xref: /illumos-gate/usr/src/uts/common/io/pts.c (revision c94be9439c4f0773ef60e2cec21d548359cfea20)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
26 /*	  All Rights Reserved	*/
27 
28 /*
29  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
30  */
31 
32 /*
33  * Pseudo Terminal Slave Driver.
34  *
35  * The pseudo-tty subsystem simulates a terminal connection, where the master
36  * side represents the terminal and the slave represents the user process's
37  * special device end point. The master device is set up as a cloned device
38  * where its major device number is the major for the clone device and its minor
39  * device number is the major for the ptm driver. There are no nodes in the file
40  * system for master devices. The master pseudo driver is opened using the
41  * open(2) system call with /dev/ptmx as the device parameter.  The clone open
42  * finds the next available minor device for the ptm major device.
43  *
44  * A master device is available only if it and its corresponding slave device
45  * are not already open. When the master device is opened, the corresponding
46  * slave device is automatically locked out. Only one open is allowed on a
47  * master device.  Multiple opens are allowed on the slave device.  After both
48  * the master and slave have been opened, the user has two file descriptors
49  * which are the end points of a full duplex connection composed of two streams
50  * which are automatically connected at the master and slave drivers. The user
51  * may then push modules onto either side of the stream pair.
52  *
53  * The master and slave drivers pass all messages to their adjacent queues.
54  * Only the M_FLUSH needs some processing.  Because the read queue of one side
55  * is connected to the write queue of the other, the FLUSHR flag is changed to
56  * the FLUSHW flag and vice versa. When the master device is closed an M_HANGUP
57  * message is sent to the slave device which will render the device
58  * unusable. The process on the slave side gets the EIO when attempting to write
59  * on that stream but it will be able to read any data remaining on the stream
60  * head read queue.  When all the data has been read, read() returns 0
61  * indicating that the stream can no longer be used.  On the last close of the
62  * slave device, a 0-length message is sent to the master device. When the
63  * application on the master side issues a read() or getmsg() and 0 is returned,
64  * the user of the master device decides whether to issue a close() that
65  * dismantles the pseudo-terminal subsystem. If the master device is not closed,
66  * the pseudo-tty subsystem will be available to another user to open the slave
67  * device.
68  *
69  * Synchronization:
70  *
71  *   All global data synchronization between ptm/pts is done via global
72  *   ptms_lock mutex which is initialized at system boot time from
73  *   ptms_initspace (called from space.c).
74  *
75  *   Individual fields of pt_ttys structure (except ptm_rdq, pts_rdq and
76  *   pt_nullmsg) are protected by pt_ttys.pt_lock mutex.
77  *
78  *   PT_ENTER_READ/PT_ENTER_WRITE are reference counter based read-write locks
79  *   which allow reader locks to be reacquired by the same thread (usual
80  *   reader/writer locks can't be used for that purpose since it is illegal for
81  *   a thread to acquire a lock it already holds, even as a reader). The sole
82  *   purpose of these macros is to guarantee that the peer queue will not
83  *   disappear (due to closing peer) while it is used. It is safe to use
84  *   PT_ENTER_READ/PT_EXIT_READ brackets across calls like putq/putnext (since
85  *   they are not real locks but reference counts).
86  *
87  *   PT_ENTER_WRITE/PT_EXIT_WRITE brackets are used ONLY in master/slave
88  *   open/close paths to modify ptm_rdq and pts_rdq fields. These fields should
89  *   be set to appropriate queues *after* qprocson() is called during open (to
90  *   prevent peer from accessing the queue with incomplete plumbing) and set to
91  *   NULL before qprocsoff() is called during close.
92  *
93  *   The pt_nullmsg field is only used in open/close routines and it is also
94  *   protected by PT_ENTER_WRITE/PT_EXIT_WRITE brackets to avoid extra mutex
95  *   holds.
96  *
97  * Lock Ordering:
98  *
99  *   If both ptms_lock and per-pty lock should be held, ptms_lock should always
100  *   be entered first, followed by per-pty lock.
101  *
102  * See ptms.h, ptm.c and ptms_conf.c fore more information.
103  *
104  */
105 
106 #include <sys/types.h>
107 #include <sys/param.h>
108 #include <sys/sysmacros.h>
109 #include <sys/stream.h>
110 #include <sys/stropts.h>
111 #include <sys/strsubr.h>
112 #include <sys/stat.h>
113 #include <sys/errno.h>
114 #include <sys/debug.h>
115 #include <sys/cmn_err.h>
116 #include <sys/ptms.h>
117 #include <sys/systm.h>
118 #include <sys/modctl.h>
119 #include <sys/conf.h>
120 #include <sys/ddi.h>
121 #include <sys/sunddi.h>
122 #include <sys/cred.h>
123 #include <sys/zone.h>
124 
125 #ifdef DEBUG
126 int pts_debug = 0;
127 #define	DBG(a)	 if (pts_debug) cmn_err(CE_NOTE, a)
128 #else
129 #define	DBG(a)
130 #endif
131 
132 static int ptsopen(queue_t *, dev_t *, int, int, cred_t *);
133 static int ptsclose(queue_t *, int, cred_t *);
134 static int ptswput(queue_t *, mblk_t *);
135 static int ptsrsrv(queue_t *);
136 static int ptswsrv(queue_t *);
137 
138 /*
139  * Slave Stream Pseudo Terminal Module: stream data structure definitions
140  */
141 static struct module_info pts_info = {
142 	0xface,
143 	"pts",
144 	0,
145 	_TTY_BUFSIZ,
146 	_TTY_BUFSIZ,
147 	128
148 };
149 
150 static struct qinit ptsrint = {
151 	NULL,
152 	ptsrsrv,
153 	ptsopen,
154 	ptsclose,
155 	NULL,
156 	&pts_info,
157 	NULL
158 };
159 
160 static struct qinit ptswint = {
161 	ptswput,
162 	ptswsrv,
163 	NULL,
164 	NULL,
165 	NULL,
166 	&pts_info,
167 	NULL
168 };
169 
170 static struct streamtab ptsinfo = {
171 	&ptsrint,
172 	&ptswint,
173 	NULL,
174 	NULL
175 };
176 
177 static int pts_devinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
178 static int pts_attach(dev_info_t *, ddi_attach_cmd_t);
179 static int pts_detach(dev_info_t *, ddi_detach_cmd_t);
180 
181 #define	PTS_CONF_FLAG	(D_NEW | D_MP)
182 
183 /*
184  * this will define (struct cb_ops cb_pts_ops) and (struct dev_ops pts_ops)
185  */
186 DDI_DEFINE_STREAM_OPS(pts_ops, nulldev, nulldev,	\
187     pts_attach, pts_detach, nodev,			\
188     pts_devinfo, PTS_CONF_FLAG, &ptsinfo, ddi_quiesce_not_supported);
189 
190 /*
191  * Module linkage information for the kernel.
192  */
193 
194 static struct modldrv modldrv = {
195 	&mod_driverops, /* Type of module.  This one is a pseudo driver */
196 	"Slave Stream Pseudo Terminal driver 'pts'",
197 	&pts_ops,	/* driver ops */
198 };
199 
200 static struct modlinkage modlinkage = {
201 	MODREV_1,
202 	&modldrv,
203 	NULL
204 };
205 
206 int
207 _init(void)
208 {
209 	int rc;
210 
211 	if ((rc = mod_install(&modlinkage)) == 0)
212 		ptms_init();
213 	return (rc);
214 }
215 
216 
217 int
218 _fini(void)
219 {
220 	return (mod_remove(&modlinkage));
221 }
222 
223 int
224 _info(struct modinfo *modinfop)
225 {
226 	return (mod_info(&modlinkage, modinfop));
227 }
228 
229 static int
230 pts_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
231 {
232 	if (cmd != DDI_ATTACH)
233 		return (DDI_FAILURE);
234 
235 	mutex_enter(&ptms_lock);
236 	pts_dip = devi;
237 	mutex_exit(&ptms_lock);
238 
239 	return (DDI_SUCCESS);
240 }
241 
242 /*ARGSUSED*/
243 static int
244 pts_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
245 {
246 	if (cmd != DDI_DETACH)
247 		return (DDI_FAILURE);
248 
249 	/*
250 	 * For now, pts cannot be detached.
251 	 */
252 	return (DDI_FAILURE);
253 }
254 
255 /*ARGSUSED*/
256 static int
257 pts_devinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
258     void **result)
259 {
260 	int error;
261 
262 	switch (infocmd) {
263 	case DDI_INFO_DEVT2DEVINFO:
264 		if (pts_dip == NULL) {
265 			error = DDI_FAILURE;
266 		} else {
267 			*result = (void *)pts_dip;
268 			error = DDI_SUCCESS;
269 		}
270 		break;
271 	case DDI_INFO_DEVT2INSTANCE:
272 		*result = (void *)0;
273 		error = DDI_SUCCESS;
274 		break;
275 	default:
276 		error = DDI_FAILURE;
277 	}
278 	return (error);
279 }
280 
281 /* ARGSUSED */
282 /*
283  * Open the slave device. Reject a clone open and do not allow the
284  * driver to be pushed. If the slave/master pair is locked or if
285  * the master is not open, return EACCESS.
286  * Upon success, store the write queue pointer in private data and
287  * set the PTSOPEN bit in the pt_state field.
288  */
289 static int
290 ptsopen(
291 	queue_t *rqp,		/* pointer to the read side queue */
292 	dev_t   *devp,		/* pointer to stream tail's dev */
293 	int	oflag,		/* the user open(2) supplied flags */
294 	int	sflag,		/* open state flag */
295 	cred_t  *credp)		/* credentials */
296 {
297 	struct pt_ttys	*ptsp;
298 	mblk_t		*mp;
299 	mblk_t		*mop;	/* ptr to a setopts message block */
300 	minor_t		dminor = getminor(*devp);
301 	struct stroptions *sop;
302 
303 	DDBG("entering ptsopen(%d)", dminor);
304 
305 	if (sflag != 0) {
306 		return (EINVAL);
307 	}
308 
309 	mutex_enter(&ptms_lock);
310 	ptsp = ptms_minor2ptty(dminor);
311 
312 	if (ptsp == NULL) {
313 		mutex_exit(&ptms_lock);
314 		return (ENXIO);
315 	}
316 	mutex_enter(&ptsp->pt_lock);
317 
318 	/*
319 	 * Prevent opens from zones other than the one blessed by ptm.  We
320 	 * can't even allow the global zone to open all pts's, as it would
321 	 * otherwise inproperly be able to claim pts's already opened by zones.
322 	 */
323 	if (ptsp->pt_zoneid != getzoneid()) {
324 		mutex_exit(&ptsp->pt_lock);
325 		mutex_exit(&ptms_lock);
326 		return (EPERM);
327 	}
328 
329 	/*
330 	 * Allow reopen of this device.
331 	 */
332 	if (rqp->q_ptr != NULL) {
333 		ASSERT(rqp->q_ptr == ptsp);
334 		ASSERT(ptsp->pts_rdq == rqp);
335 		mutex_exit(&ptsp->pt_lock);
336 		mutex_exit(&ptms_lock);
337 		return (0);
338 	}
339 
340 	DDBGP("ptsopen: p = %p\n", (uintptr_t)ptsp);
341 	DDBG("ptsopen: state = %x\n", ptsp->pt_state);
342 
343 	ASSERT(ptsp->pt_minor == dminor);
344 
345 	if ((ptsp->pt_state & PTLOCK) || !(ptsp->pt_state & PTMOPEN)) {
346 		mutex_exit(&ptsp->pt_lock);
347 		mutex_exit(&ptms_lock);
348 		return (EAGAIN);
349 	}
350 
351 	/*
352 	 * if already open, simply return...
353 	 */
354 	if (ptsp->pt_state & PTSOPEN) {
355 		ASSERT(rqp->q_ptr == ptsp);
356 		ASSERT(ptsp->pts_rdq == rqp);
357 		mutex_exit(&ptsp->pt_lock);
358 		mutex_exit(&ptms_lock);
359 		return (0);
360 	}
361 
362 	/*
363 	 * Allocate message block for setting stream head options.
364 	 */
365 	if ((mop = allocb(sizeof (struct stroptions), BPRI_MED)) == NULL) {
366 		mutex_exit(&ptsp->pt_lock);
367 		mutex_exit(&ptms_lock);
368 		return (ENOMEM);
369 	}
370 
371 	/*
372 	 * Slave should send zero-length message to a master when it is
373 	 * closing. If memory is low at that time, master will not detect slave
374 	 * closes, this pty will not be deallocated. So, preallocate this
375 	 * zero-length message block early.
376 	 */
377 	if ((mp = allocb(0, BPRI_MED)) == NULL) {
378 		mutex_exit(&ptsp->pt_lock);
379 		mutex_exit(&ptms_lock);
380 		freemsg(mop);
381 		return (ENOMEM);
382 	}
383 
384 	ptsp->pt_state |= PTSOPEN;
385 
386 	WR(rqp)->q_ptr = rqp->q_ptr = ptsp;
387 
388 	mutex_exit(&ptsp->pt_lock);
389 	mutex_exit(&ptms_lock);
390 
391 	if (ptsp->pt_state & PTSTTY)
392 		STREAM(rqp)->sd_flag |= STRXPG4TTY;
393 
394 	qprocson(rqp);
395 
396 	/*
397 	 * After qprocson pts driver is fully plumbed into the stream and can
398 	 * send/receive messages. Setting pts_rdq will allow master side to send
399 	 * messages to the slave. This setting can't occur before qprocson() is
400 	 * finished because slave is not ready to process them.
401 	 */
402 	PT_ENTER_WRITE(ptsp);
403 	ptsp->pts_rdq = rqp;
404 	ASSERT(ptsp->pt_nullmsg == NULL);
405 	ptsp->pt_nullmsg = mp;
406 	PT_EXIT_WRITE(ptsp);
407 
408 	/*
409 	 * set up hi/lo water marks on stream head read queue
410 	 * and add controlling tty if not set
411 	 */
412 
413 	mop->b_datap->db_type = M_SETOPTS;
414 	mop->b_wptr += sizeof (struct stroptions);
415 	sop = (struct stroptions *)mop->b_rptr;
416 	sop->so_flags = SO_HIWAT | SO_LOWAT | SO_ISTTY;
417 	sop->so_hiwat = _TTY_BUFSIZ;
418 	sop->so_lowat = 256;
419 	putnext(rqp, mop);
420 
421 	return (0);
422 }
423 
424 /*
425  * Find the address to private data identifying the slave's write
426  * queue. Send a 0-length msg up the slave's read queue to designate
427  * the master is closing. Uattach the master from the slave by nulling
428  * out master's write queue field in private data.
429  */
430 /*ARGSUSED1*/
431 static int
432 ptsclose(queue_t *rqp, int flag, cred_t *credp)
433 {
434 	struct pt_ttys	*ptsp;
435 	queue_t *wqp;
436 	mblk_t	*mp;
437 	mblk_t	*bp;
438 
439 	/*
440 	 * q_ptr should never be NULL in the close routine and it is checked in
441 	 * DEBUG kernel by ASSERT. For non-DEBUG kernel the attempt is made to
442 	 * behave gracefully.
443 	 */
444 	ASSERT(rqp->q_ptr != NULL);
445 	if (rqp->q_ptr == NULL) {
446 		qprocsoff(rqp);
447 		return (0);
448 	}
449 
450 	ptsp = (struct pt_ttys *)rqp->q_ptr;
451 
452 	/*
453 	 * Slave is going to close and doesn't want any new  messages coming
454 	 * from the master side, so set pts_rdq to NULL. This should be done
455 	 * before call to qprocsoff() since slave can't process additional
456 	 * messages from the master after qprocsoff is called.
457 	 */
458 	PT_ENTER_WRITE(ptsp);
459 	mp = ptsp->pt_nullmsg;
460 	ptsp->pt_nullmsg = NULL;
461 	ptsp->pts_rdq = NULL;
462 	PT_EXIT_WRITE(ptsp);
463 
464 	/*
465 	 * Drain the ouput
466 	 */
467 	wqp = WR(rqp);
468 	PT_ENTER_READ(ptsp);
469 	while ((bp = getq(wqp)) != NULL) {
470 		if (ptsp->ptm_rdq) {
471 			putnext(ptsp->ptm_rdq, bp);
472 		} else if (bp->b_datap->db_type == M_IOCTL) {
473 			bp->b_datap->db_type = M_IOCNAK;
474 			freemsg(bp->b_cont);
475 			bp->b_cont = NULL;
476 			qreply(wqp, bp);
477 		} else {
478 			freemsg(bp);
479 		}
480 	}
481 	/*
482 	 * qenable master side write queue so that it can flush
483 	 * its messages as slaves's read queue is going away
484 	 */
485 	if (ptsp->ptm_rdq) {
486 		if (mp)
487 			putnext(ptsp->ptm_rdq, mp);
488 		else
489 			qenable(WR(ptsp->ptm_rdq));
490 	} else
491 		freemsg(mp);
492 	PT_EXIT_READ(ptsp);
493 
494 	qprocsoff(rqp);
495 
496 	rqp->q_ptr = NULL;
497 	WR(rqp)->q_ptr = NULL;
498 
499 	ptms_close(ptsp, PTSOPEN | PTSTTY);
500 
501 	return (0);
502 }
503 
504 
505 /*
506  * The wput procedure will only handle flush messages.
507  * All other messages are queued and the write side
508  * service procedure sends them off to the master side.
509  */
510 static int
511 ptswput(queue_t *qp, mblk_t *mp)
512 {
513 	struct pt_ttys *ptsp;
514 	struct iocblk  *iocp;
515 	unsigned char type = mp->b_datap->db_type;
516 
517 	DBG(("entering ptswput\n"));
518 	ASSERT(qp->q_ptr);
519 
520 	ptsp = (struct pt_ttys *)qp->q_ptr;
521 	PT_ENTER_READ(ptsp);
522 	if (ptsp->ptm_rdq == NULL) {
523 		DBG(("in write put proc but no master\n"));
524 		/*
525 		 * NAK ioctl as slave side read queue is gone.
526 		 * Or else free the message.
527 		 */
528 		if (mp->b_datap->db_type == M_IOCTL) {
529 			mp->b_datap->db_type = M_IOCNAK;
530 			freemsg(mp->b_cont);
531 			mp->b_cont = NULL;
532 			qreply(qp, mp);
533 		} else
534 			freemsg(mp);
535 		PT_EXIT_READ(ptsp);
536 		return (0);
537 	}
538 
539 	if (type >= QPCTL) {
540 		switch (type) {
541 
542 		/*
543 		 * if write queue request, flush slave's write
544 		 * queue and send FLUSHR to ptm. If read queue
545 		 * request, send FLUSHR to ptm.
546 		 */
547 		case M_FLUSH:
548 		DBG(("pts got flush request\n"));
549 		if (*mp->b_rptr & FLUSHW) {
550 
551 			DBG(("got FLUSHW, flush pts write Q\n"));
552 			if (*mp->b_rptr & FLUSHBAND)
553 				/*
554 				 * if it is a FLUSHBAND, do flushband.
555 				 */
556 				flushband(qp, *(mp->b_rptr + 1), FLUSHDATA);
557 			else
558 				flushq(qp, FLUSHDATA);
559 
560 			*mp->b_rptr &= ~FLUSHW;
561 			if ((*mp->b_rptr & FLUSHR) == 0) {
562 				/*
563 				 * FLUSHW only. Change to FLUSHR and putnext
564 				 * to ptm, then we are done.
565 				 */
566 				*mp->b_rptr |= FLUSHR;
567 				if (ptsp->ptm_rdq)
568 					putnext(ptsp->ptm_rdq, mp);
569 				break;
570 			} else {
571 				mblk_t *nmp;
572 
573 				/* It is a FLUSHRW. Duplicate the mblk */
574 				nmp = copyb(mp);
575 				if (nmp) {
576 					/*
577 					 * Change FLUSHW to FLUSHR before
578 					 * putnext to ptm.
579 					 */
580 					DBG(("putnext nmp(FLUSHR) to ptm\n"));
581 					*nmp->b_rptr |= FLUSHR;
582 					if (ptsp->ptm_rdq)
583 						putnext(ptsp->ptm_rdq, nmp);
584 				}
585 			}
586 		}
587 		/*
588 		 * Since the packet module will toss any
589 		 * M_FLUSHES sent to the master's stream head
590 		 * read queue, we simply turn it around here.
591 		 */
592 		if (*mp->b_rptr & FLUSHR) {
593 			ASSERT(RD(qp)->q_first == NULL);
594 			DBG(("qreply(qp) turning FLUSHR around\n"));
595 			qreply(qp, mp);
596 		} else {
597 			freemsg(mp);
598 		}
599 		break;
600 
601 		case M_READ:
602 		/* Caused by ldterm - can not pass to master */
603 		freemsg(mp);
604 		break;
605 
606 		default:
607 		if (ptsp->ptm_rdq)
608 			putnext(ptsp->ptm_rdq, mp);
609 		break;
610 		}
611 		PT_EXIT_READ(ptsp);
612 		return (0);
613 	}
614 
615 	switch (type) {
616 
617 	case M_IOCTL:
618 		/*
619 		 * For case PTSSTTY set the flag PTSTTY and ACK
620 		 * the ioctl so that the user program can push
621 		 * the associated modules to get tty semantics.
622 		 * See bugid 4025044
623 		 */
624 		iocp = (struct iocblk *)mp->b_rptr;
625 		switch (iocp->ioc_cmd) {
626 		default:
627 			break;
628 
629 		case PTSSTTY:
630 			if (ptsp->pt_state & PTSTTY) {
631 				mp->b_datap->db_type = M_IOCNAK;
632 				iocp->ioc_error = EEXIST;
633 			} else {
634 				mp->b_datap->db_type = M_IOCACK;
635 				mutex_enter(&ptsp->pt_lock);
636 				ptsp->pt_state |= PTSTTY;
637 				mutex_exit(&ptsp->pt_lock);
638 				iocp->ioc_error = 0;
639 			}
640 			iocp->ioc_count = 0;
641 			qreply(qp, mp);
642 			PT_EXIT_READ(ptsp);
643 			return (0);
644 		}
645 		/* FALLTHROUGH */
646 	default:
647 		/*
648 		 * send other messages to the master
649 		 */
650 		DBG(("put msg on slave's write queue\n"));
651 		(void) putq(qp, mp);
652 		break;
653 	}
654 
655 	PT_EXIT_READ(ptsp);
656 	DBG(("return from ptswput()\n"));
657 	return (0);
658 }
659 
660 
661 /*
662  * enable the write side of the master. This triggers the
663  * master to send any messages queued on its write side to
664  * the read side of this slave.
665  */
666 static int
667 ptsrsrv(queue_t *qp)
668 {
669 	struct pt_ttys *ptsp;
670 
671 	DBG(("entering ptsrsrv\n"));
672 	ASSERT(qp->q_ptr);
673 
674 	ptsp = (struct pt_ttys *)qp->q_ptr;
675 	PT_ENTER_READ(ptsp);
676 	if (ptsp->ptm_rdq == NULL) {
677 		DBG(("in read srv proc but no master\n"));
678 		PT_EXIT_READ(ptsp);
679 		return (0);
680 	}
681 	qenable(WR(ptsp->ptm_rdq));
682 	PT_EXIT_READ(ptsp);
683 	DBG(("leaving ptsrsrv\n"));
684 	return (0);
685 }
686 
687 /*
688  * If there are messages on this queue that can be sent to
689  * master, send them via putnext(). Else, if queued messages
690  * cannot be sent, leave them on this queue. If priority
691  * messages on this queue, send them to master no matter what.
692  */
693 static int
694 ptswsrv(queue_t *qp)
695 {
696 	struct pt_ttys *ptsp;
697 	queue_t *ptm_rdq;
698 	mblk_t *mp;
699 
700 	DBG(("entering ptswsrv\n"));
701 	ASSERT(qp->q_ptr);
702 
703 	ptsp = (struct pt_ttys *)qp->q_ptr;
704 	PT_ENTER_READ(ptsp);
705 	if (ptsp->ptm_rdq == NULL) {
706 		DBG(("in write srv proc but no master\n"));
707 		/*
708 		 * Free messages on the write queue and send
709 		 * NAK for any M_IOCTL type messages to wakeup
710 		 * the user process waiting for ACK/NAK from
711 		 * the ioctl invocation
712 		 */
713 		while ((mp = getq(qp)) != NULL) {
714 			if (mp->b_datap->db_type == M_IOCTL) {
715 				mp->b_datap->db_type = M_IOCNAK;
716 				freemsg(mp->b_cont);
717 				mp->b_cont = NULL;
718 				qreply(qp, mp);
719 			} else
720 				freemsg(mp);
721 		}
722 		PT_EXIT_READ(ptsp);
723 		return (0);
724 	} else {
725 		ptm_rdq = ptsp->ptm_rdq;
726 	}
727 
728 	/*
729 	 * while there are messages on this write queue...
730 	 */
731 	while ((mp = getq(qp)) != NULL) {
732 		/*
733 		 * if don't have control message and cannot put
734 		 * msg. on master's read queue, put it back on
735 		 * this queue.
736 		 */
737 		if (mp->b_datap->db_type <= QPCTL &&
738 		    !bcanputnext(ptm_rdq, mp->b_band)) {
739 			DBG(("put msg. back on Q\n"));
740 			(void) putbq(qp, mp);
741 			break;
742 		}
743 		/*
744 		 * else send the message up master's stream
745 		 */
746 		DBG(("send message to master\n"));
747 		putnext(ptm_rdq, mp);
748 	}
749 	DBG(("leaving ptswsrv\n"));
750 	PT_EXIT_READ(ptsp);
751 	return (0);
752 }
753