xref: /illumos-gate/usr/src/uts/common/io/nvme/nvme.c (revision 2f7f7a62d7a3e8a2e75eb88b95bc65871b6b90cb)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
14  */
15 
16 /*
17  * blkdev driver for NVMe compliant storage devices
18  *
19  * This driver was written to conform to version 1.0e of the NVMe specification.
20  * It may work with newer versions, but that is completely untested and disabled
21  * by default.
22  *
23  * The driver has only been tested on x86 systems and will not work on big-
24  * endian systems without changes to the code accessing registers and data
25  * structures used by the hardware.
26  *
27  *
28  * Interrupt Usage:
29  *
30  * The driver will use a FIXED interrupt while configuring the device as the
31  * specification requires. Later in the attach process it will switch to MSI-X
32  * or MSI if supported. The driver wants to have one interrupt vector per CPU,
33  * but it will work correctly if less are available. Interrupts can be shared
34  * by queues, the interrupt handler will iterate through the I/O queue array by
35  * steps of n_intr_cnt. Usually only the admin queue will share an interrupt
36  * with one I/O queue. The interrupt handler will retrieve completed commands
37  * from all queues sharing an interrupt vector and will post them to a taskq
38  * for completion processing.
39  *
40  *
41  * Command Processing:
42  *
43  * NVMe devices can have up to 65536 I/O queue pairs, with each queue holding up
44  * to 65536 I/O commands. The driver will configure one I/O queue pair per
45  * available interrupt vector, with the queue length usually much smaller than
46  * the maximum of 65536. If the hardware doesn't provide enough queues, fewer
47  * interrupt vectors will be used.
48  *
49  * Additionally the hardware provides a single special admin queue pair that can
50  * hold up to 4096 admin commands.
51  *
52  * From the hardware perspective both queues of a queue pair are independent,
53  * but they share some driver state: the command array (holding pointers to
54  * commands currently being processed by the hardware) and the active command
55  * counter. Access to the submission side of a queue pair and the shared state
56  * is protected by nq_mutex. The completion side of a queue pair does not need
57  * that protection apart from its access to the shared state; it is called only
58  * in the interrupt handler which does not run concurrently for the same
59  * interrupt vector.
60  *
61  * When a command is submitted to a queue pair the active command counter is
62  * incremented and a pointer to the command is stored in the command array. The
63  * array index is used as command identifier (CID) in the submission queue
64  * entry. Some commands may take a very long time to complete, and if the queue
65  * wraps around in that time a submission may find the next array slot to still
66  * be used by a long-running command. In this case the array is sequentially
67  * searched for the next free slot. The length of the command array is the same
68  * as the configured queue length.
69  *
70  *
71  * Namespace Support:
72  *
73  * NVMe devices can have multiple namespaces, each being a independent data
74  * store. The driver supports multiple namespaces and creates a blkdev interface
75  * for each namespace found. Namespaces can have various attributes to support
76  * thin provisioning, extended LBAs, and protection information. This driver
77  * does not support any of this and ignores namespaces that have these
78  * attributes.
79  *
80  *
81  * Blkdev Interface:
82  *
83  * This driver uses blkdev to do all the heavy lifting involved with presenting
84  * a disk device to the system. As a result, the processing of I/O requests is
85  * relatively simple as blkdev takes care of partitioning, boundary checks, DMA
86  * setup, and splitting of transfers into manageable chunks.
87  *
88  * I/O requests coming in from blkdev are turned into NVM commands and posted to
89  * an I/O queue. The queue is selected by taking the CPU id modulo the number of
90  * queues. There is currently no timeout handling of I/O commands.
91  *
92  * Blkdev also supports querying device/media information and generating a
93  * devid. The driver reports the best block size as determined by the namespace
94  * format back to blkdev as physical block size to support partition and block
95  * alignment. The devid is composed using the device vendor ID, model number,
96  * serial number, and the namespace ID.
97  *
98  *
99  * Error Handling:
100  *
101  * Error handling is currently limited to detecting fatal hardware errors,
102  * either by asynchronous events, or synchronously through command status or
103  * admin command timeouts. In case of severe errors the device is fenced off,
104  * all further requests will return EIO. FMA is then called to fault the device.
105  *
106  * The hardware has a limit for outstanding asynchronous event requests. Before
107  * this limit is known the driver assumes it is at least 1 and posts a single
108  * asynchronous request. Later when the limit is known more asynchronous event
109  * requests are posted to allow quicker reception of error information. When an
110  * asynchronous event is posted by the hardware the driver will parse the error
111  * status fields and log information or fault the device, depending on the
112  * severity of the asynchronous event. The asynchronous event request is then
113  * reused and posted to the admin queue again.
114  *
115  * On command completion the command status is checked for errors. In case of
116  * errors indicating a driver bug the driver panics. Almost all other error
117  * status values just cause EIO to be returned.
118  *
119  * Command timeouts are currently detected for all admin commands except
120  * asynchronous event requests. If a command times out and the hardware appears
121  * to be healthy the driver attempts to abort the command. If this fails the
122  * driver assumes the device to be dead, fences it off, and calls FMA to retire
123  * it. In general admin commands are issued at attach time only. No timeout
124  * handling of normal I/O commands is presently done.
125  *
126  * In some cases it may be possible that the ABORT command times out, too. In
127  * that case the device is also declared dead and fenced off.
128  *
129  *
130  * Quiesce / Fast Reboot:
131  *
132  * The driver currently does not support fast reboot. A quiesce(9E) entry point
133  * is still provided which is used to send a shutdown notification to the
134  * device.
135  *
136  *
137  * Driver Configuration:
138  *
139  * The following driver properties can be changed to control some aspects of the
140  * drivers operation:
141  * - strict-version: can be set to 0 to allow devices conforming to newer
142  *   versions to be used
143  * - ignore-unknown-vendor-status: can be set to 1 to not handle any vendor
144  *   specific command status as a fatal error leading device faulting
145  * - admin-queue-len: the maximum length of the admin queue (16-4096)
146  * - io-queue-len: the maximum length of the I/O queues (16-65536)
147  * - async-event-limit: the maximum number of asynchronous event requests to be
148  *   posted by the driver
149  *
150  *
151  * TODO:
152  * - figure out sane default for I/O queue depth reported to blkdev
153  * - polled I/O support to support kernel core dumping
154  * - FMA handling of media errors
155  * - support for the Volatile Write Cache
156  * - support for devices supporting very large I/O requests using chained PRPs
157  * - support for querying log pages from user space
158  * - support for configuring hardware parameters like interrupt coalescing
159  * - support for media formatting and hard partitioning into namespaces
160  * - support for big-endian systems
161  * - support for fast reboot
162  */
163 
164 #include <sys/byteorder.h>
165 #ifdef _BIG_ENDIAN
166 #error nvme driver needs porting for big-endian platforms
167 #endif
168 
169 #include <sys/modctl.h>
170 #include <sys/conf.h>
171 #include <sys/devops.h>
172 #include <sys/ddi.h>
173 #include <sys/sunddi.h>
174 #include <sys/bitmap.h>
175 #include <sys/sysmacros.h>
176 #include <sys/param.h>
177 #include <sys/varargs.h>
178 #include <sys/cpuvar.h>
179 #include <sys/disp.h>
180 #include <sys/blkdev.h>
181 #include <sys/atomic.h>
182 #include <sys/archsystm.h>
183 #include <sys/sata/sata_hba.h>
184 
185 #include "nvme_reg.h"
186 #include "nvme_var.h"
187 
188 
189 /* NVMe spec version supported */
190 static const int nvme_version_major = 1;
191 static const int nvme_version_minor = 0;
192 
193 static int nvme_attach(dev_info_t *, ddi_attach_cmd_t);
194 static int nvme_detach(dev_info_t *, ddi_detach_cmd_t);
195 static int nvme_quiesce(dev_info_t *);
196 static int nvme_fm_errcb(dev_info_t *, ddi_fm_error_t *, const void *);
197 static int nvme_setup_interrupts(nvme_t *, int, int);
198 static void nvme_release_interrupts(nvme_t *);
199 static uint_t nvme_intr(caddr_t, caddr_t);
200 
201 static void nvme_shutdown(nvme_t *, int, boolean_t);
202 static boolean_t nvme_reset(nvme_t *, boolean_t);
203 static int nvme_init(nvme_t *);
204 static nvme_cmd_t *nvme_alloc_cmd(nvme_t *, int);
205 static void nvme_free_cmd(nvme_cmd_t *);
206 static nvme_cmd_t *nvme_create_nvm_cmd(nvme_namespace_t *, uint8_t,
207     bd_xfer_t *);
208 static int nvme_admin_cmd(nvme_cmd_t *, int);
209 static int nvme_submit_cmd(nvme_qpair_t *, nvme_cmd_t *);
210 static nvme_cmd_t *nvme_retrieve_cmd(nvme_t *, nvme_qpair_t *);
211 static boolean_t nvme_wait_cmd(nvme_cmd_t *, uint_t);
212 static void nvme_wakeup_cmd(void *);
213 static void nvme_async_event_task(void *);
214 
215 static int nvme_check_unknown_cmd_status(nvme_cmd_t *);
216 static int nvme_check_vendor_cmd_status(nvme_cmd_t *);
217 static int nvme_check_integrity_cmd_status(nvme_cmd_t *);
218 static int nvme_check_specific_cmd_status(nvme_cmd_t *);
219 static int nvme_check_generic_cmd_status(nvme_cmd_t *);
220 static inline int nvme_check_cmd_status(nvme_cmd_t *);
221 
222 static void nvme_abort_cmd(nvme_cmd_t *);
223 static int nvme_async_event(nvme_t *);
224 static void *nvme_get_logpage(nvme_t *, uint8_t, ...);
225 static void *nvme_identify(nvme_t *, uint32_t);
226 static int nvme_set_nqueues(nvme_t *, uint16_t);
227 
228 static void nvme_free_dma(nvme_dma_t *);
229 static int nvme_zalloc_dma(nvme_t *, size_t, uint_t, ddi_dma_attr_t *,
230     nvme_dma_t **);
231 static int nvme_zalloc_queue_dma(nvme_t *, uint32_t, uint16_t, uint_t,
232     nvme_dma_t **);
233 static void nvme_free_qpair(nvme_qpair_t *);
234 static int nvme_alloc_qpair(nvme_t *, uint32_t, nvme_qpair_t **, int);
235 static int nvme_create_io_qpair(nvme_t *, nvme_qpair_t *, uint16_t);
236 
237 static inline void nvme_put64(nvme_t *, uintptr_t, uint64_t);
238 static inline void nvme_put32(nvme_t *, uintptr_t, uint32_t);
239 static inline uint64_t nvme_get64(nvme_t *, uintptr_t);
240 static inline uint32_t nvme_get32(nvme_t *, uintptr_t);
241 
242 static boolean_t nvme_check_regs_hdl(nvme_t *);
243 static boolean_t nvme_check_dma_hdl(nvme_dma_t *);
244 
245 static int nvme_fill_prp(nvme_cmd_t *, bd_xfer_t *);
246 
247 static void nvme_bd_xfer_done(void *);
248 static void nvme_bd_driveinfo(void *, bd_drive_t *);
249 static int nvme_bd_mediainfo(void *, bd_media_t *);
250 static int nvme_bd_cmd(nvme_namespace_t *, bd_xfer_t *, uint8_t);
251 static int nvme_bd_read(void *, bd_xfer_t *);
252 static int nvme_bd_write(void *, bd_xfer_t *);
253 static int nvme_bd_sync(void *, bd_xfer_t *);
254 static int nvme_bd_devid(void *, dev_info_t *, ddi_devid_t *);
255 
256 static void nvme_prepare_devid(nvme_t *, uint32_t);
257 
258 static void *nvme_state;
259 static kmem_cache_t *nvme_cmd_cache;
260 
261 /*
262  * DMA attributes for queue DMA memory
263  *
264  * Queue DMA memory must be page aligned. The maximum length of a queue is
265  * 65536 entries, and an entry can be 64 bytes long.
266  */
267 static ddi_dma_attr_t nvme_queue_dma_attr = {
268 	.dma_attr_version	= DMA_ATTR_V0,
269 	.dma_attr_addr_lo	= 0,
270 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
271 	.dma_attr_count_max	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
272 	.dma_attr_align		= 0x1000,
273 	.dma_attr_burstsizes	= 0x7ff,
274 	.dma_attr_minxfer	= 0x1000,
275 	.dma_attr_maxxfer	= (UINT16_MAX + 1) * sizeof (nvme_sqe_t),
276 	.dma_attr_seg		= 0xffffffffffffffffULL,
277 	.dma_attr_sgllen	= 1,
278 	.dma_attr_granular	= 1,
279 	.dma_attr_flags		= 0,
280 };
281 
282 /*
283  * DMA attributes for transfers using Physical Region Page (PRP) entries
284  *
285  * A PRP entry describes one page of DMA memory using the page size specified
286  * in the controller configuration's memory page size register (CC.MPS). It uses
287  * a 64bit base address aligned to this page size. There is no limitation on
288  * chaining PRPs together for arbitrarily large DMA transfers.
289  */
290 static ddi_dma_attr_t nvme_prp_dma_attr = {
291 	.dma_attr_version	= DMA_ATTR_V0,
292 	.dma_attr_addr_lo	= 0,
293 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
294 	.dma_attr_count_max	= 0xfff,
295 	.dma_attr_align		= 0x1000,
296 	.dma_attr_burstsizes	= 0x7ff,
297 	.dma_attr_minxfer	= 0x1000,
298 	.dma_attr_maxxfer	= 0x1000,
299 	.dma_attr_seg		= 0xffffffffffffffffULL,
300 	.dma_attr_sgllen	= -1,
301 	.dma_attr_granular	= 1,
302 	.dma_attr_flags		= 0,
303 };
304 
305 /*
306  * DMA attributes for transfers using scatter/gather lists
307  *
308  * A SGL entry describes a chunk of DMA memory using a 64bit base address and a
309  * 32bit length field. SGL Segment and SGL Last Segment entries require the
310  * length to be a multiple of 16 bytes.
311  */
312 static ddi_dma_attr_t nvme_sgl_dma_attr = {
313 	.dma_attr_version	= DMA_ATTR_V0,
314 	.dma_attr_addr_lo	= 0,
315 	.dma_attr_addr_hi	= 0xffffffffffffffffULL,
316 	.dma_attr_count_max	= 0xffffffffUL,
317 	.dma_attr_align		= 1,
318 	.dma_attr_burstsizes	= 0x7ff,
319 	.dma_attr_minxfer	= 0x10,
320 	.dma_attr_maxxfer	= 0xfffffffffULL,
321 	.dma_attr_seg		= 0xffffffffffffffffULL,
322 	.dma_attr_sgllen	= -1,
323 	.dma_attr_granular	= 0x10,
324 	.dma_attr_flags		= 0
325 };
326 
327 static ddi_device_acc_attr_t nvme_reg_acc_attr = {
328 	.devacc_attr_version	= DDI_DEVICE_ATTR_V0,
329 	.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC,
330 	.devacc_attr_dataorder	= DDI_STRICTORDER_ACC
331 };
332 
333 static struct dev_ops nvme_dev_ops = {
334 	.devo_rev	= DEVO_REV,
335 	.devo_refcnt	= 0,
336 	.devo_getinfo	= ddi_no_info,
337 	.devo_identify	= nulldev,
338 	.devo_probe	= nulldev,
339 	.devo_attach	= nvme_attach,
340 	.devo_detach	= nvme_detach,
341 	.devo_reset	= nodev,
342 	.devo_cb_ops	= NULL,
343 	.devo_bus_ops	= NULL,
344 	.devo_power	= NULL,
345 	.devo_quiesce	= nvme_quiesce,
346 };
347 
348 static struct modldrv nvme_modldrv = {
349 	.drv_modops	= &mod_driverops,
350 	.drv_linkinfo	= "NVMe v1.0e",
351 	.drv_dev_ops	= &nvme_dev_ops
352 };
353 
354 static struct modlinkage nvme_modlinkage = {
355 	.ml_rev		= MODREV_1,
356 	.ml_linkage	= { &nvme_modldrv, NULL }
357 };
358 
359 static bd_ops_t nvme_bd_ops = {
360 	.o_version	= BD_OPS_VERSION_0,
361 	.o_drive_info	= nvme_bd_driveinfo,
362 	.o_media_info	= nvme_bd_mediainfo,
363 	.o_devid_init	= nvme_bd_devid,
364 	.o_sync_cache	= nvme_bd_sync,
365 	.o_read		= nvme_bd_read,
366 	.o_write	= nvme_bd_write,
367 };
368 
369 int
370 _init(void)
371 {
372 	int error;
373 
374 	error = ddi_soft_state_init(&nvme_state, sizeof (nvme_t), 1);
375 	if (error != DDI_SUCCESS)
376 		return (error);
377 
378 	nvme_cmd_cache = kmem_cache_create("nvme_cmd_cache",
379 	    sizeof (nvme_cmd_t), 64, NULL, NULL, NULL, NULL, NULL, 0);
380 
381 	bd_mod_init(&nvme_dev_ops);
382 
383 	error = mod_install(&nvme_modlinkage);
384 	if (error != DDI_SUCCESS) {
385 		ddi_soft_state_fini(&nvme_state);
386 		bd_mod_fini(&nvme_dev_ops);
387 	}
388 
389 	return (error);
390 }
391 
392 int
393 _fini(void)
394 {
395 	int error;
396 
397 	error = mod_remove(&nvme_modlinkage);
398 	if (error == DDI_SUCCESS) {
399 		ddi_soft_state_fini(&nvme_state);
400 		kmem_cache_destroy(nvme_cmd_cache);
401 		bd_mod_fini(&nvme_dev_ops);
402 	}
403 
404 	return (error);
405 }
406 
407 int
408 _info(struct modinfo *modinfop)
409 {
410 	return (mod_info(&nvme_modlinkage, modinfop));
411 }
412 
413 static inline void
414 nvme_put64(nvme_t *nvme, uintptr_t reg, uint64_t val)
415 {
416 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
417 
418 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
419 	ddi_put64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg), val);
420 }
421 
422 static inline void
423 nvme_put32(nvme_t *nvme, uintptr_t reg, uint32_t val)
424 {
425 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
426 
427 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
428 	ddi_put32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg), val);
429 }
430 
431 static inline uint64_t
432 nvme_get64(nvme_t *nvme, uintptr_t reg)
433 {
434 	uint64_t val;
435 
436 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x7) == 0);
437 
438 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
439 	val = ddi_get64(nvme->n_regh, (uint64_t *)(nvme->n_regs + reg));
440 
441 	return (val);
442 }
443 
444 static inline uint32_t
445 nvme_get32(nvme_t *nvme, uintptr_t reg)
446 {
447 	uint32_t val;
448 
449 	ASSERT(((uintptr_t)(nvme->n_regs + reg) & 0x3) == 0);
450 
451 	/*LINTED: E_BAD_PTR_CAST_ALIGN*/
452 	val = ddi_get32(nvme->n_regh, (uint32_t *)(nvme->n_regs + reg));
453 
454 	return (val);
455 }
456 
457 static boolean_t
458 nvme_check_regs_hdl(nvme_t *nvme)
459 {
460 	ddi_fm_error_t error;
461 
462 	ddi_fm_acc_err_get(nvme->n_regh, &error, DDI_FME_VERSION);
463 
464 	if (error.fme_status != DDI_FM_OK)
465 		return (B_TRUE);
466 
467 	return (B_FALSE);
468 }
469 
470 static boolean_t
471 nvme_check_dma_hdl(nvme_dma_t *dma)
472 {
473 	ddi_fm_error_t error;
474 
475 	if (dma == NULL)
476 		return (B_FALSE);
477 
478 	ddi_fm_dma_err_get(dma->nd_dmah, &error, DDI_FME_VERSION);
479 
480 	if (error.fme_status != DDI_FM_OK)
481 		return (B_TRUE);
482 
483 	return (B_FALSE);
484 }
485 
486 static void
487 nvme_free_dma(nvme_dma_t *dma)
488 {
489 	if (dma->nd_dmah != NULL)
490 		(void) ddi_dma_unbind_handle(dma->nd_dmah);
491 	if (dma->nd_acch != NULL)
492 		ddi_dma_mem_free(&dma->nd_acch);
493 	if (dma->nd_dmah != NULL)
494 		ddi_dma_free_handle(&dma->nd_dmah);
495 	kmem_free(dma, sizeof (nvme_dma_t));
496 }
497 
498 static int
499 nvme_zalloc_dma(nvme_t *nvme, size_t len, uint_t flags,
500     ddi_dma_attr_t *dma_attr, nvme_dma_t **ret)
501 {
502 	nvme_dma_t *dma = kmem_zalloc(sizeof (nvme_dma_t), KM_SLEEP);
503 
504 	if (ddi_dma_alloc_handle(nvme->n_dip, dma_attr, DDI_DMA_SLEEP, NULL,
505 	    &dma->nd_dmah) != DDI_SUCCESS) {
506 		/*
507 		 * Due to DDI_DMA_SLEEP this can't be DDI_DMA_NORESOURCES, and
508 		 * the only other possible error is DDI_DMA_BADATTR which
509 		 * indicates a driver bug which should cause a panic.
510 		 */
511 		dev_err(nvme->n_dip, CE_PANIC,
512 		    "!failed to get DMA handle, check DMA attributes");
513 		return (DDI_FAILURE);
514 	}
515 
516 	/*
517 	 * ddi_dma_mem_alloc() can only fail when DDI_DMA_NOSLEEP is specified
518 	 * or the flags are conflicting, which isn't the case here.
519 	 */
520 	(void) ddi_dma_mem_alloc(dma->nd_dmah, len, &nvme->n_reg_acc_attr,
521 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &dma->nd_memp,
522 	    &dma->nd_len, &dma->nd_acch);
523 
524 	if (ddi_dma_addr_bind_handle(dma->nd_dmah, NULL, dma->nd_memp,
525 	    dma->nd_len, flags | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL,
526 	    &dma->nd_cookie, &dma->nd_ncookie) != DDI_DMA_MAPPED) {
527 		dev_err(nvme->n_dip, CE_WARN,
528 		    "!failed to bind DMA memory");
529 		atomic_inc_32(&nvme->n_dma_bind_err);
530 		*ret = NULL;
531 		nvme_free_dma(dma);
532 		return (DDI_FAILURE);
533 	}
534 
535 	bzero(dma->nd_memp, dma->nd_len);
536 
537 	*ret = dma;
538 	return (DDI_SUCCESS);
539 }
540 
541 static int
542 nvme_zalloc_queue_dma(nvme_t *nvme, uint32_t nentry, uint16_t qe_len,
543     uint_t flags, nvme_dma_t **dma)
544 {
545 	uint32_t len = nentry * qe_len;
546 	ddi_dma_attr_t q_dma_attr = nvme->n_queue_dma_attr;
547 
548 	len = roundup(len, nvme->n_pagesize);
549 
550 	q_dma_attr.dma_attr_minxfer = len;
551 
552 	if (nvme_zalloc_dma(nvme, len, flags, &q_dma_attr, dma)
553 	    != DDI_SUCCESS) {
554 		dev_err(nvme->n_dip, CE_WARN,
555 		    "!failed to get DMA memory for queue");
556 		goto fail;
557 	}
558 
559 	if ((*dma)->nd_ncookie != 1) {
560 		dev_err(nvme->n_dip, CE_WARN,
561 		    "!got too many cookies for queue DMA");
562 		goto fail;
563 	}
564 
565 	return (DDI_SUCCESS);
566 
567 fail:
568 	if (*dma) {
569 		nvme_free_dma(*dma);
570 		*dma = NULL;
571 	}
572 
573 	return (DDI_FAILURE);
574 }
575 
576 static void
577 nvme_free_qpair(nvme_qpair_t *qp)
578 {
579 	int i;
580 
581 	mutex_destroy(&qp->nq_mutex);
582 
583 	if (qp->nq_sqdma != NULL)
584 		nvme_free_dma(qp->nq_sqdma);
585 	if (qp->nq_cqdma != NULL)
586 		nvme_free_dma(qp->nq_cqdma);
587 
588 	if (qp->nq_active_cmds > 0)
589 		for (i = 0; i != qp->nq_nentry; i++)
590 			if (qp->nq_cmd[i] != NULL)
591 				nvme_free_cmd(qp->nq_cmd[i]);
592 
593 	if (qp->nq_cmd != NULL)
594 		kmem_free(qp->nq_cmd, sizeof (nvme_cmd_t *) * qp->nq_nentry);
595 
596 	kmem_free(qp, sizeof (nvme_qpair_t));
597 }
598 
599 static int
600 nvme_alloc_qpair(nvme_t *nvme, uint32_t nentry, nvme_qpair_t **nqp,
601     int idx)
602 {
603 	nvme_qpair_t *qp = kmem_zalloc(sizeof (*qp), KM_SLEEP);
604 
605 	mutex_init(&qp->nq_mutex, NULL, MUTEX_DRIVER,
606 	    DDI_INTR_PRI(nvme->n_intr_pri));
607 
608 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_sqe_t),
609 	    DDI_DMA_WRITE, &qp->nq_sqdma) != DDI_SUCCESS)
610 		goto fail;
611 
612 	if (nvme_zalloc_queue_dma(nvme, nentry, sizeof (nvme_cqe_t),
613 	    DDI_DMA_READ, &qp->nq_cqdma) != DDI_SUCCESS)
614 		goto fail;
615 
616 	qp->nq_sq = (nvme_sqe_t *)qp->nq_sqdma->nd_memp;
617 	qp->nq_cq = (nvme_cqe_t *)qp->nq_cqdma->nd_memp;
618 	qp->nq_nentry = nentry;
619 
620 	qp->nq_sqtdbl = NVME_REG_SQTDBL(nvme, idx);
621 	qp->nq_cqhdbl = NVME_REG_CQHDBL(nvme, idx);
622 
623 	qp->nq_cmd = kmem_zalloc(sizeof (nvme_cmd_t *) * nentry, KM_SLEEP);
624 	qp->nq_next_cmd = 0;
625 
626 	*nqp = qp;
627 	return (DDI_SUCCESS);
628 
629 fail:
630 	nvme_free_qpair(qp);
631 	*nqp = NULL;
632 
633 	return (DDI_FAILURE);
634 }
635 
636 static nvme_cmd_t *
637 nvme_alloc_cmd(nvme_t *nvme, int kmflag)
638 {
639 	nvme_cmd_t *cmd = kmem_cache_alloc(nvme_cmd_cache, kmflag);
640 
641 	if (cmd == NULL)
642 		return (cmd);
643 
644 	bzero(cmd, sizeof (nvme_cmd_t));
645 
646 	cmd->nc_nvme = nvme;
647 
648 	mutex_init(&cmd->nc_mutex, NULL, MUTEX_DRIVER,
649 	    DDI_INTR_PRI(nvme->n_intr_pri));
650 	cv_init(&cmd->nc_cv, NULL, CV_DRIVER, NULL);
651 
652 	return (cmd);
653 }
654 
655 static void
656 nvme_free_cmd(nvme_cmd_t *cmd)
657 {
658 	if (cmd->nc_dma) {
659 		nvme_free_dma(cmd->nc_dma);
660 		cmd->nc_dma = NULL;
661 	}
662 
663 	cv_destroy(&cmd->nc_cv);
664 	mutex_destroy(&cmd->nc_mutex);
665 
666 	kmem_cache_free(nvme_cmd_cache, cmd);
667 }
668 
669 static int
670 nvme_submit_cmd(nvme_qpair_t *qp, nvme_cmd_t *cmd)
671 {
672 	nvme_reg_sqtdbl_t tail = { 0 };
673 
674 	mutex_enter(&qp->nq_mutex);
675 
676 	if (qp->nq_active_cmds == qp->nq_nentry) {
677 		mutex_exit(&qp->nq_mutex);
678 		return (DDI_FAILURE);
679 	}
680 
681 	cmd->nc_completed = B_FALSE;
682 
683 	/*
684 	 * Try to insert the cmd into the active cmd array at the nq_next_cmd
685 	 * slot. If the slot is already occupied advance to the next slot and
686 	 * try again. This can happen for long running commands like async event
687 	 * requests.
688 	 */
689 	while (qp->nq_cmd[qp->nq_next_cmd] != NULL)
690 		qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
691 	qp->nq_cmd[qp->nq_next_cmd] = cmd;
692 
693 	qp->nq_active_cmds++;
694 
695 	cmd->nc_sqe.sqe_cid = qp->nq_next_cmd;
696 	bcopy(&cmd->nc_sqe, &qp->nq_sq[qp->nq_sqtail], sizeof (nvme_sqe_t));
697 	(void) ddi_dma_sync(qp->nq_sqdma->nd_dmah,
698 	    sizeof (nvme_sqe_t) * qp->nq_sqtail,
699 	    sizeof (nvme_sqe_t), DDI_DMA_SYNC_FORDEV);
700 	qp->nq_next_cmd = (qp->nq_next_cmd + 1) % qp->nq_nentry;
701 
702 	tail.b.sqtdbl_sqt = qp->nq_sqtail = (qp->nq_sqtail + 1) % qp->nq_nentry;
703 	nvme_put32(cmd->nc_nvme, qp->nq_sqtdbl, tail.r);
704 
705 	mutex_exit(&qp->nq_mutex);
706 	return (DDI_SUCCESS);
707 }
708 
709 static nvme_cmd_t *
710 nvme_retrieve_cmd(nvme_t *nvme, nvme_qpair_t *qp)
711 {
712 	nvme_reg_cqhdbl_t head = { 0 };
713 
714 	nvme_cqe_t *cqe;
715 	nvme_cmd_t *cmd;
716 
717 	(void) ddi_dma_sync(qp->nq_cqdma->nd_dmah, 0,
718 	    sizeof (nvme_cqe_t) * qp->nq_nentry, DDI_DMA_SYNC_FORKERNEL);
719 
720 	cqe = &qp->nq_cq[qp->nq_cqhead];
721 
722 	/* Check phase tag of CQE. Hardware inverts it for new entries. */
723 	if (cqe->cqe_sf.sf_p == qp->nq_phase)
724 		return (NULL);
725 
726 	ASSERT(nvme->n_ioq[cqe->cqe_sqid] == qp);
727 	ASSERT(cqe->cqe_cid < qp->nq_nentry);
728 
729 	mutex_enter(&qp->nq_mutex);
730 	cmd = qp->nq_cmd[cqe->cqe_cid];
731 	qp->nq_cmd[cqe->cqe_cid] = NULL;
732 	qp->nq_active_cmds--;
733 	mutex_exit(&qp->nq_mutex);
734 
735 	ASSERT(cmd != NULL);
736 	ASSERT(cmd->nc_nvme == nvme);
737 	ASSERT(cmd->nc_sqid == cqe->cqe_sqid);
738 	ASSERT(cmd->nc_sqe.sqe_cid == cqe->cqe_cid);
739 	bcopy(cqe, &cmd->nc_cqe, sizeof (nvme_cqe_t));
740 
741 	qp->nq_sqhead = cqe->cqe_sqhd;
742 
743 	head.b.cqhdbl_cqh = qp->nq_cqhead = (qp->nq_cqhead + 1) % qp->nq_nentry;
744 
745 	/* Toggle phase on wrap-around. */
746 	if (qp->nq_cqhead == 0)
747 		qp->nq_phase = qp->nq_phase ? 0 : 1;
748 
749 	nvme_put32(cmd->nc_nvme, qp->nq_cqhdbl, head.r);
750 
751 	return (cmd);
752 }
753 
754 static int
755 nvme_check_unknown_cmd_status(nvme_cmd_t *cmd)
756 {
757 	nvme_cqe_t *cqe = &cmd->nc_cqe;
758 
759 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
760 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
761 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
762 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
763 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
764 
765 	bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
766 
767 	if (cmd->nc_nvme->n_strict_version) {
768 		cmd->nc_nvme->n_dead = B_TRUE;
769 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
770 	}
771 
772 	return (EIO);
773 }
774 
775 static int
776 nvme_check_vendor_cmd_status(nvme_cmd_t *cmd)
777 {
778 	nvme_cqe_t *cqe = &cmd->nc_cqe;
779 
780 	dev_err(cmd->nc_nvme->n_dip, CE_WARN,
781 	    "!unknown command status received: opc = %x, sqid = %d, cid = %d, "
782 	    "sc = %x, sct = %x, dnr = %d, m = %d", cmd->nc_sqe.sqe_opc,
783 	    cqe->cqe_sqid, cqe->cqe_cid, cqe->cqe_sf.sf_sc, cqe->cqe_sf.sf_sct,
784 	    cqe->cqe_sf.sf_dnr, cqe->cqe_sf.sf_m);
785 	if (cmd->nc_nvme->n_ignore_unknown_vendor_status) {
786 		cmd->nc_nvme->n_dead = B_TRUE;
787 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
788 	}
789 
790 	return (EIO);
791 }
792 
793 static int
794 nvme_check_integrity_cmd_status(nvme_cmd_t *cmd)
795 {
796 	nvme_cqe_t *cqe = &cmd->nc_cqe;
797 
798 	switch (cqe->cqe_sf.sf_sc) {
799 	case NVME_CQE_SC_INT_NVM_WRITE:
800 		/* write fail */
801 		/* TODO: post ereport */
802 		bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
803 		return (EIO);
804 
805 	case NVME_CQE_SC_INT_NVM_READ:
806 		/* read fail */
807 		/* TODO: post ereport */
808 		bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
809 		return (EIO);
810 
811 	default:
812 		return (nvme_check_unknown_cmd_status(cmd));
813 	}
814 }
815 
816 static int
817 nvme_check_generic_cmd_status(nvme_cmd_t *cmd)
818 {
819 	nvme_cqe_t *cqe = &cmd->nc_cqe;
820 
821 	switch (cqe->cqe_sf.sf_sc) {
822 	case NVME_CQE_SC_GEN_SUCCESS:
823 		return (0);
824 
825 	/*
826 	 * Errors indicating a bug in the driver should cause a panic.
827 	 */
828 	case NVME_CQE_SC_GEN_INV_OPC:
829 		/* Invalid Command Opcode */
830 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
831 		    "invalid opcode in cmd %p", (void *)cmd);
832 		return (0);
833 
834 	case NVME_CQE_SC_GEN_INV_FLD:
835 		/* Invalid Field in Command */
836 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
837 		    "invalid field in cmd %p", (void *)cmd);
838 		return (0);
839 
840 	case NVME_CQE_SC_GEN_ID_CNFL:
841 		/* Command ID Conflict */
842 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
843 		    "cmd ID conflict in cmd %p", (void *)cmd);
844 		return (0);
845 
846 	case NVME_CQE_SC_GEN_INV_NS:
847 		/* Invalid Namespace or Format */
848 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
849 		    "invalid NS/format in cmd %p", (void *)cmd);
850 		return (0);
851 
852 	case NVME_CQE_SC_GEN_NVM_LBA_RANGE:
853 		/* LBA Out Of Range */
854 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
855 		    "LBA out of range in cmd %p", (void *)cmd);
856 		return (0);
857 
858 	/*
859 	 * Non-fatal errors, handle gracefully.
860 	 */
861 	case NVME_CQE_SC_GEN_DATA_XFR_ERR:
862 		/* Data Transfer Error (DMA) */
863 		/* TODO: post ereport */
864 		atomic_inc_32(&cmd->nc_nvme->n_data_xfr_err);
865 		bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
866 		return (EIO);
867 
868 	case NVME_CQE_SC_GEN_INTERNAL_ERR:
869 		/*
870 		 * Internal Error. The spec (v1.0, section 4.5.1.2) says
871 		 * detailed error information is returned as async event,
872 		 * so we pretty much ignore the error here and handle it
873 		 * in the async event handler.
874 		 */
875 		atomic_inc_32(&cmd->nc_nvme->n_internal_err);
876 		bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
877 		return (EIO);
878 
879 	case NVME_CQE_SC_GEN_ABORT_REQUEST:
880 		/*
881 		 * Command Abort Requested. This normally happens only when a
882 		 * command times out.
883 		 */
884 		/* TODO: post ereport or change blkdev to handle this? */
885 		atomic_inc_32(&cmd->nc_nvme->n_abort_rq_err);
886 		return (ECANCELED);
887 
888 	case NVME_CQE_SC_GEN_ABORT_PWRLOSS:
889 		/* Command Aborted due to Power Loss Notification */
890 		ddi_fm_service_impact(cmd->nc_nvme->n_dip, DDI_SERVICE_LOST);
891 		cmd->nc_nvme->n_dead = B_TRUE;
892 		return (EIO);
893 
894 	case NVME_CQE_SC_GEN_ABORT_SQ_DEL:
895 		/* Command Aborted due to SQ Deletion */
896 		atomic_inc_32(&cmd->nc_nvme->n_abort_sq_del);
897 		return (EIO);
898 
899 	case NVME_CQE_SC_GEN_NVM_CAP_EXC:
900 		/* Capacity Exceeded */
901 		atomic_inc_32(&cmd->nc_nvme->n_nvm_cap_exc);
902 		bd_error(cmd->nc_xfer, BD_ERR_MEDIA);
903 		return (EIO);
904 
905 	case NVME_CQE_SC_GEN_NVM_NS_NOTRDY:
906 		/* Namespace Not Ready */
907 		atomic_inc_32(&cmd->nc_nvme->n_nvm_ns_notrdy);
908 		bd_error(cmd->nc_xfer, BD_ERR_NTRDY);
909 		return (EIO);
910 
911 	default:
912 		return (nvme_check_unknown_cmd_status(cmd));
913 	}
914 }
915 
916 static int
917 nvme_check_specific_cmd_status(nvme_cmd_t *cmd)
918 {
919 	nvme_cqe_t *cqe = &cmd->nc_cqe;
920 
921 	switch (cqe->cqe_sf.sf_sc) {
922 	case NVME_CQE_SC_SPC_INV_CQ:
923 		/* Completion Queue Invalid */
924 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE);
925 		atomic_inc_32(&cmd->nc_nvme->n_inv_cq_err);
926 		return (EINVAL);
927 
928 	case NVME_CQE_SC_SPC_INV_QID:
929 		/* Invalid Queue Identifier */
930 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
931 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_SQUEUE ||
932 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE ||
933 		    cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
934 		atomic_inc_32(&cmd->nc_nvme->n_inv_qid_err);
935 		return (EINVAL);
936 
937 	case NVME_CQE_SC_SPC_MAX_QSZ_EXC:
938 		/* Max Queue Size Exceeded */
939 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_SQUEUE ||
940 		    cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
941 		atomic_inc_32(&cmd->nc_nvme->n_max_qsz_exc);
942 		return (EINVAL);
943 
944 	case NVME_CQE_SC_SPC_ABRT_CMD_EXC:
945 		/* Abort Command Limit Exceeded */
946 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT);
947 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
948 		    "abort command limit exceeded in cmd %p", (void *)cmd);
949 		return (0);
950 
951 	case NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC:
952 		/* Async Event Request Limit Exceeded */
953 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_ASYNC_EVENT);
954 		dev_err(cmd->nc_nvme->n_dip, CE_PANIC, "programming error: "
955 		    "async event request limit exceeded in cmd %p",
956 		    (void *)cmd);
957 		return (0);
958 
959 	case NVME_CQE_SC_SPC_INV_INT_VECT:
960 		/* Invalid Interrupt Vector */
961 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_CREATE_CQUEUE);
962 		atomic_inc_32(&cmd->nc_nvme->n_inv_int_vect);
963 		return (EINVAL);
964 
965 	case NVME_CQE_SC_SPC_INV_LOG_PAGE:
966 		/* Invalid Log Page */
967 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_GET_LOG_PAGE);
968 		atomic_inc_32(&cmd->nc_nvme->n_inv_log_page);
969 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
970 		return (EINVAL);
971 
972 	case NVME_CQE_SC_SPC_INV_FORMAT:
973 		/* Invalid Format */
974 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_FORMAT);
975 		atomic_inc_32(&cmd->nc_nvme->n_inv_format);
976 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
977 		return (EINVAL);
978 
979 	case NVME_CQE_SC_SPC_INV_Q_DEL:
980 		/* Invalid Queue Deletion */
981 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_DELETE_CQUEUE);
982 		atomic_inc_32(&cmd->nc_nvme->n_inv_q_del);
983 		return (EINVAL);
984 
985 	case NVME_CQE_SC_SPC_NVM_CNFL_ATTR:
986 		/* Conflicting Attributes */
987 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_DSET_MGMT ||
988 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
989 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
990 		atomic_inc_32(&cmd->nc_nvme->n_cnfl_attr);
991 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
992 		return (EINVAL);
993 
994 	case NVME_CQE_SC_SPC_NVM_INV_PROT:
995 		/* Invalid Protection Information */
996 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_COMPARE ||
997 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_READ ||
998 		    cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
999 		atomic_inc_32(&cmd->nc_nvme->n_inv_prot);
1000 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1001 		return (EINVAL);
1002 
1003 	case NVME_CQE_SC_SPC_NVM_READONLY:
1004 		/* Write to Read Only Range */
1005 		ASSERT(cmd->nc_sqe.sqe_opc == NVME_OPC_NVM_WRITE);
1006 		atomic_inc_32(&cmd->nc_nvme->n_readonly);
1007 		bd_error(cmd->nc_xfer, BD_ERR_ILLRQ);
1008 		return (EROFS);
1009 
1010 	default:
1011 		return (nvme_check_unknown_cmd_status(cmd));
1012 	}
1013 }
1014 
1015 static inline int
1016 nvme_check_cmd_status(nvme_cmd_t *cmd)
1017 {
1018 	nvme_cqe_t *cqe = &cmd->nc_cqe;
1019 
1020 	/* take a shortcut if everything is alright */
1021 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1022 	    cqe->cqe_sf.sf_sc == NVME_CQE_SC_GEN_SUCCESS)
1023 		return (0);
1024 
1025 	if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC)
1026 		return (nvme_check_generic_cmd_status(cmd));
1027 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_SPECIFIC)
1028 		return (nvme_check_specific_cmd_status(cmd));
1029 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_INTEGRITY)
1030 		return (nvme_check_integrity_cmd_status(cmd));
1031 	else if (cqe->cqe_sf.sf_sct == NVME_CQE_SCT_VENDOR)
1032 		return (nvme_check_vendor_cmd_status(cmd));
1033 
1034 	return (nvme_check_unknown_cmd_status(cmd));
1035 }
1036 
1037 /*
1038  * nvme_abort_cmd_cb -- replaces nc_callback of aborted commands
1039  *
1040  * This functions takes care of cleaning up aborted commands. The command
1041  * status is checked to catch any fatal errors.
1042  */
1043 static void
1044 nvme_abort_cmd_cb(void *arg)
1045 {
1046 	nvme_cmd_t *cmd = arg;
1047 
1048 	/*
1049 	 * Grab the command mutex. Once we have it we hold the last reference
1050 	 * to the command and can safely free it.
1051 	 */
1052 	mutex_enter(&cmd->nc_mutex);
1053 	(void) nvme_check_cmd_status(cmd);
1054 	mutex_exit(&cmd->nc_mutex);
1055 
1056 	nvme_free_cmd(cmd);
1057 }
1058 
1059 static void
1060 nvme_abort_cmd(nvme_cmd_t *abort_cmd)
1061 {
1062 	nvme_t *nvme = abort_cmd->nc_nvme;
1063 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1064 	nvme_abort_cmd_t ac = { 0 };
1065 
1066 	sema_p(&nvme->n_abort_sema);
1067 
1068 	ac.b.ac_cid = abort_cmd->nc_sqe.sqe_cid;
1069 	ac.b.ac_sqid = abort_cmd->nc_sqid;
1070 
1071 	/*
1072 	 * Drop the mutex of the aborted command. From this point on
1073 	 * we must assume that the abort callback has freed the command.
1074 	 */
1075 	mutex_exit(&abort_cmd->nc_mutex);
1076 
1077 	cmd->nc_sqid = 0;
1078 	cmd->nc_sqe.sqe_opc = NVME_OPC_ABORT;
1079 	cmd->nc_callback = nvme_wakeup_cmd;
1080 	cmd->nc_sqe.sqe_cdw10 = ac.r;
1081 
1082 	/*
1083 	 * Send the ABORT to the hardware. The ABORT command will return _after_
1084 	 * the aborted command has completed (aborted or otherwise).
1085 	 */
1086 	if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) {
1087 		sema_v(&nvme->n_abort_sema);
1088 		dev_err(nvme->n_dip, CE_WARN,
1089 		    "!nvme_admin_cmd failed for ABORT");
1090 		atomic_inc_32(&nvme->n_abort_failed);
1091 		return;
1092 	}
1093 	sema_v(&nvme->n_abort_sema);
1094 
1095 	if (nvme_check_cmd_status(cmd)) {
1096 		dev_err(nvme->n_dip, CE_WARN,
1097 		    "!ABORT failed with sct = %x, sc = %x",
1098 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1099 		atomic_inc_32(&nvme->n_abort_failed);
1100 	} else {
1101 		atomic_inc_32(&nvme->n_cmd_aborted);
1102 	}
1103 
1104 	nvme_free_cmd(cmd);
1105 }
1106 
1107 /*
1108  * nvme_wait_cmd -- wait for command completion or timeout
1109  *
1110  * Returns B_TRUE if the command completed normally.
1111  *
1112  * Returns B_FALSE if the command timed out and an abort was attempted. The
1113  * command mutex will be dropped and the command must be considered freed. The
1114  * freeing of the command is normally done by the abort command callback.
1115  *
1116  * In case of a serious error or a timeout of the abort command the hardware
1117  * will be declared dead and FMA will be notified.
1118  */
1119 static boolean_t
1120 nvme_wait_cmd(nvme_cmd_t *cmd, uint_t usec)
1121 {
1122 	clock_t timeout = ddi_get_lbolt() + drv_usectohz(usec);
1123 	nvme_t *nvme = cmd->nc_nvme;
1124 	nvme_reg_csts_t csts;
1125 
1126 	ASSERT(mutex_owned(&cmd->nc_mutex));
1127 
1128 	while (!cmd->nc_completed) {
1129 		if (cv_timedwait(&cmd->nc_cv, &cmd->nc_mutex, timeout) == -1)
1130 			break;
1131 	}
1132 
1133 	if (cmd->nc_completed)
1134 		return (B_TRUE);
1135 
1136 	/*
1137 	 * The command timed out. Change the callback to the cleanup function.
1138 	 */
1139 	cmd->nc_callback = nvme_abort_cmd_cb;
1140 
1141 	/*
1142 	 * Check controller for fatal status, any errors associated with the
1143 	 * register or DMA handle, or for a double timeout (abort command timed
1144 	 * out). If necessary log a warning and call FMA.
1145 	 */
1146 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1147 	dev_err(nvme->n_dip, CE_WARN, "!command timeout, "
1148 	    "OPC = %x, CFS = %d", cmd->nc_sqe.sqe_opc, csts.b.csts_cfs);
1149 	atomic_inc_32(&nvme->n_cmd_timeout);
1150 
1151 	if (csts.b.csts_cfs ||
1152 	    nvme_check_regs_hdl(nvme) ||
1153 	    nvme_check_dma_hdl(cmd->nc_dma) ||
1154 	    cmd->nc_sqe.sqe_opc == NVME_OPC_ABORT) {
1155 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1156 		nvme->n_dead = B_TRUE;
1157 		mutex_exit(&cmd->nc_mutex);
1158 	} else {
1159 		/*
1160 		 * Try to abort the command. The command mutex is released by
1161 		 * nvme_abort_cmd().
1162 		 * If the abort succeeds it will have freed the aborted command.
1163 		 * If the abort fails for other reasons we must assume that the
1164 		 * command may complete at any time, and the callback will free
1165 		 * it for us.
1166 		 */
1167 		nvme_abort_cmd(cmd);
1168 	}
1169 
1170 	return (B_FALSE);
1171 }
1172 
1173 static void
1174 nvme_wakeup_cmd(void *arg)
1175 {
1176 	nvme_cmd_t *cmd = arg;
1177 
1178 	mutex_enter(&cmd->nc_mutex);
1179 	/*
1180 	 * There is a slight chance that this command completed shortly after
1181 	 * the timeout was hit in nvme_wait_cmd() but before the callback was
1182 	 * changed. Catch that case here and clean up accordingly.
1183 	 */
1184 	if (cmd->nc_callback == nvme_abort_cmd_cb) {
1185 		mutex_exit(&cmd->nc_mutex);
1186 		nvme_abort_cmd_cb(cmd);
1187 		return;
1188 	}
1189 
1190 	cmd->nc_completed = B_TRUE;
1191 	cv_signal(&cmd->nc_cv);
1192 	mutex_exit(&cmd->nc_mutex);
1193 }
1194 
1195 static void
1196 nvme_async_event_task(void *arg)
1197 {
1198 	nvme_cmd_t *cmd = arg;
1199 	nvme_t *nvme = cmd->nc_nvme;
1200 	nvme_error_log_entry_t *error_log = NULL;
1201 	nvme_health_log_t *health_log = NULL;
1202 	nvme_async_event_t event;
1203 	int ret;
1204 
1205 	/*
1206 	 * Check for errors associated with the async request itself. The only
1207 	 * command-specific error is "async event limit exceeded", which
1208 	 * indicates a programming error in the driver and causes a panic in
1209 	 * nvme_check_cmd_status().
1210 	 *
1211 	 * Other possible errors are various scenarios where the async request
1212 	 * was aborted, or internal errors in the device. Internal errors are
1213 	 * reported to FMA, the command aborts need no special handling here.
1214 	 */
1215 	if (nvme_check_cmd_status(cmd)) {
1216 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1217 		    "!async event request returned failure, sct = %x, "
1218 		    "sc = %x, dnr = %d, m = %d", cmd->nc_cqe.cqe_sf.sf_sct,
1219 		    cmd->nc_cqe.cqe_sf.sf_sc, cmd->nc_cqe.cqe_sf.sf_dnr,
1220 		    cmd->nc_cqe.cqe_sf.sf_m);
1221 
1222 		if (cmd->nc_cqe.cqe_sf.sf_sct == NVME_CQE_SCT_GENERIC &&
1223 		    cmd->nc_cqe.cqe_sf.sf_sc == NVME_CQE_SC_GEN_INTERNAL_ERR) {
1224 			cmd->nc_nvme->n_dead = B_TRUE;
1225 			ddi_fm_service_impact(cmd->nc_nvme->n_dip,
1226 			    DDI_SERVICE_LOST);
1227 		}
1228 		nvme_free_cmd(cmd);
1229 		return;
1230 	}
1231 
1232 
1233 	event.r = cmd->nc_cqe.cqe_dw0;
1234 
1235 	/* Clear CQE and re-submit the async request. */
1236 	bzero(&cmd->nc_cqe, sizeof (nvme_cqe_t));
1237 	ret = nvme_submit_cmd(nvme->n_adminq, cmd);
1238 
1239 	if (ret != DDI_SUCCESS) {
1240 		dev_err(nvme->n_dip, CE_WARN,
1241 		    "!failed to resubmit async event request");
1242 		atomic_inc_32(&nvme->n_async_resubmit_failed);
1243 		nvme_free_cmd(cmd);
1244 	}
1245 
1246 	switch (event.b.ae_type) {
1247 	case NVME_ASYNC_TYPE_ERROR:
1248 		if (event.b.ae_logpage == NVME_LOGPAGE_ERROR) {
1249 			error_log = (nvme_error_log_entry_t *)
1250 			    nvme_get_logpage(nvme, event.b.ae_logpage);
1251 		} else {
1252 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1253 			    "async event reply: %d", event.b.ae_logpage);
1254 			atomic_inc_32(&nvme->n_wrong_logpage);
1255 		}
1256 
1257 		switch (event.b.ae_info) {
1258 		case NVME_ASYNC_ERROR_INV_SQ:
1259 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1260 			    "invalid submission queue");
1261 			return;
1262 
1263 		case NVME_ASYNC_ERROR_INV_DBL:
1264 			dev_err(nvme->n_dip, CE_PANIC, "programming error: "
1265 			    "invalid doorbell write value");
1266 			return;
1267 
1268 		case NVME_ASYNC_ERROR_DIAGFAIL:
1269 			dev_err(nvme->n_dip, CE_WARN, "!diagnostic failure");
1270 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1271 			nvme->n_dead = B_TRUE;
1272 			atomic_inc_32(&nvme->n_diagfail_event);
1273 			break;
1274 
1275 		case NVME_ASYNC_ERROR_PERSISTENT:
1276 			dev_err(nvme->n_dip, CE_WARN, "!persistent internal "
1277 			    "device error");
1278 			ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1279 			nvme->n_dead = B_TRUE;
1280 			atomic_inc_32(&nvme->n_persistent_event);
1281 			break;
1282 
1283 		case NVME_ASYNC_ERROR_TRANSIENT:
1284 			dev_err(nvme->n_dip, CE_WARN, "!transient internal "
1285 			    "device error");
1286 			/* TODO: send ereport */
1287 			atomic_inc_32(&nvme->n_transient_event);
1288 			break;
1289 
1290 		case NVME_ASYNC_ERROR_FW_LOAD:
1291 			dev_err(nvme->n_dip, CE_WARN,
1292 			    "!firmware image load error");
1293 			atomic_inc_32(&nvme->n_fw_load_event);
1294 			break;
1295 		}
1296 		break;
1297 
1298 	case NVME_ASYNC_TYPE_HEALTH:
1299 		if (event.b.ae_logpage == NVME_LOGPAGE_HEALTH) {
1300 			health_log = (nvme_health_log_t *)
1301 			    nvme_get_logpage(nvme, event.b.ae_logpage, -1);
1302 		} else {
1303 			dev_err(nvme->n_dip, CE_WARN, "!wrong logpage in "
1304 			    "async event reply: %d", event.b.ae_logpage);
1305 			atomic_inc_32(&nvme->n_wrong_logpage);
1306 		}
1307 
1308 		switch (event.b.ae_info) {
1309 		case NVME_ASYNC_HEALTH_RELIABILITY:
1310 			dev_err(nvme->n_dip, CE_WARN,
1311 			    "!device reliability compromised");
1312 			/* TODO: send ereport */
1313 			atomic_inc_32(&nvme->n_reliability_event);
1314 			break;
1315 
1316 		case NVME_ASYNC_HEALTH_TEMPERATURE:
1317 			dev_err(nvme->n_dip, CE_WARN,
1318 			    "!temperature above threshold");
1319 			/* TODO: send ereport */
1320 			atomic_inc_32(&nvme->n_temperature_event);
1321 			break;
1322 
1323 		case NVME_ASYNC_HEALTH_SPARE:
1324 			dev_err(nvme->n_dip, CE_WARN,
1325 			    "!spare space below threshold");
1326 			/* TODO: send ereport */
1327 			atomic_inc_32(&nvme->n_spare_event);
1328 			break;
1329 		}
1330 		break;
1331 
1332 	case NVME_ASYNC_TYPE_VENDOR:
1333 		dev_err(nvme->n_dip, CE_WARN, "!vendor specific async event "
1334 		    "received, info = %x, logpage = %x", event.b.ae_info,
1335 		    event.b.ae_logpage);
1336 		atomic_inc_32(&nvme->n_vendor_event);
1337 		break;
1338 
1339 	default:
1340 		dev_err(nvme->n_dip, CE_WARN, "!unknown async event received, "
1341 		    "type = %x, info = %x, logpage = %x", event.b.ae_type,
1342 		    event.b.ae_info, event.b.ae_logpage);
1343 		atomic_inc_32(&nvme->n_unknown_event);
1344 		break;
1345 	}
1346 
1347 	if (error_log)
1348 		kmem_free(error_log, sizeof (nvme_error_log_entry_t) *
1349 		    nvme->n_error_log_len);
1350 
1351 	if (health_log)
1352 		kmem_free(health_log, sizeof (nvme_health_log_t));
1353 }
1354 
1355 static int
1356 nvme_admin_cmd(nvme_cmd_t *cmd, int usec)
1357 {
1358 	int ret;
1359 
1360 	mutex_enter(&cmd->nc_mutex);
1361 	ret = nvme_submit_cmd(cmd->nc_nvme->n_adminq, cmd);
1362 
1363 	if (ret != DDI_SUCCESS) {
1364 		mutex_exit(&cmd->nc_mutex);
1365 		dev_err(cmd->nc_nvme->n_dip, CE_WARN,
1366 		    "!nvme_submit_cmd failed");
1367 		atomic_inc_32(&cmd->nc_nvme->n_admin_queue_full);
1368 		nvme_free_cmd(cmd);
1369 		return (DDI_FAILURE);
1370 	}
1371 
1372 	if (nvme_wait_cmd(cmd, usec) == B_FALSE) {
1373 		/*
1374 		 * The command timed out. An abort command was posted that
1375 		 * will take care of the cleanup.
1376 		 */
1377 		return (DDI_FAILURE);
1378 	}
1379 	mutex_exit(&cmd->nc_mutex);
1380 
1381 	return (DDI_SUCCESS);
1382 }
1383 
1384 static int
1385 nvme_async_event(nvme_t *nvme)
1386 {
1387 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1388 	int ret;
1389 
1390 	cmd->nc_sqid = 0;
1391 	cmd->nc_sqe.sqe_opc = NVME_OPC_ASYNC_EVENT;
1392 	cmd->nc_callback = nvme_async_event_task;
1393 
1394 	ret = nvme_submit_cmd(nvme->n_adminq, cmd);
1395 
1396 	if (ret != DDI_SUCCESS) {
1397 		dev_err(nvme->n_dip, CE_WARN,
1398 		    "!nvme_submit_cmd failed for ASYNCHRONOUS EVENT");
1399 		nvme_free_cmd(cmd);
1400 		return (DDI_FAILURE);
1401 	}
1402 
1403 	return (DDI_SUCCESS);
1404 }
1405 
1406 static void *
1407 nvme_get_logpage(nvme_t *nvme, uint8_t logpage, ...)
1408 {
1409 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1410 	void *buf = NULL;
1411 	nvme_getlogpage_t getlogpage;
1412 	size_t bufsize;
1413 	va_list ap;
1414 
1415 	va_start(ap, logpage);
1416 
1417 	cmd->nc_sqid = 0;
1418 	cmd->nc_callback = nvme_wakeup_cmd;
1419 	cmd->nc_sqe.sqe_opc = NVME_OPC_GET_LOG_PAGE;
1420 
1421 	getlogpage.b.lp_lid = logpage;
1422 
1423 	switch (logpage) {
1424 	case NVME_LOGPAGE_ERROR:
1425 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1426 		bufsize = nvme->n_error_log_len *
1427 		    sizeof (nvme_error_log_entry_t);
1428 		break;
1429 
1430 	case NVME_LOGPAGE_HEALTH:
1431 		cmd->nc_sqe.sqe_nsid = va_arg(ap, uint32_t);
1432 		bufsize = sizeof (nvme_health_log_t);
1433 		break;
1434 
1435 	case NVME_LOGPAGE_FWSLOT:
1436 		cmd->nc_sqe.sqe_nsid = (uint32_t)-1;
1437 		bufsize = sizeof (nvme_fwslot_log_t);
1438 		break;
1439 
1440 	default:
1441 		dev_err(nvme->n_dip, CE_WARN, "!unknown log page requested: %d",
1442 		    logpage);
1443 		atomic_inc_32(&nvme->n_unknown_logpage);
1444 		goto fail;
1445 	}
1446 
1447 	va_end(ap);
1448 
1449 	getlogpage.b.lp_numd = bufsize / sizeof (uint32_t) - 1;
1450 
1451 	cmd->nc_sqe.sqe_cdw10 = getlogpage.r;
1452 
1453 	if (nvme_zalloc_dma(nvme, getlogpage.b.lp_numd * sizeof (uint32_t),
1454 	    DDI_DMA_READ, &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1455 		dev_err(nvme->n_dip, CE_WARN,
1456 		    "!nvme_zalloc_dma failed for GET LOG PAGE");
1457 		goto fail;
1458 	}
1459 
1460 	if (cmd->nc_dma->nd_ncookie > 2) {
1461 		dev_err(nvme->n_dip, CE_WARN,
1462 		    "!too many DMA cookies for GET LOG PAGE");
1463 		atomic_inc_32(&nvme->n_too_many_cookies);
1464 		goto fail;
1465 	}
1466 
1467 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1468 	if (cmd->nc_dma->nd_ncookie > 1) {
1469 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1470 		    &cmd->nc_dma->nd_cookie);
1471 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
1472 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1473 	}
1474 
1475 	if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) {
1476 		dev_err(nvme->n_dip, CE_WARN,
1477 		    "!nvme_admin_cmd failed for GET LOG PAGE");
1478 		return (NULL);
1479 	}
1480 
1481 	if (nvme_check_cmd_status(cmd)) {
1482 		dev_err(nvme->n_dip, CE_WARN,
1483 		    "!GET LOG PAGE failed with sct = %x, sc = %x",
1484 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1485 		goto fail;
1486 	}
1487 
1488 	buf = kmem_alloc(bufsize, KM_SLEEP);
1489 	bcopy(cmd->nc_dma->nd_memp, buf, bufsize);
1490 
1491 fail:
1492 	nvme_free_cmd(cmd);
1493 
1494 	return (buf);
1495 }
1496 
1497 static void *
1498 nvme_identify(nvme_t *nvme, uint32_t nsid)
1499 {
1500 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1501 	void *buf = NULL;
1502 
1503 	cmd->nc_sqid = 0;
1504 	cmd->nc_callback = nvme_wakeup_cmd;
1505 	cmd->nc_sqe.sqe_opc = NVME_OPC_IDENTIFY;
1506 	cmd->nc_sqe.sqe_nsid = nsid;
1507 	cmd->nc_sqe.sqe_cdw10 = nsid ? NVME_IDENTIFY_NSID : NVME_IDENTIFY_CTRL;
1508 
1509 	if (nvme_zalloc_dma(nvme, NVME_IDENTIFY_BUFSIZE, DDI_DMA_READ,
1510 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
1511 		dev_err(nvme->n_dip, CE_WARN,
1512 		    "!nvme_zalloc_dma failed for IDENTIFY");
1513 		goto fail;
1514 	}
1515 
1516 	if (cmd->nc_dma->nd_ncookie > 2) {
1517 		dev_err(nvme->n_dip, CE_WARN,
1518 		    "!too many DMA cookies for IDENTIFY");
1519 		atomic_inc_32(&nvme->n_too_many_cookies);
1520 		goto fail;
1521 	}
1522 
1523 	cmd->nc_sqe.sqe_dptr.d_prp[0] = cmd->nc_dma->nd_cookie.dmac_laddress;
1524 	if (cmd->nc_dma->nd_ncookie > 1) {
1525 		ddi_dma_nextcookie(cmd->nc_dma->nd_dmah,
1526 		    &cmd->nc_dma->nd_cookie);
1527 		cmd->nc_sqe.sqe_dptr.d_prp[1] =
1528 		    cmd->nc_dma->nd_cookie.dmac_laddress;
1529 	}
1530 
1531 	if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) {
1532 		dev_err(nvme->n_dip, CE_WARN,
1533 		    "!nvme_admin_cmd failed for IDENTIFY");
1534 		return (NULL);
1535 	}
1536 
1537 	if (nvme_check_cmd_status(cmd)) {
1538 		dev_err(nvme->n_dip, CE_WARN,
1539 		    "!IDENTIFY failed with sct = %x, sc = %x",
1540 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1541 		goto fail;
1542 	}
1543 
1544 	buf = kmem_alloc(NVME_IDENTIFY_BUFSIZE, KM_SLEEP);
1545 	bcopy(cmd->nc_dma->nd_memp, buf, NVME_IDENTIFY_BUFSIZE);
1546 
1547 fail:
1548 	nvme_free_cmd(cmd);
1549 
1550 	return (buf);
1551 }
1552 
1553 static int
1554 nvme_set_nqueues(nvme_t *nvme, uint16_t nqueues)
1555 {
1556 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1557 	nvme_nqueue_t nq = { 0 };
1558 
1559 	nq.b.nq_nsq = nq.b.nq_ncq = nqueues;
1560 
1561 	cmd->nc_sqid = 0;
1562 	cmd->nc_callback = nvme_wakeup_cmd;
1563 	cmd->nc_sqe.sqe_opc = NVME_OPC_SET_FEATURES;
1564 	cmd->nc_sqe.sqe_cdw10 = NVME_FEAT_NQUEUES;
1565 	cmd->nc_sqe.sqe_cdw11 = nq.r;
1566 
1567 	if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) {
1568 		dev_err(nvme->n_dip, CE_WARN,
1569 		    "!nvme_admin_cmd failed for SET FEATURES (NQUEUES)");
1570 		return (0);
1571 	}
1572 
1573 	if (nvme_check_cmd_status(cmd)) {
1574 		dev_err(nvme->n_dip, CE_WARN,
1575 		    "!SET FEATURES (NQUEUES) failed with sct = %x, sc = %x",
1576 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1577 		nvme_free_cmd(cmd);
1578 		return (0);
1579 	}
1580 
1581 	nq.r = cmd->nc_cqe.cqe_dw0;
1582 	nvme_free_cmd(cmd);
1583 
1584 	/*
1585 	 * Always use the same number of submission and completion queues, and
1586 	 * never use more than the requested number of queues.
1587 	 */
1588 	return (MIN(nqueues, MIN(nq.b.nq_nsq, nq.b.nq_ncq)));
1589 }
1590 
1591 static int
1592 nvme_create_io_qpair(nvme_t *nvme, nvme_qpair_t *qp, uint16_t idx)
1593 {
1594 	nvme_cmd_t *cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1595 	nvme_create_queue_dw10_t dw10 = { 0 };
1596 	nvme_create_cq_dw11_t c_dw11 = { 0 };
1597 	nvme_create_sq_dw11_t s_dw11 = { 0 };
1598 
1599 	dw10.b.q_qid = idx;
1600 	dw10.b.q_qsize = qp->nq_nentry - 1;
1601 
1602 	c_dw11.b.cq_pc = 1;
1603 	c_dw11.b.cq_ien = 1;
1604 	c_dw11.b.cq_iv = idx % nvme->n_intr_cnt;
1605 
1606 	cmd->nc_sqid = 0;
1607 	cmd->nc_callback = nvme_wakeup_cmd;
1608 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_CQUEUE;
1609 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
1610 	cmd->nc_sqe.sqe_cdw11 = c_dw11.r;
1611 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_cqdma->nd_cookie.dmac_laddress;
1612 
1613 	if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) {
1614 		dev_err(nvme->n_dip, CE_WARN,
1615 		    "!nvme_admin_cmd failed for CREATE CQUEUE");
1616 		return (DDI_FAILURE);
1617 	}
1618 
1619 	if (nvme_check_cmd_status(cmd)) {
1620 		dev_err(nvme->n_dip, CE_WARN,
1621 		    "!CREATE CQUEUE failed with sct = %x, sc = %x",
1622 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1623 		nvme_free_cmd(cmd);
1624 		return (DDI_FAILURE);
1625 	}
1626 
1627 	nvme_free_cmd(cmd);
1628 
1629 	s_dw11.b.sq_pc = 1;
1630 	s_dw11.b.sq_cqid = idx;
1631 
1632 	cmd = nvme_alloc_cmd(nvme, KM_SLEEP);
1633 	cmd->nc_sqid = 0;
1634 	cmd->nc_callback = nvme_wakeup_cmd;
1635 	cmd->nc_sqe.sqe_opc = NVME_OPC_CREATE_SQUEUE;
1636 	cmd->nc_sqe.sqe_cdw10 = dw10.r;
1637 	cmd->nc_sqe.sqe_cdw11 = s_dw11.r;
1638 	cmd->nc_sqe.sqe_dptr.d_prp[0] = qp->nq_sqdma->nd_cookie.dmac_laddress;
1639 
1640 	if (nvme_admin_cmd(cmd, NVME_ADMIN_CMD_TIMEOUT) != DDI_SUCCESS) {
1641 		dev_err(nvme->n_dip, CE_WARN,
1642 		    "!nvme_admin_cmd failed for CREATE SQUEUE");
1643 		return (DDI_FAILURE);
1644 	}
1645 
1646 	if (nvme_check_cmd_status(cmd)) {
1647 		dev_err(nvme->n_dip, CE_WARN,
1648 		    "!CREATE SQUEUE failed with sct = %x, sc = %x",
1649 		    cmd->nc_cqe.cqe_sf.sf_sct, cmd->nc_cqe.cqe_sf.sf_sc);
1650 		nvme_free_cmd(cmd);
1651 		return (DDI_FAILURE);
1652 	}
1653 
1654 	nvme_free_cmd(cmd);
1655 
1656 	return (DDI_SUCCESS);
1657 }
1658 
1659 static boolean_t
1660 nvme_reset(nvme_t *nvme, boolean_t quiesce)
1661 {
1662 	nvme_reg_csts_t csts;
1663 	int i;
1664 
1665 	nvme_put32(nvme, NVME_REG_CC, 0);
1666 
1667 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1668 	if (csts.b.csts_rdy == 1) {
1669 		nvme_put32(nvme, NVME_REG_CC, 0);
1670 		for (i = 0; i != nvme->n_timeout * 10; i++) {
1671 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1672 			if (csts.b.csts_rdy == 0)
1673 				break;
1674 
1675 			if (quiesce)
1676 				drv_usecwait(50000);
1677 			else
1678 				delay(drv_usectohz(50000));
1679 		}
1680 	}
1681 
1682 	nvme_put32(nvme, NVME_REG_AQA, 0);
1683 	nvme_put32(nvme, NVME_REG_ASQ, 0);
1684 	nvme_put32(nvme, NVME_REG_ACQ, 0);
1685 
1686 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1687 	return (csts.b.csts_rdy == 0 ? B_TRUE : B_FALSE);
1688 }
1689 
1690 static void
1691 nvme_shutdown(nvme_t *nvme, int mode, boolean_t quiesce)
1692 {
1693 	nvme_reg_cc_t cc;
1694 	nvme_reg_csts_t csts;
1695 	int i;
1696 
1697 	ASSERT(mode == NVME_CC_SHN_NORMAL || mode == NVME_CC_SHN_ABRUPT);
1698 
1699 	cc.r = nvme_get32(nvme, NVME_REG_CC);
1700 	cc.b.cc_shn = mode & 0x3;
1701 	nvme_put32(nvme, NVME_REG_CC, cc.r);
1702 
1703 	for (i = 0; i != 10; i++) {
1704 		csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1705 		if (csts.b.csts_shst == NVME_CSTS_SHN_COMPLETE)
1706 			break;
1707 
1708 		if (quiesce)
1709 			drv_usecwait(100000);
1710 		else
1711 			delay(drv_usectohz(100000));
1712 	}
1713 }
1714 
1715 
1716 static void
1717 nvme_prepare_devid(nvme_t *nvme, uint32_t nsid)
1718 {
1719 	char model[sizeof (nvme->n_idctl->id_model) + 1];
1720 	char serial[sizeof (nvme->n_idctl->id_serial) + 1];
1721 
1722 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
1723 	bcopy(nvme->n_idctl->id_serial, serial,
1724 	    sizeof (nvme->n_idctl->id_serial));
1725 
1726 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
1727 	serial[sizeof (nvme->n_idctl->id_serial)] = '\0';
1728 
1729 	(void) snprintf(nvme->n_ns[nsid - 1].ns_devid,
1730 	    sizeof (nvme->n_ns[0].ns_devid), "%4X-%s-%s-%X",
1731 	    nvme->n_idctl->id_vid, model, serial, nsid);
1732 }
1733 
1734 static int
1735 nvme_init(nvme_t *nvme)
1736 {
1737 	nvme_reg_cc_t cc = { 0 };
1738 	nvme_reg_aqa_t aqa = { 0 };
1739 	nvme_reg_asq_t asq = { 0 };
1740 	nvme_reg_acq_t acq = { 0 };
1741 	nvme_reg_cap_t cap;
1742 	nvme_reg_vs_t vs;
1743 	nvme_reg_csts_t csts;
1744 	int i = 0;
1745 	int nqueues;
1746 	char model[sizeof (nvme->n_idctl->id_model) + 1];
1747 	char *vendor, *product;
1748 
1749 	/* Setup fixed interrupt for admin queue. */
1750 	if (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_FIXED, 1)
1751 	    != DDI_SUCCESS) {
1752 		dev_err(nvme->n_dip, CE_WARN,
1753 		    "!failed to setup fixed interrupt");
1754 		goto fail;
1755 	}
1756 
1757 	/* Check controller version */
1758 	vs.r = nvme_get32(nvme, NVME_REG_VS);
1759 	dev_err(nvme->n_dip, CE_CONT, "?NVMe spec version %d.%d",
1760 	    vs.b.vs_mjr, vs.b.vs_mnr);
1761 
1762 	if (nvme_version_major < vs.b.vs_mjr ||
1763 	    (nvme_version_major == vs.b.vs_mjr &&
1764 	    nvme_version_minor < vs.b.vs_mnr)) {
1765 		dev_err(nvme->n_dip, CE_WARN, "!no support for version > %d.%d",
1766 		    nvme_version_major, nvme_version_minor);
1767 		if (nvme->n_strict_version)
1768 			goto fail;
1769 	}
1770 
1771 	/* retrieve controller configuration */
1772 	cap.r = nvme_get64(nvme, NVME_REG_CAP);
1773 
1774 	if ((cap.b.cap_css & NVME_CAP_CSS_NVM) == 0) {
1775 		dev_err(nvme->n_dip, CE_WARN,
1776 		    "!NVM command set not supported by hardware");
1777 		goto fail;
1778 	}
1779 
1780 	nvme->n_nssr_supported = cap.b.cap_nssrs;
1781 	nvme->n_doorbell_stride = 4 << cap.b.cap_dstrd;
1782 	nvme->n_timeout = cap.b.cap_to;
1783 	nvme->n_arbitration_mechanisms = cap.b.cap_ams;
1784 	nvme->n_cont_queues_reqd = cap.b.cap_cqr;
1785 	nvme->n_max_queue_entries = cap.b.cap_mqes + 1;
1786 
1787 	/*
1788 	 * The MPSMIN and MPSMAX fields in the CAP register use 0 to specify
1789 	 * the base page size of 4k (1<<12), so add 12 here to get the real
1790 	 * page size value.
1791 	 */
1792 	nvme->n_pageshift = MIN(MAX(cap.b.cap_mpsmin + 12, PAGESHIFT),
1793 	    cap.b.cap_mpsmax + 12);
1794 	nvme->n_pagesize = 1UL << (nvme->n_pageshift);
1795 
1796 	/*
1797 	 * Set up Queue DMA to transfer at least 1 page-aligned page at a time.
1798 	 */
1799 	nvme->n_queue_dma_attr.dma_attr_align = nvme->n_pagesize;
1800 	nvme->n_queue_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
1801 
1802 	/*
1803 	 * Set up PRP DMA to transfer 1 page-aligned page at a time.
1804 	 * Maxxfer may be increased after we identified the controller limits.
1805 	 */
1806 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_pagesize;
1807 	nvme->n_prp_dma_attr.dma_attr_minxfer = nvme->n_pagesize;
1808 	nvme->n_prp_dma_attr.dma_attr_align = nvme->n_pagesize;
1809 
1810 	/*
1811 	 * Reset controller if it's still in ready state.
1812 	 */
1813 	if (nvme_reset(nvme, B_FALSE) == B_FALSE) {
1814 		dev_err(nvme->n_dip, CE_WARN, "!unable to reset controller");
1815 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1816 		nvme->n_dead = B_TRUE;
1817 		goto fail;
1818 	}
1819 
1820 	/*
1821 	 * Create the admin queue pair.
1822 	 */
1823 	if (nvme_alloc_qpair(nvme, nvme->n_admin_queue_len, &nvme->n_adminq, 0)
1824 	    != DDI_SUCCESS) {
1825 		dev_err(nvme->n_dip, CE_WARN,
1826 		    "!unable to allocate admin qpair");
1827 		goto fail;
1828 	}
1829 	nvme->n_ioq = kmem_alloc(sizeof (nvme_qpair_t *), KM_SLEEP);
1830 	nvme->n_ioq[0] = nvme->n_adminq;
1831 
1832 	nvme->n_progress |= NVME_ADMIN_QUEUE;
1833 
1834 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
1835 	    "admin-queue-len", nvme->n_admin_queue_len);
1836 
1837 	aqa.b.aqa_asqs = aqa.b.aqa_acqs = nvme->n_admin_queue_len - 1;
1838 	asq = nvme->n_adminq->nq_sqdma->nd_cookie.dmac_laddress;
1839 	acq = nvme->n_adminq->nq_cqdma->nd_cookie.dmac_laddress;
1840 
1841 	ASSERT((asq & (nvme->n_pagesize - 1)) == 0);
1842 	ASSERT((acq & (nvme->n_pagesize - 1)) == 0);
1843 
1844 	nvme_put32(nvme, NVME_REG_AQA, aqa.r);
1845 	nvme_put64(nvme, NVME_REG_ASQ, asq);
1846 	nvme_put64(nvme, NVME_REG_ACQ, acq);
1847 
1848 	cc.b.cc_ams = 0; /* use Round-Robin arbitration */
1849 	cc.b.cc_css = 0; /* use NVM command set */
1850 	cc.b.cc_mps = nvme->n_pageshift - 12;
1851 	cc.b.cc_shn = 0; /* no shutdown in progress */
1852 	cc.b.cc_en = 1;  /* enable controller */
1853 
1854 	nvme_put32(nvme, NVME_REG_CC, cc.r);
1855 
1856 	/*
1857 	 * Wait for the controller to become ready.
1858 	 */
1859 	csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1860 	if (csts.b.csts_rdy == 0) {
1861 		for (i = 0; i != nvme->n_timeout * 10; i++) {
1862 			delay(drv_usectohz(50000));
1863 			csts.r = nvme_get32(nvme, NVME_REG_CSTS);
1864 
1865 			if (csts.b.csts_cfs == 1) {
1866 				dev_err(nvme->n_dip, CE_WARN,
1867 				    "!controller fatal status at init");
1868 				ddi_fm_service_impact(nvme->n_dip,
1869 				    DDI_SERVICE_LOST);
1870 				nvme->n_dead = B_TRUE;
1871 				goto fail;
1872 			}
1873 
1874 			if (csts.b.csts_rdy == 1)
1875 				break;
1876 		}
1877 	}
1878 
1879 	if (csts.b.csts_rdy == 0) {
1880 		dev_err(nvme->n_dip, CE_WARN, "!controller not ready");
1881 		ddi_fm_service_impact(nvme->n_dip, DDI_SERVICE_LOST);
1882 		nvme->n_dead = B_TRUE;
1883 		goto fail;
1884 	}
1885 
1886 	/*
1887 	 * Assume an abort command limit of 1. We'll destroy and re-init
1888 	 * that later when we know the true abort command limit.
1889 	 */
1890 	sema_init(&nvme->n_abort_sema, 1, NULL, SEMA_DRIVER, NULL);
1891 
1892 	/*
1893 	 * Post an asynchronous event command to catch errors.
1894 	 */
1895 	if (nvme_async_event(nvme) != DDI_SUCCESS) {
1896 		dev_err(nvme->n_dip, CE_WARN,
1897 		    "!failed to post async event");
1898 		goto fail;
1899 	}
1900 
1901 	/*
1902 	 * Identify Controller
1903 	 */
1904 	nvme->n_idctl = nvme_identify(nvme, 0);
1905 	if (nvme->n_idctl == NULL) {
1906 		dev_err(nvme->n_dip, CE_WARN,
1907 		    "!failed to identify controller");
1908 		goto fail;
1909 	}
1910 
1911 	/*
1912 	 * Get Vendor & Product ID
1913 	 */
1914 	bcopy(nvme->n_idctl->id_model, model, sizeof (nvme->n_idctl->id_model));
1915 	model[sizeof (nvme->n_idctl->id_model)] = '\0';
1916 	sata_split_model(model, &vendor, &product);
1917 
1918 	if (vendor == NULL)
1919 		nvme->n_vendor = strdup("NVMe");
1920 	else
1921 		nvme->n_vendor = strdup(vendor);
1922 
1923 	nvme->n_product = strdup(product);
1924 
1925 	/*
1926 	 * Get controller limits.
1927 	 */
1928 	nvme->n_async_event_limit = MAX(NVME_MIN_ASYNC_EVENT_LIMIT,
1929 	    MIN(nvme->n_admin_queue_len / 10,
1930 	    MIN(nvme->n_idctl->id_aerl + 1, nvme->n_async_event_limit)));
1931 
1932 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip,
1933 	    "async-event-limit", nvme->n_async_event_limit);
1934 
1935 	nvme->n_abort_command_limit = nvme->n_idctl->id_acl + 1;
1936 
1937 	/*
1938 	 * Reinitialize the semaphore with the true abort command limit
1939 	 * supported by the hardware. It's not necessary to disable interrupts
1940 	 * as only command aborts use the semaphore, and no commands are
1941 	 * executed or aborted while we're here.
1942 	 */
1943 	sema_destroy(&nvme->n_abort_sema);
1944 	sema_init(&nvme->n_abort_sema, nvme->n_abort_command_limit - 1, NULL,
1945 	    SEMA_DRIVER, NULL);
1946 
1947 	nvme->n_progress |= NVME_CTRL_LIMITS;
1948 
1949 	if (nvme->n_idctl->id_mdts == 0)
1950 		nvme->n_max_data_transfer_size = nvme->n_pagesize * 65536;
1951 	else
1952 		nvme->n_max_data_transfer_size =
1953 		    1ull << (nvme->n_pageshift + nvme->n_idctl->id_mdts);
1954 
1955 	nvme->n_error_log_len = nvme->n_idctl->id_elpe + 1;
1956 
1957 	/*
1958 	 * Limit n_max_data_transfer_size to what we can handle in one PRP.
1959 	 * Chained PRPs are currently unsupported.
1960 	 *
1961 	 * This is a no-op on hardware which doesn't support a transfer size
1962 	 * big enough to require chained PRPs.
1963 	 */
1964 	nvme->n_max_data_transfer_size = MIN(nvme->n_max_data_transfer_size,
1965 	    (nvme->n_pagesize / sizeof (uint64_t) * nvme->n_pagesize));
1966 
1967 	nvme->n_prp_dma_attr.dma_attr_maxxfer = nvme->n_max_data_transfer_size;
1968 
1969 	/*
1970 	 * Make sure the minimum/maximum queue entry sizes are not
1971 	 * larger/smaller than the default.
1972 	 */
1973 
1974 	if (((1 << nvme->n_idctl->id_sqes.qes_min) > sizeof (nvme_sqe_t)) ||
1975 	    ((1 << nvme->n_idctl->id_sqes.qes_max) < sizeof (nvme_sqe_t)) ||
1976 	    ((1 << nvme->n_idctl->id_cqes.qes_min) > sizeof (nvme_cqe_t)) ||
1977 	    ((1 << nvme->n_idctl->id_cqes.qes_max) < sizeof (nvme_cqe_t)))
1978 		goto fail;
1979 
1980 	/*
1981 	 * Check for the presence of a Volatile Write Cache. If present,
1982 	 * enable it by default.
1983 	 */
1984 	if (nvme->n_idctl->id_vwc.vwc_present == 0) {
1985 		nvme->n_volatile_write_cache_enabled = B_FALSE;
1986 		nvme_bd_ops.o_sync_cache = NULL;
1987 	} else {
1988 		/*
1989 		 * TODO: send SET FEATURES to enable VWC
1990 		 * (have no hardware to test this)
1991 		 */
1992 		nvme->n_volatile_write_cache_enabled = B_FALSE;
1993 		nvme_bd_ops.o_sync_cache = NULL;
1994 	}
1995 
1996 	/*
1997 	 * Grab a copy of all mandatory log pages.
1998 	 *
1999 	 * TODO: should go away once user space tool exists to print logs
2000 	 */
2001 	nvme->n_error_log = (nvme_error_log_entry_t *)
2002 	    nvme_get_logpage(nvme, NVME_LOGPAGE_ERROR);
2003 	nvme->n_health_log = (nvme_health_log_t *)
2004 	    nvme_get_logpage(nvme, NVME_LOGPAGE_HEALTH, -1);
2005 	nvme->n_fwslot_log = (nvme_fwslot_log_t *)
2006 	    nvme_get_logpage(nvme, NVME_LOGPAGE_FWSLOT);
2007 
2008 	/*
2009 	 * Identify Namespaces
2010 	 */
2011 	nvme->n_namespace_count = nvme->n_idctl->id_nn;
2012 	nvme->n_ns = kmem_zalloc(sizeof (nvme_namespace_t) *
2013 	    nvme->n_namespace_count, KM_SLEEP);
2014 
2015 	for (i = 0; i != nvme->n_namespace_count; i++) {
2016 		nvme_identify_nsid_t *idns;
2017 		int last_rp;
2018 
2019 		nvme->n_ns[i].ns_nvme = nvme;
2020 		nvme->n_ns[i].ns_idns = idns = nvme_identify(nvme, i + 1);
2021 
2022 		if (idns == NULL) {
2023 			dev_err(nvme->n_dip, CE_WARN,
2024 			    "!failed to identify namespace %d", i + 1);
2025 			goto fail;
2026 		}
2027 
2028 		nvme->n_ns[i].ns_id = i + 1;
2029 		nvme->n_ns[i].ns_block_count = idns->id_nsize;
2030 		nvme->n_ns[i].ns_block_size =
2031 		    1 << idns->id_lbaf[idns->id_flbas.lba_format].lbaf_lbads;
2032 		nvme->n_ns[i].ns_best_block_size = nvme->n_ns[i].ns_block_size;
2033 
2034 		nvme_prepare_devid(nvme, nvme->n_ns[i].ns_id);
2035 
2036 		/*
2037 		 * Find the LBA format with no metadata and the best relative
2038 		 * performance. A value of 3 means "degraded", 0 is best.
2039 		 */
2040 		last_rp = 3;
2041 		for (int j = 0; j != idns->id_nlbaf; j++) {
2042 			if (idns->id_lbaf[j].lbaf_lbads == 0)
2043 				break;
2044 			if (idns->id_lbaf[j].lbaf_ms != 0)
2045 				continue;
2046 			if (idns->id_lbaf[j].lbaf_rp >= last_rp)
2047 				continue;
2048 			last_rp = idns->id_lbaf[j].lbaf_rp;
2049 			nvme->n_ns[i].ns_best_block_size =
2050 			    1 << idns->id_lbaf[j].lbaf_lbads;
2051 		}
2052 
2053 		/*
2054 		 * We currently don't support namespaces that use either:
2055 		 * - thin provisioning
2056 		 * - extended LBAs
2057 		 * - protection information
2058 		 */
2059 		if (idns->id_nsfeat.f_thin ||
2060 		    idns->id_flbas.lba_extlba ||
2061 		    idns->id_dps.dp_pinfo) {
2062 			dev_err(nvme->n_dip, CE_WARN,
2063 			    "!ignoring namespace %d, unsupported features: "
2064 			    "thin = %d, extlba = %d, pinfo = %d", i + 1,
2065 			    idns->id_nsfeat.f_thin, idns->id_flbas.lba_extlba,
2066 			    idns->id_dps.dp_pinfo);
2067 			nvme->n_ns[i].ns_ignore = B_TRUE;
2068 		}
2069 	}
2070 
2071 	/*
2072 	 * Try to set up MSI/MSI-X interrupts.
2073 	 */
2074 	if ((nvme->n_intr_types & (DDI_INTR_TYPE_MSI | DDI_INTR_TYPE_MSIX))
2075 	    != 0) {
2076 		nvme_release_interrupts(nvme);
2077 
2078 		nqueues = MIN(UINT16_MAX, ncpus);
2079 
2080 		if ((nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSIX,
2081 		    nqueues) != DDI_SUCCESS) &&
2082 		    (nvme_setup_interrupts(nvme, DDI_INTR_TYPE_MSI,
2083 		    nqueues) != DDI_SUCCESS)) {
2084 			dev_err(nvme->n_dip, CE_WARN,
2085 			    "!failed to setup MSI/MSI-X interrupts");
2086 			goto fail;
2087 		}
2088 	}
2089 
2090 	nqueues = nvme->n_intr_cnt;
2091 
2092 	/*
2093 	 * Create I/O queue pairs.
2094 	 */
2095 	nvme->n_ioq_count = nvme_set_nqueues(nvme, nqueues);
2096 	if (nvme->n_ioq_count == 0) {
2097 		dev_err(nvme->n_dip, CE_WARN,
2098 		    "!failed to set number of I/O queues to %d", nqueues);
2099 		goto fail;
2100 	}
2101 
2102 	/*
2103 	 * Reallocate I/O queue array
2104 	 */
2105 	kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *));
2106 	nvme->n_ioq = kmem_zalloc(sizeof (nvme_qpair_t *) *
2107 	    (nvme->n_ioq_count + 1), KM_SLEEP);
2108 	nvme->n_ioq[0] = nvme->n_adminq;
2109 
2110 	/*
2111 	 * If we got less queues than we asked for we might as well give
2112 	 * some of the interrupt vectors back to the system.
2113 	 */
2114 	if (nvme->n_ioq_count < nqueues) {
2115 		nvme_release_interrupts(nvme);
2116 
2117 		if (nvme_setup_interrupts(nvme, nvme->n_intr_type, nqueues)
2118 		    != DDI_SUCCESS) {
2119 			dev_err(nvme->n_dip, CE_WARN,
2120 			    "!failed to reduce number of interrupts");
2121 			goto fail;
2122 		}
2123 	}
2124 
2125 	/*
2126 	 * Alloc & register I/O queue pairs
2127 	 */
2128 	nvme->n_io_queue_len =
2129 	    MIN(nvme->n_io_queue_len, nvme->n_max_queue_entries);
2130 	(void) ddi_prop_update_int(DDI_DEV_T_NONE, nvme->n_dip, "io-queue-len",
2131 	    nvme->n_io_queue_len);
2132 
2133 	for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2134 		if (nvme_alloc_qpair(nvme, nvme->n_io_queue_len,
2135 		    &nvme->n_ioq[i], i) != DDI_SUCCESS) {
2136 			dev_err(nvme->n_dip, CE_WARN,
2137 			    "!unable to allocate I/O qpair %d", i);
2138 			goto fail;
2139 		}
2140 
2141 		if (nvme_create_io_qpair(nvme, nvme->n_ioq[i], i)
2142 		    != DDI_SUCCESS) {
2143 			dev_err(nvme->n_dip, CE_WARN,
2144 			    "!unable to create I/O qpair %d", i);
2145 			goto fail;
2146 		}
2147 	}
2148 
2149 	/*
2150 	 * Post more asynchronous events commands to reduce event reporting
2151 	 * latency as suggested by the spec.
2152 	 */
2153 	for (i = 1; i != nvme->n_async_event_limit; i++) {
2154 		if (nvme_async_event(nvme) != DDI_SUCCESS) {
2155 			dev_err(nvme->n_dip, CE_WARN,
2156 			    "!failed to post async event %d", i);
2157 			goto fail;
2158 		}
2159 	}
2160 
2161 	return (DDI_SUCCESS);
2162 
2163 fail:
2164 	(void) nvme_reset(nvme, B_FALSE);
2165 	return (DDI_FAILURE);
2166 }
2167 
2168 static uint_t
2169 nvme_intr(caddr_t arg1, caddr_t arg2)
2170 {
2171 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
2172 	nvme_t *nvme = (nvme_t *)arg1;
2173 	int inum = (int)(uintptr_t)arg2;
2174 	int qnum;
2175 	nvme_cmd_t *cmd;
2176 
2177 	if (inum >= nvme->n_intr_cnt)
2178 		return (DDI_INTR_UNCLAIMED);
2179 
2180 	/*
2181 	 * The interrupt vector a queue uses is calculated as queue_idx %
2182 	 * intr_cnt in nvme_create_io_qpair(). Iterate through the queue array
2183 	 * in steps of n_intr_cnt to process all queues using this vector.
2184 	 */
2185 	for (qnum = inum;
2186 	    qnum < nvme->n_ioq_count + 1 && nvme->n_ioq[qnum] != NULL;
2187 	    qnum += nvme->n_intr_cnt) {
2188 		while ((cmd = nvme_retrieve_cmd(nvme, nvme->n_ioq[qnum]))) {
2189 			taskq_dispatch_ent((taskq_t *)cmd->nc_nvme->n_cmd_taskq,
2190 			    cmd->nc_callback, cmd, TQ_NOSLEEP, &cmd->nc_tqent);
2191 		}
2192 	}
2193 
2194 	return (DDI_INTR_CLAIMED);
2195 }
2196 
2197 static void
2198 nvme_release_interrupts(nvme_t *nvme)
2199 {
2200 	int i;
2201 
2202 	for (i = 0; i < nvme->n_intr_cnt; i++) {
2203 		if (nvme->n_inth[i] == NULL)
2204 			break;
2205 
2206 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK)
2207 			(void) ddi_intr_block_disable(&nvme->n_inth[i], 1);
2208 		else
2209 			(void) ddi_intr_disable(nvme->n_inth[i]);
2210 
2211 		(void) ddi_intr_remove_handler(nvme->n_inth[i]);
2212 		(void) ddi_intr_free(nvme->n_inth[i]);
2213 	}
2214 
2215 	kmem_free(nvme->n_inth, nvme->n_inth_sz);
2216 	nvme->n_inth = NULL;
2217 	nvme->n_inth_sz = 0;
2218 
2219 	nvme->n_progress &= ~NVME_INTERRUPTS;
2220 }
2221 
2222 static int
2223 nvme_setup_interrupts(nvme_t *nvme, int intr_type, int nqpairs)
2224 {
2225 	int failed = 0;
2226 	int nintrs, navail, count;
2227 	int ret;
2228 	int i;
2229 
2230 	if (nvme->n_intr_types == 0) {
2231 		ret = ddi_intr_get_supported_types(nvme->n_dip,
2232 		    &nvme->n_intr_types);
2233 		if (ret != DDI_SUCCESS) {
2234 			dev_err(nvme->n_dip, CE_WARN,
2235 			    "!%s: ddi_intr_get_supported types failed",
2236 			    __func__);
2237 			return (ret);
2238 		}
2239 	}
2240 
2241 	if ((nvme->n_intr_types & intr_type) == 0)
2242 		return (DDI_FAILURE);
2243 
2244 	ret = ddi_intr_get_nintrs(nvme->n_dip, intr_type, &nintrs);
2245 	if (ret != DDI_SUCCESS) {
2246 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_nintrs failed",
2247 		    __func__);
2248 		return (ret);
2249 	}
2250 
2251 	ret = ddi_intr_get_navail(nvme->n_dip, intr_type, &navail);
2252 	if (ret != DDI_SUCCESS) {
2253 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_navail failed",
2254 		    __func__);
2255 		return (ret);
2256 	}
2257 
2258 	/* We want at most one interrupt per queue pair. */
2259 	if (navail > nqpairs)
2260 		navail = nqpairs;
2261 
2262 	nvme->n_inth_sz = sizeof (ddi_intr_handle_t) * navail;
2263 	nvme->n_inth = kmem_zalloc(nvme->n_inth_sz, KM_SLEEP);
2264 
2265 	ret = ddi_intr_alloc(nvme->n_dip, nvme->n_inth, intr_type, 0, navail,
2266 	    &count, 0);
2267 	if (ret != DDI_SUCCESS) {
2268 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_alloc failed",
2269 		    __func__);
2270 		goto fail;
2271 	}
2272 
2273 	nvme->n_intr_cnt = count;
2274 
2275 	ret = ddi_intr_get_pri(nvme->n_inth[0], &nvme->n_intr_pri);
2276 	if (ret != DDI_SUCCESS) {
2277 		dev_err(nvme->n_dip, CE_WARN, "!%s: ddi_intr_get_pri failed",
2278 		    __func__);
2279 		goto fail;
2280 	}
2281 
2282 	for (i = 0; i < count; i++) {
2283 		ret = ddi_intr_add_handler(nvme->n_inth[i], nvme_intr,
2284 		    (void *)nvme, (void *)(uintptr_t)i);
2285 		if (ret != DDI_SUCCESS) {
2286 			dev_err(nvme->n_dip, CE_WARN,
2287 			    "!%s: ddi_intr_add_handler failed", __func__);
2288 			goto fail;
2289 		}
2290 	}
2291 
2292 	(void) ddi_intr_get_cap(nvme->n_inth[0], &nvme->n_intr_cap);
2293 
2294 	for (i = 0; i < count; i++) {
2295 		if (nvme->n_inth[i] == NULL)
2296 			break;
2297 
2298 		if (nvme->n_intr_cap & DDI_INTR_FLAG_BLOCK) {
2299 			if (ddi_intr_block_enable(&nvme->n_inth[i], 1) !=
2300 			    DDI_SUCCESS)
2301 				failed++;
2302 		} else {
2303 			if (ddi_intr_enable(nvme->n_inth[i]) != DDI_SUCCESS)
2304 				failed++;
2305 		}
2306 	}
2307 
2308 	if (failed != 0) {
2309 		dev_err(nvme->n_dip, CE_WARN,
2310 		    "!%s: enabling interrupts failed", __func__);
2311 		goto fail;
2312 	}
2313 
2314 	nvme->n_intr_type = intr_type;
2315 
2316 	nvme->n_progress |= NVME_INTERRUPTS;
2317 
2318 	return (DDI_SUCCESS);
2319 
2320 fail:
2321 	nvme_release_interrupts(nvme);
2322 
2323 	return (ret);
2324 }
2325 
2326 static int
2327 nvme_fm_errcb(dev_info_t *dip, ddi_fm_error_t *fm_error, const void *arg)
2328 {
2329 	_NOTE(ARGUNUSED(arg));
2330 
2331 	pci_ereport_post(dip, fm_error, NULL);
2332 	return (fm_error->fme_status);
2333 }
2334 
2335 static int
2336 nvme_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
2337 {
2338 	nvme_t *nvme;
2339 	int instance;
2340 	int nregs;
2341 	off_t regsize;
2342 	int i;
2343 	char name[32];
2344 
2345 	if (cmd != DDI_ATTACH)
2346 		return (DDI_FAILURE);
2347 
2348 	instance = ddi_get_instance(dip);
2349 
2350 	if (ddi_soft_state_zalloc(nvme_state, instance) != DDI_SUCCESS)
2351 		return (DDI_FAILURE);
2352 
2353 	nvme = ddi_get_soft_state(nvme_state, instance);
2354 	ddi_set_driver_private(dip, nvme);
2355 	nvme->n_dip = dip;
2356 
2357 	nvme->n_strict_version = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2358 	    DDI_PROP_DONTPASS, "strict-version", 1) == 1 ? B_TRUE : B_FALSE;
2359 	nvme->n_ignore_unknown_vendor_status = ddi_prop_get_int(DDI_DEV_T_ANY,
2360 	    dip, DDI_PROP_DONTPASS, "ignore-unknown-vendor-status", 0) == 1 ?
2361 	    B_TRUE : B_FALSE;
2362 	nvme->n_admin_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2363 	    DDI_PROP_DONTPASS, "admin-queue-len", NVME_DEFAULT_ADMIN_QUEUE_LEN);
2364 	nvme->n_io_queue_len = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2365 	    DDI_PROP_DONTPASS, "io-queue-len", NVME_DEFAULT_IO_QUEUE_LEN);
2366 	nvme->n_async_event_limit = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
2367 	    DDI_PROP_DONTPASS, "async-event-limit",
2368 	    NVME_DEFAULT_ASYNC_EVENT_LIMIT);
2369 
2370 	if (nvme->n_admin_queue_len < NVME_MIN_ADMIN_QUEUE_LEN)
2371 		nvme->n_admin_queue_len = NVME_MIN_ADMIN_QUEUE_LEN;
2372 	else if (nvme->n_admin_queue_len > NVME_MAX_ADMIN_QUEUE_LEN)
2373 		nvme->n_admin_queue_len = NVME_MAX_ADMIN_QUEUE_LEN;
2374 
2375 	if (nvme->n_io_queue_len < NVME_MIN_IO_QUEUE_LEN)
2376 		nvme->n_io_queue_len = NVME_MIN_IO_QUEUE_LEN;
2377 
2378 	if (nvme->n_async_event_limit < 1)
2379 		nvme->n_async_event_limit = NVME_DEFAULT_ASYNC_EVENT_LIMIT;
2380 
2381 	nvme->n_reg_acc_attr = nvme_reg_acc_attr;
2382 	nvme->n_queue_dma_attr = nvme_queue_dma_attr;
2383 	nvme->n_prp_dma_attr = nvme_prp_dma_attr;
2384 	nvme->n_sgl_dma_attr = nvme_sgl_dma_attr;
2385 
2386 	/*
2387 	 * Setup FMA support.
2388 	 */
2389 	nvme->n_fm_cap = ddi_getprop(DDI_DEV_T_ANY, dip,
2390 	    DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable",
2391 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
2392 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
2393 
2394 	ddi_fm_init(dip, &nvme->n_fm_cap, &nvme->n_fm_ibc);
2395 
2396 	if (nvme->n_fm_cap) {
2397 		if (nvme->n_fm_cap & DDI_FM_ACCCHK_CAPABLE)
2398 			nvme->n_reg_acc_attr.devacc_attr_access =
2399 			    DDI_FLAGERR_ACC;
2400 
2401 		if (nvme->n_fm_cap & DDI_FM_DMACHK_CAPABLE) {
2402 			nvme->n_prp_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2403 			nvme->n_sgl_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR;
2404 		}
2405 
2406 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2407 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2408 			pci_ereport_setup(dip);
2409 
2410 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2411 			ddi_fm_handler_register(dip, nvme_fm_errcb,
2412 			    (void *)nvme);
2413 	}
2414 
2415 	nvme->n_progress |= NVME_FMA_INIT;
2416 
2417 	/*
2418 	 * The spec defines several register sets. Only the controller
2419 	 * registers (set 1) are currently used.
2420 	 */
2421 	if (ddi_dev_nregs(dip, &nregs) == DDI_FAILURE ||
2422 	    nregs < 2 ||
2423 	    ddi_dev_regsize(dip, 1, &regsize) == DDI_FAILURE)
2424 		goto fail;
2425 
2426 	if (ddi_regs_map_setup(dip, 1, &nvme->n_regs, 0, regsize,
2427 	    &nvme->n_reg_acc_attr, &nvme->n_regh) != DDI_SUCCESS) {
2428 		dev_err(dip, CE_WARN, "!failed to map regset 1");
2429 		goto fail;
2430 	}
2431 
2432 	nvme->n_progress |= NVME_REGS_MAPPED;
2433 
2434 	/*
2435 	 * Create taskq for command completion.
2436 	 */
2437 	(void) snprintf(name, sizeof (name), "%s%d_cmd_taskq",
2438 	    ddi_driver_name(dip), ddi_get_instance(dip));
2439 	nvme->n_cmd_taskq = ddi_taskq_create(dip, name, MIN(UINT16_MAX, ncpus),
2440 	    TASKQ_DEFAULTPRI, 0);
2441 	if (nvme->n_cmd_taskq == NULL) {
2442 		dev_err(dip, CE_WARN, "!failed to create cmd taskq");
2443 		goto fail;
2444 	}
2445 
2446 
2447 	if (nvme_init(nvme) != DDI_SUCCESS)
2448 		goto fail;
2449 
2450 	/*
2451 	 * Attach the blkdev driver for each namespace.
2452 	 */
2453 	for (i = 0; i != nvme->n_namespace_count; i++) {
2454 		if (nvme->n_ns[i].ns_ignore)
2455 			continue;
2456 
2457 		nvme->n_ns[i].ns_bd_hdl = bd_alloc_handle(&nvme->n_ns[i],
2458 		    &nvme_bd_ops, &nvme->n_prp_dma_attr, KM_SLEEP);
2459 
2460 		if (nvme->n_ns[i].ns_bd_hdl == NULL) {
2461 			dev_err(dip, CE_WARN,
2462 			    "!failed to get blkdev handle for namespace %d", i);
2463 			goto fail;
2464 		}
2465 
2466 		if (bd_attach_handle(dip, nvme->n_ns[i].ns_bd_hdl)
2467 		    != DDI_SUCCESS) {
2468 			dev_err(dip, CE_WARN,
2469 			    "!failed to attach blkdev handle for namespace %d",
2470 			    i);
2471 			goto fail;
2472 		}
2473 	}
2474 
2475 	return (DDI_SUCCESS);
2476 
2477 fail:
2478 	/* attach successful anyway so that FMA can retire the device */
2479 	if (nvme->n_dead)
2480 		return (DDI_SUCCESS);
2481 
2482 	(void) nvme_detach(dip, DDI_DETACH);
2483 
2484 	return (DDI_FAILURE);
2485 }
2486 
2487 static int
2488 nvme_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2489 {
2490 	int instance, i;
2491 	nvme_t *nvme;
2492 
2493 	if (cmd != DDI_DETACH)
2494 		return (DDI_FAILURE);
2495 
2496 	instance = ddi_get_instance(dip);
2497 
2498 	nvme = ddi_get_soft_state(nvme_state, instance);
2499 
2500 	if (nvme == NULL)
2501 		return (DDI_FAILURE);
2502 
2503 	if (nvme->n_ns) {
2504 		for (i = 0; i != nvme->n_namespace_count; i++) {
2505 			if (nvme->n_ns[i].ns_bd_hdl) {
2506 				(void) bd_detach_handle(
2507 				    nvme->n_ns[i].ns_bd_hdl);
2508 				bd_free_handle(nvme->n_ns[i].ns_bd_hdl);
2509 			}
2510 
2511 			if (nvme->n_ns[i].ns_idns)
2512 				kmem_free(nvme->n_ns[i].ns_idns,
2513 				    sizeof (nvme_identify_nsid_t));
2514 		}
2515 
2516 		kmem_free(nvme->n_ns, sizeof (nvme_namespace_t) *
2517 		    nvme->n_namespace_count);
2518 	}
2519 
2520 	if (nvme->n_progress & NVME_INTERRUPTS)
2521 		nvme_release_interrupts(nvme);
2522 
2523 	if (nvme->n_cmd_taskq)
2524 		ddi_taskq_wait(nvme->n_cmd_taskq);
2525 
2526 	if (nvme->n_ioq_count > 0) {
2527 		for (i = 1; i != nvme->n_ioq_count + 1; i++) {
2528 			if (nvme->n_ioq[i] != NULL) {
2529 				/* TODO: send destroy queue commands */
2530 				nvme_free_qpair(nvme->n_ioq[i]);
2531 			}
2532 		}
2533 
2534 		kmem_free(nvme->n_ioq, sizeof (nvme_qpair_t *) *
2535 		    (nvme->n_ioq_count + 1));
2536 	}
2537 
2538 	if (nvme->n_progress & NVME_REGS_MAPPED) {
2539 		nvme_shutdown(nvme, NVME_CC_SHN_NORMAL, B_FALSE);
2540 		(void) nvme_reset(nvme, B_FALSE);
2541 	}
2542 
2543 	if (nvme->n_cmd_taskq)
2544 		ddi_taskq_destroy(nvme->n_cmd_taskq);
2545 
2546 	if (nvme->n_progress & NVME_CTRL_LIMITS)
2547 		sema_destroy(&nvme->n_abort_sema);
2548 
2549 	if (nvme->n_progress & NVME_ADMIN_QUEUE)
2550 		nvme_free_qpair(nvme->n_adminq);
2551 
2552 	if (nvme->n_idctl)
2553 		kmem_free(nvme->n_idctl, sizeof (nvme_identify_ctrl_t));
2554 
2555 	if (nvme->n_progress & NVME_REGS_MAPPED)
2556 		ddi_regs_map_free(&nvme->n_regh);
2557 
2558 	if (nvme->n_progress & NVME_FMA_INIT) {
2559 		if (DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2560 			ddi_fm_handler_unregister(nvme->n_dip);
2561 
2562 		if (DDI_FM_EREPORT_CAP(nvme->n_fm_cap) ||
2563 		    DDI_FM_ERRCB_CAP(nvme->n_fm_cap))
2564 			pci_ereport_teardown(nvme->n_dip);
2565 
2566 		ddi_fm_fini(nvme->n_dip);
2567 	}
2568 
2569 	if (nvme->n_vendor != NULL)
2570 		strfree(nvme->n_vendor);
2571 
2572 	if (nvme->n_product != NULL)
2573 		strfree(nvme->n_product);
2574 
2575 	ddi_soft_state_free(nvme_state, instance);
2576 
2577 	return (DDI_SUCCESS);
2578 }
2579 
2580 static int
2581 nvme_quiesce(dev_info_t *dip)
2582 {
2583 	int instance;
2584 	nvme_t *nvme;
2585 
2586 	instance = ddi_get_instance(dip);
2587 
2588 	nvme = ddi_get_soft_state(nvme_state, instance);
2589 
2590 	if (nvme == NULL)
2591 		return (DDI_FAILURE);
2592 
2593 	nvme_shutdown(nvme, NVME_CC_SHN_ABRUPT, B_TRUE);
2594 
2595 	(void) nvme_reset(nvme, B_TRUE);
2596 
2597 	return (DDI_FAILURE);
2598 }
2599 
2600 static int
2601 nvme_fill_prp(nvme_cmd_t *cmd, bd_xfer_t *xfer)
2602 {
2603 	nvme_t *nvme = cmd->nc_nvme;
2604 	int nprp_page, nprp;
2605 	uint64_t *prp;
2606 
2607 	if (xfer->x_ndmac == 0)
2608 		return (DDI_FAILURE);
2609 
2610 	cmd->nc_sqe.sqe_dptr.d_prp[0] = xfer->x_dmac.dmac_laddress;
2611 	ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
2612 
2613 	if (xfer->x_ndmac == 1) {
2614 		cmd->nc_sqe.sqe_dptr.d_prp[1] = 0;
2615 		return (DDI_SUCCESS);
2616 	} else if (xfer->x_ndmac == 2) {
2617 		cmd->nc_sqe.sqe_dptr.d_prp[1] = xfer->x_dmac.dmac_laddress;
2618 		return (DDI_SUCCESS);
2619 	}
2620 
2621 	xfer->x_ndmac--;
2622 
2623 	nprp_page = nvme->n_pagesize / sizeof (uint64_t) - 1;
2624 	ASSERT(nprp_page > 0);
2625 	nprp = (xfer->x_ndmac + nprp_page - 1) / nprp_page;
2626 
2627 	/*
2628 	 * We currently don't support chained PRPs and set up our DMA
2629 	 * attributes to reflect that. If we still get an I/O request
2630 	 * that needs a chained PRP something is very wrong.
2631 	 */
2632 	VERIFY(nprp == 1);
2633 
2634 	if (nvme_zalloc_dma(nvme, nvme->n_pagesize * nprp, DDI_DMA_READ,
2635 	    &nvme->n_prp_dma_attr, &cmd->nc_dma) != DDI_SUCCESS) {
2636 		dev_err(nvme->n_dip, CE_WARN, "!%s: nvme_zalloc_dma failed",
2637 		    __func__);
2638 		return (DDI_FAILURE);
2639 	}
2640 
2641 	cmd->nc_sqe.sqe_dptr.d_prp[1] = cmd->nc_dma->nd_cookie.dmac_laddress;
2642 	ddi_dma_nextcookie(cmd->nc_dma->nd_dmah, &cmd->nc_dma->nd_cookie);
2643 
2644 	/*LINTED: E_PTR_BAD_CAST_ALIGN*/
2645 	for (prp = (uint64_t *)cmd->nc_dma->nd_memp;
2646 	    xfer->x_ndmac > 0;
2647 	    prp++, xfer->x_ndmac--) {
2648 		*prp = xfer->x_dmac.dmac_laddress;
2649 		ddi_dma_nextcookie(xfer->x_dmah, &xfer->x_dmac);
2650 	}
2651 
2652 	(void) ddi_dma_sync(cmd->nc_dma->nd_dmah, 0, cmd->nc_dma->nd_len,
2653 	    DDI_DMA_SYNC_FORDEV);
2654 	return (DDI_SUCCESS);
2655 }
2656 
2657 static nvme_cmd_t *
2658 nvme_create_nvm_cmd(nvme_namespace_t *ns, uint8_t opc, bd_xfer_t *xfer)
2659 {
2660 	nvme_t *nvme = ns->ns_nvme;
2661 	nvme_cmd_t *cmd;
2662 
2663 	/*
2664 	 * Blkdev only sets BD_XFER_POLL when dumping, so don't sleep.
2665 	 */
2666 	cmd = nvme_alloc_cmd(nvme, (xfer->x_flags & BD_XFER_POLL) ?
2667 	    KM_NOSLEEP : KM_SLEEP);
2668 
2669 	if (cmd == NULL)
2670 		return (NULL);
2671 
2672 	cmd->nc_sqe.sqe_opc = opc;
2673 	cmd->nc_callback = nvme_bd_xfer_done;
2674 	cmd->nc_xfer = xfer;
2675 
2676 	switch (opc) {
2677 	case NVME_OPC_NVM_WRITE:
2678 	case NVME_OPC_NVM_READ:
2679 		VERIFY(xfer->x_nblks <= 0x10000);
2680 
2681 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
2682 
2683 		cmd->nc_sqe.sqe_cdw10 = xfer->x_blkno & 0xffffffffu;
2684 		cmd->nc_sqe.sqe_cdw11 = (xfer->x_blkno >> 32);
2685 		cmd->nc_sqe.sqe_cdw12 = (uint16_t)(xfer->x_nblks - 1);
2686 
2687 		if (nvme_fill_prp(cmd, xfer) != DDI_SUCCESS)
2688 			goto fail;
2689 		break;
2690 
2691 	case NVME_OPC_NVM_FLUSH:
2692 		cmd->nc_sqe.sqe_nsid = ns->ns_id;
2693 		break;
2694 
2695 	default:
2696 		goto fail;
2697 	}
2698 
2699 	return (cmd);
2700 
2701 fail:
2702 	nvme_free_cmd(cmd);
2703 	return (NULL);
2704 }
2705 
2706 static void
2707 nvme_bd_xfer_done(void *arg)
2708 {
2709 	nvme_cmd_t *cmd = arg;
2710 	bd_xfer_t *xfer = cmd->nc_xfer;
2711 	int error = 0;
2712 
2713 	error = nvme_check_cmd_status(cmd);
2714 	nvme_free_cmd(cmd);
2715 
2716 	bd_xfer_done(xfer, error);
2717 }
2718 
2719 static void
2720 nvme_bd_driveinfo(void *arg, bd_drive_t *drive)
2721 {
2722 	nvme_namespace_t *ns = arg;
2723 	nvme_t *nvme = ns->ns_nvme;
2724 
2725 	/*
2726 	 * blkdev maintains one queue size per instance (namespace),
2727 	 * but all namespace share the I/O queues.
2728 	 * TODO: need to figure out a sane default, or use per-NS I/O queues,
2729 	 * or change blkdev to handle EAGAIN
2730 	 */
2731 	drive->d_qsize = nvme->n_ioq_count * nvme->n_io_queue_len
2732 	    / nvme->n_namespace_count;
2733 
2734 	/*
2735 	 * d_maxxfer is not set, which means the value is taken from the DMA
2736 	 * attributes specified to bd_alloc_handle.
2737 	 */
2738 
2739 	drive->d_removable = B_FALSE;
2740 	drive->d_hotpluggable = B_FALSE;
2741 
2742 	drive->d_target = ns->ns_id;
2743 	drive->d_lun = 0;
2744 
2745 	drive->d_model = nvme->n_idctl->id_model;
2746 	drive->d_model_len = sizeof (nvme->n_idctl->id_model);
2747 	drive->d_vendor = nvme->n_vendor;
2748 	drive->d_vendor_len = strlen(nvme->n_vendor);
2749 	drive->d_product = nvme->n_product;
2750 	drive->d_product_len = strlen(nvme->n_product);
2751 	drive->d_serial = nvme->n_idctl->id_serial;
2752 	drive->d_serial_len = sizeof (nvme->n_idctl->id_serial);
2753 	drive->d_revision = nvme->n_idctl->id_fwrev;
2754 	drive->d_revision_len = sizeof (nvme->n_idctl->id_fwrev);
2755 }
2756 
2757 static int
2758 nvme_bd_mediainfo(void *arg, bd_media_t *media)
2759 {
2760 	nvme_namespace_t *ns = arg;
2761 
2762 	media->m_nblks = ns->ns_block_count;
2763 	media->m_blksize = ns->ns_block_size;
2764 	media->m_readonly = B_FALSE;
2765 	media->m_solidstate = B_TRUE;
2766 
2767 	media->m_pblksize = ns->ns_best_block_size;
2768 
2769 	return (0);
2770 }
2771 
2772 static int
2773 nvme_bd_cmd(nvme_namespace_t *ns, bd_xfer_t *xfer, uint8_t opc)
2774 {
2775 	nvme_t *nvme = ns->ns_nvme;
2776 	nvme_cmd_t *cmd;
2777 
2778 	if (nvme->n_dead)
2779 		return (EIO);
2780 
2781 	/* No polling for now */
2782 	if (xfer->x_flags & BD_XFER_POLL)
2783 		return (EIO);
2784 
2785 	cmd = nvme_create_nvm_cmd(ns, opc, xfer);
2786 	if (cmd == NULL)
2787 		return (ENOMEM);
2788 
2789 	cmd->nc_sqid = (CPU->cpu_id % nvme->n_ioq_count) + 1;
2790 	ASSERT(cmd->nc_sqid <= nvme->n_ioq_count);
2791 
2792 	if (nvme_submit_cmd(nvme->n_ioq[cmd->nc_sqid], cmd)
2793 	    != DDI_SUCCESS)
2794 		return (EAGAIN);
2795 
2796 	return (0);
2797 }
2798 
2799 static int
2800 nvme_bd_read(void *arg, bd_xfer_t *xfer)
2801 {
2802 	nvme_namespace_t *ns = arg;
2803 
2804 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_READ));
2805 }
2806 
2807 static int
2808 nvme_bd_write(void *arg, bd_xfer_t *xfer)
2809 {
2810 	nvme_namespace_t *ns = arg;
2811 
2812 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_WRITE));
2813 }
2814 
2815 static int
2816 nvme_bd_sync(void *arg, bd_xfer_t *xfer)
2817 {
2818 	nvme_namespace_t *ns = arg;
2819 
2820 	if (ns->ns_nvme->n_dead)
2821 		return (EIO);
2822 
2823 	/*
2824 	 * If the volatile write cache isn't enabled the FLUSH command is a
2825 	 * no-op, so we can take a shortcut here.
2826 	 */
2827 	if (ns->ns_nvme->n_volatile_write_cache_enabled == B_FALSE) {
2828 		bd_xfer_done(xfer, ENOTSUP);
2829 		return (0);
2830 	}
2831 
2832 	return (nvme_bd_cmd(ns, xfer, NVME_OPC_NVM_FLUSH));
2833 }
2834 
2835 static int
2836 nvme_bd_devid(void *arg, dev_info_t *devinfo, ddi_devid_t *devid)
2837 {
2838 	nvme_namespace_t *ns = arg;
2839 
2840 	return (ddi_devid_init(devinfo, DEVID_ENCAP, strlen(ns->ns_devid),
2841 	    ns->ns_devid, devid));
2842 }
2843