized version of the scsi_poll routine.  The purpose is to
26312  *		send a scsi_pkt to a device as a polled command.  This version
26313  *		is to ensure more robust handling of transport errors.
26314  *		Specifically this routine cures not ready, coming ready
26315  *		transition for power up and reset of sonoma's.  This can take
26316  *		up to 45 seconds for power-on and 20 seconds for reset of a
26317  * 		sonoma lun.
26318  *
26319  *   Arguments: scsi_pkt - The scsi_pkt being sent to a device
26320  *
26321  * Return Code: 0 - Command completed successfully with good status
26322  *             -1 - Command failed.
26323  *
26324  * NOTE: This code is almost identical to scsi_poll, however before 6668774 can
26325  * be fixed (removing this code), we need to determine how to handle the
26326  * KEY_UNIT_ATTENTION condition below in conditions not as limited as sddump().
26327  *
26328  * NOTE: This code is only called off sddump().
26329  */
26330 static int
26331 sd_ddi_scsi_poll(struct scsi_pkt *pkt)
26332 {
26333 	int			rval = -1;
26334 	int			savef;
26335 	long			savet;
26336 	void			(*savec)();
26337 	int			timeout;
26338 	int			busy_count;
26339 	int			poll_delay;
26340 	int			rc;
26341 	uint8_t			*sensep;
26342 	struct scsi_arq_status	*arqstat;
26343 	extern int		do_polled_io;
26344 
26345 	ASSERT(pkt->pkt_scbp);
26346 
26347 	/*
26348 	 * save old flags..
26349 	 */
26350 	savef = pkt->pkt_flags;
26351 	savec = pkt->pkt_comp;
26352 	savet = pkt->pkt_time;
26353 
26354 	pkt->pkt_flags |= FLAG_NOINTR;
26355 
26356 	/*
26357 	 * XXX there is nothing in the SCSA spec that states that we should not
26358 	 * do a callback for polled cmds; however, removing this will break sd
26359 	 * and probably other target drivers
26360 	 */
26361 	pkt->pkt_comp = NULL;
26362 
26363 	/*
26364 	 * we don't like a polled command without timeout.
26365 	 * 60 seconds seems long enough.
26366 	 */
26367 	if (pkt->pkt_time == 0)
26368 		pkt->pkt_time = SCSI_POLL_TIMEOUT;
26369 
26370 	/*
26371 	 * Send polled cmd.
26372 	 *
26373 	 * We do some error recovery for various errors.  Tran_busy,
26374 	 * queue full, and non-dispatched commands are retried every 10 msec.
26375 	 * as they are typically transient failures.  Busy status and Not
26376 	 * Ready are retried every second as this status takes a while to
26377 	 * change.
26378 	 */
26379 	timeout = pkt->pkt_time * SEC_TO_CSEC;
26380 
26381 	for (busy_count = 0; busy_count < timeout; busy_count++) {
26382 		/*
26383 		 * Initialize pkt status variables.
26384 		 */
26385 		*pkt->pkt_scbp = pkt->pkt_reason = pkt->pkt_state = 0;
26386 
26387 		if ((rc = scsi_transport(pkt)) != TRAN_ACCEPT) {
26388 			if (rc != TRAN_BUSY) {
26389 				/* Transport failed - give up. */
26390 				break;
26391 			} else {
26392 				/* Transport busy - try again. */
26393 				poll_delay = 1 * CSEC;		/* 10 msec. */
26394 			}
26395 		} else {
26396 			/*
26397 			 * Transport accepted - check pkt status.
26398 			 */
26399 			rc = (*pkt->pkt_scbp) & STATUS_MASK;
26400 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26401 			    (rc == STATUS_CHECK) &&
26402 			    (pkt->pkt_state & STATE_ARQ_DONE)) {
26403 				arqstat =
26404 				    (struct scsi_arq_status *)(pkt->pkt_scbp);
26405 				sensep = (uint8_t *)&arqstat->sts_sensedata;
26406 			} else {
26407 				sensep = NULL;
26408 			}
26409 
26410 			if ((pkt->pkt_reason == CMD_CMPLT) &&
26411 			    (rc == STATUS_GOOD)) {
26412 				/* No error - we're done */
26413 				rval = 0;
26414 				break;
26415 
26416 			} else if (pkt->pkt_reason == CMD_DEV_GONE) {
26417 				/* Lost connection - give up */
26418 				break;
26419 
26420 			} else if ((pkt->pkt_reason == CMD_INCOMPLETE) &&
26421 			    (pkt->pkt_state == 0)) {
26422 				/* Pkt not dispatched - try again. */
26423 				poll_delay = 1 * CSEC;		/* 10 msec. */
26424 
26425 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26426 			    (rc == STATUS_QFULL)) {
26427 				/* Queue full - try again. */
26428 				poll_delay = 1 * CSEC;		/* 10 msec. */
26429 
26430 			} else if ((pkt->pkt_reason == CMD_CMPLT) &&
26431 			    (rc == STATUS_BUSY)) {
26432 				/* Busy - try again. */
26433 				poll_delay = 100 * CSEC;	/* 1 sec. */
26434 				busy_count += (SEC_TO_CSEC - 1);
26435 
26436 			} else if ((sensep != NULL) &&
26437 			    (scsi_sense_key(sensep) == KEY_UNIT_ATTENTION)) {
26438 				/*
26439 				 * Unit Attention - try again.
26440 				 * Pretend it took 1 sec.
26441 				 * NOTE: 'continue' avoids poll_delay
26442 				 */
26443 				busy_count += (SEC_TO_CSEC - 1);
26444 				continue;
26445 
26446 			} else if ((sensep != NULL) &&
26447 			    (scsi_sense_key(sensep) == KEY_NOT_READY) &&
26448 			    (scsi_sense_asc(sensep) == 0x04) &&
26449 			    (scsi_sense_ascq(sensep) == 0x01)) {
26450 				/*
26451 				 * Not ready -> ready - try again.
26452 				 * 04h/01h: LUN IS IN PROCESS OF BECOMING READY
26453 				 * ...same as STATUS_BUSY
26454 				 */
26455 				poll_delay = 100 * CSEC;	/* 1 sec. */
26456 				busy_count += (SEC_TO_CSEC - 1);
26457 
26458 			} else {
26459 				/* BAD status - give up. */
26460 				break;
26461 			}
26462 		}
26463 
26464 		if (((curthread->t_flag & T_INTR_THREAD) == 0) &&
26465 		    !do_polled_io) {
26466 			delay(drv_usectohz(poll_delay));
26467 		} else {
26468 			/* we busy wait during cpr_dump or interrupt threads */
26469 			drv_usecwait(poll_delay);
26470 		}
26471 	}
26472 
26473 	pkt->pkt_flags = savef;
26474 	pkt->pkt_comp = savec;
26475 	pkt->pkt_time = savet;
26476 
26477 	/* return on error */
26478 	if (rval)
26479 		return (rval);
26480 
26481 	/*
26482 	 * This is not a performance critical code path.
26483 	 *
26484 	 * As an accommodation for scsi_poll callers, to avoid ddi_dma_sync()
26485 	 * issues associated with looking at DMA memory prior to
26486 	 * scsi_pkt_destroy(), we scsi_sync_pkt() prior to return.
26487 	 */
26488 	scsi_sync_pkt(pkt);
26489 	return (0);
26490 }
26491 
26492 
26493 
26494 /*
26495  *    Function: sd_persistent_reservation_in_read_keys
26496  *
26497  * Description: This routine is the driver entry point for handling CD-ROM
26498  *		multi-host persistent reservation requests (MHIOCGRP_INKEYS)
26499  *		by sending the SCSI-3 PRIN commands to the device.
26500  *		Processes the read keys command response by copying the
26501  *		reservation key information into the user provided buffer.
26502  *		Support for the 32/64 bit _MULTI_DATAMODEL is implemented.
26503  *
26504  *   Arguments: un   -  Pointer to soft state struct for the target.
26505  *		usrp -	user provided pointer to multihost Persistent In Read
26506  *			Keys structure (mhioc_inkeys_t)
26507  *		flag -	this argument is a pass through to ddi_copyxxx()
26508  *			directly from the mode argument of ioctl().
26509  *
26510  * Return Code: 0   - Success
26511  *		EACCES
26512  *		ENOTSUP
26513  *		errno return code from sd_send_scsi_cmd()
26514  *
26515  *     Context: Can sleep. Does not return until command is completed.
26516  */
26517 
26518 static int
26519 sd_persistent_reservation_in_read_keys(struct sd_lun *un,
26520     mhioc_inkeys_t *usrp, int flag)
26521 {
26522 #ifdef _MULTI_DATAMODEL
26523 	struct mhioc_key_list32	li32;
26524 #endif
26525 	sd_prin_readkeys_t	*in;
26526 	mhioc_inkeys_t		*ptr;
26527 	mhioc_key_list_t	li;
26528 	uchar_t			*data_bufp;
26529 	int 			data_len;
26530 	int			rval = 0;
26531 	size_t			copysz;
26532 	sd_ssc_t		*ssc;
26533 
26534 	if ((ptr = (mhioc_inkeys_t *)usrp) == NULL) {
26535 		return (EINVAL);
26536 	}
26537 	bzero(&li, sizeof (mhioc_key_list_t));
26538 
26539 	ssc = sd_ssc_init(un);
26540 
26541 	/*
26542 	 * Get the listsize from user
26543 	 */
26544 #ifdef _MULTI_DATAMODEL
26545 
26546 	switch (ddi_model_convert_from(flag & FMODELS)) {
26547 	case DDI_MODEL_ILP32:
26548 		copysz = sizeof (struct mhioc_key_list32);
26549 		if (ddi_copyin(ptr->li, &li32, copysz, flag)) {
26550 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26551 			    "sd_persistent_reservation_in_read_keys: "
26552 			    "failed ddi_copyin: mhioc_key_list32_t\n");
26553 			rval = EFAULT;
26554 			goto done;
26555 		}
26556 		li.listsize = li32.listsize;
26557 		li.list = (mhioc_resv_key_t *)(uintptr_t)li32.list;
26558 		break;
26559 
26560 	case DDI_MODEL_NONE:
26561 		copysz = sizeof (mhioc_key_list_t);
26562 		if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26563 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26564 			    "sd_persistent_reservation_in_read_keys: "
26565 			    "failed ddi_copyin: mhioc_key_list_t\n");
26566 			rval = EFAULT;
26567 			goto done;
26568 		}
26569 		break;
26570 	}
26571 
26572 #else /* ! _MULTI_DATAMODEL */
26573 	copysz = sizeof (mhioc_key_list_t);
26574 	if (ddi_copyin(ptr->li, &li, copysz, flag)) {
26575 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26576 		    "sd_persistent_reservation_in_read_keys: "
26577 		    "failed ddi_copyin: mhioc_key_list_t\n");
26578 		rval = EFAULT;
26579 		goto done;
26580 	}
26581 #endif
26582 
26583 	data_len  = li.listsize * MHIOC_RESV_KEY_SIZE;
26584 	data_len += (sizeof (sd_prin_readkeys_t) - sizeof (caddr_t));
26585 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26586 
26587 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_KEYS,
26588 	    data_len, data_bufp);
26589 	if (rval != 0) {
26590 		if (rval == EIO)
26591 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
26592 		else
26593 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
26594 		goto done;
26595 	}
26596 	in = (sd_prin_readkeys_t *)data_bufp;
26597 	ptr->generation = BE_32(in->generation);
26598 	li.listlen = BE_32(in->len) / MHIOC_RESV_KEY_SIZE;
26599 
26600 	/*
26601 	 * Return the min(listsize, listlen) keys
26602 	 */
26603 #ifdef _MULTI_DATAMODEL
26604 
26605 	switch (ddi_model_convert_from(flag & FMODELS)) {
26606 	case DDI_MODEL_ILP32:
26607 		li32.listlen = li.listlen;
26608 		if (ddi_copyout(&li32, ptr->li, copysz, flag)) {
26609 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26610 			    "sd_persistent_reservation_in_read_keys: "
26611 			    "failed ddi_copyout: mhioc_key_list32_t\n");
26612 			rval = EFAULT;
26613 			goto done;
26614 		}
26615 		break;
26616 
26617 	case DDI_MODEL_NONE:
26618 		if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26619 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26620 			    "sd_persistent_reservation_in_read_keys: "
26621 			    "failed ddi_copyout: mhioc_key_list_t\n");
26622 			rval = EFAULT;
26623 			goto done;
26624 		}
26625 		break;
26626 	}
26627 
26628 #else /* ! _MULTI_DATAMODEL */
26629 
26630 	if (ddi_copyout(&li, ptr->li, copysz, flag)) {
26631 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26632 		    "sd_persistent_reservation_in_read_keys: "
26633 		    "failed ddi_copyout: mhioc_key_list_t\n");
26634 		rval = EFAULT;
26635 		goto done;
26636 	}
26637 
26638 #endif /* _MULTI_DATAMODEL */
26639 
26640 	copysz = min(li.listlen * MHIOC_RESV_KEY_SIZE,
26641 	    li.listsize * MHIOC_RESV_KEY_SIZE);
26642 	if (ddi_copyout(&in->keylist, li.list, copysz, flag)) {
26643 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26644 		    "sd_persistent_reservation_in_read_keys: "
26645 		    "failed ddi_copyout: keylist\n");
26646 		rval = EFAULT;
26647 	}
26648 done:
26649 	sd_ssc_fini(ssc);
26650 	kmem_free(data_bufp, data_len);
26651 	return (rval);
26652 }
26653 
26654 
26655 /*
26656  *    Function: sd_persistent_reservation_in_read_resv
26657  *
26658  * Description: This routine is the driver entry point for handling CD-ROM
26659  *		multi-host persistent reservation requests (MHIOCGRP_INRESV)
26660  *		by sending the SCSI-3 PRIN commands to the device.
26661  *		Process the read persistent reservations command response by
26662  *		copying the reservation information into the user provided
26663  *		buffer. Support for the 32/64 _MULTI_DATAMODEL is implemented.
26664  *
26665  *   Arguments: un   -  Pointer to soft state struct for the target.
26666  *		usrp -	user provided pointer to multihost Persistent In Read
26667  *			Keys structure (mhioc_inkeys_t)
26668  *		flag -	this argument is a pass through to ddi_copyxxx()
26669  *			directly from the mode argument of ioctl().
26670  *
26671  * Return Code: 0   - Success
26672  *		EACCES
26673  *		ENOTSUP
26674  *		errno return code from sd_send_scsi_cmd()
26675  *
26676  *     Context: Can sleep. Does not return until command is completed.
26677  */
26678 
26679 static int
26680 sd_persistent_reservation_in_read_resv(struct sd_lun *un,
26681     mhioc_inresvs_t *usrp, int flag)
26682 {
26683 #ifdef _MULTI_DATAMODEL
26684 	struct mhioc_resv_desc_list32 resvlist32;
26685 #endif
26686 	sd_prin_readresv_t	*in;
26687 	mhioc_inresvs_t		*ptr;
26688 	sd_readresv_desc_t	*readresv_ptr;
26689 	mhioc_resv_desc_list_t	resvlist;
26690 	mhioc_resv_desc_t 	resvdesc;
26691 	uchar_t			*data_bufp = NULL;
26692 	int 			data_len;
26693 	int			rval = 0;
26694 	int			i;
26695 	size_t			copysz;
26696 	mhioc_resv_desc_t	*bufp;
26697 	sd_ssc_t		*ssc;
26698 
26699 	if ((ptr = usrp) == NULL) {
26700 		return (EINVAL);
26701 	}
26702 
26703 	ssc = sd_ssc_init(un);
26704 
26705 	/*
26706 	 * Get the listsize from user
26707 	 */
26708 #ifdef _MULTI_DATAMODEL
26709 	switch (ddi_model_convert_from(flag & FMODELS)) {
26710 	case DDI_MODEL_ILP32:
26711 		copysz = sizeof (struct mhioc_resv_desc_list32);
26712 		if (ddi_copyin(ptr->li, &resvlist32, copysz, flag)) {
26713 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26714 			    "sd_persistent_reservation_in_read_resv: "
26715 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26716 			rval = EFAULT;
26717 			goto done;
26718 		}
26719 		resvlist.listsize = resvlist32.listsize;
26720 		resvlist.list = (mhioc_resv_desc_t *)(uintptr_t)resvlist32.list;
26721 		break;
26722 
26723 	case DDI_MODEL_NONE:
26724 		copysz = sizeof (mhioc_resv_desc_list_t);
26725 		if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26726 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26727 			    "sd_persistent_reservation_in_read_resv: "
26728 			    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26729 			rval = EFAULT;
26730 			goto done;
26731 		}
26732 		break;
26733 	}
26734 #else /* ! _MULTI_DATAMODEL */
26735 	copysz = sizeof (mhioc_resv_desc_list_t);
26736 	if (ddi_copyin(ptr->li, &resvlist, copysz, flag)) {
26737 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26738 		    "sd_persistent_reservation_in_read_resv: "
26739 		    "failed ddi_copyin: mhioc_resv_desc_list_t\n");
26740 		rval = EFAULT;
26741 		goto done;
26742 	}
26743 #endif /* ! _MULTI_DATAMODEL */
26744 
26745 	data_len  = resvlist.listsize * SCSI3_RESV_DESC_LEN;
26746 	data_len += (sizeof (sd_prin_readresv_t) - sizeof (caddr_t));
26747 	data_bufp = kmem_zalloc(data_len, KM_SLEEP);
26748 
26749 	rval = sd_send_scsi_PERSISTENT_RESERVE_IN(ssc, SD_READ_RESV,
26750 	    data_len, data_bufp);
26751 	if (rval != 0) {
26752 		if (rval == EIO)
26753 			sd_ssc_assessment(ssc, SD_FMT_IGNORE_COMPROMISE);
26754 		else
26755 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
26756 		goto done;
26757 	}
26758 	in = (sd_prin_readresv_t *)data_bufp;
26759 	ptr->generation = BE_32(in->generation);
26760 	resvlist.listlen = BE_32(in->len) / SCSI3_RESV_DESC_LEN;
26761 
26762 	/*
26763 	 * Return the min(listsize, listlen( keys
26764 	 */
26765 #ifdef _MULTI_DATAMODEL
26766 
26767 	switch (ddi_model_convert_from(flag & FMODELS)) {
26768 	case DDI_MODEL_ILP32:
26769 		resvlist32.listlen = resvlist.listlen;
26770 		if (ddi_copyout(&resvlist32, ptr->li, copysz, flag)) {
26771 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26772 			    "sd_persistent_reservation_in_read_resv: "
26773 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26774 			rval = EFAULT;
26775 			goto done;
26776 		}
26777 		break;
26778 
26779 	case DDI_MODEL_NONE:
26780 		if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26781 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26782 			    "sd_persistent_reservation_in_read_resv: "
26783 			    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26784 			rval = EFAULT;
26785 			goto done;
26786 		}
26787 		break;
26788 	}
26789 
26790 #else /* ! _MULTI_DATAMODEL */
26791 
26792 	if (ddi_copyout(&resvlist, ptr->li, copysz, flag)) {
26793 		SD_ERROR(SD_LOG_IOCTL_MHD, un,
26794 		    "sd_persistent_reservation_in_read_resv: "
26795 		    "failed ddi_copyout: mhioc_resv_desc_list_t\n");
26796 		rval = EFAULT;
26797 		goto done;
26798 	}
26799 
26800 #endif /* ! _MULTI_DATAMODEL */
26801 
26802 	readresv_ptr = (sd_readresv_desc_t *)&in->readresv_desc;
26803 	bufp = resvlist.list;
26804 	copysz = sizeof (mhioc_resv_desc_t);
26805 	for (i = 0; i < min(resvlist.listlen, resvlist.listsize);
26806 	    i++, readresv_ptr++, bufp++) {
26807 
26808 		bcopy(&readresv_ptr->resvkey, &resvdesc.key,
26809 		    MHIOC_RESV_KEY_SIZE);
26810 		resvdesc.type  = readresv_ptr->type;
26811 		resvdesc.scope = readresv_ptr->scope;
26812 		resvdesc.scope_specific_addr =
26813 		    BE_32(readresv_ptr->scope_specific_addr);
26814 
26815 		if (ddi_copyout(&resvdesc, bufp, copysz, flag)) {
26816 			SD_ERROR(SD_LOG_IOCTL_MHD, un,
26817 			    "sd_persistent_reservation_in_read_resv: "
26818 			    "failed ddi_copyout: resvlist\n");
26819 			rval = EFAULT;
26820 			goto done;
26821 		}
26822 	}
26823 done:
26824 	sd_ssc_fini(ssc);
26825 	/* only if data_bufp is allocated, we need to free it */
26826 	if (data_bufp) {
26827 		kmem_free(data_bufp, data_len);
26828 	}
26829 	return (rval);
26830 }
26831 
26832 
26833 /*
26834  *    Function: sr_change_blkmode()
26835  *
26836  * Description: This routine is the driver entry point for handling CD-ROM
26837  *		block mode ioctl requests. Support for returning and changing
26838  *		the current block size in use by the device is implemented. The
26839  *		LBA size is changed via a MODE SELECT Block Descriptor.
26840  *
26841  *		This routine issues a mode sense with an allocation length of
26842  *		12 bytes for the mode page header and a single block descriptor.
26843  *
26844  *   Arguments: dev - the device 'dev_t'
26845  *		cmd - the request type; one of CDROMGBLKMODE (get) or
26846  *		      CDROMSBLKMODE (set)
26847  *		data - current block size or requested block size
26848  *		flag - this argument is a pass through to ddi_copyxxx() directly
26849  *		       from the mode argument of ioctl().
26850  *
26851  * Return Code: the code returned by sd_send_scsi_cmd()
26852  *		EINVAL if invalid arguments are provided
26853  *		EFAULT if ddi_copyxxx() fails
26854  *		ENXIO if fail ddi_get_soft_state
26855  *		EIO if invalid mode sense block descriptor length
26856  *
26857  */
26858 
26859 static int
26860 sr_change_blkmode(dev_t dev, int cmd, intptr_t data, int flag)
26861 {
26862 	struct sd_lun			*un = NULL;
26863 	struct mode_header		*sense_mhp, *select_mhp;
26864 	struct block_descriptor		*sense_desc, *select_desc;
26865 	int				current_bsize;
26866 	int				rval = EINVAL;
26867 	uchar_t				*sense = NULL;
26868 	uchar_t				*select = NULL;
26869 	sd_ssc_t			*ssc;
26870 
26871 	ASSERT((cmd == CDROMGBLKMODE) || (cmd == CDROMSBLKMODE));
26872 
26873 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
26874 		return (ENXIO);
26875 	}
26876 
26877 	/*
26878 	 * The block length is changed via the Mode Select block descriptor, the
26879 	 * "Read/Write Error Recovery" mode page (0x1) contents are not actually
26880 	 * required as part of this routine. Therefore the mode sense allocation
26881 	 * length is specified to be the length of a mode page header and a
26882 	 * block descriptor.
26883 	 */
26884 	sense = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26885 
26886 	ssc = sd_ssc_init(un);
26887 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
26888 	    BUFLEN_CHG_BLK_MODE, MODEPAGE_ERR_RECOV, SD_PATH_STANDARD);
26889 	sd_ssc_fini(ssc);
26890 	if (rval != 0) {
26891 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26892 		    "sr_change_blkmode: Mode Sense Failed\n");
26893 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26894 		return (rval);
26895 	}
26896 
26897 	/* Check the block descriptor len to handle only 1 block descriptor */
26898 	sense_mhp = (struct mode_header *)sense;
26899 	if ((sense_mhp->bdesc_length == 0) ||
26900 	    (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH)) {
26901 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26902 		    "sr_change_blkmode: Mode Sense returned invalid block"
26903 		    " descriptor length\n");
26904 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26905 		return (EIO);
26906 	}
26907 	sense_desc = (struct block_descriptor *)(sense + MODE_HEADER_LENGTH);
26908 	current_bsize = ((sense_desc->blksize_hi << 16) |
26909 	    (sense_desc->blksize_mid << 8) | sense_desc->blksize_lo);
26910 
26911 	/* Process command */
26912 	switch (cmd) {
26913 	case CDROMGBLKMODE:
26914 		/* Return the block size obtained during the mode sense */
26915 		if (ddi_copyout(&current_bsize, (void *)data,
26916 		    sizeof (int), flag) != 0)
26917 			rval = EFAULT;
26918 		break;
26919 	case CDROMSBLKMODE:
26920 		/* Validate the requested block size */
26921 		switch (data) {
26922 		case CDROM_BLK_512:
26923 		case CDROM_BLK_1024:
26924 		case CDROM_BLK_2048:
26925 		case CDROM_BLK_2056:
26926 		case CDROM_BLK_2336:
26927 		case CDROM_BLK_2340:
26928 		case CDROM_BLK_2352:
26929 		case CDROM_BLK_2368:
26930 		case CDROM_BLK_2448:
26931 		case CDROM_BLK_2646:
26932 		case CDROM_BLK_2647:
26933 			break;
26934 		default:
26935 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26936 			    "sr_change_blkmode: "
26937 			    "Block Size '%ld' Not Supported\n", data);
26938 			kmem_free(sense, BUFLEN_CHG_BLK_MODE);
26939 			return (EINVAL);
26940 		}
26941 
26942 		/*
26943 		 * The current block size matches the requested block size so
26944 		 * there is no need to send the mode select to change the size
26945 		 */
26946 		if (current_bsize == data) {
26947 			break;
26948 		}
26949 
26950 		/* Build the select data for the requested block size */
26951 		select = kmem_zalloc(BUFLEN_CHG_BLK_MODE, KM_SLEEP);
26952 		select_mhp = (struct mode_header *)select;
26953 		select_desc =
26954 		    (struct block_descriptor *)(select + MODE_HEADER_LENGTH);
26955 		/*
26956 		 * The LBA size is changed via the block descriptor, so the
26957 		 * descriptor is built according to the user data
26958 		 */
26959 		select_mhp->bdesc_length = MODE_BLK_DESC_LENGTH;
26960 		select_desc->blksize_hi  = (char)(((data) & 0x00ff0000) >> 16);
26961 		select_desc->blksize_mid = (char)(((data) & 0x0000ff00) >> 8);
26962 		select_desc->blksize_lo  = (char)((data) & 0x000000ff);
26963 
26964 		/* Send the mode select for the requested block size */
26965 		ssc = sd_ssc_init(un);
26966 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
26967 		    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26968 		    SD_PATH_STANDARD);
26969 		sd_ssc_fini(ssc);
26970 		if (rval != 0) {
26971 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26972 			    "sr_change_blkmode: Mode Select Failed\n");
26973 			/*
26974 			 * The mode select failed for the requested block size,
26975 			 * so reset the data for the original block size and
26976 			 * send it to the target. The error is indicated by the
26977 			 * return value for the failed mode select.
26978 			 */
26979 			select_desc->blksize_hi  = sense_desc->blksize_hi;
26980 			select_desc->blksize_mid = sense_desc->blksize_mid;
26981 			select_desc->blksize_lo  = sense_desc->blksize_lo;
26982 			ssc = sd_ssc_init(un);
26983 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0,
26984 			    select, BUFLEN_CHG_BLK_MODE, SD_DONTSAVE_PAGE,
26985 			    SD_PATH_STANDARD);
26986 			sd_ssc_fini(ssc);
26987 		} else {
26988 			ASSERT(!mutex_owned(SD_MUTEX(un)));
26989 			mutex_enter(SD_MUTEX(un));
26990 			sd_update_block_info(un, (uint32_t)data, 0);
26991 			mutex_exit(SD_MUTEX(un));
26992 		}
26993 		break;
26994 	default:
26995 		/* should not reach here, but check anyway */
26996 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
26997 		    "sr_change_blkmode: Command '%x' Not Supported\n", cmd);
26998 		rval = EINVAL;
26999 		break;
27000 	}
27001 
27002 	if (select) {
27003 		kmem_free(select, BUFLEN_CHG_BLK_MODE);
27004 	}
27005 	if (sense) {
27006 		kmem_free(sense, BUFLEN_CHG_BLK_MODE);
27007 	}
27008 	return (rval);
27009 }
27010 
27011 
27012 /*
27013  * Note: The following sr_change_speed() and sr_atapi_change_speed() routines
27014  * implement driver support for getting and setting the CD speed. The command
27015  * set used will be based on the device type. If the device has not been
27016  * identified as MMC the Toshiba vendor specific mode page will be used. If
27017  * the device is MMC but does not support the Real Time Streaming feature
27018  * the SET CD SPEED command will be used to set speed and mode page 0x2A will
27019  * be used to read the speed.
27020  */
27021 
27022 /*
27023  *    Function: sr_change_speed()
27024  *
27025  * Description: This routine is the driver entry point for handling CD-ROM
27026  *		drive speed ioctl requests for devices supporting the Toshiba
27027  *		vendor specific drive speed mode page. Support for returning
27028  *		and changing the current drive speed in use by the device is
27029  *		implemented.
27030  *
27031  *   Arguments: dev - the device 'dev_t'
27032  *		cmd - the request type; one of CDROMGDRVSPEED (get) or
27033  *		      CDROMSDRVSPEED (set)
27034  *		data - current drive speed or requested drive speed
27035  *		flag - this argument is a pass through to ddi_copyxxx() directly
27036  *		       from the mode argument of ioctl().
27037  *
27038  * Return Code: the code returned by sd_send_scsi_cmd()
27039  *		EINVAL if invalid arguments are provided
27040  *		EFAULT if ddi_copyxxx() fails
27041  *		ENXIO if fail ddi_get_soft_state
27042  *		EIO if invalid mode sense block descriptor length
27043  */
27044 
27045 static int
27046 sr_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27047 {
27048 	struct sd_lun			*un = NULL;
27049 	struct mode_header		*sense_mhp, *select_mhp;
27050 	struct mode_speed		*sense_page, *select_page;
27051 	int				current_speed;
27052 	int				rval = EINVAL;
27053 	int				bd_len;
27054 	uchar_t				*sense = NULL;
27055 	uchar_t				*select = NULL;
27056 	sd_ssc_t			*ssc;
27057 
27058 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27059 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27060 		return (ENXIO);
27061 	}
27062 
27063 	/*
27064 	 * Note: The drive speed is being modified here according to a Toshiba
27065 	 * vendor specific mode page (0x31).
27066 	 */
27067 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27068 
27069 	ssc = sd_ssc_init(un);
27070 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
27071 	    BUFLEN_MODE_CDROM_SPEED, CDROM_MODE_SPEED,
27072 	    SD_PATH_STANDARD);
27073 	sd_ssc_fini(ssc);
27074 	if (rval != 0) {
27075 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27076 		    "sr_change_speed: Mode Sense Failed\n");
27077 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27078 		return (rval);
27079 	}
27080 	sense_mhp  = (struct mode_header *)sense;
27081 
27082 	/* Check the block descriptor len to handle only 1 block descriptor */
27083 	bd_len = sense_mhp->bdesc_length;
27084 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27085 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27086 		    "sr_change_speed: Mode Sense returned invalid block "
27087 		    "descriptor length\n");
27088 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27089 		return (EIO);
27090 	}
27091 
27092 	sense_page = (struct mode_speed *)
27093 	    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
27094 	current_speed = sense_page->speed;
27095 
27096 	/* Process command */
27097 	switch (cmd) {
27098 	case CDROMGDRVSPEED:
27099 		/* Return the drive speed obtained during the mode sense */
27100 		if (current_speed == 0x2) {
27101 			current_speed = CDROM_TWELVE_SPEED;
27102 		}
27103 		if (ddi_copyout(&current_speed, (void *)data,
27104 		    sizeof (int), flag) != 0) {
27105 			rval = EFAULT;
27106 		}
27107 		break;
27108 	case CDROMSDRVSPEED:
27109 		/* Validate the requested drive speed */
27110 		switch ((uchar_t)data) {
27111 		case CDROM_TWELVE_SPEED:
27112 			data = 0x2;
27113 			/*FALLTHROUGH*/
27114 		case CDROM_NORMAL_SPEED:
27115 		case CDROM_DOUBLE_SPEED:
27116 		case CDROM_QUAD_SPEED:
27117 		case CDROM_MAXIMUM_SPEED:
27118 			break;
27119 		default:
27120 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27121 			    "sr_change_speed: "
27122 			    "Drive Speed '%d' Not Supported\n", (uchar_t)data);
27123 			kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27124 			return (EINVAL);
27125 		}
27126 
27127 		/*
27128 		 * The current drive speed matches the requested drive speed so
27129 		 * there is no need to send the mode select to change the speed
27130 		 */
27131 		if (current_speed == data) {
27132 			break;
27133 		}
27134 
27135 		/* Build the select data for the requested drive speed */
27136 		select = kmem_zalloc(BUFLEN_MODE_CDROM_SPEED, KM_SLEEP);
27137 		select_mhp = (struct mode_header *)select;
27138 		select_mhp->bdesc_length = 0;
27139 		select_page =
27140 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27141 		select_page =
27142 		    (struct mode_speed *)(select + MODE_HEADER_LENGTH);
27143 		select_page->mode_page.code = CDROM_MODE_SPEED;
27144 		select_page->mode_page.length = 2;
27145 		select_page->speed = (uchar_t)data;
27146 
27147 		/* Send the mode select for the requested block size */
27148 		ssc = sd_ssc_init(un);
27149 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27150 		    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27151 		    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27152 		sd_ssc_fini(ssc);
27153 		if (rval != 0) {
27154 			/*
27155 			 * The mode select failed for the requested drive speed,
27156 			 * so reset the data for the original drive speed and
27157 			 * send it to the target. The error is indicated by the
27158 			 * return value for the failed mode select.
27159 			 */
27160 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27161 			    "sr_drive_speed: Mode Select Failed\n");
27162 			select_page->speed = sense_page->speed;
27163 			ssc = sd_ssc_init(un);
27164 			(void) sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
27165 			    MODEPAGE_CDROM_SPEED_LEN + MODE_HEADER_LENGTH,
27166 			    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
27167 			sd_ssc_fini(ssc);
27168 		}
27169 		break;
27170 	default:
27171 		/* should not reach here, but check anyway */
27172 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27173 		    "sr_change_speed: Command '%x' Not Supported\n", cmd);
27174 		rval = EINVAL;
27175 		break;
27176 	}
27177 
27178 	if (select) {
27179 		kmem_free(select, BUFLEN_MODE_CDROM_SPEED);
27180 	}
27181 	if (sense) {
27182 		kmem_free(sense, BUFLEN_MODE_CDROM_SPEED);
27183 	}
27184 
27185 	return (rval);
27186 }
27187 
27188 
27189 /*
27190  *    Function: sr_atapi_change_speed()
27191  *
27192  * Description: This routine is the driver entry point for handling CD-ROM
27193  *		drive speed ioctl requests for MMC devices that do not support
27194  *		the Real Time Streaming feature (0x107).
27195  *
27196  *		Note: This routine will use the SET SPEED command which may not
27197  *		be supported by all devices.
27198  *
27199  *   Arguments: dev- the device 'dev_t'
27200  *		cmd- the request type; one of CDROMGDRVSPEED (get) or
27201  *		     CDROMSDRVSPEED (set)
27202  *		data- current drive speed or requested drive speed
27203  *		flag- this argument is a pass through to ddi_copyxxx() directly
27204  *		      from the mode argument of ioctl().
27205  *
27206  * Return Code: the code returned by sd_send_scsi_cmd()
27207  *		EINVAL if invalid arguments are provided
27208  *		EFAULT if ddi_copyxxx() fails
27209  *		ENXIO if fail ddi_get_soft_state
27210  *		EIO if invalid mode sense block descriptor length
27211  */
27212 
27213 static int
27214 sr_atapi_change_speed(dev_t dev, int cmd, intptr_t data, int flag)
27215 {
27216 	struct sd_lun			*un;
27217 	struct uscsi_cmd		*com = NULL;
27218 	struct mode_header_grp2		*sense_mhp;
27219 	uchar_t				*sense_page;
27220 	uchar_t				*sense = NULL;
27221 	char				cdb[CDB_GROUP5];
27222 	int				bd_len;
27223 	int				current_speed = 0;
27224 	int				max_speed = 0;
27225 	int				rval;
27226 	sd_ssc_t			*ssc;
27227 
27228 	ASSERT((cmd == CDROMGDRVSPEED) || (cmd == CDROMSDRVSPEED));
27229 
27230 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27231 		return (ENXIO);
27232 	}
27233 
27234 	sense = kmem_zalloc(BUFLEN_MODE_CDROM_CAP, KM_SLEEP);
27235 
27236 	ssc = sd_ssc_init(un);
27237 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
27238 	    BUFLEN_MODE_CDROM_CAP, MODEPAGE_CDROM_CAP,
27239 	    SD_PATH_STANDARD);
27240 	sd_ssc_fini(ssc);
27241 	if (rval != 0) {
27242 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27243 		    "sr_atapi_change_speed: Mode Sense Failed\n");
27244 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27245 		return (rval);
27246 	}
27247 
27248 	/* Check the block descriptor len to handle only 1 block descriptor */
27249 	sense_mhp = (struct mode_header_grp2 *)sense;
27250 	bd_len = (sense_mhp->bdesc_length_hi << 8) | sense_mhp->bdesc_length_lo;
27251 	if (bd_len > MODE_BLK_DESC_LENGTH) {
27252 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27253 		    "sr_atapi_change_speed: Mode Sense returned invalid "
27254 		    "block descriptor length\n");
27255 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27256 		return (EIO);
27257 	}
27258 
27259 	/* Calculate the current and maximum drive speeds */
27260 	sense_page = (uchar_t *)(sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
27261 	current_speed = (sense_page[14] << 8) | sense_page[15];
27262 	max_speed = (sense_page[8] << 8) | sense_page[9];
27263 
27264 	/* Process the command */
27265 	switch (cmd) {
27266 	case CDROMGDRVSPEED:
27267 		current_speed /= SD_SPEED_1X;
27268 		if (ddi_copyout(&current_speed, (void *)data,
27269 		    sizeof (int), flag) != 0)
27270 			rval = EFAULT;
27271 		break;
27272 	case CDROMSDRVSPEED:
27273 		/* Convert the speed code to KB/sec */
27274 		switch ((uchar_t)data) {
27275 		case CDROM_NORMAL_SPEED:
27276 			current_speed = SD_SPEED_1X;
27277 			break;
27278 		case CDROM_DOUBLE_SPEED:
27279 			current_speed = 2 * SD_SPEED_1X;
27280 			break;
27281 		case CDROM_QUAD_SPEED:
27282 			current_speed = 4 * SD_SPEED_1X;
27283 			break;
27284 		case CDROM_TWELVE_SPEED:
27285 			current_speed = 12 * SD_SPEED_1X;
27286 			break;
27287 		case CDROM_MAXIMUM_SPEED:
27288 			current_speed = 0xffff;
27289 			break;
27290 		default:
27291 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27292 			    "sr_atapi_change_speed: invalid drive speed %d\n",
27293 			    (uchar_t)data);
27294 			kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27295 			return (EINVAL);
27296 		}
27297 
27298 		/* Check the request against the drive's max speed. */
27299 		if (current_speed != 0xffff) {
27300 			if (current_speed > max_speed) {
27301 				kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27302 				return (EINVAL);
27303 			}
27304 		}
27305 
27306 		/*
27307 		 * Build and send the SET SPEED command
27308 		 *
27309 		 * Note: The SET SPEED (0xBB) command used in this routine is
27310 		 * obsolete per the SCSI MMC spec but still supported in the
27311 		 * MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27312 		 * therefore the command is still implemented in this routine.
27313 		 */
27314 		bzero(cdb, sizeof (cdb));
27315 		cdb[0] = (char)SCMD_SET_CDROM_SPEED;
27316 		cdb[2] = (uchar_t)(current_speed >> 8);
27317 		cdb[3] = (uchar_t)current_speed;
27318 		com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27319 		com->uscsi_cdb	   = (caddr_t)cdb;
27320 		com->uscsi_cdblen  = CDB_GROUP5;
27321 		com->uscsi_bufaddr = NULL;
27322 		com->uscsi_buflen  = 0;
27323 		com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT;
27324 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, 0, SD_PATH_STANDARD);
27325 		break;
27326 	default:
27327 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27328 		    "sr_atapi_change_speed: Command '%x' Not Supported\n", cmd);
27329 		rval = EINVAL;
27330 	}
27331 
27332 	if (sense) {
27333 		kmem_free(sense, BUFLEN_MODE_CDROM_CAP);
27334 	}
27335 	if (com) {
27336 		kmem_free(com, sizeof (*com));
27337 	}
27338 	return (rval);
27339 }
27340 
27341 
27342 /*
27343  *    Function: sr_pause_resume()
27344  *
27345  * Description: This routine is the driver entry point for handling CD-ROM
27346  *		pause/resume ioctl requests. This only affects the audio play
27347  *		operation.
27348  *
27349  *   Arguments: dev - the device 'dev_t'
27350  *		cmd - the request type; one of CDROMPAUSE or CDROMRESUME, used
27351  *		      for setting the resume bit of the cdb.
27352  *
27353  * Return Code: the code returned by sd_send_scsi_cmd()
27354  *		EINVAL if invalid mode specified
27355  *
27356  */
27357 
27358 static int
27359 sr_pause_resume(dev_t dev, int cmd)
27360 {
27361 	struct sd_lun		*un;
27362 	struct uscsi_cmd	*com;
27363 	char			cdb[CDB_GROUP1];
27364 	int			rval;
27365 
27366 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27367 		return (ENXIO);
27368 	}
27369 
27370 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27371 	bzero(cdb, CDB_GROUP1);
27372 	cdb[0] = SCMD_PAUSE_RESUME;
27373 	switch (cmd) {
27374 	case CDROMRESUME:
27375 		cdb[8] = 1;
27376 		break;
27377 	case CDROMPAUSE:
27378 		cdb[8] = 0;
27379 		break;
27380 	default:
27381 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_pause_resume:"
27382 		    " Command '%x' Not Supported\n", cmd);
27383 		rval = EINVAL;
27384 		goto done;
27385 	}
27386 
27387 	com->uscsi_cdb    = cdb;
27388 	com->uscsi_cdblen = CDB_GROUP1;
27389 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27390 
27391 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27392 	    SD_PATH_STANDARD);
27393 
27394 done:
27395 	kmem_free(com, sizeof (*com));
27396 	return (rval);
27397 }
27398 
27399 
27400 /*
27401  *    Function: sr_play_msf()
27402  *
27403  * Description: This routine is the driver entry point for handling CD-ROM
27404  *		ioctl requests to output the audio signals at the specified
27405  *		starting address and continue the audio play until the specified
27406  *		ending address (CDROMPLAYMSF) The address is in Minute Second
27407  *		Frame (MSF) format.
27408  *
27409  *   Arguments: dev	- the device 'dev_t'
27410  *		data	- pointer to user provided audio msf structure,
27411  *		          specifying start/end addresses.
27412  *		flag	- this argument is a pass through to ddi_copyxxx()
27413  *		          directly from the mode argument of ioctl().
27414  *
27415  * Return Code: the code returned by sd_send_scsi_cmd()
27416  *		EFAULT if ddi_copyxxx() fails
27417  *		ENXIO if fail ddi_get_soft_state
27418  *		EINVAL if data pointer is NULL
27419  */
27420 
27421 static int
27422 sr_play_msf(dev_t dev, caddr_t data, int flag)
27423 {
27424 	struct sd_lun		*un;
27425 	struct uscsi_cmd	*com;
27426 	struct cdrom_msf	msf_struct;
27427 	struct cdrom_msf	*msf = &msf_struct;
27428 	char			cdb[CDB_GROUP1];
27429 	int			rval;
27430 
27431 	if (data == NULL) {
27432 		return (EINVAL);
27433 	}
27434 
27435 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27436 		return (ENXIO);
27437 	}
27438 
27439 	if (ddi_copyin(data, msf, sizeof (struct cdrom_msf), flag)) {
27440 		return (EFAULT);
27441 	}
27442 
27443 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27444 	bzero(cdb, CDB_GROUP1);
27445 	cdb[0] = SCMD_PLAYAUDIO_MSF;
27446 	if (un->un_f_cfg_playmsf_bcd == TRUE) {
27447 		cdb[3] = BYTE_TO_BCD(msf->cdmsf_min0);
27448 		cdb[4] = BYTE_TO_BCD(msf->cdmsf_sec0);
27449 		cdb[5] = BYTE_TO_BCD(msf->cdmsf_frame0);
27450 		cdb[6] = BYTE_TO_BCD(msf->cdmsf_min1);
27451 		cdb[7] = BYTE_TO_BCD(msf->cdmsf_sec1);
27452 		cdb[8] = BYTE_TO_BCD(msf->cdmsf_frame1);
27453 	} else {
27454 		cdb[3] = msf->cdmsf_min0;
27455 		cdb[4] = msf->cdmsf_sec0;
27456 		cdb[5] = msf->cdmsf_frame0;
27457 		cdb[6] = msf->cdmsf_min1;
27458 		cdb[7] = msf->cdmsf_sec1;
27459 		cdb[8] = msf->cdmsf_frame1;
27460 	}
27461 	com->uscsi_cdb    = cdb;
27462 	com->uscsi_cdblen = CDB_GROUP1;
27463 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27464 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27465 	    SD_PATH_STANDARD);
27466 	kmem_free(com, sizeof (*com));
27467 	return (rval);
27468 }
27469 
27470 
27471 /*
27472  *    Function: sr_play_trkind()
27473  *
27474  * Description: This routine is the driver entry point for handling CD-ROM
27475  *		ioctl requests to output the audio signals at the specified
27476  *		starting address and continue the audio play until the specified
27477  *		ending address (CDROMPLAYTRKIND). The address is in Track Index
27478  *		format.
27479  *
27480  *   Arguments: dev	- the device 'dev_t'
27481  *		data	- pointer to user provided audio track/index structure,
27482  *		          specifying start/end addresses.
27483  *		flag	- this argument is a pass through to ddi_copyxxx()
27484  *		          directly from the mode argument of ioctl().
27485  *
27486  * Return Code: the code returned by sd_send_scsi_cmd()
27487  *		EFAULT if ddi_copyxxx() fails
27488  *		ENXIO if fail ddi_get_soft_state
27489  *		EINVAL if data pointer is NULL
27490  */
27491 
27492 static int
27493 sr_play_trkind(dev_t dev, caddr_t data, int flag)
27494 {
27495 	struct cdrom_ti		ti_struct;
27496 	struct cdrom_ti		*ti = &ti_struct;
27497 	struct uscsi_cmd	*com = NULL;
27498 	char			cdb[CDB_GROUP1];
27499 	int			rval;
27500 
27501 	if (data == NULL) {
27502 		return (EINVAL);
27503 	}
27504 
27505 	if (ddi_copyin(data, ti, sizeof (struct cdrom_ti), flag)) {
27506 		return (EFAULT);
27507 	}
27508 
27509 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27510 	bzero(cdb, CDB_GROUP1);
27511 	cdb[0] = SCMD_PLAYAUDIO_TI;
27512 	cdb[4] = ti->cdti_trk0;
27513 	cdb[5] = ti->cdti_ind0;
27514 	cdb[7] = ti->cdti_trk1;
27515 	cdb[8] = ti->cdti_ind1;
27516 	com->uscsi_cdb    = cdb;
27517 	com->uscsi_cdblen = CDB_GROUP1;
27518 	com->uscsi_flags  = USCSI_DIAGNOSE|USCSI_SILENT;
27519 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27520 	    SD_PATH_STANDARD);
27521 	kmem_free(com, sizeof (*com));
27522 	return (rval);
27523 }
27524 
27525 
27526 /*
27527  *    Function: sr_read_all_subcodes()
27528  *
27529  * Description: This routine is the driver entry point for handling CD-ROM
27530  *		ioctl requests to return raw subcode data while the target is
27531  *		playing audio (CDROMSUBCODE).
27532  *
27533  *   Arguments: dev	- the device 'dev_t'
27534  *		data	- pointer to user provided cdrom subcode structure,
27535  *		          specifying the transfer length and address.
27536  *		flag	- this argument is a pass through to ddi_copyxxx()
27537  *		          directly from the mode argument of ioctl().
27538  *
27539  * Return Code: the code returned by sd_send_scsi_cmd()
27540  *		EFAULT if ddi_copyxxx() fails
27541  *		ENXIO if fail ddi_get_soft_state
27542  *		EINVAL if data pointer is NULL
27543  */
27544 
27545 static int
27546 sr_read_all_subcodes(dev_t dev, caddr_t data, int flag)
27547 {
27548 	struct sd_lun		*un = NULL;
27549 	struct uscsi_cmd	*com = NULL;
27550 	struct cdrom_subcode	*subcode = NULL;
27551 	int			rval;
27552 	size_t			buflen;
27553 	char			cdb[CDB_GROUP5];
27554 
27555 #ifdef _MULTI_DATAMODEL
27556 	/* To support ILP32 applications in an LP64 world */
27557 	struct cdrom_subcode32		cdrom_subcode32;
27558 	struct cdrom_subcode32		*cdsc32 = &cdrom_subcode32;
27559 #endif
27560 	if (data == NULL) {
27561 		return (EINVAL);
27562 	}
27563 
27564 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
27565 		return (ENXIO);
27566 	}
27567 
27568 	subcode = kmem_zalloc(sizeof (struct cdrom_subcode), KM_SLEEP);
27569 
27570 #ifdef _MULTI_DATAMODEL
27571 	switch (ddi_model_convert_from(flag & FMODELS)) {
27572 	case DDI_MODEL_ILP32:
27573 		if (ddi_copyin(data, cdsc32, sizeof (*cdsc32), flag)) {
27574 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27575 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27576 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27577 			return (EFAULT);
27578 		}
27579 		/* Convert the ILP32 uscsi data from the application to LP64 */
27580 		cdrom_subcode32tocdrom_subcode(cdsc32, subcode);
27581 		break;
27582 	case DDI_MODEL_NONE:
27583 		if (ddi_copyin(data, subcode,
27584 		    sizeof (struct cdrom_subcode), flag)) {
27585 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27586 			    "sr_read_all_subcodes: ddi_copyin Failed\n");
27587 			kmem_free(subcode, sizeof (struct cdrom_subcode));
27588 			return (EFAULT);
27589 		}
27590 		break;
27591 	}
27592 #else /* ! _MULTI_DATAMODEL */
27593 	if (ddi_copyin(data, subcode, sizeof (struct cdrom_subcode), flag)) {
27594 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27595 		    "sr_read_all_subcodes: ddi_copyin Failed\n");
27596 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27597 		return (EFAULT);
27598 	}
27599 #endif /* _MULTI_DATAMODEL */
27600 
27601 	/*
27602 	 * Since MMC-2 expects max 3 bytes for length, check if the
27603 	 * length input is greater than 3 bytes
27604 	 */
27605 	if ((subcode->cdsc_length & 0xFF000000) != 0) {
27606 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
27607 		    "sr_read_all_subcodes: "
27608 		    "cdrom transfer length too large: %d (limit %d)\n",
27609 		    subcode->cdsc_length, 0xFFFFFF);
27610 		kmem_free(subcode, sizeof (struct cdrom_subcode));
27611 		return (EINVAL);
27612 	}
27613 
27614 	buflen = CDROM_BLK_SUBCODE * subcode->cdsc_length;
27615 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27616 	bzero(cdb, CDB_GROUP5);
27617 
27618 	if (un->un_f_mmc_cap == TRUE) {
27619 		cdb[0] = (char)SCMD_READ_CD;
27620 		cdb[2] = (char)0xff;
27621 		cdb[3] = (char)0xff;
27622 		cdb[4] = (char)0xff;
27623 		cdb[5] = (char)0xff;
27624 		cdb[6] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27625 		cdb[7] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27626 		cdb[8] = ((subcode->cdsc_length) & 0x000000ff);
27627 		cdb[10] = 1;
27628 	} else {
27629 		/*
27630 		 * Note: A vendor specific command (0xDF) is being used her to
27631 		 * request a read of all subcodes.
27632 		 */
27633 		cdb[0] = (char)SCMD_READ_ALL_SUBCODES;
27634 		cdb[6] = (((subcode->cdsc_length) & 0xff000000) >> 24);
27635 		cdb[7] = (((subcode->cdsc_length) & 0x00ff0000) >> 16);
27636 		cdb[8] = (((subcode->cdsc_length) & 0x0000ff00) >> 8);
27637 		cdb[9] = ((subcode->cdsc_length) & 0x000000ff);
27638 	}
27639 	com->uscsi_cdb	   = cdb;
27640 	com->uscsi_cdblen  = CDB_GROUP5;
27641 	com->uscsi_bufaddr = (caddr_t)subcode->cdsc_addr;
27642 	com->uscsi_buflen  = buflen;
27643 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27644 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
27645 	    SD_PATH_STANDARD);
27646 	kmem_free(subcode, sizeof (struct cdrom_subcode));
27647 	kmem_free(com, sizeof (*com));
27648 	return (rval);
27649 }
27650 
27651 
27652 /*
27653  *    Function: sr_read_subchannel()
27654  *
27655  * Description: This routine is the driver entry point for handling CD-ROM
27656  *		ioctl requests to return the Q sub-channel data of the CD
27657  *		current position block. (CDROMSUBCHNL) The data includes the
27658  *		track number, index number, absolute CD-ROM address (LBA or MSF
27659  *		format per the user) , track relative CD-ROM address (LBA or MSF
27660  *		format per the user), control data and audio status.
27661  *
27662  *   Arguments: dev	- the device 'dev_t'
27663  *		data	- pointer to user provided cdrom sub-channel structure
27664  *		flag	- this argument is a pass through to ddi_copyxxx()
27665  *		          directly from the mode argument of ioctl().
27666  *
27667  * Return Code: the code returned by sd_send_scsi_cmd()
27668  *		EFAULT if ddi_copyxxx() fails
27669  *		ENXIO if fail ddi_get_soft_state
27670  *		EINVAL if data pointer is NULL
27671  */
27672 
27673 static int
27674 sr_read_subchannel(dev_t dev, caddr_t data, int flag)
27675 {
27676 	struct sd_lun		*un;
27677 	struct uscsi_cmd	*com;
27678 	struct cdrom_subchnl	subchanel;
27679 	struct cdrom_subchnl	*subchnl = &subchanel;
27680 	char			cdb[CDB_GROUP1];
27681 	caddr_t			buffer;
27682 	int			rval;
27683 
27684 	if (data == NULL) {
27685 		return (EINVAL);
27686 	}
27687 
27688 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27689 	    (un->un_state == SD_STATE_OFFLINE)) {
27690 		return (ENXIO);
27691 	}
27692 
27693 	if (ddi_copyin(data, subchnl, sizeof (struct cdrom_subchnl), flag)) {
27694 		return (EFAULT);
27695 	}
27696 
27697 	buffer = kmem_zalloc((size_t)16, KM_SLEEP);
27698 	bzero(cdb, CDB_GROUP1);
27699 	cdb[0] = SCMD_READ_SUBCHANNEL;
27700 	/* Set the MSF bit based on the user requested address format */
27701 	cdb[1] = (subchnl->cdsc_format & CDROM_LBA) ? 0 : 0x02;
27702 	/*
27703 	 * Set the Q bit in byte 2 to indicate that Q sub-channel data be
27704 	 * returned
27705 	 */
27706 	cdb[2] = 0x40;
27707 	/*
27708 	 * Set byte 3 to specify the return data format. A value of 0x01
27709 	 * indicates that the CD-ROM current position should be returned.
27710 	 */
27711 	cdb[3] = 0x01;
27712 	cdb[8] = 0x10;
27713 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27714 	com->uscsi_cdb	   = cdb;
27715 	com->uscsi_cdblen  = CDB_GROUP1;
27716 	com->uscsi_bufaddr = buffer;
27717 	com->uscsi_buflen  = 16;
27718 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
27719 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27720 	    SD_PATH_STANDARD);
27721 	if (rval != 0) {
27722 		kmem_free(buffer, 16);
27723 		kmem_free(com, sizeof (*com));
27724 		return (rval);
27725 	}
27726 
27727 	/* Process the returned Q sub-channel data */
27728 	subchnl->cdsc_audiostatus = buffer[1];
27729 	subchnl->cdsc_adr	= (buffer[5] & 0xF0) >> 4;
27730 	subchnl->cdsc_ctrl	= (buffer[5] & 0x0F);
27731 	subchnl->cdsc_trk	= buffer[6];
27732 	subchnl->cdsc_ind	= buffer[7];
27733 	if (subchnl->cdsc_format & CDROM_LBA) {
27734 		subchnl->cdsc_absaddr.lba =
27735 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27736 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27737 		subchnl->cdsc_reladdr.lba =
27738 		    ((uchar_t)buffer[12] << 24) + ((uchar_t)buffer[13] << 16) +
27739 		    ((uchar_t)buffer[14] << 8) + ((uchar_t)buffer[15]);
27740 	} else if (un->un_f_cfg_readsub_bcd == TRUE) {
27741 		subchnl->cdsc_absaddr.msf.minute = BCD_TO_BYTE(buffer[9]);
27742 		subchnl->cdsc_absaddr.msf.second = BCD_TO_BYTE(buffer[10]);
27743 		subchnl->cdsc_absaddr.msf.frame  = BCD_TO_BYTE(buffer[11]);
27744 		subchnl->cdsc_reladdr.msf.minute = BCD_TO_BYTE(buffer[13]);
27745 		subchnl->cdsc_reladdr.msf.second = BCD_TO_BYTE(buffer[14]);
27746 		subchnl->cdsc_reladdr.msf.frame  = BCD_TO_BYTE(buffer[15]);
27747 	} else {
27748 		subchnl->cdsc_absaddr.msf.minute = buffer[9];
27749 		subchnl->cdsc_absaddr.msf.second = buffer[10];
27750 		subchnl->cdsc_absaddr.msf.frame  = buffer[11];
27751 		subchnl->cdsc_reladdr.msf.minute = buffer[13];
27752 		subchnl->cdsc_reladdr.msf.second = buffer[14];
27753 		subchnl->cdsc_reladdr.msf.frame  = buffer[15];
27754 	}
27755 	kmem_free(buffer, 16);
27756 	kmem_free(com, sizeof (*com));
27757 	if (ddi_copyout(subchnl, data, sizeof (struct cdrom_subchnl), flag)
27758 	    != 0) {
27759 		return (EFAULT);
27760 	}
27761 	return (rval);
27762 }
27763 
27764 
27765 /*
27766  *    Function: sr_read_tocentry()
27767  *
27768  * Description: This routine is the driver entry point for handling CD-ROM
27769  *		ioctl requests to read from the Table of Contents (TOC)
27770  *		(CDROMREADTOCENTRY). This routine provides the ADR and CTRL
27771  *		fields, the starting address (LBA or MSF format per the user)
27772  *		and the data mode if the user specified track is a data track.
27773  *
27774  *		Note: The READ HEADER (0x44) command used in this routine is
27775  *		obsolete per the SCSI MMC spec but still supported in the
27776  *		MT FUJI vendor spec. Most equipment is adhereing to MT FUJI
27777  *		therefore the command is still implemented in this routine.
27778  *
27779  *   Arguments: dev	- the device 'dev_t'
27780  *		data	- pointer to user provided toc entry structure,
27781  *			  specifying the track # and the address format
27782  *			  (LBA or MSF).
27783  *		flag	- this argument is a pass through to ddi_copyxxx()
27784  *		          directly from the mode argument of ioctl().
27785  *
27786  * Return Code: the code returned by sd_send_scsi_cmd()
27787  *		EFAULT if ddi_copyxxx() fails
27788  *		ENXIO if fail ddi_get_soft_state
27789  *		EINVAL if data pointer is NULL
27790  */
27791 
27792 static int
27793 sr_read_tocentry(dev_t dev, caddr_t data, int flag)
27794 {
27795 	struct sd_lun		*un = NULL;
27796 	struct uscsi_cmd	*com;
27797 	struct cdrom_tocentry	toc_entry;
27798 	struct cdrom_tocentry	*entry = &toc_entry;
27799 	caddr_t			buffer;
27800 	int			rval;
27801 	char			cdb[CDB_GROUP1];
27802 
27803 	if (data == NULL) {
27804 		return (EINVAL);
27805 	}
27806 
27807 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27808 	    (un->un_state == SD_STATE_OFFLINE)) {
27809 		return (ENXIO);
27810 	}
27811 
27812 	if (ddi_copyin(data, entry, sizeof (struct cdrom_tocentry), flag)) {
27813 		return (EFAULT);
27814 	}
27815 
27816 	/* Validate the requested track and address format */
27817 	if (!(entry->cdte_format & (CDROM_LBA | CDROM_MSF))) {
27818 		return (EINVAL);
27819 	}
27820 
27821 	if (entry->cdte_track == 0) {
27822 		return (EINVAL);
27823 	}
27824 
27825 	buffer = kmem_zalloc((size_t)12, KM_SLEEP);
27826 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
27827 	bzero(cdb, CDB_GROUP1);
27828 
27829 	cdb[0] = SCMD_READ_TOC;
27830 	/* Set the MSF bit based on the user requested address format  */
27831 	cdb[1] = ((entry->cdte_format & CDROM_LBA) ? 0 : 2);
27832 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
27833 		cdb[6] = BYTE_TO_BCD(entry->cdte_track);
27834 	} else {
27835 		cdb[6] = entry->cdte_track;
27836 	}
27837 
27838 	/*
27839 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
27840 	 * (4 byte TOC response header + 8 byte track descriptor)
27841 	 */
27842 	cdb[8] = 12;
27843 	com->uscsi_cdb	   = cdb;
27844 	com->uscsi_cdblen  = CDB_GROUP1;
27845 	com->uscsi_bufaddr = buffer;
27846 	com->uscsi_buflen  = 0x0C;
27847 	com->uscsi_flags   = (USCSI_DIAGNOSE | USCSI_SILENT | USCSI_READ);
27848 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27849 	    SD_PATH_STANDARD);
27850 	if (rval != 0) {
27851 		kmem_free(buffer, 12);
27852 		kmem_free(com, sizeof (*com));
27853 		return (rval);
27854 	}
27855 
27856 	/* Process the toc entry */
27857 	entry->cdte_adr		= (buffer[5] & 0xF0) >> 4;
27858 	entry->cdte_ctrl	= (buffer[5] & 0x0F);
27859 	if (entry->cdte_format & CDROM_LBA) {
27860 		entry->cdte_addr.lba =
27861 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
27862 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
27863 	} else if (un->un_f_cfg_read_toc_addr_bcd == TRUE) {
27864 		entry->cdte_addr.msf.minute	= BCD_TO_BYTE(buffer[9]);
27865 		entry->cdte_addr.msf.second	= BCD_TO_BYTE(buffer[10]);
27866 		entry->cdte_addr.msf.frame	= BCD_TO_BYTE(buffer[11]);
27867 		/*
27868 		 * Send a READ TOC command using the LBA address format to get
27869 		 * the LBA for the track requested so it can be used in the
27870 		 * READ HEADER request
27871 		 *
27872 		 * Note: The MSF bit of the READ HEADER command specifies the
27873 		 * output format. The block address specified in that command
27874 		 * must be in LBA format.
27875 		 */
27876 		cdb[1] = 0;
27877 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27878 		    SD_PATH_STANDARD);
27879 		if (rval != 0) {
27880 			kmem_free(buffer, 12);
27881 			kmem_free(com, sizeof (*com));
27882 			return (rval);
27883 		}
27884 	} else {
27885 		entry->cdte_addr.msf.minute	= buffer[9];
27886 		entry->cdte_addr.msf.second	= buffer[10];
27887 		entry->cdte_addr.msf.frame	= buffer[11];
27888 		/*
27889 		 * Send a READ TOC command using the LBA address format to get
27890 		 * the LBA for the track requested so it can be used in the
27891 		 * READ HEADER request
27892 		 *
27893 		 * Note: The MSF bit of the READ HEADER command specifies the
27894 		 * output format. The block address specified in that command
27895 		 * must be in LBA format.
27896 		 */
27897 		cdb[1] = 0;
27898 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27899 		    SD_PATH_STANDARD);
27900 		if (rval != 0) {
27901 			kmem_free(buffer, 12);
27902 			kmem_free(com, sizeof (*com));
27903 			return (rval);
27904 		}
27905 	}
27906 
27907 	/*
27908 	 * Build and send the READ HEADER command to determine the data mode of
27909 	 * the user specified track.
27910 	 */
27911 	if ((entry->cdte_ctrl & CDROM_DATA_TRACK) &&
27912 	    (entry->cdte_track != CDROM_LEADOUT)) {
27913 		bzero(cdb, CDB_GROUP1);
27914 		cdb[0] = SCMD_READ_HEADER;
27915 		cdb[2] = buffer[8];
27916 		cdb[3] = buffer[9];
27917 		cdb[4] = buffer[10];
27918 		cdb[5] = buffer[11];
27919 		cdb[8] = 0x08;
27920 		com->uscsi_buflen = 0x08;
27921 		rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
27922 		    SD_PATH_STANDARD);
27923 		if (rval == 0) {
27924 			entry->cdte_datamode = buffer[0];
27925 		} else {
27926 			/*
27927 			 * READ HEADER command failed, since this is
27928 			 * obsoleted in one spec, its better to return
27929 			 * -1 for an invlid track so that we can still
27930 			 * receive the rest of the TOC data.
27931 			 */
27932 			entry->cdte_datamode = (uchar_t)-1;
27933 		}
27934 	} else {
27935 		entry->cdte_datamode = (uchar_t)-1;
27936 	}
27937 
27938 	kmem_free(buffer, 12);
27939 	kmem_free(com, sizeof (*com));
27940 	if (ddi_copyout(entry, data, sizeof (struct cdrom_tocentry), flag) != 0)
27941 		return (EFAULT);
27942 
27943 	return (rval);
27944 }
27945 
27946 
27947 /*
27948  *    Function: sr_read_tochdr()
27949  *
27950  * Description: This routine is the driver entry point for handling CD-ROM
27951  * 		ioctl requests to read the Table of Contents (TOC) header
27952  *		(CDROMREADTOHDR). The TOC header consists of the disk starting
27953  *		and ending track numbers
27954  *
27955  *   Arguments: dev	- the device 'dev_t'
27956  *		data	- pointer to user provided toc header structure,
27957  *			  specifying the starting and ending track numbers.
27958  *		flag	- this argument is a pass through to ddi_copyxxx()
27959  *			  directly from the mode argument of ioctl().
27960  *
27961  * Return Code: the code returned by sd_send_scsi_cmd()
27962  *		EFAULT if ddi_copyxxx() fails
27963  *		ENXIO if fail ddi_get_soft_state
27964  *		EINVAL if data pointer is NULL
27965  */
27966 
27967 static int
27968 sr_read_tochdr(dev_t dev, caddr_t data, int flag)
27969 {
27970 	struct sd_lun		*un;
27971 	struct uscsi_cmd	*com;
27972 	struct cdrom_tochdr	toc_header;
27973 	struct cdrom_tochdr	*hdr = &toc_header;
27974 	char			cdb[CDB_GROUP1];
27975 	int			rval;
27976 	caddr_t			buffer;
27977 
27978 	if (data == NULL) {
27979 		return (EINVAL);
27980 	}
27981 
27982 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
27983 	    (un->un_state == SD_STATE_OFFLINE)) {
27984 		return (ENXIO);
27985 	}
27986 
27987 	buffer = kmem_zalloc(4, KM_SLEEP);
27988 	bzero(cdb, CDB_GROUP1);
27989 	cdb[0] = SCMD_READ_TOC;
27990 	/*
27991 	 * Specifying a track number of 0x00 in the READ TOC command indicates
27992 	 * that the TOC header should be returned
27993 	 */
27994 	cdb[6] = 0x00;
27995 	/*
27996 	 * Bytes 7 & 8 are the 4 byte allocation length for TOC header.
27997 	 * (2 byte data len + 1 byte starting track # + 1 byte ending track #)
27998 	 */
27999 	cdb[8] = 0x04;
28000 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28001 	com->uscsi_cdb	   = cdb;
28002 	com->uscsi_cdblen  = CDB_GROUP1;
28003 	com->uscsi_bufaddr = buffer;
28004 	com->uscsi_buflen  = 0x04;
28005 	com->uscsi_timeout = 300;
28006 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28007 
28008 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
28009 	    SD_PATH_STANDARD);
28010 	if (un->un_f_cfg_read_toc_trk_bcd == TRUE) {
28011 		hdr->cdth_trk0 = BCD_TO_BYTE(buffer[2]);
28012 		hdr->cdth_trk1 = BCD_TO_BYTE(buffer[3]);
28013 	} else {
28014 		hdr->cdth_trk0 = buffer[2];
28015 		hdr->cdth_trk1 = buffer[3];
28016 	}
28017 	kmem_free(buffer, 4);
28018 	kmem_free(com, sizeof (*com));
28019 	if (ddi_copyout(hdr, data, sizeof (struct cdrom_tochdr), flag) != 0) {
28020 		return (EFAULT);
28021 	}
28022 	return (rval);
28023 }
28024 
28025 
28026 /*
28027  * Note: The following sr_read_mode1(), sr_read_cd_mode2(), sr_read_mode2(),
28028  * sr_read_cdda(), sr_read_cdxa(), routines implement driver support for
28029  * handling CDROMREAD ioctl requests for mode 1 user data, mode 2 user data,
28030  * digital audio and extended architecture digital audio. These modes are
28031  * defined in the IEC908 (Red Book), ISO10149 (Yellow Book), and the SCSI3
28032  * MMC specs.
28033  *
28034  * In addition to support for the various data formats these routines also
28035  * include support for devices that implement only the direct access READ
28036  * commands (0x08, 0x28), devices that implement the READ_CD commands
28037  * (0xBE, 0xD4), and devices that implement the vendor unique READ CDDA and
28038  * READ CDXA commands (0xD8, 0xDB)
28039  */
28040 
28041 /*
28042  *    Function: sr_read_mode1()
28043  *
28044  * Description: This routine is the driver entry point for handling CD-ROM
28045  *		ioctl read mode1 requests (CDROMREADMODE1).
28046  *
28047  *   Arguments: dev	- the device 'dev_t'
28048  *		data	- pointer to user provided cd read structure specifying
28049  *			  the lba buffer address and length.
28050  *		flag	- this argument is a pass through to ddi_copyxxx()
28051  *			  directly from the mode argument of ioctl().
28052  *
28053  * Return Code: the code returned by sd_send_scsi_cmd()
28054  *		EFAULT if ddi_copyxxx() fails
28055  *		ENXIO if fail ddi_get_soft_state
28056  *		EINVAL if data pointer is NULL
28057  */
28058 
28059 static int
28060 sr_read_mode1(dev_t dev, caddr_t data, int flag)
28061 {
28062 	struct sd_lun		*un;
28063 	struct cdrom_read	mode1_struct;
28064 	struct cdrom_read	*mode1 = &mode1_struct;
28065 	int			rval;
28066 	sd_ssc_t		*ssc;
28067 
28068 #ifdef _MULTI_DATAMODEL
28069 	/* To support ILP32 applications in an LP64 world */
28070 	struct cdrom_read32	cdrom_read32;
28071 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28072 #endif /* _MULTI_DATAMODEL */
28073 
28074 	if (data == NULL) {
28075 		return (EINVAL);
28076 	}
28077 
28078 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28079 	    (un->un_state == SD_STATE_OFFLINE)) {
28080 		return (ENXIO);
28081 	}
28082 
28083 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28084 	    "sd_read_mode1: entry: un:0x%p\n", un);
28085 
28086 #ifdef _MULTI_DATAMODEL
28087 	switch (ddi_model_convert_from(flag & FMODELS)) {
28088 	case DDI_MODEL_ILP32:
28089 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28090 			return (EFAULT);
28091 		}
28092 		/* Convert the ILP32 uscsi data from the application to LP64 */
28093 		cdrom_read32tocdrom_read(cdrd32, mode1);
28094 		break;
28095 	case DDI_MODEL_NONE:
28096 		if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28097 			return (EFAULT);
28098 		}
28099 	}
28100 #else /* ! _MULTI_DATAMODEL */
28101 	if (ddi_copyin(data, mode1, sizeof (struct cdrom_read), flag)) {
28102 		return (EFAULT);
28103 	}
28104 #endif /* _MULTI_DATAMODEL */
28105 
28106 	ssc = sd_ssc_init(un);
28107 	rval = sd_send_scsi_READ(ssc, mode1->cdread_bufaddr,
28108 	    mode1->cdread_buflen, mode1->cdread_lba, SD_PATH_STANDARD);
28109 	sd_ssc_fini(ssc);
28110 
28111 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28112 	    "sd_read_mode1: exit: un:0x%p\n", un);
28113 
28114 	return (rval);
28115 }
28116 
28117 
28118 /*
28119  *    Function: sr_read_cd_mode2()
28120  *
28121  * Description: This routine is the driver entry point for handling CD-ROM
28122  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28123  *		support the READ CD (0xBE) command or the 1st generation
28124  *		READ CD (0xD4) command.
28125  *
28126  *   Arguments: dev	- the device 'dev_t'
28127  *		data	- pointer to user provided cd read structure specifying
28128  *			  the lba buffer address and length.
28129  *		flag	- this argument is a pass through to ddi_copyxxx()
28130  *			  directly from the mode argument of ioctl().
28131  *
28132  * Return Code: the code returned by sd_send_scsi_cmd()
28133  *		EFAULT if ddi_copyxxx() fails
28134  *		ENXIO if fail ddi_get_soft_state
28135  *		EINVAL if data pointer is NULL
28136  */
28137 
28138 static int
28139 sr_read_cd_mode2(dev_t dev, caddr_t data, int flag)
28140 {
28141 	struct sd_lun		*un;
28142 	struct uscsi_cmd	*com;
28143 	struct cdrom_read	mode2_struct;
28144 	struct cdrom_read	*mode2 = &mode2_struct;
28145 	uchar_t			cdb[CDB_GROUP5];
28146 	int			nblocks;
28147 	int			rval;
28148 #ifdef _MULTI_DATAMODEL
28149 	/*  To support ILP32 applications in an LP64 world */
28150 	struct cdrom_read32	cdrom_read32;
28151 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28152 #endif /* _MULTI_DATAMODEL */
28153 
28154 	if (data == NULL) {
28155 		return (EINVAL);
28156 	}
28157 
28158 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28159 	    (un->un_state == SD_STATE_OFFLINE)) {
28160 		return (ENXIO);
28161 	}
28162 
28163 #ifdef _MULTI_DATAMODEL
28164 	switch (ddi_model_convert_from(flag & FMODELS)) {
28165 	case DDI_MODEL_ILP32:
28166 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28167 			return (EFAULT);
28168 		}
28169 		/* Convert the ILP32 uscsi data from the application to LP64 */
28170 		cdrom_read32tocdrom_read(cdrd32, mode2);
28171 		break;
28172 	case DDI_MODEL_NONE:
28173 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28174 			return (EFAULT);
28175 		}
28176 		break;
28177 	}
28178 
28179 #else /* ! _MULTI_DATAMODEL */
28180 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28181 		return (EFAULT);
28182 	}
28183 #endif /* _MULTI_DATAMODEL */
28184 
28185 	bzero(cdb, sizeof (cdb));
28186 	if (un->un_f_cfg_read_cd_xd4 == TRUE) {
28187 		/* Read command supported by 1st generation atapi drives */
28188 		cdb[0] = SCMD_READ_CDD4;
28189 	} else {
28190 		/* Universal CD Access Command */
28191 		cdb[0] = SCMD_READ_CD;
28192 	}
28193 
28194 	/*
28195 	 * Set expected sector type to: 2336s byte, Mode 2 Yellow Book
28196 	 */
28197 	cdb[1] = CDROM_SECTOR_TYPE_MODE2;
28198 
28199 	/* set the start address */
28200 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 24) & 0XFF);
28201 	cdb[3] = (uchar_t)((mode2->cdread_lba >> 16) & 0XFF);
28202 	cdb[4] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28203 	cdb[5] = (uchar_t)(mode2->cdread_lba & 0xFF);
28204 
28205 	/* set the transfer length */
28206 	nblocks = mode2->cdread_buflen / 2336;
28207 	cdb[6] = (uchar_t)(nblocks >> 16);
28208 	cdb[7] = (uchar_t)(nblocks >> 8);
28209 	cdb[8] = (uchar_t)nblocks;
28210 
28211 	/* set the filter bits */
28212 	cdb[9] = CDROM_READ_CD_USERDATA;
28213 
28214 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28215 	com->uscsi_cdb = (caddr_t)cdb;
28216 	com->uscsi_cdblen = sizeof (cdb);
28217 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28218 	com->uscsi_buflen = mode2->cdread_buflen;
28219 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28220 
28221 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28222 	    SD_PATH_STANDARD);
28223 	kmem_free(com, sizeof (*com));
28224 	return (rval);
28225 }
28226 
28227 
28228 /*
28229  *    Function: sr_read_mode2()
28230  *
28231  * Description: This routine is the driver entry point for handling CD-ROM
28232  *		ioctl read mode2 requests (CDROMREADMODE2) for devices that
28233  *		do not support the READ CD (0xBE) command.
28234  *
28235  *   Arguments: dev	- the device 'dev_t'
28236  *		data	- pointer to user provided cd read structure specifying
28237  *			  the lba buffer address and length.
28238  *		flag	- this argument is a pass through to ddi_copyxxx()
28239  *			  directly from the mode argument of ioctl().
28240  *
28241  * Return Code: the code returned by sd_send_scsi_cmd()
28242  *		EFAULT if ddi_copyxxx() fails
28243  *		ENXIO if fail ddi_get_soft_state
28244  *		EINVAL if data pointer is NULL
28245  *		EIO if fail to reset block size
28246  *		EAGAIN if commands are in progress in the driver
28247  */
28248 
28249 static int
28250 sr_read_mode2(dev_t dev, caddr_t data, int flag)
28251 {
28252 	struct sd_lun		*un;
28253 	struct cdrom_read	mode2_struct;
28254 	struct cdrom_read	*mode2 = &mode2_struct;
28255 	int			rval;
28256 	uint32_t		restore_blksize;
28257 	struct uscsi_cmd	*com;
28258 	uchar_t			cdb[CDB_GROUP0];
28259 	int			nblocks;
28260 
28261 #ifdef _MULTI_DATAMODEL
28262 	/* To support ILP32 applications in an LP64 world */
28263 	struct cdrom_read32	cdrom_read32;
28264 	struct cdrom_read32	*cdrd32 = &cdrom_read32;
28265 #endif /* _MULTI_DATAMODEL */
28266 
28267 	if (data == NULL) {
28268 		return (EINVAL);
28269 	}
28270 
28271 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28272 	    (un->un_state == SD_STATE_OFFLINE)) {
28273 		return (ENXIO);
28274 	}
28275 
28276 	/*
28277 	 * Because this routine will update the device and driver block size
28278 	 * being used we want to make sure there are no commands in progress.
28279 	 * If commands are in progress the user will have to try again.
28280 	 *
28281 	 * We check for 1 instead of 0 because we increment un_ncmds_in_driver
28282 	 * in sdioctl to protect commands from sdioctl through to the top of
28283 	 * sd_uscsi_strategy. See sdioctl for details.
28284 	 */
28285 	mutex_enter(SD_MUTEX(un));
28286 	if (un->un_ncmds_in_driver != 1) {
28287 		mutex_exit(SD_MUTEX(un));
28288 		return (EAGAIN);
28289 	}
28290 	mutex_exit(SD_MUTEX(un));
28291 
28292 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28293 	    "sd_read_mode2: entry: un:0x%p\n", un);
28294 
28295 #ifdef _MULTI_DATAMODEL
28296 	switch (ddi_model_convert_from(flag & FMODELS)) {
28297 	case DDI_MODEL_ILP32:
28298 		if (ddi_copyin(data, cdrd32, sizeof (*cdrd32), flag) != 0) {
28299 			return (EFAULT);
28300 		}
28301 		/* Convert the ILP32 uscsi data from the application to LP64 */
28302 		cdrom_read32tocdrom_read(cdrd32, mode2);
28303 		break;
28304 	case DDI_MODEL_NONE:
28305 		if (ddi_copyin(data, mode2, sizeof (*mode2), flag) != 0) {
28306 			return (EFAULT);
28307 		}
28308 		break;
28309 	}
28310 #else /* ! _MULTI_DATAMODEL */
28311 	if (ddi_copyin(data, mode2, sizeof (*mode2), flag)) {
28312 		return (EFAULT);
28313 	}
28314 #endif /* _MULTI_DATAMODEL */
28315 
28316 	/* Store the current target block size for restoration later */
28317 	restore_blksize = un->un_tgt_blocksize;
28318 
28319 	/* Change the device and soft state target block size to 2336 */
28320 	if (sr_sector_mode(dev, SD_MODE2_BLKSIZE) != 0) {
28321 		rval = EIO;
28322 		goto done;
28323 	}
28324 
28325 
28326 	bzero(cdb, sizeof (cdb));
28327 
28328 	/* set READ operation */
28329 	cdb[0] = SCMD_READ;
28330 
28331 	/* adjust lba for 2kbyte blocks from 512 byte blocks */
28332 	mode2->cdread_lba >>= 2;
28333 
28334 	/* set the start address */
28335 	cdb[1] = (uchar_t)((mode2->cdread_lba >> 16) & 0X1F);
28336 	cdb[2] = (uchar_t)((mode2->cdread_lba >> 8) & 0xFF);
28337 	cdb[3] = (uchar_t)(mode2->cdread_lba & 0xFF);
28338 
28339 	/* set the transfer length */
28340 	nblocks = mode2->cdread_buflen / 2336;
28341 	cdb[4] = (uchar_t)nblocks & 0xFF;
28342 
28343 	/* build command */
28344 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28345 	com->uscsi_cdb = (caddr_t)cdb;
28346 	com->uscsi_cdblen = sizeof (cdb);
28347 	com->uscsi_bufaddr = mode2->cdread_bufaddr;
28348 	com->uscsi_buflen = mode2->cdread_buflen;
28349 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28350 
28351 	/*
28352 	 * Issue SCSI command with user space address for read buffer.
28353 	 *
28354 	 * This sends the command through main channel in the driver.
28355 	 *
28356 	 * Since this is accessed via an IOCTL call, we go through the
28357 	 * standard path, so that if the device was powered down, then
28358 	 * it would be 'awakened' to handle the command.
28359 	 */
28360 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28361 	    SD_PATH_STANDARD);
28362 
28363 	kmem_free(com, sizeof (*com));
28364 
28365 	/* Restore the device and soft state target block size */
28366 	if (sr_sector_mode(dev, restore_blksize) != 0) {
28367 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28368 		    "can't do switch back to mode 1\n");
28369 		/*
28370 		 * If sd_send_scsi_READ succeeded we still need to report
28371 		 * an error because we failed to reset the block size
28372 		 */
28373 		if (rval == 0) {
28374 			rval = EIO;
28375 		}
28376 	}
28377 
28378 done:
28379 	SD_TRACE(SD_LOG_ATTACH_DETACH, un,
28380 	    "sd_read_mode2: exit: un:0x%p\n", un);
28381 
28382 	return (rval);
28383 }
28384 
28385 
28386 /*
28387  *    Function: sr_sector_mode()
28388  *
28389  * Description: This utility function is used by sr_read_mode2 to set the target
28390  *		block size based on the user specified size. This is a legacy
28391  *		implementation based upon a vendor specific mode page
28392  *
28393  *   Arguments: dev	- the device 'dev_t'
28394  *		data	- flag indicating if block size is being set to 2336 or
28395  *			  512.
28396  *
28397  * Return Code: the code returned by sd_send_scsi_cmd()
28398  *		EFAULT if ddi_copyxxx() fails
28399  *		ENXIO if fail ddi_get_soft_state
28400  *		EINVAL if data pointer is NULL
28401  */
28402 
28403 static int
28404 sr_sector_mode(dev_t dev, uint32_t blksize)
28405 {
28406 	struct sd_lun	*un;
28407 	uchar_t		*sense;
28408 	uchar_t		*select;
28409 	int		rval;
28410 	sd_ssc_t	*ssc;
28411 
28412 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28413 	    (un->un_state == SD_STATE_OFFLINE)) {
28414 		return (ENXIO);
28415 	}
28416 
28417 	sense = kmem_zalloc(20, KM_SLEEP);
28418 
28419 	/* Note: This is a vendor specific mode page (0x81) */
28420 	ssc = sd_ssc_init(un);
28421 	rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, 20, 0x81,
28422 	    SD_PATH_STANDARD);
28423 	sd_ssc_fini(ssc);
28424 	if (rval != 0) {
28425 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28426 		    "sr_sector_mode: Mode Sense failed\n");
28427 		kmem_free(sense, 20);
28428 		return (rval);
28429 	}
28430 	select = kmem_zalloc(20, KM_SLEEP);
28431 	select[3] = 0x08;
28432 	select[10] = ((blksize >> 8) & 0xff);
28433 	select[11] = (blksize & 0xff);
28434 	select[12] = 0x01;
28435 	select[13] = 0x06;
28436 	select[14] = sense[14];
28437 	select[15] = sense[15];
28438 	if (blksize == SD_MODE2_BLKSIZE) {
28439 		select[14] |= 0x01;
28440 	}
28441 
28442 	ssc = sd_ssc_init(un);
28443 	rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select, 20,
28444 	    SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
28445 	sd_ssc_fini(ssc);
28446 	if (rval != 0) {
28447 		SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
28448 		    "sr_sector_mode: Mode Select failed\n");
28449 	} else {
28450 		/*
28451 		 * Only update the softstate block size if we successfully
28452 		 * changed the device block mode.
28453 		 */
28454 		mutex_enter(SD_MUTEX(un));
28455 		sd_update_block_info(un, blksize, 0);
28456 		mutex_exit(SD_MUTEX(un));
28457 	}
28458 	kmem_free(sense, 20);
28459 	kmem_free(select, 20);
28460 	return (rval);
28461 }
28462 
28463 
28464 /*
28465  *    Function: sr_read_cdda()
28466  *
28467  * Description: This routine is the driver entry point for handling CD-ROM
28468  *		ioctl requests to return CD-DA or subcode data. (CDROMCDDA) If
28469  *		the target supports CDDA these requests are handled via a vendor
28470  *		specific command (0xD8) If the target does not support CDDA
28471  *		these requests are handled via the READ CD command (0xBE).
28472  *
28473  *   Arguments: dev	- the device 'dev_t'
28474  *		data	- pointer to user provided CD-DA structure specifying
28475  *			  the track starting address, transfer length, and
28476  *			  subcode options.
28477  *		flag	- this argument is a pass through to ddi_copyxxx()
28478  *			  directly from the mode argument of ioctl().
28479  *
28480  * Return Code: the code returned by sd_send_scsi_cmd()
28481  *		EFAULT if ddi_copyxxx() fails
28482  *		ENXIO if fail ddi_get_soft_state
28483  *		EINVAL if invalid arguments are provided
28484  *		ENOTTY
28485  */
28486 
28487 static int
28488 sr_read_cdda(dev_t dev, caddr_t data, int flag)
28489 {
28490 	struct sd_lun			*un;
28491 	struct uscsi_cmd		*com;
28492 	struct cdrom_cdda		*cdda;
28493 	int				rval;
28494 	size_t				buflen;
28495 	char				cdb[CDB_GROUP5];
28496 
28497 #ifdef _MULTI_DATAMODEL
28498 	/* To support ILP32 applications in an LP64 world */
28499 	struct cdrom_cdda32	cdrom_cdda32;
28500 	struct cdrom_cdda32	*cdda32 = &cdrom_cdda32;
28501 #endif /* _MULTI_DATAMODEL */
28502 
28503 	if (data == NULL) {
28504 		return (EINVAL);
28505 	}
28506 
28507 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28508 		return (ENXIO);
28509 	}
28510 
28511 	cdda = kmem_zalloc(sizeof (struct cdrom_cdda), KM_SLEEP);
28512 
28513 #ifdef _MULTI_DATAMODEL
28514 	switch (ddi_model_convert_from(flag & FMODELS)) {
28515 	case DDI_MODEL_ILP32:
28516 		if (ddi_copyin(data, cdda32, sizeof (*cdda32), flag)) {
28517 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28518 			    "sr_read_cdda: ddi_copyin Failed\n");
28519 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28520 			return (EFAULT);
28521 		}
28522 		/* Convert the ILP32 uscsi data from the application to LP64 */
28523 		cdrom_cdda32tocdrom_cdda(cdda32, cdda);
28524 		break;
28525 	case DDI_MODEL_NONE:
28526 		if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28527 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28528 			    "sr_read_cdda: ddi_copyin Failed\n");
28529 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28530 			return (EFAULT);
28531 		}
28532 		break;
28533 	}
28534 #else /* ! _MULTI_DATAMODEL */
28535 	if (ddi_copyin(data, cdda, sizeof (struct cdrom_cdda), flag)) {
28536 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28537 		    "sr_read_cdda: ddi_copyin Failed\n");
28538 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28539 		return (EFAULT);
28540 	}
28541 #endif /* _MULTI_DATAMODEL */
28542 
28543 	/*
28544 	 * Since MMC-2 expects max 3 bytes for length, check if the
28545 	 * length input is greater than 3 bytes
28546 	 */
28547 	if ((cdda->cdda_length & 0xFF000000) != 0) {
28548 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdda: "
28549 		    "cdrom transfer length too large: %d (limit %d)\n",
28550 		    cdda->cdda_length, 0xFFFFFF);
28551 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28552 		return (EINVAL);
28553 	}
28554 
28555 	switch (cdda->cdda_subcode) {
28556 	case CDROM_DA_NO_SUBCODE:
28557 		buflen = CDROM_BLK_2352 * cdda->cdda_length;
28558 		break;
28559 	case CDROM_DA_SUBQ:
28560 		buflen = CDROM_BLK_2368 * cdda->cdda_length;
28561 		break;
28562 	case CDROM_DA_ALL_SUBCODE:
28563 		buflen = CDROM_BLK_2448 * cdda->cdda_length;
28564 		break;
28565 	case CDROM_DA_SUBCODE_ONLY:
28566 		buflen = CDROM_BLK_SUBCODE * cdda->cdda_length;
28567 		break;
28568 	default:
28569 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28570 		    "sr_read_cdda: Subcode '0x%x' Not Supported\n",
28571 		    cdda->cdda_subcode);
28572 		kmem_free(cdda, sizeof (struct cdrom_cdda));
28573 		return (EINVAL);
28574 	}
28575 
28576 	/* Build and send the command */
28577 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28578 	bzero(cdb, CDB_GROUP5);
28579 
28580 	if (un->un_f_cfg_cdda == TRUE) {
28581 		cdb[0] = (char)SCMD_READ_CD;
28582 		cdb[1] = 0x04;
28583 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28584 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28585 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28586 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28587 		cdb[6] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28588 		cdb[7] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28589 		cdb[8] = ((cdda->cdda_length) & 0x000000ff);
28590 		cdb[9] = 0x10;
28591 		switch (cdda->cdda_subcode) {
28592 		case CDROM_DA_NO_SUBCODE :
28593 			cdb[10] = 0x0;
28594 			break;
28595 		case CDROM_DA_SUBQ :
28596 			cdb[10] = 0x2;
28597 			break;
28598 		case CDROM_DA_ALL_SUBCODE :
28599 			cdb[10] = 0x1;
28600 			break;
28601 		case CDROM_DA_SUBCODE_ONLY :
28602 			/* FALLTHROUGH */
28603 		default :
28604 			kmem_free(cdda, sizeof (struct cdrom_cdda));
28605 			kmem_free(com, sizeof (*com));
28606 			return (ENOTTY);
28607 		}
28608 	} else {
28609 		cdb[0] = (char)SCMD_READ_CDDA;
28610 		cdb[2] = (((cdda->cdda_addr) & 0xff000000) >> 24);
28611 		cdb[3] = (((cdda->cdda_addr) & 0x00ff0000) >> 16);
28612 		cdb[4] = (((cdda->cdda_addr) & 0x0000ff00) >> 8);
28613 		cdb[5] = ((cdda->cdda_addr) & 0x000000ff);
28614 		cdb[6] = (((cdda->cdda_length) & 0xff000000) >> 24);
28615 		cdb[7] = (((cdda->cdda_length) & 0x00ff0000) >> 16);
28616 		cdb[8] = (((cdda->cdda_length) & 0x0000ff00) >> 8);
28617 		cdb[9] = ((cdda->cdda_length) & 0x000000ff);
28618 		cdb[10] = cdda->cdda_subcode;
28619 	}
28620 
28621 	com->uscsi_cdb = cdb;
28622 	com->uscsi_cdblen = CDB_GROUP5;
28623 	com->uscsi_bufaddr = (caddr_t)cdda->cdda_data;
28624 	com->uscsi_buflen = buflen;
28625 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28626 
28627 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28628 	    SD_PATH_STANDARD);
28629 
28630 	kmem_free(cdda, sizeof (struct cdrom_cdda));
28631 	kmem_free(com, sizeof (*com));
28632 	return (rval);
28633 }
28634 
28635 
28636 /*
28637  *    Function: sr_read_cdxa()
28638  *
28639  * Description: This routine is the driver entry point for handling CD-ROM
28640  *		ioctl requests to return CD-XA (Extended Architecture) data.
28641  *		(CDROMCDXA).
28642  *
28643  *   Arguments: dev	- the device 'dev_t'
28644  *		data	- pointer to user provided CD-XA structure specifying
28645  *			  the data starting address, transfer length, and format
28646  *		flag	- this argument is a pass through to ddi_copyxxx()
28647  *			  directly from the mode argument of ioctl().
28648  *
28649  * Return Code: the code returned by sd_send_scsi_cmd()
28650  *		EFAULT if ddi_copyxxx() fails
28651  *		ENXIO if fail ddi_get_soft_state
28652  *		EINVAL if data pointer is NULL
28653  */
28654 
28655 static int
28656 sr_read_cdxa(dev_t dev, caddr_t data, int flag)
28657 {
28658 	struct sd_lun		*un;
28659 	struct uscsi_cmd	*com;
28660 	struct cdrom_cdxa	*cdxa;
28661 	int			rval;
28662 	size_t			buflen;
28663 	char			cdb[CDB_GROUP5];
28664 	uchar_t			read_flags;
28665 
28666 #ifdef _MULTI_DATAMODEL
28667 	/* To support ILP32 applications in an LP64 world */
28668 	struct cdrom_cdxa32		cdrom_cdxa32;
28669 	struct cdrom_cdxa32		*cdxa32 = &cdrom_cdxa32;
28670 #endif /* _MULTI_DATAMODEL */
28671 
28672 	if (data == NULL) {
28673 		return (EINVAL);
28674 	}
28675 
28676 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28677 		return (ENXIO);
28678 	}
28679 
28680 	cdxa = kmem_zalloc(sizeof (struct cdrom_cdxa), KM_SLEEP);
28681 
28682 #ifdef _MULTI_DATAMODEL
28683 	switch (ddi_model_convert_from(flag & FMODELS)) {
28684 	case DDI_MODEL_ILP32:
28685 		if (ddi_copyin(data, cdxa32, sizeof (*cdxa32), flag)) {
28686 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28687 			return (EFAULT);
28688 		}
28689 		/*
28690 		 * Convert the ILP32 uscsi data from the
28691 		 * application to LP64 for internal use.
28692 		 */
28693 		cdrom_cdxa32tocdrom_cdxa(cdxa32, cdxa);
28694 		break;
28695 	case DDI_MODEL_NONE:
28696 		if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28697 			kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28698 			return (EFAULT);
28699 		}
28700 		break;
28701 	}
28702 #else /* ! _MULTI_DATAMODEL */
28703 	if (ddi_copyin(data, cdxa, sizeof (struct cdrom_cdxa), flag)) {
28704 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28705 		return (EFAULT);
28706 	}
28707 #endif /* _MULTI_DATAMODEL */
28708 
28709 	/*
28710 	 * Since MMC-2 expects max 3 bytes for length, check if the
28711 	 * length input is greater than 3 bytes
28712 	 */
28713 	if ((cdxa->cdxa_length & 0xFF000000) != 0) {
28714 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN, "sr_read_cdxa: "
28715 		    "cdrom transfer length too large: %d (limit %d)\n",
28716 		    cdxa->cdxa_length, 0xFFFFFF);
28717 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28718 		return (EINVAL);
28719 	}
28720 
28721 	switch (cdxa->cdxa_format) {
28722 	case CDROM_XA_DATA:
28723 		buflen = CDROM_BLK_2048 * cdxa->cdxa_length;
28724 		read_flags = 0x10;
28725 		break;
28726 	case CDROM_XA_SECTOR_DATA:
28727 		buflen = CDROM_BLK_2352 * cdxa->cdxa_length;
28728 		read_flags = 0xf8;
28729 		break;
28730 	case CDROM_XA_DATA_W_ERROR:
28731 		buflen = CDROM_BLK_2646 * cdxa->cdxa_length;
28732 		read_flags = 0xfc;
28733 		break;
28734 	default:
28735 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
28736 		    "sr_read_cdxa: Format '0x%x' Not Supported\n",
28737 		    cdxa->cdxa_format);
28738 		kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28739 		return (EINVAL);
28740 	}
28741 
28742 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
28743 	bzero(cdb, CDB_GROUP5);
28744 	if (un->un_f_mmc_cap == TRUE) {
28745 		cdb[0] = (char)SCMD_READ_CD;
28746 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28747 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28748 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28749 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28750 		cdb[6] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28751 		cdb[7] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28752 		cdb[8] = ((cdxa->cdxa_length) & 0x000000ff);
28753 		cdb[9] = (char)read_flags;
28754 	} else {
28755 		/*
28756 		 * Note: A vendor specific command (0xDB) is being used her to
28757 		 * request a read of all subcodes.
28758 		 */
28759 		cdb[0] = (char)SCMD_READ_CDXA;
28760 		cdb[2] = (((cdxa->cdxa_addr) & 0xff000000) >> 24);
28761 		cdb[3] = (((cdxa->cdxa_addr) & 0x00ff0000) >> 16);
28762 		cdb[4] = (((cdxa->cdxa_addr) & 0x0000ff00) >> 8);
28763 		cdb[5] = ((cdxa->cdxa_addr) & 0x000000ff);
28764 		cdb[6] = (((cdxa->cdxa_length) & 0xff000000) >> 24);
28765 		cdb[7] = (((cdxa->cdxa_length) & 0x00ff0000) >> 16);
28766 		cdb[8] = (((cdxa->cdxa_length) & 0x0000ff00) >> 8);
28767 		cdb[9] = ((cdxa->cdxa_length) & 0x000000ff);
28768 		cdb[10] = cdxa->cdxa_format;
28769 	}
28770 	com->uscsi_cdb	   = cdb;
28771 	com->uscsi_cdblen  = CDB_GROUP5;
28772 	com->uscsi_bufaddr = (caddr_t)cdxa->cdxa_data;
28773 	com->uscsi_buflen  = buflen;
28774 	com->uscsi_flags   = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
28775 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_USERSPACE,
28776 	    SD_PATH_STANDARD);
28777 	kmem_free(cdxa, sizeof (struct cdrom_cdxa));
28778 	kmem_free(com, sizeof (*com));
28779 	return (rval);
28780 }
28781 
28782 
28783 /*
28784  *    Function: sr_eject()
28785  *
28786  * Description: This routine is the driver entry point for handling CD-ROM
28787  *		eject ioctl requests (FDEJECT, DKIOCEJECT, CDROMEJECT)
28788  *
28789  *   Arguments: dev	- the device 'dev_t'
28790  *
28791  * Return Code: the code returned by sd_send_scsi_cmd()
28792  */
28793 
28794 static int
28795 sr_eject(dev_t dev)
28796 {
28797 	struct sd_lun	*un;
28798 	int		rval;
28799 	sd_ssc_t	*ssc;
28800 
28801 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
28802 	    (un->un_state == SD_STATE_OFFLINE)) {
28803 		return (ENXIO);
28804 	}
28805 
28806 	/*
28807 	 * To prevent race conditions with the eject
28808 	 * command, keep track of an eject command as
28809 	 * it progresses. If we are already handling
28810 	 * an eject command in the driver for the given
28811 	 * unit and another request to eject is received
28812 	 * immediately return EAGAIN so we don't lose
28813 	 * the command if the current eject command fails.
28814 	 */
28815 	mutex_enter(SD_MUTEX(un));
28816 	if (un->un_f_ejecting == TRUE) {
28817 		mutex_exit(SD_MUTEX(un));
28818 		return (EAGAIN);
28819 	}
28820 	un->un_f_ejecting = TRUE;
28821 	mutex_exit(SD_MUTEX(un));
28822 
28823 	ssc = sd_ssc_init(un);
28824 	rval = sd_send_scsi_DOORLOCK(ssc, SD_REMOVAL_ALLOW,
28825 	    SD_PATH_STANDARD);
28826 	sd_ssc_fini(ssc);
28827 
28828 	if (rval != 0) {
28829 		mutex_enter(SD_MUTEX(un));
28830 		un->un_f_ejecting = FALSE;
28831 		mutex_exit(SD_MUTEX(un));
28832 		return (rval);
28833 	}
28834 
28835 	ssc = sd_ssc_init(un);
28836 	rval = sd_send_scsi_START_STOP_UNIT(ssc, SD_START_STOP,
28837 	    SD_TARGET_EJECT, SD_PATH_STANDARD);
28838 	sd_ssc_fini(ssc);
28839 
28840 	if (rval == 0) {
28841 		mutex_enter(SD_MUTEX(un));
28842 		sr_ejected(un);
28843 		un->un_mediastate = DKIO_EJECTED;
28844 		un->un_f_ejecting = FALSE;
28845 		cv_broadcast(&un->un_state_cv);
28846 		mutex_exit(SD_MUTEX(un));
28847 	} else {
28848 		mutex_enter(SD_MUTEX(un));
28849 		un->un_f_ejecting = FALSE;
28850 		mutex_exit(SD_MUTEX(un));
28851 	}
28852 	return (rval);
28853 }
28854 
28855 
28856 /*
28857  *    Function: sr_ejected()
28858  *
28859  * Description: This routine updates the soft state structure to invalidate the
28860  *		geometry information after the media has been ejected or a
28861  *		media eject has been detected.
28862  *
28863  *   Arguments: un - driver soft state (unit) structure
28864  */
28865 
28866 static void
28867 sr_ejected(struct sd_lun *un)
28868 {
28869 	struct sd_errstats *stp;
28870 
28871 	ASSERT(un != NULL);
28872 	ASSERT(mutex_owned(SD_MUTEX(un)));
28873 
28874 	un->un_f_blockcount_is_valid	= FALSE;
28875 	un->un_f_tgt_blocksize_is_valid	= FALSE;
28876 	mutex_exit(SD_MUTEX(un));
28877 	cmlb_invalidate(un->un_cmlbhandle, (void *)SD_PATH_DIRECT_PRIORITY);
28878 	mutex_enter(SD_MUTEX(un));
28879 
28880 	if (un->un_errstats != NULL) {
28881 		stp = (struct sd_errstats *)un->un_errstats->ks_data;
28882 		stp->sd_capacity.value.ui64 = 0;
28883 	}
28884 }
28885 
28886 
28887 /*
28888  *    Function: sr_check_wp()
28889  *
28890  * Description: This routine checks the write protection of a removable
28891  *      media disk and hotpluggable devices via the write protect bit of
28892  *      the Mode Page Header device specific field. Some devices choke
28893  *      on unsupported mode page. In order to workaround this issue,
28894  *      this routine has been implemented to use 0x3f mode page(request
28895  *      for all pages) for all device types.
28896  *
28897  *   Arguments: dev             - the device 'dev_t'
28898  *
28899  * Return Code: int indicating if the device is write protected (1) or not (0)
28900  *
28901  *     Context: Kernel thread.
28902  *
28903  */
28904 
28905 static int
28906 sr_check_wp(dev_t dev)
28907 {
28908 	struct sd_lun	*un;
28909 	uchar_t		device_specific;
28910 	uchar_t		*sense;
28911 	int		hdrlen;
28912 	int		rval = FALSE;
28913 	int		status;
28914 	sd_ssc_t	*ssc;
28915 
28916 	/*
28917 	 * Note: The return codes for this routine should be reworked to
28918 	 * properly handle the case of a NULL softstate.
28919 	 */
28920 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL) {
28921 		return (FALSE);
28922 	}
28923 
28924 	if (un->un_f_cfg_is_atapi == TRUE) {
28925 		/*
28926 		 * The mode page contents are not required; set the allocation
28927 		 * length for the mode page header only
28928 		 */
28929 		hdrlen = MODE_HEADER_LENGTH_GRP2;
28930 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28931 		ssc = sd_ssc_init(un);
28932 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense, hdrlen,
28933 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
28934 		sd_ssc_fini(ssc);
28935 		if (status != 0)
28936 			goto err_exit;
28937 		device_specific =
28938 		    ((struct mode_header_grp2 *)sense)->device_specific;
28939 	} else {
28940 		hdrlen = MODE_HEADER_LENGTH;
28941 		sense = kmem_zalloc(hdrlen, KM_SLEEP);
28942 		ssc = sd_ssc_init(un);
28943 		status = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense, hdrlen,
28944 		    MODEPAGE_ALLPAGES, SD_PATH_STANDARD);
28945 		sd_ssc_fini(ssc);
28946 		if (status != 0)
28947 			goto err_exit;
28948 		device_specific =
28949 		    ((struct mode_header *)sense)->device_specific;
28950 	}
28951 
28952 
28953 	/*
28954 	 * Write protect mode sense failed; not all disks
28955 	 * understand this query. Return FALSE assuming that
28956 	 * these devices are not writable.
28957 	 */
28958 	if (device_specific & WRITE_PROTECT) {
28959 		rval = TRUE;
28960 	}
28961 
28962 err_exit:
28963 	kmem_free(sense, hdrlen);
28964 	return (rval);
28965 }
28966 
28967 /*
28968  *    Function: sr_volume_ctrl()
28969  *
28970  * Description: This routine is the driver entry point for handling CD-ROM
28971  *		audio output volume ioctl requests. (CDROMVOLCTRL)
28972  *
28973  *   Arguments: dev	- the device 'dev_t'
28974  *		data	- pointer to user audio volume control structure
28975  *		flag	- this argument is a pass through to ddi_copyxxx()
28976  *			  directly from the mode argument of ioctl().
28977  *
28978  * Return Code: the code returned by sd_send_scsi_cmd()
28979  *		EFAULT if ddi_copyxxx() fails
28980  *		ENXIO if fail ddi_get_soft_state
28981  *		EINVAL if data pointer is NULL
28982  *
28983  */
28984 
28985 static int
28986 sr_volume_ctrl(dev_t dev, caddr_t data, int flag)
28987 {
28988 	struct sd_lun		*un;
28989 	struct cdrom_volctrl    volume;
28990 	struct cdrom_volctrl    *vol = &volume;
28991 	uchar_t			*sense_page;
28992 	uchar_t			*select_page;
28993 	uchar_t			*sense;
28994 	uchar_t			*select;
28995 	int			sense_buflen;
28996 	int			select_buflen;
28997 	int			rval;
28998 	sd_ssc_t		*ssc;
28999 
29000 	if (data == NULL) {
29001 		return (EINVAL);
29002 	}
29003 
29004 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29005 	    (un->un_state == SD_STATE_OFFLINE)) {
29006 		return (ENXIO);
29007 	}
29008 
29009 	if (ddi_copyin(data, vol, sizeof (struct cdrom_volctrl), flag)) {
29010 		return (EFAULT);
29011 	}
29012 
29013 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29014 		struct mode_header_grp2		*sense_mhp;
29015 		struct mode_header_grp2		*select_mhp;
29016 		int				bd_len;
29017 
29018 		sense_buflen = MODE_PARAM_LENGTH_GRP2 + MODEPAGE_AUDIO_CTRL_LEN;
29019 		select_buflen = MODE_HEADER_LENGTH_GRP2 +
29020 		    MODEPAGE_AUDIO_CTRL_LEN;
29021 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29022 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29023 		ssc = sd_ssc_init(un);
29024 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP1, sense,
29025 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29026 		    SD_PATH_STANDARD);
29027 		sd_ssc_fini(ssc);
29028 
29029 		if (rval != 0) {
29030 			SD_ERROR(SD_LOG_IOCTL_RMMEDIA, un,
29031 			    "sr_volume_ctrl: Mode Sense Failed\n");
29032 			kmem_free(sense, sense_buflen);
29033 			kmem_free(select, select_buflen);
29034 			return (rval);
29035 		}
29036 		sense_mhp = (struct mode_header_grp2 *)sense;
29037 		select_mhp = (struct mode_header_grp2 *)select;
29038 		bd_len = (sense_mhp->bdesc_length_hi << 8) |
29039 		    sense_mhp->bdesc_length_lo;
29040 		if (bd_len > MODE_BLK_DESC_LENGTH) {
29041 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29042 			    "sr_volume_ctrl: Mode Sense returned invalid "
29043 			    "block descriptor length\n");
29044 			kmem_free(sense, sense_buflen);
29045 			kmem_free(select, select_buflen);
29046 			return (EIO);
29047 		}
29048 		sense_page = (uchar_t *)
29049 		    (sense + MODE_HEADER_LENGTH_GRP2 + bd_len);
29050 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH_GRP2);
29051 		select_mhp->length_msb = 0;
29052 		select_mhp->length_lsb = 0;
29053 		select_mhp->bdesc_length_hi = 0;
29054 		select_mhp->bdesc_length_lo = 0;
29055 	} else {
29056 		struct mode_header		*sense_mhp, *select_mhp;
29057 
29058 		sense_buflen = MODE_PARAM_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29059 		select_buflen = MODE_HEADER_LENGTH + MODEPAGE_AUDIO_CTRL_LEN;
29060 		sense  = kmem_zalloc(sense_buflen, KM_SLEEP);
29061 		select = kmem_zalloc(select_buflen, KM_SLEEP);
29062 		ssc = sd_ssc_init(un);
29063 		rval = sd_send_scsi_MODE_SENSE(ssc, CDB_GROUP0, sense,
29064 		    sense_buflen, MODEPAGE_AUDIO_CTRL,
29065 		    SD_PATH_STANDARD);
29066 		sd_ssc_fini(ssc);
29067 
29068 		if (rval != 0) {
29069 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29070 			    "sr_volume_ctrl: Mode Sense Failed\n");
29071 			kmem_free(sense, sense_buflen);
29072 			kmem_free(select, select_buflen);
29073 			return (rval);
29074 		}
29075 		sense_mhp  = (struct mode_header *)sense;
29076 		select_mhp = (struct mode_header *)select;
29077 		if (sense_mhp->bdesc_length > MODE_BLK_DESC_LENGTH) {
29078 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29079 			    "sr_volume_ctrl: Mode Sense returned invalid "
29080 			    "block descriptor length\n");
29081 			kmem_free(sense, sense_buflen);
29082 			kmem_free(select, select_buflen);
29083 			return (EIO);
29084 		}
29085 		sense_page = (uchar_t *)
29086 		    (sense + MODE_HEADER_LENGTH + sense_mhp->bdesc_length);
29087 		select_page = (uchar_t *)(select + MODE_HEADER_LENGTH);
29088 		select_mhp->length = 0;
29089 		select_mhp->bdesc_length = 0;
29090 	}
29091 	/*
29092 	 * Note: An audio control data structure could be created and overlayed
29093 	 * on the following in place of the array indexing method implemented.
29094 	 */
29095 
29096 	/* Build the select data for the user volume data */
29097 	select_page[0] = MODEPAGE_AUDIO_CTRL;
29098 	select_page[1] = 0xE;
29099 	/* Set the immediate bit */
29100 	select_page[2] = 0x04;
29101 	/* Zero out reserved fields */
29102 	select_page[3] = 0x00;
29103 	select_page[4] = 0x00;
29104 	/* Return sense data for fields not to be modified */
29105 	select_page[5] = sense_page[5];
29106 	select_page[6] = sense_page[6];
29107 	select_page[7] = sense_page[7];
29108 	/* Set the user specified volume levels for channel 0 and 1 */
29109 	select_page[8] = 0x01;
29110 	select_page[9] = vol->channel0;
29111 	select_page[10] = 0x02;
29112 	select_page[11] = vol->channel1;
29113 	/* Channel 2 and 3 are currently unsupported so return the sense data */
29114 	select_page[12] = sense_page[12];
29115 	select_page[13] = sense_page[13];
29116 	select_page[14] = sense_page[14];
29117 	select_page[15] = sense_page[15];
29118 
29119 	ssc = sd_ssc_init(un);
29120 	if ((un->un_f_cfg_is_atapi == TRUE) || (un->un_f_mmc_cap == TRUE)) {
29121 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP1, select,
29122 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29123 	} else {
29124 		rval = sd_send_scsi_MODE_SELECT(ssc, CDB_GROUP0, select,
29125 		    select_buflen, SD_DONTSAVE_PAGE, SD_PATH_STANDARD);
29126 	}
29127 	sd_ssc_fini(ssc);
29128 
29129 	kmem_free(sense, sense_buflen);
29130 	kmem_free(select, select_buflen);
29131 	return (rval);
29132 }
29133 
29134 
29135 /*
29136  *    Function: sr_read_sony_session_offset()
29137  *
29138  * Description: This routine is the driver entry point for handling CD-ROM
29139  *		ioctl requests for session offset information. (CDROMREADOFFSET)
29140  *		The address of the first track in the last session of a
29141  *		multi-session CD-ROM is returned
29142  *
29143  *		Note: This routine uses a vendor specific key value in the
29144  *		command control field without implementing any vendor check here
29145  *		or in the ioctl routine.
29146  *
29147  *   Arguments: dev	- the device 'dev_t'
29148  *		data	- pointer to an int to hold the requested address
29149  *		flag	- this argument is a pass through to ddi_copyxxx()
29150  *			  directly from the mode argument of ioctl().
29151  *
29152  * Return Code: the code returned by sd_send_scsi_cmd()
29153  *		EFAULT if ddi_copyxxx() fails
29154  *		ENXIO if fail ddi_get_soft_state
29155  *		EINVAL if data pointer is NULL
29156  */
29157 
29158 static int
29159 sr_read_sony_session_offset(dev_t dev, caddr_t data, int flag)
29160 {
29161 	struct sd_lun		*un;
29162 	struct uscsi_cmd	*com;
29163 	caddr_t			buffer;
29164 	char			cdb[CDB_GROUP1];
29165 	int			session_offset = 0;
29166 	int			rval;
29167 
29168 	if (data == NULL) {
29169 		return (EINVAL);
29170 	}
29171 
29172 	if ((un = ddi_get_soft_state(sd_state, SDUNIT(dev))) == NULL ||
29173 	    (un->un_state == SD_STATE_OFFLINE)) {
29174 		return (ENXIO);
29175 	}
29176 
29177 	buffer = kmem_zalloc((size_t)SONY_SESSION_OFFSET_LEN, KM_SLEEP);
29178 	bzero(cdb, CDB_GROUP1);
29179 	cdb[0] = SCMD_READ_TOC;
29180 	/*
29181 	 * Bytes 7 & 8 are the 12 byte allocation length for a single entry.
29182 	 * (4 byte TOC response header + 8 byte response data)
29183 	 */
29184 	cdb[8] = SONY_SESSION_OFFSET_LEN;
29185 	/* Byte 9 is the control byte. A vendor specific value is used */
29186 	cdb[9] = SONY_SESSION_OFFSET_KEY;
29187 	com = kmem_zalloc(sizeof (*com), KM_SLEEP);
29188 	com->uscsi_cdb = cdb;
29189 	com->uscsi_cdblen = CDB_GROUP1;
29190 	com->uscsi_bufaddr = buffer;
29191 	com->uscsi_buflen = SONY_SESSION_OFFSET_LEN;
29192 	com->uscsi_flags = USCSI_DIAGNOSE|USCSI_SILENT|USCSI_READ;
29193 
29194 	rval = sd_send_scsi_cmd(dev, com, FKIOCTL, UIO_SYSSPACE,
29195 	    SD_PATH_STANDARD);
29196 	if (rval != 0) {
29197 		kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29198 		kmem_free(com, sizeof (*com));
29199 		return (rval);
29200 	}
29201 	if (buffer[1] == SONY_SESSION_OFFSET_VALID) {
29202 		session_offset =
29203 		    ((uchar_t)buffer[8] << 24) + ((uchar_t)buffer[9] << 16) +
29204 		    ((uchar_t)buffer[10] << 8) + ((uchar_t)buffer[11]);
29205 		/*
29206 		 * Offset returned offset in current lbasize block's. Convert to
29207 		 * 2k block's to return to the user
29208 		 */
29209 		if (un->un_tgt_blocksize == CDROM_BLK_512) {
29210 			session_offset >>= 2;
29211 		} else if (un->un_tgt_blocksize == CDROM_BLK_1024) {
29212 			session_offset >>= 1;
29213 		}
29214 	}
29215 
29216 	if (ddi_copyout(&session_offset, data, sizeof (int), flag) != 0) {
29217 		rval = EFAULT;
29218 	}
29219 
29220 	kmem_free(buffer, SONY_SESSION_OFFSET_LEN);
29221 	kmem_free(com, sizeof (*com));
29222 	return (rval);
29223 }
29224 
29225 
29226 /*
29227  *    Function: sd_wm_cache_constructor()
29228  *
29229  * Description: Cache Constructor for the wmap cache for the read/modify/write
29230  * 		devices.
29231  *
29232  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29233  *		un	- sd_lun structure for the device.
29234  *		flag	- the km flags passed to constructor
29235  *
29236  * Return Code: 0 on success.
29237  *		-1 on failure.
29238  */
29239 
29240 /*ARGSUSED*/
29241 static int
29242 sd_wm_cache_constructor(void *wm, void *un, int flags)
29243 {
29244 	bzero(wm, sizeof (struct sd_w_map));
29245 	cv_init(&((struct sd_w_map *)wm)->wm_avail, NULL, CV_DRIVER, NULL);
29246 	return (0);
29247 }
29248 
29249 
29250 /*
29251  *    Function: sd_wm_cache_destructor()
29252  *
29253  * Description: Cache destructor for the wmap cache for the read/modify/write
29254  * 		devices.
29255  *
29256  *   Arguments: wm      - A pointer to the sd_w_map to be initialized.
29257  *		un	- sd_lun structure for the device.
29258  */
29259 /*ARGSUSED*/
29260 static void
29261 sd_wm_cache_destructor(void *wm, void *un)
29262 {
29263 	cv_destroy(&((struct sd_w_map *)wm)->wm_avail);
29264 }
29265 
29266 
29267 /*
29268  *    Function: sd_range_lock()
29269  *
29270  * Description: Lock the range of blocks specified as parameter to ensure
29271  *		that read, modify write is atomic and no other i/o writes
29272  *		to the same location. The range is specified in terms
29273  *		of start and end blocks. Block numbers are the actual
29274  *		media block numbers and not system.
29275  *
29276  *   Arguments: un	- sd_lun structure for the device.
29277  *		startb - The starting block number
29278  *		endb - The end block number
29279  *		typ - type of i/o - simple/read_modify_write
29280  *
29281  * Return Code: wm  - pointer to the wmap structure.
29282  *
29283  *     Context: This routine can sleep.
29284  */
29285 
29286 static struct sd_w_map *
29287 sd_range_lock(struct sd_lun *un, daddr_t startb, daddr_t endb, ushort_t typ)
29288 {
29289 	struct sd_w_map *wmp = NULL;
29290 	struct sd_w_map *sl_wmp = NULL;
29291 	struct sd_w_map *tmp_wmp;
29292 	wm_state state = SD_WM_CHK_LIST;
29293 
29294 
29295 	ASSERT(un != NULL);
29296 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29297 
29298 	mutex_enter(SD_MUTEX(un));
29299 
29300 	while (state != SD_WM_DONE) {
29301 
29302 		switch (state) {
29303 		case SD_WM_CHK_LIST:
29304 			/*
29305 			 * This is the starting state. Check the wmap list
29306 			 * to see if the range is currently available.
29307 			 */
29308 			if (!(typ & SD_WTYPE_RMW) && !(un->un_rmw_count)) {
29309 				/*
29310 				 * If this is a simple write and no rmw
29311 				 * i/o is pending then try to lock the
29312 				 * range as the range should be available.
29313 				 */
29314 				state = SD_WM_LOCK_RANGE;
29315 			} else {
29316 				tmp_wmp = sd_get_range(un, startb, endb);
29317 				if (tmp_wmp != NULL) {
29318 					if ((wmp != NULL) && ONLIST(un, wmp)) {
29319 						/*
29320 						 * Should not keep onlist wmps
29321 						 * while waiting this macro
29322 						 * will also do wmp = NULL;
29323 						 */
29324 						FREE_ONLIST_WMAP(un, wmp);
29325 					}
29326 					/*
29327 					 * sl_wmp is the wmap on which wait
29328 					 * is done, since the tmp_wmp points
29329 					 * to the inuse wmap, set sl_wmp to
29330 					 * tmp_wmp and change the state to sleep
29331 					 */
29332 					sl_wmp = tmp_wmp;
29333 					state = SD_WM_WAIT_MAP;
29334 				} else {
29335 					state = SD_WM_LOCK_RANGE;
29336 				}
29337 
29338 			}
29339 			break;
29340 
29341 		case SD_WM_LOCK_RANGE:
29342 			ASSERT(un->un_wm_cache);
29343 			/*
29344 			 * The range need to be locked, try to get a wmap.
29345 			 * First attempt it with NO_SLEEP, want to avoid a sleep
29346 			 * if possible as we will have to release the sd mutex
29347 			 * if we have to sleep.
29348 			 */
29349 			if (wmp == NULL)
29350 				wmp = kmem_cache_alloc(un->un_wm_cache,
29351 				    KM_NOSLEEP);
29352 			if (wmp == NULL) {
29353 				mutex_exit(SD_MUTEX(un));
29354 				_NOTE(DATA_READABLE_WITHOUT_LOCK
29355 				    (sd_lun::un_wm_cache))
29356 				wmp = kmem_cache_alloc(un->un_wm_cache,
29357 				    KM_SLEEP);
29358 				mutex_enter(SD_MUTEX(un));
29359 				/*
29360 				 * we released the mutex so recheck and go to
29361 				 * check list state.
29362 				 */
29363 				state = SD_WM_CHK_LIST;
29364 			} else {
29365 				/*
29366 				 * We exit out of state machine since we
29367 				 * have the wmap. Do the housekeeping first.
29368 				 * place the wmap on the wmap list if it is not
29369 				 * on it already and then set the state to done.
29370 				 */
29371 				wmp->wm_start = startb;
29372 				wmp->wm_end = endb;
29373 				wmp->wm_flags = typ | SD_WM_BUSY;
29374 				if (typ & SD_WTYPE_RMW) {
29375 					un->un_rmw_count++;
29376 				}
29377 				/*
29378 				 * If not already on the list then link
29379 				 */
29380 				if (!ONLIST(un, wmp)) {
29381 					wmp->wm_next = un->un_wm;
29382 					wmp->wm_prev = NULL;
29383 					if (wmp->wm_next)
29384 						wmp->wm_next->wm_prev = wmp;
29385 					un->un_wm = wmp;
29386 				}
29387 				state = SD_WM_DONE;
29388 			}
29389 			break;
29390 
29391 		case SD_WM_WAIT_MAP:
29392 			ASSERT(sl_wmp->wm_flags & SD_WM_BUSY);
29393 			/*
29394 			 * Wait is done on sl_wmp, which is set in the
29395 			 * check_list state.
29396 			 */
29397 			sl_wmp->wm_wanted_count++;
29398 			cv_wait(&sl_wmp->wm_avail, SD_MUTEX(un));
29399 			sl_wmp->wm_wanted_count--;
29400 			/*
29401 			 * We can reuse the memory from the completed sl_wmp
29402 			 * lock range for our new lock, but only if noone is
29403 			 * waiting for it.
29404 			 */
29405 			ASSERT(!(sl_wmp->wm_flags & SD_WM_BUSY));
29406 			if (sl_wmp->wm_wanted_count == 0) {
29407 				if (wmp != NULL)
29408 					CHK_N_FREEWMP(un, wmp);
29409 				wmp = sl_wmp;
29410 			}
29411 			sl_wmp = NULL;
29412 			/*
29413 			 * After waking up, need to recheck for availability of
29414 			 * range.
29415 			 */
29416 			state = SD_WM_CHK_LIST;
29417 			break;
29418 
29419 		default:
29420 			panic("sd_range_lock: "
29421 			    "Unknown state %d in sd_range_lock", state);
29422 			/*NOTREACHED*/
29423 		} /* switch(state) */
29424 
29425 	} /* while(state != SD_WM_DONE) */
29426 
29427 	mutex_exit(SD_MUTEX(un));
29428 
29429 	ASSERT(wmp != NULL);
29430 
29431 	return (wmp);
29432 }
29433 
29434 
29435 /*
29436  *    Function: sd_get_range()
29437  *
29438  * Description: Find if there any overlapping I/O to this one
29439  *		Returns the write-map of 1st such I/O, NULL otherwise.
29440  *
29441  *   Arguments: un	- sd_lun structure for the device.
29442  *		startb - The starting block number
29443  *		endb - The end block number
29444  *
29445  * Return Code: wm  - pointer to the wmap structure.
29446  */
29447 
29448 static struct sd_w_map *
29449 sd_get_range(struct sd_lun *un, daddr_t startb, daddr_t endb)
29450 {
29451 	struct sd_w_map *wmp;
29452 
29453 	ASSERT(un != NULL);
29454 
29455 	for (wmp = un->un_wm; wmp != NULL; wmp = wmp->wm_next) {
29456 		if (!(wmp->wm_flags & SD_WM_BUSY)) {
29457 			continue;
29458 		}
29459 		if ((startb >= wmp->wm_start) && (startb <= wmp->wm_end)) {
29460 			break;
29461 		}
29462 		if ((endb >= wmp->wm_start) && (endb <= wmp->wm_end)) {
29463 			break;
29464 		}
29465 	}
29466 
29467 	return (wmp);
29468 }
29469 
29470 
29471 /*
29472  *    Function: sd_free_inlist_wmap()
29473  *
29474  * Description: Unlink and free a write map struct.
29475  *
29476  *   Arguments: un      - sd_lun structure for the device.
29477  *		wmp	- sd_w_map which needs to be unlinked.
29478  */
29479 
29480 static void
29481 sd_free_inlist_wmap(struct sd_lun *un, struct sd_w_map *wmp)
29482 {
29483 	ASSERT(un != NULL);
29484 
29485 	if (un->un_wm == wmp) {
29486 		un->un_wm = wmp->wm_next;
29487 	} else {
29488 		wmp->wm_prev->wm_next = wmp->wm_next;
29489 	}
29490 
29491 	if (wmp->wm_next) {
29492 		wmp->wm_next->wm_prev = wmp->wm_prev;
29493 	}
29494 
29495 	wmp->wm_next = wmp->wm_prev = NULL;
29496 
29497 	kmem_cache_free(un->un_wm_cache, wmp);
29498 }
29499 
29500 
29501 /*
29502  *    Function: sd_range_unlock()
29503  *
29504  * Description: Unlock the range locked by wm.
29505  *		Free write map if nobody else is waiting on it.
29506  *
29507  *   Arguments: un      - sd_lun structure for the device.
29508  *              wmp     - sd_w_map which needs to be unlinked.
29509  */
29510 
29511 static void
29512 sd_range_unlock(struct sd_lun *un, struct sd_w_map *wm)
29513 {
29514 	ASSERT(un != NULL);
29515 	ASSERT(wm != NULL);
29516 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29517 
29518 	mutex_enter(SD_MUTEX(un));
29519 
29520 	if (wm->wm_flags & SD_WTYPE_RMW) {
29521 		un->un_rmw_count--;
29522 	}
29523 
29524 	if (wm->wm_wanted_count) {
29525 		wm->wm_flags = 0;
29526 		/*
29527 		 * Broadcast that the wmap is available now.
29528 		 */
29529 		cv_broadcast(&wm->wm_avail);
29530 	} else {
29531 		/*
29532 		 * If no one is waiting on the map, it should be free'ed.
29533 		 */
29534 		sd_free_inlist_wmap(un, wm);
29535 	}
29536 
29537 	mutex_exit(SD_MUTEX(un));
29538 }
29539 
29540 
29541 /*
29542  *    Function: sd_read_modify_write_task
29543  *
29544  * Description: Called from a taskq thread to initiate the write phase of
29545  *		a read-modify-write request.  This is used for targets where
29546  *		un->un_sys_blocksize != un->un_tgt_blocksize.
29547  *
29548  *   Arguments: arg - a pointer to the buf(9S) struct for the write command.
29549  *
29550  *     Context: Called under taskq thread context.
29551  */
29552 
29553 static void
29554 sd_read_modify_write_task(void *arg)
29555 {
29556 	struct sd_mapblocksize_info	*bsp;
29557 	struct buf	*bp;
29558 	struct sd_xbuf	*xp;
29559 	struct sd_lun	*un;
29560 
29561 	bp = arg;	/* The bp is given in arg */
29562 	ASSERT(bp != NULL);
29563 
29564 	/* Get the pointer to the layer-private data struct */
29565 	xp = SD_GET_XBUF(bp);
29566 	ASSERT(xp != NULL);
29567 	bsp = xp->xb_private;
29568 	ASSERT(bsp != NULL);
29569 
29570 	un = SD_GET_UN(bp);
29571 	ASSERT(un != NULL);
29572 	ASSERT(!mutex_owned(SD_MUTEX(un)));
29573 
29574 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29575 	    "sd_read_modify_write_task: entry: buf:0x%p\n", bp);
29576 
29577 	/*
29578 	 * This is the write phase of a read-modify-write request, called
29579 	 * under the context of a taskq thread in response to the completion
29580 	 * of the read portion of the rmw request completing under interrupt
29581 	 * context. The write request must be sent from here down the iostart
29582 	 * chain as if it were being sent from sd_mapblocksize_iostart(), so
29583 	 * we use the layer index saved in the layer-private data area.
29584 	 */
29585 	SD_NEXT_IOSTART(bsp->mbs_layer_index, un, bp);
29586 
29587 	SD_TRACE(SD_LOG_IO_RMMEDIA, un,
29588 	    "sd_read_modify_write_task: exit: buf:0x%p\n", bp);
29589 }
29590 
29591 
29592 /*
29593  *    Function: sddump_do_read_of_rmw()
29594  *
29595  * Description: This routine will be called from sddump, If sddump is called
29596  *		with an I/O which not aligned on device blocksize boundary
29597  *		then the write has to be converted to read-modify-write.
29598  *		Do the read part here in order to keep sddump simple.
29599  *		Note - That the sd_mutex is held across the call to this
29600  *		routine.
29601  *
29602  *   Arguments: un	- sd_lun
29603  *		blkno	- block number in terms of media block size.
29604  *		nblk	- number of blocks.
29605  *		bpp	- pointer to pointer to the buf structure. On return
29606  *			from this function, *bpp points to the valid buffer
29607  *			to which the write has to be done.
29608  *
29609  * Return Code: 0 for success or errno-type return code
29610  */
29611 
29612 static int
29613 sddump_do_read_of_rmw(struct sd_lun *un, uint64_t blkno, uint64_t nblk,
29614 	struct buf **bpp)
29615 {
29616 	int err;
29617 	int i;
29618 	int rval;
29619 	struct buf *bp;
29620 	struct scsi_pkt *pkt = NULL;
29621 	uint32_t target_blocksize;
29622 
29623 	ASSERT(un != NULL);
29624 	ASSERT(mutex_owned(SD_MUTEX(un)));
29625 
29626 	target_blocksize = un->un_tgt_blocksize;
29627 
29628 	mutex_exit(SD_MUTEX(un));
29629 
29630 	bp = scsi_alloc_consistent_buf(SD_ADDRESS(un), (struct buf *)NULL,
29631 	    (size_t)(nblk * target_blocksize), B_READ, NULL_FUNC, NULL);
29632 	if (bp == NULL) {
29633 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29634 		    "no resources for dumping; giving up");
29635 		err = ENOMEM;
29636 		goto done;
29637 	}
29638 
29639 	rval = sd_setup_rw_pkt(un, &pkt, bp, 0, NULL_FUNC, NULL,
29640 	    blkno, nblk);
29641 	if (rval != 0) {
29642 		scsi_free_consistent_buf(bp);
29643 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29644 		    "no resources for dumping; giving up");
29645 		err = ENOMEM;
29646 		goto done;
29647 	}
29648 
29649 	pkt->pkt_flags |= FLAG_NOINTR;
29650 
29651 	err = EIO;
29652 	for (i = 0; i < SD_NDUMP_RETRIES; i++) {
29653 
29654 		/*
29655 		 * Scsi_poll returns 0 (success) if the command completes and
29656 		 * the status block is STATUS_GOOD.  We should only check
29657 		 * errors if this condition is not true.  Even then we should
29658 		 * send our own request sense packet only if we have a check
29659 		 * condition and auto request sense has not been performed by
29660 		 * the hba.
29661 		 */
29662 		SD_TRACE(SD_LOG_DUMP, un, "sddump: sending read\n");
29663 
29664 		if ((sd_scsi_poll(un, pkt) == 0) && (pkt->pkt_resid == 0)) {
29665 			err = 0;
29666 			break;
29667 		}
29668 
29669 		/*
29670 		 * Check CMD_DEV_GONE 1st, give up if device is gone,
29671 		 * no need to read RQS data.
29672 		 */
29673 		if (pkt->pkt_reason == CMD_DEV_GONE) {
29674 			scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29675 			    "Error while dumping state with rmw..."
29676 			    "Device is gone\n");
29677 			break;
29678 		}
29679 
29680 		if (SD_GET_PKT_STATUS(pkt) == STATUS_CHECK) {
29681 			SD_INFO(SD_LOG_DUMP, un,
29682 			    "sddump: read failed with CHECK, try # %d\n", i);
29683 			if (((pkt->pkt_state & STATE_ARQ_DONE) == 0)) {
29684 				(void) sd_send_polled_RQS(un);
29685 			}
29686 
29687 			continue;
29688 		}
29689 
29690 		if (SD_GET_PKT_STATUS(pkt) == STATUS_BUSY) {
29691 			int reset_retval = 0;
29692 
29693 			SD_INFO(SD_LOG_DUMP, un,
29694 			    "sddump: read failed with BUSY, try # %d\n", i);
29695 
29696 			if (un->un_f_lun_reset_enabled == TRUE) {
29697 				reset_retval = scsi_reset(SD_ADDRESS(un),
29698 				    RESET_LUN);
29699 			}
29700 			if (reset_retval == 0) {
29701 				(void) scsi_reset(SD_ADDRESS(un), RESET_TARGET);
29702 			}
29703 			(void) sd_send_polled_RQS(un);
29704 
29705 		} else {
29706 			SD_INFO(SD_LOG_DUMP, un,
29707 			    "sddump: read failed with 0x%x, try # %d\n",
29708 			    SD_GET_PKT_STATUS(pkt), i);
29709 			mutex_enter(SD_MUTEX(un));
29710 			sd_reset_target(un, pkt);
29711 			mutex_exit(SD_MUTEX(un));
29712 		}
29713 
29714 		/*
29715 		 * If we are not getting anywhere with lun/target resets,
29716 		 * let's reset the bus.
29717 		 */
29718 		if (i > SD_NDUMP_RETRIES/2) {
29719 			(void) scsi_reset(SD_ADDRESS(un), RESET_ALL);
29720 			(void) sd_send_polled_RQS(un);
29721 		}
29722 
29723 	}
29724 	scsi_destroy_pkt(pkt);
29725 
29726 	if (err != 0) {
29727 		scsi_free_consistent_buf(bp);
29728 		*bpp = NULL;
29729 	} else {
29730 		*bpp = bp;
29731 	}
29732 
29733 done:
29734 	mutex_enter(SD_MUTEX(un));
29735 	return (err);
29736 }
29737 
29738 
29739 /*
29740  *    Function: sd_failfast_flushq
29741  *
29742  * Description: Take all bp's on the wait queue that have B_FAILFAST set
29743  *		in b_flags and move them onto the failfast queue, then kick
29744  *		off a thread to return all bp's on the failfast queue to
29745  *		their owners with an error set.
29746  *
29747  *   Arguments: un - pointer to the soft state struct for the instance.
29748  *
29749  *     Context: may execute in interrupt context.
29750  */
29751 
29752 static void
29753 sd_failfast_flushq(struct sd_lun *un)
29754 {
29755 	struct buf *bp;
29756 	struct buf *next_waitq_bp;
29757 	struct buf *prev_waitq_bp = NULL;
29758 
29759 	ASSERT(un != NULL);
29760 	ASSERT(mutex_owned(SD_MUTEX(un)));
29761 	ASSERT(un->un_failfast_state == SD_FAILFAST_ACTIVE);
29762 	ASSERT(un->un_failfast_bp == NULL);
29763 
29764 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29765 	    "sd_failfast_flushq: entry: un:0x%p\n", un);
29766 
29767 	/*
29768 	 * Check if we should flush all bufs when entering failfast state, or
29769 	 * just those with B_FAILFAST set.
29770 	 */
29771 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) {
29772 		/*
29773 		 * Move *all* bp's on the wait queue to the failfast flush
29774 		 * queue, including those that do NOT have B_FAILFAST set.
29775 		 */
29776 		if (un->un_failfast_headp == NULL) {
29777 			ASSERT(un->un_failfast_tailp == NULL);
29778 			un->un_failfast_headp = un->un_waitq_headp;
29779 		} else {
29780 			ASSERT(un->un_failfast_tailp != NULL);
29781 			un->un_failfast_tailp->av_forw = un->un_waitq_headp;
29782 		}
29783 
29784 		un->un_failfast_tailp = un->un_waitq_tailp;
29785 
29786 		/* update kstat for each bp moved out of the waitq */
29787 		for (bp = un->un_waitq_headp; bp != NULL; bp = bp->av_forw) {
29788 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29789 		}
29790 
29791 		/* empty the waitq */
29792 		un->un_waitq_headp = un->un_waitq_tailp = NULL;
29793 
29794 	} else {
29795 		/*
29796 		 * Go thru the wait queue, pick off all entries with
29797 		 * B_FAILFAST set, and move these onto the failfast queue.
29798 		 */
29799 		for (bp = un->un_waitq_headp; bp != NULL; bp = next_waitq_bp) {
29800 			/*
29801 			 * Save the pointer to the next bp on the wait queue,
29802 			 * so we get to it on the next iteration of this loop.
29803 			 */
29804 			next_waitq_bp = bp->av_forw;
29805 
29806 			/*
29807 			 * If this bp from the wait queue does NOT have
29808 			 * B_FAILFAST set, just move on to the next element
29809 			 * in the wait queue. Note, this is the only place
29810 			 * where it is correct to set prev_waitq_bp.
29811 			 */
29812 			if ((bp->b_flags & B_FAILFAST) == 0) {
29813 				prev_waitq_bp = bp;
29814 				continue;
29815 			}
29816 
29817 			/*
29818 			 * Remove the bp from the wait queue.
29819 			 */
29820 			if (bp == un->un_waitq_headp) {
29821 				/* The bp is the first element of the waitq. */
29822 				un->un_waitq_headp = next_waitq_bp;
29823 				if (un->un_waitq_headp == NULL) {
29824 					/* The wait queue is now empty */
29825 					un->un_waitq_tailp = NULL;
29826 				}
29827 			} else {
29828 				/*
29829 				 * The bp is either somewhere in the middle
29830 				 * or at the end of the wait queue.
29831 				 */
29832 				ASSERT(un->un_waitq_headp != NULL);
29833 				ASSERT(prev_waitq_bp != NULL);
29834 				ASSERT((prev_waitq_bp->b_flags & B_FAILFAST)
29835 				    == 0);
29836 				if (bp == un->un_waitq_tailp) {
29837 					/* bp is the last entry on the waitq. */
29838 					ASSERT(next_waitq_bp == NULL);
29839 					un->un_waitq_tailp = prev_waitq_bp;
29840 				}
29841 				prev_waitq_bp->av_forw = next_waitq_bp;
29842 			}
29843 			bp->av_forw = NULL;
29844 
29845 			/*
29846 			 * update kstat since the bp is moved out of
29847 			 * the waitq
29848 			 */
29849 			SD_UPDATE_KSTATS(un, kstat_waitq_exit, bp);
29850 
29851 			/*
29852 			 * Now put the bp onto the failfast queue.
29853 			 */
29854 			if (un->un_failfast_headp == NULL) {
29855 				/* failfast queue is currently empty */
29856 				ASSERT(un->un_failfast_tailp == NULL);
29857 				un->un_failfast_headp =
29858 				    un->un_failfast_tailp = bp;
29859 			} else {
29860 				/* Add the bp to the end of the failfast q */
29861 				ASSERT(un->un_failfast_tailp != NULL);
29862 				ASSERT(un->un_failfast_tailp->b_flags &
29863 				    B_FAILFAST);
29864 				un->un_failfast_tailp->av_forw = bp;
29865 				un->un_failfast_tailp = bp;
29866 			}
29867 		}
29868 	}
29869 
29870 	/*
29871 	 * Now return all bp's on the failfast queue to their owners.
29872 	 */
29873 	while ((bp = un->un_failfast_headp) != NULL) {
29874 
29875 		un->un_failfast_headp = bp->av_forw;
29876 		if (un->un_failfast_headp == NULL) {
29877 			un->un_failfast_tailp = NULL;
29878 		}
29879 
29880 		/*
29881 		 * We want to return the bp with a failure error code, but
29882 		 * we do not want a call to sd_start_cmds() to occur here,
29883 		 * so use sd_return_failed_command_no_restart() instead of
29884 		 * sd_return_failed_command().
29885 		 */
29886 		sd_return_failed_command_no_restart(un, bp, EIO);
29887 	}
29888 
29889 	/* Flush the xbuf queues if required. */
29890 	if (sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_QUEUES) {
29891 		ddi_xbuf_flushq(un->un_xbuf_attr, sd_failfast_flushq_callback);
29892 	}
29893 
29894 	SD_TRACE(SD_LOG_IO_FAILFAST, un,
29895 	    "sd_failfast_flushq: exit: un:0x%p\n", un);
29896 }
29897 
29898 
29899 /*
29900  *    Function: sd_failfast_flushq_callback
29901  *
29902  * Description: Return TRUE if the given bp meets the criteria for failfast
29903  *		flushing. Used with ddi_xbuf_flushq(9F).
29904  *
29905  *   Arguments: bp - ptr to buf struct to be examined.
29906  *
29907  *     Context: Any
29908  */
29909 
29910 static int
29911 sd_failfast_flushq_callback(struct buf *bp)
29912 {
29913 	/*
29914 	 * Return TRUE if (1) we want to flush ALL bufs when the failfast
29915 	 * state is entered; OR (2) the given bp has B_FAILFAST set.
29916 	 */
29917 	return (((sd_failfast_flushctl & SD_FAILFAST_FLUSH_ALL_BUFS) ||
29918 	    (bp->b_flags & B_FAILFAST)) ? TRUE : FALSE);
29919 }
29920 
29921 
29922 
29923 /*
29924  * Function: sd_setup_next_xfer
29925  *
29926  * Description: Prepare next I/O operation using DMA_PARTIAL
29927  *
29928  */
29929 
29930 static int
29931 sd_setup_next_xfer(struct sd_lun *un, struct buf *bp,
29932     struct scsi_pkt *pkt, struct sd_xbuf *xp)
29933 {
29934 	ssize_t	num_blks_not_xfered;
29935 	daddr_t	strt_blk_num;
29936 	ssize_t	bytes_not_xfered;
29937 	int	rval;
29938 
29939 	ASSERT(pkt->pkt_resid == 0);
29940 
29941 	/*
29942 	 * Calculate next block number and amount to be transferred.
29943 	 *
29944 	 * How much data NOT transfered to the HBA yet.
29945 	 */
29946 	bytes_not_xfered = xp->xb_dma_resid;
29947 
29948 	/*
29949 	 * figure how many blocks NOT transfered to the HBA yet.
29950 	 */
29951 	num_blks_not_xfered = SD_BYTES2TGTBLOCKS(un, bytes_not_xfered);
29952 
29953 	/*
29954 	 * set starting block number to the end of what WAS transfered.
29955 	 */
29956 	strt_blk_num = xp->xb_blkno +
29957 	    SD_BYTES2TGTBLOCKS(un, bp->b_bcount - bytes_not_xfered);
29958 
29959 	/*
29960 	 * Move pkt to the next portion of the xfer.  sd_setup_next_rw_pkt
29961 	 * will call scsi_initpkt with NULL_FUNC so we do not have to release
29962 	 * the disk mutex here.
29963 	 */
29964 	rval = sd_setup_next_rw_pkt(un, pkt, bp,
29965 	    strt_blk_num, num_blks_not_xfered);
29966 
29967 	if (rval == 0) {
29968 
29969 		/*
29970 		 * Success.
29971 		 *
29972 		 * Adjust things if there are still more blocks to be
29973 		 * transfered.
29974 		 */
29975 		xp->xb_dma_resid = pkt->pkt_resid;
29976 		pkt->pkt_resid = 0;
29977 
29978 		return (1);
29979 	}
29980 
29981 	/*
29982 	 * There's really only one possible return value from
29983 	 * sd_setup_next_rw_pkt which occurs when scsi_init_pkt
29984 	 * returns NULL.
29985 	 */
29986 	ASSERT(rval == SD_PKT_ALLOC_FAILURE);
29987 
29988 	bp->b_resid = bp->b_bcount;
29989 	bp->b_flags |= B_ERROR;
29990 
29991 	scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
29992 	    "Error setting up next portion of DMA transfer\n");
29993 
29994 	return (0);
29995 }
29996 
29997 /*
29998  *    Function: sd_panic_for_res_conflict
29999  *
30000  * Description: Call panic with a string formatted with "Reservation Conflict"
30001  *		and a human readable identifier indicating the SD instance
30002  *		that experienced the reservation conflict.
30003  *
30004  *   Arguments: un - pointer to the soft state struct for the instance.
30005  *
30006  *     Context: may execute in interrupt context.
30007  */
30008 
30009 #define	SD_RESV_CONFLICT_FMT_LEN 40
30010 void
30011 sd_panic_for_res_conflict(struct sd_lun *un)
30012 {
30013 	char panic_str[SD_RESV_CONFLICT_FMT_LEN+MAXPATHLEN];
30014 	char path_str[MAXPATHLEN];
30015 
30016 	(void) snprintf(panic_str, sizeof (panic_str),
30017 	    "Reservation Conflict\nDisk: %s",
30018 	    ddi_pathname(SD_DEVINFO(un), path_str));
30019 
30020 	panic(panic_str);
30021 }
30022 
30023 /*
30024  * Note: The following sd_faultinjection_ioctl( ) routines implement
30025  * driver support for handling fault injection for error analysis
30026  * causing faults in multiple layers of the driver.
30027  *
30028  */
30029 
30030 #ifdef SD_FAULT_INJECTION
30031 static uint_t   sd_fault_injection_on = 0;
30032 
30033 /*
30034  *    Function: sd_faultinjection_ioctl()
30035  *
30036  * Description: This routine is the driver entry point for handling
30037  *              faultinjection ioctls to inject errors into the
30038  *              layer model
30039  *
30040  *   Arguments: cmd	- the ioctl cmd received
30041  *		arg	- the arguments from user and returns
30042  */
30043 
30044 static void
30045 sd_faultinjection_ioctl(int cmd, intptr_t arg,  struct sd_lun *un) {
30046 
30047 	uint_t i = 0;
30048 	uint_t rval;
30049 
30050 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl: entry\n");
30051 
30052 	mutex_enter(SD_MUTEX(un));
30053 
30054 	switch (cmd) {
30055 	case SDIOCRUN:
30056 		/* Allow pushed faults to be injected */
30057 		SD_INFO(SD_LOG_SDTEST, un,
30058 		    "sd_faultinjection_ioctl: Injecting Fault Run\n");
30059 
30060 		sd_fault_injection_on = 1;
30061 
30062 		SD_INFO(SD_LOG_IOERR, un,
30063 		    "sd_faultinjection_ioctl: run finished\n");
30064 		break;
30065 
30066 	case SDIOCSTART:
30067 		/* Start Injection Session */
30068 		SD_INFO(SD_LOG_SDTEST, un,
30069 		    "sd_faultinjection_ioctl: Injecting Fault Start\n");
30070 
30071 		sd_fault_injection_on = 0;
30072 		un->sd_injection_mask = 0xFFFFFFFF;
30073 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30074 			un->sd_fi_fifo_pkt[i] = NULL;
30075 			un->sd_fi_fifo_xb[i] = NULL;
30076 			un->sd_fi_fifo_un[i] = NULL;
30077 			un->sd_fi_fifo_arq[i] = NULL;
30078 		}
30079 		un->sd_fi_fifo_start = 0;
30080 		un->sd_fi_fifo_end = 0;
30081 
30082 		mutex_enter(&(un->un_fi_mutex));
30083 		un->sd_fi_log[0] = '\0';
30084 		un->sd_fi_buf_len = 0;
30085 		mutex_exit(&(un->un_fi_mutex));
30086 
30087 		SD_INFO(SD_LOG_IOERR, un,
30088 		    "sd_faultinjection_ioctl: start finished\n");
30089 		break;
30090 
30091 	case SDIOCSTOP:
30092 		/* Stop Injection Session */
30093 		SD_INFO(SD_LOG_SDTEST, un,
30094 		    "sd_faultinjection_ioctl: Injecting Fault Stop\n");
30095 		sd_fault_injection_on = 0;
30096 		un->sd_injection_mask = 0x0;
30097 
30098 		/* Empty stray or unuseds structs from fifo */
30099 		for (i = 0; i < SD_FI_MAX_ERROR; i++) {
30100 			if (un->sd_fi_fifo_pkt[i] != NULL) {
30101 				kmem_free(un->sd_fi_fifo_pkt[i],
30102 				    sizeof (struct sd_fi_pkt));
30103 			}
30104 			if (un->sd_fi_fifo_xb[i] != NULL) {
30105 				kmem_free(un->sd_fi_fifo_xb[i],
30106 				    sizeof (struct sd_fi_xb));
30107 			}
30108 			if (un->sd_fi_fifo_un[i] != NULL) {
30109 				kmem_free(un->sd_fi_fifo_un[i],
30110 				    sizeof (struct sd_fi_un));
30111 			}
30112 			if (un->sd_fi_fifo_arq[i] != NULL) {
30113 				kmem_free(un->sd_fi_fifo_arq[i],
30114 				    sizeof (struct sd_fi_arq));
30115 			}
30116 			un->sd_fi_fifo_pkt[i] = NULL;
30117 			un->sd_fi_fifo_un[i] = NULL;
30118 			un->sd_fi_fifo_xb[i] = NULL;
30119 			un->sd_fi_fifo_arq[i] = NULL;
30120 		}
30121 		un->sd_fi_fifo_start = 0;
30122 		un->sd_fi_fifo_end = 0;
30123 
30124 		SD_INFO(SD_LOG_IOERR, un,
30125 		    "sd_faultinjection_ioctl: stop finished\n");
30126 		break;
30127 
30128 	case SDIOCINSERTPKT:
30129 		/* Store a packet struct to be pushed onto fifo */
30130 		SD_INFO(SD_LOG_SDTEST, un,
30131 		    "sd_faultinjection_ioctl: Injecting Fault Insert Pkt\n");
30132 
30133 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30134 
30135 		sd_fault_injection_on = 0;
30136 
30137 		/* No more that SD_FI_MAX_ERROR allowed in Queue */
30138 		if (un->sd_fi_fifo_pkt[i] != NULL) {
30139 			kmem_free(un->sd_fi_fifo_pkt[i],
30140 			    sizeof (struct sd_fi_pkt));
30141 		}
30142 		if (arg != NULL) {
30143 			un->sd_fi_fifo_pkt[i] =
30144 			    kmem_alloc(sizeof (struct sd_fi_pkt), KM_NOSLEEP);
30145 			if (un->sd_fi_fifo_pkt[i] == NULL) {
30146 				/* Alloc failed don't store anything */
30147 				break;
30148 			}
30149 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_pkt[i],
30150 			    sizeof (struct sd_fi_pkt), 0);
30151 			if (rval == -1) {
30152 				kmem_free(un->sd_fi_fifo_pkt[i],
30153 				    sizeof (struct sd_fi_pkt));
30154 				un->sd_fi_fifo_pkt[i] = NULL;
30155 			}
30156 		} else {
30157 			SD_INFO(SD_LOG_IOERR, un,
30158 			    "sd_faultinjection_ioctl: pkt null\n");
30159 		}
30160 		break;
30161 
30162 	case SDIOCINSERTXB:
30163 		/* Store a xb struct to be pushed onto fifo */
30164 		SD_INFO(SD_LOG_SDTEST, un,
30165 		    "sd_faultinjection_ioctl: Injecting Fault Insert XB\n");
30166 
30167 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30168 
30169 		sd_fault_injection_on = 0;
30170 
30171 		if (un->sd_fi_fifo_xb[i] != NULL) {
30172 			kmem_free(un->sd_fi_fifo_xb[i],
30173 			    sizeof (struct sd_fi_xb));
30174 			un->sd_fi_fifo_xb[i] = NULL;
30175 		}
30176 		if (arg != NULL) {
30177 			un->sd_fi_fifo_xb[i] =
30178 			    kmem_alloc(sizeof (struct sd_fi_xb), KM_NOSLEEP);
30179 			if (un->sd_fi_fifo_xb[i] == NULL) {
30180 				/* Alloc failed don't store anything */
30181 				break;
30182 			}
30183 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_xb[i],
30184 			    sizeof (struct sd_fi_xb), 0);
30185 
30186 			if (rval == -1) {
30187 				kmem_free(un->sd_fi_fifo_xb[i],
30188 				    sizeof (struct sd_fi_xb));
30189 				un->sd_fi_fifo_xb[i] = NULL;
30190 			}
30191 		} else {
30192 			SD_INFO(SD_LOG_IOERR, un,
30193 			    "sd_faultinjection_ioctl: xb null\n");
30194 		}
30195 		break;
30196 
30197 	case SDIOCINSERTUN:
30198 		/* Store a un struct to be pushed onto fifo */
30199 		SD_INFO(SD_LOG_SDTEST, un,
30200 		    "sd_faultinjection_ioctl: Injecting Fault Insert UN\n");
30201 
30202 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30203 
30204 		sd_fault_injection_on = 0;
30205 
30206 		if (un->sd_fi_fifo_un[i] != NULL) {
30207 			kmem_free(un->sd_fi_fifo_un[i],
30208 			    sizeof (struct sd_fi_un));
30209 			un->sd_fi_fifo_un[i] = NULL;
30210 		}
30211 		if (arg != NULL) {
30212 			un->sd_fi_fifo_un[i] =
30213 			    kmem_alloc(sizeof (struct sd_fi_un), KM_NOSLEEP);
30214 			if (un->sd_fi_fifo_un[i] == NULL) {
30215 				/* Alloc failed don't store anything */
30216 				break;
30217 			}
30218 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_un[i],
30219 			    sizeof (struct sd_fi_un), 0);
30220 			if (rval == -1) {
30221 				kmem_free(un->sd_fi_fifo_un[i],
30222 				    sizeof (struct sd_fi_un));
30223 				un->sd_fi_fifo_un[i] = NULL;
30224 			}
30225 
30226 		} else {
30227 			SD_INFO(SD_LOG_IOERR, un,
30228 			    "sd_faultinjection_ioctl: un null\n");
30229 		}
30230 
30231 		break;
30232 
30233 	case SDIOCINSERTARQ:
30234 		/* Store a arq struct to be pushed onto fifo */
30235 		SD_INFO(SD_LOG_SDTEST, un,
30236 		    "sd_faultinjection_ioctl: Injecting Fault Insert ARQ\n");
30237 		i = un->sd_fi_fifo_end % SD_FI_MAX_ERROR;
30238 
30239 		sd_fault_injection_on = 0;
30240 
30241 		if (un->sd_fi_fifo_arq[i] != NULL) {
30242 			kmem_free(un->sd_fi_fifo_arq[i],
30243 			    sizeof (struct sd_fi_arq));
30244 			un->sd_fi_fifo_arq[i] = NULL;
30245 		}
30246 		if (arg != NULL) {
30247 			un->sd_fi_fifo_arq[i] =
30248 			    kmem_alloc(sizeof (struct sd_fi_arq), KM_NOSLEEP);
30249 			if (un->sd_fi_fifo_arq[i] == NULL) {
30250 				/* Alloc failed don't store anything */
30251 				break;
30252 			}
30253 			rval = ddi_copyin((void *)arg, un->sd_fi_fifo_arq[i],
30254 			    sizeof (struct sd_fi_arq), 0);
30255 			if (rval == -1) {
30256 				kmem_free(un->sd_fi_fifo_arq[i],
30257 				    sizeof (struct sd_fi_arq));
30258 				un->sd_fi_fifo_arq[i] = NULL;
30259 			}
30260 
30261 		} else {
30262 			SD_INFO(SD_LOG_IOERR, un,
30263 			    "sd_faultinjection_ioctl: arq null\n");
30264 		}
30265 
30266 		break;
30267 
30268 	case SDIOCPUSH:
30269 		/* Push stored xb, pkt, un, and arq onto fifo */
30270 		sd_fault_injection_on = 0;
30271 
30272 		if (arg != NULL) {
30273 			rval = ddi_copyin((void *)arg, &i, sizeof (uint_t), 0);
30274 			if (rval != -1 &&
30275 			    un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30276 				un->sd_fi_fifo_end += i;
30277 			}
30278 		} else {
30279 			SD_INFO(SD_LOG_IOERR, un,
30280 			    "sd_faultinjection_ioctl: push arg null\n");
30281 			if (un->sd_fi_fifo_end + i < SD_FI_MAX_ERROR) {
30282 				un->sd_fi_fifo_end++;
30283 			}
30284 		}
30285 		SD_INFO(SD_LOG_IOERR, un,
30286 		    "sd_faultinjection_ioctl: push to end=%d\n",
30287 		    un->sd_fi_fifo_end);
30288 		break;
30289 
30290 	case SDIOCRETRIEVE:
30291 		/* Return buffer of log from Injection session */
30292 		SD_INFO(SD_LOG_SDTEST, un,
30293 		    "sd_faultinjection_ioctl: Injecting Fault Retreive");
30294 
30295 		sd_fault_injection_on = 0;
30296 
30297 		mutex_enter(&(un->un_fi_mutex));
30298 		rval = ddi_copyout(un->sd_fi_log, (void *)arg,
30299 		    un->sd_fi_buf_len+1, 0);
30300 		mutex_exit(&(un->un_fi_mutex));
30301 
30302 		if (rval == -1) {
30303 			/*
30304 			 * arg is possibly invalid setting
30305 			 * it to NULL for return
30306 			 */
30307 			arg = NULL;
30308 		}
30309 		break;
30310 	}
30311 
30312 	mutex_exit(SD_MUTEX(un));
30313 	SD_TRACE(SD_LOG_IOERR, un, "sd_faultinjection_ioctl:"
30314 			    " exit\n");
30315 }
30316 
30317 
30318 /*
30319  *    Function: sd_injection_log()
30320  *
30321  * Description: This routine adds buff to the already existing injection log
30322  *              for retrieval via faultinjection_ioctl for use in fault
30323  *              detection and recovery
30324  *
30325  *   Arguments: buf - the string to add to the log
30326  */
30327 
30328 static void
30329 sd_injection_log(char *buf, struct sd_lun *un)
30330 {
30331 	uint_t len;
30332 
30333 	ASSERT(un != NULL);
30334 	ASSERT(buf != NULL);
30335 
30336 	mutex_enter(&(un->un_fi_mutex));
30337 
30338 	len = min(strlen(buf), 255);
30339 	/* Add logged value to Injection log to be returned later */
30340 	if (len + un->sd_fi_buf_len < SD_FI_MAX_BUF) {
30341 		uint_t	offset = strlen((char *)un->sd_fi_log);
30342 		char *destp = (char *)un->sd_fi_log + offset;
30343 		int i;
30344 		for (i = 0; i < len; i++) {
30345 			*destp++ = *buf++;
30346 		}
30347 		un->sd_fi_buf_len += len;
30348 		un->sd_fi_log[un->sd_fi_buf_len] = '\0';
30349 	}
30350 
30351 	mutex_exit(&(un->un_fi_mutex));
30352 }
30353 
30354 
30355 /*
30356  *    Function: sd_faultinjection()
30357  *
30358  * Description: This routine takes the pkt and changes its
30359  *		content based on error injection scenerio.
30360  *
30361  *   Arguments: pktp	- packet to be changed
30362  */
30363 
30364 static void
30365 sd_faultinjection(struct scsi_pkt *pktp)
30366 {
30367 	uint_t i;
30368 	struct sd_fi_pkt *fi_pkt;
30369 	struct sd_fi_xb *fi_xb;
30370 	struct sd_fi_un *fi_un;
30371 	struct sd_fi_arq *fi_arq;
30372 	struct buf *bp;
30373 	struct sd_xbuf *xb;
30374 	struct sd_lun *un;
30375 
30376 	ASSERT(pktp != NULL);
30377 
30378 	/* pull bp xb and un from pktp */
30379 	bp = (struct buf *)pktp->pkt_private;
30380 	xb = SD_GET_XBUF(bp);
30381 	un = SD_GET_UN(bp);
30382 
30383 	ASSERT(un != NULL);
30384 
30385 	mutex_enter(SD_MUTEX(un));
30386 
30387 	SD_TRACE(SD_LOG_SDTEST, un,
30388 	    "sd_faultinjection: entry Injection from sdintr\n");
30389 
30390 	/* if injection is off return */
30391 	if (sd_fault_injection_on == 0 ||
30392 	    un->sd_fi_fifo_start == un->sd_fi_fifo_end) {
30393 		mutex_exit(SD_MUTEX(un));
30394 		return;
30395 	}
30396 
30397 	SD_INFO(SD_LOG_SDTEST, un,
30398 	    "sd_faultinjection: is working for copying\n");
30399 
30400 	/* take next set off fifo */
30401 	i = un->sd_fi_fifo_start % SD_FI_MAX_ERROR;
30402 
30403 	fi_pkt = un->sd_fi_fifo_pkt[i];
30404 	fi_xb = un->sd_fi_fifo_xb[i];
30405 	fi_un = un->sd_fi_fifo_un[i];
30406 	fi_arq = un->sd_fi_fifo_arq[i];
30407 
30408 
30409 	/* set variables accordingly */
30410 	/* set pkt if it was on fifo */
30411 	if (fi_pkt != NULL) {
30412 		SD_CONDSET(pktp, pkt, pkt_flags, "pkt_flags");
30413 		SD_CONDSET(*pktp, pkt, pkt_scbp, "pkt_scbp");
30414 		if (fi_pkt->pkt_cdbp != 0xff)
30415 			SD_CONDSET(*pktp, pkt, pkt_cdbp, "pkt_cdbp");
30416 		SD_CONDSET(pktp, pkt, pkt_state, "pkt_state");
30417 		SD_CONDSET(pktp, pkt, pkt_statistics, "pkt_statistics");
30418 		SD_CONDSET(pktp, pkt, pkt_reason, "pkt_reason");
30419 
30420 	}
30421 	/* set xb if it was on fifo */
30422 	if (fi_xb != NULL) {
30423 		SD_CONDSET(xb, xb, xb_blkno, "xb_blkno");
30424 		SD_CONDSET(xb, xb, xb_dma_resid, "xb_dma_resid");
30425 		if (fi_xb->xb_retry_count != 0)
30426 			SD_CONDSET(xb, xb, xb_retry_count, "xb_retry_count");
30427 		SD_CONDSET(xb, xb, xb_victim_retry_count,
30428 		    "xb_victim_retry_count");
30429 		SD_CONDSET(xb, xb, xb_sense_status, "xb_sense_status");
30430 		SD_CONDSET(xb, xb, xb_sense_state, "xb_sense_state");
30431 		SD_CONDSET(xb, xb, xb_sense_resid, "xb_sense_resid");
30432 
30433 		/* copy in block data from sense */
30434 		/*
30435 		 * if (fi_xb->xb_sense_data[0] != -1) {
30436 		 *	bcopy(fi_xb->xb_sense_data, xb->xb_sense_data,
30437 		 *	SENSE_LENGTH);
30438 		 * }
30439 		 */
30440 		bcopy(fi_xb->xb_sense_data, xb->xb_sense_data, SENSE_LENGTH);
30441 
30442 		/* copy in extended sense codes */
30443 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30444 		    xb, es_code, "es_code");
30445 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30446 		    xb, es_key, "es_key");
30447 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30448 		    xb, es_add_code, "es_add_code");
30449 		SD_CONDSET(((struct scsi_extended_sense *)xb->xb_sense_data),
30450 		    xb, es_qual_code, "es_qual_code");
30451 		struct scsi_extended_sense *esp;
30452 		esp = (struct scsi_extended_sense *)xb->xb_sense_data;
30453 		esp->es_class = CLASS_EXTENDED_SENSE;
30454 	}
30455 
30456 	/* set un if it was on fifo */
30457 	if (fi_un != NULL) {
30458 		SD_CONDSET(un->un_sd->sd_inq, un, inq_rmb, "inq_rmb");
30459 		SD_CONDSET(un, un, un_ctype, "un_ctype");
30460 		SD_CONDSET(un, un, un_reset_retry_count,
30461 		    "un_reset_retry_count");
30462 		SD_CONDSET(un, un, un_reservation_type, "un_reservation_type");
30463 		SD_CONDSET(un, un, un_resvd_status, "un_resvd_status");
30464 		SD_CONDSET(un, un, un_f_arq_enabled, "un_f_arq_enabled");
30465 		SD_CONDSET(un, un, un_f_allow_bus_device_reset,
30466 		    "un_f_allow_bus_device_reset");
30467 		SD_CONDSET(un, un, un_f_opt_queueing, "un_f_opt_queueing");
30468 
30469 	}
30470 
30471 	/* copy in auto request sense if it was on fifo */
30472 	if (fi_arq != NULL) {
30473 		bcopy(fi_arq, pktp->pkt_scbp, sizeof (struct sd_fi_arq));
30474 	}
30475 
30476 	/* free structs */
30477 	if (un->sd_fi_fifo_pkt[i] != NULL) {
30478 		kmem_free(un->sd_fi_fifo_pkt[i], sizeof (struct sd_fi_pkt));
30479 	}
30480 	if (un->sd_fi_fifo_xb[i] != NULL) {
30481 		kmem_free(un->sd_fi_fifo_xb[i], sizeof (struct sd_fi_xb));
30482 	}
30483 	if (un->sd_fi_fifo_un[i] != NULL) {
30484 		kmem_free(un->sd_fi_fifo_un[i], sizeof (struct sd_fi_un));
30485 	}
30486 	if (un->sd_fi_fifo_arq[i] != NULL) {
30487 		kmem_free(un->sd_fi_fifo_arq[i], sizeof (struct sd_fi_arq));
30488 	}
30489 
30490 	/*
30491 	 * kmem_free does not gurantee to set to NULL
30492 	 * since we uses these to determine if we set
30493 	 * values or not lets confirm they are always
30494 	 * NULL after free
30495 	 */
30496 	un->sd_fi_fifo_pkt[i] = NULL;
30497 	un->sd_fi_fifo_un[i] = NULL;
30498 	un->sd_fi_fifo_xb[i] = NULL;
30499 	un->sd_fi_fifo_arq[i] = NULL;
30500 
30501 	un->sd_fi_fifo_start++;
30502 
30503 	mutex_exit(SD_MUTEX(un));
30504 
30505 	SD_INFO(SD_LOG_SDTEST, un, "sd_faultinjection: exit\n");
30506 }
30507 
30508 #endif /* SD_FAULT_INJECTION */
30509 
30510 /*
30511  * This routine is invoked in sd_unit_attach(). Before calling it, the
30512  * properties in conf file should be processed already, and "hotpluggable"
30513  * property was processed also.
30514  *
30515  * The sd driver distinguishes 3 different type of devices: removable media,
30516  * non-removable media, and hotpluggable. Below the differences are defined:
30517  *
30518  * 1. Device ID
30519  *
30520  *     The device ID of a device is used to identify this device. Refer to
30521  *     ddi_devid_register(9F).
30522  *
30523  *     For a non-removable media disk device which can provide 0x80 or 0x83
30524  *     VPD page (refer to INQUIRY command of SCSI SPC specification), a unique
30525  *     device ID is created to identify this device. For other non-removable
30526  *     media devices, a default device ID is created only if this device has
30527  *     at least 2 alter cylinders. Otherwise, this device has no devid.
30528  *
30529  *     -------------------------------------------------------
30530  *     removable media   hotpluggable  | Can Have Device ID
30531  *     -------------------------------------------------------
30532  *         false             false     |     Yes
30533  *         false             true      |     Yes
30534  *         true                x       |     No
30535  *     ------------------------------------------------------
30536  *
30537  *
30538  * 2. SCSI group 4 commands
30539  *
30540  *     In SCSI specs, only some commands in group 4 command set can use
30541  *     8-byte addresses that can be used to access >2TB storage spaces.
30542  *     Other commands have no such capability. Without supporting group4,
30543  *     it is impossible to make full use of storage spaces of a disk with
30544  *     capacity larger than 2TB.
30545  *
30546  *     -----------------------------------------------
30547  *     removable media   hotpluggable   LP64  |  Group
30548  *     -----------------------------------------------
30549  *           false          false       false |   1
30550  *           false          false       true  |   4
30551  *           false          true        false |   1
30552  *           false          true        true  |   4
30553  *           true             x           x   |   5
30554  *     -----------------------------------------------
30555  *
30556  *
30557  * 3. Check for VTOC Label
30558  *
30559  *     If a direct-access disk has no EFI label, sd will check if it has a
30560  *     valid VTOC label. Now, sd also does that check for removable media
30561  *     and hotpluggable devices.
30562  *
30563  *     --------------------------------------------------------------
30564  *     Direct-Access   removable media    hotpluggable |  Check Label
30565  *     -------------------------------------------------------------
30566  *         false          false           false        |   No
30567  *         false          false           true         |   No
30568  *         false          true            false        |   Yes
30569  *         false          true            true         |   Yes
30570  *         true            x                x          |   Yes
30571  *     --------------------------------------------------------------
30572  *
30573  *
30574  * 4. Building default VTOC label
30575  *
30576  *     As section 3 says, sd checks if some kinds of devices have VTOC label.
30577  *     If those devices have no valid VTOC label, sd(7d) will attempt to
30578  *     create default VTOC for them. Currently sd creates default VTOC label
30579  *     for all devices on x86 platform (VTOC_16), but only for removable
30580  *     media devices on SPARC (VTOC_8).
30581  *
30582  *     -----------------------------------------------------------
30583  *       removable media hotpluggable platform   |   Default Label
30584  *     -----------------------------------------------------------
30585  *             false          false    sparc     |     No
30586  *             false          true      x86      |     Yes
30587  *             false          true     sparc     |     Yes
30588  *             true             x        x       |     Yes
30589  *     ----------------------------------------------------------
30590  *
30591  *
30592  * 5. Supported blocksizes of target devices
30593  *
30594  *     Sd supports non-512-byte blocksize for removable media devices only.
30595  *     For other devices, only 512-byte blocksize is supported. This may be
30596  *     changed in near future because some RAID devices require non-512-byte
30597  *     blocksize
30598  *
30599  *     -----------------------------------------------------------
30600  *     removable media    hotpluggable    | non-512-byte blocksize
30601  *     -----------------------------------------------------------
30602  *           false          false         |   No
30603  *           false          true          |   No
30604  *           true             x           |   Yes
30605  *     -----------------------------------------------------------
30606  *
30607  *
30608  * 6. Automatic mount & unmount
30609  *
30610  *     Sd(7d) driver provides DKIOCREMOVABLE ioctl. This ioctl is used to query
30611  *     if a device is removable media device. It return 1 for removable media
30612  *     devices, and 0 for others.
30613  *
30614  *     The automatic mounting subsystem should distinguish between the types
30615  *     of devices and apply automounting policies to each.
30616  *
30617  *
30618  * 7. fdisk partition management
30619  *
30620  *     Fdisk is traditional partition method on x86 platform. Sd(7d) driver
30621  *     just supports fdisk partitions on x86 platform. On sparc platform, sd
30622  *     doesn't support fdisk partitions at all. Note: pcfs(7fs) can recognize
30623  *     fdisk partitions on both x86 and SPARC platform.
30624  *
30625  *     -----------------------------------------------------------
30626  *       platform   removable media  USB/1394  |  fdisk supported
30627  *     -----------------------------------------------------------
30628  *        x86         X               X        |       true
30629  *     ------------------------------------------------------------
30630  *        sparc       X               X        |       false
30631  *     ------------------------------------------------------------
30632  *
30633  *
30634  * 8. MBOOT/MBR
30635  *
30636  *     Although sd(7d) doesn't support fdisk on SPARC platform, it does support
30637  *     read/write mboot for removable media devices on sparc platform.
30638  *
30639  *     -----------------------------------------------------------
30640  *       platform   removable media  USB/1394  |  mboot supported
30641  *     -----------------------------------------------------------
30642  *        x86         X               X        |       true
30643  *     ------------------------------------------------------------
30644  *        sparc      false           false     |       false
30645  *        sparc      false           true      |       true
30646  *        sparc      true            false     |       true
30647  *        sparc      true            true      |       true
30648  *     ------------------------------------------------------------
30649  *
30650  *
30651  * 9.  error handling during opening device
30652  *
30653  *     If failed to open a disk device, an errno is returned. For some kinds
30654  *     of errors, different errno is returned depending on if this device is
30655  *     a removable media device. This brings USB/1394 hard disks in line with
30656  *     expected hard disk behavior. It is not expected that this breaks any
30657  *     application.
30658  *
30659  *     ------------------------------------------------------
30660  *       removable media    hotpluggable   |  errno
30661  *     ------------------------------------------------------
30662  *             false          false        |   EIO
30663  *             false          true         |   EIO
30664  *             true             x          |   ENXIO
30665  *     ------------------------------------------------------
30666  *
30667  *
30668  * 11. ioctls: DKIOCEJECT, CDROMEJECT
30669  *
30670  *     These IOCTLs are applicable only to removable media devices.
30671  *
30672  *     -----------------------------------------------------------
30673  *       removable media    hotpluggable   |DKIOCEJECT, CDROMEJECT
30674  *     -----------------------------------------------------------
30675  *             false          false        |     No
30676  *             false          true         |     No
30677  *             true            x           |     Yes
30678  *     -----------------------------------------------------------
30679  *
30680  *
30681  * 12. Kstats for partitions
30682  *
30683  *     sd creates partition kstat for non-removable media devices. USB and
30684  *     Firewire hard disks now have partition kstats
30685  *
30686  *      ------------------------------------------------------
30687  *       removable media    hotpluggable   |   kstat
30688  *      ------------------------------------------------------
30689  *             false          false        |    Yes
30690  *             false          true         |    Yes
30691  *             true             x          |    No
30692  *       ------------------------------------------------------
30693  *
30694  *
30695  * 13. Removable media & hotpluggable properties
30696  *
30697  *     Sd driver creates a "removable-media" property for removable media
30698  *     devices. Parent nexus drivers create a "hotpluggable" property if
30699  *     it supports hotplugging.
30700  *
30701  *     ---------------------------------------------------------------------
30702  *     removable media   hotpluggable |  "removable-media"   " hotpluggable"
30703  *     ---------------------------------------------------------------------
30704  *       false            false       |    No                   No
30705  *       false            true        |    No                   Yes
30706  *       true             false       |    Yes                  No
30707  *       true             true        |    Yes                  Yes
30708  *     ---------------------------------------------------------------------
30709  *
30710  *
30711  * 14. Power Management
30712  *
30713  *     sd only power manages removable media devices or devices that support
30714  *     LOG_SENSE or have a "pm-capable" property  (PSARC/2002/250)
30715  *
30716  *     A parent nexus that supports hotplugging can also set "pm-capable"
30717  *     if the disk can be power managed.
30718  *
30719  *     ------------------------------------------------------------
30720  *       removable media hotpluggable pm-capable  |   power manage
30721  *     ------------------------------------------------------------
30722  *             false          false     false     |     No
30723  *             false          false     true      |     Yes
30724  *             false          true      false     |     No
30725  *             false          true      true      |     Yes
30726  *             true             x        x        |     Yes
30727  *     ------------------------------------------------------------
30728  *
30729  *      USB and firewire hard disks can now be power managed independently
30730  *      of the framebuffer
30731  *
30732  *
30733  * 15. Support for USB disks with capacity larger than 1TB
30734  *
30735  *     Currently, sd doesn't permit a fixed disk device with capacity
30736  *     larger than 1TB to be used in a 32-bit operating system environment.
30737  *     However, sd doesn't do that for removable media devices. Instead, it
30738  *     assumes that removable media devices cannot have a capacity larger
30739  *     than 1TB. Therefore, using those devices on 32-bit system is partially
30740  *     supported, which can cause some unexpected results.
30741  *
30742  *     ---------------------------------------------------------------------
30743  *       removable media    USB/1394 | Capacity > 1TB |   Used in 32-bit env
30744  *     ---------------------------------------------------------------------
30745  *             false          false  |   true         |     no
30746  *             false          true   |   true         |     no
30747  *             true           false  |   true         |     Yes
30748  *             true           true   |   true         |     Yes
30749  *     ---------------------------------------------------------------------
30750  *
30751  *
30752  * 16. Check write-protection at open time
30753  *
30754  *     When a removable media device is being opened for writing without NDELAY
30755  *     flag, sd will check if this device is writable. If attempting to open
30756  *     without NDELAY flag a write-protected device, this operation will abort.
30757  *
30758  *     ------------------------------------------------------------
30759  *       removable media    USB/1394   |   WP Check
30760  *     ------------------------------------------------------------
30761  *             false          false    |     No
30762  *             false          true     |     No
30763  *             true           false    |     Yes
30764  *             true           true     |     Yes
30765  *     ------------------------------------------------------------
30766  *
30767  *
30768  * 17. syslog when corrupted VTOC is encountered
30769  *
30770  *      Currently, if an invalid VTOC is encountered, sd only print syslog
30771  *      for fixed SCSI disks.
30772  *     ------------------------------------------------------------
30773  *       removable media    USB/1394   |   print syslog
30774  *     ------------------------------------------------------------
30775  *             false          false    |     Yes
30776  *             false          true     |     No
30777  *             true           false    |     No
30778  *             true           true     |     No
30779  *     ------------------------------------------------------------
30780  */
30781 static void
30782 sd_set_unit_attributes(struct sd_lun *un, dev_info_t *devi)
30783 {
30784 	int	pm_cap;
30785 
30786 	ASSERT(un->un_sd);
30787 	ASSERT(un->un_sd->sd_inq);
30788 
30789 	/*
30790 	 * Enable SYNC CACHE support for all devices.
30791 	 */
30792 	un->un_f_sync_cache_supported = TRUE;
30793 
30794 	/*
30795 	 * Set the sync cache required flag to false.
30796 	 * This would ensure that there is no SYNC CACHE
30797 	 * sent when there are no writes
30798 	 */
30799 	un->un_f_sync_cache_required = FALSE;
30800 
30801 	if (un->un_sd->sd_inq->inq_rmb) {
30802 		/*
30803 		 * The media of this device is removable. And for this kind
30804 		 * of devices, it is possible to change medium after opening
30805 		 * devices. Thus we should support this operation.
30806 		 */
30807 		un->un_f_has_removable_media = TRUE;
30808 
30809 		/*
30810 		 * support non-512-byte blocksize of removable media devices
30811 		 */
30812 		un->un_f_non_devbsize_supported = TRUE;
30813 
30814 		/*
30815 		 * Assume that all removable media devices support DOOR_LOCK
30816 		 */
30817 		un->un_f_doorlock_supported = TRUE;
30818 
30819 		/*
30820 		 * For a removable media device, it is possible to be opened
30821 		 * with NDELAY flag when there is no media in drive, in this
30822 		 * case we don't care if device is writable. But if without
30823 		 * NDELAY flag, we need to check if media is write-protected.
30824 		 */
30825 		un->un_f_chk_wp_open = TRUE;
30826 
30827 		/*
30828 		 * need to start a SCSI watch thread to monitor media state,
30829 		 * when media is being inserted or ejected, notify syseventd.
30830 		 */
30831 		un->un_f_monitor_media_state = TRUE;
30832 
30833 		/*
30834 		 * Some devices don't support START_STOP_UNIT command.
30835 		 * Therefore, we'd better check if a device supports it
30836 		 * before sending it.
30837 		 */
30838 		un->un_f_check_start_stop = TRUE;
30839 
30840 		/*
30841 		 * support eject media ioctl:
30842 		 *		FDEJECT, DKIOCEJECT, CDROMEJECT
30843 		 */
30844 		un->un_f_eject_media_supported = TRUE;
30845 
30846 		/*
30847 		 * Because many removable-media devices don't support
30848 		 * LOG_SENSE, we couldn't use this command to check if
30849 		 * a removable media device support power-management.
30850 		 * We assume that they support power-management via
30851 		 * START_STOP_UNIT command and can be spun up and down
30852 		 * without limitations.
30853 		 */
30854 		un->un_f_pm_supported = TRUE;
30855 
30856 		/*
30857 		 * Need to create a zero length (Boolean) property
30858 		 * removable-media for the removable media devices.
30859 		 * Note that the return value of the property is not being
30860 		 * checked, since if unable to create the property
30861 		 * then do not want the attach to fail altogether. Consistent
30862 		 * with other property creation in attach.
30863 		 */
30864 		(void) ddi_prop_create(DDI_DEV_T_NONE, devi,
30865 		    DDI_PROP_CANSLEEP, "removable-media", NULL, 0);
30866 
30867 	} else {
30868 		/*
30869 		 * create device ID for device
30870 		 */
30871 		un->un_f_devid_supported = TRUE;
30872 
30873 		/*
30874 		 * Spin up non-removable-media devices once it is attached
30875 		 */
30876 		un->un_f_attach_spinup = TRUE;
30877 
30878 		/*
30879 		 * According to SCSI specification, Sense data has two kinds of
30880 		 * format: fixed format, and descriptor format. At present, we
30881 		 * don't support descriptor format sense data for removable
30882 		 * media.
30883 		 */
30884 		if (SD_INQUIRY(un)->inq_dtype == DTYPE_DIRECT) {
30885 			un->un_f_descr_format_supported = TRUE;
30886 		}
30887 
30888 		/*
30889 		 * kstats are created only for non-removable media devices.
30890 		 *
30891 		 * Set this in sd.conf to 0 in order to disable kstats.  The
30892 		 * default is 1, so they are enabled by default.
30893 		 */
30894 		un->un_f_pkstats_enabled = (ddi_prop_get_int(DDI_DEV_T_ANY,
30895 		    SD_DEVINFO(un), DDI_PROP_DONTPASS,
30896 		    "enable-partition-kstats", 1));
30897 
30898 		/*
30899 		 * Check if HBA has set the "pm-capable" property.
30900 		 * If "pm-capable" exists and is non-zero then we can
30901 		 * power manage the device without checking the start/stop
30902 		 * cycle count log sense page.
30903 		 *
30904 		 * If "pm-capable" exists and is set to be false (0),
30905 		 * then we should not power manage the device.
30906 		 *
30907 		 * If "pm-capable" doesn't exist then pm_cap will
30908 		 * be set to SD_PM_CAPABLE_UNDEFINED (-1).  In this case,
30909 		 * sd will check the start/stop cycle count log sense page
30910 		 * and power manage the device if the cycle count limit has
30911 		 * not been exceeded.
30912 		 */
30913 		pm_cap = ddi_prop_get_int(DDI_DEV_T_ANY, devi,
30914 		    DDI_PROP_DONTPASS, "pm-capable", SD_PM_CAPABLE_UNDEFINED);
30915 		if (SD_PM_CAPABLE_IS_UNDEFINED(pm_cap)) {
30916 			un->un_f_log_sense_supported = TRUE;
30917 			if (!un->un_f_power_condition_disabled &&
30918 			    SD_INQUIRY(un)->inq_ansi == 6) {
30919 				un->un_f_power_condition_supported = TRUE;
30920 			}
30921 		} else {
30922 			/*
30923 			 * pm-capable property exists.
30924 			 *
30925 			 * Convert "TRUE" values for pm_cap to
30926 			 * SD_PM_CAPABLE_IS_TRUE to make it easier to check
30927 			 * later. "TRUE" values are any values defined in
30928 			 * inquiry.h.
30929 			 */
30930 			if (SD_PM_CAPABLE_IS_FALSE(pm_cap)) {
30931 				un->un_f_log_sense_supported = FALSE;
30932 			} else {
30933 				/* SD_PM_CAPABLE_IS_TRUE case */
30934 				un->un_f_pm_supported = TRUE;
30935 				if (!un->un_f_power_condition_disabled &&
30936 				    SD_PM_CAPABLE_IS_SPC_4(pm_cap)) {
30937 					un->un_f_power_condition_supported =
30938 					    TRUE;
30939 				}
30940 				if (SD_PM_CAP_LOG_SUPPORTED(pm_cap)) {
30941 					un->un_f_log_sense_supported = TRUE;
30942 					un->un_f_pm_log_sense_smart =
30943 					    SD_PM_CAP_SMART_LOG(pm_cap);
30944 				}
30945 			}
30946 
30947 			SD_INFO(SD_LOG_ATTACH_DETACH, un,
30948 			    "sd_unit_attach: un:0x%p pm-capable "
30949 			    "property set to %d.\n", un, un->un_f_pm_supported);
30950 		}
30951 	}
30952 
30953 	if (un->un_f_is_hotpluggable) {
30954 
30955 		/*
30956 		 * Have to watch hotpluggable devices as well, since
30957 		 * that's the only way for userland applications to
30958 		 * detect hot removal while device is busy/mounted.
30959 		 */
30960 		un->un_f_monitor_media_state = TRUE;
30961 
30962 		un->un_f_check_start_stop = TRUE;
30963 
30964 	}
30965 }
30966 
30967 /*
30968  * sd_tg_rdwr:
30969  * Provides rdwr access for cmlb via sd_tgops. The start_block is
30970  * in sys block size, req_length in bytes.
30971  *
30972  */
30973 static int
30974 sd_tg_rdwr(dev_info_t *devi, uchar_t cmd, void *bufaddr,
30975     diskaddr_t start_block, size_t reqlength, void *tg_cookie)
30976 {
30977 	struct sd_lun *un;
30978 	int path_flag = (int)(uintptr_t)tg_cookie;
30979 	char *dkl = NULL;
30980 	diskaddr_t real_addr = start_block;
30981 	diskaddr_t first_byte, end_block;
30982 
30983 	size_t	buffer_size = reqlength;
30984 	int rval = 0;
30985 	diskaddr_t	cap;
30986 	uint32_t	lbasize;
30987 	sd_ssc_t	*ssc;
30988 
30989 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
30990 	if (un == NULL)
30991 		return (ENXIO);
30992 
30993 	if (cmd != TG_READ && cmd != TG_WRITE)
30994 		return (EINVAL);
30995 
30996 	ssc = sd_ssc_init(un);
30997 	mutex_enter(SD_MUTEX(un));
30998 	if (un->un_f_tgt_blocksize_is_valid == FALSE) {
30999 		mutex_exit(SD_MUTEX(un));
31000 		rval = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
31001 		    &lbasize, path_flag);
31002 		if (rval != 0)
31003 			goto done1;
31004 		mutex_enter(SD_MUTEX(un));
31005 		sd_update_block_info(un, lbasize, cap);
31006 		if ((un->un_f_tgt_blocksize_is_valid == FALSE)) {
31007 			mutex_exit(SD_MUTEX(un));
31008 			rval = EIO;
31009 			goto done;
31010 		}
31011 	}
31012 
31013 	if (NOT_DEVBSIZE(un)) {
31014 		/*
31015 		 * sys_blocksize != tgt_blocksize, need to re-adjust
31016 		 * blkno and save the index to beginning of dk_label
31017 		 */
31018 		first_byte  = SD_SYSBLOCKS2BYTES(start_block);
31019 		real_addr = first_byte / un->un_tgt_blocksize;
31020 
31021 		end_block = (first_byte + reqlength +
31022 		    un->un_tgt_blocksize - 1) / un->un_tgt_blocksize;
31023 
31024 		/* round up buffer size to multiple of target block size */
31025 		buffer_size = (end_block - real_addr) * un->un_tgt_blocksize;
31026 
31027 		SD_TRACE(SD_LOG_IO_PARTITION, un, "sd_tg_rdwr",
31028 		    "label_addr: 0x%x allocation size: 0x%x\n",
31029 		    real_addr, buffer_size);
31030 
31031 		if (((first_byte % un->un_tgt_blocksize) != 0) ||
31032 		    (reqlength % un->un_tgt_blocksize) != 0)
31033 			/* the request is not aligned */
31034 			dkl = kmem_zalloc(buffer_size, KM_SLEEP);
31035 	}
31036 
31037 	/*
31038 	 * The MMC standard allows READ CAPACITY to be
31039 	 * inaccurate by a bounded amount (in the interest of
31040 	 * response latency).  As a result, failed READs are
31041 	 * commonplace (due to the reading of metadata and not
31042 	 * data). Depending on the per-Vendor/drive Sense data,
31043 	 * the failed READ can cause many (unnecessary) retries.
31044 	 */
31045 
31046 	if (ISCD(un) && (cmd == TG_READ) &&
31047 	    (un->un_f_blockcount_is_valid == TRUE) &&
31048 	    ((start_block == (un->un_blockcount - 1))||
31049 	    (start_block == (un->un_blockcount - 2)))) {
31050 			path_flag = SD_PATH_DIRECT_PRIORITY;
31051 	}
31052 
31053 	mutex_exit(SD_MUTEX(un));
31054 	if (cmd == TG_READ) {
31055 		rval = sd_send_scsi_READ(ssc, (dkl != NULL)? dkl: bufaddr,
31056 		    buffer_size, real_addr, path_flag);
31057 		if (dkl != NULL)
31058 			bcopy(dkl + SD_TGTBYTEOFFSET(un, start_block,
31059 			    real_addr), bufaddr, reqlength);
31060 	} else {
31061 		if (dkl) {
31062 			rval = sd_send_scsi_READ(ssc, dkl, buffer_size,
31063 			    real_addr, path_flag);
31064 			if (rval) {
31065 				goto done1;
31066 			}
31067 			bcopy(bufaddr, dkl + SD_TGTBYTEOFFSET(un, start_block,
31068 			    real_addr), reqlength);
31069 		}
31070 		rval = sd_send_scsi_WRITE(ssc, (dkl != NULL)? dkl: bufaddr,
31071 		    buffer_size, real_addr, path_flag);
31072 	}
31073 
31074 done1:
31075 	if (dkl != NULL)
31076 		kmem_free(dkl, buffer_size);
31077 
31078 	if (rval != 0) {
31079 		if (rval == EIO)
31080 			sd_ssc_assessment(ssc, SD_FMT_STATUS_CHECK);
31081 		else
31082 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
31083 	}
31084 done:
31085 	sd_ssc_fini(ssc);
31086 	return (rval);
31087 }
31088 
31089 
31090 static int
31091 sd_tg_getinfo(dev_info_t *devi, int cmd, void *arg, void *tg_cookie)
31092 {
31093 
31094 	struct sd_lun *un;
31095 	diskaddr_t	cap;
31096 	uint32_t	lbasize;
31097 	int		path_flag = (int)(uintptr_t)tg_cookie;
31098 	int		ret = 0;
31099 
31100 	un = ddi_get_soft_state(sd_state, ddi_get_instance(devi));
31101 	if (un == NULL)
31102 		return (ENXIO);
31103 
31104 	switch (cmd) {
31105 	case TG_GETPHYGEOM:
31106 	case TG_GETVIRTGEOM:
31107 	case TG_GETCAPACITY:
31108 	case TG_GETBLOCKSIZE:
31109 		mutex_enter(SD_MUTEX(un));
31110 
31111 		if ((un->un_f_blockcount_is_valid == TRUE) &&
31112 		    (un->un_f_tgt_blocksize_is_valid == TRUE)) {
31113 			cap = un->un_blockcount;
31114 			lbasize = un->un_tgt_blocksize;
31115 			mutex_exit(SD_MUTEX(un));
31116 		} else {
31117 			sd_ssc_t	*ssc;
31118 			mutex_exit(SD_MUTEX(un));
31119 			ssc = sd_ssc_init(un);
31120 			ret = sd_send_scsi_READ_CAPACITY(ssc, (uint64_t *)&cap,
31121 			    &lbasize, path_flag);
31122 			if (ret != 0) {
31123 				if (ret == EIO)
31124 					sd_ssc_assessment(ssc,
31125 					    SD_FMT_STATUS_CHECK);
31126 				else
31127 					sd_ssc_assessment(ssc,
31128 					    SD_FMT_IGNORE);
31129 				sd_ssc_fini(ssc);
31130 				return (ret);
31131 			}
31132 			sd_ssc_fini(ssc);
31133 			mutex_enter(SD_MUTEX(un));
31134 			sd_update_block_info(un, lbasize, cap);
31135 			if ((un->un_f_blockcount_is_valid == FALSE) ||
31136 			    (un->un_f_tgt_blocksize_is_valid == FALSE)) {
31137 				mutex_exit(SD_MUTEX(un));
31138 				return (EIO);
31139 			}
31140 			mutex_exit(SD_MUTEX(un));
31141 		}
31142 
31143 		if (cmd == TG_GETCAPACITY) {
31144 			*(diskaddr_t *)arg = cap;
31145 			return (0);
31146 		}
31147 
31148 		if (cmd == TG_GETBLOCKSIZE) {
31149 			*(uint32_t *)arg = lbasize;
31150 			return (0);
31151 		}
31152 
31153 		if (cmd == TG_GETPHYGEOM)
31154 			ret = sd_get_physical_geometry(un, (cmlb_geom_t *)arg,
31155 			    cap, lbasize, path_flag);
31156 		else
31157 			/* TG_GETVIRTGEOM */
31158 			ret = sd_get_virtual_geometry(un,
31159 			    (cmlb_geom_t *)arg, cap, lbasize);
31160 
31161 		return (ret);
31162 
31163 	case TG_GETATTR:
31164 		mutex_enter(SD_MUTEX(un));
31165 		((tg_attribute_t *)arg)->media_is_writable =
31166 		    un->un_f_mmc_writable_media;
31167 		((tg_attribute_t *)arg)->media_is_solid_state =
31168 		    un->un_f_is_solid_state;
31169 		mutex_exit(SD_MUTEX(un));
31170 		return (0);
31171 	default:
31172 		return (ENOTTY);
31173 
31174 	}
31175 }
31176 
31177 /*
31178  *    Function: sd_ssc_ereport_post
31179  *
31180  * Description: Will be called when SD driver need to post an ereport.
31181  *
31182  *    Context: Kernel thread or interrupt context.
31183  */
31184 
31185 #define	DEVID_IF_KNOWN(d) "devid", DATA_TYPE_STRING, (d) ? (d) : "unknown"
31186 
31187 static void
31188 sd_ssc_ereport_post(sd_ssc_t *ssc, enum sd_driver_assessment drv_assess)
31189 {
31190 	int uscsi_path_instance = 0;
31191 	uchar_t	uscsi_pkt_reason;
31192 	uint32_t uscsi_pkt_state;
31193 	uint32_t uscsi_pkt_statistics;
31194 	uint64_t uscsi_ena;
31195 	uchar_t op_code;
31196 	uint8_t *sensep;
31197 	union scsi_cdb *cdbp;
31198 	uint_t cdblen = 0;
31199 	uint_t senlen = 0;
31200 	struct sd_lun *un;
31201 	dev_info_t *dip;
31202 	char *devid;
31203 	int ssc_invalid_flags = SSC_FLAGS_INVALID_PKT_REASON |
31204 	    SSC_FLAGS_INVALID_STATUS |
31205 	    SSC_FLAGS_INVALID_SENSE |
31206 	    SSC_FLAGS_INVALID_DATA;
31207 	char assessment[16];
31208 
31209 	ASSERT(ssc != NULL);
31210 	ASSERT(ssc->ssc_uscsi_cmd != NULL);
31211 	ASSERT(ssc->ssc_uscsi_info != NULL);
31212 
31213 	un = ssc->ssc_un;
31214 	ASSERT(un != NULL);
31215 
31216 	dip = un->un_sd->sd_dev;
31217 
31218 	/*
31219 	 * Get the devid:
31220 	 *	devid will only be passed to non-transport error reports.
31221 	 */
31222 	devid = DEVI(dip)->devi_devid_str;
31223 
31224 	/*
31225 	 * If we are syncing or dumping, the command will not be executed
31226 	 * so we bypass this situation.
31227 	 */
31228 	if (ddi_in_panic() || (un->un_state == SD_STATE_SUSPENDED) ||
31229 	    (un->un_state == SD_STATE_DUMPING))
31230 		return;
31231 
31232 	uscsi_pkt_reason = ssc->ssc_uscsi_info->ui_pkt_reason;
31233 	uscsi_path_instance = ssc->ssc_uscsi_cmd->uscsi_path_instance;
31234 	uscsi_pkt_state = ssc->ssc_uscsi_info->ui_pkt_state;
31235 	uscsi_pkt_statistics = ssc->ssc_uscsi_info->ui_pkt_statistics;
31236 	uscsi_ena = ssc->ssc_uscsi_info->ui_ena;
31237 
31238 	sensep = (uint8_t *)ssc->ssc_uscsi_cmd->uscsi_rqbuf;
31239 	cdbp = (union scsi_cdb *)ssc->ssc_uscsi_cmd->uscsi_cdb;
31240 
31241 	/* In rare cases, EG:DOORLOCK, the cdb could be NULL */
31242 	if (cdbp == NULL) {
31243 		scsi_log(SD_DEVINFO(un), sd_label, CE_WARN,
31244 		    "sd_ssc_ereport_post meet empty cdb\n");
31245 		return;
31246 	}
31247 
31248 	op_code = cdbp->scc_cmd;
31249 
31250 	cdblen = (int)ssc->ssc_uscsi_cmd->uscsi_cdblen;
31251 	senlen = (int)(ssc->ssc_uscsi_cmd->uscsi_rqlen -
31252 	    ssc->ssc_uscsi_cmd->uscsi_rqresid);
31253 
31254 	if (senlen > 0)
31255 		ASSERT(sensep != NULL);
31256 
31257 	/*
31258 	 * Initialize drv_assess to corresponding values.
31259 	 * SD_FM_DRV_FATAL will be mapped to "fail" or "fatal" depending
31260 	 * on the sense-key returned back.
31261 	 */
31262 	switch (drv_assess) {
31263 		case SD_FM_DRV_RECOVERY:
31264 			(void) sprintf(assessment, "%s", "recovered");
31265 			break;
31266 		case SD_FM_DRV_RETRY:
31267 			(void) sprintf(assessment, "%s", "retry");
31268 			break;
31269 		case SD_FM_DRV_NOTICE:
31270 			(void) sprintf(assessment, "%s", "info");
31271 			break;
31272 		case SD_FM_DRV_FATAL:
31273 		default:
31274 			(void) sprintf(assessment, "%s", "unknown");
31275 	}
31276 	/*
31277 	 * If drv_assess == SD_FM_DRV_RECOVERY, this should be a recovered
31278 	 * command, we will post ereport.io.scsi.cmd.disk.recovered.
31279 	 * driver-assessment will always be "recovered" here.
31280 	 */
31281 	if (drv_assess == SD_FM_DRV_RECOVERY) {
31282 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL,
31283 		    "cmd.disk.recovered", uscsi_ena, devid, NULL,
31284 		    DDI_NOSLEEP, NULL,
31285 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31286 		    DEVID_IF_KNOWN(devid),
31287 		    "driver-assessment", DATA_TYPE_STRING, assessment,
31288 		    "op-code", DATA_TYPE_UINT8, op_code,
31289 		    "cdb", DATA_TYPE_UINT8_ARRAY,
31290 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31291 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31292 		    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31293 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
31294 		    NULL);
31295 		return;
31296 	}
31297 
31298 	/*
31299 	 * If there is un-expected/un-decodable data, we should post
31300 	 * ereport.io.scsi.cmd.disk.dev.uderr.
31301 	 * driver-assessment will be set based on parameter drv_assess.
31302 	 * SSC_FLAGS_INVALID_SENSE - invalid sense data sent back.
31303 	 * SSC_FLAGS_INVALID_PKT_REASON - invalid pkt-reason encountered.
31304 	 * SSC_FLAGS_INVALID_STATUS - invalid stat-code encountered.
31305 	 * SSC_FLAGS_INVALID_DATA - invalid data sent back.
31306 	 */
31307 	if (ssc->ssc_flags & ssc_invalid_flags) {
31308 		if (ssc->ssc_flags & SSC_FLAGS_INVALID_SENSE) {
31309 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31310 			    NULL, "cmd.disk.dev.uderr", uscsi_ena, devid,
31311 			    NULL, DDI_NOSLEEP, NULL,
31312 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31313 			    DEVID_IF_KNOWN(devid),
31314 			    "driver-assessment", DATA_TYPE_STRING,
31315 			    drv_assess == SD_FM_DRV_FATAL ?
31316 			    "fail" : assessment,
31317 			    "op-code", DATA_TYPE_UINT8, op_code,
31318 			    "cdb", DATA_TYPE_UINT8_ARRAY,
31319 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31320 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31321 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31322 			    "pkt-stats", DATA_TYPE_UINT32,
31323 			    uscsi_pkt_statistics,
31324 			    "stat-code", DATA_TYPE_UINT8,
31325 			    ssc->ssc_uscsi_cmd->uscsi_status,
31326 			    "un-decode-info", DATA_TYPE_STRING,
31327 			    ssc->ssc_info,
31328 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
31329 			    senlen, sensep,
31330 			    NULL);
31331 		} else {
31332 			/*
31333 			 * For other type of invalid data, the
31334 			 * un-decode-value field would be empty because the
31335 			 * un-decodable content could be seen from upper
31336 			 * level payload or inside un-decode-info.
31337 			 */
31338 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31339 			    NULL,
31340 			    "cmd.disk.dev.uderr", uscsi_ena, devid,
31341 			    NULL, DDI_NOSLEEP, NULL,
31342 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31343 			    DEVID_IF_KNOWN(devid),
31344 			    "driver-assessment", DATA_TYPE_STRING,
31345 			    drv_assess == SD_FM_DRV_FATAL ?
31346 			    "fail" : assessment,
31347 			    "op-code", DATA_TYPE_UINT8, op_code,
31348 			    "cdb", DATA_TYPE_UINT8_ARRAY,
31349 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31350 			    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31351 			    "pkt-state", DATA_TYPE_UINT32, uscsi_pkt_state,
31352 			    "pkt-stats", DATA_TYPE_UINT32,
31353 			    uscsi_pkt_statistics,
31354 			    "stat-code", DATA_TYPE_UINT8,
31355 			    ssc->ssc_uscsi_cmd->uscsi_status,
31356 			    "un-decode-info", DATA_TYPE_STRING,
31357 			    ssc->ssc_info,
31358 			    "un-decode-value", DATA_TYPE_UINT8_ARRAY,
31359 			    0, NULL,
31360 			    NULL);
31361 		}
31362 		ssc->ssc_flags &= ~ssc_invalid_flags;
31363 		return;
31364 	}
31365 
31366 	if (uscsi_pkt_reason != CMD_CMPLT ||
31367 	    (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)) {
31368 		/*
31369 		 * pkt-reason != CMD_CMPLT or SSC_FLAGS_TRAN_ABORT was
31370 		 * set inside sd_start_cmds due to errors(bad packet or
31371 		 * fatal transport error), we should take it as a
31372 		 * transport error, so we post ereport.io.scsi.cmd.disk.tran.
31373 		 * driver-assessment will be set based on drv_assess.
31374 		 * We will set devid to NULL because it is a transport
31375 		 * error.
31376 		 */
31377 		if (ssc->ssc_flags & SSC_FLAGS_TRAN_ABORT)
31378 			ssc->ssc_flags &= ~SSC_FLAGS_TRAN_ABORT;
31379 
31380 		scsi_fm_ereport_post(un->un_sd, uscsi_path_instance, NULL,
31381 		    "cmd.disk.tran", uscsi_ena, NULL, NULL, DDI_NOSLEEP, NULL,
31382 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31383 		    DEVID_IF_KNOWN(devid),
31384 		    "driver-assessment", DATA_TYPE_STRING,
31385 		    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
31386 		    "op-code", DATA_TYPE_UINT8, op_code,
31387 		    "cdb", DATA_TYPE_UINT8_ARRAY,
31388 		    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31389 		    "pkt-reason", DATA_TYPE_UINT8, uscsi_pkt_reason,
31390 		    "pkt-state", DATA_TYPE_UINT8, uscsi_pkt_state,
31391 		    "pkt-stats", DATA_TYPE_UINT32, uscsi_pkt_statistics,
31392 		    NULL);
31393 	} else {
31394 		/*
31395 		 * If we got here, we have a completed command, and we need
31396 		 * to further investigate the sense data to see what kind
31397 		 * of ereport we should post.
31398 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.merr
31399 		 * if sense-key == 0x3.
31400 		 * Post ereport.io.scsi.cmd.disk.dev.rqs.derr otherwise.
31401 		 * driver-assessment will be set based on the parameter
31402 		 * drv_assess.
31403 		 */
31404 		if (senlen > 0) {
31405 			/*
31406 			 * Here we have sense data available.
31407 			 */
31408 			uint8_t sense_key;
31409 			sense_key = scsi_sense_key(sensep);
31410 			if (sense_key == 0x3) {
31411 				/*
31412 				 * sense-key == 0x3(medium error),
31413 				 * driver-assessment should be "fatal" if
31414 				 * drv_assess is SD_FM_DRV_FATAL.
31415 				 */
31416 				scsi_fm_ereport_post(un->un_sd,
31417 				    uscsi_path_instance, NULL,
31418 				    "cmd.disk.dev.rqs.merr",
31419 				    uscsi_ena, devid, NULL, DDI_NOSLEEP, NULL,
31420 				    FM_VERSION, DATA_TYPE_UINT8,
31421 				    FM_EREPORT_VERS0,
31422 				    DEVID_IF_KNOWN(devid),
31423 				    "driver-assessment",
31424 				    DATA_TYPE_STRING,
31425 				    drv_assess == SD_FM_DRV_FATAL ?
31426 				    "fatal" : assessment,
31427 				    "op-code",
31428 				    DATA_TYPE_UINT8, op_code,
31429 				    "cdb",
31430 				    DATA_TYPE_UINT8_ARRAY, cdblen,
31431 				    ssc->ssc_uscsi_cmd->uscsi_cdb,
31432 				    "pkt-reason",
31433 				    DATA_TYPE_UINT8, uscsi_pkt_reason,
31434 				    "pkt-state",
31435 				    DATA_TYPE_UINT8, uscsi_pkt_state,
31436 				    "pkt-stats",
31437 				    DATA_TYPE_UINT32,
31438 				    uscsi_pkt_statistics,
31439 				    "stat-code",
31440 				    DATA_TYPE_UINT8,
31441 				    ssc->ssc_uscsi_cmd->uscsi_status,
31442 				    "key",
31443 				    DATA_TYPE_UINT8,
31444 				    scsi_sense_key(sensep),
31445 				    "asc",
31446 				    DATA_TYPE_UINT8,
31447 				    scsi_sense_asc(sensep),
31448 				    "ascq",
31449 				    DATA_TYPE_UINT8,
31450 				    scsi_sense_ascq(sensep),
31451 				    "sense-data",
31452 				    DATA_TYPE_UINT8_ARRAY,
31453 				    senlen, sensep,
31454 				    "lba",
31455 				    DATA_TYPE_UINT64,
31456 				    ssc->ssc_uscsi_info->ui_lba,
31457 				    NULL);
31458 				} else {
31459 					/*
31460 					 * if sense-key == 0x4(hardware
31461 					 * error), driver-assessment should
31462 					 * be "fatal" if drv_assess is
31463 					 * SD_FM_DRV_FATAL.
31464 					 */
31465 					scsi_fm_ereport_post(un->un_sd,
31466 					    uscsi_path_instance, NULL,
31467 					    "cmd.disk.dev.rqs.derr",
31468 					    uscsi_ena, devid,
31469 					    NULL, DDI_NOSLEEP, NULL,
31470 					    FM_VERSION,
31471 					    DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31472 					    DEVID_IF_KNOWN(devid),
31473 					    "driver-assessment",
31474 					    DATA_TYPE_STRING,
31475 					    drv_assess == SD_FM_DRV_FATAL ?
31476 					    (sense_key == 0x4 ?
31477 					    "fatal" : "fail") : assessment,
31478 					    "op-code",
31479 					    DATA_TYPE_UINT8, op_code,
31480 					    "cdb",
31481 					    DATA_TYPE_UINT8_ARRAY, cdblen,
31482 					    ssc->ssc_uscsi_cmd->uscsi_cdb,
31483 					    "pkt-reason",
31484 					    DATA_TYPE_UINT8, uscsi_pkt_reason,
31485 					    "pkt-state",
31486 					    DATA_TYPE_UINT8, uscsi_pkt_state,
31487 					    "pkt-stats",
31488 					    DATA_TYPE_UINT32,
31489 					    uscsi_pkt_statistics,
31490 					    "stat-code",
31491 					    DATA_TYPE_UINT8,
31492 					    ssc->ssc_uscsi_cmd->uscsi_status,
31493 					    "key",
31494 					    DATA_TYPE_UINT8,
31495 					    scsi_sense_key(sensep),
31496 					    "asc",
31497 					    DATA_TYPE_UINT8,
31498 					    scsi_sense_asc(sensep),
31499 					    "ascq",
31500 					    DATA_TYPE_UINT8,
31501 					    scsi_sense_ascq(sensep),
31502 					    "sense-data",
31503 					    DATA_TYPE_UINT8_ARRAY,
31504 					    senlen, sensep,
31505 					    NULL);
31506 				}
31507 		} else {
31508 			/*
31509 			 * For stat_code == STATUS_GOOD, this is not a
31510 			 * hardware error.
31511 			 */
31512 			if (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD)
31513 				return;
31514 
31515 			/*
31516 			 * Post ereport.io.scsi.cmd.disk.dev.serr if we got the
31517 			 * stat-code but with sense data unavailable.
31518 			 * driver-assessment will be set based on parameter
31519 			 * drv_assess.
31520 			 */
31521 			scsi_fm_ereport_post(un->un_sd, uscsi_path_instance,
31522 			    NULL,
31523 			    "cmd.disk.dev.serr", uscsi_ena,
31524 			    devid, NULL, DDI_NOSLEEP, NULL,
31525 			    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0,
31526 			    DEVID_IF_KNOWN(devid),
31527 			    "driver-assessment", DATA_TYPE_STRING,
31528 			    drv_assess == SD_FM_DRV_FATAL ? "fail" : assessment,
31529 			    "op-code", DATA_TYPE_UINT8, op_code,
31530 			    "cdb",
31531 			    DATA_TYPE_UINT8_ARRAY,
31532 			    cdblen, ssc->ssc_uscsi_cmd->uscsi_cdb,
31533 			    "pkt-reason",
31534 			    DATA_TYPE_UINT8, uscsi_pkt_reason,
31535 			    "pkt-state",
31536 			    DATA_TYPE_UINT8, uscsi_pkt_state,
31537 			    "pkt-stats",
31538 			    DATA_TYPE_UINT32, uscsi_pkt_statistics,
31539 			    "stat-code",
31540 			    DATA_TYPE_UINT8,
31541 			    ssc->ssc_uscsi_cmd->uscsi_status,
31542 			    NULL);
31543 		}
31544 	}
31545 }
31546 
31547 /*
31548  *     Function: sd_ssc_extract_info
31549  *
31550  * Description: Extract information available to help generate ereport.
31551  *
31552  *     Context: Kernel thread or interrupt context.
31553  */
31554 static void
31555 sd_ssc_extract_info(sd_ssc_t *ssc, struct sd_lun *un, struct scsi_pkt *pktp,
31556     struct buf *bp, struct sd_xbuf *xp)
31557 {
31558 	size_t senlen = 0;
31559 	union scsi_cdb *cdbp;
31560 	int path_instance;
31561 	/*
31562 	 * Need scsi_cdb_size array to determine the cdb length.
31563 	 */
31564 	extern uchar_t	scsi_cdb_size[];
31565 
31566 	ASSERT(un != NULL);
31567 	ASSERT(pktp != NULL);
31568 	ASSERT(bp != NULL);
31569 	ASSERT(xp != NULL);
31570 	ASSERT(ssc != NULL);
31571 	ASSERT(mutex_owned(SD_MUTEX(un)));
31572 
31573 	/*
31574 	 * Transfer the cdb buffer pointer here.
31575 	 */
31576 	cdbp = (union scsi_cdb *)pktp->pkt_cdbp;
31577 
31578 	ssc->ssc_uscsi_cmd->uscsi_cdblen = scsi_cdb_size[GETGROUP(cdbp)];
31579 	ssc->ssc_uscsi_cmd->uscsi_cdb = (caddr_t)cdbp;
31580 
31581 	/*
31582 	 * Transfer the sense data buffer pointer if sense data is available,
31583 	 * calculate the sense data length first.
31584 	 */
31585 	if ((xp->xb_sense_state & STATE_XARQ_DONE) ||
31586 	    (xp->xb_sense_state & STATE_ARQ_DONE)) {
31587 		/*
31588 		 * For arq case, we will enter here.
31589 		 */
31590 		if (xp->xb_sense_state & STATE_XARQ_DONE) {
31591 			senlen = MAX_SENSE_LENGTH - xp->xb_sense_resid;
31592 		} else {
31593 			senlen = SENSE_LENGTH;
31594 		}
31595 	} else {
31596 		/*
31597 		 * For non-arq case, we will enter this branch.
31598 		 */
31599 		if (SD_GET_PKT_STATUS(pktp) == STATUS_CHECK &&
31600 		    (xp->xb_sense_state & STATE_XFERRED_DATA)) {
31601 			senlen = SENSE_LENGTH - xp->xb_sense_resid;
31602 		}
31603 
31604 	}
31605 
31606 	ssc->ssc_uscsi_cmd->uscsi_rqlen = (senlen & 0xff);
31607 	ssc->ssc_uscsi_cmd->uscsi_rqresid = 0;
31608 	ssc->ssc_uscsi_cmd->uscsi_rqbuf = (caddr_t)xp->xb_sense_data;
31609 
31610 	ssc->ssc_uscsi_cmd->uscsi_status = ((*(pktp)->pkt_scbp) & STATUS_MASK);
31611 
31612 	/*
31613 	 * Only transfer path_instance when scsi_pkt was properly allocated.
31614 	 */
31615 	path_instance = pktp->pkt_path_instance;
31616 	if (scsi_pkt_allocated_correctly(pktp) && path_instance)
31617 		ssc->ssc_uscsi_cmd->uscsi_path_instance = path_instance;
31618 	else
31619 		ssc->ssc_uscsi_cmd->uscsi_path_instance = 0;
31620 
31621 	/*
31622 	 * Copy in the other fields we may need when posting ereport.
31623 	 */
31624 	ssc->ssc_uscsi_info->ui_pkt_reason = pktp->pkt_reason;
31625 	ssc->ssc_uscsi_info->ui_pkt_state = pktp->pkt_state;
31626 	ssc->ssc_uscsi_info->ui_pkt_statistics = pktp->pkt_statistics;
31627 	ssc->ssc_uscsi_info->ui_lba = (uint64_t)SD_GET_BLKNO(bp);
31628 
31629 	/*
31630 	 * For partially read/write command, we will not create ena
31631 	 * in case of a successful command be reconized as recovered.
31632 	 */
31633 	if ((pktp->pkt_reason == CMD_CMPLT) &&
31634 	    (ssc->ssc_uscsi_cmd->uscsi_status == STATUS_GOOD) &&
31635 	    (senlen == 0)) {
31636 		return;
31637 	}
31638 
31639 	/*
31640 	 * To associate ereports of a single command execution flow, we
31641 	 * need a shared ena for a specific command.
31642 	 */
31643 	if (xp->xb_ena == 0)
31644 		xp->xb_ena = fm_ena_generate(0, FM_ENA_FMT1);
31645 	ssc->ssc_uscsi_info->ui_ena = xp->xb_ena;
31646 }
31647 
31648 
31649 /*
31650  *     Function: sd_check_solid_state
31651  *
31652  * Description: Query the optional INQUIRY VPD page 0xb1. If the device
31653  *              supports VPD page 0xb1, sd examines the MEDIUM ROTATION
31654  *              RATE. If the MEDIUM ROTATION RATE is 1, sd assumes the
31655  *              device is a solid state drive.
31656  *
31657  *     Context: Kernel thread or interrupt context.
31658  */
31659 
31660 static void
31661 sd_check_solid_state(sd_ssc_t *ssc)
31662 {
31663 	int		rval		= 0;
31664 	uchar_t		*inqb1		= NULL;
31665 	size_t		inqb1_len	= MAX_INQUIRY_SIZE;
31666 	size_t		inqb1_resid	= 0;
31667 	struct sd_lun	*un;
31668 
31669 	ASSERT(ssc != NULL);
31670 	un = ssc->ssc_un;
31671 	ASSERT(un != NULL);
31672 	ASSERT(!mutex_owned(SD_MUTEX(un)));
31673 
31674 	mutex_enter(SD_MUTEX(un));
31675 	un->un_f_is_solid_state = FALSE;
31676 
31677 	if (ISCD(un)) {
31678 		mutex_exit(SD_MUTEX(un));
31679 		return;
31680 	}
31681 
31682 	if (sd_check_vpd_page_support(ssc) == 0 &&
31683 	    un->un_vpd_page_mask & SD_VPD_DEV_CHARACTER_PG) {
31684 		mutex_exit(SD_MUTEX(un));
31685 		/* collect page b1 data */
31686 		inqb1 = kmem_zalloc(inqb1_len, KM_SLEEP);
31687 
31688 		rval = sd_send_scsi_INQUIRY(ssc, inqb1, inqb1_len,
31689 		    0x01, 0xB1, &inqb1_resid);
31690 
31691 		if (rval == 0 && (inqb1_len - inqb1_resid > 5)) {
31692 			SD_TRACE(SD_LOG_COMMON, un,
31693 			    "sd_check_solid_state: \
31694 			    successfully get VPD page: %x \
31695 			    PAGE LENGTH: %x BYTE 4: %x \
31696 			    BYTE 5: %x", inqb1[1], inqb1[3], inqb1[4],
31697 			    inqb1[5]);
31698 
31699 			mutex_enter(SD_MUTEX(un));
31700 			/*
31701 			 * Check the MEDIUM ROTATION RATE. If it is set
31702 			 * to 1, the device is a solid state drive.
31703 			 */
31704 			if (inqb1[4] == 0 && inqb1[5] == 1) {
31705 				un->un_f_is_solid_state = TRUE;
31706 				/* solid state drives don't need disksort */
31707 				un->un_f_disksort_disabled = TRUE;
31708 			}
31709 			mutex_exit(SD_MUTEX(un));
31710 		} else if (rval != 0) {
31711 			sd_ssc_assessment(ssc, SD_FMT_IGNORE);
31712 		}
31713 
31714 		kmem_free(inqb1, inqb1_len);
31715 	} else {
31716 		mutex_exit(SD_MUTEX(un));
31717 	}
31718 }
31719 
31720 /*
31721  *	Function: sd_check_emulation_mode
31722  *
31723  *   Description: Check whether the SSD is at emulation mode
31724  *		  by issuing READ_CAPACITY_16 to see whether
31725  *		  we can get physical block size of the drive.
31726  *
31727  *	 Context: Kernel thread or interrupt context.
31728  */
31729 
31730 static void
31731 sd_check_emulation_mode(sd_ssc_t *ssc)
31732 {
31733 	int		rval = 0;
31734 	uint64_t	capacity;
31735 	uint_t		lbasize;
31736 	uint_t		pbsize;
31737 	int		i;
31738 	int		devid_len;
31739 	struct sd_lun	*un;
31740 
31741 	ASSERT(ssc != NULL);
31742 	un = ssc->ssc_un;
31743 	ASSERT(un != NULL);
31744 	ASSERT(!mutex_owned(SD_MUTEX(un)));
31745 
31746 	mutex_enter(SD_MUTEX(un));
31747 	if (ISCD(un)) {
31748 		mutex_exit(SD_MUTEX(un));
31749 		return;
31750 	}
31751 
31752 	if (un->un_f_descr_format_supported) {
31753 		mutex_exit(SD_MUTEX(un));
31754 		rval = sd_send_scsi_READ_CAPACITY_16(ssc, &capacity, &lbasize,
31755 		    &pbsize, SD_PATH_DIRECT);
31756 		mutex_enter(SD_MUTEX(un));
31757 
31758 		if (rval != 0) {
31759 			un->un_phy_blocksize = DEV_BSIZE;
31760 		} else {
31761 			if (!ISP2(pbsize % DEV_BSIZE) || pbsize == 0) {
31762 				un->un_phy_blocksize = DEV_BSIZE;
31763 			} else if (pbsize > un->un_phy_blocksize) {
31764 				/*
31765 				 * Don't reset the physical blocksize
31766 				 * unless we've detected a larger value.
31767 				 */
31768 				un->un_phy_blocksize = pbsize;
31769 			}
31770 		}
31771 	}
31772 
31773 	for (i = 0; i < sd_flash_dev_table_size; i++) {
31774 		devid_len = (int)strlen(sd_flash_dev_table[i]);
31775 		if (sd_sdconf_id_match(un, sd_flash_dev_table[i], devid_len)
31776 		    == SD_SUCCESS) {
31777 			un->un_phy_blocksize = SSD_SECSIZE;
31778 			if (un->un_f_is_solid_state &&
31779 			    un->un_phy_blocksize != un->un_tgt_blocksize)
31780 				un->un_f_enable_rmw = TRUE;
31781 		}
31782 	}
31783 
31784 	mutex_exit(SD_MUTEX(un));
31785 }
31786