xref: /illumos-gate/usr/src/uts/common/io/nvme/nvme.c (revision f52943a93040563107b95bccb9db87d9971ef47d)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2018 Nexenta Systems, Inc.
14  * Copyright 2016 Tegile Systems, Inc. All rights reserved.
15  * Copyright (c) 2016 The MathWorks, Inc.  All rights reserved.
16  * Copyright 2018 Joyent, Inc.
17  * Copyright 2019 Western Digital Corporation.
18  */
19 
20 /*
21  * blkdev driver for NVMe compliant storage devices
22  *
23  * This driver was written to conform to version 1.2.1 of the NVMe
24  * specification.  It may work with newer versions, but that is completely
25  * untested and disabled by default.
26  *
27  * The driver has only been tested on x86 systems and will not work on big-
28  * endian systems without changes to the code accessing registers and data
29  * structures used by the hardware.
30  *
31  *
32  * Interrupt Usage:
33  *
34  * The driver will use a single interrupt while configuring the device as the
35  * specification requires, but contrary to the specification it will try to use
36  * a single-message MSI(-X) or FIXED interrupt. Later in the attach process it
37  * will switch to multiple-message MSI(-X) if supported. The driver wants to
38  * have one interrupt vector per CPU, but it will work correctly if less are
39  * available. Interrupts can be shared by queues, the interrupt handler will
40  * iterate through the I/O queue array by steps of n_intr_cnt. Usually only
41  * the admin queue will share an interrupt with one I/O queue. The interrupt
42  * handler will retrieve completed commands from all queues sharing an interrupt
43  * vector and will post them to a taskq for completion processing.
44  *
45  *
46  * Command Processing:
47  *
48  * NVMe devices can have up to 65535 I/O queue pairs, with each queue holding up
49  * to 65536 I/O commands. The driver will configure one I/O queue pair per
50  * available interrupt vector, with the queue length usually much smaller than
51  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
52  * interrupt vectors will be used.
53  *
54  * Additionally the hardware provides a single special admin queue pair that can
55  * hold up to 4096 admin commands.
56  *
57  * From the hardware perspective both queues of a queue pair are independent,
58  * but they share some driver state: the command array (holding pointers to
59  * commands currently being processed by the hardware) and the active command
60  * counter. Access to a submission queue and the shared state is protected by
61  * nq_mutex, completion queue is protected by ncq_mutex.
62  *
63  * When a command is submitted to a queue pair the active command counter is
64  * incremented and a pointer to the command is stored in the command array. The
65  * array index is used as command identifier (CID) in the submission queue
66  * entry. Some commands may take a very long time to complete, and if the queue
67  * wraps around in that time a submission may find the next array slot to still
68  * be used by a long-running command. In this case the array is sequentially
69  * searched for the next free slot. The length of the command array is the same
70  * as the configured queue length. Queue overrun is prevented by the semaphore,
71  * so a command submission may block if the queue is full.
72  *
73  *
74  * Polled I/O Support:
75  *
76  * For kernel core dump support the driver can do polled I/O. As interrupts are
77  * turned off while dumping the driver will just submit a command in the regular
78  * way, and then repeatedly attempt a command retrieval until it gets the
79  * command back.
80  *
81  *
82  * Namespace Support:
83  *
84  * NVMe devices can have multiple namespaces, each being a independent data
85  * store. The driver supports multiple namespaces and creates a blkdev interface
86  * for each namespace found. Namespaces can have various attributes to support
87  * protection information. This driver does not support any of this and ignores
88  * namespaces that have these attributes.
89  *
90  * As of NVMe 1.1 namespaces can have an 64bit Extended Unique Identifier
91  * (EUI64). This driver uses the EUI64 if present to generate the devid and
92  * passes it to blkdev to use it in the device node names. As this is currently
93  * untested namespaces with EUI64 are ignored by default.
94  *
95  * We currently support only (2 << NVME_MINOR_INST_SHIFT) - 2 namespaces in a
96  * single controller. This is an artificial limit imposed by the driver to be
97  * able to address a reasonable number of controllers and namespaces using a
98  * 32bit minor node number.
99  *
100  *
101  * Minor nodes:
102  *
103  * For each NVMe device the driver exposes one minor node for the controller and
104  * one minor node for each namespace. The only operations supported by those
105  * minor nodes are open(9E), close(9E), and ioctl(9E). This serves as the
106  * interface for the nvmeadm(1M) utility.
107  *
108  *
109  * Blkdev Interface:
110  *
111  * This driver uses blkdev to do all the heavy lifting involved with presenting
112  * a disk device to the system. As a result, the processing of I/O requests is
113  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
114  * setup, and splitting of transfers into manageable chunks.
115  *
116  * I/O requests coming in from blkdev are turned into NVM commands and posted to
117  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
118  * queues. There is currently no timeout handling of I/O commands.
119  *
120  * Blkdev also supports querying device/media information and generating a
121  * devid. The driver reports the best block size as determined by the namespace
122  * format back to blkdev as physical block size to support partition and block
123  * alignment. The devid is either based on the namespace EUI64, if present, or
124  * composed using the device vendor ID, model number, serial number, and the
125  * namespace ID.
126  *
127  *
128  * Error Handling:
129  *
130  * Error handling is currently limited to detecting fatal hardware errors,
131  * either by asynchronous events, or synchronously through command status or
132  * admin command timeouts. In case of severe errors the device is fenced off,
133  * all further requests will return EIO. FMA is then called to fault the device.
134  *
135  * The hardware has a limit for outstanding asynchronous event requests. Before
136  * this limit is known the driver assumes it is at least 1 and posts a single
137  * asynchronous request. Later when the limit is known more asynchronous event
138  * requests are posted to allow quicker reception of error information. When an
139  * asynchronous event is posted by the hardware the driver will parse the error
140  * status fields and log information or fault the device, depending on the
141  * severity of the asynchronous event. The asynchronous event request is then
142  * reused and posted to the admin queue again.
143  *
144  * On command completion the command status is checked for errors. In case of
145  * errors indicating a driver bug the driver panics. Almost all other error
146  * status values just cause EIO to be returned.
147  *
148  * Command timeouts are currently detected for all admin commands except
149  * asynchronous event requests. If a command times out and the hardware appears
150  * to be healthy the driver attempts to abort the command. The original command
151  * timeout is also applied to the abort command. If the abort times out too the
152  * driver assumes the device to be dead, fences it off, and calls FMA to retire
153  * it. In all other cases the aborted command should return immediately with a
154  * status indicating it was aborted, and the driver will wait indefinitely for
155  * that to happen. No timeout handling of normal I/O commands is presently done.
156  *
157  * Any command that times out due to the controller dropping dead will be put on
158  * nvme_lost_cmds list if it references DMA memory. This will prevent the DMA
159  * memory being reused by the system and later be written to by a "dead" NVMe
160  * controller.
161  *
162  *
163  * Locking:
164  *
165  * Each queue pair has a nq_mutex and ncq_mutex. The nq_mutex must be held
166  * when accessing shared state and submission queue registers, ncq_mutex
167  * is held when accessing completion queue state and registers.
168  * Callers of nvme_unqueue_cmd() must make sure that nq_mutex is held, while
169  * nvme_submit_{admin,io}_cmd() and nvme_retrieve_cmd() take care of both
170  * mutexes themselves.
171  *
172  * Each command also has its own nc_mutex, which is associated with the
173  * condition variable nc_cv. It is only used on admin commands which are run
174  * synchronously. In that case it must be held across calls to
175  * nvme_submit_{admin,io}_cmd() and nvme_wait_cmd(), which is taken care of by
176  * nvme_admin_cmd(). It must also be held whenever the completion state of the
177  * command is changed or while a admin command timeout is handled.
178  *
179  * If both nc_mutex and nq_mutex must be held, nc_mutex must be acquired first.
180  * More than one nc_mutex may only be held when aborting commands. In this case,
181  * the nc_mutex of the command to be aborted must be held across the call to
182  * nvme_abort_cmd() to prevent the command from completing while the abort is in
183  * progress.
184  *
185  * If both nq_mutex and ncq_mutex need to be held, ncq_mutex must be
186  * acquired first. More than one nq_mutex is never held by a single thread.
187  * The ncq_mutex is only held by nvme_retrieve_cmd() and
188  * nvme_process_iocq(). nvme_process_iocq() is only called from the
189  * interrupt thread and nvme_retrieve_cmd() during polled I/O, so the
190  * mutex is non-contentious but is required for implementation completeness
191  * and safety.
192  *
193  * Each minor node has its own nm_mutex, which protects the open count nm_ocnt
194  * and exclusive-open flag nm_oexcl.
195  *
196  *
197  * Quiesce / Fast Reboot:
198  *
199  * The driver currently does not support fast reboot. A quiesce(9E) entry point
200  * is still provided which is used to send a shutdown notification to the
201  * device.
202  *
203  *
204  * DDI UFM Support
205  *
206  * The driver supports the DDI UFM framework for reporting information about
207  * the device's firmware image and slot configuration. This data can be
208  * queried by userland software via ioctls to the ufm driver. For more
209  * information, see ddi_ufm(9E).
210  *
211  *
212  * Driver Configuration:
213  *
214  * The following driver properties can be changed to control some aspects of the
215  * drivers operation:
216  * - strict-version: can be set to 0 to allow devices conforming to newer
217  *   major versions to be used
218  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
219  *   specific command status as a fatal error leading device faulting
220  * - admin-queue-len: the maximum length of the admin queue (16-4096)
221  * - io-squeue-len: the maximum length of the I/O submission queues (16-65536)
222  * - io-cqueue-len: the maximum length of the I/O completion queues (16-65536)
223  * - async-event-limit: the maximum number of asynchronous event requests to be
224  *   posted by the driver
225  * - volatile-write-cache-enable: can be set to 0 to disable the volatile write
226  *   cache
227  * - min-phys-block-size: the minimum physical block size to report to blkdev,
228  *   which is among other things the basis for ZFS vdev ashift
229  * - max-submission-queues: the maximum number of I/O submission queues.
230  * - max-completion-queues: the maximum number of I/O completion queues,
231  *   can be less than max-submission-queues, in which case the completion
232  *   queues are shared.
233  *
234  *
235  * TODO:
236  * - figure out sane default for I/O queue depth reported to blkdev
237  * - FMA handling of media errors
238  * - support for devices supporting very large I/O requests using chained PRPs
239  * - support for configuring hardware parameters like interrupt coalescing
240  * - support for media formatting and hard partitioning into namespaces
241  * - support for big-endian systems
242  * - support for fast reboot
243  * - support for NVMe Subsystem Reset (1.1)
244  * - support for Scatter/Gather lists (1.1)
245  * - support for Reservations (1.1)
246  * - support for power management
247  */
248 
249 #include <sys/byteorder.h>
250 #ifdef _BIG_ENDIAN
251 #error nvme driver needs porting for big-endian platforms
252 #endif
253 
254 #include <sys/modctl.h>
255 #include <sys/conf.h>
256 #include <sys/devops.h>
257 #include <sys/ddi.h>
258 #include <sys/ddi_ufm.h>
259 #include <sys/sunddi.h>
260 #include <sys/sunndi.h>
261 #include <sys/bitmap.h>
262 #include <sys/sysmacros.h>
263 #include <sys/param.h>
264 #include <sys/varargs.h>
265 #include <sys/cpuvar.h>
266 #include <sys/disp.h>
267 #include <sys/blkdev.h>
268 #include <sys/atomic.h>
269 #include <sys/archsystm.h>
270 #include <sys/sata/sata_hba.h>
271 #include <sys/stat.h>
272 #include <sys/policy.h>
273 #include <sys/list.h>
274 
275 #include <sys/nvme.h>
276 
277 #ifdef __x86
278 #include <sys/x86_archext.h>
279 #endif
280 
281 #include "nvme_reg.h"
282 #include "nvme_var.h"
283 
284 /*
285  * Assertions to make sure that we've properly captured various aspects of the
286  * packed structures and haven't broken them during updates.
287  */
288 CTASSERT(sizeof (nvme_identify_ctrl_t) == 0x1000);
289 CTASSERT(offsetof(nvme_identify_ctrl_t, id_oacs) == 256);
290 CTASSERT(offsetof(nvme_identify_ctrl_t, id_sqes) == 512);
291 CTASSERT(offsetof(nvme_identify_ctrl_t, id_subnqn) == 768);
292 CTASSERT(offsetof(nvme_identify_ctrl_t, id_nvmof) == 1792);
293 CTASSERT(offsetof(nvme_identify_ctrl_t, id_psd) == 2048);
294 CTASSERT(offsetof(nvme_identify_ctrl_t, id_vs) == 3072);
295 
296 CTASSERT(sizeof (nvme_identify_nsid_t) == 0x1000);
297 CTASSERT(offsetof(nvme_identify_nsid_t, id_fpi) == 32);
298 CTASSERT(offsetof(nvme_identify_nsid_t, id_nguid) == 104);
299 CTASSERT(offsetof(nvme_identify_nsid_t, id_lbaf) == 128);
300 CTASSERT(offsetof(nvme_identify_nsid_t, id_vs) == 384);
301 
302 CTASSERT(sizeof (nvme_identify_primary_caps_t) == 0x1000);
303 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vqfrt) == 32);
304 CTASSERT(offsetof(nvme_identify_primary_caps_t, nipc_vifrt) == 64);
305 
306 
307 /* NVMe spec version supported */
308 static const int nvme_version_major = 1;
309 
310 /* tunable for admin command timeout in seconds, default is 1s */
311 int nvme_admin_cmd_timeout = 1;
312 
313 /* tunable for FORMAT NVM command timeout in seconds, default is 600s */
314 int nvme_format_cmd_timeout = 600;
315 
316 /* tunable for firmware commit with NVME_FWC_SAVE, default is 15s */
317 int nvme_commit_save_cmd_timeout = 15;
318 
319 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
320 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
321 static int nvme_quiesce(dev_info_t *);
322 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
323 static int nvme_setup_interrupts(nvme_t *, int, int);
324 static void nvme_release_interrupts(nvme_t *);
325 static uint_t nvme_intr(caddr_t, caddr_t);
326 
327 static void nvme_shutdown(nvme_t *, int, boolean_t);
328 static boolean_t nvme_reset(nvme_t *, boolean_t);
329 static int nvme_init(nvme_t *);
330 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
331 static void nvme_free_cmd(nvme_cmd_t *);
332 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
333     bd_xfer_t *);
334 static void nvme_admin_cmd(nvme_cmd_t *, int);
335 static void nvme_submit_admin_cmd(nvme_qpair_t *, nvme_cmd_t *);
336 static int nvme_submit_io_cmd(nvme_qpair_t *, nvme_cmd_t *);
337 static void nvme_submit_cmd_common(nvme_qpair_t *, nvme_cmd_t *);
338 static nvme_cmd_t *nvme_unqueue_cmd(nvme_t *, nvme_qpair_t *, int);
339 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
340 static void nvme_wait_cmd(nvme_cmd_t *, uint_t);
341 static void nvme_wakeup_cmd(void *);
342 static void nvme_async_event_task(void *);
343 
344 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
345 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
346 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
347 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
348 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
349 static inline int nvme_check_cmd_status(nvme_cmd_t *);
350 
351 static int nvme_abort_cmd(nvme_cmd_t *, uint_t);
352 static void nvme_async_event(nvme_t *);
353 static int nvme_format_nvm(nvme_t *, boolean_t, uint32_t, uint8_t, boolean_t,
354     uint8_t, boolean_t, uint8_t);
355 static int nvme_get_logpage(nvme_t *, boolean_t, void **, size_t *, uint8_t,
356     ...);
357 static int nvme_identify(nvme_t *, boolean_t, uint32_t, void **);
358 static int nvme_set_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t,
359     uint32_t *);
360 static int nvme_get_features(nvme_t *, boolean_t, uint32_t, uint8_t, uint32_t *,
361     void **, size_t *);
362 static int nvme_write_cache_set(nvme_t *, boolean_t);
363 static int nvme_set_nqueues(nvme_t *);
364 
365 static void nvme_free_dma(nvme_dma_t *);
366 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
367     nvme_dma_t **);
368 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
369     nvme_dma_t **);
370 static void nvme_free_qpair(nvme_qpair_t *);
371 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, uint_t);
372 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
373 
374 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
375 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
376 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
377 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
378 
379 static boolean_t nvme_check_regs_hdl(nvme_t *);
380 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
381 
382 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
383 
384 static void nvme_bd_xfer_done(void *);
385 static void nvme_bd_driveinfo(void *, bd_drive_t *);
386 static int nvme_bd_mediainfo(void *, bd_media_t *);
387 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
388 static int nvme_bd_read(void *, bd_xfer_t *);
389 static int nvme_bd_write(void *, bd_xfer_t *);
390 static int nvme_bd_sync(void *, bd_xfer_t *);
391 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
392 
393 static int nvme_prp_dma_constructor(void *, void *, int);
394 static void nvme_prp_dma_destructor(void *, void *);
395 
396 static void nvme_prepare_devid(nvme_t *, uint32_t);
397 
398 /* DDI UFM callbacks */
399 static int nvme_ufm_fill_image(ddi_ufm_handle_t *, void *, uint_t,
400     ddi_ufm_image_t *);
401 static int nvme_ufm_fill_slot(ddi_ufm_handle_t *, void *, uint_t, uint_t,
402     ddi_ufm_slot_t *);
403 static int nvme_ufm_getcaps(ddi_ufm_handle_t *, void *, ddi_ufm_cap_t *);
404 
405 static int nvme_open(dev_t *, int, int, cred_t *);
406 static int nvme_close(dev_t, int, int, cred_t *);
407 static int nvme_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
408 
409 static ddi_ufm_ops_t nvme_ufm_ops = {
410 	NULL,
411 	nvme_ufm_fill_image,
412 	nvme_ufm_fill_slot,
413 	nvme_ufm_getcaps
414 };
415 
416 #define	NVME_MINOR_INST_SHIFT	9
417 #define	NVME_MINOR(inst, nsid)	(((inst) << NVME_MINOR_INST_SHIFT) | (nsid))
418 #define	NVME_MINOR_INST(minor)	((minor) >> NVME_MINOR_INST_SHIFT)
419 #define	NVME_MINOR_NSID(minor)	((minor) & ((1 << NVME_MINOR_INST_SHIFT) - 1))
420 #define	NVME_MINOR_MAX		(NVME_MINOR(1, 0) - 2)
421 
422 static void *nvme_state;
423 static kmem_cache_t *nvme_cmd_cache;
424 
425 /*
426  * DMA attributes for queue DMA memory
427  *
428  * Queue DMA memory must be page aligned. The maximum length of a queue is
429  * 65536 entries, and an entry can be 64 bytes long.
430  */
431 static ddi_dma_attr_t nvme_queue_dma_attr = {
432 	.dma_attr_version	= DMA_ATTR_V0,
433 	.dma_attr_addr_lo	= 0,
434 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
435 	.dma_attr_count_max	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t) - 1,
436 	.dma_attr_align		= 0x1000,
437 	.dma_attr_burstsizes	= 0x7ff,
438 	.dma_attr_minxfer	= 0x1000,
439 	.dma_attr_maxxfer	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
440 	.dma_attr_seg		= 0xffffffffffffffffULL,
441 	.dma_attr_sgllen	= 1,
442 	.dma_attr_granular	= 1,
443 	.dma_attr_flags		= 0,
444 };
445 
446 /*
447  * DMA attributes for transfers using Physical Region Page (PRP) entries
448  *
449  * A PRP entry describes one page of DMA memory using the page size specified
450  * in the controller configuration's memory page size register (CC.MPS). It uses
451  * a 64bit base address aligned to this page size. There is no limitation on
452  * chaining PRPs together for arbitrarily large DMA transfers.
453  */
454 static ddi_dma_attr_t nvme_prp_dma_attr = {
455 	.dma_attr_version	= DMA_ATTR_V0,
456 	.dma_attr_addr_lo	= 0,
457 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
458 	.dma_attr_count_max	= 0xfff,
459 	.dma_attr_align		= 0x1000,
460 	.dma_attr_burstsizes	= 0x7ff,
461 	.dma_attr_minxfer	= 0x1000,
462 	.dma_attr_maxxfer	= 0x1000,
463 	.dma_attr_seg		= 0xfff,
464 	.dma_attr_sgllen	= -1,
465 	.dma_attr_granular	= 1,
466 	.dma_attr_flags		= 0,
467 };
468 
469 /*
470  * DMA attributes for transfers using scatter/gather lists
471  *
472  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
473  * 32bit length field. SGL Segment and SGL Last Segment entries require the
474  * length to be a multiple of 16 bytes.
475  */
476 static ddi_dma_attr_t nvme_sgl_dma_attr = {
477 	.dma_attr_version	= DMA_ATTR_V0,
478 	.dma_attr_addr_lo	= 0,
479 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
480 	.dma_attr_count_max	= 0xffffffffUL,
481 	.dma_attr_align		= 1,
482 	.dma_attr_burstsizes	= 0x7ff,
483 	.dma_attr_minxfer	= 0x10,
484 	.dma_attr_maxxfer	= 0xfffffffffULL,
485 	.dma_attr_seg		= 0xffffffffffffffffULL,
486 	.dma_attr_sgllen	= -1,
487 	.dma_attr_granular	= 0x10,
488 	.dma_attr_flags		= 0
489 };
490 
491 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
492 	.devacc_attr_version	= DDI_DEVICE_ATTR_V0,
493 	.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
494 	.devacc_attr_dataorder	= DDI_STRICTORDER_ACC
495 };
496 
497 static struct cb_ops nvme_cb_ops = {
498 	.cb_open	= nvme_open,
499 	.cb_close	= nvme_close,
500 	.cb_strategy	= nodev,
501 	.cb_print	= nodev,
502 	.cb_dump	= nodev,
503 	.cb_read	= nodev,
504 	.cb_write	= nodev,
505 	.cb_ioctl	= nvme_ioctl,
506 	.cb_devmap	= nodev,
507 	.cb_mmap	= nodev,
508 	.cb_segmap	= nodev,
509 	.cb_chpoll	= nochpoll,
510 	.cb_prop_op	= ddi_prop_op,
511 	.cb_str		= 0,
512 	.cb_flag	= D_NEW | D_MP,
513 	.cb_rev		= CB_REV,
514 	.cb_aread	= nodev,
515 	.cb_awrite	= nodev
516 };
517 
518 static struct dev_ops nvme_dev_ops = {
519 	.devo_rev	= DEVO_REV,
520 	.devo_refcnt	= 0,
521 	.devo_getinfo	= ddi_no_info,
522 	.devo_identify	= nulldev,
523 	.devo_probe	= nulldev,
524 	.devo_attach	= nvme_attach,
525 	.devo_detach	= nvme_detach,
526 	.devo_reset	= nodev,
527 	.devo_cb_ops	= &nvme_cb_ops,
528 	.devo_bus_ops	= NULL,
529 	.devo_power	= NULL,
530 	.devo_quiesce	= nvme_quiesce,
531 };
532 
533 static struct modldrv nvme_modldrv = {
534 	.drv_modops	= &mod_driverops,
535 	.drv_linkinfo	= "NVMe v1.1b",
536 	.drv_dev_ops	= &nvme_dev_ops
537 };
538 
539 static struct modlinkage nvme_modlinkage = {
540 	.ml_rev		= MODREV_1,
541 	.ml_linkage	= { &nvme_modldrv, NULL }
542 };
543 
544 static bd_ops_t nvme_bd_ops = {
545 	.o_version	= BD_OPS_CURRENT_VERSION,
546 	.o_drive_info	= nvme_bd_driveinfo,
547 	.o_media_info	= nvme_bd_mediainfo,
548 	.o_devid_init	= nvme_bd_devid,
549 	.o_sync_cache	= nvme_bd_sync,
550 	.o_read		= nvme_bd_read,
551 	.o_write	= nvme_bd_write,
552 };
553 
554 /*
555  * This list will hold commands that have timed out and couldn't be aborted.
556  * As we don't know what the hardware may still do with the DMA memory we can't
557  * free them, so we'll keep them forever on this list where we can easily look
558  * at them with mdb.
559  */
560 static struct list nvme_lost_cmds;
561 static kmutex_t nvme_lc_mutex;
562 
563 int
564 _init(void)
565 {
566 	int error;
567 
568 	error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
569 	if (error != DDI_SUCCESS)
570 		return (error);
571 
572 	nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
573 	    sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
574 
575 	mutex_init(&nvme_lc_mutex, NULL, MUTEX_DRIVER, NULL);
576 	list_create(&nvme_lost_cmds, sizeof (nvme_cmd_t),
577 	    offsetof(nvme_cmd_t, nc_list));
578 
579 	bd_mod_init(&nvme_dev_ops);
580 
581 	error = mod_install(&nvme_modlinkage);
582 	if (error != DDI_SUCCESS) {
583 		ddi_soft_state_fini(&nvme_state);
584 		mutex_destroy(&nvme_lc_mutex);
585 		list_destroy(&nvme_lost_cmds);
586 		bd_mod_fini(&nvme_dev_ops);
587 	}
588 
589 	return (error);
590 }
591 
592 int
593 _fini(void)
594 {
595 	int error;
596 
597 	if (!list_is_empty(&nvme_lost_cmds))
598 		return (DDI_FAILURE);
599 
600 	error = mod_remove(&nvme_modlinkage);
601 	if (error == DDI_SUCCESS) {
602 		ddi_soft_state_fini(&nvme_state);
603 		kmem_cache_destroy(nvme_cmd_cache);
604 		mutex_destroy(&nvme_lc_mutex);
605 		list_destroy(&nvme_lost_cmds);
606 		bd_mod_fini(&nvme_dev_ops);
607 	}
608 
609 	return (error);
610 }
611 
612 int
613 _info(struct modinfo *modinfop)
614 {
615 	return (mod_info(&nvme_modlinkage, modinfop));
616 }
617 
618 static inline void
619 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
620 {
621 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
622 
623 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
624 	ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
625 }
626 
627 static inline void
628 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
629 {
630 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
631 
632 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
633 	ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
634 }
635 
636 static inline uint64_t
637 nvme_get64(nvme_t *nvme, uintptr_t reg)
638 {
639 	uint64_t val;
640 
641 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
642 
643 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
644 	val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
645 
646 	return (val);
647 }
648 
649 static inline uint32_t
650 nvme_get32(nvme_t *nvme, uintptr_t reg)
651 {
652 	uint32_t val;
653 
654 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
655 
656 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
657 	val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
658 
659 	return (val);
660 }
661 
662 static boolean_t
663 nvme_check_regs_hdl(nvme_t *nvme)
664 {
665 	ddi_fm_error_t error;
666 
667 	ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
668 
669 	if (error.fme_status != DDI_FM_OK)
670 		return (B_TRUE);
671 
672 	return (B_FALSE);
673 }
674 
675 static boolean_t
676 nvme_check_dma_hdl(nvme_dma_t *dma)
677 {
678 	ddi_fm_error_t error;
679 
680 	if (dma == NULL)
681 		return (B_FALSE);
682 
683 	ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
684 
685 	if (error.fme_status != DDI_FM_OK)
686 		return (B_TRUE);
687 
688 	return (B_FALSE);
689 }
690 
691 static void
692 nvme_free_dma_common(nvme_dma_t *dma)
693 {
694 	if (dma->nd_dmah != NULL)
695 		(void) ddi_dma_unbind_handle(dma->nd_dmah);
696 	if (dma->nd_acch != NULL)
697 		ddi_dma_mem_free(&dma->nd_acch);
698 	if (dma->nd_dmah != NULL)
699 		ddi_dma_free_handle(&dma->nd_dmah);
700 }
701 
702 static void
703 nvme_free_dma(nvme_dma_t *dma)
704 {
705 	nvme_free_dma_common(dma);
706 	kmem_free(dma, sizeof (*dma));
707 }
708 
709 /* ARGSUSED */
710 static void
711 nvme_prp_dma_destructor(void *buf, void *private)
712 {
713 	nvme_dma_t *dma = (nvme_dma_t *)buf;
714 
715 	nvme_free_dma_common(dma);
716 }
717 
718 static int
719 nvme_alloc_dma_common(nvme_t *nvme, nvme_dma_t *dma,
720     size_t len, uint_t flags, ddi_dma_attr_t *dma_attr)
721 {
722 	if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
723 	    &dma->nd_dmah) != DDI_SUCCESS) {
724 		/*
725 		 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
726 		 * the only other possible error is DDI_DMA_BADATTR which
727 		 * indicates a driver bug which should cause a panic.
728 		 */
729 		dev_err(nvme->n_dip, CE_PANIC,
730 		    "!failed to get DMA handle, check DMA attributes");
731 		return (DDI_FAILURE);
732 	}
733 
734 	/*
735 	 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
736 	 * or the flags are conflicting, which isn't the case here.
737 	 */
738 	(void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
739 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
740 	    &dma->nd_len, &dma->nd_acch);
741 
742 	if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
743 	    dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
744 	    &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
745 		dev_err(nvme->n_dip, CE_WARN,
746 		    "!failed to bind DMA memory");
747 		atomic_inc_32(&nvme->n_dma_bind_err);
748 		nvme_free_dma_common(dma);
749 		return (DDI_FAILURE);
750 	}
751 
752 	return (DDI_SUCCESS);
753 }
754 
755 static int
756 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
757     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
758 {
759 	nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
760 
761 	if (nvme_alloc_dma_common(nvme, dma, len, flags, dma_attr) !=
762 	    DDI_SUCCESS) {
763 		*ret = NULL;
764 		kmem_free(dma, sizeof (nvme_dma_t));
765 		return (DDI_FAILURE);
766 	}
767 
768 	bzero(dma->nd_memp, dma->nd_len);
769 
770 	*ret = dma;
771 	return (DDI_SUCCESS);
772 }
773 
774 /* ARGSUSED */
775 static int
776 nvme_prp_dma_constructor(void *buf, void *private, int flags)
777 {
778 	nvme_dma_t *dma = (nvme_dma_t *)buf;
779 	nvme_t *nvme = (nvme_t *)private;
780 
781 	dma->nd_dmah = NULL;
782 	dma->nd_acch = NULL;
783 
784 	if (nvme_alloc_dma_common(nvme, dma, nvme->n_pagesize,
785 	    DDI_DMA_READ, &nvme->n_prp_dma_attr) != DDI_SUCCESS) {
786 		return (-1);
787 	}
788 
789 	ASSERT(dma->nd_ncookie == 1);
790 
791 	dma->nd_cached = B_TRUE;
792 
793 	return (0);
794 }
795 
796 static int
797 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
798     uint_t flags, nvme_dma_t **dma)
799 {
800 	uint32_t len = nentry * qe_len;
801 	ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
802 
803 	len = roundup(len, nvme->n_pagesize);
804 
805 	if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
806 	    != DDI_SUCCESS) {
807 		dev_err(nvme->n_dip, CE_WARN,
808 		    "!failed to get DMA memory for queue");
809 		goto fail;
810 	}
811 
812 	if ((*dma)->nd_ncookie != 1) {
813 		dev_err(nvme->n_dip, CE_WARN,
814 		    "!got too many cookies for queue DMA");
815 		goto fail;
816 	}
817 
818 	return (DDI_SUCCESS);
819 
820 fail:
821 	if (*dma) {
822 		nvme_free_dma(*dma);
823 		*dma = NULL;
824 	}
825 
826 	return (DDI_FAILURE);
827 }
828 
829 static void
830 nvme_free_cq(nvme_cq_t *cq)
831 {
832 	mutex_destroy(&cq->ncq_mutex);
833 
834 	if (cq->ncq_cmd_taskq != NULL)
835 		taskq_destroy(cq->ncq_cmd_taskq);
836 
837 	if (cq->ncq_dma != NULL)
838 		nvme_free_dma(cq->ncq_dma);
839 
840 	kmem_free(cq, sizeof (*cq));
841 }
842 
843 static void
844 nvme_free_qpair(nvme_qpair_t *qp)
845 {
846 	int i;
847 
848 	mutex_destroy(&qp->nq_mutex);
849 	sema_destroy(&qp->nq_sema);
850 
851 	if (qp->nq_sqdma != NULL)
852 		nvme_free_dma(qp->nq_sqdma);
853 
854 	if (qp->nq_active_cmds > 0)
855 		for (i = 0; i != qp->nq_nentry; i++)
856 			if (qp->nq_cmd[i] != NULL)
857 				nvme_free_cmd(qp->nq_cmd[i]);
858 
859 	if (qp->nq_cmd != NULL)
860 		kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
861 
862 	kmem_free(qp, sizeof (nvme_qpair_t));
863 }
864 
865 /*
866  * Destroy the pre-allocated cq array, but only free individual completion
867  * queues from the given starting index.
868  */
869 static void
870 nvme_destroy_cq_array(nvme_t *nvme, uint_t start)
871 {
872 	uint_t i;
873 
874 	for (i = start; i < nvme->n_cq_count; i++)
875 		if (nvme->n_cq[i] != NULL)
876 			nvme_free_cq(nvme->n_cq[i]);
877 
878 	kmem_free(nvme->n_cq, sizeof (*nvme->n_cq) * nvme->n_cq_count);
879 }
880 
881 static int
882 nvme_alloc_cq(nvme_t *nvme, uint32_t nentry, nvme_cq_t **cqp, uint16_t idx,
883     uint_t nthr)
884 {
885 	nvme_cq_t *cq = kmem_zalloc(sizeof (*cq), KM_SLEEP);
886 	char name[64];		/* large enough for the taskq name */
887 
888 	mutex_init(&cq->ncq_mutex, NULL, MUTEX_DRIVER,
889 	    DDI_INTR_PRI(nvme->n_intr_pri));
890 
891 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
892 	    DDI_DMA_READ, &cq->ncq_dma) != DDI_SUCCESS)
893 		goto fail;
894 
895 	cq->ncq_cq = (nvme_cqe_t *)cq->ncq_dma->nd_memp;
896 	cq->ncq_nentry = nentry;
897 	cq->ncq_id = idx;
898 	cq->ncq_hdbl = NVME_REG_CQHDBL(nvme, idx);
899 
900 	/*
901 	 * Each completion queue has its own command taskq.
902 	 */
903 	(void) snprintf(name, sizeof (name), "%s%d_cmd_taskq%u",
904 	    ddi_driver_name(nvme->n_dip), ddi_get_instance(nvme->n_dip), idx);
905 
906 	cq->ncq_cmd_taskq = taskq_create(name, nthr, minclsyspri, 64, INT_MAX,
907 	    TASKQ_PREPOPULATE);
908 
909 	if (cq->ncq_cmd_taskq == NULL) {
910 		dev_err(nvme->n_dip, CE_WARN, "!failed to create cmd "
911 		    "taskq for cq %u", idx);
912 		goto fail;
913 	}
914 
915 	*cqp = cq;
916 	return (DDI_SUCCESS);
917 
918 fail:
919 	nvme_free_cq(cq);
920 	*cqp = NULL;
921 
922 	return (DDI_FAILURE);
923 }
924 
925 /*
926  * Create the n_cq array big enough to hold "ncq" completion queues.
927  * If the array already exists it will be re-sized (but only larger).
928  * The admin queue is included in this array, which boosts the
929  * max number of entries to UINT16_MAX + 1.
930  */
931 static int
932 nvme_create_cq_array(nvme_t *nvme, uint_t ncq, uint32_t nentry, uint_t nthr)
933 {
934 	nvme_cq_t **cq;
935 	uint_t i, cq_count;
936 
937 	ASSERT3U(ncq, >, nvme->n_cq_count);
938 
939 	cq = nvme->n_cq;
940 	cq_count = nvme->n_cq_count;
941 
942 	nvme->n_cq = kmem_zalloc(sizeof (*nvme->n_cq) * ncq, KM_SLEEP);
943 	nvme->n_cq_count = ncq;
944 
945 	for (i = 0; i < cq_count; i++)
946 		nvme->n_cq[i] = cq[i];
947 
948 	for (; i < nvme->n_cq_count; i++)
949 		if (nvme_alloc_cq(nvme, nentry, &nvme->n_cq[i], i, nthr) !=
950 		    DDI_SUCCESS)
951 			goto fail;
952 
953 	if (cq != NULL)
954 		kmem_free(cq, sizeof (*cq) * cq_count);
955 
956 	return (DDI_SUCCESS);
957 
958 fail:
959 	nvme_destroy_cq_array(nvme, cq_count);
960 	/*
961 	 * Restore the original array
962 	 */
963 	nvme->n_cq_count = cq_count;
964 	nvme->n_cq = cq;
965 
966 	return (DDI_FAILURE);
967 }
968 
969 static int
970 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
971     uint_t idx)
972 {
973 	nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
974 	uint_t cq_idx;
975 
976 	mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
977 	    DDI_INTR_PRI(nvme->n_intr_pri));
978 
979 	/*
980 	 * The NVMe spec defines that a full queue has one empty (unused) slot;
981 	 * initialize the semaphore accordingly.
982 	 */
983 	sema_init(&qp->nq_sema, nentry - 1, NULL, SEMA_DRIVER, NULL);
984 
985 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
986 	    DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
987 		goto fail;
988 
989 	/*
990 	 * idx == 0 is adminq, those above 0 are shared io completion queues.
991 	 */
992 	cq_idx = idx == 0 ? 0 : 1 + (idx - 1) % (nvme->n_cq_count - 1);
993 	qp->nq_cq = nvme->n_cq[cq_idx];
994 	qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
995 	qp->nq_nentry = nentry;
996 
997 	qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
998 
999 	qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
1000 	qp->nq_next_cmd = 0;
1001 
1002 	*nqp = qp;
1003 	return (DDI_SUCCESS);
1004 
1005 fail:
1006 	nvme_free_qpair(qp);
1007 	*nqp = NULL;
1008 
1009 	return (DDI_FAILURE);
1010 }
1011 
1012 static nvme_cmd_t *
1013 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
1014 {
1015 	nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
1016 
1017 	if (cmd == NULL)
1018 		return (cmd);
1019 
1020 	bzero(cmd, sizeof (nvme_cmd_t));
1021 
1022 	cmd->nc_nvme = nvme;
1023 
1024 	mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
1025 	    DDI_INTR_PRI(nvme->n_intr_pri));
1026 	cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
1027 
1028 	return (cmd);
1029 }
1030 
1031 static void
1032 nvme_free_cmd(nvme_cmd_t *cmd)
1033 {
1034 	/* Don't free commands on the lost commands list. */
1035 	if (list_link_active(&cmd->nc_list))
1036 		return;
1037 
1038 	if (cmd->nc_dma) {
1039 		if (cmd->nc_dma->nd_cached)
1040 			kmem_cache_free(cmd->nc_nvme->n_prp_cache,
1041 			    cmd->nc_dma);
1042 		else
1043 			nvme_free_dma(cmd->nc_dma);
1044 		cmd->nc_dma = NULL;
1045 	}
1046 
1047 	cv_destroy(&cmd->nc_cv);
1048 	mutex_destroy(&cmd->nc_mutex);
1049 
1050 	kmem_cache_free(nvme_cmd_cache, cmd);
1051 }
1052 
1053 static void
1054 nvme_submit_admin_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1055 {
1056 	sema_p(&qp->nq_sema);
1057 	nvme_submit_cmd_common(qp, cmd);
1058 }
1059 
1060 static int
1061 nvme_submit_io_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1062 {
1063 	if (sema_tryp(&qp->nq_sema) == 0)
1064 		return (EAGAIN);
1065 
1066 	nvme_submit_cmd_common(qp, cmd);
1067 	return (0);
1068 }
1069 
1070 static void
1071 nvme_submit_cmd_common(nvme_qpair_t *qp, nvme_cmd_t *cmd)
1072 {
1073 	nvme_reg_sqtdbl_t tail = { 0 };
1074 
1075 	mutex_enter(&qp->nq_mutex);
1076 	cmd->nc_completed = B_FALSE;
1077 
1078 	/*
1079 	 * Try to insert the cmd into the active cmd array at the nq_next_cmd
1080 	 * slot. If the slot is already occupied advance to the next slot and
1081 	 * try again. This can happen for long running commands like async event
1082 	 * requests.
1083 	 */
1084 	while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
1085 		qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1086 	qp->nq_cmd[qp->nq_next_cmd] = cmd;
1087 
1088 	qp->nq_active_cmds++;
1089 
1090 	cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
1091 	bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
1092 	(void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
1093 	    sizeof (nvme_sqe_t) * qp->nq_sqtail,
1094 	    sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
1095 	qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
1096 
1097 	tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
1098 	nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
1099 
1100 	mutex_exit(&qp->nq_mutex);
1101 }
1102 
1103 static nvme_cmd_t *
1104 nvme_unqueue_cmd(nvme_t *nvme, nvme_qpair_t *qp, int cid)
1105 {
1106 	nvme_cmd_t *cmd;
1107 
1108 	ASSERT(mutex_owned(&qp->nq_mutex));
1109 	ASSERT3S(cid, <, qp->nq_nentry);
1110 
1111 	cmd = qp->nq_cmd[cid];
1112 	qp->nq_cmd[cid] = NULL;
1113 	ASSERT3U(qp->nq_active_cmds, >, 0);
1114 	qp->nq_active_cmds--;
1115 	sema_v(&qp->nq_sema);
1116 
1117 	ASSERT3P(cmd, !=, NULL);
1118 	ASSERT3P(cmd->nc_nvme, ==, nvme);
1119 	ASSERT3S(cmd->nc_sqe.sqe_cid, ==, cid);
1120 
1121 	return (cmd);
1122 }
1123 
1124 /*
1125  * Get the command tied to the next completed cqe and bump along completion
1126  * queue head counter.
1127  */
1128 static nvme_cmd_t *
1129 nvme_get_completed(nvme_t *nvme, nvme_cq_t *cq)
1130 {
1131 	nvme_qpair_t *qp;
1132 	nvme_cqe_t *cqe;
1133 	nvme_cmd_t *cmd;
1134 
1135 	ASSERT(mutex_owned(&cq->ncq_mutex));
1136 
1137 	cqe = &cq->ncq_cq[cq->ncq_head];
1138 
1139 	/* Check phase tag of CQE. Hardware inverts it for new entries. */
1140 	if (cqe->cqe_sf.sf_p == cq->ncq_phase)
1141 		return (NULL);
1142 
1143 	qp = nvme->n_ioq[cqe->cqe_sqid];
1144 
1145 	mutex_enter(&qp->nq_mutex);
1146 	cmd = nvme_unqueue_cmd(nvme, qp, cqe->cqe_cid);
1147 	mutex_exit(&qp->nq_mutex);
1148 
1149 	ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
1150 	bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
1151 
1152 	qp->nq_sqhead = cqe->cqe_sqhd;
1153 
1154 	cq->ncq_head = (cq->ncq_head + 1) % cq->ncq_nentry;
1155 
1156 	/* Toggle phase on wrap-around. */
1157 	if (cq->ncq_head == 0)
1158 		cq->ncq_phase = cq->ncq_phase ? 0 : 1;
1159 
1160 	return (cmd);
1161 }
1162 
1163 /*
1164  * Process all completed commands on the io completion queue.
1165  */
1166 static uint_t
1167 nvme_process_iocq(nvme_t *nvme, nvme_cq_t *cq)
1168 {
1169 	nvme_reg_cqhdbl_t head = { 0 };
1170 	nvme_cmd_t *cmd;
1171 	uint_t completed = 0;
1172 
1173 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1174 	    DDI_SUCCESS)
1175 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1176 		    __func__);
1177 
1178 	mutex_enter(&cq->ncq_mutex);
1179 
1180 	while ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1181 		taskq_dispatch_ent(cq->ncq_cmd_taskq, cmd->nc_callback, cmd,
1182 		    TQ_NOSLEEP, &cmd->nc_tqent);
1183 
1184 		completed++;
1185 	}
1186 
1187 	if (completed > 0) {
1188 		/*
1189 		 * Update the completion queue head doorbell.
1190 		 */
1191 		head.b.cqhdbl_cqh = cq->ncq_head;
1192 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1193 	}
1194 
1195 	mutex_exit(&cq->ncq_mutex);
1196 
1197 	return (completed);
1198 }
1199 
1200 static nvme_cmd_t *
1201 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
1202 {
1203 	nvme_cq_t *cq = qp->nq_cq;
1204 	nvme_reg_cqhdbl_t head = { 0 };
1205 	nvme_cmd_t *cmd;
1206 
1207 	if (ddi_dma_sync(cq->ncq_dma->nd_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL) !=
1208 	    DDI_SUCCESS)
1209 		dev_err(nvme->n_dip, CE_WARN, "!ddi_dma_sync() failed in %s",
1210 		    __func__);
1211 
1212 	mutex_enter(&cq->ncq_mutex);
1213 
1214 	if ((cmd = nvme_get_completed(nvme, cq)) != NULL) {
1215 		head.b.cqhdbl_cqh = cq->ncq_head;
1216 		nvme_put32(nvme, cq->ncq_hdbl, head.r);
1217 	}
1218 
1219 	mutex_exit(&cq->ncq_mutex);
1220 
1221 	return (cmd);
1222 }
1223 
1224 static int
1225 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
1226 {
1227 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1228 
1229 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1230 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1231 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1232 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1233 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1234 
1235 	if (cmd->nc_xfer != NULL)
1236 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1237 
1238 	if (cmd->nc_nvme->n_strict_version) {
1239 		cmd->nc_nvme->n_dead = B_TRUE;
1240 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1241 	}
1242 
1243 	return (EIO);
1244 }
1245 
1246 static int
1247 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
1248 {
1249 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1250 
1251 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1252 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
1253 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
1254 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
1255 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
1256 	if (!cmd->nc_nvme->n_ignore_unknown_vendor_status) {
1257 		cmd->nc_nvme->n_dead = B_TRUE;
1258 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1259 	}
1260 
1261 	return (EIO);
1262 }
1263 
1264 static int
1265 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
1266 {
1267 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1268 
1269 	switch (cqe->cqe_sf.sf_sc) {
1270 	case NVME_CQE_SC_INT_NVM_WRITE:
1271 		/* write fail */
1272 		/* TODO: post ereport */
1273 		if (cmd->nc_xfer != NULL)
1274 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1275 		return (EIO);
1276 
1277 	case NVME_CQE_SC_INT_NVM_READ:
1278 		/* read fail */
1279 		/* TODO: post ereport */
1280 		if (cmd->nc_xfer != NULL)
1281 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1282 		return (EIO);
1283 
1284 	default:
1285 		return (nvme_check_unknown_cmd_status(cmd));
1286 	}
1287 }
1288 
1289 static int
1290 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
1291 {
1292 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1293 
1294 	switch (cqe->cqe_sf.sf_sc) {
1295 	case NVME_CQE_SC_GEN_SUCCESS:
1296 		return (0);
1297 
1298 	/*
1299 	 * Errors indicating a bug in the driver should cause a panic.
1300 	 */
1301 	case NVME_CQE_SC_GEN_INV_OPC:
1302 		/* Invalid Command Opcode */
1303 		if (!cmd->nc_dontpanic)
1304 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1305 			    "programming error: invalid opcode in cmd %p",
1306 			    (void *)cmd);
1307 		return (EINVAL);
1308 
1309 	case NVME_CQE_SC_GEN_INV_FLD:
1310 		/* Invalid Field in Command */
1311 		if (!cmd->nc_dontpanic)
1312 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1313 			    "programming error: invalid field in cmd %p",
1314 			    (void *)cmd);
1315 		return (EIO);
1316 
1317 	case NVME_CQE_SC_GEN_ID_CNFL:
1318 		/* Command ID Conflict */
1319 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1320 		    "cmd ID conflict in cmd %p", (void *)cmd);
1321 		return (0);
1322 
1323 	case NVME_CQE_SC_GEN_INV_NS:
1324 		/* Invalid Namespace or Format */
1325 		if (!cmd->nc_dontpanic)
1326 			dev_err(cmd->nc_nvme->n_dip, CE_PANIC,
1327 			    "programming error: invalid NS/format in cmd %p",
1328 			    (void *)cmd);
1329 		return (EINVAL);
1330 
1331 	case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
1332 		/* LBA Out Of Range */
1333 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1334 		    "LBA out of range in cmd %p", (void *)cmd);
1335 		return (0);
1336 
1337 	/*
1338 	 * Non-fatal errors, handle gracefully.
1339 	 */
1340 	case NVME_CQE_SC_GEN_DATA_XFR_ERR:
1341 		/* Data Transfer Error (DMA) */
1342 		/* TODO: post ereport */
1343 		atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
1344 		if (cmd->nc_xfer != NULL)
1345 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1346 		return (EIO);
1347 
1348 	case NVME_CQE_SC_GEN_INTERNAL_ERR:
1349 		/*
1350 		 * Internal Error. The spec (v1.0, section 4.5.1.2) says
1351 		 * detailed error information is returned as async event,
1352 		 * so we pretty much ignore the error here and handle it
1353 		 * in the async event handler.
1354 		 */
1355 		atomic_inc_32(&cmd->nc_nvme->n_internal_err);
1356 		if (cmd->nc_xfer != NULL)
1357 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1358 		return (EIO);
1359 
1360 	case NVME_CQE_SC_GEN_ABORT_REQUEST:
1361 		/*
1362 		 * Command Abort Requested. This normally happens only when a
1363 		 * command times out.
1364 		 */
1365 		/* TODO: post ereport or change blkdev to handle this? */
1366 		atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
1367 		return (ECANCELED);
1368 
1369 	case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
1370 		/* Command Aborted due to Power Loss Notification */
1371 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
1372 		cmd->nc_nvme->n_dead = B_TRUE;
1373 		return (EIO);
1374 
1375 	case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
1376 		/* Command Aborted due to SQ Deletion */
1377 		atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
1378 		return (EIO);
1379 
1380 	case NVME_CQE_SC_GEN_NVM_CAP_EXC:
1381 		/* Capacity Exceeded */
1382 		atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
1383 		if (cmd->nc_xfer != NULL)
1384 			bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
1385 		return (EIO);
1386 
1387 	case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
1388 		/* Namespace Not Ready */
1389 		atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
1390 		if (cmd->nc_xfer != NULL)
1391 			bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
1392 		return (EIO);
1393 
1394 	default:
1395 		return (nvme_check_unknown_cmd_status(cmd));
1396 	}
1397 }
1398 
1399 static int
1400 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
1401 {
1402 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1403 
1404 	switch (cqe->cqe_sf.sf_sc) {
1405 	case NVME_CQE_SC_SPC_INV_CQ:
1406 		/* Completion Queue Invalid */
1407 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
1408 		atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
1409 		return (EINVAL);
1410 
1411 	case NVME_CQE_SC_SPC_INV_QID:
1412 		/* Invalid Queue Identifier */
1413 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1414 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
1415 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
1416 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1417 		atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
1418 		return (EINVAL);
1419 
1420 	case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
1421 		/* Max Queue Size Exceeded */
1422 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
1423 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1424 		atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
1425 		return (EINVAL);
1426 
1427 	case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
1428 		/* Abort Command Limit Exceeded */
1429 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
1430 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1431 		    "abort command limit exceeded in cmd %p", (void *)cmd);
1432 		return (0);
1433 
1434 	case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
1435 		/* Async Event Request Limit Exceeded */
1436 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
1437 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
1438 		    "async event request limit exceeded in cmd %p",
1439 		    (void *)cmd);
1440 		return (0);
1441 
1442 	case NVME_CQE_SC_SPC_INV_INT_VECT:
1443 		/* Invalid Interrupt Vector */
1444 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
1445 		atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
1446 		return (EINVAL);
1447 
1448 	case NVME_CQE_SC_SPC_INV_LOG_PAGE:
1449 		/* Invalid Log Page */
1450 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
1451 		atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
1452 		return (EINVAL);
1453 
1454 	case NVME_CQE_SC_SPC_INV_FORMAT:
1455 		/* Invalid Format */
1456 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
1457 		atomic_inc_32(&cmd->nc_nvme->n_inv_format);
1458 		if (cmd->nc_xfer != NULL)
1459 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1460 		return (EINVAL);
1461 
1462 	case NVME_CQE_SC_SPC_INV_Q_DEL:
1463 		/* Invalid Queue Deletion */
1464 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
1465 		atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
1466 		return (EINVAL);
1467 
1468 	case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
1469 		/* Conflicting Attributes */
1470 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
1471 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1472 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1473 		atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
1474 		if (cmd->nc_xfer != NULL)
1475 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1476 		return (EINVAL);
1477 
1478 	case NVME_CQE_SC_SPC_NVM_INV_PROT:
1479 		/* Invalid Protection Information */
1480 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
1481 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
1482 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1483 		atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1484 		if (cmd->nc_xfer != NULL)
1485 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1486 		return (EINVAL);
1487 
1488 	case NVME_CQE_SC_SPC_NVM_READONLY:
1489 		/* Write to Read Only Range */
1490 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1491 		atomic_inc_32(&cmd->nc_nvme->n_readonly);
1492 		if (cmd->nc_xfer != NULL)
1493 			bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1494 		return (EROFS);
1495 
1496 	case NVME_CQE_SC_SPC_INV_FW_SLOT:
1497 		/* Invalid Firmware Slot */
1498 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1499 		return (EINVAL);
1500 
1501 	case NVME_CQE_SC_SPC_INV_FW_IMG:
1502 		/* Invalid Firmware Image */
1503 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1504 		return (EINVAL);
1505 
1506 	case NVME_CQE_SC_SPC_FW_RESET:
1507 		/* Conventional Reset Required */
1508 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1509 		return (0);
1510 
1511 	case NVME_CQE_SC_SPC_FW_NSSR:
1512 		/* NVMe Subsystem Reset Required */
1513 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1514 		return (0);
1515 
1516 	case NVME_CQE_SC_SPC_FW_NEXT_RESET:
1517 		/* Activation Requires Reset */
1518 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1519 		return (0);
1520 
1521 	case NVME_CQE_SC_SPC_FW_MTFA:
1522 		/* Activation Requires Maximum Time Violation */
1523 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1524 		return (EAGAIN);
1525 
1526 	case NVME_CQE_SC_SPC_FW_PROHIBITED:
1527 		/* Activation Prohibited */
1528 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_ACTIVATE);
1529 		return (EINVAL);
1530 
1531 	case NVME_CQE_SC_SPC_FW_OVERLAP:
1532 		/* Overlapping Firmware Ranges */
1533 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_FW_IMAGE_LOAD);
1534 		return (EINVAL);
1535 
1536 	default:
1537 		return (nvme_check_unknown_cmd_status(cmd));
1538 	}
1539 }
1540 
1541 static inline int
1542 nvme_check_cmd_status(nvme_cmd_t *cmd)
1543 {
1544 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1545 
1546 	/*
1547 	 * Take a shortcut if the controller is dead, or if
1548 	 * command status indicates no error.
1549 	 */
1550 	if (cmd->nc_nvme->n_dead)
1551 		return (EIO);
1552 
1553 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1554 	    cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1555 		return (0);
1556 
1557 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1558 		return (nvme_check_generic_cmd_status(cmd));
1559 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1560 		return (nvme_check_specific_cmd_status(cmd));
1561 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1562 		return (nvme_check_integrity_cmd_status(cmd));
1563 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1564 		return (nvme_check_vendor_cmd_status(cmd));
1565 
1566 	return (nvme_check_unknown_cmd_status(cmd));
1567 }
1568 
1569 static int
1570 nvme_abort_cmd(nvme_cmd_t *abort_cmd, uint_t sec)
1571 {
1572 	nvme_t *nvme = abort_cmd->nc_nvme;
1573 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1574 	nvme_abort_cmd_t ac = { 0 };
1575 	int ret = 0;
1576 
1577 	sema_p(&nvme->n_abort_sema);
1578 
1579 	ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1580 	ac.b.ac_sqid = abort_cmd->nc_sqid;
1581 
1582 	cmd->nc_sqid = 0;
1583 	cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1584 	cmd->nc_callback = nvme_wakeup_cmd;
1585 	cmd->nc_sqe.sqe_cdw10 = ac.r;
1586 
1587 	/*
1588 	 * Send the ABORT to the hardware. The ABORT command will return _after_
1589 	 * the aborted command has completed (aborted or otherwise), but since
1590 	 * we still hold the aborted command's mutex its callback hasn't been
1591 	 * processed yet.
1592 	 */
1593 	nvme_admin_cmd(cmd, sec);
1594 	sema_v(&nvme->n_abort_sema);
1595 
1596 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1597 		dev_err(nvme->n_dip, CE_WARN,
1598 		    "!ABORT failed with sct = %x, sc = %x",
1599 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1600 		atomic_inc_32(&nvme->n_abort_failed);
1601 	} else {
1602 		dev_err(nvme->n_dip, CE_WARN,
1603 		    "!ABORT of command %d/%d %ssuccessful",
1604 		    abort_cmd->nc_sqe.sqe_cid, abort_cmd->nc_sqid,
1605 		    cmd->nc_cqe.cqe_dw0 & 1 ? "un" : "");
1606 		if ((cmd->nc_cqe.cqe_dw0 & 1) == 0)
1607 			atomic_inc_32(&nvme->n_cmd_aborted);
1608 	}
1609 
1610 	nvme_free_cmd(cmd);
1611 	return (ret);
1612 }
1613 
1614 /*
1615  * nvme_wait_cmd -- wait for command completion or timeout
1616  *
1617  * In case of a serious error or a timeout of the abort command the hardware
1618  * will be declared dead and FMA will be notified.
1619  */
1620 static void
1621 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t sec)
1622 {
1623 	clock_t timeout = ddi_get_lbolt() + drv_usectohz(sec * MICROSEC);
1624 	nvme_t *nvme = cmd->nc_nvme;
1625 	nvme_reg_csts_t csts;
1626 	nvme_qpair_t *qp;
1627 
1628 	ASSERT(mutex_owned(&cmd->nc_mutex));
1629 
1630 	while (!cmd->nc_completed) {
1631 		if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1632 			break;
1633 	}
1634 
1635 	if (cmd->nc_completed)
1636 		return;
1637 
1638 	/*
1639 	 * The command timed out.
1640 	 *
1641 	 * Check controller for fatal status, any errors associated with the
1642 	 * register or DMA handle, or for a double timeout (abort command timed
1643 	 * out). If necessary log a warning and call FMA.
1644 	 */
1645 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1646 	dev_err(nvme->n_dip, CE_WARN, "!command %d/%d timeout, "
1647 	    "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_cid, cmd->nc_sqid,
1648 	    cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1649 	atomic_inc_32(&nvme->n_cmd_timeout);
1650 
1651 	if (csts.b.csts_cfs ||
1652 	    nvme_check_regs_hdl(nvme) ||
1653 	    nvme_check_dma_hdl(cmd->nc_dma) ||
1654 	    cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1655 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1656 		nvme->n_dead = B_TRUE;
1657 	} else if (nvme_abort_cmd(cmd, sec) == 0) {
1658 		/*
1659 		 * If the abort succeeded the command should complete
1660 		 * immediately with an appropriate status.
1661 		 */
1662 		while (!cmd->nc_completed)
1663 			cv_wait(&cmd->nc_cv, &cmd->nc_mutex);
1664 
1665 		return;
1666 	}
1667 
1668 	qp = nvme->n_ioq[cmd->nc_sqid];
1669 
1670 	mutex_enter(&qp->nq_mutex);
1671 	(void) nvme_unqueue_cmd(nvme, qp, cmd->nc_sqe.sqe_cid);
1672 	mutex_exit(&qp->nq_mutex);
1673 
1674 	/*
1675 	 * As we don't know what the presumed dead hardware might still do with
1676 	 * the DMA memory, we'll put the command on the lost commands list if it
1677 	 * has any DMA memory.
1678 	 */
1679 	if (cmd->nc_dma != NULL) {
1680 		mutex_enter(&nvme_lc_mutex);
1681 		list_insert_head(&nvme_lost_cmds, cmd);
1682 		mutex_exit(&nvme_lc_mutex);
1683 	}
1684 }
1685 
1686 static void
1687 nvme_wakeup_cmd(void *arg)
1688 {
1689 	nvme_cmd_t *cmd = arg;
1690 
1691 	mutex_enter(&cmd->nc_mutex);
1692 	cmd->nc_completed = B_TRUE;
1693 	cv_signal(&cmd->nc_cv);
1694 	mutex_exit(&cmd->nc_mutex);
1695 }
1696 
1697 static void
1698 nvme_async_event_task(void *arg)
1699 {
1700 	nvme_cmd_t *cmd = arg;
1701 	nvme_t *nvme = cmd->nc_nvme;
1702 	nvme_error_log_entry_t *error_log = NULL;
1703 	nvme_health_log_t *health_log = NULL;
1704 	size_t logsize = 0;
1705 	nvme_async_event_t event;
1706 
1707 	/*
1708 	 * Check for errors associated with the async request itself. The only
1709 	 * command-specific error is "async event limit exceeded", which
1710 	 * indicates a programming error in the driver and causes a panic in
1711 	 * nvme_check_cmd_status().
1712 	 *
1713 	 * Other possible errors are various scenarios where the async request
1714 	 * was aborted, or internal errors in the device. Internal errors are
1715 	 * reported to FMA, the command aborts need no special handling here.
1716 	 *
1717 	 * And finally, at least qemu nvme does not support async events,
1718 	 * and will return NVME_CQE_SC_GEN_INV_OPC | DNR. If so, we
1719 	 * will avoid posting async events.
1720 	 */
1721 
1722 	if (nvme_check_cmd_status(cmd) != 0) {
1723 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1724 		    "!async event request returned failure, sct = %x, "
1725 		    "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1726 		    cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1727 		    cmd->nc_cqe.cqe_sf.sf_m);
1728 
1729 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1730 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1731 			cmd->nc_nvme->n_dead = B_TRUE;
1732 			ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1733 			    DDI_SERVICE_LOST);
1734 		}
1735 
1736 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1737 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_OPC &&
1738 		    cmd->nc_cqe.cqe_sf.sf_dnr == 1) {
1739 			nvme->n_async_event_supported = B_FALSE;
1740 		}
1741 
1742 		nvme_free_cmd(cmd);
1743 		return;
1744 	}
1745 
1746 
1747 	event.r = cmd->nc_cqe.cqe_dw0;
1748 
1749 	/* Clear CQE and re-submit the async request. */
1750 	bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1751 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1752 
1753 	switch (event.b.ae_type) {
1754 	case NVME_ASYNC_TYPE_ERROR:
1755 		if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1756 			(void) nvme_get_logpage(nvme, B_FALSE,
1757 			    (void **)&error_log, &logsize, event.b.ae_logpage);
1758 		} else {
1759 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1760 			    "async event reply: %d", event.b.ae_logpage);
1761 			atomic_inc_32(&nvme->n_wrong_logpage);
1762 		}
1763 
1764 		switch (event.b.ae_info) {
1765 		case NVME_ASYNC_ERROR_INV_SQ:
1766 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1767 			    "invalid submission queue");
1768 			return;
1769 
1770 		case NVME_ASYNC_ERROR_INV_DBL:
1771 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1772 			    "invalid doorbell write value");
1773 			return;
1774 
1775 		case NVME_ASYNC_ERROR_DIAGFAIL:
1776 			dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1777 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1778 			nvme->n_dead = B_TRUE;
1779 			atomic_inc_32(&nvme->n_diagfail_event);
1780 			break;
1781 
1782 		case NVME_ASYNC_ERROR_PERSISTENT:
1783 			dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1784 			    "device error");
1785 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1786 			nvme->n_dead = B_TRUE;
1787 			atomic_inc_32(&nvme->n_persistent_event);
1788 			break;
1789 
1790 		case NVME_ASYNC_ERROR_TRANSIENT:
1791 			dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1792 			    "device error");
1793 			/* TODO: send ereport */
1794 			atomic_inc_32(&nvme->n_transient_event);
1795 			break;
1796 
1797 		case NVME_ASYNC_ERROR_FW_LOAD:
1798 			dev_err(nvme->n_dip, CE_WARN,
1799 			    "!firmware image load error");
1800 			atomic_inc_32(&nvme->n_fw_load_event);
1801 			break;
1802 		}
1803 		break;
1804 
1805 	case NVME_ASYNC_TYPE_HEALTH:
1806 		if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1807 			(void) nvme_get_logpage(nvme, B_FALSE,
1808 			    (void **)&health_log, &logsize, event.b.ae_logpage,
1809 			    -1);
1810 		} else {
1811 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1812 			    "async event reply: %d", event.b.ae_logpage);
1813 			atomic_inc_32(&nvme->n_wrong_logpage);
1814 		}
1815 
1816 		switch (event.b.ae_info) {
1817 		case NVME_ASYNC_HEALTH_RELIABILITY:
1818 			dev_err(nvme->n_dip, CE_WARN,
1819 			    "!device reliability compromised");
1820 			/* TODO: send ereport */
1821 			atomic_inc_32(&nvme->n_reliability_event);
1822 			break;
1823 
1824 		case NVME_ASYNC_HEALTH_TEMPERATURE:
1825 			dev_err(nvme->n_dip, CE_WARN,
1826 			    "!temperature above threshold");
1827 			/* TODO: send ereport */
1828 			atomic_inc_32(&nvme->n_temperature_event);
1829 			break;
1830 
1831 		case NVME_ASYNC_HEALTH_SPARE:
1832 			dev_err(nvme->n_dip, CE_WARN,
1833 			    "!spare space below threshold");
1834 			/* TODO: send ereport */
1835 			atomic_inc_32(&nvme->n_spare_event);
1836 			break;
1837 		}
1838 		break;
1839 
1840 	case NVME_ASYNC_TYPE_VENDOR:
1841 		dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1842 		    "received, info = %x, logpage = %x", event.b.ae_info,
1843 		    event.b.ae_logpage);
1844 		atomic_inc_32(&nvme->n_vendor_event);
1845 		break;
1846 
1847 	default:
1848 		dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1849 		    "type = %x, info = %x, logpage = %x", event.b.ae_type,
1850 		    event.b.ae_info, event.b.ae_logpage);
1851 		atomic_inc_32(&nvme->n_unknown_event);
1852 		break;
1853 	}
1854 
1855 	if (error_log)
1856 		kmem_free(error_log, logsize);
1857 
1858 	if (health_log)
1859 		kmem_free(health_log, logsize);
1860 }
1861 
1862 static void
1863 nvme_admin_cmd(nvme_cmd_t *cmd, int sec)
1864 {
1865 	mutex_enter(&cmd->nc_mutex);
1866 	nvme_submit_admin_cmd(cmd->nc_nvme->n_adminq, cmd);
1867 	nvme_wait_cmd(cmd, sec);
1868 	mutex_exit(&cmd->nc_mutex);
1869 }
1870 
1871 static void
1872 nvme_async_event(nvme_t *nvme)
1873 {
1874 	nvme_cmd_t *cmd;
1875 
1876 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1877 	cmd->nc_sqid = 0;
1878 	cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1879 	cmd->nc_callback = nvme_async_event_task;
1880 	cmd->nc_dontpanic = B_TRUE;
1881 
1882 	nvme_submit_admin_cmd(nvme->n_adminq, cmd);
1883 }
1884 
1885 static int
1886 nvme_format_nvm(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t lbaf,
1887     boolean_t ms, uint8_t pi, boolean_t pil, uint8_t ses)
1888 {
1889 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1890 	nvme_format_nvm_t format_nvm = { 0 };
1891 	int ret;
1892 
1893 	format_nvm.b.fm_lbaf = lbaf & 0xf;
1894 	format_nvm.b.fm_ms = ms ? 1 : 0;
1895 	format_nvm.b.fm_pi = pi & 0x7;
1896 	format_nvm.b.fm_pil = pil ? 1 : 0;
1897 	format_nvm.b.fm_ses = ses & 0x7;
1898 
1899 	cmd->nc_sqid = 0;
1900 	cmd->nc_callback = nvme_wakeup_cmd;
1901 	cmd->nc_sqe.sqe_nsid = nsid;
1902 	cmd->nc_sqe.sqe_opc = NVME_OPC_NVM_FORMAT;
1903 	cmd->nc_sqe.sqe_cdw10 = format_nvm.r;
1904 
1905 	/*
1906 	 * Some devices like Samsung SM951 don't allow formatting of all
1907 	 * namespaces in one command. Handle that gracefully.
1908 	 */
1909 	if (nsid == (uint32_t)-1)
1910 		cmd->nc_dontpanic = B_TRUE;
1911 	/*
1912 	 * If this format request was initiated by the user, then don't allow a
1913 	 * programmer error to panic the system.
1914 	 */
1915 	if (user)
1916 		cmd->nc_dontpanic = B_TRUE;
1917 
1918 	nvme_admin_cmd(cmd, nvme_format_cmd_timeout);
1919 
1920 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
1921 		dev_err(nvme->n_dip, CE_WARN,
1922 		    "!FORMAT failed with sct = %x, sc = %x",
1923 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1924 	}
1925 
1926 	nvme_free_cmd(cmd);
1927 	return (ret);
1928 }
1929 
1930 static int
1931 nvme_get_logpage(nvme_t *nvme, boolean_t user, void **buf, size_t *bufsize,
1932     uint8_t logpage, ...)
1933 {
1934 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1935 	nvme_getlogpage_t getlogpage = { 0 };
1936 	va_list ap;
1937 	int ret;
1938 
1939 	va_start(ap, logpage);
1940 
1941 	cmd->nc_sqid = 0;
1942 	cmd->nc_callback = nvme_wakeup_cmd;
1943 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1944 
1945 	if (user)
1946 		cmd->nc_dontpanic = B_TRUE;
1947 
1948 	getlogpage.b.lp_lid = logpage;
1949 
1950 	switch (logpage) {
1951 	case NVME_LOGPAGE_ERROR:
1952 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1953 		/*
1954 		 * The GET LOG PAGE command can use at most 2 pages to return
1955 		 * data, PRP lists are not supported.
1956 		 */
1957 		*bufsize = MIN(2 * nvme->n_pagesize,
1958 		    nvme->n_error_log_len * sizeof (nvme_error_log_entry_t));
1959 		break;
1960 
1961 	case NVME_LOGPAGE_HEALTH:
1962 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1963 		*bufsize = sizeof (nvme_health_log_t);
1964 		break;
1965 
1966 	case NVME_LOGPAGE_FWSLOT:
1967 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1968 		*bufsize = sizeof (nvme_fwslot_log_t);
1969 		break;
1970 
1971 	default:
1972 		dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1973 		    logpage);
1974 		atomic_inc_32(&nvme->n_unknown_logpage);
1975 		ret = EINVAL;
1976 		goto fail;
1977 	}
1978 
1979 	va_end(ap);
1980 
1981 	getlogpage.b.lp_numd = *bufsize / sizeof (uint32_t) - 1;
1982 
1983 	cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1984 
1985 	if (nvme_zalloc_dma(nvme, *bufsize,
1986 	    DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1987 		dev_err(nvme->n_dip, CE_WARN,
1988 		    "!nvme_zalloc_dma failed for GET LOG PAGE");
1989 		ret = ENOMEM;
1990 		goto fail;
1991 	}
1992 
1993 	if (cmd->nc_dma->nd_ncookie > 2) {
1994 		dev_err(nvme->n_dip, CE_WARN,
1995 		    "!too many DMA cookies for GET LOG PAGE");
1996 		atomic_inc_32(&nvme->n_too_many_cookies);
1997 		ret = ENOMEM;
1998 		goto fail;
1999 	}
2000 
2001 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
2002 	if (cmd->nc_dma->nd_ncookie > 1) {
2003 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2004 		    &cmd->nc_dma->nd_cookie);
2005 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
2006 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2007 	}
2008 
2009 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2010 
2011 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2012 		dev_err(nvme->n_dip, CE_WARN,
2013 		    "!GET LOG PAGE failed with sct = %x, sc = %x",
2014 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2015 		goto fail;
2016 	}
2017 
2018 	*buf = kmem_alloc(*bufsize, KM_SLEEP);
2019 	bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2020 
2021 fail:
2022 	nvme_free_cmd(cmd);
2023 
2024 	return (ret);
2025 }
2026 
2027 static int
2028 nvme_identify(nvme_t *nvme, boolean_t user, uint32_t nsid, void **buf)
2029 {
2030 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2031 	int ret;
2032 
2033 	if (buf == NULL)
2034 		return (EINVAL);
2035 
2036 	cmd->nc_sqid = 0;
2037 	cmd->nc_callback = nvme_wakeup_cmd;
2038 	cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
2039 	cmd->nc_sqe.sqe_nsid = nsid;
2040 	cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
2041 
2042 	if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
2043 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2044 		dev_err(nvme->n_dip, CE_WARN,
2045 		    "!nvme_zalloc_dma failed for IDENTIFY");
2046 		ret = ENOMEM;
2047 		goto fail;
2048 	}
2049 
2050 	if (cmd->nc_dma->nd_ncookie > 2) {
2051 		dev_err(nvme->n_dip, CE_WARN,
2052 		    "!too many DMA cookies for IDENTIFY");
2053 		atomic_inc_32(&nvme->n_too_many_cookies);
2054 		ret = ENOMEM;
2055 		goto fail;
2056 	}
2057 
2058 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
2059 	if (cmd->nc_dma->nd_ncookie > 1) {
2060 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2061 		    &cmd->nc_dma->nd_cookie);
2062 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
2063 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2064 	}
2065 
2066 	if (user)
2067 		cmd->nc_dontpanic = B_TRUE;
2068 
2069 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2070 
2071 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2072 		dev_err(nvme->n_dip, CE_WARN,
2073 		    "!IDENTIFY failed with sct = %x, sc = %x",
2074 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2075 		goto fail;
2076 	}
2077 
2078 	*buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
2079 	bcopy(cmd->nc_dma->nd_memp, *buf, NVME_IDENTIFY_BUFSIZE);
2080 
2081 fail:
2082 	nvme_free_cmd(cmd);
2083 
2084 	return (ret);
2085 }
2086 
2087 static int
2088 nvme_set_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2089     uint32_t val, uint32_t *res)
2090 {
2091 	_NOTE(ARGUNUSED(nsid));
2092 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2093 	int ret = EINVAL;
2094 
2095 	ASSERT(res != NULL);
2096 
2097 	cmd->nc_sqid = 0;
2098 	cmd->nc_callback = nvme_wakeup_cmd;
2099 	cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
2100 	cmd->nc_sqe.sqe_cdw10 = feature;
2101 	cmd->nc_sqe.sqe_cdw11 = val;
2102 
2103 	if (user)
2104 		cmd->nc_dontpanic = B_TRUE;
2105 
2106 	switch (feature) {
2107 	case NVME_FEAT_WRITE_CACHE:
2108 		if (!nvme->n_write_cache_present)
2109 			goto fail;
2110 		break;
2111 
2112 	case NVME_FEAT_NQUEUES:
2113 		break;
2114 
2115 	default:
2116 		goto fail;
2117 	}
2118 
2119 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2120 
2121 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2122 		dev_err(nvme->n_dip, CE_WARN,
2123 		    "!SET FEATURES %d failed with sct = %x, sc = %x",
2124 		    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2125 		    cmd->nc_cqe.cqe_sf.sf_sc);
2126 		goto fail;
2127 	}
2128 
2129 	*res = cmd->nc_cqe.cqe_dw0;
2130 
2131 fail:
2132 	nvme_free_cmd(cmd);
2133 	return (ret);
2134 }
2135 
2136 static int
2137 nvme_get_features(nvme_t *nvme, boolean_t user, uint32_t nsid, uint8_t feature,
2138     uint32_t *res, void **buf, size_t *bufsize)
2139 {
2140 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2141 	int ret = EINVAL;
2142 
2143 	ASSERT(res != NULL);
2144 
2145 	if (bufsize != NULL)
2146 		*bufsize = 0;
2147 
2148 	cmd->nc_sqid = 0;
2149 	cmd->nc_callback = nvme_wakeup_cmd;
2150 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_FEATURES;
2151 	cmd->nc_sqe.sqe_cdw10 = feature;
2152 	cmd->nc_sqe.sqe_cdw11 = *res;
2153 
2154 	/*
2155 	 * For some of the optional features there doesn't seem to be a method
2156 	 * of detecting whether it is supported other than using it.  This will
2157 	 * cause "Invalid Field in Command" error, which is normally considered
2158 	 * a programming error.  Set the nc_dontpanic flag to override the panic
2159 	 * in nvme_check_generic_cmd_status().
2160 	 */
2161 	switch (feature) {
2162 	case NVME_FEAT_ARBITRATION:
2163 	case NVME_FEAT_POWER_MGMT:
2164 	case NVME_FEAT_TEMPERATURE:
2165 	case NVME_FEAT_ERROR:
2166 	case NVME_FEAT_NQUEUES:
2167 	case NVME_FEAT_INTR_COAL:
2168 	case NVME_FEAT_INTR_VECT:
2169 	case NVME_FEAT_WRITE_ATOM:
2170 	case NVME_FEAT_ASYNC_EVENT:
2171 		break;
2172 
2173 	case NVME_FEAT_WRITE_CACHE:
2174 		if (!nvme->n_write_cache_present)
2175 			goto fail;
2176 		break;
2177 
2178 	case NVME_FEAT_LBA_RANGE:
2179 		if (!nvme->n_lba_range_supported)
2180 			goto fail;
2181 
2182 		cmd->nc_dontpanic = B_TRUE;
2183 		cmd->nc_sqe.sqe_nsid = nsid;
2184 		ASSERT(bufsize != NULL);
2185 		*bufsize = NVME_LBA_RANGE_BUFSIZE;
2186 		break;
2187 
2188 	case NVME_FEAT_AUTO_PST:
2189 		if (!nvme->n_auto_pst_supported)
2190 			goto fail;
2191 
2192 		ASSERT(bufsize != NULL);
2193 		*bufsize = NVME_AUTO_PST_BUFSIZE;
2194 		break;
2195 
2196 	case NVME_FEAT_PROGRESS:
2197 		if (!nvme->n_progress_supported)
2198 			goto fail;
2199 
2200 		cmd->nc_dontpanic = B_TRUE;
2201 		break;
2202 
2203 	default:
2204 		goto fail;
2205 	}
2206 
2207 	if (user)
2208 		cmd->nc_dontpanic = B_TRUE;
2209 
2210 	if (bufsize != NULL && *bufsize != 0) {
2211 		if (nvme_zalloc_dma(nvme, *bufsize, DDI_DMA_READ,
2212 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2213 			dev_err(nvme->n_dip, CE_WARN,
2214 			    "!nvme_zalloc_dma failed for GET FEATURES");
2215 			ret = ENOMEM;
2216 			goto fail;
2217 		}
2218 
2219 		if (cmd->nc_dma->nd_ncookie > 2) {
2220 			dev_err(nvme->n_dip, CE_WARN,
2221 			    "!too many DMA cookies for GET FEATURES");
2222 			atomic_inc_32(&nvme->n_too_many_cookies);
2223 			ret = ENOMEM;
2224 			goto fail;
2225 		}
2226 
2227 		cmd->nc_sqe.sqe_dptr.d_prp[0] =
2228 		    cmd->nc_dma->nd_cookie.dmac_laddress;
2229 		if (cmd->nc_dma->nd_ncookie > 1) {
2230 			ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
2231 			    &cmd->nc_dma->nd_cookie);
2232 			cmd->nc_sqe.sqe_dptr.d_prp[1] =
2233 			    cmd->nc_dma->nd_cookie.dmac_laddress;
2234 		}
2235 	}
2236 
2237 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2238 
2239 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2240 		boolean_t known = B_TRUE;
2241 
2242 		/* Check if this is unsupported optional feature */
2243 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
2244 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INV_FLD) {
2245 			switch (feature) {
2246 			case NVME_FEAT_LBA_RANGE:
2247 				nvme->n_lba_range_supported = B_FALSE;
2248 				break;
2249 			case NVME_FEAT_PROGRESS:
2250 				nvme->n_progress_supported = B_FALSE;
2251 				break;
2252 			default:
2253 				known = B_FALSE;
2254 				break;
2255 			}
2256 		} else {
2257 			known = B_FALSE;
2258 		}
2259 
2260 		/* Report the error otherwise */
2261 		if (!known) {
2262 			dev_err(nvme->n_dip, CE_WARN,
2263 			    "!GET FEATURES %d failed with sct = %x, sc = %x",
2264 			    feature, cmd->nc_cqe.cqe_sf.sf_sct,
2265 			    cmd->nc_cqe.cqe_sf.sf_sc);
2266 		}
2267 
2268 		goto fail;
2269 	}
2270 
2271 	if (bufsize != NULL && *bufsize != 0) {
2272 		ASSERT(buf != NULL);
2273 		*buf = kmem_alloc(*bufsize, KM_SLEEP);
2274 		bcopy(cmd->nc_dma->nd_memp, *buf, *bufsize);
2275 	}
2276 
2277 	*res = cmd->nc_cqe.cqe_dw0;
2278 
2279 fail:
2280 	nvme_free_cmd(cmd);
2281 	return (ret);
2282 }
2283 
2284 static int
2285 nvme_write_cache_set(nvme_t *nvme, boolean_t enable)
2286 {
2287 	nvme_write_cache_t nwc = { 0 };
2288 
2289 	if (enable)
2290 		nwc.b.wc_wce = 1;
2291 
2292 	return (nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_WRITE_CACHE,
2293 	    nwc.r, &nwc.r));
2294 }
2295 
2296 static int
2297 nvme_set_nqueues(nvme_t *nvme)
2298 {
2299 	nvme_nqueues_t nq = { 0 };
2300 	int ret;
2301 
2302 	/*
2303 	 * The default is to allocate one completion queue per vector.
2304 	 */
2305 	if (nvme->n_completion_queues == -1)
2306 		nvme->n_completion_queues = nvme->n_intr_cnt;
2307 
2308 	/*
2309 	 * There is no point in having more compeletion queues than
2310 	 * interrupt vectors.
2311 	 */
2312 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2313 	    nvme->n_intr_cnt);
2314 
2315 	/*
2316 	 * The default is to use one submission queue per completion queue.
2317 	 */
2318 	if (nvme->n_submission_queues == -1)
2319 		nvme->n_submission_queues = nvme->n_completion_queues;
2320 
2321 	/*
2322 	 * There is no point in having more compeletion queues than
2323 	 * submission queues.
2324 	 */
2325 	nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2326 	    nvme->n_submission_queues);
2327 
2328 	ASSERT(nvme->n_submission_queues > 0);
2329 	ASSERT(nvme->n_completion_queues > 0);
2330 
2331 	nq.b.nq_nsq = nvme->n_submission_queues - 1;
2332 	nq.b.nq_ncq = nvme->n_completion_queues - 1;
2333 
2334 	ret = nvme_set_features(nvme, B_FALSE, 0, NVME_FEAT_NQUEUES, nq.r,
2335 	    &nq.r);
2336 
2337 	if (ret == 0) {
2338 		/*
2339 		 * Never use more than the requested number of queues.
2340 		 */
2341 		nvme->n_submission_queues = MIN(nvme->n_submission_queues,
2342 		    nq.b.nq_nsq + 1);
2343 		nvme->n_completion_queues = MIN(nvme->n_completion_queues,
2344 		    nq.b.nq_ncq + 1);
2345 	}
2346 
2347 	return (ret);
2348 }
2349 
2350 static int
2351 nvme_create_completion_queue(nvme_t *nvme, nvme_cq_t *cq)
2352 {
2353 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2354 	nvme_create_queue_dw10_t dw10 = { 0 };
2355 	nvme_create_cq_dw11_t c_dw11 = { 0 };
2356 	int ret;
2357 
2358 	dw10.b.q_qid = cq->ncq_id;
2359 	dw10.b.q_qsize = cq->ncq_nentry - 1;
2360 
2361 	c_dw11.b.cq_pc = 1;
2362 	c_dw11.b.cq_ien = 1;
2363 	c_dw11.b.cq_iv = cq->ncq_id % nvme->n_intr_cnt;
2364 
2365 	cmd->nc_sqid = 0;
2366 	cmd->nc_callback = nvme_wakeup_cmd;
2367 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
2368 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2369 	cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
2370 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cq->ncq_dma->nd_cookie.dmac_laddress;
2371 
2372 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2373 
2374 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2375 		dev_err(nvme->n_dip, CE_WARN,
2376 		    "!CREATE CQUEUE failed with sct = %x, sc = %x",
2377 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2378 	}
2379 
2380 	nvme_free_cmd(cmd);
2381 
2382 	return (ret);
2383 }
2384 
2385 static int
2386 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
2387 {
2388 	nvme_cq_t *cq = qp->nq_cq;
2389 	nvme_cmd_t *cmd;
2390 	nvme_create_queue_dw10_t dw10 = { 0 };
2391 	nvme_create_sq_dw11_t s_dw11 = { 0 };
2392 	int ret;
2393 
2394 	/*
2395 	 * It is possible to have more qpairs than completion queues,
2396 	 * and when the idx > ncq_id, that completion queue is shared
2397 	 * and has already been created.
2398 	 */
2399 	if (idx <= cq->ncq_id &&
2400 	    nvme_create_completion_queue(nvme, cq) != DDI_SUCCESS)
2401 		return (DDI_FAILURE);
2402 
2403 	dw10.b.q_qid = idx;
2404 	dw10.b.q_qsize = qp->nq_nentry - 1;
2405 
2406 	s_dw11.b.sq_pc = 1;
2407 	s_dw11.b.sq_cqid = cq->ncq_id;
2408 
2409 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
2410 	cmd->nc_sqid = 0;
2411 	cmd->nc_callback = nvme_wakeup_cmd;
2412 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
2413 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
2414 	cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
2415 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
2416 
2417 	nvme_admin_cmd(cmd, nvme_admin_cmd_timeout);
2418 
2419 	if ((ret = nvme_check_cmd_status(cmd)) != 0) {
2420 		dev_err(nvme->n_dip, CE_WARN,
2421 		    "!CREATE SQUEUE failed with sct = %x, sc = %x",
2422 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
2423 	}
2424 
2425 	nvme_free_cmd(cmd);
2426 
2427 	return (ret);
2428 }
2429 
2430 static boolean_t
2431 nvme_reset(nvme_t *nvme, boolean_t quiesce)
2432 {
2433 	nvme_reg_csts_t csts;
2434 	int i;
2435 
2436 	nvme_put32(nvme, NVME_REG_CC, 0);
2437 
2438 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2439 	if (csts.b.csts_rdy == 1) {
2440 		nvme_put32(nvme, NVME_REG_CC, 0);
2441 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2442 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2443 			if (csts.b.csts_rdy == 0)
2444 				break;
2445 
2446 			if (quiesce)
2447 				drv_usecwait(50000);
2448 			else
2449 				delay(drv_usectohz(50000));
2450 		}
2451 	}
2452 
2453 	nvme_put32(nvme, NVME_REG_AQA, 0);
2454 	nvme_put32(nvme, NVME_REG_ASQ, 0);
2455 	nvme_put32(nvme, NVME_REG_ACQ, 0);
2456 
2457 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2458 	return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
2459 }
2460 
2461 static void
2462 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
2463 {
2464 	nvme_reg_cc_t cc;
2465 	nvme_reg_csts_t csts;
2466 	int i;
2467 
2468 	ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
2469 
2470 	cc.r = nvme_get32(nvme, NVME_REG_CC);
2471 	cc.b.cc_shn = mode & 0x3;
2472 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2473 
2474 	for (i = 0; i != 10; i++) {
2475 		csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2476 		if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
2477 			break;
2478 
2479 		if (quiesce)
2480 			drv_usecwait(100000);
2481 		else
2482 			delay(drv_usectohz(100000));
2483 	}
2484 }
2485 
2486 
2487 static void
2488 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
2489 {
2490 	/*
2491 	 * Section 7.7 of the spec describes how to get a unique ID for
2492 	 * the controller: the vendor ID, the model name and the serial
2493 	 * number shall be unique when combined.
2494 	 *
2495 	 * If a namespace has no EUI64 we use the above and add the hex
2496 	 * namespace ID to get a unique ID for the namespace.
2497 	 */
2498 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2499 	char serial[sizeof (nvme->n_idctl->id_serial) + 1];
2500 
2501 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2502 	bcopy(nvme->n_idctl->id_serial, serial,
2503 	    sizeof (nvme->n_idctl->id_serial));
2504 
2505 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2506 	serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
2507 
2508 	nvme->n_ns[nsid - 1].ns_devid = kmem_asprintf("%4X-%s-%s-%X",
2509 	    nvme->n_idctl->id_vid, model, serial, nsid);
2510 }
2511 
2512 static int
2513 nvme_init_ns(nvme_t *nvme, int nsid)
2514 {
2515 	nvme_namespace_t *ns = &nvme->n_ns[nsid - 1];
2516 	nvme_identify_nsid_t *idns;
2517 	boolean_t was_ignored;
2518 	int last_rp;
2519 
2520 	ns->ns_nvme = nvme;
2521 
2522 	if (nvme_identify(nvme, B_FALSE, nsid, (void **)&idns) != 0) {
2523 		dev_err(nvme->n_dip, CE_WARN,
2524 		    "!failed to identify namespace %d", nsid);
2525 		return (DDI_FAILURE);
2526 	}
2527 
2528 	ns->ns_idns = idns;
2529 	ns->ns_id = nsid;
2530 	ns->ns_block_count = idns->id_nsize;
2531 	ns->ns_block_size =
2532 	    1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2533 	ns->ns_best_block_size = ns->ns_block_size;
2534 
2535 	/*
2536 	 * Get the EUI64 if present. Use it for devid and device node names.
2537 	 */
2538 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2539 		bcopy(idns->id_eui64, ns->ns_eui64, sizeof (ns->ns_eui64));
2540 
2541 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
2542 	if (*(uint64_t *)ns->ns_eui64 != 0) {
2543 		uint8_t *eui64 = ns->ns_eui64;
2544 
2545 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name),
2546 		    "%02x%02x%02x%02x%02x%02x%02x%02x",
2547 		    eui64[0], eui64[1], eui64[2], eui64[3],
2548 		    eui64[4], eui64[5], eui64[6], eui64[7]);
2549 	} else {
2550 		(void) snprintf(ns->ns_name, sizeof (ns->ns_name), "%d",
2551 		    ns->ns_id);
2552 
2553 		nvme_prepare_devid(nvme, ns->ns_id);
2554 	}
2555 
2556 	/*
2557 	 * Find the LBA format with no metadata and the best relative
2558 	 * performance. A value of 3 means "degraded", 0 is best.
2559 	 */
2560 	last_rp = 3;
2561 	for (int j = 0; j <= idns->id_nlbaf; j++) {
2562 		if (idns->id_lbaf[j].lbaf_lbads == 0)
2563 			break;
2564 		if (idns->id_lbaf[j].lbaf_ms != 0)
2565 			continue;
2566 		if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2567 			continue;
2568 		last_rp = idns->id_lbaf[j].lbaf_rp;
2569 		ns->ns_best_block_size =
2570 		    1 << idns->id_lbaf[j].lbaf_lbads;
2571 	}
2572 
2573 	if (ns->ns_best_block_size < nvme->n_min_block_size)
2574 		ns->ns_best_block_size = nvme->n_min_block_size;
2575 
2576 	was_ignored = ns->ns_ignore;
2577 
2578 	/*
2579 	 * We currently don't support namespaces that use either:
2580 	 * - protection information
2581 	 * - illegal block size (< 512)
2582 	 */
2583 	if (idns->id_dps.dp_pinfo) {
2584 		dev_err(nvme->n_dip, CE_WARN,
2585 		    "!ignoring namespace %d, unsupported feature: "
2586 		    "pinfo = %d", nsid, idns->id_dps.dp_pinfo);
2587 		ns->ns_ignore = B_TRUE;
2588 	} else if (ns->ns_block_size < 512) {
2589 		dev_err(nvme->n_dip, CE_WARN,
2590 		    "!ignoring namespace %d, unsupported block size %"PRIu64,
2591 		    nsid, (uint64_t)ns->ns_block_size);
2592 		ns->ns_ignore = B_TRUE;
2593 	} else {
2594 		ns->ns_ignore = B_FALSE;
2595 	}
2596 
2597 	/*
2598 	 * Keep a count of namespaces which are attachable.
2599 	 * See comments in nvme_bd_driveinfo() to understand its effect.
2600 	 */
2601 	if (was_ignored) {
2602 		/*
2603 		 * Previously ignored, but now not. Count it.
2604 		 */
2605 		if (!ns->ns_ignore)
2606 			nvme->n_namespaces_attachable++;
2607 	} else {
2608 		/*
2609 		 * Wasn't ignored previously, but now needs to be.
2610 		 * Discount it.
2611 		 */
2612 		if (ns->ns_ignore)
2613 			nvme->n_namespaces_attachable--;
2614 	}
2615 
2616 	return (DDI_SUCCESS);
2617 }
2618 
2619 static int
2620 nvme_init(nvme_t *nvme)
2621 {
2622 	nvme_reg_cc_t cc = { 0 };
2623 	nvme_reg_aqa_t aqa = { 0 };
2624 	nvme_reg_asq_t asq = { 0 };
2625 	nvme_reg_acq_t acq = { 0 };
2626 	nvme_reg_cap_t cap;
2627 	nvme_reg_vs_t vs;
2628 	nvme_reg_csts_t csts;
2629 	int i = 0;
2630 	uint16_t nqueues;
2631 	uint_t tq_threads;
2632 	char model[sizeof (nvme->n_idctl->id_model) + 1];
2633 	char *vendor, *product;
2634 
2635 	/* Check controller version */
2636 	vs.r = nvme_get32(nvme, NVME_REG_VS);
2637 	nvme->n_version.v_major = vs.b.vs_mjr;
2638 	nvme->n_version.v_minor = vs.b.vs_mnr;
2639 	dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
2640 	    nvme->n_version.v_major, nvme->n_version.v_minor);
2641 
2642 	if (nvme->n_version.v_major > nvme_version_major) {
2643 		dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.x",
2644 		    nvme_version_major);
2645 		if (nvme->n_strict_version)
2646 			goto fail;
2647 	}
2648 
2649 	/* retrieve controller configuration */
2650 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
2651 
2652 	if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
2653 		dev_err(nvme->n_dip, CE_WARN,
2654 		    "!NVM command set not supported by hardware");
2655 		goto fail;
2656 	}
2657 
2658 	nvme->n_nssr_supported = cap.b.cap_nssrs;
2659 	nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
2660 	nvme->n_timeout = cap.b.cap_to;
2661 	nvme->n_arbitration_mechanisms = cap.b.cap_ams;
2662 	nvme->n_cont_queues_reqd = cap.b.cap_cqr;
2663 	nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
2664 
2665 	/*
2666 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
2667 	 * the base page size of 4k (1<<12), so add 12 here to get the real
2668 	 * page size value.
2669 	 */
2670 	nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
2671 	    cap.b.cap_mpsmax + 12);
2672 	nvme->n_pagesize = 1UL << (nvme->n_pageshift);
2673 
2674 	/*
2675 	 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
2676 	 */
2677 	nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
2678 	nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2679 
2680 	/*
2681 	 * Set up PRP DMA to transfer 1 page-aligned page at a time.
2682 	 * Maxxfer may be increased after we identified the controller limits.
2683 	 */
2684 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
2685 	nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
2686 	nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
2687 	nvme->n_prp_dma_attr.dma_attr_seg = nvme->n_pagesize - 1;
2688 
2689 	/*
2690 	 * Reset controller if it's still in ready state.
2691 	 */
2692 	if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
2693 		dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
2694 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2695 		nvme->n_dead = B_TRUE;
2696 		goto fail;
2697 	}
2698 
2699 	/*
2700 	 * Create the cq array with one completion queue to be assigned
2701 	 * to the admin queue pair and a limited number of taskqs (4).
2702 	 */
2703 	if (nvme_create_cq_array(nvme, 1, nvme->n_admin_queue_len, 4) !=
2704 	    DDI_SUCCESS) {
2705 		dev_err(nvme->n_dip, CE_WARN,
2706 		    "!failed to pre-allocate admin completion queue");
2707 		goto fail;
2708 	}
2709 	/*
2710 	 * Create the admin queue pair.
2711 	 */
2712 	if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
2713 	    != DDI_SUCCESS) {
2714 		dev_err(nvme->n_dip, CE_WARN,
2715 		    "!unable to allocate admin qpair");
2716 		goto fail;
2717 	}
2718 	nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
2719 	nvme->n_ioq[0] = nvme->n_adminq;
2720 
2721 	nvme->n_progress |= NVME_ADMIN_QUEUE;
2722 
2723 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2724 	    "admin-queue-len", nvme->n_admin_queue_len);
2725 
2726 	aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
2727 	asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
2728 	acq = nvme->n_adminq->nq_cq->ncq_dma->nd_cookie.dmac_laddress;
2729 
2730 	ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
2731 	ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
2732 
2733 	nvme_put32(nvme, NVME_REG_AQA, aqa.r);
2734 	nvme_put64(nvme, NVME_REG_ASQ, asq);
2735 	nvme_put64(nvme, NVME_REG_ACQ, acq);
2736 
2737 	cc.b.cc_ams = 0;	/* use Round-Robin arbitration */
2738 	cc.b.cc_css = 0;	/* use NVM command set */
2739 	cc.b.cc_mps = nvme->n_pageshift - 12;
2740 	cc.b.cc_shn = 0;	/* no shutdown in progress */
2741 	cc.b.cc_en = 1;		/* enable controller */
2742 	cc.b.cc_iosqes = 6;	/* submission queue entry is 2^6 bytes long */
2743 	cc.b.cc_iocqes = 4;	/* completion queue entry is 2^4 bytes long */
2744 
2745 	nvme_put32(nvme, NVME_REG_CC, cc.r);
2746 
2747 	/*
2748 	 * Wait for the controller to become ready.
2749 	 */
2750 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2751 	if (csts.b.csts_rdy == 0) {
2752 		for (i = 0; i != nvme->n_timeout * 10; i++) {
2753 			delay(drv_usectohz(50000));
2754 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
2755 
2756 			if (csts.b.csts_cfs == 1) {
2757 				dev_err(nvme->n_dip, CE_WARN,
2758 				    "!controller fatal status at init");
2759 				ddi_fm_service_impact(nvme->n_dip,
2760 				    DDI_SERVICE_LOST);
2761 				nvme->n_dead = B_TRUE;
2762 				goto fail;
2763 			}
2764 
2765 			if (csts.b.csts_rdy == 1)
2766 				break;
2767 		}
2768 	}
2769 
2770 	if (csts.b.csts_rdy == 0) {
2771 		dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
2772 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
2773 		nvme->n_dead = B_TRUE;
2774 		goto fail;
2775 	}
2776 
2777 	/*
2778 	 * Assume an abort command limit of 1. We'll destroy and re-init
2779 	 * that later when we know the true abort command limit.
2780 	 */
2781 	sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
2782 
2783 	/*
2784 	 * Setup initial interrupt for admin queue.
2785 	 */
2786 	if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX, 1)
2787 	    != DDI_SUCCESS) &&
2788 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI, 1)
2789 	    != DDI_SUCCESS) &&
2790 	    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
2791 	    != DDI_SUCCESS)) {
2792 		dev_err(nvme->n_dip, CE_WARN,
2793 		    "!failed to setup initial interrupt");
2794 		goto fail;
2795 	}
2796 
2797 	/*
2798 	 * Post an asynchronous event command to catch errors.
2799 	 * We assume the asynchronous events are supported as required by
2800 	 * specification (Figure 40 in section 5 of NVMe 1.2).
2801 	 * However, since at least qemu does not follow the specification,
2802 	 * we need a mechanism to protect ourselves.
2803 	 */
2804 	nvme->n_async_event_supported = B_TRUE;
2805 	nvme_async_event(nvme);
2806 
2807 	/*
2808 	 * Identify Controller
2809 	 */
2810 	if (nvme_identify(nvme, B_FALSE, 0, (void **)&nvme->n_idctl) != 0) {
2811 		dev_err(nvme->n_dip, CE_WARN,
2812 		    "!failed to identify controller");
2813 		goto fail;
2814 	}
2815 
2816 	/*
2817 	 * Get Vendor & Product ID
2818 	 */
2819 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
2820 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
2821 	sata_split_model(model, &vendor, &product);
2822 
2823 	if (vendor == NULL)
2824 		nvme->n_vendor = strdup("NVMe");
2825 	else
2826 		nvme->n_vendor = strdup(vendor);
2827 
2828 	nvme->n_product = strdup(product);
2829 
2830 	/*
2831 	 * Get controller limits.
2832 	 */
2833 	nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
2834 	    MIN(nvme->n_admin_queue_len / 10,
2835 	    MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
2836 
2837 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2838 	    "async-event-limit", nvme->n_async_event_limit);
2839 
2840 	nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
2841 
2842 	/*
2843 	 * Reinitialize the semaphore with the true abort command limit
2844 	 * supported by the hardware. It's not necessary to disable interrupts
2845 	 * as only command aborts use the semaphore, and no commands are
2846 	 * executed or aborted while we're here.
2847 	 */
2848 	sema_destroy(&nvme->n_abort_sema);
2849 	sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
2850 	    SEMA_DRIVER, NULL);
2851 
2852 	nvme->n_progress |= NVME_CTRL_LIMITS;
2853 
2854 	if (nvme->n_idctl->id_mdts == 0)
2855 		nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
2856 	else
2857 		nvme->n_max_data_transfer_size =
2858 		    1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
2859 
2860 	nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
2861 
2862 	/*
2863 	 * Limit n_max_data_transfer_size to what we can handle in one PRP.
2864 	 * Chained PRPs are currently unsupported.
2865 	 *
2866 	 * This is a no-op on hardware which doesn't support a transfer size
2867 	 * big enough to require chained PRPs.
2868 	 */
2869 	nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
2870 	    (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
2871 
2872 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
2873 
2874 	/*
2875 	 * Make sure the minimum/maximum queue entry sizes are not
2876 	 * larger/smaller than the default.
2877 	 */
2878 
2879 	if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
2880 	    ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
2881 	    ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
2882 	    ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
2883 		goto fail;
2884 
2885 	/*
2886 	 * Check for the presence of a Volatile Write Cache. If present,
2887 	 * enable or disable based on the value of the property
2888 	 * volatile-write-cache-enable (default is enabled).
2889 	 */
2890 	nvme->n_write_cache_present =
2891 	    nvme->n_idctl->id_vwc.vwc_present == 0 ? B_FALSE : B_TRUE;
2892 
2893 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2894 	    "volatile-write-cache-present",
2895 	    nvme->n_write_cache_present ? 1 : 0);
2896 
2897 	if (!nvme->n_write_cache_present) {
2898 		nvme->n_write_cache_enabled = B_FALSE;
2899 	} else if (nvme_write_cache_set(nvme, nvme->n_write_cache_enabled)
2900 	    != 0) {
2901 		dev_err(nvme->n_dip, CE_WARN,
2902 		    "!failed to %sable volatile write cache",
2903 		    nvme->n_write_cache_enabled ? "en" : "dis");
2904 		/*
2905 		 * Assume the cache is (still) enabled.
2906 		 */
2907 		nvme->n_write_cache_enabled = B_TRUE;
2908 	}
2909 
2910 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
2911 	    "volatile-write-cache-enable",
2912 	    nvme->n_write_cache_enabled ? 1 : 0);
2913 
2914 	/*
2915 	 * Assume LBA Range Type feature is supported. If it isn't this
2916 	 * will be set to B_FALSE by nvme_get_features().
2917 	 */
2918 	nvme->n_lba_range_supported = B_TRUE;
2919 
2920 	/*
2921 	 * Check support for Autonomous Power State Transition.
2922 	 */
2923 	if (NVME_VERSION_ATLEAST(&nvme->n_version, 1, 1))
2924 		nvme->n_auto_pst_supported =
2925 		    nvme->n_idctl->id_apsta.ap_sup == 0 ? B_FALSE : B_TRUE;
2926 
2927 	/*
2928 	 * Assume Software Progress Marker feature is supported.  If it isn't
2929 	 * this will be set to B_FALSE by nvme_get_features().
2930 	 */
2931 	nvme->n_progress_supported = B_TRUE;
2932 
2933 	/*
2934 	 * Identify Namespaces
2935 	 */
2936 	nvme->n_namespace_count = nvme->n_idctl->id_nn;
2937 
2938 	if (nvme->n_namespace_count == 0) {
2939 		dev_err(nvme->n_dip, CE_WARN,
2940 		    "!controllers without namespaces are not supported");
2941 		goto fail;
2942 	}
2943 
2944 	if (nvme->n_namespace_count > NVME_MINOR_MAX) {
2945 		dev_err(nvme->n_dip, CE_WARN,
2946 		    "!too many namespaces: %d, limiting to %d\n",
2947 		    nvme->n_namespace_count, NVME_MINOR_MAX);
2948 		nvme->n_namespace_count = NVME_MINOR_MAX;
2949 	}
2950 
2951 	nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2952 	    nvme->n_namespace_count, KM_SLEEP);
2953 
2954 	for (i = 0; i != nvme->n_namespace_count; i++) {
2955 		mutex_init(&nvme->n_ns[i].ns_minor.nm_mutex, NULL, MUTEX_DRIVER,
2956 		    NULL);
2957 		nvme->n_ns[i].ns_ignore = B_TRUE;
2958 		if (nvme_init_ns(nvme, i + 1) != DDI_SUCCESS)
2959 			goto fail;
2960 	}
2961 
2962 	/*
2963 	 * Try to set up MSI/MSI-X interrupts.
2964 	 */
2965 	if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2966 	    != 0) {
2967 		nvme_release_interrupts(nvme);
2968 
2969 		nqueues = MIN(UINT16_MAX, ncpus);
2970 
2971 		if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2972 		    nqueues) != DDI_SUCCESS) &&
2973 		    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2974 		    nqueues) != DDI_SUCCESS)) {
2975 			dev_err(nvme->n_dip, CE_WARN,
2976 			    "!failed to setup MSI/MSI-X interrupts");
2977 			goto fail;
2978 		}
2979 	}
2980 
2981 	/*
2982 	 * Create I/O queue pairs.
2983 	 */
2984 
2985 	if (nvme_set_nqueues(nvme) != 0) {
2986 		dev_err(nvme->n_dip, CE_WARN,
2987 		    "!failed to set number of I/O queues to %d",
2988 		    nvme->n_intr_cnt);
2989 		goto fail;
2990 	}
2991 
2992 	/*
2993 	 * Reallocate I/O queue array
2994 	 */
2995 	kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2996 	nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2997 	    (nvme->n_submission_queues + 1), KM_SLEEP);
2998 	nvme->n_ioq[0] = nvme->n_adminq;
2999 
3000 	/*
3001 	 * There should always be at least as many submission queues
3002 	 * as completion queues.
3003 	 */
3004 	ASSERT(nvme->n_submission_queues >= nvme->n_completion_queues);
3005 
3006 	nvme->n_ioq_count = nvme->n_submission_queues;
3007 
3008 	nvme->n_io_squeue_len =
3009 	    MIN(nvme->n_io_squeue_len, nvme->n_max_queue_entries);
3010 
3011 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-squeue-len",
3012 	    nvme->n_io_squeue_len);
3013 
3014 	/*
3015 	 * Pre-allocate completion queues.
3016 	 * When there are the same number of submission and completion
3017 	 * queues there is no value in having a larger completion
3018 	 * queue length.
3019 	 */
3020 	if (nvme->n_submission_queues == nvme->n_completion_queues)
3021 		nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
3022 		    nvme->n_io_squeue_len);
3023 
3024 	nvme->n_io_cqueue_len = MIN(nvme->n_io_cqueue_len,
3025 	    nvme->n_max_queue_entries);
3026 
3027 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-cqueue-len",
3028 	    nvme->n_io_cqueue_len);
3029 
3030 	/*
3031 	 * Assign the equal quantity of taskq threads to each completion
3032 	 * queue, capping the total number of threads to the number
3033 	 * of CPUs.
3034 	 */
3035 	tq_threads = MIN(UINT16_MAX, ncpus) / nvme->n_completion_queues;
3036 
3037 	/*
3038 	 * In case the calculation above is zero, we need at least one
3039 	 * thread per completion queue.
3040 	 */
3041 	tq_threads = MAX(1, tq_threads);
3042 
3043 	if (nvme_create_cq_array(nvme, nvme->n_completion_queues + 1,
3044 	    nvme->n_io_cqueue_len, tq_threads) != DDI_SUCCESS) {
3045 		dev_err(nvme->n_dip, CE_WARN,
3046 		    "!failed to pre-allocate completion queues");
3047 		goto fail;
3048 	}
3049 
3050 	/*
3051 	 * If we use less completion queues than interrupt vectors return
3052 	 * some of the interrupt vectors back to the system.
3053 	 */
3054 	if (nvme->n_completion_queues + 1 < nvme->n_intr_cnt) {
3055 		nvme_release_interrupts(nvme);
3056 
3057 		if (nvme_setup_interrupts(nvme, nvme->n_intr_type,
3058 		    nvme->n_completion_queues + 1) != DDI_SUCCESS) {
3059 			dev_err(nvme->n_dip, CE_WARN,
3060 			    "!failed to reduce number of interrupts");
3061 			goto fail;
3062 		}
3063 	}
3064 
3065 	/*
3066 	 * Alloc & register I/O queue pairs
3067 	 */
3068 
3069 	for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3070 		if (nvme_alloc_qpair(nvme, nvme->n_io_squeue_len,
3071 		    &nvme->n_ioq[i], i) != DDI_SUCCESS) {
3072 			dev_err(nvme->n_dip, CE_WARN,
3073 			    "!unable to allocate I/O qpair %d", i);
3074 			goto fail;
3075 		}
3076 
3077 		if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i) != 0) {
3078 			dev_err(nvme->n_dip, CE_WARN,
3079 			    "!unable to create I/O qpair %d", i);
3080 			goto fail;
3081 		}
3082 	}
3083 
3084 	/*
3085 	 * Post more asynchronous events commands to reduce event reporting
3086 	 * latency as suggested by the spec.
3087 	 */
3088 	if (nvme->n_async_event_supported) {
3089 		for (i = 1; i != nvme->n_async_event_limit; i++)
3090 			nvme_async_event(nvme);
3091 	}
3092 
3093 	return (DDI_SUCCESS);
3094 
3095 fail:
3096 	(void) nvme_reset(nvme, B_FALSE);
3097 	return (DDI_FAILURE);
3098 }
3099 
3100 static uint_t
3101 nvme_intr(caddr_t arg1, caddr_t arg2)
3102 {
3103 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
3104 	nvme_t *nvme = (nvme_t *)arg1;
3105 	int inum = (int)(uintptr_t)arg2;
3106 	int ccnt = 0;
3107 	int qnum;
3108 
3109 	if (inum >= nvme->n_intr_cnt)
3110 		return (DDI_INTR_UNCLAIMED);
3111 
3112 	if (nvme->n_dead)
3113 		return (nvme->n_intr_type == DDI_INTR_TYPE_FIXED ?
3114 		    DDI_INTR_UNCLAIMED : DDI_INTR_CLAIMED);
3115 
3116 	/*
3117 	 * The interrupt vector a queue uses is calculated as queue_idx %
3118 	 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
3119 	 * in steps of n_intr_cnt to process all queues using this vector.
3120 	 */
3121 	for (qnum = inum;
3122 	    qnum < nvme->n_cq_count && nvme->n_cq[qnum] != NULL;
3123 	    qnum += nvme->n_intr_cnt) {
3124 		ccnt += nvme_process_iocq(nvme, nvme->n_cq[qnum]);
3125 	}
3126 
3127 	return (ccnt > 0 ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
3128 }
3129 
3130 static void
3131 nvme_release_interrupts(nvme_t *nvme)
3132 {
3133 	int i;
3134 
3135 	for (i = 0; i < nvme->n_intr_cnt; i++) {
3136 		if (nvme->n_inth[i] == NULL)
3137 			break;
3138 
3139 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3140 			(void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
3141 		else
3142 			(void) ddi_intr_disable(nvme->n_inth[i]);
3143 
3144 		(void) ddi_intr_remove_handler(nvme->n_inth[i]);
3145 		(void) ddi_intr_free(nvme->n_inth[i]);
3146 	}
3147 
3148 	kmem_free(nvme->n_inth, nvme->n_inth_sz);
3149 	nvme->n_inth = NULL;
3150 	nvme->n_inth_sz = 0;
3151 
3152 	nvme->n_progress &= ~NVME_INTERRUPTS;
3153 }
3154 
3155 static int
3156 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
3157 {
3158 	int nintrs, navail, count;
3159 	int ret;
3160 	int i;
3161 
3162 	if (nvme->n_intr_types == 0) {
3163 		ret = ddi_intr_get_supported_types(nvme->n_dip,
3164 		    &nvme->n_intr_types);
3165 		if (ret != DDI_SUCCESS) {
3166 			dev_err(nvme->n_dip, CE_WARN,
3167 			    "!%s: ddi_intr_get_supported types failed",
3168 			    __func__);
3169 			return (ret);
3170 		}
3171 #ifdef __x86
3172 		if (get_hwenv() == HW_VMWARE)
3173 			nvme->n_intr_types &= ~DDI_INTR_TYPE_MSIX;
3174 #endif
3175 	}
3176 
3177 	if ((nvme->n_intr_types & intr_type) == 0)
3178 		return (DDI_FAILURE);
3179 
3180 	ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
3181 	if (ret != DDI_SUCCESS) {
3182 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
3183 		    __func__);
3184 		return (ret);
3185 	}
3186 
3187 	ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
3188 	if (ret != DDI_SUCCESS) {
3189 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
3190 		    __func__);
3191 		return (ret);
3192 	}
3193 
3194 	/* We want at most one interrupt per queue pair. */
3195 	if (navail > nqpairs)
3196 		navail = nqpairs;
3197 
3198 	nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
3199 	nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
3200 
3201 	ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
3202 	    &count, 0);
3203 	if (ret != DDI_SUCCESS) {
3204 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
3205 		    __func__);
3206 		goto fail;
3207 	}
3208 
3209 	nvme->n_intr_cnt = count;
3210 
3211 	ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
3212 	if (ret != DDI_SUCCESS) {
3213 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
3214 		    __func__);
3215 		goto fail;
3216 	}
3217 
3218 	for (i = 0; i < count; i++) {
3219 		ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
3220 		    (void *)nvme, (void *)(uintptr_t)i);
3221 		if (ret != DDI_SUCCESS) {
3222 			dev_err(nvme->n_dip, CE_WARN,
3223 			    "!%s: ddi_intr_add_handler failed", __func__);
3224 			goto fail;
3225 		}
3226 	}
3227 
3228 	(void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
3229 
3230 	for (i = 0; i < count; i++) {
3231 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
3232 			ret = ddi_intr_block_enable(&nvme->n_inth[i], 1);
3233 		else
3234 			ret = ddi_intr_enable(nvme->n_inth[i]);
3235 
3236 		if (ret != DDI_SUCCESS) {
3237 			dev_err(nvme->n_dip, CE_WARN,
3238 			    "!%s: enabling interrupt %d failed", __func__, i);
3239 			goto fail;
3240 		}
3241 	}
3242 
3243 	nvme->n_intr_type = intr_type;
3244 
3245 	nvme->n_progress |= NVME_INTERRUPTS;
3246 
3247 	return (DDI_SUCCESS);
3248 
3249 fail:
3250 	nvme_release_interrupts(nvme);
3251 
3252 	return (ret);
3253 }
3254 
3255 static int
3256 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
3257 {
3258 	_NOTE(ARGUNUSED(arg));
3259 
3260 	pci_ereport_post(dip, fm_error, NULL);
3261 	return (fm_error->fme_status);
3262 }
3263 
3264 static int
3265 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3266 {
3267 	nvme_t *nvme;
3268 	int instance;
3269 	int nregs;
3270 	off_t regsize;
3271 	int i;
3272 	char name[32];
3273 
3274 	if (cmd != DDI_ATTACH)
3275 		return (DDI_FAILURE);
3276 
3277 	instance = ddi_get_instance(dip);
3278 
3279 	if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
3280 		return (DDI_FAILURE);
3281 
3282 	nvme = ddi_get_soft_state(nvme_state, instance);
3283 	ddi_set_driver_private(dip, nvme);
3284 	nvme->n_dip = dip;
3285 
3286 	mutex_init(&nvme->n_minor.nm_mutex, NULL, MUTEX_DRIVER, NULL);
3287 
3288 	nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3289 	    DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
3290 	nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
3291 	    dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
3292 	    B_TRUE : B_FALSE;
3293 	nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3294 	    DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
3295 	nvme->n_io_squeue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3296 	    DDI_PROP_DONTPASS, "io-squeue-len", NVME_DEFAULT_IO_QUEUE_LEN);
3297 	/*
3298 	 * Double up the default for completion queues in case of
3299 	 * queue sharing.
3300 	 */
3301 	nvme->n_io_cqueue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3302 	    DDI_PROP_DONTPASS, "io-cqueue-len", 2 * NVME_DEFAULT_IO_QUEUE_LEN);
3303 	nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3304 	    DDI_PROP_DONTPASS, "async-event-limit",
3305 	    NVME_DEFAULT_ASYNC_EVENT_LIMIT);
3306 	nvme->n_write_cache_enabled = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3307 	    DDI_PROP_DONTPASS, "volatile-write-cache-enable", 1) != 0 ?
3308 	    B_TRUE : B_FALSE;
3309 	nvme->n_min_block_size = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3310 	    DDI_PROP_DONTPASS, "min-phys-block-size",
3311 	    NVME_DEFAULT_MIN_BLOCK_SIZE);
3312 	nvme->n_submission_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3313 	    DDI_PROP_DONTPASS, "max-submission-queues", -1);
3314 	nvme->n_completion_queues = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
3315 	    DDI_PROP_DONTPASS, "max-completion-queues", -1);
3316 
3317 	if (!ISP2(nvme->n_min_block_size) ||
3318 	    (nvme->n_min_block_size < NVME_DEFAULT_MIN_BLOCK_SIZE)) {
3319 		dev_err(dip, CE_WARN, "!min-phys-block-size %s, "
3320 		    "using default %d", ISP2(nvme->n_min_block_size) ?
3321 		    "too low" : "not a power of 2",
3322 		    NVME_DEFAULT_MIN_BLOCK_SIZE);
3323 		nvme->n_min_block_size = NVME_DEFAULT_MIN_BLOCK_SIZE;
3324 	}
3325 
3326 	if (nvme->n_submission_queues != -1 &&
3327 	    (nvme->n_submission_queues < 1 ||
3328 	    nvme->n_submission_queues > UINT16_MAX)) {
3329 		dev_err(dip, CE_WARN, "!\"submission-queues\"=%d is not "
3330 		    "valid. Must be [1..%d]", nvme->n_submission_queues,
3331 		    UINT16_MAX);
3332 		nvme->n_submission_queues = -1;
3333 	}
3334 
3335 	if (nvme->n_completion_queues != -1 &&
3336 	    (nvme->n_completion_queues < 1 ||
3337 	    nvme->n_completion_queues > UINT16_MAX)) {
3338 		dev_err(dip, CE_WARN, "!\"completion-queues\"=%d is not "
3339 		    "valid. Must be [1..%d]", nvme->n_completion_queues,
3340 		    UINT16_MAX);
3341 		nvme->n_completion_queues = -1;
3342 	}
3343 
3344 	if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
3345 		nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
3346 	else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
3347 		nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
3348 
3349 	if (nvme->n_io_squeue_len < NVME_MIN_IO_QUEUE_LEN)
3350 		nvme->n_io_squeue_len = NVME_MIN_IO_QUEUE_LEN;
3351 	if (nvme->n_io_cqueue_len < NVME_MIN_IO_QUEUE_LEN)
3352 		nvme->n_io_cqueue_len = NVME_MIN_IO_QUEUE_LEN;
3353 
3354 	if (nvme->n_async_event_limit < 1)
3355 		nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
3356 
3357 	nvme->n_reg_acc_attr = nvme_reg_acc_attr;
3358 	nvme->n_queue_dma_attr = nvme_queue_dma_attr;
3359 	nvme->n_prp_dma_attr = nvme_prp_dma_attr;
3360 	nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
3361 
3362 	/*
3363 	 * Setup FMA support.
3364 	 */
3365 	nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
3366 	    DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
3367 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
3368 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
3369 
3370 	ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
3371 
3372 	if (nvme->n_fm_cap) {
3373 		if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
3374 			nvme->n_reg_acc_attr.devacc_attr_access =
3375 			    DDI_FLAGERR_ACC;
3376 
3377 		if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
3378 			nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3379 			nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
3380 		}
3381 
3382 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3383 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3384 			pci_ereport_setup(dip);
3385 
3386 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3387 			ddi_fm_handler_register(dip, nvme_fm_errcb,
3388 			    (void *)nvme);
3389 	}
3390 
3391 	nvme->n_progress |= NVME_FMA_INIT;
3392 
3393 	/*
3394 	 * The spec defines several register sets. Only the controller
3395 	 * registers (set 1) are currently used.
3396 	 */
3397 	if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
3398 	    nregs < 2 ||
3399 	    ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
3400 		goto fail;
3401 
3402 	if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
3403 	    &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
3404 		dev_err(dip, CE_WARN, "!failed to map regset 1");
3405 		goto fail;
3406 	}
3407 
3408 	nvme->n_progress |= NVME_REGS_MAPPED;
3409 
3410 	/*
3411 	 * Create PRP DMA cache
3412 	 */
3413 	(void) snprintf(name, sizeof (name), "%s%d_prp_cache",
3414 	    ddi_driver_name(dip), ddi_get_instance(dip));
3415 	nvme->n_prp_cache = kmem_cache_create(name, sizeof (nvme_dma_t),
3416 	    0, nvme_prp_dma_constructor, nvme_prp_dma_destructor,
3417 	    NULL, (void *)nvme, NULL, 0);
3418 
3419 	if (nvme_init(nvme) != DDI_SUCCESS)
3420 		goto fail;
3421 
3422 	/*
3423 	 * Initialize the driver with the UFM subsystem
3424 	 */
3425 	if (ddi_ufm_init(dip, DDI_UFM_CURRENT_VERSION, &nvme_ufm_ops,
3426 	    &nvme->n_ufmh, nvme) != 0) {
3427 		dev_err(dip, CE_WARN, "!failed to initialize UFM subsystem");
3428 		goto fail;
3429 	}
3430 	mutex_init(&nvme->n_fwslot_mutex, NULL, MUTEX_DRIVER, NULL);
3431 	ddi_ufm_update(nvme->n_ufmh);
3432 	nvme->n_progress |= NVME_UFM_INIT;
3433 
3434 	/*
3435 	 * Attach the blkdev driver for each namespace.
3436 	 */
3437 	for (i = 0; i != nvme->n_namespace_count; i++) {
3438 		if (ddi_create_minor_node(nvme->n_dip, nvme->n_ns[i].ns_name,
3439 		    S_IFCHR, NVME_MINOR(ddi_get_instance(nvme->n_dip), i + 1),
3440 		    DDI_NT_NVME_ATTACHMENT_POINT, 0) != DDI_SUCCESS) {
3441 			dev_err(dip, CE_WARN,
3442 			    "!failed to create minor node for namespace %d", i);
3443 			goto fail;
3444 		}
3445 
3446 		if (nvme->n_ns[i].ns_ignore)
3447 			continue;
3448 
3449 		nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
3450 		    &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
3451 
3452 		if (nvme->n_ns[i].ns_bd_hdl == NULL) {
3453 			dev_err(dip, CE_WARN,
3454 			    "!failed to get blkdev handle for namespace %d", i);
3455 			goto fail;
3456 		}
3457 
3458 		if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
3459 		    != DDI_SUCCESS) {
3460 			dev_err(dip, CE_WARN,
3461 			    "!failed to attach blkdev handle for namespace %d",
3462 			    i);
3463 			goto fail;
3464 		}
3465 	}
3466 
3467 	if (ddi_create_minor_node(dip, "devctl", S_IFCHR,
3468 	    NVME_MINOR(ddi_get_instance(dip), 0), DDI_NT_NVME_NEXUS, 0)
3469 	    != DDI_SUCCESS) {
3470 		dev_err(dip, CE_WARN, "nvme_attach: "
3471 		    "cannot create devctl minor node");
3472 		goto fail;
3473 	}
3474 
3475 	return (DDI_SUCCESS);
3476 
3477 fail:
3478 	/* attach successful anyway so that FMA can retire the device */
3479 	if (nvme->n_dead)
3480 		return (DDI_SUCCESS);
3481 
3482 	(void) nvme_detach(dip, DDI_DETACH);
3483 
3484 	return (DDI_FAILURE);
3485 }
3486 
3487 static int
3488 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3489 {
3490 	int instance, i;
3491 	nvme_t *nvme;
3492 
3493 	if (cmd != DDI_DETACH)
3494 		return (DDI_FAILURE);
3495 
3496 	instance = ddi_get_instance(dip);
3497 
3498 	nvme = ddi_get_soft_state(nvme_state, instance);
3499 
3500 	if (nvme == NULL)
3501 		return (DDI_FAILURE);
3502 
3503 	ddi_remove_minor_node(dip, "devctl");
3504 	mutex_destroy(&nvme->n_minor.nm_mutex);
3505 
3506 	if (nvme->n_ns) {
3507 		for (i = 0; i != nvme->n_namespace_count; i++) {
3508 			ddi_remove_minor_node(dip, nvme->n_ns[i].ns_name);
3509 			mutex_destroy(&nvme->n_ns[i].ns_minor.nm_mutex);
3510 
3511 			if (nvme->n_ns[i].ns_bd_hdl) {
3512 				(void) bd_detach_handle(
3513 				    nvme->n_ns[i].ns_bd_hdl);
3514 				bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
3515 			}
3516 
3517 			if (nvme->n_ns[i].ns_idns)
3518 				kmem_free(nvme->n_ns[i].ns_idns,
3519 				    sizeof (nvme_identify_nsid_t));
3520 			if (nvme->n_ns[i].ns_devid)
3521 				strfree(nvme->n_ns[i].ns_devid);
3522 		}
3523 
3524 		kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
3525 		    nvme->n_namespace_count);
3526 	}
3527 	if (nvme->n_progress & NVME_UFM_INIT) {
3528 		ddi_ufm_fini(nvme->n_ufmh);
3529 		mutex_destroy(&nvme->n_fwslot_mutex);
3530 	}
3531 
3532 	if (nvme->n_progress & NVME_INTERRUPTS)
3533 		nvme_release_interrupts(nvme);
3534 
3535 	for (i = 0; i < nvme->n_cq_count; i++) {
3536 		if (nvme->n_cq[i]->ncq_cmd_taskq != NULL)
3537 			taskq_wait(nvme->n_cq[i]->ncq_cmd_taskq);
3538 	}
3539 
3540 	if (nvme->n_ioq_count > 0) {
3541 		for (i = 1; i != nvme->n_ioq_count + 1; i++) {
3542 			if (nvme->n_ioq[i] != NULL) {
3543 				/* TODO: send destroy queue commands */
3544 				nvme_free_qpair(nvme->n_ioq[i]);
3545 			}
3546 		}
3547 
3548 		kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
3549 		    (nvme->n_ioq_count + 1));
3550 	}
3551 
3552 	if (nvme->n_prp_cache != NULL) {
3553 		kmem_cache_destroy(nvme->n_prp_cache);
3554 	}
3555 
3556 	if (nvme->n_progress & NVME_REGS_MAPPED) {
3557 		nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
3558 		(void) nvme_reset(nvme, B_FALSE);
3559 	}
3560 
3561 	if (nvme->n_progress & NVME_CTRL_LIMITS)
3562 		sema_destroy(&nvme->n_abort_sema);
3563 
3564 	if (nvme->n_progress & NVME_ADMIN_QUEUE)
3565 		nvme_free_qpair(nvme->n_adminq);
3566 
3567 	if (nvme->n_cq_count > 0) {
3568 		nvme_destroy_cq_array(nvme, 0);
3569 		nvme->n_cq = NULL;
3570 		nvme->n_cq_count = 0;
3571 	}
3572 
3573 	if (nvme->n_idctl)
3574 		kmem_free(nvme->n_idctl, NVME_IDENTIFY_BUFSIZE);
3575 
3576 	if (nvme->n_progress & NVME_REGS_MAPPED)
3577 		ddi_regs_map_free(&nvme->n_regh);
3578 
3579 	if (nvme->n_progress & NVME_FMA_INIT) {
3580 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3581 			ddi_fm_handler_unregister(nvme->n_dip);
3582 
3583 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
3584 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
3585 			pci_ereport_teardown(nvme->n_dip);
3586 
3587 		ddi_fm_fini(nvme->n_dip);
3588 	}
3589 
3590 	if (nvme->n_vendor != NULL)
3591 		strfree(nvme->n_vendor);
3592 
3593 	if (nvme->n_product != NULL)
3594 		strfree(nvme->n_product);
3595 
3596 	ddi_soft_state_free(nvme_state, instance);
3597 
3598 	return (DDI_SUCCESS);
3599 }
3600 
3601 static int
3602 nvme_quiesce(dev_info_t *dip)
3603 {
3604 	int instance;
3605 	nvme_t *nvme;
3606 
3607 	instance = ddi_get_instance(dip);
3608 
3609 	nvme = ddi_get_soft_state(nvme_state, instance);
3610 
3611 	if (nvme == NULL)
3612 		return (DDI_FAILURE);
3613 
3614 	nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
3615 
3616 	(void) nvme_reset(nvme, B_TRUE);
3617 
3618 	return (DDI_FAILURE);
3619 }
3620 
3621 static int
3622 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
3623 {
3624 	nvme_t *nvme = cmd->nc_nvme;
3625 	int nprp_page, nprp;
3626 	uint64_t *prp;
3627 
3628 	if (xfer->x_ndmac == 0)
3629 		return (DDI_FAILURE);
3630 
3631 	cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
3632 	ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3633 
3634 	if (xfer->x_ndmac == 1) {
3635 		cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
3636 		return (DDI_SUCCESS);
3637 	} else if (xfer->x_ndmac == 2) {
3638 		cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
3639 		return (DDI_SUCCESS);
3640 	}
3641 
3642 	xfer->x_ndmac--;
3643 
3644 	nprp_page = nvme->n_pagesize / sizeof (uint64_t);
3645 	ASSERT(nprp_page > 0);
3646 	nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
3647 
3648 	/*
3649 	 * We currently don't support chained PRPs and set up our DMA
3650 	 * attributes to reflect that. If we still get an I/O request
3651 	 * that needs a chained PRP something is very wrong.
3652 	 */
3653 	VERIFY(nprp == 1);
3654 
3655 	cmd->nc_dma = kmem_cache_alloc(nvme->n_prp_cache, KM_SLEEP);
3656 	bzero(cmd->nc_dma->nd_memp, cmd->nc_dma->nd_len);
3657 
3658 	cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
3659 
3660 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
3661 	for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
3662 	    xfer->x_ndmac > 0;
3663 	    prp++, xfer->x_ndmac--) {
3664 		*prp = xfer->x_dmac.dmac_laddress;
3665 		ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
3666 	}
3667 
3668 	(void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
3669 	    DDI_DMA_SYNC_FORDEV);
3670 	return (DDI_SUCCESS);
3671 }
3672 
3673 static nvme_cmd_t *
3674 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
3675 {
3676 	nvme_t *nvme = ns->ns_nvme;
3677 	nvme_cmd_t *cmd;
3678 
3679 	/*
3680 	 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
3681 	 */
3682 	cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
3683 	    KM_NOSLEEP : KM_SLEEP);
3684 
3685 	if (cmd == NULL)
3686 		return (NULL);
3687 
3688 	cmd->nc_sqe.sqe_opc = opc;
3689 	cmd->nc_callback = nvme_bd_xfer_done;
3690 	cmd->nc_xfer = xfer;
3691 
3692 	switch (opc) {
3693 	case NVME_OPC_NVM_WRITE:
3694 	case NVME_OPC_NVM_READ:
3695 		VERIFY(xfer->x_nblks <= 0x10000);
3696 
3697 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3698 
3699 		cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
3700 		cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
3701 		cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
3702 
3703 		if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
3704 			goto fail;
3705 		break;
3706 
3707 	case NVME_OPC_NVM_FLUSH:
3708 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
3709 		break;
3710 
3711 	default:
3712 		goto fail;
3713 	}
3714 
3715 	return (cmd);
3716 
3717 fail:
3718 	nvme_free_cmd(cmd);
3719 	return (NULL);
3720 }
3721 
3722 static void
3723 nvme_bd_xfer_done(void *arg)
3724 {
3725 	nvme_cmd_t *cmd = arg;
3726 	bd_xfer_t *xfer = cmd->nc_xfer;
3727 	int error = 0;
3728 
3729 	error = nvme_check_cmd_status(cmd);
3730 	nvme_free_cmd(cmd);
3731 
3732 	bd_xfer_done(xfer, error);
3733 }
3734 
3735 static void
3736 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
3737 {
3738 	nvme_namespace_t *ns = arg;
3739 	nvme_t *nvme = ns->ns_nvme;
3740 	uint_t ns_count = MAX(1, nvme->n_namespaces_attachable);
3741 
3742 	/*
3743 	 * Set the blkdev qcount to the number of submission queues.
3744 	 * It will then create one waitq/runq pair for each submission
3745 	 * queue and spread I/O requests across the queues.
3746 	 */
3747 	drive->d_qcount = nvme->n_ioq_count;
3748 
3749 	/*
3750 	 * I/O activity to individual namespaces is distributed across
3751 	 * each of the d_qcount blkdev queues (which has been set to
3752 	 * the number of nvme submission queues). d_qsize is the number
3753 	 * of submitted and not completed I/Os within each queue that blkdev
3754 	 * will allow before it starts holding them in the waitq.
3755 	 *
3756 	 * Each namespace will create a child blkdev instance, for each one
3757 	 * we try and set the d_qsize so that each namespace gets an
3758 	 * equal portion of the submission queue.
3759 	 *
3760 	 * If post instantiation of the nvme drive, n_namespaces_attachable
3761 	 * changes and a namespace is attached it could calculate a
3762 	 * different d_qsize. It may even be that the sum of the d_qsizes is
3763 	 * now beyond the submission queue size. Should that be the case
3764 	 * and the I/O rate is such that blkdev attempts to submit more
3765 	 * I/Os than the size of the submission queue, the excess I/Os
3766 	 * will be held behind the semaphore nq_sema.
3767 	 */
3768 	drive->d_qsize = nvme->n_io_squeue_len / ns_count;
3769 
3770 	/*
3771 	 * Don't let the queue size drop below the minimum, though.
3772 	 */
3773 	drive->d_qsize = MAX(drive->d_qsize, NVME_MIN_IO_QUEUE_LEN);
3774 
3775 	/*
3776 	 * d_maxxfer is not set, which means the value is taken from the DMA
3777 	 * attributes specified to bd_alloc_handle.
3778 	 */
3779 
3780 	drive->d_removable = B_FALSE;
3781 	drive->d_hotpluggable = B_FALSE;
3782 
3783 	bcopy(ns->ns_eui64, drive->d_eui64, sizeof (drive->d_eui64));
3784 	drive->d_target = ns->ns_id;
3785 	drive->d_lun = 0;
3786 
3787 	drive->d_model = nvme->n_idctl->id_model;
3788 	drive->d_model_len = sizeof (nvme->n_idctl->id_model);
3789 	drive->d_vendor = nvme->n_vendor;
3790 	drive->d_vendor_len = strlen(nvme->n_vendor);
3791 	drive->d_product = nvme->n_product;
3792 	drive->d_product_len = strlen(nvme->n_product);
3793 	drive->d_serial = nvme->n_idctl->id_serial;
3794 	drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
3795 	drive->d_revision = nvme->n_idctl->id_fwrev;
3796 	drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
3797 }
3798 
3799 static int
3800 nvme_bd_mediainfo(void *arg, bd_media_t *media)
3801 {
3802 	nvme_namespace_t *ns = arg;
3803 
3804 	media->m_nblks = ns->ns_block_count;
3805 	media->m_blksize = ns->ns_block_size;
3806 	media->m_readonly = B_FALSE;
3807 	media->m_solidstate = B_TRUE;
3808 
3809 	media->m_pblksize = ns->ns_best_block_size;
3810 
3811 	return (0);
3812 }
3813 
3814 static int
3815 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
3816 {
3817 	nvme_t *nvme = ns->ns_nvme;
3818 	nvme_cmd_t *cmd;
3819 	nvme_qpair_t *ioq;
3820 	boolean_t poll;
3821 	int ret;
3822 
3823 	if (nvme->n_dead)
3824 		return (EIO);
3825 
3826 	cmd = nvme_create_nvm_cmd(ns, opc, xfer);
3827 	if (cmd == NULL)
3828 		return (ENOMEM);
3829 
3830 	cmd->nc_sqid = xfer->x_qnum + 1;
3831 	ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
3832 	ioq = nvme->n_ioq[cmd->nc_sqid];
3833 
3834 	/*
3835 	 * Get the polling flag before submitting the command. The command may
3836 	 * complete immediately after it was submitted, which means we must
3837 	 * treat both cmd and xfer as if they have been freed already.
3838 	 */
3839 	poll = (xfer->x_flags & BD_XFER_POLL) != 0;
3840 
3841 	ret = nvme_submit_io_cmd(ioq, cmd);
3842 
3843 	if (ret != 0)
3844 		return (ret);
3845 
3846 	if (!poll)
3847 		return (0);
3848 
3849 	do {
3850 		cmd = nvme_retrieve_cmd(nvme, ioq);
3851 		if (cmd != NULL)
3852 			cmd->nc_callback(cmd);
3853 		else
3854 			drv_usecwait(10);
3855 	} while (ioq->nq_active_cmds != 0);
3856 
3857 	return (0);
3858 }
3859 
3860 static int
3861 nvme_bd_read(void *arg, bd_xfer_t *xfer)
3862 {
3863 	nvme_namespace_t *ns = arg;
3864 
3865 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
3866 }
3867 
3868 static int
3869 nvme_bd_write(void *arg, bd_xfer_t *xfer)
3870 {
3871 	nvme_namespace_t *ns = arg;
3872 
3873 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
3874 }
3875 
3876 static int
3877 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
3878 {
3879 	nvme_namespace_t *ns = arg;
3880 
3881 	if (ns->ns_nvme->n_dead)
3882 		return (EIO);
3883 
3884 	/*
3885 	 * If the volatile write cache is not present or not enabled the FLUSH
3886 	 * command is a no-op, so we can take a shortcut here.
3887 	 */
3888 	if (!ns->ns_nvme->n_write_cache_present) {
3889 		bd_xfer_done(xfer, ENOTSUP);
3890 		return (0);
3891 	}
3892 
3893 	if (!ns->ns_nvme->n_write_cache_enabled) {
3894 		bd_xfer_done(xfer, 0);
3895 		return (0);
3896 	}
3897 
3898 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
3899 }
3900 
3901 static int
3902 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
3903 {
3904 	nvme_namespace_t *ns = arg;
3905 
3906 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
3907 	if (*(uint64_t *)ns->ns_eui64 != 0) {
3908 		return (ddi_devid_init(devinfo, DEVID_SCSI3_WWN,
3909 		    sizeof (ns->ns_eui64), ns->ns_eui64, devid));
3910 	} else {
3911 		return (ddi_devid_init(devinfo, DEVID_ENCAP,
3912 		    strlen(ns->ns_devid), ns->ns_devid, devid));
3913 	}
3914 }
3915 
3916 static int
3917 nvme_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
3918 {
3919 #ifndef __lock_lint
3920 	_NOTE(ARGUNUSED(cred_p));
3921 #endif
3922 	minor_t minor = getminor(*devp);
3923 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3924 	int nsid = NVME_MINOR_NSID(minor);
3925 	nvme_minor_state_t *nm;
3926 	int rv = 0;
3927 
3928 	if (otyp != OTYP_CHR)
3929 		return (EINVAL);
3930 
3931 	if (nvme == NULL)
3932 		return (ENXIO);
3933 
3934 	if (nsid > nvme->n_namespace_count)
3935 		return (ENXIO);
3936 
3937 	if (nvme->n_dead)
3938 		return (EIO);
3939 
3940 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3941 
3942 	mutex_enter(&nm->nm_mutex);
3943 	if (nm->nm_oexcl) {
3944 		rv = EBUSY;
3945 		goto out;
3946 	}
3947 
3948 	if (flag & FEXCL) {
3949 		if (nm->nm_ocnt != 0) {
3950 			rv = EBUSY;
3951 			goto out;
3952 		}
3953 		nm->nm_oexcl = B_TRUE;
3954 	}
3955 
3956 	nm->nm_ocnt++;
3957 
3958 out:
3959 	mutex_exit(&nm->nm_mutex);
3960 	return (rv);
3961 
3962 }
3963 
3964 static int
3965 nvme_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
3966 {
3967 #ifndef __lock_lint
3968 	_NOTE(ARGUNUSED(cred_p));
3969 	_NOTE(ARGUNUSED(flag));
3970 #endif
3971 	minor_t minor = getminor(dev);
3972 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
3973 	int nsid = NVME_MINOR_NSID(minor);
3974 	nvme_minor_state_t *nm;
3975 
3976 	if (otyp != OTYP_CHR)
3977 		return (ENXIO);
3978 
3979 	if (nvme == NULL)
3980 		return (ENXIO);
3981 
3982 	if (nsid > nvme->n_namespace_count)
3983 		return (ENXIO);
3984 
3985 	nm = nsid == 0 ? &nvme->n_minor : &nvme->n_ns[nsid - 1].ns_minor;
3986 
3987 	mutex_enter(&nm->nm_mutex);
3988 	if (nm->nm_oexcl)
3989 		nm->nm_oexcl = B_FALSE;
3990 
3991 	ASSERT(nm->nm_ocnt > 0);
3992 	nm->nm_ocnt--;
3993 	mutex_exit(&nm->nm_mutex);
3994 
3995 	return (0);
3996 }
3997 
3998 static int
3999 nvme_ioctl_identify(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4000     cred_t *cred_p)
4001 {
4002 	_NOTE(ARGUNUSED(cred_p));
4003 	int rv = 0;
4004 	void *idctl;
4005 
4006 	if ((mode & FREAD) == 0)
4007 		return (EPERM);
4008 
4009 	if (nioc->n_len < NVME_IDENTIFY_BUFSIZE)
4010 		return (EINVAL);
4011 
4012 	if ((rv = nvme_identify(nvme, B_TRUE, nsid, (void **)&idctl)) != 0)
4013 		return (rv);
4014 
4015 	if (ddi_copyout(idctl, (void *)nioc->n_buf, NVME_IDENTIFY_BUFSIZE, mode)
4016 	    != 0)
4017 		rv = EFAULT;
4018 
4019 	kmem_free(idctl, NVME_IDENTIFY_BUFSIZE);
4020 
4021 	return (rv);
4022 }
4023 
4024 /*
4025  * Execute commands on behalf of the various ioctls.
4026  */
4027 static int
4028 nvme_ioc_cmd(nvme_t *nvme, nvme_sqe_t *sqe, boolean_t is_admin, void *data_addr,
4029     uint32_t data_len, int rwk, nvme_cqe_t *cqe, uint_t timeout)
4030 {
4031 	nvme_cmd_t *cmd;
4032 	nvme_qpair_t *ioq;
4033 	int rv = 0;
4034 
4035 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
4036 	if (is_admin) {
4037 		cmd->nc_sqid = 0;
4038 		ioq = nvme->n_adminq;
4039 	} else {
4040 		cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
4041 		ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
4042 		ioq = nvme->n_ioq[cmd->nc_sqid];
4043 	}
4044 
4045 	cmd->nc_callback = nvme_wakeup_cmd;
4046 	cmd->nc_sqe = *sqe;
4047 
4048 	if ((rwk & (FREAD | FWRITE)) != 0) {
4049 		if (data_addr == NULL) {
4050 			rv = EINVAL;
4051 			goto free_cmd;
4052 		}
4053 
4054 		/*
4055 		 * Because we use PRPs and haven't implemented PRP
4056 		 * lists here, the maximum data size is restricted to
4057 		 * 2 pages.
4058 		 */
4059 		if (data_len > 2 * nvme->n_pagesize) {
4060 			dev_err(nvme->n_dip, CE_WARN, "!Data size %u is too "
4061 			    "large for nvme_ioc_cmd(). Limit is 2 pages "
4062 			    "(%u bytes)", data_len,  2 * nvme->n_pagesize);
4063 
4064 			rv = EINVAL;
4065 			goto free_cmd;
4066 		}
4067 
4068 		if (nvme_zalloc_dma(nvme, data_len, DDI_DMA_READ,
4069 		    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
4070 			dev_err(nvme->n_dip, CE_WARN,
4071 			    "!nvme_zalloc_dma failed for nvme_ioc_cmd()");
4072 
4073 			rv = ENOMEM;
4074 			goto free_cmd;
4075 		}
4076 
4077 		if (cmd->nc_dma->nd_ncookie > 2) {
4078 			dev_err(nvme->n_dip, CE_WARN,
4079 			    "!too many DMA cookies for nvme_ioc_cmd()");
4080 			atomic_inc_32(&nvme->n_too_many_cookies);
4081 
4082 			rv = E2BIG;
4083 			goto free_cmd;
4084 		}
4085 
4086 		cmd->nc_sqe.sqe_dptr.d_prp[0] =
4087 		    cmd->nc_dma->nd_cookie.dmac_laddress;
4088 
4089 		if (cmd->nc_dma->nd_ncookie > 1) {
4090 			ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
4091 			    &cmd->nc_dma->nd_cookie);
4092 			cmd->nc_sqe.sqe_dptr.d_prp[1] =
4093 			    cmd->nc_dma->nd_cookie.dmac_laddress;
4094 		}
4095 
4096 		if ((rwk & FWRITE) != 0) {
4097 			if (ddi_copyin(data_addr, cmd->nc_dma->nd_memp,
4098 			    data_len, rwk & FKIOCTL) != 0) {
4099 				rv = EFAULT;
4100 				goto free_cmd;
4101 			}
4102 		}
4103 	}
4104 
4105 	if (is_admin) {
4106 		nvme_admin_cmd(cmd, timeout);
4107 	} else {
4108 		mutex_enter(&cmd->nc_mutex);
4109 
4110 		rv = nvme_submit_io_cmd(ioq, cmd);
4111 
4112 		if (rv == EAGAIN) {
4113 			mutex_exit(&cmd->nc_mutex);
4114 			dev_err(cmd->nc_nvme->n_dip, CE_WARN,
4115 			    "!nvme_ioc_cmd() failed, I/O Q full");
4116 			goto free_cmd;
4117 		}
4118 
4119 		nvme_wait_cmd(cmd, timeout);
4120 
4121 		mutex_exit(&cmd->nc_mutex);
4122 	}
4123 
4124 	if (cqe != NULL)
4125 		*cqe = cmd->nc_cqe;
4126 
4127 	if ((rv = nvme_check_cmd_status(cmd)) != 0) {
4128 		dev_err(nvme->n_dip, CE_WARN,
4129 		    "!nvme_ioc_cmd() failed with sct = %x, sc = %x",
4130 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
4131 
4132 		goto free_cmd;
4133 	}
4134 
4135 	if ((rwk & FREAD) != 0) {
4136 		if (ddi_copyout(cmd->nc_dma->nd_memp,
4137 		    data_addr, data_len, rwk & FKIOCTL) != 0)
4138 			rv = EFAULT;
4139 	}
4140 
4141 free_cmd:
4142 	nvme_free_cmd(cmd);
4143 
4144 	return (rv);
4145 }
4146 
4147 static int
4148 nvme_ioctl_capabilities(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4149     int mode, cred_t *cred_p)
4150 {
4151 	_NOTE(ARGUNUSED(nsid, cred_p));
4152 	int rv = 0;
4153 	nvme_reg_cap_t cap = { 0 };
4154 	nvme_capabilities_t nc;
4155 
4156 	if ((mode & FREAD) == 0)
4157 		return (EPERM);
4158 
4159 	if (nioc->n_len < sizeof (nc))
4160 		return (EINVAL);
4161 
4162 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
4163 
4164 	/*
4165 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to
4166 	 * specify the base page size of 4k (1<<12), so add 12 here to
4167 	 * get the real page size value.
4168 	 */
4169 	nc.mpsmax = 1 << (12 + cap.b.cap_mpsmax);
4170 	nc.mpsmin = 1 << (12 + cap.b.cap_mpsmin);
4171 
4172 	if (ddi_copyout(&nc, (void *)nioc->n_buf, sizeof (nc), mode) != 0)
4173 		rv = EFAULT;
4174 
4175 	return (rv);
4176 }
4177 
4178 static int
4179 nvme_ioctl_get_logpage(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4180     int mode, cred_t *cred_p)
4181 {
4182 	_NOTE(ARGUNUSED(cred_p));
4183 	void *log = NULL;
4184 	size_t bufsize = 0;
4185 	int rv = 0;
4186 
4187 	if ((mode & FREAD) == 0)
4188 		return (EPERM);
4189 
4190 	switch (nioc->n_arg) {
4191 	case NVME_LOGPAGE_ERROR:
4192 		if (nsid != 0)
4193 			return (EINVAL);
4194 		break;
4195 	case NVME_LOGPAGE_HEALTH:
4196 		if (nsid != 0 && nvme->n_idctl->id_lpa.lp_smart == 0)
4197 			return (EINVAL);
4198 
4199 		if (nsid == 0)
4200 			nsid = (uint32_t)-1;
4201 
4202 		break;
4203 	case NVME_LOGPAGE_FWSLOT:
4204 		if (nsid != 0)
4205 			return (EINVAL);
4206 		break;
4207 	default:
4208 		return (EINVAL);
4209 	}
4210 
4211 	if (nvme_get_logpage(nvme, B_TRUE, &log, &bufsize, nioc->n_arg, nsid)
4212 	    != DDI_SUCCESS)
4213 		return (EIO);
4214 
4215 	if (nioc->n_len < bufsize) {
4216 		kmem_free(log, bufsize);
4217 		return (EINVAL);
4218 	}
4219 
4220 	if (ddi_copyout(log, (void *)nioc->n_buf, bufsize, mode) != 0)
4221 		rv = EFAULT;
4222 
4223 	nioc->n_len = bufsize;
4224 	kmem_free(log, bufsize);
4225 
4226 	return (rv);
4227 }
4228 
4229 static int
4230 nvme_ioctl_get_features(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4231     int mode, cred_t *cred_p)
4232 {
4233 	_NOTE(ARGUNUSED(cred_p));
4234 	void *buf = NULL;
4235 	size_t bufsize = 0;
4236 	uint32_t res = 0;
4237 	uint8_t feature;
4238 	int rv = 0;
4239 
4240 	if ((mode & FREAD) == 0)
4241 		return (EPERM);
4242 
4243 	if ((nioc->n_arg >> 32) > 0xff)
4244 		return (EINVAL);
4245 
4246 	feature = (uint8_t)(nioc->n_arg >> 32);
4247 
4248 	switch (feature) {
4249 	case NVME_FEAT_ARBITRATION:
4250 	case NVME_FEAT_POWER_MGMT:
4251 	case NVME_FEAT_TEMPERATURE:
4252 	case NVME_FEAT_ERROR:
4253 	case NVME_FEAT_NQUEUES:
4254 	case NVME_FEAT_INTR_COAL:
4255 	case NVME_FEAT_WRITE_ATOM:
4256 	case NVME_FEAT_ASYNC_EVENT:
4257 	case NVME_FEAT_PROGRESS:
4258 		if (nsid != 0)
4259 			return (EINVAL);
4260 		break;
4261 
4262 	case NVME_FEAT_INTR_VECT:
4263 		if (nsid != 0)
4264 			return (EINVAL);
4265 
4266 		res = nioc->n_arg & 0xffffffffUL;
4267 		if (res >= nvme->n_intr_cnt)
4268 			return (EINVAL);
4269 		break;
4270 
4271 	case NVME_FEAT_LBA_RANGE:
4272 		if (nvme->n_lba_range_supported == B_FALSE)
4273 			return (EINVAL);
4274 
4275 		if (nsid == 0 ||
4276 		    nsid > nvme->n_namespace_count)
4277 			return (EINVAL);
4278 
4279 		break;
4280 
4281 	case NVME_FEAT_WRITE_CACHE:
4282 		if (nsid != 0)
4283 			return (EINVAL);
4284 
4285 		if (!nvme->n_write_cache_present)
4286 			return (EINVAL);
4287 
4288 		break;
4289 
4290 	case NVME_FEAT_AUTO_PST:
4291 		if (nsid != 0)
4292 			return (EINVAL);
4293 
4294 		if (!nvme->n_auto_pst_supported)
4295 			return (EINVAL);
4296 
4297 		break;
4298 
4299 	default:
4300 		return (EINVAL);
4301 	}
4302 
4303 	rv = nvme_get_features(nvme, B_TRUE, nsid, feature, &res, &buf,
4304 	    &bufsize);
4305 	if (rv != 0)
4306 		return (rv);
4307 
4308 	if (nioc->n_len < bufsize) {
4309 		kmem_free(buf, bufsize);
4310 		return (EINVAL);
4311 	}
4312 
4313 	if (buf && ddi_copyout(buf, (void*)nioc->n_buf, bufsize, mode) != 0)
4314 		rv = EFAULT;
4315 
4316 	kmem_free(buf, bufsize);
4317 	nioc->n_arg = res;
4318 	nioc->n_len = bufsize;
4319 
4320 	return (rv);
4321 }
4322 
4323 static int
4324 nvme_ioctl_intr_cnt(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4325     cred_t *cred_p)
4326 {
4327 	_NOTE(ARGUNUSED(nsid, mode, cred_p));
4328 
4329 	if ((mode & FREAD) == 0)
4330 		return (EPERM);
4331 
4332 	nioc->n_arg = nvme->n_intr_cnt;
4333 	return (0);
4334 }
4335 
4336 static int
4337 nvme_ioctl_version(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4338     cred_t *cred_p)
4339 {
4340 	_NOTE(ARGUNUSED(nsid, cred_p));
4341 	int rv = 0;
4342 
4343 	if ((mode & FREAD) == 0)
4344 		return (EPERM);
4345 
4346 	if (nioc->n_len < sizeof (nvme->n_version))
4347 		return (ENOMEM);
4348 
4349 	if (ddi_copyout(&nvme->n_version, (void *)nioc->n_buf,
4350 	    sizeof (nvme->n_version), mode) != 0)
4351 		rv = EFAULT;
4352 
4353 	return (rv);
4354 }
4355 
4356 static int
4357 nvme_ioctl_format(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4358     cred_t *cred_p)
4359 {
4360 	_NOTE(ARGUNUSED(mode));
4361 	nvme_format_nvm_t frmt = { 0 };
4362 	int c_nsid = nsid != 0 ? nsid - 1 : 0;
4363 
4364 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4365 		return (EPERM);
4366 
4367 	frmt.r = nioc->n_arg & 0xffffffff;
4368 
4369 	/*
4370 	 * Check whether the FORMAT NVM command is supported.
4371 	 */
4372 	if (nvme->n_idctl->id_oacs.oa_format == 0)
4373 		return (EINVAL);
4374 
4375 	/*
4376 	 * Don't allow format or secure erase of individual namespace if that
4377 	 * would cause a format or secure erase of all namespaces.
4378 	 */
4379 	if (nsid != 0 && nvme->n_idctl->id_fna.fn_format != 0)
4380 		return (EINVAL);
4381 
4382 	if (nsid != 0 && frmt.b.fm_ses != NVME_FRMT_SES_NONE &&
4383 	    nvme->n_idctl->id_fna.fn_sec_erase != 0)
4384 		return (EINVAL);
4385 
4386 	/*
4387 	 * Don't allow formatting with Protection Information.
4388 	 */
4389 	if (frmt.b.fm_pi != 0 || frmt.b.fm_pil != 0 || frmt.b.fm_ms != 0)
4390 		return (EINVAL);
4391 
4392 	/*
4393 	 * Don't allow formatting using an illegal LBA format, or any LBA format
4394 	 * that uses metadata.
4395 	 */
4396 	if (frmt.b.fm_lbaf > nvme->n_ns[c_nsid].ns_idns->id_nlbaf ||
4397 	    nvme->n_ns[c_nsid].ns_idns->id_lbaf[frmt.b.fm_lbaf].lbaf_ms != 0)
4398 		return (EINVAL);
4399 
4400 	/*
4401 	 * Don't allow formatting using an illegal Secure Erase setting.
4402 	 */
4403 	if (frmt.b.fm_ses > NVME_FRMT_MAX_SES ||
4404 	    (frmt.b.fm_ses == NVME_FRMT_SES_CRYPTO &&
4405 	    nvme->n_idctl->id_fna.fn_crypt_erase == 0))
4406 		return (EINVAL);
4407 
4408 	if (nsid == 0)
4409 		nsid = (uint32_t)-1;
4410 
4411 	return (nvme_format_nvm(nvme, B_TRUE, nsid, frmt.b.fm_lbaf, B_FALSE, 0,
4412 	    B_FALSE, frmt.b.fm_ses));
4413 }
4414 
4415 static int
4416 nvme_ioctl_detach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4417     cred_t *cred_p)
4418 {
4419 	_NOTE(ARGUNUSED(nioc, mode));
4420 	int rv = 0;
4421 
4422 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4423 		return (EPERM);
4424 
4425 	if (nsid == 0)
4426 		return (EINVAL);
4427 
4428 	rv = bd_detach_handle(nvme->n_ns[nsid - 1].ns_bd_hdl);
4429 	if (rv != DDI_SUCCESS)
4430 		rv = EBUSY;
4431 
4432 	return (rv);
4433 }
4434 
4435 static int
4436 nvme_ioctl_attach(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc, int mode,
4437     cred_t *cred_p)
4438 {
4439 	_NOTE(ARGUNUSED(nioc, mode));
4440 	nvme_identify_nsid_t *idns;
4441 	int rv = 0;
4442 
4443 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4444 		return (EPERM);
4445 
4446 	if (nsid == 0)
4447 		return (EINVAL);
4448 
4449 	/*
4450 	 * Identify namespace again, free old identify data.
4451 	 */
4452 	idns = nvme->n_ns[nsid - 1].ns_idns;
4453 	if (nvme_init_ns(nvme, nsid) != DDI_SUCCESS)
4454 		return (EIO);
4455 
4456 	kmem_free(idns, sizeof (nvme_identify_nsid_t));
4457 
4458 	rv = bd_attach_handle(nvme->n_dip, nvme->n_ns[nsid - 1].ns_bd_hdl);
4459 	if (rv != DDI_SUCCESS)
4460 		rv = EBUSY;
4461 
4462 	return (rv);
4463 }
4464 
4465 static void
4466 nvme_ufm_update(nvme_t *nvme)
4467 {
4468 	mutex_enter(&nvme->n_fwslot_mutex);
4469 	ddi_ufm_update(nvme->n_ufmh);
4470 	if (nvme->n_fwslot != NULL) {
4471 		kmem_free(nvme->n_fwslot, sizeof (nvme_fwslot_log_t));
4472 		nvme->n_fwslot = NULL;
4473 	}
4474 	mutex_exit(&nvme->n_fwslot_mutex);
4475 }
4476 
4477 static int
4478 nvme_ioctl_firmware_download(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4479     int mode, cred_t *cred_p)
4480 {
4481 	int rv = 0;
4482 	size_t len, copylen;
4483 	offset_t offset;
4484 	uintptr_t buf;
4485 	nvme_sqe_t sqe = {
4486 	    .sqe_opc	= NVME_OPC_FW_IMAGE_LOAD
4487 	};
4488 
4489 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4490 		return (EPERM);
4491 
4492 	if (nsid != 0)
4493 		return (EINVAL);
4494 
4495 	/*
4496 	 * The offset (in n_len) is restricted to the number of DWORDs in
4497 	 * 32 bits.
4498 	 */
4499 	if (nioc->n_len > NVME_FW_OFFSETB_MAX)
4500 		return (EINVAL);
4501 
4502 	/* Confirm that both offset and length are a multiple of DWORD bytes */
4503 	if ((nioc->n_len & NVME_DWORD_MASK) != 0 ||
4504 	    (nioc->n_arg & NVME_DWORD_MASK) != 0)
4505 		return (EINVAL);
4506 
4507 	len = nioc->n_len;
4508 	offset = nioc->n_arg;
4509 	buf = (uintptr_t)nioc->n_buf;
4510 	while (len > 0 && rv == 0) {
4511 		/*
4512 		 * nvme_ioc_cmd() does not use SGLs or PRP lists.
4513 		 * It is limited to 2 PRPs per NVM command, so limit
4514 		 * the size of the data to 2 pages.
4515 		 */
4516 		copylen = MIN(2 * nvme->n_pagesize, len);
4517 
4518 		sqe.sqe_cdw10 = (uint32_t)(copylen >> NVME_DWORD_SHIFT) - 1;
4519 		sqe.sqe_cdw11 = (uint32_t)(offset >> NVME_DWORD_SHIFT);
4520 
4521 		rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, (void *)buf, copylen,
4522 		    FWRITE, NULL, nvme_admin_cmd_timeout);
4523 
4524 		buf += copylen;
4525 		offset += copylen;
4526 		len -= copylen;
4527 	}
4528 
4529 	/*
4530 	 * Let the DDI UFM subsystem know that the firmware information for
4531 	 * this device has changed.
4532 	 */
4533 	nvme_ufm_update(nvme);
4534 
4535 	return (rv);
4536 }
4537 
4538 static int
4539 nvme_ioctl_firmware_commit(nvme_t *nvme, int nsid, nvme_ioctl_t *nioc,
4540     int mode, cred_t *cred_p)
4541 {
4542 	nvme_firmware_commit_dw10_t fc_dw10 = { 0 };
4543 	uint32_t slot = nioc->n_arg & 0xffffffff;
4544 	uint32_t action = nioc->n_arg >> 32;
4545 	nvme_cqe_t cqe = { 0 };
4546 	nvme_sqe_t sqe = {
4547 	    .sqe_opc	= NVME_OPC_FW_ACTIVATE
4548 	};
4549 	int timeout;
4550 	int rv;
4551 
4552 	if ((mode & FWRITE) == 0 || secpolicy_sys_config(cred_p, B_FALSE) != 0)
4553 		return (EPERM);
4554 
4555 	if (nsid != 0)
4556 		return (EINVAL);
4557 
4558 	/* Validate slot is in range. */
4559 	if (slot < NVME_FW_SLOT_MIN || slot > NVME_FW_SLOT_MAX)
4560 		return (EINVAL);
4561 
4562 	switch (action) {
4563 	case NVME_FWC_SAVE:
4564 	case NVME_FWC_SAVE_ACTIVATE:
4565 		timeout = nvme_commit_save_cmd_timeout;
4566 		break;
4567 	case NVME_FWC_ACTIVATE:
4568 	case NVME_FWC_ACTIVATE_IMMED:
4569 		timeout = nvme_admin_cmd_timeout;
4570 		break;
4571 	default:
4572 		return (EINVAL);
4573 	}
4574 
4575 	fc_dw10.b.fc_slot = slot;
4576 	fc_dw10.b.fc_action = action;
4577 	sqe.sqe_cdw10 = fc_dw10.r;
4578 
4579 	rv = nvme_ioc_cmd(nvme, &sqe, B_TRUE, NULL, 0, 0, &cqe, timeout);
4580 
4581 	nioc->n_arg = ((uint64_t)cqe.cqe_sf.sf_sct << 16) | cqe.cqe_sf.sf_sc;
4582 
4583 	/*
4584 	 * Let the DDI UFM subsystem know that the firmware information for
4585 	 * this device has changed.
4586 	 */
4587 	nvme_ufm_update(nvme);
4588 
4589 	return (rv);
4590 }
4591 
4592 static int
4593 nvme_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *cred_p,
4594     int *rval_p)
4595 {
4596 #ifndef __lock_lint
4597 	_NOTE(ARGUNUSED(rval_p));
4598 #endif
4599 	minor_t minor = getminor(dev);
4600 	nvme_t *nvme = ddi_get_soft_state(nvme_state, NVME_MINOR_INST(minor));
4601 	int nsid = NVME_MINOR_NSID(minor);
4602 	int rv = 0;
4603 	nvme_ioctl_t nioc;
4604 
4605 	int (*nvme_ioctl[])(nvme_t *, int, nvme_ioctl_t *, int, cred_t *) = {
4606 		NULL,
4607 		nvme_ioctl_identify,
4608 		nvme_ioctl_identify,
4609 		nvme_ioctl_capabilities,
4610 		nvme_ioctl_get_logpage,
4611 		nvme_ioctl_get_features,
4612 		nvme_ioctl_intr_cnt,
4613 		nvme_ioctl_version,
4614 		nvme_ioctl_format,
4615 		nvme_ioctl_detach,
4616 		nvme_ioctl_attach,
4617 		nvme_ioctl_firmware_download,
4618 		nvme_ioctl_firmware_commit
4619 	};
4620 
4621 	if (nvme == NULL)
4622 		return (ENXIO);
4623 
4624 	if (nsid > nvme->n_namespace_count)
4625 		return (ENXIO);
4626 
4627 	if (IS_DEVCTL(cmd))
4628 		return (ndi_devctl_ioctl(nvme->n_dip, cmd, arg, mode, 0));
4629 
4630 #ifdef _MULTI_DATAMODEL
4631 	switch (ddi_model_convert_from(mode & FMODELS)) {
4632 	case DDI_MODEL_ILP32: {
4633 		nvme_ioctl32_t nioc32;
4634 		if (ddi_copyin((void*)arg, &nioc32, sizeof (nvme_ioctl32_t),
4635 		    mode) != 0)
4636 			return (EFAULT);
4637 		nioc.n_len = nioc32.n_len;
4638 		nioc.n_buf = nioc32.n_buf;
4639 		nioc.n_arg = nioc32.n_arg;
4640 		break;
4641 	}
4642 	case DDI_MODEL_NONE:
4643 #endif
4644 		if (ddi_copyin((void*)arg, &nioc, sizeof (nvme_ioctl_t), mode)
4645 		    != 0)
4646 			return (EFAULT);
4647 #ifdef _MULTI_DATAMODEL
4648 		break;
4649 	}
4650 #endif
4651 
4652 	if (nvme->n_dead && cmd != NVME_IOC_DETACH)
4653 		return (EIO);
4654 
4655 
4656 	if (cmd == NVME_IOC_IDENTIFY_CTRL) {
4657 		/*
4658 		 * This makes NVME_IOC_IDENTIFY_CTRL work the same on devctl and
4659 		 * attachment point nodes.
4660 		 */
4661 		nsid = 0;
4662 	} else if (cmd == NVME_IOC_IDENTIFY_NSID && nsid == 0) {
4663 		/*
4664 		 * This makes NVME_IOC_IDENTIFY_NSID work on a devctl node, it
4665 		 * will always return identify data for namespace 1.
4666 		 */
4667 		nsid = 1;
4668 	}
4669 
4670 	if (IS_NVME_IOC(cmd) && nvme_ioctl[NVME_IOC_CMD(cmd)] != NULL)
4671 		rv = nvme_ioctl[NVME_IOC_CMD(cmd)](nvme, nsid, &nioc, mode,
4672 		    cred_p);
4673 	else
4674 		rv = EINVAL;
4675 
4676 #ifdef _MULTI_DATAMODEL
4677 	switch (ddi_model_convert_from(mode & FMODELS)) {
4678 	case DDI_MODEL_ILP32: {
4679 		nvme_ioctl32_t nioc32;
4680 
4681 		nioc32.n_len = (size32_t)nioc.n_len;
4682 		nioc32.n_buf = (uintptr32_t)nioc.n_buf;
4683 		nioc32.n_arg = nioc.n_arg;
4684 
4685 		if (ddi_copyout(&nioc32, (void *)arg, sizeof (nvme_ioctl32_t),
4686 		    mode) != 0)
4687 			return (EFAULT);
4688 		break;
4689 	}
4690 	case DDI_MODEL_NONE:
4691 #endif
4692 		if (ddi_copyout(&nioc, (void *)arg, sizeof (nvme_ioctl_t), mode)
4693 		    != 0)
4694 			return (EFAULT);
4695 #ifdef _MULTI_DATAMODEL
4696 		break;
4697 	}
4698 #endif
4699 
4700 	return (rv);
4701 }
4702 
4703 /*
4704  * DDI UFM Callbacks
4705  */
4706 static int
4707 nvme_ufm_fill_image(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
4708     ddi_ufm_image_t *img)
4709 {
4710 	nvme_t *nvme = arg;
4711 
4712 	if (imgno != 0)
4713 		return (EINVAL);
4714 
4715 	ddi_ufm_image_set_desc(img, "Firmware");
4716 	ddi_ufm_image_set_nslots(img, nvme->n_idctl->id_frmw.fw_nslot);
4717 
4718 	return (0);
4719 }
4720 
4721 /*
4722  * Fill out firmware slot information for the requested slot.  The firmware
4723  * slot information is gathered by requesting the Firmware Slot Information log
4724  * page.  The format of the page is described in section 5.10.1.3.
4725  *
4726  * We lazily cache the log page on the first call and then invalidate the cache
4727  * data after a successful firmware download or firmware commit command.
4728  * The cached data is protected by a mutex as the state can change
4729  * asynchronous to this callback.
4730  */
4731 static int
4732 nvme_ufm_fill_slot(ddi_ufm_handle_t *ufmh, void *arg, uint_t imgno,
4733     uint_t slotno, ddi_ufm_slot_t *slot)
4734 {
4735 	nvme_t *nvme = arg;
4736 	void *log = NULL;
4737 	size_t bufsize;
4738 	ddi_ufm_attr_t attr = 0;
4739 	char fw_ver[NVME_FWVER_SZ + 1];
4740 	int ret;
4741 
4742 	if (imgno > 0 || slotno > (nvme->n_idctl->id_frmw.fw_nslot - 1))
4743 		return (EINVAL);
4744 
4745 	mutex_enter(&nvme->n_fwslot_mutex);
4746 	if (nvme->n_fwslot == NULL) {
4747 		ret = nvme_get_logpage(nvme, B_TRUE, &log, &bufsize,
4748 		    NVME_LOGPAGE_FWSLOT, 0);
4749 		if (ret != DDI_SUCCESS ||
4750 		    bufsize != sizeof (nvme_fwslot_log_t)) {
4751 			if (log != NULL)
4752 				kmem_free(log, bufsize);
4753 			mutex_exit(&nvme->n_fwslot_mutex);
4754 			return (EIO);
4755 		}
4756 		nvme->n_fwslot = (nvme_fwslot_log_t *)log;
4757 	}
4758 
4759 	/*
4760 	 * NVMe numbers firmware slots starting at 1
4761 	 */
4762 	if (slotno == (nvme->n_fwslot->fw_afi - 1))
4763 		attr |= DDI_UFM_ATTR_ACTIVE;
4764 
4765 	if (slotno != 0 || nvme->n_idctl->id_frmw.fw_readonly == 0)
4766 		attr |= DDI_UFM_ATTR_WRITEABLE;
4767 
4768 	if (nvme->n_fwslot->fw_frs[slotno][0] == '\0') {
4769 		attr |= DDI_UFM_ATTR_EMPTY;
4770 	} else {
4771 		(void) strncpy(fw_ver, nvme->n_fwslot->fw_frs[slotno],
4772 		    NVME_FWVER_SZ);
4773 		fw_ver[NVME_FWVER_SZ] = '\0';
4774 		ddi_ufm_slot_set_version(slot, fw_ver);
4775 	}
4776 	mutex_exit(&nvme->n_fwslot_mutex);
4777 
4778 	ddi_ufm_slot_set_attrs(slot, attr);
4779 
4780 	return (0);
4781 }
4782 
4783 static int
4784 nvme_ufm_getcaps(ddi_ufm_handle_t *ufmh, void *arg, ddi_ufm_cap_t *caps)
4785 {
4786 	*caps = DDI_UFM_CAP_REPORT;
4787 	return (0);
4788 }
4789