xref: /illumos-gate/usr/src/uts/common/io/lofi.c (revision dcbf3bd6a1f1360fc1afcee9e22c6dcff7844bf2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
23  *
24  * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2016 Andrey Sokolov
26  * Copyright 2016 Toomas Soome <tsoome@me.com>
27  */
28 
29 /*
30  * lofi (loopback file) driver - allows you to attach a file to a device,
31  * which can then be accessed through that device. The simple model is that
32  * you tell lofi to open a file, and then use the block device you get as
33  * you would any block device. lofi translates access to the block device
34  * into I/O on the underlying file. This is mostly useful for
35  * mounting images of filesystems.
36  *
37  * lofi is controlled through /dev/lofictl - this is the only device exported
38  * during attach, and is instance number 0. lofiadm communicates with lofi
39  * through ioctls on this device. When a file is attached to lofi, block and
40  * character devices are exported in /dev/lofi and /dev/rlofi. These devices
41  * are identified by lofi instance number, and the instance number is also used
42  * as the name in /dev/lofi.
43  *
44  * Virtual disks, or, labeled lofi, implements virtual disk support to
45  * support partition table and related tools. Such mappings will cause
46  * block and character devices to be exported in /dev/dsk and /dev/rdsk
47  * directories.
48  *
49  * To support virtual disks, the instance number space is divided to two
50  * parts, upper part for instance number and lower part for minor number
51  * space to identify partitions and slices. The virtual disk support is
52  * implemented by stacking cmlb module. For virtual disks, the partition
53  * related ioctl calls are routed to cmlb module. Compression and encryption
54  * is not supported for virtual disks.
55  *
56  * Mapped devices are tracked with state structures handled with
57  * ddi_soft_state(9F) for simplicity.
58  *
59  * A file attached to lofi is opened when attached and not closed until
60  * explicitly detached from lofi. This seems more sensible than deferring
61  * the open until the /dev/lofi device is opened, for a number of reasons.
62  * One is that any failure is likely to be noticed by the person (or script)
63  * running lofiadm. Another is that it would be a security problem if the
64  * file was replaced by another one after being added but before being opened.
65  *
66  * The only hard part about lofi is the ioctls. In order to support things
67  * like 'newfs' on a lofi device, it needs to support certain disk ioctls.
68  * So it has to fake disk geometry and partition information. More may need
69  * to be faked if your favorite utility doesn't work and you think it should
70  * (fdformat doesn't work because it really wants to know the type of floppy
71  * controller to talk to, and that didn't seem easy to fake. Or possibly even
72  * necessary, since we have mkfs_pcfs now).
73  *
74  * Normally, a lofi device cannot be detached if it is open (i.e. busy).  To
75  * support simulation of hotplug events, an optional force flag is provided.
76  * If a lofi device is open when a force detach is requested, then the
77  * underlying file is closed and any subsequent operations return EIO.  When the
78  * device is closed for the last time, it will be cleaned up at that time.  In
79  * addition, the DKIOCSTATE ioctl will return DKIO_DEV_GONE when the device is
80  * detached but not removed.
81  *
82  * Known problems:
83  *
84  *	UFS logging. Mounting a UFS filesystem image "logging"
85  *	works for basic copy testing but wedges during a build of ON through
86  *	that image. Some deadlock in lufs holding the log mutex and then
87  *	getting stuck on a buf. So for now, don't do that.
88  *
89  *	Direct I/O. Since the filesystem data is being cached in the buffer
90  *	cache, _and_ again in the underlying filesystem, it's tempting to
91  *	enable direct I/O on the underlying file. Don't, because that deadlocks.
92  *	I think to fix the cache-twice problem we might need filesystem support.
93  *
94  * Interesting things to do:
95  *
96  *	Allow multiple files for each device. A poor-man's metadisk, basically.
97  *
98  *	Pass-through ioctls on block devices. You can (though it's not
99  *	documented), give lofi a block device as a file name. Then we shouldn't
100  *	need to fake a geometry, however, it may be relevant if you're replacing
101  *	metadisk, or using lofi to get crypto.
102  *	It makes sense to do lofiadm -c aes -a /dev/dsk/c0t0d0s4 /dev/lofi/1
103  *	and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home.
104  *	In fact this even makes sense if you have lofi "above" metadisk.
105  *
106  * Encryption:
107  *	Each lofi device can have its own symmetric key and cipher.
108  *	They are passed to us by lofiadm(1m) in the correct format for use
109  *	with the misc/kcf crypto_* routines.
110  *
111  *	Each block has its own IV, that is calculated in lofi_blk_mech(), based
112  *	on the "master" key held in the lsp and the block number of the buffer.
113  */
114 
115 #include <sys/types.h>
116 #include <netinet/in.h>
117 #include <sys/sysmacros.h>
118 #include <sys/uio.h>
119 #include <sys/kmem.h>
120 #include <sys/cred.h>
121 #include <sys/mman.h>
122 #include <sys/errno.h>
123 #include <sys/aio_req.h>
124 #include <sys/stat.h>
125 #include <sys/file.h>
126 #include <sys/modctl.h>
127 #include <sys/conf.h>
128 #include <sys/debug.h>
129 #include <sys/vnode.h>
130 #include <sys/lofi.h>
131 #include <sys/fcntl.h>
132 #include <sys/pathname.h>
133 #include <sys/filio.h>
134 #include <sys/fdio.h>
135 #include <sys/open.h>
136 #include <sys/disp.h>
137 #include <vm/seg_map.h>
138 #include <sys/ddi.h>
139 #include <sys/sunddi.h>
140 #include <sys/zmod.h>
141 #include <sys/id_space.h>
142 #include <sys/mkdev.h>
143 #include <sys/crypto/common.h>
144 #include <sys/crypto/api.h>
145 #include <sys/rctl.h>
146 #include <sys/vtoc.h>
147 #include <sys/scsi/scsi.h>	/* for DTYPE_DIRECT */
148 #include <sys/scsi/impl/uscsi.h>
149 #include <sys/sysevent/dev.h>
150 #include <LzmaDec.h>
151 
152 #define	NBLOCKS_PROP_NAME	"Nblocks"
153 #define	SIZE_PROP_NAME		"Size"
154 #define	ZONE_PROP_NAME		"zone"
155 
156 #define	SETUP_C_DATA(cd, buf, len) 		\
157 	(cd).cd_format = CRYPTO_DATA_RAW;	\
158 	(cd).cd_offset = 0;			\
159 	(cd).cd_miscdata = NULL;		\
160 	(cd).cd_length = (len);			\
161 	(cd).cd_raw.iov_base = (buf);		\
162 	(cd).cd_raw.iov_len = (len);
163 
164 #define	UIO_CHECK(uio)	\
165 	if (((uio)->uio_loffset % DEV_BSIZE) != 0 || \
166 	    ((uio)->uio_resid % DEV_BSIZE) != 0) { \
167 		return (EINVAL); \
168 	}
169 
170 #define	DEVFS_CHANNEL	"devfsadm_event_channel"
171 #define	LOFI_TIMEOUT	30
172 static evchan_t *lofi_chan;
173 static kmutex_t lofi_chan_lock;
174 static kcondvar_t lofi_chan_cv;
175 static nvlist_t *lofi_devlink_cache;
176 
177 static void *lofi_statep;
178 static kmutex_t lofi_lock;		/* state lock */
179 static id_space_t *lofi_id;		/* lofi ID values */
180 static list_t lofi_list;
181 static zone_key_t lofi_zone_key;
182 
183 /*
184  * Because lofi_taskq_nthreads limits the actual swamping of the device, the
185  * maxalloc parameter (lofi_taskq_maxalloc) should be tuned conservatively
186  * high.  If we want to be assured that the underlying device is always busy,
187  * we must be sure that the number of bytes enqueued when the number of
188  * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for
189  * the duration of the sleep time in taskq_ent_alloc().  That is, lofi should
190  * set maxalloc to be the maximum throughput (in bytes per second) of the
191  * underlying device divided by the minimum I/O size.  We assume a realistic
192  * maximum throughput of one hundred megabytes per second; we set maxalloc on
193  * the lofi task queue to be 104857600 divided by DEV_BSIZE.
194  */
195 static int lofi_taskq_maxalloc = 104857600 / DEV_BSIZE;
196 static int lofi_taskq_nthreads = 4;	/* # of taskq threads per device */
197 
198 const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC;
199 
200 /*
201  * To avoid decompressing data in a compressed segment multiple times
202  * when accessing small parts of a segment's data, we cache and reuse
203  * the uncompressed segment's data.
204  *
205  * A single cached segment is sufficient to avoid lots of duplicate
206  * segment decompress operations. A small cache size also reduces the
207  * memory footprint.
208  *
209  * lofi_max_comp_cache is the maximum number of decompressed data segments
210  * cached for each compressed lofi image. It can be set to 0 to disable
211  * caching.
212  */
213 
214 uint32_t lofi_max_comp_cache = 1;
215 
216 static int gzip_decompress(void *src, size_t srclen, void *dst,
217 	size_t *destlen, int level);
218 
219 static int lzma_decompress(void *src, size_t srclen, void *dst,
220 	size_t *dstlen, int level);
221 
222 lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = {
223 	{gzip_decompress,	NULL,	6,	"gzip"}, /* default */
224 	{gzip_decompress,	NULL,	6,	"gzip-6"},
225 	{gzip_decompress,	NULL,	9,	"gzip-9"},
226 	{lzma_decompress,	NULL,	0,	"lzma"}
227 };
228 
229 static void lofi_strategy_task(void *);
230 static int lofi_tg_rdwr(dev_info_t *, uchar_t, void *, diskaddr_t,
231     size_t, void *);
232 static int lofi_tg_getinfo(dev_info_t *, int, void *, void *);
233 
234 struct cmlb_tg_ops lofi_tg_ops = {
235 	TG_DK_OPS_VERSION_1,
236 	lofi_tg_rdwr,
237 	lofi_tg_getinfo
238 };
239 
240 /*ARGSUSED*/
241 static void
242 *SzAlloc(void *p, size_t size)
243 {
244 	return (kmem_alloc(size, KM_SLEEP));
245 }
246 
247 /*ARGSUSED*/
248 static void
249 SzFree(void *p, void *address, size_t size)
250 {
251 	kmem_free(address, size);
252 }
253 
254 static ISzAlloc g_Alloc = { SzAlloc, SzFree };
255 
256 /*
257  * Free data referenced by the linked list of cached uncompressed
258  * segments.
259  */
260 static void
261 lofi_free_comp_cache(struct lofi_state *lsp)
262 {
263 	struct lofi_comp_cache *lc;
264 
265 	while ((lc = list_remove_head(&lsp->ls_comp_cache)) != NULL) {
266 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
267 		kmem_free(lc, sizeof (struct lofi_comp_cache));
268 		lsp->ls_comp_cache_count--;
269 	}
270 	ASSERT(lsp->ls_comp_cache_count == 0);
271 }
272 
273 static int
274 is_opened(struct lofi_state *lsp)
275 {
276 	int i;
277 	boolean_t last = B_TRUE;
278 
279 	ASSERT(MUTEX_HELD(&lofi_lock));
280 	for (i = 0; i < LOFI_PART_MAX; i++) {
281 		if (lsp->ls_open_lyr[i]) {
282 			last = B_FALSE;
283 			break;
284 		}
285 	}
286 
287 	for (i = 0; last && (i < OTYP_LYR); i++) {
288 		if (lsp->ls_open_reg[i]) {
289 			last = B_FALSE;
290 		}
291 	}
292 
293 	return (!last);
294 }
295 
296 static void
297 lofi_free_crypto(struct lofi_state *lsp)
298 {
299 	ASSERT(MUTEX_HELD(&lofi_lock));
300 
301 	if (lsp->ls_crypto_enabled) {
302 		/*
303 		 * Clean up the crypto state so that it doesn't hang around
304 		 * in memory after we are done with it.
305 		 */
306 		if (lsp->ls_key.ck_data != NULL) {
307 			bzero(lsp->ls_key.ck_data,
308 			    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
309 			kmem_free(lsp->ls_key.ck_data,
310 			    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
311 			lsp->ls_key.ck_data = NULL;
312 			lsp->ls_key.ck_length = 0;
313 		}
314 
315 		if (lsp->ls_mech.cm_param != NULL) {
316 			kmem_free(lsp->ls_mech.cm_param,
317 			    lsp->ls_mech.cm_param_len);
318 			lsp->ls_mech.cm_param = NULL;
319 			lsp->ls_mech.cm_param_len = 0;
320 		}
321 
322 		if (lsp->ls_iv_mech.cm_param != NULL) {
323 			kmem_free(lsp->ls_iv_mech.cm_param,
324 			    lsp->ls_iv_mech.cm_param_len);
325 			lsp->ls_iv_mech.cm_param = NULL;
326 			lsp->ls_iv_mech.cm_param_len = 0;
327 		}
328 
329 		mutex_destroy(&lsp->ls_crypto_lock);
330 	}
331 }
332 
333 /* ARGSUSED */
334 static int
335 lofi_tg_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr, diskaddr_t start,
336     size_t length, void *tg_cookie)
337 {
338 	struct lofi_state *lsp;
339 	buf_t	*bp;
340 	int	instance;
341 	int	rv = 0;
342 
343 	instance = ddi_get_instance(dip);
344 	if (instance == 0)	/* control node does not have disk */
345 		return (ENXIO);
346 
347 	lsp = ddi_get_soft_state(lofi_statep, instance);
348 
349 	if (lsp == NULL)
350 		return (ENXIO);
351 
352 	if (cmd != TG_READ && cmd != TG_WRITE)
353 		return (EINVAL);
354 
355 	/*
356 	 * Make sure the mapping is set up by checking lsp->ls_vp_ready.
357 	 */
358 	mutex_enter(&lsp->ls_vp_lock);
359 	while (lsp->ls_vp_ready == B_FALSE)
360 		cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
361 	mutex_exit(&lsp->ls_vp_lock);
362 
363 	if (P2PHASE(length, (1U << lsp->ls_lbshift)) != 0) {
364 		/* We can only transfer whole blocks at a time! */
365 		return (EINVAL);
366 	}
367 
368 	bp = getrbuf(KM_SLEEP);
369 
370 	if (cmd == TG_READ) {
371 		bp->b_flags = B_READ;
372 	} else {
373 		if (lsp->ls_readonly == B_TRUE) {
374 			freerbuf(bp);
375 			return (EROFS);
376 		}
377 		bp->b_flags = B_WRITE;
378 	}
379 
380 	bp->b_un.b_addr = bufaddr;
381 	bp->b_bcount = length;
382 	bp->b_lblkno = start;
383 	bp->b_private = NULL;
384 	bp->b_edev = lsp->ls_dev;
385 
386 	if (lsp->ls_kstat) {
387 		mutex_enter(lsp->ls_kstat->ks_lock);
388 		kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat));
389 		mutex_exit(lsp->ls_kstat->ks_lock);
390 	}
391 	(void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP);
392 	(void) biowait(bp);
393 
394 	rv = geterror(bp);
395 	freerbuf(bp);
396 	return (rv);
397 }
398 
399 /*
400  * Get device geometry info for cmlb.
401  *
402  * We have mapped disk image as virtual block device and have to report
403  * physical/virtual geometry to cmlb.
404  *
405  * So we have two principal cases:
406  * 1. Uninitialised image without any existing labels,
407  *    for this case we fabricate the data based on mapped image.
408  * 2. Image with existing label information.
409  *    Since we have no information how the image was created (it may be
410  *    dump from some physical device), we need to rely on label information
411  *    from image, or we get "corrupted label" errors.
412  *    NOTE: label can be MBR, MBR+SMI, GPT
413  */
414 static int
415 lofi_tg_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie)
416 {
417 	struct lofi_state *lsp;
418 	int instance;
419 	int ashift;
420 
421 	_NOTE(ARGUNUSED(tg_cookie));
422 	instance = ddi_get_instance(dip);
423 	if (instance == 0)		/* control device has no storage */
424 		return (ENXIO);
425 
426 	lsp = ddi_get_soft_state(lofi_statep, instance);
427 
428 	if (lsp == NULL)
429 		return (ENXIO);
430 
431 	/*
432 	 * Make sure the mapping is set up by checking lsp->ls_vp_ready.
433 	 *
434 	 * When mapping is created, new lofi instance is created and
435 	 * lofi_attach() will call cmlb_attach() as part of the procedure
436 	 * to set the mapping up. This chain of events will happen in
437 	 * the same thread.
438 	 * Since cmlb_attach() will call lofi_tg_getinfo to get
439 	 * capacity, we return error on that call if cookie is set,
440 	 * otherwise lofi_attach will be stuck as the mapping is not yet
441 	 * finalized and lofi is not yet ready.
442 	 * Note, such error is not fatal for cmlb, as the label setup
443 	 * will be finalized when cmlb_validate() is called.
444 	 */
445 	mutex_enter(&lsp->ls_vp_lock);
446 	if (tg_cookie != NULL && lsp->ls_vp_ready == B_FALSE) {
447 		mutex_exit(&lsp->ls_vp_lock);
448 		return (ENXIO);
449 	}
450 	while (lsp->ls_vp_ready == B_FALSE)
451 		cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
452 	mutex_exit(&lsp->ls_vp_lock);
453 
454 	ashift = lsp->ls_lbshift;
455 
456 	switch (cmd) {
457 	case TG_GETPHYGEOM: {
458 		cmlb_geom_t *geomp = arg;
459 
460 		geomp->g_capacity	=
461 		    (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift;
462 		geomp->g_nsect		= lsp->ls_dkg.dkg_nsect;
463 		geomp->g_nhead		= lsp->ls_dkg.dkg_nhead;
464 		geomp->g_acyl		= lsp->ls_dkg.dkg_acyl;
465 		geomp->g_ncyl		= lsp->ls_dkg.dkg_ncyl;
466 		geomp->g_secsize	= (1U << ashift);
467 		geomp->g_intrlv		= lsp->ls_dkg.dkg_intrlv;
468 		geomp->g_rpm		= lsp->ls_dkg.dkg_rpm;
469 		return (0);
470 	}
471 
472 	case TG_GETCAPACITY:
473 		*(diskaddr_t *)arg =
474 		    (lsp->ls_vp_size - lsp->ls_crypto_offset) >> ashift;
475 		return (0);
476 
477 	case TG_GETBLOCKSIZE:
478 		*(uint32_t *)arg = (1U << ashift);
479 		return (0);
480 
481 	case TG_GETATTR: {
482 		tg_attribute_t *tgattr = arg;
483 
484 		tgattr->media_is_writable = !lsp->ls_readonly;
485 		tgattr->media_is_solid_state = B_FALSE;
486 		return (0);
487 	}
488 
489 	default:
490 		return (EINVAL);
491 	}
492 }
493 
494 static void
495 lofi_destroy(struct lofi_state *lsp, cred_t *credp)
496 {
497 	int id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
498 	int i;
499 
500 	ASSERT(MUTEX_HELD(&lofi_lock));
501 
502 	list_remove(&lofi_list, lsp);
503 
504 	lofi_free_crypto(lsp);
505 
506 	/*
507 	 * Free pre-allocated compressed buffers
508 	 */
509 	if (lsp->ls_comp_bufs != NULL) {
510 		for (i = 0; i < lofi_taskq_nthreads; i++) {
511 			if (lsp->ls_comp_bufs[i].bufsize > 0)
512 				kmem_free(lsp->ls_comp_bufs[i].buf,
513 				    lsp->ls_comp_bufs[i].bufsize);
514 		}
515 		kmem_free(lsp->ls_comp_bufs,
516 		    sizeof (struct compbuf) * lofi_taskq_nthreads);
517 	}
518 
519 	if (lsp->ls_vp != NULL) {
520 		(void) VOP_PUTPAGE(lsp->ls_vp, 0, 0, B_INVAL, credp, NULL);
521 		(void) VOP_CLOSE(lsp->ls_vp, lsp->ls_openflag,
522 		    1, 0, credp, NULL);
523 		VN_RELE(lsp->ls_vp);
524 	}
525 	if (lsp->ls_stacked_vp != lsp->ls_vp)
526 		VN_RELE(lsp->ls_stacked_vp);
527 
528 	if (lsp->ls_taskq != NULL)
529 		taskq_destroy(lsp->ls_taskq);
530 
531 	if (lsp->ls_kstat != NULL)
532 		kstat_delete(lsp->ls_kstat);
533 
534 	/*
535 	 * Free cached decompressed segment data
536 	 */
537 	lofi_free_comp_cache(lsp);
538 	list_destroy(&lsp->ls_comp_cache);
539 
540 	if (lsp->ls_uncomp_seg_sz > 0) {
541 		kmem_free(lsp->ls_comp_index_data, lsp->ls_comp_index_data_sz);
542 		lsp->ls_uncomp_seg_sz = 0;
543 	}
544 
545 	rctl_decr_lofi(lsp->ls_zone.zref_zone, 1);
546 	zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI);
547 
548 	mutex_destroy(&lsp->ls_comp_cache_lock);
549 	mutex_destroy(&lsp->ls_comp_bufs_lock);
550 	mutex_destroy(&lsp->ls_kstat_lock);
551 	mutex_destroy(&lsp->ls_vp_lock);
552 	cv_destroy(&lsp->ls_vp_cv);
553 	lsp->ls_vp_ready = B_FALSE;
554 
555 	ASSERT(ddi_get_soft_state(lofi_statep, id) == lsp);
556 	(void) ndi_devi_offline(lsp->ls_dip, NDI_DEVI_REMOVE);
557 	id_free(lofi_id, id);
558 }
559 
560 static void
561 lofi_free_dev(struct lofi_state *lsp)
562 {
563 	ASSERT(MUTEX_HELD(&lofi_lock));
564 
565 	if (lsp->ls_cmlbhandle != NULL) {
566 		cmlb_invalidate(lsp->ls_cmlbhandle, 0);
567 		cmlb_detach(lsp->ls_cmlbhandle, 0);
568 		cmlb_free_handle(&lsp->ls_cmlbhandle);
569 		lsp->ls_cmlbhandle = NULL;
570 	}
571 	(void) ddi_prop_remove_all(lsp->ls_dip);
572 	ddi_remove_minor_node(lsp->ls_dip, NULL);
573 }
574 
575 /*ARGSUSED*/
576 static void
577 lofi_zone_shutdown(zoneid_t zoneid, void *arg)
578 {
579 	struct lofi_state *lsp;
580 	struct lofi_state *next;
581 
582 	mutex_enter(&lofi_lock);
583 
584 	for (lsp = list_head(&lofi_list); lsp != NULL; lsp = next) {
585 
586 		/* lofi_destroy() frees lsp */
587 		next = list_next(&lofi_list, lsp);
588 
589 		if (lsp->ls_zone.zref_zone->zone_id != zoneid)
590 			continue;
591 
592 		/*
593 		 * No in-zone processes are running, but something has this
594 		 * open.  It's either a global zone process, or a lofi
595 		 * mount.  In either case we set ls_cleanup so the last
596 		 * user destroys the device.
597 		 */
598 		if (is_opened(lsp)) {
599 			lsp->ls_cleanup = 1;
600 		} else {
601 			lofi_free_dev(lsp);
602 			lofi_destroy(lsp, kcred);
603 		}
604 	}
605 
606 	mutex_exit(&lofi_lock);
607 }
608 
609 /*ARGSUSED*/
610 static int
611 lofi_open(dev_t *devp, int flag, int otyp, struct cred *credp)
612 {
613 	int id;
614 	minor_t	part;
615 	uint64_t mask;
616 	diskaddr_t nblks;
617 	diskaddr_t lba;
618 	boolean_t ndelay;
619 
620 	struct lofi_state *lsp;
621 
622 	if (otyp >= OTYPCNT)
623 		return (EINVAL);
624 
625 	ndelay = (flag & (FNDELAY | FNONBLOCK)) ? B_TRUE : B_FALSE;
626 
627 	/*
628 	 * lofiadm -a /dev/lofi/1 gets us here.
629 	 */
630 	if (mutex_owner(&lofi_lock) == curthread)
631 		return (EINVAL);
632 
633 	mutex_enter(&lofi_lock);
634 
635 	id = LOFI_MINOR2ID(getminor(*devp));
636 	part = LOFI_PART(getminor(*devp));
637 	mask = (1U << part);
638 
639 	/* master control device */
640 	if (id == 0) {
641 		mutex_exit(&lofi_lock);
642 		return (0);
643 	}
644 
645 	/* otherwise, the mapping should already exist */
646 	lsp = ddi_get_soft_state(lofi_statep, id);
647 	if (lsp == NULL) {
648 		mutex_exit(&lofi_lock);
649 		return (EINVAL);
650 	}
651 
652 	if (lsp->ls_vp == NULL) {
653 		mutex_exit(&lofi_lock);
654 		return (ENXIO);
655 	}
656 
657 	if (lsp->ls_readonly && (flag & FWRITE)) {
658 		mutex_exit(&lofi_lock);
659 		return (EROFS);
660 	}
661 
662 	if ((lsp->ls_open_excl) & (mask)) {
663 		mutex_exit(&lofi_lock);
664 		return (EBUSY);
665 	}
666 
667 	if (flag & FEXCL) {
668 		if (lsp->ls_open_lyr[part]) {
669 			mutex_exit(&lofi_lock);
670 			return (EBUSY);
671 		}
672 		for (int i = 0; i < OTYP_LYR; i++) {
673 			if (lsp->ls_open_reg[i] & mask) {
674 				mutex_exit(&lofi_lock);
675 				return (EBUSY);
676 			}
677 		}
678 	}
679 
680 	if (lsp->ls_cmlbhandle != NULL) {
681 		if (cmlb_validate(lsp->ls_cmlbhandle, 0, 0) != 0) {
682 			/*
683 			 * non-blocking opens are allowed to succeed to
684 			 * support format and fdisk to create partitioning.
685 			 */
686 			if (!ndelay) {
687 				mutex_exit(&lofi_lock);
688 				return (ENXIO);
689 			}
690 		} else if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &nblks, &lba,
691 		    NULL, NULL, 0) == 0) {
692 			if ((!nblks) && ((!ndelay) || (otyp != OTYP_CHR))) {
693 				mutex_exit(&lofi_lock);
694 				return (ENXIO);
695 			}
696 		} else if (!ndelay) {
697 			mutex_exit(&lofi_lock);
698 			return (ENXIO);
699 		}
700 	}
701 
702 	if (otyp == OTYP_LYR) {
703 		lsp->ls_open_lyr[part]++;
704 	} else {
705 		lsp->ls_open_reg[otyp] |= mask;
706 	}
707 	if (flag & FEXCL) {
708 		lsp->ls_open_excl |= mask;
709 	}
710 
711 	mutex_exit(&lofi_lock);
712 	return (0);
713 }
714 
715 /*ARGSUSED*/
716 static int
717 lofi_close(dev_t dev, int flag, int otyp, struct cred *credp)
718 {
719 	minor_t	part;
720 	int id;
721 	uint64_t mask;
722 	struct lofi_state *lsp;
723 
724 	id = LOFI_MINOR2ID(getminor(dev));
725 	part = LOFI_PART(getminor(dev));
726 	mask = (1U << part);
727 
728 	mutex_enter(&lofi_lock);
729 	lsp = ddi_get_soft_state(lofi_statep, id);
730 	if (lsp == NULL) {
731 		mutex_exit(&lofi_lock);
732 		return (EINVAL);
733 	}
734 
735 	if (id == 0) {
736 		mutex_exit(&lofi_lock);
737 		return (0);
738 	}
739 
740 	if (lsp->ls_open_excl & mask)
741 		lsp->ls_open_excl &= ~mask;
742 
743 	if (otyp == OTYP_LYR) {
744 		lsp->ls_open_lyr[part]--;
745 	} else {
746 		lsp->ls_open_reg[otyp] &= ~mask;
747 	}
748 
749 	/*
750 	 * If we forcibly closed the underlying device (li_force), or
751 	 * asked for cleanup (li_cleanup), finish up if we're the last
752 	 * out of the door.
753 	 */
754 	if (!is_opened(lsp) && (lsp->ls_cleanup || lsp->ls_vp == NULL)) {
755 		lofi_free_dev(lsp);
756 		lofi_destroy(lsp, credp);
757 	}
758 
759 	mutex_exit(&lofi_lock);
760 	return (0);
761 }
762 
763 /*
764  * Sets the mechanism's initialization vector (IV) if one is needed.
765  * The IV is computed from the data block number.  lsp->ls_mech is
766  * altered so that:
767  *	lsp->ls_mech.cm_param_len is set to the IV len.
768  *	lsp->ls_mech.cm_param is set to the IV.
769  */
770 static int
771 lofi_blk_mech(struct lofi_state *lsp, longlong_t lblkno)
772 {
773 	int	ret;
774 	crypto_data_t cdata;
775 	char	*iv;
776 	size_t	iv_len;
777 	size_t	min;
778 	void	*data;
779 	size_t	datasz;
780 
781 	ASSERT(MUTEX_HELD(&lsp->ls_crypto_lock));
782 
783 	if (lsp == NULL)
784 		return (CRYPTO_DEVICE_ERROR);
785 
786 	/* lsp->ls_mech.cm_param{_len} has already been set for static iv */
787 	if (lsp->ls_iv_type == IVM_NONE) {
788 		return (CRYPTO_SUCCESS);
789 	}
790 
791 	/*
792 	 * if kmem already alloced from previous call and it's the same size
793 	 * we need now, just recycle it; allocate new kmem only if we have to
794 	 */
795 	if (lsp->ls_mech.cm_param == NULL ||
796 	    lsp->ls_mech.cm_param_len != lsp->ls_iv_len) {
797 		iv_len = lsp->ls_iv_len;
798 		iv = kmem_zalloc(iv_len, KM_SLEEP);
799 	} else {
800 		iv_len = lsp->ls_mech.cm_param_len;
801 		iv = lsp->ls_mech.cm_param;
802 		bzero(iv, iv_len);
803 	}
804 
805 	switch (lsp->ls_iv_type) {
806 	case IVM_ENC_BLKNO:
807 		/* iv is not static, lblkno changes each time */
808 		data = &lblkno;
809 		datasz = sizeof (lblkno);
810 		break;
811 	default:
812 		data = 0;
813 		datasz = 0;
814 		break;
815 	}
816 
817 	/*
818 	 * write blkno into the iv buffer padded on the left in case
819 	 * blkno ever grows bigger than its current longlong_t size
820 	 * or a variation other than blkno is used for the iv data
821 	 */
822 	min = MIN(datasz, iv_len);
823 	bcopy(data, iv + (iv_len - min), min);
824 
825 	/* encrypt the data in-place to get the IV */
826 	SETUP_C_DATA(cdata, iv, iv_len);
827 
828 	ret = crypto_encrypt(&lsp->ls_iv_mech, &cdata, &lsp->ls_key,
829 	    NULL, NULL, NULL);
830 	if (ret != CRYPTO_SUCCESS) {
831 		cmn_err(CE_WARN, "failed to create iv for block %lld: (0x%x)",
832 		    lblkno, ret);
833 		if (lsp->ls_mech.cm_param != iv)
834 			kmem_free(iv, iv_len);
835 
836 		return (ret);
837 	}
838 
839 	/* clean up the iv from the last computation */
840 	if (lsp->ls_mech.cm_param != NULL && lsp->ls_mech.cm_param != iv)
841 		kmem_free(lsp->ls_mech.cm_param, lsp->ls_mech.cm_param_len);
842 
843 	lsp->ls_mech.cm_param_len = iv_len;
844 	lsp->ls_mech.cm_param = iv;
845 
846 	return (CRYPTO_SUCCESS);
847 }
848 
849 /*
850  * Performs encryption and decryption of a chunk of data of size "len",
851  * one DEV_BSIZE block at a time.  "len" is assumed to be a multiple of
852  * DEV_BSIZE.
853  */
854 static int
855 lofi_crypto(struct lofi_state *lsp, struct buf *bp, caddr_t plaintext,
856     caddr_t ciphertext, size_t len, boolean_t op_encrypt)
857 {
858 	crypto_data_t cdata;
859 	crypto_data_t wdata;
860 	int ret;
861 	longlong_t lblkno = bp->b_lblkno;
862 
863 	mutex_enter(&lsp->ls_crypto_lock);
864 
865 	/*
866 	 * though we could encrypt/decrypt entire "len" chunk of data, we need
867 	 * to break it into DEV_BSIZE pieces to capture blkno incrementing
868 	 */
869 	SETUP_C_DATA(cdata, plaintext, len);
870 	cdata.cd_length = DEV_BSIZE;
871 	if (ciphertext != NULL) {		/* not in-place crypto */
872 		SETUP_C_DATA(wdata, ciphertext, len);
873 		wdata.cd_length = DEV_BSIZE;
874 	}
875 
876 	do {
877 		ret = lofi_blk_mech(lsp, lblkno);
878 		if (ret != CRYPTO_SUCCESS)
879 			continue;
880 
881 		if (op_encrypt) {
882 			ret = crypto_encrypt(&lsp->ls_mech, &cdata,
883 			    &lsp->ls_key, NULL,
884 			    ((ciphertext != NULL) ? &wdata : NULL), NULL);
885 		} else {
886 			ret = crypto_decrypt(&lsp->ls_mech, &cdata,
887 			    &lsp->ls_key, NULL,
888 			    ((ciphertext != NULL) ? &wdata : NULL), NULL);
889 		}
890 
891 		cdata.cd_offset += DEV_BSIZE;
892 		if (ciphertext != NULL)
893 			wdata.cd_offset += DEV_BSIZE;
894 		lblkno++;
895 	} while (ret == CRYPTO_SUCCESS && cdata.cd_offset < len);
896 
897 	mutex_exit(&lsp->ls_crypto_lock);
898 
899 	if (ret != CRYPTO_SUCCESS) {
900 		cmn_err(CE_WARN, "%s failed for block %lld:  (0x%x)",
901 		    op_encrypt ? "crypto_encrypt()" : "crypto_decrypt()",
902 		    lblkno, ret);
903 	}
904 
905 	return (ret);
906 }
907 
908 #define	RDWR_RAW	1
909 #define	RDWR_BCOPY	2
910 
911 static int
912 lofi_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
913     struct lofi_state *lsp, size_t len, int method, caddr_t bcopy_locn)
914 {
915 	ssize_t resid;
916 	int isread;
917 	int error;
918 
919 	/*
920 	 * Handles reads/writes for both plain and encrypted lofi
921 	 * Note:  offset is already shifted by lsp->ls_crypto_offset
922 	 * when it gets here.
923 	 */
924 
925 	isread = bp->b_flags & B_READ;
926 	if (isread) {
927 		if (method == RDWR_BCOPY) {
928 			/* DO NOT update bp->b_resid for bcopy */
929 			bcopy(bcopy_locn, bufaddr, len);
930 			error = 0;
931 		} else {		/* RDWR_RAW */
932 			error = vn_rdwr(UIO_READ, lsp->ls_vp, bufaddr, len,
933 			    offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
934 			    &resid);
935 			bp->b_resid = resid;
936 		}
937 		if (lsp->ls_crypto_enabled && error == 0) {
938 			if (lofi_crypto(lsp, bp, bufaddr, NULL, len,
939 			    B_FALSE) != CRYPTO_SUCCESS) {
940 				/*
941 				 * XXX: original code didn't set residual
942 				 * back to len because no error was expected
943 				 * from bcopy() if encryption is not enabled
944 				 */
945 				if (method != RDWR_BCOPY)
946 					bp->b_resid = len;
947 				error = EIO;
948 			}
949 		}
950 		return (error);
951 	} else {
952 		void *iobuf = bufaddr;
953 
954 		if (lsp->ls_crypto_enabled) {
955 			/* don't do in-place crypto to keep bufaddr intact */
956 			iobuf = kmem_alloc(len, KM_SLEEP);
957 			if (lofi_crypto(lsp, bp, bufaddr, iobuf, len,
958 			    B_TRUE) != CRYPTO_SUCCESS) {
959 				kmem_free(iobuf, len);
960 				if (method != RDWR_BCOPY)
961 					bp->b_resid = len;
962 				return (EIO);
963 			}
964 		}
965 		if (method == RDWR_BCOPY) {
966 			/* DO NOT update bp->b_resid for bcopy */
967 			bcopy(iobuf, bcopy_locn, len);
968 			error = 0;
969 		} else {		/* RDWR_RAW */
970 			error = vn_rdwr(UIO_WRITE, lsp->ls_vp, iobuf, len,
971 			    offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
972 			    &resid);
973 			bp->b_resid = resid;
974 		}
975 		if (lsp->ls_crypto_enabled) {
976 			kmem_free(iobuf, len);
977 		}
978 		return (error);
979 	}
980 }
981 
982 static int
983 lofi_mapped_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
984     struct lofi_state *lsp)
985 {
986 	int error;
987 	offset_t alignedoffset, mapoffset;
988 	size_t	xfersize;
989 	int	isread;
990 	int	smflags;
991 	caddr_t	mapaddr;
992 	size_t	len;
993 	enum seg_rw srw;
994 	int	save_error;
995 
996 	/*
997 	 * Note:  offset is already shifted by lsp->ls_crypto_offset
998 	 * when it gets here.
999 	 */
1000 	if (lsp->ls_crypto_enabled)
1001 		ASSERT(lsp->ls_vp_comp_size == lsp->ls_vp_size);
1002 
1003 	/*
1004 	 * segmap always gives us an 8K (MAXBSIZE) chunk, aligned on
1005 	 * an 8K boundary, but the buf transfer address may not be
1006 	 * aligned on more than a 512-byte boundary (we don't enforce
1007 	 * that even though we could). This matters since the initial
1008 	 * part of the transfer may not start at offset 0 within the
1009 	 * segmap'd chunk. So we have to compensate for that with
1010 	 * 'mapoffset'. Subsequent chunks always start off at the
1011 	 * beginning, and the last is capped by b_resid
1012 	 *
1013 	 * Visually, where "|" represents page map boundaries:
1014 	 *   alignedoffset (mapaddr begins at this segmap boundary)
1015 	 *    |   offset (from beginning of file)
1016 	 *    |    |	   len
1017 	 *    v    v	    v
1018 	 * ===|====X========|====...======|========X====|====
1019 	 *	   /-------------...---------------/
1020 	 *		^ bp->b_bcount/bp->b_resid at start
1021 	 *    /----/--------/----...------/--------/
1022 	 *	^	^	^   ^		^
1023 	 *	|	|	|   |		nth xfersize (<= MAXBSIZE)
1024 	 *	|	|	2nd thru n-1st xfersize (= MAXBSIZE)
1025 	 *	|	1st xfersize (<= MAXBSIZE)
1026 	 *    mapoffset (offset into 1st segmap, non-0 1st time, 0 thereafter)
1027 	 *
1028 	 * Notes: "alignedoffset" is "offset" rounded down to nearest
1029 	 * MAXBSIZE boundary.  "len" is next page boundary of size
1030 	 * PAGESIZE after "alignedoffset".
1031 	 */
1032 	mapoffset = offset & MAXBOFFSET;
1033 	alignedoffset = offset - mapoffset;
1034 	bp->b_resid = bp->b_bcount;
1035 	isread = bp->b_flags & B_READ;
1036 	srw = isread ? S_READ : S_WRITE;
1037 	do {
1038 		xfersize = MIN(lsp->ls_vp_comp_size - offset,
1039 		    MIN(MAXBSIZE - mapoffset, bp->b_resid));
1040 		len = roundup(mapoffset + xfersize, PAGESIZE);
1041 		mapaddr = segmap_getmapflt(segkmap, lsp->ls_vp,
1042 		    alignedoffset, MAXBSIZE, 1, srw);
1043 		/*
1044 		 * Now fault in the pages. This lets us check
1045 		 * for errors before we reference mapaddr and
1046 		 * try to resolve the fault in bcopy (which would
1047 		 * panic instead). And this can easily happen,
1048 		 * particularly if you've lofi'd a file over NFS
1049 		 * and someone deletes the file on the server.
1050 		 */
1051 		error = segmap_fault(kas.a_hat, segkmap, mapaddr,
1052 		    len, F_SOFTLOCK, srw);
1053 		if (error) {
1054 			(void) segmap_release(segkmap, mapaddr, 0);
1055 			if (FC_CODE(error) == FC_OBJERR)
1056 				error = FC_ERRNO(error);
1057 			else
1058 				error = EIO;
1059 			break;
1060 		}
1061 		/* error may be non-zero for encrypted lofi */
1062 		error = lofi_rdwr(bufaddr, 0, bp, lsp, xfersize,
1063 		    RDWR_BCOPY, mapaddr + mapoffset);
1064 		if (error == 0) {
1065 			bp->b_resid -= xfersize;
1066 			bufaddr += xfersize;
1067 			offset += xfersize;
1068 		}
1069 		smflags = 0;
1070 		if (isread) {
1071 			smflags |= SM_FREE;
1072 			/*
1073 			 * If we're reading an entire page starting
1074 			 * at a page boundary, there's a good chance
1075 			 * we won't need it again. Put it on the
1076 			 * head of the freelist.
1077 			 */
1078 			if (mapoffset == 0 && xfersize == MAXBSIZE)
1079 				smflags |= SM_DONTNEED;
1080 		} else {
1081 			/*
1082 			 * Write back good pages, it is okay to
1083 			 * always release asynchronous here as we'll
1084 			 * follow with VOP_FSYNC for B_SYNC buffers.
1085 			 */
1086 			if (error == 0)
1087 				smflags |= SM_WRITE | SM_ASYNC;
1088 		}
1089 		(void) segmap_fault(kas.a_hat, segkmap, mapaddr,
1090 		    len, F_SOFTUNLOCK, srw);
1091 		save_error = segmap_release(segkmap, mapaddr, smflags);
1092 		if (error == 0)
1093 			error = save_error;
1094 		/* only the first map may start partial */
1095 		mapoffset = 0;
1096 		alignedoffset += MAXBSIZE;
1097 	} while ((error == 0) && (bp->b_resid > 0) &&
1098 	    (offset < lsp->ls_vp_comp_size));
1099 
1100 	return (error);
1101 }
1102 
1103 /*
1104  * Check if segment seg_index is present in the decompressed segment
1105  * data cache.
1106  *
1107  * Returns a pointer to the decompressed segment data cache entry if
1108  * found, and NULL when decompressed data for this segment is not yet
1109  * cached.
1110  */
1111 static struct lofi_comp_cache *
1112 lofi_find_comp_data(struct lofi_state *lsp, uint64_t seg_index)
1113 {
1114 	struct lofi_comp_cache *lc;
1115 
1116 	ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
1117 
1118 	for (lc = list_head(&lsp->ls_comp_cache); lc != NULL;
1119 	    lc = list_next(&lsp->ls_comp_cache, lc)) {
1120 		if (lc->lc_index == seg_index) {
1121 			/*
1122 			 * Decompressed segment data was found in the
1123 			 * cache.
1124 			 *
1125 			 * The cache uses an LRU replacement strategy;
1126 			 * move the entry to head of list.
1127 			 */
1128 			list_remove(&lsp->ls_comp_cache, lc);
1129 			list_insert_head(&lsp->ls_comp_cache, lc);
1130 			return (lc);
1131 		}
1132 	}
1133 	return (NULL);
1134 }
1135 
1136 /*
1137  * Add the data for a decompressed segment at segment index
1138  * seg_index to the cache of the decompressed segments.
1139  *
1140  * Returns a pointer to the cache element structure in case
1141  * the data was added to the cache; returns NULL when the data
1142  * wasn't cached.
1143  */
1144 static struct lofi_comp_cache *
1145 lofi_add_comp_data(struct lofi_state *lsp, uint64_t seg_index,
1146     uchar_t *data)
1147 {
1148 	struct lofi_comp_cache *lc;
1149 
1150 	ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
1151 
1152 	while (lsp->ls_comp_cache_count > lofi_max_comp_cache) {
1153 		lc = list_remove_tail(&lsp->ls_comp_cache);
1154 		ASSERT(lc != NULL);
1155 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
1156 		kmem_free(lc, sizeof (struct lofi_comp_cache));
1157 		lsp->ls_comp_cache_count--;
1158 	}
1159 
1160 	/*
1161 	 * Do not cache when disabled by tunable variable
1162 	 */
1163 	if (lofi_max_comp_cache == 0)
1164 		return (NULL);
1165 
1166 	/*
1167 	 * When the cache has not yet reached the maximum allowed
1168 	 * number of segments, allocate a new cache element.
1169 	 * Otherwise the cache is full; reuse the last list element
1170 	 * (LRU) for caching the decompressed segment data.
1171 	 *
1172 	 * The cache element for the new decompressed segment data is
1173 	 * added to the head of the list.
1174 	 */
1175 	if (lsp->ls_comp_cache_count < lofi_max_comp_cache) {
1176 		lc = kmem_alloc(sizeof (struct lofi_comp_cache), KM_SLEEP);
1177 		lc->lc_data = NULL;
1178 		list_insert_head(&lsp->ls_comp_cache, lc);
1179 		lsp->ls_comp_cache_count++;
1180 	} else {
1181 		lc = list_remove_tail(&lsp->ls_comp_cache);
1182 		if (lc == NULL)
1183 			return (NULL);
1184 		list_insert_head(&lsp->ls_comp_cache, lc);
1185 	}
1186 
1187 	/*
1188 	 * Free old uncompressed segment data when reusing a cache
1189 	 * entry.
1190 	 */
1191 	if (lc->lc_data != NULL)
1192 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
1193 
1194 	lc->lc_data = data;
1195 	lc->lc_index = seg_index;
1196 	return (lc);
1197 }
1198 
1199 
1200 /*ARGSUSED*/
1201 static int
1202 gzip_decompress(void *src, size_t srclen, void *dst,
1203     size_t *dstlen, int level)
1204 {
1205 	ASSERT(*dstlen >= srclen);
1206 
1207 	if (z_uncompress(dst, dstlen, src, srclen) != Z_OK)
1208 		return (-1);
1209 	return (0);
1210 }
1211 
1212 #define	LZMA_HEADER_SIZE	(LZMA_PROPS_SIZE + 8)
1213 /*ARGSUSED*/
1214 static int
1215 lzma_decompress(void *src, size_t srclen, void *dst,
1216     size_t *dstlen, int level)
1217 {
1218 	size_t insizepure;
1219 	void *actual_src;
1220 	ELzmaStatus status;
1221 
1222 	insizepure = srclen - LZMA_HEADER_SIZE;
1223 	actual_src = (void *)((Byte *)src + LZMA_HEADER_SIZE);
1224 
1225 	if (LzmaDecode((Byte *)dst, (size_t *)dstlen,
1226 	    (const Byte *)actual_src, &insizepure,
1227 	    (const Byte *)src, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status,
1228 	    &g_Alloc) != SZ_OK) {
1229 		return (-1);
1230 	}
1231 	return (0);
1232 }
1233 
1234 /*
1235  * This is basically what strategy used to be before we found we
1236  * needed task queues.
1237  */
1238 static void
1239 lofi_strategy_task(void *arg)
1240 {
1241 	struct buf *bp = (struct buf *)arg;
1242 	int error;
1243 	int syncflag = 0;
1244 	struct lofi_state *lsp;
1245 	offset_t offset;
1246 	caddr_t	bufaddr;
1247 	size_t	len;
1248 	size_t	xfersize;
1249 	boolean_t bufinited = B_FALSE;
1250 
1251 	lsp = ddi_get_soft_state(lofi_statep,
1252 	    LOFI_MINOR2ID(getminor(bp->b_edev)));
1253 
1254 	if (lsp == NULL) {
1255 		error = ENXIO;
1256 		goto errout;
1257 	}
1258 	if (lsp->ls_kstat) {
1259 		mutex_enter(lsp->ls_kstat->ks_lock);
1260 		kstat_waitq_to_runq(KSTAT_IO_PTR(lsp->ls_kstat));
1261 		mutex_exit(lsp->ls_kstat->ks_lock);
1262 	}
1263 
1264 	mutex_enter(&lsp->ls_vp_lock);
1265 	lsp->ls_vp_iocount++;
1266 	mutex_exit(&lsp->ls_vp_lock);
1267 
1268 	bp_mapin(bp);
1269 	bufaddr = bp->b_un.b_addr;
1270 	offset = (bp->b_lblkno + (diskaddr_t)(uintptr_t)bp->b_private)
1271 	    << lsp->ls_lbshift;	/* offset within file */
1272 	if (lsp->ls_crypto_enabled) {
1273 		/* encrypted data really begins after crypto header */
1274 		offset += lsp->ls_crypto_offset;
1275 	}
1276 	len = bp->b_bcount;
1277 	bufinited = B_TRUE;
1278 
1279 	if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1280 		error = EIO;
1281 		goto errout;
1282 	}
1283 
1284 	/*
1285 	 * If we're writing and the buffer was not B_ASYNC
1286 	 * we'll follow up with a VOP_FSYNC() to force any
1287 	 * asynchronous I/O to stable storage.
1288 	 */
1289 	if (!(bp->b_flags & B_READ) && !(bp->b_flags & B_ASYNC))
1290 		syncflag = FSYNC;
1291 
1292 	/*
1293 	 * We used to always use vn_rdwr here, but we cannot do that because
1294 	 * we might decide to read or write from the the underlying
1295 	 * file during this call, which would be a deadlock because
1296 	 * we have the rw_lock. So instead we page, unless it's not
1297 	 * mapable or it's a character device or it's an encrypted lofi.
1298 	 */
1299 	if ((lsp->ls_vp->v_flag & VNOMAP) || (lsp->ls_vp->v_type == VCHR) ||
1300 	    lsp->ls_crypto_enabled) {
1301 		error = lofi_rdwr(bufaddr, offset, bp, lsp, len, RDWR_RAW,
1302 		    NULL);
1303 	} else if (lsp->ls_uncomp_seg_sz == 0) {
1304 		error = lofi_mapped_rdwr(bufaddr, offset, bp, lsp);
1305 	} else {
1306 		uchar_t *compressed_seg = NULL, *cmpbuf;
1307 		uchar_t *uncompressed_seg = NULL;
1308 		lofi_compress_info_t *li;
1309 		size_t oblkcount;
1310 		ulong_t seglen;
1311 		uint64_t sblkno, eblkno, cmpbytes;
1312 		uint64_t uncompressed_seg_index;
1313 		struct lofi_comp_cache *lc;
1314 		offset_t sblkoff, eblkoff;
1315 		u_offset_t salign, ealign;
1316 		u_offset_t sdiff;
1317 		uint32_t comp_data_sz;
1318 		uint64_t i;
1319 		int j;
1320 
1321 		/*
1322 		 * From here on we're dealing primarily with compressed files
1323 		 */
1324 		ASSERT(!lsp->ls_crypto_enabled);
1325 
1326 		/*
1327 		 * Compressed files can only be read from and
1328 		 * not written to
1329 		 */
1330 		if (!(bp->b_flags & B_READ)) {
1331 			bp->b_resid = bp->b_bcount;
1332 			error = EROFS;
1333 			goto done;
1334 		}
1335 
1336 		ASSERT(lsp->ls_comp_algorithm_index >= 0);
1337 		li = &lofi_compress_table[lsp->ls_comp_algorithm_index];
1338 		/*
1339 		 * Compute starting and ending compressed segment numbers
1340 		 * We use only bitwise operations avoiding division and
1341 		 * modulus because we enforce the compression segment size
1342 		 * to a power of 2
1343 		 */
1344 		sblkno = offset >> lsp->ls_comp_seg_shift;
1345 		sblkoff = offset & (lsp->ls_uncomp_seg_sz - 1);
1346 		eblkno = (offset + bp->b_bcount) >> lsp->ls_comp_seg_shift;
1347 		eblkoff = (offset + bp->b_bcount) & (lsp->ls_uncomp_seg_sz - 1);
1348 
1349 		/*
1350 		 * Check the decompressed segment cache.
1351 		 *
1352 		 * The cache is used only when the requested data
1353 		 * is within a segment. Requests that cross
1354 		 * segment boundaries bypass the cache.
1355 		 */
1356 		if (sblkno == eblkno ||
1357 		    (sblkno + 1 == eblkno && eblkoff == 0)) {
1358 			/*
1359 			 * Request doesn't cross a segment boundary,
1360 			 * now check the cache.
1361 			 */
1362 			mutex_enter(&lsp->ls_comp_cache_lock);
1363 			lc = lofi_find_comp_data(lsp, sblkno);
1364 			if (lc != NULL) {
1365 				/*
1366 				 * We've found the decompressed segment
1367 				 * data in the cache; reuse it.
1368 				 */
1369 				bcopy(lc->lc_data + sblkoff, bufaddr,
1370 				    bp->b_bcount);
1371 				mutex_exit(&lsp->ls_comp_cache_lock);
1372 				bp->b_resid = 0;
1373 				error = 0;
1374 				goto done;
1375 			}
1376 			mutex_exit(&lsp->ls_comp_cache_lock);
1377 		}
1378 
1379 		/*
1380 		 * Align start offset to block boundary for segmap
1381 		 */
1382 		salign = lsp->ls_comp_seg_index[sblkno];
1383 		sdiff = salign & (DEV_BSIZE - 1);
1384 		salign -= sdiff;
1385 		if (eblkno >= (lsp->ls_comp_index_sz - 1)) {
1386 			/*
1387 			 * We're dealing with the last segment of
1388 			 * the compressed file -- the size of this
1389 			 * segment *may not* be the same as the
1390 			 * segment size for the file
1391 			 */
1392 			eblkoff = (offset + bp->b_bcount) &
1393 			    (lsp->ls_uncomp_last_seg_sz - 1);
1394 			ealign = lsp->ls_vp_comp_size;
1395 		} else {
1396 			ealign = lsp->ls_comp_seg_index[eblkno + 1];
1397 		}
1398 
1399 		/*
1400 		 * Preserve original request paramaters
1401 		 */
1402 		oblkcount = bp->b_bcount;
1403 
1404 		/*
1405 		 * Assign the calculated parameters
1406 		 */
1407 		comp_data_sz = ealign - salign;
1408 		bp->b_bcount = comp_data_sz;
1409 
1410 		/*
1411 		 * Buffers to hold compressed segments are pre-allocated
1412 		 * on a per-thread basis. Find a pre-allocated buffer
1413 		 * that is not currently in use and mark it for use.
1414 		 */
1415 		mutex_enter(&lsp->ls_comp_bufs_lock);
1416 		for (j = 0; j < lofi_taskq_nthreads; j++) {
1417 			if (lsp->ls_comp_bufs[j].inuse == 0) {
1418 				lsp->ls_comp_bufs[j].inuse = 1;
1419 				break;
1420 			}
1421 		}
1422 
1423 		mutex_exit(&lsp->ls_comp_bufs_lock);
1424 		ASSERT(j < lofi_taskq_nthreads);
1425 
1426 		/*
1427 		 * If the pre-allocated buffer size does not match
1428 		 * the size of the I/O request, re-allocate it with
1429 		 * the appropriate size
1430 		 */
1431 		if (lsp->ls_comp_bufs[j].bufsize < bp->b_bcount) {
1432 			if (lsp->ls_comp_bufs[j].bufsize > 0)
1433 				kmem_free(lsp->ls_comp_bufs[j].buf,
1434 				    lsp->ls_comp_bufs[j].bufsize);
1435 			lsp->ls_comp_bufs[j].buf = kmem_alloc(bp->b_bcount,
1436 			    KM_SLEEP);
1437 			lsp->ls_comp_bufs[j].bufsize = bp->b_bcount;
1438 		}
1439 		compressed_seg = lsp->ls_comp_bufs[j].buf;
1440 
1441 		/*
1442 		 * Map in the calculated number of blocks
1443 		 */
1444 		error = lofi_mapped_rdwr((caddr_t)compressed_seg, salign,
1445 		    bp, lsp);
1446 
1447 		bp->b_bcount = oblkcount;
1448 		bp->b_resid = oblkcount;
1449 		if (error != 0)
1450 			goto done;
1451 
1452 		/*
1453 		 * decompress compressed blocks start
1454 		 */
1455 		cmpbuf = compressed_seg + sdiff;
1456 		for (i = sblkno; i <= eblkno; i++) {
1457 			ASSERT(i < lsp->ls_comp_index_sz - 1);
1458 			uchar_t *useg;
1459 
1460 			/*
1461 			 * The last segment is special in that it is
1462 			 * most likely not going to be the same
1463 			 * (uncompressed) size as the other segments.
1464 			 */
1465 			if (i == (lsp->ls_comp_index_sz - 2)) {
1466 				seglen = lsp->ls_uncomp_last_seg_sz;
1467 			} else {
1468 				seglen = lsp->ls_uncomp_seg_sz;
1469 			}
1470 
1471 			/*
1472 			 * Each of the segment index entries contains
1473 			 * the starting block number for that segment.
1474 			 * The number of compressed bytes in a segment
1475 			 * is thus the difference between the starting
1476 			 * block number of this segment and the starting
1477 			 * block number of the next segment.
1478 			 */
1479 			cmpbytes = lsp->ls_comp_seg_index[i + 1] -
1480 			    lsp->ls_comp_seg_index[i];
1481 
1482 			/*
1483 			 * The first byte in a compressed segment is a flag
1484 			 * that indicates whether this segment is compressed
1485 			 * at all.
1486 			 *
1487 			 * The variable 'useg' is used (instead of
1488 			 * uncompressed_seg) in this loop to keep a
1489 			 * reference to the uncompressed segment.
1490 			 *
1491 			 * N.B. If 'useg' is replaced with uncompressed_seg,
1492 			 * it leads to memory leaks and heap corruption in
1493 			 * corner cases where compressed segments lie
1494 			 * adjacent to uncompressed segments.
1495 			 */
1496 			if (*cmpbuf == UNCOMPRESSED) {
1497 				useg = cmpbuf + SEGHDR;
1498 			} else {
1499 				if (uncompressed_seg == NULL)
1500 					uncompressed_seg =
1501 					    kmem_alloc(lsp->ls_uncomp_seg_sz,
1502 					    KM_SLEEP);
1503 				useg = uncompressed_seg;
1504 				uncompressed_seg_index = i;
1505 
1506 				if (li->l_decompress((cmpbuf + SEGHDR),
1507 				    (cmpbytes - SEGHDR), uncompressed_seg,
1508 				    &seglen, li->l_level) != 0) {
1509 					error = EIO;
1510 					goto done;
1511 				}
1512 			}
1513 
1514 			/*
1515 			 * Determine how much uncompressed data we
1516 			 * have to copy and copy it
1517 			 */
1518 			xfersize = lsp->ls_uncomp_seg_sz - sblkoff;
1519 			if (i == eblkno)
1520 				xfersize -= (lsp->ls_uncomp_seg_sz - eblkoff);
1521 
1522 			bcopy((useg + sblkoff), bufaddr, xfersize);
1523 
1524 			cmpbuf += cmpbytes;
1525 			bufaddr += xfersize;
1526 			bp->b_resid -= xfersize;
1527 			sblkoff = 0;
1528 
1529 			if (bp->b_resid == 0)
1530 				break;
1531 		} /* decompress compressed blocks ends */
1532 
1533 		/*
1534 		 * Skip to done if there is no uncompressed data to cache
1535 		 */
1536 		if (uncompressed_seg == NULL)
1537 			goto done;
1538 
1539 		/*
1540 		 * Add the data for the last decompressed segment to
1541 		 * the cache.
1542 		 *
1543 		 * In case the uncompressed segment data was added to (and
1544 		 * is referenced by) the cache, make sure we don't free it
1545 		 * here.
1546 		 */
1547 		mutex_enter(&lsp->ls_comp_cache_lock);
1548 		if ((lc = lofi_add_comp_data(lsp, uncompressed_seg_index,
1549 		    uncompressed_seg)) != NULL) {
1550 			uncompressed_seg = NULL;
1551 		}
1552 		mutex_exit(&lsp->ls_comp_cache_lock);
1553 
1554 done:
1555 		if (compressed_seg != NULL) {
1556 			mutex_enter(&lsp->ls_comp_bufs_lock);
1557 			lsp->ls_comp_bufs[j].inuse = 0;
1558 			mutex_exit(&lsp->ls_comp_bufs_lock);
1559 		}
1560 		if (uncompressed_seg != NULL)
1561 			kmem_free(uncompressed_seg, lsp->ls_uncomp_seg_sz);
1562 	} /* end of handling compressed files */
1563 
1564 	if ((error == 0) && (syncflag != 0))
1565 		error = VOP_FSYNC(lsp->ls_vp, syncflag, kcred, NULL);
1566 
1567 errout:
1568 	if (bufinited && lsp->ls_kstat) {
1569 		size_t n_done = bp->b_bcount - bp->b_resid;
1570 		kstat_io_t *kioptr;
1571 
1572 		mutex_enter(lsp->ls_kstat->ks_lock);
1573 		kioptr = KSTAT_IO_PTR(lsp->ls_kstat);
1574 		if (bp->b_flags & B_READ) {
1575 			kioptr->nread += n_done;
1576 			kioptr->reads++;
1577 		} else {
1578 			kioptr->nwritten += n_done;
1579 			kioptr->writes++;
1580 		}
1581 		kstat_runq_exit(kioptr);
1582 		mutex_exit(lsp->ls_kstat->ks_lock);
1583 	}
1584 
1585 	mutex_enter(&lsp->ls_vp_lock);
1586 	if (--lsp->ls_vp_iocount == 0)
1587 		cv_broadcast(&lsp->ls_vp_cv);
1588 	mutex_exit(&lsp->ls_vp_lock);
1589 
1590 	bioerror(bp, error);
1591 	biodone(bp);
1592 }
1593 
1594 static int
1595 lofi_strategy(struct buf *bp)
1596 {
1597 	struct lofi_state *lsp;
1598 	offset_t	offset;
1599 	minor_t		part;
1600 	diskaddr_t	p_lba;
1601 	diskaddr_t	p_nblks;
1602 	int		shift;
1603 
1604 	/*
1605 	 * We cannot just do I/O here, because the current thread
1606 	 * _might_ end up back in here because the underlying filesystem
1607 	 * wants a buffer, which eventually gets into bio_recycle and
1608 	 * might call into lofi to write out a delayed-write buffer.
1609 	 * This is bad if the filesystem above lofi is the same as below.
1610 	 *
1611 	 * We could come up with a complex strategy using threads to
1612 	 * do the I/O asynchronously, or we could use task queues. task
1613 	 * queues were incredibly easy so they win.
1614 	 */
1615 
1616 	lsp = ddi_get_soft_state(lofi_statep,
1617 	    LOFI_MINOR2ID(getminor(bp->b_edev)));
1618 	part = LOFI_PART(getminor(bp->b_edev));
1619 
1620 	if (lsp == NULL) {
1621 		bioerror(bp, ENXIO);
1622 		biodone(bp);
1623 		return (0);
1624 	}
1625 	shift = lsp->ls_lbshift;
1626 
1627 	p_lba = 0;
1628 	p_nblks = lsp->ls_vp_size >> shift;
1629 
1630 	if (lsp->ls_cmlbhandle != NULL) {
1631 		if (cmlb_partinfo(lsp->ls_cmlbhandle, part, &p_nblks, &p_lba,
1632 		    NULL, NULL, 0)) {
1633 			bioerror(bp, ENXIO);
1634 			biodone(bp);
1635 			return (0);
1636 		}
1637 	}
1638 
1639 	/* start block past partition end? */
1640 	if (bp->b_lblkno > p_nblks) {
1641 		bioerror(bp, ENXIO);
1642 		biodone(bp);
1643 		return (0);
1644 	}
1645 
1646 	offset = (bp->b_lblkno+p_lba) << shift;	/* offset within file */
1647 
1648 	mutex_enter(&lsp->ls_vp_lock);
1649 	if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1650 		bioerror(bp, EIO);
1651 		biodone(bp);
1652 		mutex_exit(&lsp->ls_vp_lock);
1653 		return (0);
1654 	}
1655 
1656 	if (lsp->ls_crypto_enabled) {
1657 		/* encrypted data really begins after crypto header */
1658 		offset += lsp->ls_crypto_offset;
1659 	}
1660 
1661 	/* make sure we will not pass the file or partition size */
1662 	if (offset == lsp->ls_vp_size ||
1663 	    offset == (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) {
1664 		/* EOF */
1665 		if ((bp->b_flags & B_READ) != 0) {
1666 			bp->b_resid = bp->b_bcount;
1667 			bioerror(bp, 0);
1668 		} else {
1669 			/* writes should fail */
1670 			bioerror(bp, ENXIO);
1671 		}
1672 		biodone(bp);
1673 		mutex_exit(&lsp->ls_vp_lock);
1674 		return (0);
1675 	}
1676 	if ((offset > lsp->ls_vp_size) ||
1677 	    (offset > (((p_lba + p_nblks) << shift) + lsp->ls_crypto_offset)) ||
1678 	    ((offset + bp->b_bcount) > ((p_lba + p_nblks) << shift))) {
1679 		bioerror(bp, ENXIO);
1680 		biodone(bp);
1681 		mutex_exit(&lsp->ls_vp_lock);
1682 		return (0);
1683 	}
1684 
1685 	mutex_exit(&lsp->ls_vp_lock);
1686 
1687 	if (lsp->ls_kstat) {
1688 		mutex_enter(lsp->ls_kstat->ks_lock);
1689 		kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat));
1690 		mutex_exit(lsp->ls_kstat->ks_lock);
1691 	}
1692 	bp->b_private = (void *)(uintptr_t)p_lba;	/* partition start */
1693 	(void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP);
1694 	return (0);
1695 }
1696 
1697 /*ARGSUSED2*/
1698 static int
1699 lofi_read(dev_t dev, struct uio *uio, struct cred *credp)
1700 {
1701 	if (getminor(dev) == 0)
1702 		return (EINVAL);
1703 	UIO_CHECK(uio);
1704 	return (physio(lofi_strategy, NULL, dev, B_READ, minphys, uio));
1705 }
1706 
1707 /*ARGSUSED2*/
1708 static int
1709 lofi_write(dev_t dev, struct uio *uio, struct cred *credp)
1710 {
1711 	if (getminor(dev) == 0)
1712 		return (EINVAL);
1713 	UIO_CHECK(uio);
1714 	return (physio(lofi_strategy, NULL, dev, B_WRITE, minphys, uio));
1715 }
1716 
1717 /*ARGSUSED2*/
1718 static int
1719 lofi_aread(dev_t dev, struct aio_req *aio, struct cred *credp)
1720 {
1721 	if (getminor(dev) == 0)
1722 		return (EINVAL);
1723 	UIO_CHECK(aio->aio_uio);
1724 	return (aphysio(lofi_strategy, anocancel, dev, B_READ, minphys, aio));
1725 }
1726 
1727 /*ARGSUSED2*/
1728 static int
1729 lofi_awrite(dev_t dev, struct aio_req *aio, struct cred *credp)
1730 {
1731 	if (getminor(dev) == 0)
1732 		return (EINVAL);
1733 	UIO_CHECK(aio->aio_uio);
1734 	return (aphysio(lofi_strategy, anocancel, dev, B_WRITE, minphys, aio));
1735 }
1736 
1737 /*ARGSUSED*/
1738 static int
1739 lofi_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1740 {
1741 	struct lofi_state *lsp;
1742 	dev_t	dev = (dev_t)arg;
1743 	int instance;
1744 
1745 	instance = LOFI_MINOR2ID(getminor(dev));
1746 	switch (infocmd) {
1747 	case DDI_INFO_DEVT2DEVINFO:
1748 		lsp = ddi_get_soft_state(lofi_statep, instance);
1749 		if (lsp == NULL)
1750 			return (DDI_FAILURE);
1751 		*result = lsp->ls_dip;
1752 		return (DDI_SUCCESS);
1753 	case DDI_INFO_DEVT2INSTANCE:
1754 		*result = (void *) (intptr_t)instance;
1755 		return (DDI_SUCCESS);
1756 	}
1757 	return (DDI_FAILURE);
1758 }
1759 
1760 static int
1761 lofi_create_minor_nodes(struct lofi_state *lsp, boolean_t labeled)
1762 {
1763 	int error = 0;
1764 	int instance = ddi_get_instance(lsp->ls_dip);
1765 
1766 	if (labeled == B_TRUE) {
1767 		cmlb_alloc_handle(&lsp->ls_cmlbhandle);
1768 		error = cmlb_attach(lsp->ls_dip, &lofi_tg_ops, DTYPE_DIRECT,
1769 		    B_FALSE, B_FALSE, DDI_NT_BLOCK_CHAN,
1770 		    CMLB_CREATE_P0_MINOR_NODE, lsp->ls_cmlbhandle, (void *)1);
1771 
1772 		if (error != DDI_SUCCESS) {
1773 			cmlb_free_handle(&lsp->ls_cmlbhandle);
1774 			lsp->ls_cmlbhandle = NULL;
1775 			error = ENXIO;
1776 		}
1777 	} else {
1778 		/* create minor nodes */
1779 		error = ddi_create_minor_node(lsp->ls_dip, LOFI_BLOCK_NODE,
1780 		    S_IFBLK, LOFI_ID2MINOR(instance), DDI_PSEUDO, 0);
1781 		if (error == DDI_SUCCESS) {
1782 			error = ddi_create_minor_node(lsp->ls_dip,
1783 			    LOFI_CHAR_NODE, S_IFCHR, LOFI_ID2MINOR(instance),
1784 			    DDI_PSEUDO, 0);
1785 			if (error != DDI_SUCCESS) {
1786 				ddi_remove_minor_node(lsp->ls_dip,
1787 				    LOFI_BLOCK_NODE);
1788 				error = ENXIO;
1789 			}
1790 		} else
1791 			error = ENXIO;
1792 	}
1793 	return (error);
1794 }
1795 
1796 static int
1797 lofi_zone_bind(struct lofi_state *lsp)
1798 {
1799 	int error = 0;
1800 
1801 	mutex_enter(&curproc->p_lock);
1802 	if ((error = rctl_incr_lofi(curproc, curproc->p_zone, 1)) != 0) {
1803 		mutex_exit(&curproc->p_lock);
1804 		return (error);
1805 	}
1806 	mutex_exit(&curproc->p_lock);
1807 
1808 	if (ddi_prop_update_string(DDI_DEV_T_NONE, lsp->ls_dip, ZONE_PROP_NAME,
1809 	    (char *)curproc->p_zone->zone_name) != DDI_PROP_SUCCESS) {
1810 		rctl_decr_lofi(curproc->p_zone, 1);
1811 		error = EINVAL;
1812 	} else {
1813 		zone_init_ref(&lsp->ls_zone);
1814 		zone_hold_ref(curzone, &lsp->ls_zone, ZONE_REF_LOFI);
1815 	}
1816 	return (error);
1817 }
1818 
1819 static void
1820 lofi_zone_unbind(struct lofi_state *lsp)
1821 {
1822 	(void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip, ZONE_PROP_NAME);
1823 	rctl_decr_lofi(curproc->p_zone, 1);
1824 	zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI);
1825 }
1826 
1827 static int
1828 lofi_online_dev(dev_info_t *dip)
1829 {
1830 	boolean_t labeled;
1831 	int	error;
1832 	int	instance = ddi_get_instance(dip);
1833 	struct lofi_state *lsp;
1834 
1835 	labeled = B_FALSE;
1836 	if (ddi_prop_exists(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "labeled"))
1837 		labeled = B_TRUE;
1838 
1839 	/* lsp alloc+init, soft state is freed in lofi_detach */
1840 	error = ddi_soft_state_zalloc(lofi_statep, instance);
1841 	if (error == DDI_FAILURE) {
1842 		return (ENOMEM);
1843 	}
1844 
1845 	lsp = ddi_get_soft_state(lofi_statep, instance);
1846 	lsp->ls_dip = dip;
1847 
1848 	if ((error = lofi_zone_bind(lsp)) != 0)
1849 		goto err;
1850 
1851 	cv_init(&lsp->ls_vp_cv, NULL, CV_DRIVER, NULL);
1852 	mutex_init(&lsp->ls_comp_cache_lock, NULL, MUTEX_DRIVER, NULL);
1853 	mutex_init(&lsp->ls_comp_bufs_lock, NULL, MUTEX_DRIVER, NULL);
1854 	mutex_init(&lsp->ls_kstat_lock, NULL, MUTEX_DRIVER, NULL);
1855 	mutex_init(&lsp->ls_vp_lock, NULL, MUTEX_DRIVER, NULL);
1856 
1857 	if ((error = lofi_create_minor_nodes(lsp, labeled)) != 0) {
1858 		lofi_zone_unbind(lsp);
1859 		goto lerr;
1860 	}
1861 
1862 	/* driver handles kernel-issued IOCTLs */
1863 	if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
1864 	    DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) {
1865 		error = DDI_FAILURE;
1866 		goto merr;
1867 	}
1868 
1869 	lsp->ls_kstat = kstat_create_zone(LOFI_DRIVER_NAME, instance,
1870 	    NULL, "disk", KSTAT_TYPE_IO, 1, 0, getzoneid());
1871 	if (lsp->ls_kstat == NULL) {
1872 		(void) ddi_prop_remove(DDI_DEV_T_NONE, lsp->ls_dip,
1873 		    DDI_KERNEL_IOCTL);
1874 		error = ENOMEM;
1875 		goto merr;
1876 	}
1877 
1878 	lsp->ls_kstat->ks_lock = &lsp->ls_kstat_lock;
1879 	kstat_zone_add(lsp->ls_kstat, GLOBAL_ZONEID);
1880 	kstat_install(lsp->ls_kstat);
1881 	return (DDI_SUCCESS);
1882 merr:
1883 	if (lsp->ls_cmlbhandle != NULL) {
1884 		cmlb_detach(lsp->ls_cmlbhandle, 0);
1885 		cmlb_free_handle(&lsp->ls_cmlbhandle);
1886 	}
1887 	ddi_remove_minor_node(dip, NULL);
1888 	lofi_zone_unbind(lsp);
1889 lerr:
1890 	mutex_destroy(&lsp->ls_comp_cache_lock);
1891 	mutex_destroy(&lsp->ls_comp_bufs_lock);
1892 	mutex_destroy(&lsp->ls_kstat_lock);
1893 	mutex_destroy(&lsp->ls_vp_lock);
1894 	cv_destroy(&lsp->ls_vp_cv);
1895 err:
1896 	ddi_soft_state_free(lofi_statep, instance);
1897 	return (error);
1898 }
1899 
1900 /*ARGSUSED*/
1901 static int
1902 lofi_dev_callback(sysevent_t *ev, void *cookie)
1903 {
1904 	nvlist_t *nvlist;
1905 	char *class, *driver;
1906 	char name[10];
1907 	int32_t instance;
1908 
1909 	class = sysevent_get_class_name(ev);
1910 	if (strcmp(class, EC_DEV_ADD) && strcmp(class, EC_DEV_REMOVE))
1911 		return (0);
1912 
1913 	(void) sysevent_get_attr_list(ev, &nvlist);
1914 	driver = fnvlist_lookup_string(nvlist, DEV_DRIVER_NAME);
1915 	instance = fnvlist_lookup_int32(nvlist, DEV_INSTANCE);
1916 
1917 	if (strcmp(driver, LOFI_DRIVER_NAME) != 0) {
1918 		fnvlist_free(nvlist);
1919 		return (0);
1920 	}
1921 
1922 	/*
1923 	 * insert or remove device info, then announce the change
1924 	 * via cv_broadcast.
1925 	 * This allows the MAP/UNMAP to monitor device change.
1926 	 */
1927 	(void) snprintf(name, sizeof (name), "%d", instance);
1928 	if (strcmp(class, EC_DEV_ADD) == 0) {
1929 		mutex_enter(&lofi_chan_lock);
1930 		fnvlist_add_nvlist(lofi_devlink_cache, name, nvlist);
1931 		cv_broadcast(&lofi_chan_cv);
1932 		mutex_exit(&lofi_chan_lock);
1933 	} else if (strcmp(class, EC_DEV_REMOVE) == 0) {
1934 		mutex_enter(&lofi_chan_lock);
1935 		/* Can not use fnvlist_remove() as we can get ENOENT. */
1936 		(void) nvlist_remove_all(lofi_devlink_cache, name);
1937 		cv_broadcast(&lofi_chan_cv);
1938 		mutex_exit(&lofi_chan_lock);
1939 	}
1940 
1941 	fnvlist_free(nvlist);
1942 	return (0);
1943 }
1944 
1945 static int
1946 lofi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
1947 {
1948 	int	rv;
1949 	int	instance = ddi_get_instance(dip);
1950 	struct lofi_state *lsp;
1951 
1952 	if (cmd != DDI_ATTACH)
1953 		return (DDI_FAILURE);
1954 
1955 	/*
1956 	 * Instance 0 is control instance, attaching control instance
1957 	 * will set the lofi up and ready.
1958 	 */
1959 	if (instance == 0) {
1960 		rv = ddi_soft_state_zalloc(lofi_statep, 0);
1961 		if (rv == DDI_FAILURE) {
1962 			return (DDI_FAILURE);
1963 		}
1964 		lsp = ddi_get_soft_state(lofi_statep, instance);
1965 		rv = ddi_create_minor_node(dip, LOFI_CTL_NODE, S_IFCHR, 0,
1966 		    DDI_PSEUDO, 0);
1967 		if (rv == DDI_FAILURE) {
1968 			ddi_soft_state_free(lofi_statep, 0);
1969 			return (DDI_FAILURE);
1970 		}
1971 		/* driver handles kernel-issued IOCTLs */
1972 		if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
1973 		    DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) {
1974 			ddi_remove_minor_node(dip, NULL);
1975 			ddi_soft_state_free(lofi_statep, 0);
1976 			return (DDI_FAILURE);
1977 		}
1978 
1979 		rv = sysevent_evc_bind(DEVFS_CHANNEL, &lofi_chan,
1980 		    EVCH_CREAT | EVCH_HOLD_PEND);
1981 		if (rv == 0) {
1982 			rv = sysevent_evc_subscribe(lofi_chan, "lofi",
1983 			    EC_ALL, lofi_dev_callback, NULL, 0);
1984 			rv |= sysevent_evc_subscribe(lofi_chan, "disk",
1985 			    EC_ALL, lofi_dev_callback, NULL, 0);
1986 		} else
1987 			lofi_chan = NULL;
1988 		if (rv != 0) {
1989 			if (lofi_chan != NULL)
1990 				(void) sysevent_evc_unbind(lofi_chan);
1991 			ddi_prop_remove_all(dip);
1992 			ddi_remove_minor_node(dip, NULL);
1993 			ddi_soft_state_free(lofi_statep, 0);
1994 			return (DDI_FAILURE);
1995 		}
1996 		zone_key_create(&lofi_zone_key, NULL, lofi_zone_shutdown, NULL);
1997 
1998 		lsp->ls_dip = dip;
1999 	} else {
2000 		if (lofi_online_dev(dip) == DDI_FAILURE)
2001 			return (DDI_FAILURE);
2002 	}
2003 
2004 	ddi_report_dev(dip);
2005 	return (DDI_SUCCESS);
2006 }
2007 
2008 static int
2009 lofi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
2010 {
2011 	struct lofi_state *lsp;
2012 	int instance = ddi_get_instance(dip);
2013 
2014 	if (cmd != DDI_DETACH)
2015 		return (DDI_FAILURE);
2016 
2017 	/*
2018 	 * If the instance is not 0, release state.
2019 	 * The instance 0 is control device, we can not detach it
2020 	 * before other instances are detached.
2021 	 */
2022 	if (instance != 0) {
2023 		lsp = ddi_get_soft_state(lofi_statep, instance);
2024 		if (lsp != NULL && lsp->ls_vp_ready == B_FALSE) {
2025 			ddi_soft_state_free(lofi_statep, instance);
2026 			return (DDI_SUCCESS);
2027 		} else
2028 			return (DDI_FAILURE);
2029 	}
2030 	mutex_enter(&lofi_lock);
2031 
2032 	if (!list_is_empty(&lofi_list)) {
2033 		mutex_exit(&lofi_lock);
2034 		return (DDI_FAILURE);
2035 	}
2036 
2037 	ddi_remove_minor_node(dip, NULL);
2038 	ddi_prop_remove_all(dip);
2039 
2040 	mutex_exit(&lofi_lock);
2041 
2042 	(void) sysevent_evc_unbind(lofi_chan);
2043 	if (zone_key_delete(lofi_zone_key) != 0)
2044 		cmn_err(CE_WARN, "failed to delete zone key");
2045 
2046 	ddi_soft_state_free(lofi_statep, 0);
2047 
2048 	return (DDI_SUCCESS);
2049 }
2050 
2051 /*
2052  * With the addition of encryption, we must be careful that encryption key is
2053  * wiped before kernel's data structures are freed so it cannot accidentally
2054  * slip out to userland through uninitialized data elsewhere.
2055  */
2056 static void
2057 free_lofi_ioctl(struct lofi_ioctl *klip)
2058 {
2059 	/* Make sure this encryption key doesn't stick around */
2060 	bzero(klip->li_key, sizeof (klip->li_key));
2061 	kmem_free(klip, sizeof (struct lofi_ioctl));
2062 }
2063 
2064 /*
2065  * These two functions simplify the rest of the ioctls that need to copyin/out
2066  * the lofi_ioctl structure.
2067  */
2068 int
2069 copy_in_lofi_ioctl(const struct lofi_ioctl *ulip, struct lofi_ioctl **klipp,
2070     int flag)
2071 {
2072 	struct lofi_ioctl *klip;
2073 	int	error;
2074 
2075 	klip = *klipp = kmem_alloc(sizeof (struct lofi_ioctl), KM_SLEEP);
2076 	error = ddi_copyin(ulip, klip, sizeof (struct lofi_ioctl), flag);
2077 	if (error)
2078 		goto err;
2079 
2080 	/* ensure NULL termination */
2081 	klip->li_filename[MAXPATHLEN-1] = '\0';
2082 	klip->li_devpath[MAXPATHLEN-1] = '\0';
2083 	klip->li_algorithm[MAXALGLEN-1] = '\0';
2084 	klip->li_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
2085 	klip->li_iv_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
2086 
2087 	if (klip->li_id > L_MAXMIN32) {
2088 		error = EINVAL;
2089 		goto err;
2090 	}
2091 
2092 	return (0);
2093 
2094 err:
2095 	free_lofi_ioctl(klip);
2096 	return (error);
2097 }
2098 
2099 int
2100 copy_out_lofi_ioctl(const struct lofi_ioctl *klip, struct lofi_ioctl *ulip,
2101     int flag)
2102 {
2103 	int	error;
2104 
2105 	/*
2106 	 * NOTE: Do NOT copy the crypto_key_t "back" to userland.
2107 	 * This ensures that an attacker can't trivially find the
2108 	 * key for a mapping just by issuing the ioctl.
2109 	 *
2110 	 * It can still be found by poking around in kmem with mdb(1),
2111 	 * but there is no point in making it easy when the info isn't
2112 	 * of any use in this direction anyway.
2113 	 *
2114 	 * Either way we don't actually have the raw key stored in
2115 	 * a form that we can get it anyway, since we just used it
2116 	 * to create a ctx template and didn't keep "the original".
2117 	 */
2118 	error = ddi_copyout(klip, ulip, sizeof (struct lofi_ioctl), flag);
2119 	if (error)
2120 		return (EFAULT);
2121 	return (0);
2122 }
2123 
2124 static int
2125 lofi_access(struct lofi_state *lsp)
2126 {
2127 	ASSERT(MUTEX_HELD(&lofi_lock));
2128 	if (INGLOBALZONE(curproc) || lsp->ls_zone.zref_zone == curzone)
2129 		return (0);
2130 	return (EPERM);
2131 }
2132 
2133 /*
2134  * Find the lofi state for the given filename. We compare by vnode to
2135  * allow the global zone visibility into NGZ lofi nodes.
2136  */
2137 static int
2138 file_to_lofi_nocheck(char *filename, boolean_t readonly,
2139     struct lofi_state **lspp)
2140 {
2141 	struct lofi_state *lsp;
2142 	vnode_t *vp = NULL;
2143 	int err = 0;
2144 	int rdfiles = 0;
2145 
2146 	ASSERT(MUTEX_HELD(&lofi_lock));
2147 
2148 	if ((err = lookupname(filename, UIO_SYSSPACE, FOLLOW,
2149 	    NULLVPP, &vp)) != 0)
2150 		goto out;
2151 
2152 	if (vp->v_type == VREG) {
2153 		vnode_t *realvp;
2154 		if (VOP_REALVP(vp, &realvp, NULL) == 0) {
2155 			VN_HOLD(realvp);
2156 			VN_RELE(vp);
2157 			vp = realvp;
2158 		}
2159 	}
2160 
2161 	for (lsp = list_head(&lofi_list); lsp != NULL;
2162 	    lsp = list_next(&lofi_list, lsp)) {
2163 		if (lsp->ls_vp == vp) {
2164 			if (lspp != NULL)
2165 				*lspp = lsp;
2166 			if (lsp->ls_readonly) {
2167 				rdfiles++;
2168 				/* Skip if '-r' is specified */
2169 				if (readonly)
2170 					continue;
2171 			}
2172 			goto out;
2173 		}
2174 	}
2175 
2176 	err = ENOENT;
2177 
2178 	/*
2179 	 * If a filename is given as an argument for lofi_unmap, we shouldn't
2180 	 * allow unmap if there are multiple read-only lofi devices associated
2181 	 * with this file.
2182 	 */
2183 	if (lspp != NULL) {
2184 		if (rdfiles == 1)
2185 			err = 0;
2186 		else if (rdfiles > 1)
2187 			err = EBUSY;
2188 	}
2189 
2190 out:
2191 	if (vp != NULL)
2192 		VN_RELE(vp);
2193 	return (err);
2194 }
2195 
2196 /*
2197  * Find the minor for the given filename, checking the zone can access
2198  * it.
2199  */
2200 static int
2201 file_to_lofi(char *filename, boolean_t readonly, struct lofi_state **lspp)
2202 {
2203 	int err = 0;
2204 
2205 	ASSERT(MUTEX_HELD(&lofi_lock));
2206 
2207 	if ((err = file_to_lofi_nocheck(filename, readonly, lspp)) != 0)
2208 		return (err);
2209 
2210 	if ((err = lofi_access(*lspp)) != 0)
2211 		return (err);
2212 
2213 	return (0);
2214 }
2215 
2216 /*
2217  * Fakes up a disk geometry based on the size of the file. This is needed
2218  * to support newfs on traditional lofi device, but also will provide
2219  * geometry hint for cmlb.
2220  */
2221 static void
2222 fake_disk_geometry(struct lofi_state *lsp)
2223 {
2224 	u_offset_t dsize = lsp->ls_vp_size - lsp->ls_crypto_offset;
2225 
2226 	/* dk_geom - see dkio(7I) */
2227 	/*
2228 	 * dkg_ncyl _could_ be set to one here (one big cylinder with gobs
2229 	 * of sectors), but that breaks programs like fdisk which want to
2230 	 * partition a disk by cylinder. With one cylinder, you can't create
2231 	 * an fdisk partition and put pcfs on it for testing (hard to pick
2232 	 * a number between one and one).
2233 	 *
2234 	 * The cheezy floppy test is an attempt to not have too few cylinders
2235 	 * for a small file, or so many on a big file that you waste space
2236 	 * for backup superblocks or cylinder group structures.
2237 	 */
2238 	bzero(&lsp->ls_dkg, sizeof (lsp->ls_dkg));
2239 	if (dsize < (2 * 1024 * 1024)) /* floppy? */
2240 		lsp->ls_dkg.dkg_ncyl = dsize / (100 * 1024);
2241 	else
2242 		lsp->ls_dkg.dkg_ncyl = dsize / (300 * 1024);
2243 	/* in case file file is < 100k */
2244 	if (lsp->ls_dkg.dkg_ncyl == 0)
2245 		lsp->ls_dkg.dkg_ncyl = 1;
2246 
2247 	lsp->ls_dkg.dkg_pcyl = lsp->ls_dkg.dkg_ncyl;
2248 	lsp->ls_dkg.dkg_nhead = 1;
2249 	lsp->ls_dkg.dkg_rpm = 7200;
2250 
2251 	lsp->ls_dkg.dkg_nsect = dsize /
2252 	    (lsp->ls_dkg.dkg_ncyl << lsp->ls_pbshift);
2253 }
2254 
2255 /*
2256  * build vtoc - see dkio(7I)
2257  *
2258  * Fakes one big partition based on the size of the file. This is needed
2259  * because we allow newfs'ing the traditional lofi device and newfs will
2260  * do several disk ioctls to figure out the geometry and partition information.
2261  * It uses that information to determine the parameters to pass to mkfs.
2262  */
2263 static void
2264 fake_disk_vtoc(struct lofi_state *lsp, struct vtoc *vt)
2265 {
2266 	bzero(vt, sizeof (struct vtoc));
2267 	vt->v_sanity = VTOC_SANE;
2268 	vt->v_version = V_VERSION;
2269 	(void) strncpy(vt->v_volume, LOFI_DRIVER_NAME,
2270 	    sizeof (vt->v_volume));
2271 	vt->v_sectorsz = 1 << lsp->ls_pbshift;
2272 	vt->v_nparts = 1;
2273 	vt->v_part[0].p_tag = V_UNASSIGNED;
2274 
2275 	/*
2276 	 * A compressed file is read-only, other files can
2277 	 * be read-write
2278 	 */
2279 	if (lsp->ls_uncomp_seg_sz > 0) {
2280 		vt->v_part[0].p_flag = V_UNMNT | V_RONLY;
2281 	} else {
2282 		vt->v_part[0].p_flag = V_UNMNT;
2283 	}
2284 	vt->v_part[0].p_start = (daddr_t)0;
2285 	/*
2286 	 * The partition size cannot just be the number of sectors, because
2287 	 * that might not end on a cylinder boundary. And if that's the case,
2288 	 * newfs/mkfs will print a scary warning. So just figure the size
2289 	 * based on the number of cylinders and sectors/cylinder.
2290 	 */
2291 	vt->v_part[0].p_size = lsp->ls_dkg.dkg_pcyl *
2292 	    lsp->ls_dkg.dkg_nsect * lsp->ls_dkg.dkg_nhead;
2293 }
2294 
2295 /*
2296  * build dk_cinfo - see dkio(7I)
2297  */
2298 static void
2299 fake_disk_info(dev_t dev, struct dk_cinfo *ci)
2300 {
2301 	bzero(ci, sizeof (struct dk_cinfo));
2302 	(void) strlcpy(ci->dki_cname, LOFI_DRIVER_NAME, sizeof (ci->dki_cname));
2303 	ci->dki_ctype = DKC_SCSI_CCS;
2304 	(void) strlcpy(ci->dki_dname, LOFI_DRIVER_NAME, sizeof (ci->dki_dname));
2305 	ci->dki_unit = LOFI_MINOR2ID(getminor(dev));
2306 	ci->dki_partition = LOFI_PART(getminor(dev));
2307 	/*
2308 	 * newfs uses this to set maxcontig. Must not be < 16, or it
2309 	 * will be 0 when newfs multiplies it by DEV_BSIZE and divides
2310 	 * it by the block size. Then tunefs doesn't work because
2311 	 * maxcontig is 0.
2312 	 */
2313 	ci->dki_maxtransfer = 16;
2314 }
2315 
2316 /*
2317  * map in a compressed file
2318  *
2319  * Read in the header and the index that follows.
2320  *
2321  * The header is as follows -
2322  *
2323  * Signature (name of the compression algorithm)
2324  * Compression segment size (a multiple of 512)
2325  * Number of index entries
2326  * Size of the last block
2327  * The array containing the index entries
2328  *
2329  * The header information is always stored in
2330  * network byte order on disk.
2331  */
2332 static int
2333 lofi_map_compressed_file(struct lofi_state *lsp, char *buf)
2334 {
2335 	uint32_t index_sz, header_len, i;
2336 	ssize_t	resid;
2337 	enum uio_rw rw;
2338 	char *tbuf = buf;
2339 	int error;
2340 
2341 	/* The signature has already been read */
2342 	tbuf += sizeof (lsp->ls_comp_algorithm);
2343 	bcopy(tbuf, &(lsp->ls_uncomp_seg_sz), sizeof (lsp->ls_uncomp_seg_sz));
2344 	lsp->ls_uncomp_seg_sz = ntohl(lsp->ls_uncomp_seg_sz);
2345 
2346 	/*
2347 	 * The compressed segment size must be a power of 2
2348 	 */
2349 	if (lsp->ls_uncomp_seg_sz < DEV_BSIZE ||
2350 	    !ISP2(lsp->ls_uncomp_seg_sz))
2351 		return (EINVAL);
2352 
2353 	for (i = 0; !((lsp->ls_uncomp_seg_sz >> i) & 1); i++)
2354 		;
2355 
2356 	lsp->ls_comp_seg_shift = i;
2357 
2358 	tbuf += sizeof (lsp->ls_uncomp_seg_sz);
2359 	bcopy(tbuf, &(lsp->ls_comp_index_sz), sizeof (lsp->ls_comp_index_sz));
2360 	lsp->ls_comp_index_sz = ntohl(lsp->ls_comp_index_sz);
2361 
2362 	tbuf += sizeof (lsp->ls_comp_index_sz);
2363 	bcopy(tbuf, &(lsp->ls_uncomp_last_seg_sz),
2364 	    sizeof (lsp->ls_uncomp_last_seg_sz));
2365 	lsp->ls_uncomp_last_seg_sz = ntohl(lsp->ls_uncomp_last_seg_sz);
2366 
2367 	/*
2368 	 * Compute the total size of the uncompressed data
2369 	 * for use in fake_disk_geometry and other calculations.
2370 	 * Disk geometry has to be faked with respect to the
2371 	 * actual uncompressed data size rather than the
2372 	 * compressed file size.
2373 	 */
2374 	lsp->ls_vp_size =
2375 	    (u_offset_t)(lsp->ls_comp_index_sz - 2) * lsp->ls_uncomp_seg_sz
2376 	    + lsp->ls_uncomp_last_seg_sz;
2377 
2378 	/*
2379 	 * Index size is rounded up to DEV_BSIZE for ease
2380 	 * of segmapping
2381 	 */
2382 	index_sz = sizeof (*lsp->ls_comp_seg_index) * lsp->ls_comp_index_sz;
2383 	header_len = sizeof (lsp->ls_comp_algorithm) +
2384 	    sizeof (lsp->ls_uncomp_seg_sz) +
2385 	    sizeof (lsp->ls_comp_index_sz) +
2386 	    sizeof (lsp->ls_uncomp_last_seg_sz);
2387 	lsp->ls_comp_offbase = header_len + index_sz;
2388 
2389 	index_sz += header_len;
2390 	index_sz = roundup(index_sz, DEV_BSIZE);
2391 
2392 	lsp->ls_comp_index_data = kmem_alloc(index_sz, KM_SLEEP);
2393 	lsp->ls_comp_index_data_sz = index_sz;
2394 
2395 	/*
2396 	 * Read in the index -- this has a side-effect
2397 	 * of reading in the header as well
2398 	 */
2399 	rw = UIO_READ;
2400 	error = vn_rdwr(rw, lsp->ls_vp, lsp->ls_comp_index_data, index_sz,
2401 	    0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2402 
2403 	if (error != 0)
2404 		return (error);
2405 
2406 	/* Skip the header, this is where the index really begins */
2407 	lsp->ls_comp_seg_index =
2408 	    /*LINTED*/
2409 	    (uint64_t *)(lsp->ls_comp_index_data + header_len);
2410 
2411 	/*
2412 	 * Now recompute offsets in the index to account for
2413 	 * the header length
2414 	 */
2415 	for (i = 0; i < lsp->ls_comp_index_sz; i++) {
2416 		lsp->ls_comp_seg_index[i] = lsp->ls_comp_offbase +
2417 		    BE_64(lsp->ls_comp_seg_index[i]);
2418 	}
2419 
2420 	return (error);
2421 }
2422 
2423 static int
2424 lofi_init_crypto(struct lofi_state *lsp, struct lofi_ioctl *klip)
2425 {
2426 	struct crypto_meta chead;
2427 	char buf[DEV_BSIZE];
2428 	ssize_t	resid;
2429 	char *marker;
2430 	int error;
2431 	int ret;
2432 	int i;
2433 
2434 	if (!klip->li_crypto_enabled)
2435 		return (0);
2436 
2437 	/*
2438 	 * All current algorithms have a max of 448 bits.
2439 	 */
2440 	if (klip->li_iv_len > CRYPTO_BITS2BYTES(512))
2441 		return (EINVAL);
2442 
2443 	if (CRYPTO_BITS2BYTES(klip->li_key_len) > sizeof (klip->li_key))
2444 		return (EINVAL);
2445 
2446 	lsp->ls_crypto_enabled = klip->li_crypto_enabled;
2447 
2448 	mutex_init(&lsp->ls_crypto_lock, NULL, MUTEX_DRIVER, NULL);
2449 
2450 	lsp->ls_mech.cm_type = crypto_mech2id(klip->li_cipher);
2451 	if (lsp->ls_mech.cm_type == CRYPTO_MECH_INVALID) {
2452 		cmn_err(CE_WARN, "invalid cipher %s requested for %s",
2453 		    klip->li_cipher, klip->li_filename);
2454 		return (EINVAL);
2455 	}
2456 
2457 	/* this is just initialization here */
2458 	lsp->ls_mech.cm_param = NULL;
2459 	lsp->ls_mech.cm_param_len = 0;
2460 
2461 	lsp->ls_iv_type = klip->li_iv_type;
2462 	lsp->ls_iv_mech.cm_type = crypto_mech2id(klip->li_iv_cipher);
2463 	if (lsp->ls_iv_mech.cm_type == CRYPTO_MECH_INVALID) {
2464 		cmn_err(CE_WARN, "invalid iv cipher %s requested"
2465 		    " for %s", klip->li_iv_cipher, klip->li_filename);
2466 		return (EINVAL);
2467 	}
2468 
2469 	/* iv mech must itself take a null iv */
2470 	lsp->ls_iv_mech.cm_param = NULL;
2471 	lsp->ls_iv_mech.cm_param_len = 0;
2472 	lsp->ls_iv_len = klip->li_iv_len;
2473 
2474 	/*
2475 	 * Create ctx using li_cipher & the raw li_key after checking
2476 	 * that it isn't a weak key.
2477 	 */
2478 	lsp->ls_key.ck_format = CRYPTO_KEY_RAW;
2479 	lsp->ls_key.ck_length = klip->li_key_len;
2480 	lsp->ls_key.ck_data = kmem_alloc(
2481 	    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length), KM_SLEEP);
2482 	bcopy(klip->li_key, lsp->ls_key.ck_data,
2483 	    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
2484 
2485 	ret = crypto_key_check(&lsp->ls_mech, &lsp->ls_key);
2486 	if (ret != CRYPTO_SUCCESS) {
2487 		cmn_err(CE_WARN, "weak key check failed for cipher "
2488 		    "%s on file %s (0x%x)", klip->li_cipher,
2489 		    klip->li_filename, ret);
2490 		return (EINVAL);
2491 	}
2492 
2493 	error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE,
2494 	    CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2495 	if (error != 0)
2496 		return (error);
2497 
2498 	/*
2499 	 * This is the case where the header in the lofi image is already
2500 	 * initialized to indicate it is encrypted.
2501 	 */
2502 	if (strncmp(buf, lofi_crypto_magic, sizeof (lofi_crypto_magic)) == 0) {
2503 		/*
2504 		 * The encryption header information is laid out this way:
2505 		 *	6 bytes:	hex "CFLOFI"
2506 		 *	2 bytes:	version = 0 ... for now
2507 		 *	96 bytes:	reserved1 (not implemented yet)
2508 		 *	4 bytes:	data_sector = 2 ... for now
2509 		 *	more...		not implemented yet
2510 		 */
2511 
2512 		marker = buf;
2513 
2514 		/* copy the magic */
2515 		bcopy(marker, lsp->ls_crypto.magic,
2516 		    sizeof (lsp->ls_crypto.magic));
2517 		marker += sizeof (lsp->ls_crypto.magic);
2518 
2519 		/* read the encryption version number */
2520 		bcopy(marker, &(lsp->ls_crypto.version),
2521 		    sizeof (lsp->ls_crypto.version));
2522 		lsp->ls_crypto.version = ntohs(lsp->ls_crypto.version);
2523 		marker += sizeof (lsp->ls_crypto.version);
2524 
2525 		/* read a chunk of reserved data */
2526 		bcopy(marker, lsp->ls_crypto.reserved1,
2527 		    sizeof (lsp->ls_crypto.reserved1));
2528 		marker += sizeof (lsp->ls_crypto.reserved1);
2529 
2530 		/* read block number where encrypted data begins */
2531 		bcopy(marker, &(lsp->ls_crypto.data_sector),
2532 		    sizeof (lsp->ls_crypto.data_sector));
2533 		lsp->ls_crypto.data_sector = ntohl(lsp->ls_crypto.data_sector);
2534 		marker += sizeof (lsp->ls_crypto.data_sector);
2535 
2536 		/* and ignore the rest until it is implemented */
2537 
2538 		lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2539 		return (0);
2540 	}
2541 
2542 	/*
2543 	 * We've requested encryption, but no magic was found, so it must be
2544 	 * a new image.
2545 	 */
2546 
2547 	for (i = 0; i < sizeof (struct crypto_meta); i++) {
2548 		if (buf[i] != '\0')
2549 			return (EINVAL);
2550 	}
2551 
2552 	marker = buf;
2553 	bcopy(lofi_crypto_magic, marker, sizeof (lofi_crypto_magic));
2554 	marker += sizeof (lofi_crypto_magic);
2555 	chead.version = htons(LOFI_CRYPTO_VERSION);
2556 	bcopy(&(chead.version), marker, sizeof (chead.version));
2557 	marker += sizeof (chead.version);
2558 	marker += sizeof (chead.reserved1);
2559 	chead.data_sector = htonl(LOFI_CRYPTO_DATA_SECTOR);
2560 	bcopy(&(chead.data_sector), marker, sizeof (chead.data_sector));
2561 
2562 	/* write the header */
2563 	error = vn_rdwr(UIO_WRITE, lsp->ls_vp, buf, DEV_BSIZE,
2564 	    CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2565 	if (error != 0)
2566 		return (error);
2567 
2568 	/* fix things up so it looks like we read this info */
2569 	bcopy(lofi_crypto_magic, lsp->ls_crypto.magic,
2570 	    sizeof (lofi_crypto_magic));
2571 	lsp->ls_crypto.version = LOFI_CRYPTO_VERSION;
2572 	lsp->ls_crypto.data_sector = LOFI_CRYPTO_DATA_SECTOR;
2573 	lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2574 	return (0);
2575 }
2576 
2577 /*
2578  * Check to see if the passed in signature is a valid one.  If it is
2579  * valid, return the index into lofi_compress_table.
2580  *
2581  * Return -1 if it is invalid
2582  */
2583 static int
2584 lofi_compress_select(const char *signature)
2585 {
2586 	int i;
2587 
2588 	for (i = 0; i < LOFI_COMPRESS_FUNCTIONS; i++) {
2589 		if (strcmp(lofi_compress_table[i].l_name, signature) == 0)
2590 			return (i);
2591 	}
2592 
2593 	return (-1);
2594 }
2595 
2596 static int
2597 lofi_init_compress(struct lofi_state *lsp)
2598 {
2599 	char buf[DEV_BSIZE];
2600 	int compress_index;
2601 	ssize_t	resid;
2602 	int error;
2603 
2604 	error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 0, UIO_SYSSPACE,
2605 	    0, RLIM64_INFINITY, kcred, &resid);
2606 
2607 	if (error != 0)
2608 		return (error);
2609 
2610 	if ((compress_index = lofi_compress_select(buf)) == -1)
2611 		return (0);
2612 
2613 	/* compression and encryption are mutually exclusive */
2614 	if (lsp->ls_crypto_enabled)
2615 		return (ENOTSUP);
2616 
2617 	/* initialize compression info for compressed lofi */
2618 	lsp->ls_comp_algorithm_index = compress_index;
2619 	(void) strlcpy(lsp->ls_comp_algorithm,
2620 	    lofi_compress_table[compress_index].l_name,
2621 	    sizeof (lsp->ls_comp_algorithm));
2622 
2623 	/* Finally setup per-thread pre-allocated buffers */
2624 	lsp->ls_comp_bufs = kmem_zalloc(lofi_taskq_nthreads *
2625 	    sizeof (struct compbuf), KM_SLEEP);
2626 
2627 	return (lofi_map_compressed_file(lsp, buf));
2628 }
2629 
2630 /*
2631  * Allocate new or proposed id from lofi_id.
2632  *
2633  * Special cases for proposed id:
2634  * 0: not allowed, 0 is id for control device.
2635  * -1: allocate first usable id from lofi_id.
2636  * any other value is proposed value from userland
2637  *
2638  * returns DDI_SUCCESS or errno.
2639  */
2640 static int
2641 lofi_alloc_id(int *idp)
2642 {
2643 	int id, error = DDI_SUCCESS;
2644 
2645 	if (*idp == -1) {
2646 		id = id_allocff_nosleep(lofi_id);
2647 		if (id == -1) {
2648 			error = EAGAIN;
2649 			goto err;
2650 		}
2651 	} else if (*idp == 0) {
2652 		error = EINVAL;
2653 		goto err;
2654 	} else if (*idp > ((1 << (L_BITSMINOR - LOFI_CMLB_SHIFT)) - 1)) {
2655 		error = ERANGE;
2656 		goto err;
2657 	} else {
2658 		if (ddi_get_soft_state(lofi_statep, *idp) != NULL) {
2659 			error = EEXIST;
2660 			goto err;
2661 		}
2662 
2663 		id = id_alloc_specific_nosleep(lofi_id, *idp);
2664 		if (id == -1) {
2665 			error = EAGAIN;
2666 			goto err;
2667 		}
2668 	}
2669 	*idp = id;
2670 err:
2671 	return (error);
2672 }
2673 
2674 static int
2675 lofi_create_dev(struct lofi_ioctl *klip)
2676 {
2677 	dev_info_t *parent, *child;
2678 	struct lofi_state *lsp = NULL;
2679 	char namebuf[MAXNAMELEN];
2680 	int error, circ;
2681 
2682 	/* get control device */
2683 	lsp = ddi_get_soft_state(lofi_statep, 0);
2684 	parent = ddi_get_parent(lsp->ls_dip);
2685 
2686 	if ((error = lofi_alloc_id((int *)&klip->li_id)))
2687 		return (error);
2688 
2689 	(void) snprintf(namebuf, sizeof (namebuf), LOFI_DRIVER_NAME "@%d",
2690 	    klip->li_id);
2691 
2692 	ndi_devi_enter(parent, &circ);
2693 	child = ndi_devi_findchild(parent, namebuf);
2694 	ndi_devi_exit(parent, circ);
2695 
2696 	if (child == NULL) {
2697 		child = ddi_add_child(parent, LOFI_DRIVER_NAME,
2698 		    (pnode_t)DEVI_SID_NODEID, klip->li_id);
2699 		if ((error = ddi_prop_update_int(DDI_DEV_T_NONE, child,
2700 		    "instance", klip->li_id)) != DDI_PROP_SUCCESS)
2701 			goto err;
2702 
2703 		if (klip->li_labeled == B_TRUE) {
2704 			if ((error = ddi_prop_create(DDI_DEV_T_NONE, child,
2705 			    DDI_PROP_CANSLEEP, "labeled", 0, 0))
2706 			    != DDI_PROP_SUCCESS)
2707 				goto err;
2708 		}
2709 
2710 		if ((error = ndi_devi_online(child, NDI_ONLINE_ATTACH))
2711 		    != NDI_SUCCESS)
2712 			goto err;
2713 	} else {
2714 		id_free(lofi_id, klip->li_id);
2715 		error = EEXIST;
2716 		return (error);
2717 	}
2718 
2719 	goto done;
2720 
2721 err:
2722 	ddi_prop_remove_all(child);
2723 	(void) ndi_devi_offline(child, NDI_DEVI_REMOVE);
2724 	id_free(lofi_id, klip->li_id);
2725 done:
2726 
2727 	return (error);
2728 }
2729 
2730 static void
2731 lofi_create_inquiry(struct lofi_state *lsp, struct scsi_inquiry *inq)
2732 {
2733 	char *p = NULL;
2734 
2735 	(void) strlcpy(inq->inq_vid, LOFI_DRIVER_NAME, sizeof (inq->inq_vid));
2736 
2737 	mutex_enter(&lsp->ls_vp_lock);
2738 	if (lsp->ls_vp != NULL)
2739 		p = strrchr(lsp->ls_vp->v_path, '/');
2740 	if (p != NULL)
2741 		(void) strncpy(inq->inq_pid, p + 1, sizeof (inq->inq_pid));
2742 	mutex_exit(&lsp->ls_vp_lock);
2743 	(void) strlcpy(inq->inq_revision, "1.0", sizeof (inq->inq_revision));
2744 }
2745 
2746 /*
2747  * copy devlink name from event cache
2748  */
2749 static void
2750 lofi_copy_devpath(struct lofi_ioctl *klip)
2751 {
2752 	int	error;
2753 	char	namebuf[MAXNAMELEN], *str;
2754 	clock_t ticks;
2755 	nvlist_t *nvl;
2756 
2757 	if (klip->li_labeled == B_TRUE)
2758 		klip->li_devpath[0] = '\0';
2759 	else {
2760 		/* no need to wait for messages */
2761 		(void) snprintf(klip->li_devpath, sizeof (klip->li_devpath),
2762 		    "/dev/" LOFI_CHAR_NAME "/%d", klip->li_id);
2763 		return;
2764 	}
2765 
2766 	(void) snprintf(namebuf, sizeof (namebuf), "%d", klip->li_id);
2767 	ticks = ddi_get_lbolt() + LOFI_TIMEOUT * drv_usectohz(1000000);
2768 
2769 	nvl = NULL;
2770 
2771 	mutex_enter(&lofi_chan_lock);
2772 	while (nvlist_lookup_nvlist(lofi_devlink_cache, namebuf, &nvl) != 0) {
2773 		error = cv_timedwait(&lofi_chan_cv, &lofi_chan_lock, ticks);
2774 		if (error == -1)
2775 			break;
2776 	}
2777 
2778 	if (nvl != NULL) {
2779 		if (nvlist_lookup_string(nvl, DEV_NAME, &str) == 0) {
2780 			(void) strlcpy(klip->li_devpath, str,
2781 			    sizeof (klip->li_devpath));
2782 		}
2783 	}
2784 	mutex_exit(&lofi_chan_lock);
2785 }
2786 
2787 /*
2788  * map a file to a minor number. Return the minor number.
2789  */
2790 static int
2791 lofi_map_file(dev_t dev, struct lofi_ioctl *ulip, int pickminor,
2792     int *rvalp, struct cred *credp, int ioctl_flag)
2793 {
2794 	int	id = -1;
2795 	struct lofi_state *lsp = NULL;
2796 	struct lofi_ioctl *klip;
2797 	int	error;
2798 	struct vnode *vp = NULL;
2799 	vattr_t	vattr;
2800 	int	flag;
2801 	char	namebuf[MAXNAMELEN];
2802 
2803 	error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2804 	if (error != 0)
2805 		return (error);
2806 
2807 	mutex_enter(&lofi_lock);
2808 
2809 	if (file_to_lofi_nocheck(klip->li_filename, klip->li_readonly,
2810 	    NULL) == 0) {
2811 		error = EBUSY;
2812 		goto err;
2813 	}
2814 
2815 	flag = FREAD | FWRITE | FOFFMAX | FEXCL;
2816 	error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0);
2817 	if (error) {
2818 		/* try read-only */
2819 		flag &= ~FWRITE;
2820 		error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0,
2821 		    &vp, 0, 0);
2822 		if (error)
2823 			goto err;
2824 	}
2825 
2826 	if (!V_ISLOFIABLE(vp->v_type)) {
2827 		error = EINVAL;
2828 		goto err;
2829 	}
2830 
2831 	vattr.va_mask = AT_SIZE;
2832 	error = VOP_GETATTR(vp, &vattr, 0, credp, NULL);
2833 	if (error)
2834 		goto err;
2835 
2836 	/* the file needs to be a multiple of the block size */
2837 	if ((vattr.va_size % DEV_BSIZE) != 0) {
2838 		error = EINVAL;
2839 		goto err;
2840 	}
2841 
2842 	if (pickminor) {
2843 		klip->li_id = (uint32_t)-1;
2844 	}
2845 	if ((error = lofi_create_dev(klip)) != 0)
2846 		goto err;
2847 
2848 	id = klip->li_id;
2849 	lsp = ddi_get_soft_state(lofi_statep, id);
2850 	if (lsp == NULL)
2851 		goto err;
2852 
2853 	/*
2854 	 * from this point lofi_destroy() is used to clean up on error
2855 	 * make sure the basic data is set
2856 	 */
2857 	lsp->ls_dev = makedevice(getmajor(dev), LOFI_ID2MINOR(id));
2858 
2859 	list_create(&lsp->ls_comp_cache, sizeof (struct lofi_comp_cache),
2860 	    offsetof(struct lofi_comp_cache, lc_list));
2861 
2862 	/*
2863 	 * save open mode so file can be closed properly and vnode counts
2864 	 * updated correctly.
2865 	 */
2866 	lsp->ls_openflag = flag;
2867 
2868 	lsp->ls_vp = vp;
2869 	lsp->ls_stacked_vp = vp;
2870 
2871 	lsp->ls_vp_size = vattr.va_size;
2872 	lsp->ls_vp_comp_size = lsp->ls_vp_size;
2873 
2874 	/*
2875 	 * Try to handle stacked lofs vnodes.
2876 	 */
2877 	if (vp->v_type == VREG) {
2878 		vnode_t *realvp;
2879 
2880 		if (VOP_REALVP(vp, &realvp, NULL) == 0) {
2881 			/*
2882 			 * We need to use the realvp for uniqueness
2883 			 * checking, but keep the stacked vp for
2884 			 * LOFI_GET_FILENAME display.
2885 			 */
2886 			VN_HOLD(realvp);
2887 			lsp->ls_vp = realvp;
2888 		}
2889 	}
2890 
2891 	lsp->ls_lbshift = highbit(DEV_BSIZE) - 1;
2892 	lsp->ls_pbshift = lsp->ls_lbshift;
2893 
2894 	lsp->ls_readonly = klip->li_readonly;
2895 	lsp->ls_uncomp_seg_sz = 0;
2896 	lsp->ls_comp_algorithm[0] = '\0';
2897 	lsp->ls_crypto_offset = 0;
2898 
2899 	(void) snprintf(namebuf, sizeof (namebuf), "%s_taskq_%d",
2900 	    LOFI_DRIVER_NAME, id);
2901 	lsp->ls_taskq = taskq_create_proc(namebuf, lofi_taskq_nthreads,
2902 	    minclsyspri, 1, lofi_taskq_maxalloc, curzone->zone_zsched, 0);
2903 
2904 	if ((error = lofi_init_crypto(lsp, klip)) != 0)
2905 		goto err;
2906 
2907 	if ((error = lofi_init_compress(lsp)) != 0)
2908 		goto err;
2909 
2910 	fake_disk_geometry(lsp);
2911 
2912 	/* For unlabeled lofi add Nblocks and Size */
2913 	if (klip->li_labeled == B_FALSE) {
2914 		error = ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip,
2915 		    SIZE_PROP_NAME, lsp->ls_vp_size - lsp->ls_crypto_offset);
2916 		if (error != DDI_PROP_SUCCESS) {
2917 			error = EINVAL;
2918 			goto err;
2919 		}
2920 		error = ddi_prop_update_int64(lsp->ls_dev, lsp->ls_dip,
2921 		    NBLOCKS_PROP_NAME,
2922 		    (lsp->ls_vp_size - lsp->ls_crypto_offset) / DEV_BSIZE);
2923 		if (error != DDI_PROP_SUCCESS) {
2924 			error = EINVAL;
2925 			goto err;
2926 		}
2927 	}
2928 
2929 	list_insert_tail(&lofi_list, lsp);
2930 	/*
2931 	 * Notify we are ready to rock.
2932 	 */
2933 	mutex_enter(&lsp->ls_vp_lock);
2934 	lsp->ls_vp_ready = B_TRUE;
2935 	cv_broadcast(&lsp->ls_vp_cv);
2936 	mutex_exit(&lsp->ls_vp_lock);
2937 	mutex_exit(&lofi_lock);
2938 
2939 	lofi_copy_devpath(klip);
2940 
2941 	if (rvalp)
2942 		*rvalp = id;
2943 	(void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2944 	free_lofi_ioctl(klip);
2945 	return (0);
2946 
2947 err:
2948 	if (lsp != NULL) {
2949 		lofi_destroy(lsp, credp);
2950 	} else {
2951 		if (vp != NULL) {
2952 			(void) VOP_PUTPAGE(vp, 0, 0, B_INVAL, credp, NULL);
2953 			(void) VOP_CLOSE(vp, flag, 1, 0, credp, NULL);
2954 			VN_RELE(vp);
2955 		}
2956 	}
2957 
2958 	mutex_exit(&lofi_lock);
2959 	free_lofi_ioctl(klip);
2960 	return (error);
2961 }
2962 
2963 /*
2964  * unmap a file.
2965  */
2966 static int
2967 lofi_unmap_file(struct lofi_ioctl *ulip, int byfilename,
2968     struct cred *credp, int ioctl_flag)
2969 {
2970 	struct lofi_state *lsp;
2971 	struct lofi_ioctl *klip;
2972 	nvlist_t *nvl = NULL;
2973 	clock_t ticks;
2974 	char name[MAXNAMELEN];
2975 	int err;
2976 
2977 	err = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2978 	if (err != 0)
2979 		return (err);
2980 
2981 	mutex_enter(&lofi_lock);
2982 	if (byfilename) {
2983 		if ((err = file_to_lofi(klip->li_filename, klip->li_readonly,
2984 		    &lsp)) != 0) {
2985 			mutex_exit(&lofi_lock);
2986 			return (err);
2987 		}
2988 	} else if (klip->li_id == 0) {
2989 		mutex_exit(&lofi_lock);
2990 		free_lofi_ioctl(klip);
2991 		return (ENXIO);
2992 	} else {
2993 		lsp = ddi_get_soft_state(lofi_statep, klip->li_id);
2994 	}
2995 
2996 	if (lsp == NULL || lsp->ls_vp == NULL || lofi_access(lsp) != 0) {
2997 		mutex_exit(&lofi_lock);
2998 		free_lofi_ioctl(klip);
2999 		return (ENXIO);
3000 	}
3001 
3002 	klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
3003 
3004 	/*
3005 	 * If it's still held open, we'll do one of three things:
3006 	 *
3007 	 * If no flag is set, just return EBUSY.
3008 	 *
3009 	 * If the 'cleanup' flag is set, unmap and remove the device when
3010 	 * the last user finishes.
3011 	 *
3012 	 * If the 'force' flag is set, then we forcibly close the underlying
3013 	 * file.  Subsequent operations will fail, and the DKIOCSTATE ioctl
3014 	 * will return DKIO_DEV_GONE.  When the device is last closed, the
3015 	 * device will be cleaned up appropriately.
3016 	 *
3017 	 * This is complicated by the fact that we may have outstanding
3018 	 * dispatched I/Os.  Rather than having a single mutex to serialize all
3019 	 * I/O, we keep a count of the number of outstanding I/O requests
3020 	 * (ls_vp_iocount), as well as a flag to indicate that no new I/Os
3021 	 * should be dispatched (ls_vp_closereq).
3022 	 *
3023 	 * We set the flag, wait for the number of outstanding I/Os to reach 0,
3024 	 * and then close the underlying vnode.
3025 	 */
3026 	if (is_opened(lsp)) {
3027 		if (klip->li_force) {
3028 			mutex_enter(&lsp->ls_vp_lock);
3029 			lsp->ls_vp_closereq = B_TRUE;
3030 			/* wake up any threads waiting on dkiocstate */
3031 			cv_broadcast(&lsp->ls_vp_cv);
3032 			while (lsp->ls_vp_iocount > 0)
3033 				cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
3034 			mutex_exit(&lsp->ls_vp_lock);
3035 
3036 			goto out;
3037 		} else if (klip->li_cleanup) {
3038 			lsp->ls_cleanup = 1;
3039 			mutex_exit(&lofi_lock);
3040 			free_lofi_ioctl(klip);
3041 			return (0);
3042 		}
3043 
3044 		mutex_exit(&lofi_lock);
3045 		free_lofi_ioctl(klip);
3046 		return (EBUSY);
3047 	}
3048 
3049 out:
3050 	lofi_free_dev(lsp);
3051 	lofi_destroy(lsp, credp);
3052 
3053 	/*
3054 	 * check the lofi_devlink_cache if device is really gone.
3055 	 * note: we just wait for timeout here and dont give error if
3056 	 * timer will expire. This check is to try to ensure the unmap is
3057 	 * really done when lofiadm -d completes.
3058 	 * Since lofi_lock is held, also hopefully the lofiadm -a calls
3059 	 * wont interfere the the unmap.
3060 	 */
3061 	(void) snprintf(name, sizeof (name), "%d", klip->li_id);
3062 	ticks = ddi_get_lbolt() + LOFI_TIMEOUT * drv_usectohz(1000000);
3063 	mutex_enter(&lofi_chan_lock);
3064 	while (nvlist_lookup_nvlist(lofi_devlink_cache, name, &nvl) == 0) {
3065 		err = cv_timedwait(&lofi_chan_cv, &lofi_chan_lock, ticks);
3066 		if (err == -1)
3067 			break;
3068 	}
3069 	mutex_exit(&lofi_chan_lock);
3070 
3071 	mutex_exit(&lofi_lock);
3072 	(void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3073 	free_lofi_ioctl(klip);
3074 	return (0);
3075 }
3076 
3077 /*
3078  * get the filename given the minor number, or the minor number given
3079  * the name.
3080  */
3081 /*ARGSUSED*/
3082 static int
3083 lofi_get_info(dev_t dev, struct lofi_ioctl *ulip, int which,
3084     struct cred *credp, int ioctl_flag)
3085 {
3086 	struct lofi_ioctl *klip;
3087 	struct lofi_state *lsp;
3088 	int	error;
3089 
3090 	error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
3091 	if (error != 0)
3092 		return (error);
3093 
3094 	switch (which) {
3095 	case LOFI_GET_FILENAME:
3096 		if (klip->li_id == 0) {
3097 			free_lofi_ioctl(klip);
3098 			return (EINVAL);
3099 		}
3100 
3101 		mutex_enter(&lofi_lock);
3102 		lsp = ddi_get_soft_state(lofi_statep, klip->li_id);
3103 		if (lsp == NULL || lofi_access(lsp) != 0) {
3104 			mutex_exit(&lofi_lock);
3105 			free_lofi_ioctl(klip);
3106 			return (ENXIO);
3107 		}
3108 
3109 		/*
3110 		 * This may fail if, for example, we're trying to look
3111 		 * up a zoned NFS path from the global zone.
3112 		 */
3113 		if (vnodetopath(NULL, lsp->ls_stacked_vp, klip->li_filename,
3114 		    sizeof (klip->li_filename), CRED()) != 0) {
3115 			(void) strlcpy(klip->li_filename, "?",
3116 			    sizeof (klip->li_filename));
3117 		}
3118 
3119 		klip->li_readonly = lsp->ls_readonly;
3120 		klip->li_labeled = lsp->ls_cmlbhandle != NULL;
3121 
3122 		(void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
3123 		    sizeof (klip->li_algorithm));
3124 		klip->li_crypto_enabled = lsp->ls_crypto_enabled;
3125 		mutex_exit(&lofi_lock);
3126 
3127 		lofi_copy_devpath(klip);
3128 		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3129 		free_lofi_ioctl(klip);
3130 		return (error);
3131 	case LOFI_GET_MINOR:
3132 		mutex_enter(&lofi_lock);
3133 		error = file_to_lofi(klip->li_filename,
3134 		    klip->li_readonly, &lsp);
3135 		if (error != 0) {
3136 			mutex_exit(&lofi_lock);
3137 			free_lofi_ioctl(klip);
3138 			return (error);
3139 		}
3140 		klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
3141 
3142 		klip->li_readonly = lsp->ls_readonly;
3143 		klip->li_labeled = lsp->ls_cmlbhandle != NULL;
3144 		mutex_exit(&lofi_lock);
3145 
3146 		lofi_copy_devpath(klip);
3147 		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3148 
3149 		free_lofi_ioctl(klip);
3150 		return (error);
3151 	case LOFI_CHECK_COMPRESSED:
3152 		mutex_enter(&lofi_lock);
3153 		error = file_to_lofi(klip->li_filename,
3154 		    klip->li_readonly, &lsp);
3155 		if (error != 0) {
3156 			mutex_exit(&lofi_lock);
3157 			free_lofi_ioctl(klip);
3158 			return (error);
3159 		}
3160 
3161 		klip->li_id = LOFI_MINOR2ID(getminor(lsp->ls_dev));
3162 		(void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
3163 		    sizeof (klip->li_algorithm));
3164 
3165 		mutex_exit(&lofi_lock);
3166 		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
3167 		free_lofi_ioctl(klip);
3168 		return (error);
3169 	default:
3170 		free_lofi_ioctl(klip);
3171 		return (EINVAL);
3172 	}
3173 }
3174 
3175 static int
3176 uscsi_is_inquiry(intptr_t arg, int flag, union scsi_cdb *cdb,
3177     struct uscsi_cmd *uscmd)
3178 {
3179 	int rval;
3180 
3181 #ifdef	_MULTI_DATAMODEL
3182 	switch (ddi_model_convert_from(flag & FMODELS)) {
3183 	case DDI_MODEL_ILP32: {
3184 		struct uscsi_cmd32 ucmd32;
3185 
3186 		if (ddi_copyin((void *)arg, &ucmd32, sizeof (ucmd32), flag)) {
3187 			rval = EFAULT;
3188 			goto err;
3189 		}
3190 		uscsi_cmd32touscsi_cmd((&ucmd32), uscmd);
3191 		break;
3192 	}
3193 	case DDI_MODEL_NONE:
3194 		if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) {
3195 			rval = EFAULT;
3196 			goto err;
3197 		}
3198 		break;
3199 	default:
3200 		rval = EFAULT;
3201 		goto err;
3202 	}
3203 #else
3204 	if (ddi_copyin((void *)arg, uscmd, sizeof (*uscmd), flag)) {
3205 		rval = EFAULT;
3206 		goto err;
3207 	}
3208 #endif	/* _MULTI_DATAMODEL */
3209 	if (ddi_copyin(uscmd->uscsi_cdb, cdb, uscmd->uscsi_cdblen, flag)) {
3210 		rval = EFAULT;
3211 		goto err;
3212 	}
3213 	if (cdb->scc_cmd == SCMD_INQUIRY) {
3214 		return (0);
3215 	}
3216 err:
3217 	return (rval);
3218 }
3219 
3220 static int
3221 lofi_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp,
3222     int *rvalp)
3223 {
3224 	int	error;
3225 	enum dkio_state dkstate;
3226 	struct lofi_state *lsp;
3227 	int	id;
3228 
3229 	id = LOFI_MINOR2ID(getminor(dev));
3230 
3231 	/* lofi ioctls only apply to the master device */
3232 	if (id == 0) {
3233 		struct lofi_ioctl *lip = (struct lofi_ioctl *)arg;
3234 
3235 		/*
3236 		 * the query command only need read-access - i.e., normal
3237 		 * users are allowed to do those on the ctl device as
3238 		 * long as they can open it read-only.
3239 		 */
3240 		switch (cmd) {
3241 		case LOFI_MAP_FILE:
3242 			if ((flag & FWRITE) == 0)
3243 				return (EPERM);
3244 			return (lofi_map_file(dev, lip, 1, rvalp, credp, flag));
3245 		case LOFI_MAP_FILE_MINOR:
3246 			if ((flag & FWRITE) == 0)
3247 				return (EPERM);
3248 			return (lofi_map_file(dev, lip, 0, rvalp, credp, flag));
3249 		case LOFI_UNMAP_FILE:
3250 			if ((flag & FWRITE) == 0)
3251 				return (EPERM);
3252 			return (lofi_unmap_file(lip, 1, credp, flag));
3253 		case LOFI_UNMAP_FILE_MINOR:
3254 			if ((flag & FWRITE) == 0)
3255 				return (EPERM);
3256 			return (lofi_unmap_file(lip, 0, credp, flag));
3257 		case LOFI_GET_FILENAME:
3258 			return (lofi_get_info(dev, lip, LOFI_GET_FILENAME,
3259 			    credp, flag));
3260 		case LOFI_GET_MINOR:
3261 			return (lofi_get_info(dev, lip, LOFI_GET_MINOR,
3262 			    credp, flag));
3263 
3264 		/*
3265 		 * This API made limited sense when this value was fixed
3266 		 * at LOFI_MAX_FILES.  However, its use to iterate
3267 		 * across all possible devices in lofiadm means we don't
3268 		 * want to return L_MAXMIN, but the highest
3269 		 * *allocated* id.
3270 		 */
3271 		case LOFI_GET_MAXMINOR:
3272 			id = 0;
3273 
3274 			mutex_enter(&lofi_lock);
3275 
3276 			for (lsp = list_head(&lofi_list); lsp != NULL;
3277 			    lsp = list_next(&lofi_list, lsp)) {
3278 				int i;
3279 				if (lofi_access(lsp) != 0)
3280 					continue;
3281 
3282 				i = ddi_get_instance(lsp->ls_dip);
3283 				if (i > id)
3284 					id = i;
3285 			}
3286 
3287 			mutex_exit(&lofi_lock);
3288 
3289 			error = ddi_copyout(&id, &lip->li_id,
3290 			    sizeof (id), flag);
3291 			if (error)
3292 				return (EFAULT);
3293 			return (0);
3294 
3295 		case LOFI_CHECK_COMPRESSED:
3296 			return (lofi_get_info(dev, lip, LOFI_CHECK_COMPRESSED,
3297 			    credp, flag));
3298 		default:
3299 			return (EINVAL);
3300 		}
3301 	}
3302 
3303 	mutex_enter(&lofi_lock);
3304 	lsp = ddi_get_soft_state(lofi_statep, id);
3305 	if (lsp == NULL || lsp->ls_vp_closereq) {
3306 		mutex_exit(&lofi_lock);
3307 		return (ENXIO);
3308 	}
3309 	mutex_exit(&lofi_lock);
3310 
3311 	if (ddi_prop_exists(DDI_DEV_T_ANY, lsp->ls_dip, DDI_PROP_DONTPASS,
3312 	    "labeled") == 1) {
3313 		error = cmlb_ioctl(lsp->ls_cmlbhandle, dev, cmd, arg, flag,
3314 		    credp, rvalp, 0);
3315 		if (error != ENOTTY)
3316 			return (error);
3317 	}
3318 
3319 	/*
3320 	 * We explicitly allow DKIOCSTATE, but all other ioctls should fail with
3321 	 * EIO as if the device was no longer present.
3322 	 */
3323 	if (lsp->ls_vp == NULL && cmd != DKIOCSTATE)
3324 		return (EIO);
3325 
3326 	/* these are for faking out utilities like newfs */
3327 	switch (cmd) {
3328 	case DKIOCGMEDIAINFO:
3329 	case DKIOCGMEDIAINFOEXT: {
3330 		struct dk_minfo_ext media_info;
3331 		int shift = lsp->ls_lbshift;
3332 		int size;
3333 
3334 		if (cmd == DKIOCGMEDIAINFOEXT) {
3335 			media_info.dki_pbsize = 1U << lsp->ls_pbshift;
3336 			size = sizeof (struct dk_minfo_ext);
3337 		} else {
3338 			size = sizeof (struct dk_minfo);
3339 		}
3340 
3341 		media_info.dki_media_type = DK_FIXED_DISK;
3342 		media_info.dki_lbsize = 1U << shift;
3343 		media_info.dki_capacity =
3344 		    (lsp->ls_vp_size - lsp->ls_crypto_offset) >> shift;
3345 
3346 		if (ddi_copyout(&media_info, (void *)arg, size, flag))
3347 			return (EFAULT);
3348 		return (0);
3349 	}
3350 	case DKIOCREMOVABLE: {
3351 		int i = 0;
3352 		if (ddi_copyout(&i, (caddr_t)arg, sizeof (int), flag))
3353 			return (EFAULT);
3354 		return (0);
3355 	}
3356 
3357 	case DKIOCGVTOC: {
3358 		struct vtoc vt;
3359 		fake_disk_vtoc(lsp, &vt);
3360 
3361 		switch (ddi_model_convert_from(flag & FMODELS)) {
3362 		case DDI_MODEL_ILP32: {
3363 			struct vtoc32 vtoc32;
3364 
3365 			vtoctovtoc32(vt, vtoc32);
3366 			if (ddi_copyout(&vtoc32, (void *)arg,
3367 			    sizeof (struct vtoc32), flag))
3368 				return (EFAULT);
3369 			break;
3370 			}
3371 
3372 		case DDI_MODEL_NONE:
3373 			if (ddi_copyout(&vt, (void *)arg,
3374 			    sizeof (struct vtoc), flag))
3375 				return (EFAULT);
3376 			break;
3377 		}
3378 		return (0);
3379 	}
3380 	case DKIOCINFO: {
3381 		struct dk_cinfo ci;
3382 		fake_disk_info(dev, &ci);
3383 		if (ddi_copyout(&ci, (void *)arg, sizeof (ci), flag))
3384 			return (EFAULT);
3385 		return (0);
3386 	}
3387 	case DKIOCG_VIRTGEOM:
3388 	case DKIOCG_PHYGEOM:
3389 	case DKIOCGGEOM:
3390 		error = ddi_copyout(&lsp->ls_dkg, (void *)arg,
3391 		    sizeof (struct dk_geom), flag);
3392 		if (error)
3393 			return (EFAULT);
3394 		return (0);
3395 	case DKIOCSTATE:
3396 		/*
3397 		 * Normally, lofi devices are always in the INSERTED state.  If
3398 		 * a device is forcefully unmapped, then the device transitions
3399 		 * to the DKIO_DEV_GONE state.
3400 		 */
3401 		if (ddi_copyin((void *)arg, &dkstate, sizeof (dkstate),
3402 		    flag) != 0)
3403 			return (EFAULT);
3404 
3405 		mutex_enter(&lsp->ls_vp_lock);
3406 		lsp->ls_vp_iocount++;
3407 		while (((dkstate == DKIO_INSERTED && lsp->ls_vp != NULL) ||
3408 		    (dkstate == DKIO_DEV_GONE && lsp->ls_vp == NULL)) &&
3409 		    !lsp->ls_vp_closereq) {
3410 			/*
3411 			 * By virtue of having the device open, we know that
3412 			 * 'lsp' will remain valid when we return.
3413 			 */
3414 			if (!cv_wait_sig(&lsp->ls_vp_cv,
3415 			    &lsp->ls_vp_lock)) {
3416 				lsp->ls_vp_iocount--;
3417 				cv_broadcast(&lsp->ls_vp_cv);
3418 				mutex_exit(&lsp->ls_vp_lock);
3419 				return (EINTR);
3420 			}
3421 		}
3422 
3423 		dkstate = (!lsp->ls_vp_closereq && lsp->ls_vp != NULL ?
3424 		    DKIO_INSERTED : DKIO_DEV_GONE);
3425 		lsp->ls_vp_iocount--;
3426 		cv_broadcast(&lsp->ls_vp_cv);
3427 		mutex_exit(&lsp->ls_vp_lock);
3428 
3429 		if (ddi_copyout(&dkstate, (void *)arg,
3430 		    sizeof (dkstate), flag) != 0)
3431 			return (EFAULT);
3432 		return (0);
3433 	case USCSICMD: {
3434 		struct uscsi_cmd uscmd;
3435 		union scsi_cdb cdb;
3436 
3437 		if (uscsi_is_inquiry(arg, flag, &cdb, &uscmd) == 0) {
3438 			struct scsi_inquiry inq = {0};
3439 
3440 			lofi_create_inquiry(lsp, &inq);
3441 			if (ddi_copyout(&inq, uscmd.uscsi_bufaddr,
3442 			    uscmd.uscsi_buflen, flag) != 0)
3443 				return (EFAULT);
3444 			return (0);
3445 		} else if (cdb.scc_cmd == SCMD_READ_CAPACITY) {
3446 			struct scsi_capacity capacity;
3447 
3448 			capacity.capacity =
3449 			    BE_32((lsp->ls_vp_size - lsp->ls_crypto_offset) >>
3450 			    lsp->ls_lbshift);
3451 			capacity.lbasize = BE_32(1 << lsp->ls_lbshift);
3452 			if (ddi_copyout(&capacity, uscmd.uscsi_bufaddr,
3453 			    uscmd.uscsi_buflen, flag) != 0)
3454 				return (EFAULT);
3455 			return (0);
3456 		}
3457 
3458 		uscmd.uscsi_rqstatus = 0xff;
3459 #ifdef	_MULTI_DATAMODEL
3460 		switch (ddi_model_convert_from(flag & FMODELS)) {
3461 		case DDI_MODEL_ILP32: {
3462 			struct uscsi_cmd32 ucmd32;
3463 			uscsi_cmdtouscsi_cmd32((&uscmd), (&ucmd32));
3464 			if (ddi_copyout(&ucmd32, (void *)arg, sizeof (ucmd32),
3465 			    flag) != 0)
3466 				return (EFAULT);
3467 			break;
3468 		}
3469 		case DDI_MODEL_NONE:
3470 			if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd),
3471 			    flag) != 0)
3472 				return (EFAULT);
3473 			break;
3474 		default:
3475 			return (EFAULT);
3476 		}
3477 #else
3478 		if (ddi_copyout(&uscmd, (void *)arg, sizeof (uscmd), flag) != 0)
3479 			return (EFAULT);
3480 #endif	/* _MULTI_DATAMODEL */
3481 		return (0);
3482 	}
3483 	default:
3484 #ifdef DEBUG
3485 		cmn_err(CE_WARN, "lofi_ioctl: %d is not implemented\n", cmd);
3486 #endif	/* DEBUG */
3487 		return (ENOTTY);
3488 	}
3489 }
3490 
3491 static int
3492 lofi_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
3493     char *name, caddr_t valuep, int *lengthp)
3494 {
3495 	struct lofi_state *lsp;
3496 	int rc;
3497 
3498 	lsp = ddi_get_soft_state(lofi_statep, ddi_get_instance(dip));
3499 	if (lsp == NULL) {
3500 		return (ddi_prop_op(dev, dip, prop_op, mod_flags,
3501 		    name, valuep, lengthp));
3502 	}
3503 
3504 	rc = cmlb_prop_op(lsp->ls_cmlbhandle, dev, dip, prop_op, mod_flags,
3505 	    name, valuep, lengthp, LOFI_PART(getminor(dev)), NULL);
3506 	if (rc == DDI_PROP_SUCCESS)
3507 		return (rc);
3508 
3509 	return (ddi_prop_op(DDI_DEV_T_ANY, dip, prop_op, mod_flags,
3510 	    name, valuep, lengthp));
3511 }
3512 
3513 static struct cb_ops lofi_cb_ops = {
3514 	lofi_open,		/* open */
3515 	lofi_close,		/* close */
3516 	lofi_strategy,		/* strategy */
3517 	nodev,			/* print */
3518 	nodev,			/* dump */
3519 	lofi_read,		/* read */
3520 	lofi_write,		/* write */
3521 	lofi_ioctl,		/* ioctl */
3522 	nodev,			/* devmap */
3523 	nodev,			/* mmap */
3524 	nodev,			/* segmap */
3525 	nochpoll,		/* poll */
3526 	lofi_prop_op,		/* prop_op */
3527 	0,			/* streamtab  */
3528 	D_64BIT | D_NEW | D_MP,	/* Driver compatibility flag */
3529 	CB_REV,
3530 	lofi_aread,
3531 	lofi_awrite
3532 };
3533 
3534 static struct dev_ops lofi_ops = {
3535 	DEVO_REV,		/* devo_rev, */
3536 	0,			/* refcnt  */
3537 	lofi_info,		/* info */
3538 	nulldev,		/* identify */
3539 	nulldev,		/* probe */
3540 	lofi_attach,		/* attach */
3541 	lofi_detach,		/* detach */
3542 	nodev,			/* reset */
3543 	&lofi_cb_ops,		/* driver operations */
3544 	NULL,			/* no bus operations */
3545 	NULL,			/* power */
3546 	ddi_quiesce_not_needed,	/* quiesce */
3547 };
3548 
3549 static struct modldrv modldrv = {
3550 	&mod_driverops,
3551 	"loopback file driver",
3552 	&lofi_ops,
3553 };
3554 
3555 static struct modlinkage modlinkage = {
3556 	MODREV_1,
3557 	&modldrv,
3558 	NULL
3559 };
3560 
3561 int
3562 _init(void)
3563 {
3564 	int error;
3565 
3566 	list_create(&lofi_list, sizeof (struct lofi_state),
3567 	    offsetof(struct lofi_state, ls_list));
3568 
3569 	error = ddi_soft_state_init((void **)&lofi_statep,
3570 	    sizeof (struct lofi_state), 0);
3571 	if (error) {
3572 		list_destroy(&lofi_list);
3573 		return (error);
3574 	}
3575 
3576 	/*
3577 	 * The minor number is stored as id << LOFI_CMLB_SHIFT as
3578 	 * we need to reserve space for cmlb minor numbers.
3579 	 * This will leave out 4096 id values on 32bit kernel, which should
3580 	 * still suffice.
3581 	 */
3582 	lofi_id = id_space_create("lofi_id", 1,
3583 	    (1 << (L_BITSMINOR - LOFI_CMLB_SHIFT)));
3584 
3585 	if (lofi_id == NULL) {
3586 		ddi_soft_state_fini((void **)&lofi_statep);
3587 		list_destroy(&lofi_list);
3588 		return (DDI_FAILURE);
3589 	}
3590 
3591 	mutex_init(&lofi_lock, NULL, MUTEX_DRIVER, NULL);
3592 	mutex_init(&lofi_chan_lock, NULL, MUTEX_DRIVER, NULL);
3593 	cv_init(&lofi_chan_cv, NULL, CV_DRIVER, NULL);
3594 	error = nvlist_alloc(&lofi_devlink_cache, NV_UNIQUE_NAME, KM_SLEEP);
3595 
3596 	if (error == 0)
3597 		error = mod_install(&modlinkage);
3598 	if (error) {
3599 		id_space_destroy(lofi_id);
3600 		if (lofi_devlink_cache != NULL)
3601 			nvlist_free(lofi_devlink_cache);
3602 		mutex_destroy(&lofi_chan_lock);
3603 		cv_destroy(&lofi_chan_cv);
3604 		mutex_destroy(&lofi_lock);
3605 		ddi_soft_state_fini((void **)&lofi_statep);
3606 		list_destroy(&lofi_list);
3607 	}
3608 
3609 	return (error);
3610 }
3611 
3612 int
3613 _fini(void)
3614 {
3615 	int	error;
3616 
3617 	mutex_enter(&lofi_lock);
3618 
3619 	if (!list_is_empty(&lofi_list)) {
3620 		mutex_exit(&lofi_lock);
3621 		return (EBUSY);
3622 	}
3623 
3624 	mutex_exit(&lofi_lock);
3625 
3626 	error = mod_remove(&modlinkage);
3627 	if (error)
3628 		return (error);
3629 
3630 	mutex_enter(&lofi_chan_lock);
3631 	nvlist_free(lofi_devlink_cache);
3632 	lofi_devlink_cache = NULL;
3633 	mutex_exit(&lofi_chan_lock);
3634 
3635 	mutex_destroy(&lofi_chan_lock);
3636 	cv_destroy(&lofi_chan_cv);
3637 	mutex_destroy(&lofi_lock);
3638 	id_space_destroy(lofi_id);
3639 	ddi_soft_state_fini((void **)&lofi_statep);
3640 	list_destroy(&lofi_list);
3641 
3642 	return (error);
3643 }
3644 
3645 int
3646 _info(struct modinfo *modinfop)
3647 {
3648 	return (mod_info(&modlinkage, modinfop));
3649 }
3650