xref: /illumos-gate/usr/src/uts/common/io/lofi.c (revision 621be8d08fd45483b5ca1cb8e2e88239f1502b4d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
23  *
24  * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2016 Andrey Sokolov
26  */
27 
28 /*
29  * lofi (loopback file) driver - allows you to attach a file to a device,
30  * which can then be accessed through that device. The simple model is that
31  * you tell lofi to open a file, and then use the block device you get as
32  * you would any block device. lofi translates access to the block device
33  * into I/O on the underlying file. This is mostly useful for
34  * mounting images of filesystems.
35  *
36  * lofi is controlled through /dev/lofictl - this is the only device exported
37  * during attach, and is minor number 0. lofiadm communicates with lofi through
38  * ioctls on this device. When a file is attached to lofi, block and character
39  * devices are exported in /dev/lofi and /dev/rlofi. Currently, these devices
40  * are identified by their minor number, and the minor number is also used
41  * as the name in /dev/lofi. If we ever decide to support virtual disks,
42  * we'll have to divide the minor number space to identify fdisk partitions
43  * and slices, and the name will then be the minor number shifted down a
44  * few bits. Minor devices are tracked with state structures handled with
45  * ddi_soft_state(9F) for simplicity.
46  *
47  * A file attached to lofi is opened when attached and not closed until
48  * explicitly detached from lofi. This seems more sensible than deferring
49  * the open until the /dev/lofi device is opened, for a number of reasons.
50  * One is that any failure is likely to be noticed by the person (or script)
51  * running lofiadm. Another is that it would be a security problem if the
52  * file was replaced by another one after being added but before being opened.
53  *
54  * The only hard part about lofi is the ioctls. In order to support things
55  * like 'newfs' on a lofi device, it needs to support certain disk ioctls.
56  * So it has to fake disk geometry and partition information. More may need
57  * to be faked if your favorite utility doesn't work and you think it should
58  * (fdformat doesn't work because it really wants to know the type of floppy
59  * controller to talk to, and that didn't seem easy to fake. Or possibly even
60  * necessary, since we have mkfs_pcfs now).
61  *
62  * Normally, a lofi device cannot be detached if it is open (i.e. busy).  To
63  * support simulation of hotplug events, an optional force flag is provided.
64  * If a lofi device is open when a force detach is requested, then the
65  * underlying file is closed and any subsequent operations return EIO.  When the
66  * device is closed for the last time, it will be cleaned up at that time.  In
67  * addition, the DKIOCSTATE ioctl will return DKIO_DEV_GONE when the device is
68  * detached but not removed.
69  *
70  * Known problems:
71  *
72  *	UFS logging. Mounting a UFS filesystem image "logging"
73  *	works for basic copy testing but wedges during a build of ON through
74  *	that image. Some deadlock in lufs holding the log mutex and then
75  *	getting stuck on a buf. So for now, don't do that.
76  *
77  *	Direct I/O. Since the filesystem data is being cached in the buffer
78  *	cache, _and_ again in the underlying filesystem, it's tempting to
79  *	enable direct I/O on the underlying file. Don't, because that deadlocks.
80  *	I think to fix the cache-twice problem we might need filesystem support.
81  *
82  * Interesting things to do:
83  *
84  *	Allow multiple files for each device. A poor-man's metadisk, basically.
85  *
86  *	Pass-through ioctls on block devices. You can (though it's not
87  *	documented), give lofi a block device as a file name. Then we shouldn't
88  *	need to fake a geometry, however, it may be relevant if you're replacing
89  *	metadisk, or using lofi to get crypto.
90  *	It makes sense to do lofiadm -c aes -a /dev/dsk/c0t0d0s4 /dev/lofi/1
91  *	and then in /etc/vfstab have an entry for /dev/lofi/1 as /export/home.
92  *	In fact this even makes sense if you have lofi "above" metadisk.
93  *
94  * Encryption:
95  *	Each lofi device can have its own symmetric key and cipher.
96  *	They are passed to us by lofiadm(1m) in the correct format for use
97  *	with the misc/kcf crypto_* routines.
98  *
99  *	Each block has its own IV, that is calculated in lofi_blk_mech(), based
100  *	on the "master" key held in the lsp and the block number of the buffer.
101  */
102 
103 #include <sys/types.h>
104 #include <netinet/in.h>
105 #include <sys/sysmacros.h>
106 #include <sys/uio.h>
107 #include <sys/kmem.h>
108 #include <sys/cred.h>
109 #include <sys/mman.h>
110 #include <sys/errno.h>
111 #include <sys/aio_req.h>
112 #include <sys/stat.h>
113 #include <sys/file.h>
114 #include <sys/modctl.h>
115 #include <sys/conf.h>
116 #include <sys/debug.h>
117 #include <sys/vnode.h>
118 #include <sys/lofi.h>
119 #include <sys/fcntl.h>
120 #include <sys/pathname.h>
121 #include <sys/filio.h>
122 #include <sys/fdio.h>
123 #include <sys/open.h>
124 #include <sys/disp.h>
125 #include <vm/seg_map.h>
126 #include <sys/ddi.h>
127 #include <sys/sunddi.h>
128 #include <sys/zmod.h>
129 #include <sys/id_space.h>
130 #include <sys/mkdev.h>
131 #include <sys/crypto/common.h>
132 #include <sys/crypto/api.h>
133 #include <sys/rctl.h>
134 #include <LzmaDec.h>
135 
136 #define	NBLOCKS_PROP_NAME	"Nblocks"
137 #define	SIZE_PROP_NAME		"Size"
138 #define	ZONE_PROP_NAME		"zone"
139 
140 #define	SETUP_C_DATA(cd, buf, len) 		\
141 	(cd).cd_format = CRYPTO_DATA_RAW;	\
142 	(cd).cd_offset = 0;			\
143 	(cd).cd_miscdata = NULL;		\
144 	(cd).cd_length = (len);			\
145 	(cd).cd_raw.iov_base = (buf);		\
146 	(cd).cd_raw.iov_len = (len);
147 
148 #define	UIO_CHECK(uio)	\
149 	if (((uio)->uio_loffset % DEV_BSIZE) != 0 || \
150 	    ((uio)->uio_resid % DEV_BSIZE) != 0) { \
151 		return (EINVAL); \
152 	}
153 
154 static dev_info_t *lofi_dip = NULL;
155 static void *lofi_statep = NULL;
156 static kmutex_t lofi_lock;		/* state lock */
157 static id_space_t *lofi_minor_id;
158 static list_t lofi_list;
159 static zone_key_t lofi_zone_key;
160 
161 /*
162  * Because lofi_taskq_nthreads limits the actual swamping of the device, the
163  * maxalloc parameter (lofi_taskq_maxalloc) should be tuned conservatively
164  * high.  If we want to be assured that the underlying device is always busy,
165  * we must be sure that the number of bytes enqueued when the number of
166  * enqueued tasks exceeds maxalloc is sufficient to keep the device busy for
167  * the duration of the sleep time in taskq_ent_alloc().  That is, lofi should
168  * set maxalloc to be the maximum throughput (in bytes per second) of the
169  * underlying device divided by the minimum I/O size.  We assume a realistic
170  * maximum throughput of one hundred megabytes per second; we set maxalloc on
171  * the lofi task queue to be 104857600 divided by DEV_BSIZE.
172  */
173 static int lofi_taskq_maxalloc = 104857600 / DEV_BSIZE;
174 static int lofi_taskq_nthreads = 4;	/* # of taskq threads per device */
175 
176 const char lofi_crypto_magic[6] = LOFI_CRYPTO_MAGIC;
177 
178 /*
179  * To avoid decompressing data in a compressed segment multiple times
180  * when accessing small parts of a segment's data, we cache and reuse
181  * the uncompressed segment's data.
182  *
183  * A single cached segment is sufficient to avoid lots of duplicate
184  * segment decompress operations. A small cache size also reduces the
185  * memory footprint.
186  *
187  * lofi_max_comp_cache is the maximum number of decompressed data segments
188  * cached for each compressed lofi image. It can be set to 0 to disable
189  * caching.
190  */
191 
192 uint32_t lofi_max_comp_cache = 1;
193 
194 static int gzip_decompress(void *src, size_t srclen, void *dst,
195 	size_t *destlen, int level);
196 
197 static int lzma_decompress(void *src, size_t srclen, void *dst,
198 	size_t *dstlen, int level);
199 
200 lofi_compress_info_t lofi_compress_table[LOFI_COMPRESS_FUNCTIONS] = {
201 	{gzip_decompress,	NULL,	6,	"gzip"}, /* default */
202 	{gzip_decompress,	NULL,	6,	"gzip-6"},
203 	{gzip_decompress,	NULL,	9,	"gzip-9"},
204 	{lzma_decompress,	NULL,	0,	"lzma"}
205 };
206 
207 /*ARGSUSED*/
208 static void
209 *SzAlloc(void *p, size_t size)
210 {
211 	return (kmem_alloc(size, KM_SLEEP));
212 }
213 
214 /*ARGSUSED*/
215 static void
216 SzFree(void *p, void *address, size_t size)
217 {
218 	kmem_free(address, size);
219 }
220 
221 static ISzAlloc g_Alloc = { SzAlloc, SzFree };
222 
223 /*
224  * Free data referenced by the linked list of cached uncompressed
225  * segments.
226  */
227 static void
228 lofi_free_comp_cache(struct lofi_state *lsp)
229 {
230 	struct lofi_comp_cache *lc;
231 
232 	while ((lc = list_remove_head(&lsp->ls_comp_cache)) != NULL) {
233 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
234 		kmem_free(lc, sizeof (struct lofi_comp_cache));
235 		lsp->ls_comp_cache_count--;
236 	}
237 	ASSERT(lsp->ls_comp_cache_count == 0);
238 }
239 
240 static int
241 is_opened(struct lofi_state *lsp)
242 {
243 	ASSERT(MUTEX_HELD(&lofi_lock));
244 	return (lsp->ls_chr_open || lsp->ls_blk_open || lsp->ls_lyr_open_count);
245 }
246 
247 static int
248 mark_opened(struct lofi_state *lsp, int otyp)
249 {
250 	ASSERT(MUTEX_HELD(&lofi_lock));
251 	switch (otyp) {
252 	case OTYP_CHR:
253 		lsp->ls_chr_open = 1;
254 		break;
255 	case OTYP_BLK:
256 		lsp->ls_blk_open = 1;
257 		break;
258 	case OTYP_LYR:
259 		lsp->ls_lyr_open_count++;
260 		break;
261 	default:
262 		return (-1);
263 	}
264 	return (0);
265 }
266 
267 static void
268 mark_closed(struct lofi_state *lsp, int otyp)
269 {
270 	ASSERT(MUTEX_HELD(&lofi_lock));
271 	switch (otyp) {
272 	case OTYP_CHR:
273 		lsp->ls_chr_open = 0;
274 		break;
275 	case OTYP_BLK:
276 		lsp->ls_blk_open = 0;
277 		break;
278 	case OTYP_LYR:
279 		lsp->ls_lyr_open_count--;
280 		break;
281 	default:
282 		break;
283 	}
284 }
285 
286 static void
287 lofi_free_crypto(struct lofi_state *lsp)
288 {
289 	ASSERT(MUTEX_HELD(&lofi_lock));
290 
291 	if (lsp->ls_crypto_enabled) {
292 		/*
293 		 * Clean up the crypto state so that it doesn't hang around
294 		 * in memory after we are done with it.
295 		 */
296 		if (lsp->ls_key.ck_data != NULL) {
297 			bzero(lsp->ls_key.ck_data,
298 			    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
299 			kmem_free(lsp->ls_key.ck_data,
300 			    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
301 			lsp->ls_key.ck_data = NULL;
302 			lsp->ls_key.ck_length = 0;
303 		}
304 
305 		if (lsp->ls_mech.cm_param != NULL) {
306 			kmem_free(lsp->ls_mech.cm_param,
307 			    lsp->ls_mech.cm_param_len);
308 			lsp->ls_mech.cm_param = NULL;
309 			lsp->ls_mech.cm_param_len = 0;
310 		}
311 
312 		if (lsp->ls_iv_mech.cm_param != NULL) {
313 			kmem_free(lsp->ls_iv_mech.cm_param,
314 			    lsp->ls_iv_mech.cm_param_len);
315 			lsp->ls_iv_mech.cm_param = NULL;
316 			lsp->ls_iv_mech.cm_param_len = 0;
317 		}
318 
319 		mutex_destroy(&lsp->ls_crypto_lock);
320 	}
321 }
322 
323 static void
324 lofi_destroy(struct lofi_state *lsp, cred_t *credp)
325 {
326 	minor_t minor = getminor(lsp->ls_dev);
327 	int i;
328 
329 	ASSERT(MUTEX_HELD(&lofi_lock));
330 
331 	list_remove(&lofi_list, lsp);
332 
333 	lofi_free_crypto(lsp);
334 
335 	/*
336 	 * Free pre-allocated compressed buffers
337 	 */
338 	if (lsp->ls_comp_bufs != NULL) {
339 		for (i = 0; i < lofi_taskq_nthreads; i++) {
340 			if (lsp->ls_comp_bufs[i].bufsize > 0)
341 				kmem_free(lsp->ls_comp_bufs[i].buf,
342 				    lsp->ls_comp_bufs[i].bufsize);
343 		}
344 		kmem_free(lsp->ls_comp_bufs,
345 		    sizeof (struct compbuf) * lofi_taskq_nthreads);
346 	}
347 
348 	(void) VOP_CLOSE(lsp->ls_vp, lsp->ls_openflag,
349 	    1, 0, credp, NULL);
350 	VN_RELE(lsp->ls_vp);
351 	if (lsp->ls_stacked_vp != lsp->ls_vp)
352 		VN_RELE(lsp->ls_stacked_vp);
353 
354 	taskq_destroy(lsp->ls_taskq);
355 
356 	if (lsp->ls_kstat != NULL)
357 		kstat_delete(lsp->ls_kstat);
358 
359 	/*
360 	 * Free cached decompressed segment data
361 	 */
362 	lofi_free_comp_cache(lsp);
363 	list_destroy(&lsp->ls_comp_cache);
364 
365 	if (lsp->ls_uncomp_seg_sz > 0) {
366 		kmem_free(lsp->ls_comp_index_data, lsp->ls_comp_index_data_sz);
367 		lsp->ls_uncomp_seg_sz = 0;
368 	}
369 
370 	rctl_decr_lofi(lsp->ls_zone.zref_zone, 1);
371 	zone_rele_ref(&lsp->ls_zone, ZONE_REF_LOFI);
372 
373 	mutex_destroy(&lsp->ls_comp_cache_lock);
374 	mutex_destroy(&lsp->ls_comp_bufs_lock);
375 	mutex_destroy(&lsp->ls_kstat_lock);
376 	mutex_destroy(&lsp->ls_vp_lock);
377 
378 	ASSERT(ddi_get_soft_state(lofi_statep, minor) == lsp);
379 	ddi_soft_state_free(lofi_statep, minor);
380 	id_free(lofi_minor_id, minor);
381 }
382 
383 static void
384 lofi_free_dev(dev_t dev)
385 {
386 	minor_t minor = getminor(dev);
387 	char namebuf[50];
388 
389 	ASSERT(MUTEX_HELD(&lofi_lock));
390 
391 	(void) ddi_prop_remove(dev, lofi_dip, ZONE_PROP_NAME);
392 	(void) ddi_prop_remove(dev, lofi_dip, SIZE_PROP_NAME);
393 	(void) ddi_prop_remove(dev, lofi_dip, NBLOCKS_PROP_NAME);
394 
395 	(void) snprintf(namebuf, sizeof (namebuf), "%d", minor);
396 	ddi_remove_minor_node(lofi_dip, namebuf);
397 	(void) snprintf(namebuf, sizeof (namebuf), "%d,raw", minor);
398 	ddi_remove_minor_node(lofi_dip, namebuf);
399 }
400 
401 /*ARGSUSED*/
402 static void
403 lofi_zone_shutdown(zoneid_t zoneid, void *arg)
404 {
405 	struct lofi_state *lsp;
406 	struct lofi_state *next;
407 
408 	mutex_enter(&lofi_lock);
409 
410 	for (lsp = list_head(&lofi_list); lsp != NULL; lsp = next) {
411 
412 		/* lofi_destroy() frees lsp */
413 		next = list_next(&lofi_list, lsp);
414 
415 		if (lsp->ls_zone.zref_zone->zone_id != zoneid)
416 			continue;
417 
418 		/*
419 		 * No in-zone processes are running, but something has this
420 		 * open.  It's either a global zone process, or a lofi
421 		 * mount.  In either case we set ls_cleanup so the last
422 		 * user destroys the device.
423 		 */
424 		if (is_opened(lsp)) {
425 			lsp->ls_cleanup = 1;
426 		} else {
427 			lofi_free_dev(lsp->ls_dev);
428 			lofi_destroy(lsp, kcred);
429 		}
430 	}
431 
432 	mutex_exit(&lofi_lock);
433 }
434 
435 /*ARGSUSED*/
436 static int
437 lofi_open(dev_t *devp, int flag, int otyp, struct cred *credp)
438 {
439 	minor_t	minor;
440 	struct lofi_state *lsp;
441 
442 	/*
443 	 * lofiadm -a /dev/lofi/1 gets us here.
444 	 */
445 	if (mutex_owner(&lofi_lock) == curthread)
446 		return (EINVAL);
447 
448 	mutex_enter(&lofi_lock);
449 
450 	minor = getminor(*devp);
451 
452 	/* master control device */
453 	if (minor == 0) {
454 		mutex_exit(&lofi_lock);
455 		return (0);
456 	}
457 
458 	/* otherwise, the mapping should already exist */
459 	lsp = ddi_get_soft_state(lofi_statep, minor);
460 	if (lsp == NULL) {
461 		mutex_exit(&lofi_lock);
462 		return (EINVAL);
463 	}
464 
465 	if (lsp->ls_vp == NULL) {
466 		mutex_exit(&lofi_lock);
467 		return (ENXIO);
468 	}
469 
470 	if (lsp->ls_readonly && (flag & FWRITE)) {
471 		mutex_exit(&lofi_lock);
472 		return (EROFS);
473 	}
474 
475 	if (mark_opened(lsp, otyp) == -1) {
476 		mutex_exit(&lofi_lock);
477 		return (EINVAL);
478 	}
479 
480 	mutex_exit(&lofi_lock);
481 	return (0);
482 }
483 
484 /*ARGSUSED*/
485 static int
486 lofi_close(dev_t dev, int flag, int otyp, struct cred *credp)
487 {
488 	minor_t	minor;
489 	struct lofi_state *lsp;
490 
491 	mutex_enter(&lofi_lock);
492 	minor = getminor(dev);
493 	lsp = ddi_get_soft_state(lofi_statep, minor);
494 	if (lsp == NULL) {
495 		mutex_exit(&lofi_lock);
496 		return (EINVAL);
497 	}
498 
499 	if (minor == 0) {
500 		mutex_exit(&lofi_lock);
501 		return (0);
502 	}
503 
504 	mark_closed(lsp, otyp);
505 
506 	/*
507 	 * If we forcibly closed the underlying device (li_force), or
508 	 * asked for cleanup (li_cleanup), finish up if we're the last
509 	 * out of the door.
510 	 */
511 	if (!is_opened(lsp) && (lsp->ls_cleanup || lsp->ls_vp == NULL)) {
512 		lofi_free_dev(lsp->ls_dev);
513 		lofi_destroy(lsp, credp);
514 	}
515 
516 	mutex_exit(&lofi_lock);
517 	return (0);
518 }
519 
520 /*
521  * Sets the mechanism's initialization vector (IV) if one is needed.
522  * The IV is computed from the data block number.  lsp->ls_mech is
523  * altered so that:
524  *	lsp->ls_mech.cm_param_len is set to the IV len.
525  *	lsp->ls_mech.cm_param is set to the IV.
526  */
527 static int
528 lofi_blk_mech(struct lofi_state *lsp, longlong_t lblkno)
529 {
530 	int	ret;
531 	crypto_data_t cdata;
532 	char	*iv;
533 	size_t	iv_len;
534 	size_t	min;
535 	void	*data;
536 	size_t	datasz;
537 
538 	ASSERT(MUTEX_HELD(&lsp->ls_crypto_lock));
539 
540 	if (lsp == NULL)
541 		return (CRYPTO_DEVICE_ERROR);
542 
543 	/* lsp->ls_mech.cm_param{_len} has already been set for static iv */
544 	if (lsp->ls_iv_type == IVM_NONE) {
545 		return (CRYPTO_SUCCESS);
546 	}
547 
548 	/*
549 	 * if kmem already alloced from previous call and it's the same size
550 	 * we need now, just recycle it; allocate new kmem only if we have to
551 	 */
552 	if (lsp->ls_mech.cm_param == NULL ||
553 	    lsp->ls_mech.cm_param_len != lsp->ls_iv_len) {
554 		iv_len = lsp->ls_iv_len;
555 		iv = kmem_zalloc(iv_len, KM_SLEEP);
556 	} else {
557 		iv_len = lsp->ls_mech.cm_param_len;
558 		iv = lsp->ls_mech.cm_param;
559 		bzero(iv, iv_len);
560 	}
561 
562 	switch (lsp->ls_iv_type) {
563 	case IVM_ENC_BLKNO:
564 		/* iv is not static, lblkno changes each time */
565 		data = &lblkno;
566 		datasz = sizeof (lblkno);
567 		break;
568 	default:
569 		data = 0;
570 		datasz = 0;
571 		break;
572 	}
573 
574 	/*
575 	 * write blkno into the iv buffer padded on the left in case
576 	 * blkno ever grows bigger than its current longlong_t size
577 	 * or a variation other than blkno is used for the iv data
578 	 */
579 	min = MIN(datasz, iv_len);
580 	bcopy(data, iv + (iv_len - min), min);
581 
582 	/* encrypt the data in-place to get the IV */
583 	SETUP_C_DATA(cdata, iv, iv_len);
584 
585 	ret = crypto_encrypt(&lsp->ls_iv_mech, &cdata, &lsp->ls_key,
586 	    NULL, NULL, NULL);
587 	if (ret != CRYPTO_SUCCESS) {
588 		cmn_err(CE_WARN, "failed to create iv for block %lld: (0x%x)",
589 		    lblkno, ret);
590 		if (lsp->ls_mech.cm_param != iv)
591 			kmem_free(iv, iv_len);
592 
593 		return (ret);
594 	}
595 
596 	/* clean up the iv from the last computation */
597 	if (lsp->ls_mech.cm_param != NULL && lsp->ls_mech.cm_param != iv)
598 		kmem_free(lsp->ls_mech.cm_param, lsp->ls_mech.cm_param_len);
599 
600 	lsp->ls_mech.cm_param_len = iv_len;
601 	lsp->ls_mech.cm_param = iv;
602 
603 	return (CRYPTO_SUCCESS);
604 }
605 
606 /*
607  * Performs encryption and decryption of a chunk of data of size "len",
608  * one DEV_BSIZE block at a time.  "len" is assumed to be a multiple of
609  * DEV_BSIZE.
610  */
611 static int
612 lofi_crypto(struct lofi_state *lsp, struct buf *bp, caddr_t plaintext,
613     caddr_t ciphertext, size_t len, boolean_t op_encrypt)
614 {
615 	crypto_data_t cdata;
616 	crypto_data_t wdata;
617 	int ret;
618 	longlong_t lblkno = bp->b_lblkno;
619 
620 	mutex_enter(&lsp->ls_crypto_lock);
621 
622 	/*
623 	 * though we could encrypt/decrypt entire "len" chunk of data, we need
624 	 * to break it into DEV_BSIZE pieces to capture blkno incrementing
625 	 */
626 	SETUP_C_DATA(cdata, plaintext, len);
627 	cdata.cd_length = DEV_BSIZE;
628 	if (ciphertext != NULL) {		/* not in-place crypto */
629 		SETUP_C_DATA(wdata, ciphertext, len);
630 		wdata.cd_length = DEV_BSIZE;
631 	}
632 
633 	do {
634 		ret = lofi_blk_mech(lsp, lblkno);
635 		if (ret != CRYPTO_SUCCESS)
636 			continue;
637 
638 		if (op_encrypt) {
639 			ret = crypto_encrypt(&lsp->ls_mech, &cdata,
640 			    &lsp->ls_key, NULL,
641 			    ((ciphertext != NULL) ? &wdata : NULL), NULL);
642 		} else {
643 			ret = crypto_decrypt(&lsp->ls_mech, &cdata,
644 			    &lsp->ls_key, NULL,
645 			    ((ciphertext != NULL) ? &wdata : NULL), NULL);
646 		}
647 
648 		cdata.cd_offset += DEV_BSIZE;
649 		if (ciphertext != NULL)
650 			wdata.cd_offset += DEV_BSIZE;
651 		lblkno++;
652 	} while (ret == CRYPTO_SUCCESS && cdata.cd_offset < len);
653 
654 	mutex_exit(&lsp->ls_crypto_lock);
655 
656 	if (ret != CRYPTO_SUCCESS) {
657 		cmn_err(CE_WARN, "%s failed for block %lld:  (0x%x)",
658 		    op_encrypt ? "crypto_encrypt()" : "crypto_decrypt()",
659 		    lblkno, ret);
660 	}
661 
662 	return (ret);
663 }
664 
665 #define	RDWR_RAW	1
666 #define	RDWR_BCOPY	2
667 
668 static int
669 lofi_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
670     struct lofi_state *lsp, size_t len, int method, caddr_t bcopy_locn)
671 {
672 	ssize_t resid;
673 	int isread;
674 	int error;
675 
676 	/*
677 	 * Handles reads/writes for both plain and encrypted lofi
678 	 * Note:  offset is already shifted by lsp->ls_crypto_offset
679 	 * when it gets here.
680 	 */
681 
682 	isread = bp->b_flags & B_READ;
683 	if (isread) {
684 		if (method == RDWR_BCOPY) {
685 			/* DO NOT update bp->b_resid for bcopy */
686 			bcopy(bcopy_locn, bufaddr, len);
687 			error = 0;
688 		} else {		/* RDWR_RAW */
689 			error = vn_rdwr(UIO_READ, lsp->ls_vp, bufaddr, len,
690 			    offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
691 			    &resid);
692 			bp->b_resid = resid;
693 		}
694 		if (lsp->ls_crypto_enabled && error == 0) {
695 			if (lofi_crypto(lsp, bp, bufaddr, NULL, len,
696 			    B_FALSE) != CRYPTO_SUCCESS) {
697 				/*
698 				 * XXX: original code didn't set residual
699 				 * back to len because no error was expected
700 				 * from bcopy() if encryption is not enabled
701 				 */
702 				if (method != RDWR_BCOPY)
703 					bp->b_resid = len;
704 				error = EIO;
705 			}
706 		}
707 		return (error);
708 	} else {
709 		void *iobuf = bufaddr;
710 
711 		if (lsp->ls_crypto_enabled) {
712 			/* don't do in-place crypto to keep bufaddr intact */
713 			iobuf = kmem_alloc(len, KM_SLEEP);
714 			if (lofi_crypto(lsp, bp, bufaddr, iobuf, len,
715 			    B_TRUE) != CRYPTO_SUCCESS) {
716 				kmem_free(iobuf, len);
717 				if (method != RDWR_BCOPY)
718 					bp->b_resid = len;
719 				return (EIO);
720 			}
721 		}
722 		if (method == RDWR_BCOPY) {
723 			/* DO NOT update bp->b_resid for bcopy */
724 			bcopy(iobuf, bcopy_locn, len);
725 			error = 0;
726 		} else {		/* RDWR_RAW */
727 			error = vn_rdwr(UIO_WRITE, lsp->ls_vp, iobuf, len,
728 			    offset, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred,
729 			    &resid);
730 			bp->b_resid = resid;
731 		}
732 		if (lsp->ls_crypto_enabled) {
733 			kmem_free(iobuf, len);
734 		}
735 		return (error);
736 	}
737 }
738 
739 static int
740 lofi_mapped_rdwr(caddr_t bufaddr, offset_t offset, struct buf *bp,
741     struct lofi_state *lsp)
742 {
743 	int error;
744 	offset_t alignedoffset, mapoffset;
745 	size_t	xfersize;
746 	int	isread;
747 	int	smflags;
748 	caddr_t	mapaddr;
749 	size_t	len;
750 	enum seg_rw srw;
751 	int	save_error;
752 
753 	/*
754 	 * Note:  offset is already shifted by lsp->ls_crypto_offset
755 	 * when it gets here.
756 	 */
757 	if (lsp->ls_crypto_enabled)
758 		ASSERT(lsp->ls_vp_comp_size == lsp->ls_vp_size);
759 
760 	/*
761 	 * segmap always gives us an 8K (MAXBSIZE) chunk, aligned on
762 	 * an 8K boundary, but the buf transfer address may not be
763 	 * aligned on more than a 512-byte boundary (we don't enforce
764 	 * that even though we could). This matters since the initial
765 	 * part of the transfer may not start at offset 0 within the
766 	 * segmap'd chunk. So we have to compensate for that with
767 	 * 'mapoffset'. Subsequent chunks always start off at the
768 	 * beginning, and the last is capped by b_resid
769 	 *
770 	 * Visually, where "|" represents page map boundaries:
771 	 *   alignedoffset (mapaddr begins at this segmap boundary)
772 	 *    |   offset (from beginning of file)
773 	 *    |    |	   len
774 	 *    v    v	    v
775 	 * ===|====X========|====...======|========X====|====
776 	 *	   /-------------...---------------/
777 	 *		^ bp->b_bcount/bp->b_resid at start
778 	 *    /----/--------/----...------/--------/
779 	 *	^	^	^   ^		^
780 	 *	|	|	|   |		nth xfersize (<= MAXBSIZE)
781 	 *	|	|	2nd thru n-1st xfersize (= MAXBSIZE)
782 	 *	|	1st xfersize (<= MAXBSIZE)
783 	 *    mapoffset (offset into 1st segmap, non-0 1st time, 0 thereafter)
784 	 *
785 	 * Notes: "alignedoffset" is "offset" rounded down to nearest
786 	 * MAXBSIZE boundary.  "len" is next page boundary of size
787 	 * PAGESIZE after "alignedoffset".
788 	 */
789 	mapoffset = offset & MAXBOFFSET;
790 	alignedoffset = offset - mapoffset;
791 	bp->b_resid = bp->b_bcount;
792 	isread = bp->b_flags & B_READ;
793 	srw = isread ? S_READ : S_WRITE;
794 	do {
795 		xfersize = MIN(lsp->ls_vp_comp_size - offset,
796 		    MIN(MAXBSIZE - mapoffset, bp->b_resid));
797 		len = roundup(mapoffset + xfersize, PAGESIZE);
798 		mapaddr = segmap_getmapflt(segkmap, lsp->ls_vp,
799 		    alignedoffset, MAXBSIZE, 1, srw);
800 		/*
801 		 * Now fault in the pages. This lets us check
802 		 * for errors before we reference mapaddr and
803 		 * try to resolve the fault in bcopy (which would
804 		 * panic instead). And this can easily happen,
805 		 * particularly if you've lofi'd a file over NFS
806 		 * and someone deletes the file on the server.
807 		 */
808 		error = segmap_fault(kas.a_hat, segkmap, mapaddr,
809 		    len, F_SOFTLOCK, srw);
810 		if (error) {
811 			(void) segmap_release(segkmap, mapaddr, 0);
812 			if (FC_CODE(error) == FC_OBJERR)
813 				error = FC_ERRNO(error);
814 			else
815 				error = EIO;
816 			break;
817 		}
818 		/* error may be non-zero for encrypted lofi */
819 		error = lofi_rdwr(bufaddr, 0, bp, lsp, xfersize,
820 		    RDWR_BCOPY, mapaddr + mapoffset);
821 		if (error == 0) {
822 			bp->b_resid -= xfersize;
823 			bufaddr += xfersize;
824 			offset += xfersize;
825 		}
826 		smflags = 0;
827 		if (isread) {
828 			smflags |= SM_FREE;
829 			/*
830 			 * If we're reading an entire page starting
831 			 * at a page boundary, there's a good chance
832 			 * we won't need it again. Put it on the
833 			 * head of the freelist.
834 			 */
835 			if (mapoffset == 0 && xfersize == MAXBSIZE)
836 				smflags |= SM_DONTNEED;
837 		} else {
838 			/*
839 			 * Write back good pages, it is okay to
840 			 * always release asynchronous here as we'll
841 			 * follow with VOP_FSYNC for B_SYNC buffers.
842 			 */
843 			if (error == 0)
844 				smflags |= SM_WRITE | SM_ASYNC;
845 		}
846 		(void) segmap_fault(kas.a_hat, segkmap, mapaddr,
847 		    len, F_SOFTUNLOCK, srw);
848 		save_error = segmap_release(segkmap, mapaddr, smflags);
849 		if (error == 0)
850 			error = save_error;
851 		/* only the first map may start partial */
852 		mapoffset = 0;
853 		alignedoffset += MAXBSIZE;
854 	} while ((error == 0) && (bp->b_resid > 0) &&
855 	    (offset < lsp->ls_vp_comp_size));
856 
857 	return (error);
858 }
859 
860 /*
861  * Check if segment seg_index is present in the decompressed segment
862  * data cache.
863  *
864  * Returns a pointer to the decompressed segment data cache entry if
865  * found, and NULL when decompressed data for this segment is not yet
866  * cached.
867  */
868 static struct lofi_comp_cache *
869 lofi_find_comp_data(struct lofi_state *lsp, uint64_t seg_index)
870 {
871 	struct lofi_comp_cache *lc;
872 
873 	ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
874 
875 	for (lc = list_head(&lsp->ls_comp_cache); lc != NULL;
876 	    lc = list_next(&lsp->ls_comp_cache, lc)) {
877 		if (lc->lc_index == seg_index) {
878 			/*
879 			 * Decompressed segment data was found in the
880 			 * cache.
881 			 *
882 			 * The cache uses an LRU replacement strategy;
883 			 * move the entry to head of list.
884 			 */
885 			list_remove(&lsp->ls_comp_cache, lc);
886 			list_insert_head(&lsp->ls_comp_cache, lc);
887 			return (lc);
888 		}
889 	}
890 	return (NULL);
891 }
892 
893 /*
894  * Add the data for a decompressed segment at segment index
895  * seg_index to the cache of the decompressed segments.
896  *
897  * Returns a pointer to the cache element structure in case
898  * the data was added to the cache; returns NULL when the data
899  * wasn't cached.
900  */
901 static struct lofi_comp_cache *
902 lofi_add_comp_data(struct lofi_state *lsp, uint64_t seg_index,
903     uchar_t *data)
904 {
905 	struct lofi_comp_cache *lc;
906 
907 	ASSERT(MUTEX_HELD(&lsp->ls_comp_cache_lock));
908 
909 	while (lsp->ls_comp_cache_count > lofi_max_comp_cache) {
910 		lc = list_remove_tail(&lsp->ls_comp_cache);
911 		ASSERT(lc != NULL);
912 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
913 		kmem_free(lc, sizeof (struct lofi_comp_cache));
914 		lsp->ls_comp_cache_count--;
915 	}
916 
917 	/*
918 	 * Do not cache when disabled by tunable variable
919 	 */
920 	if (lofi_max_comp_cache == 0)
921 		return (NULL);
922 
923 	/*
924 	 * When the cache has not yet reached the maximum allowed
925 	 * number of segments, allocate a new cache element.
926 	 * Otherwise the cache is full; reuse the last list element
927 	 * (LRU) for caching the decompressed segment data.
928 	 *
929 	 * The cache element for the new decompressed segment data is
930 	 * added to the head of the list.
931 	 */
932 	if (lsp->ls_comp_cache_count < lofi_max_comp_cache) {
933 		lc = kmem_alloc(sizeof (struct lofi_comp_cache), KM_SLEEP);
934 		lc->lc_data = NULL;
935 		list_insert_head(&lsp->ls_comp_cache, lc);
936 		lsp->ls_comp_cache_count++;
937 	} else {
938 		lc = list_remove_tail(&lsp->ls_comp_cache);
939 		if (lc == NULL)
940 			return (NULL);
941 		list_insert_head(&lsp->ls_comp_cache, lc);
942 	}
943 
944 	/*
945 	 * Free old uncompressed segment data when reusing a cache
946 	 * entry.
947 	 */
948 	if (lc->lc_data != NULL)
949 		kmem_free(lc->lc_data, lsp->ls_uncomp_seg_sz);
950 
951 	lc->lc_data = data;
952 	lc->lc_index = seg_index;
953 	return (lc);
954 }
955 
956 
957 /*ARGSUSED*/
958 static int
959 gzip_decompress(void *src, size_t srclen, void *dst,
960     size_t *dstlen, int level)
961 {
962 	ASSERT(*dstlen >= srclen);
963 
964 	if (z_uncompress(dst, dstlen, src, srclen) != Z_OK)
965 		return (-1);
966 	return (0);
967 }
968 
969 #define	LZMA_HEADER_SIZE	(LZMA_PROPS_SIZE + 8)
970 /*ARGSUSED*/
971 static int
972 lzma_decompress(void *src, size_t srclen, void *dst,
973 	size_t *dstlen, int level)
974 {
975 	size_t insizepure;
976 	void *actual_src;
977 	ELzmaStatus status;
978 
979 	insizepure = srclen - LZMA_HEADER_SIZE;
980 	actual_src = (void *)((Byte *)src + LZMA_HEADER_SIZE);
981 
982 	if (LzmaDecode((Byte *)dst, (size_t *)dstlen,
983 	    (const Byte *)actual_src, &insizepure,
984 	    (const Byte *)src, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status,
985 	    &g_Alloc) != SZ_OK) {
986 		return (-1);
987 	}
988 	return (0);
989 }
990 
991 /*
992  * This is basically what strategy used to be before we found we
993  * needed task queues.
994  */
995 static void
996 lofi_strategy_task(void *arg)
997 {
998 	struct buf *bp = (struct buf *)arg;
999 	int error;
1000 	int syncflag = 0;
1001 	struct lofi_state *lsp;
1002 	offset_t offset;
1003 	caddr_t	bufaddr;
1004 	size_t	len;
1005 	size_t	xfersize;
1006 	boolean_t bufinited = B_FALSE;
1007 
1008 	lsp = ddi_get_soft_state(lofi_statep, getminor(bp->b_edev));
1009 	if (lsp == NULL) {
1010 		error = ENXIO;
1011 		goto errout;
1012 	}
1013 	if (lsp->ls_kstat) {
1014 		mutex_enter(lsp->ls_kstat->ks_lock);
1015 		kstat_waitq_to_runq(KSTAT_IO_PTR(lsp->ls_kstat));
1016 		mutex_exit(lsp->ls_kstat->ks_lock);
1017 	}
1018 	bp_mapin(bp);
1019 	bufaddr = bp->b_un.b_addr;
1020 	offset = bp->b_lblkno * DEV_BSIZE;	/* offset within file */
1021 	if (lsp->ls_crypto_enabled) {
1022 		/* encrypted data really begins after crypto header */
1023 		offset += lsp->ls_crypto_offset;
1024 	}
1025 	len = bp->b_bcount;
1026 	bufinited = B_TRUE;
1027 
1028 	if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1029 		error = EIO;
1030 		goto errout;
1031 	}
1032 
1033 	/*
1034 	 * If we're writing and the buffer was not B_ASYNC
1035 	 * we'll follow up with a VOP_FSYNC() to force any
1036 	 * asynchronous I/O to stable storage.
1037 	 */
1038 	if (!(bp->b_flags & B_READ) && !(bp->b_flags & B_ASYNC))
1039 		syncflag = FSYNC;
1040 
1041 	/*
1042 	 * We used to always use vn_rdwr here, but we cannot do that because
1043 	 * we might decide to read or write from the the underlying
1044 	 * file during this call, which would be a deadlock because
1045 	 * we have the rw_lock. So instead we page, unless it's not
1046 	 * mapable or it's a character device or it's an encrypted lofi.
1047 	 */
1048 	if ((lsp->ls_vp->v_flag & VNOMAP) || (lsp->ls_vp->v_type == VCHR) ||
1049 	    lsp->ls_crypto_enabled) {
1050 		error = lofi_rdwr(bufaddr, offset, bp, lsp, len, RDWR_RAW,
1051 		    NULL);
1052 	} else if (lsp->ls_uncomp_seg_sz == 0) {
1053 		error = lofi_mapped_rdwr(bufaddr, offset, bp, lsp);
1054 	} else {
1055 		uchar_t *compressed_seg = NULL, *cmpbuf;
1056 		uchar_t *uncompressed_seg = NULL;
1057 		lofi_compress_info_t *li;
1058 		size_t oblkcount;
1059 		ulong_t seglen;
1060 		uint64_t sblkno, eblkno, cmpbytes;
1061 		uint64_t uncompressed_seg_index;
1062 		struct lofi_comp_cache *lc;
1063 		offset_t sblkoff, eblkoff;
1064 		u_offset_t salign, ealign;
1065 		u_offset_t sdiff;
1066 		uint32_t comp_data_sz;
1067 		uint64_t i;
1068 		int j;
1069 
1070 		/*
1071 		 * From here on we're dealing primarily with compressed files
1072 		 */
1073 		ASSERT(!lsp->ls_crypto_enabled);
1074 
1075 		/*
1076 		 * Compressed files can only be read from and
1077 		 * not written to
1078 		 */
1079 		if (!(bp->b_flags & B_READ)) {
1080 			bp->b_resid = bp->b_bcount;
1081 			error = EROFS;
1082 			goto done;
1083 		}
1084 
1085 		ASSERT(lsp->ls_comp_algorithm_index >= 0);
1086 		li = &lofi_compress_table[lsp->ls_comp_algorithm_index];
1087 		/*
1088 		 * Compute starting and ending compressed segment numbers
1089 		 * We use only bitwise operations avoiding division and
1090 		 * modulus because we enforce the compression segment size
1091 		 * to a power of 2
1092 		 */
1093 		sblkno = offset >> lsp->ls_comp_seg_shift;
1094 		sblkoff = offset & (lsp->ls_uncomp_seg_sz - 1);
1095 		eblkno = (offset + bp->b_bcount) >> lsp->ls_comp_seg_shift;
1096 		eblkoff = (offset + bp->b_bcount) & (lsp->ls_uncomp_seg_sz - 1);
1097 
1098 		/*
1099 		 * Check the decompressed segment cache.
1100 		 *
1101 		 * The cache is used only when the requested data
1102 		 * is within a segment. Requests that cross
1103 		 * segment boundaries bypass the cache.
1104 		 */
1105 		if (sblkno == eblkno ||
1106 		    (sblkno + 1 == eblkno && eblkoff == 0)) {
1107 			/*
1108 			 * Request doesn't cross a segment boundary,
1109 			 * now check the cache.
1110 			 */
1111 			mutex_enter(&lsp->ls_comp_cache_lock);
1112 			lc = lofi_find_comp_data(lsp, sblkno);
1113 			if (lc != NULL) {
1114 				/*
1115 				 * We've found the decompressed segment
1116 				 * data in the cache; reuse it.
1117 				 */
1118 				bcopy(lc->lc_data + sblkoff, bufaddr,
1119 				    bp->b_bcount);
1120 				mutex_exit(&lsp->ls_comp_cache_lock);
1121 				bp->b_resid = 0;
1122 				error = 0;
1123 				goto done;
1124 			}
1125 			mutex_exit(&lsp->ls_comp_cache_lock);
1126 		}
1127 
1128 		/*
1129 		 * Align start offset to block boundary for segmap
1130 		 */
1131 		salign = lsp->ls_comp_seg_index[sblkno];
1132 		sdiff = salign & (DEV_BSIZE - 1);
1133 		salign -= sdiff;
1134 		if (eblkno >= (lsp->ls_comp_index_sz - 1)) {
1135 			/*
1136 			 * We're dealing with the last segment of
1137 			 * the compressed file -- the size of this
1138 			 * segment *may not* be the same as the
1139 			 * segment size for the file
1140 			 */
1141 			eblkoff = (offset + bp->b_bcount) &
1142 			    (lsp->ls_uncomp_last_seg_sz - 1);
1143 			ealign = lsp->ls_vp_comp_size;
1144 		} else {
1145 			ealign = lsp->ls_comp_seg_index[eblkno + 1];
1146 		}
1147 
1148 		/*
1149 		 * Preserve original request paramaters
1150 		 */
1151 		oblkcount = bp->b_bcount;
1152 
1153 		/*
1154 		 * Assign the calculated parameters
1155 		 */
1156 		comp_data_sz = ealign - salign;
1157 		bp->b_bcount = comp_data_sz;
1158 
1159 		/*
1160 		 * Buffers to hold compressed segments are pre-allocated
1161 		 * on a per-thread basis. Find a pre-allocated buffer
1162 		 * that is not currently in use and mark it for use.
1163 		 */
1164 		mutex_enter(&lsp->ls_comp_bufs_lock);
1165 		for (j = 0; j < lofi_taskq_nthreads; j++) {
1166 			if (lsp->ls_comp_bufs[j].inuse == 0) {
1167 				lsp->ls_comp_bufs[j].inuse = 1;
1168 				break;
1169 			}
1170 		}
1171 
1172 		mutex_exit(&lsp->ls_comp_bufs_lock);
1173 		ASSERT(j < lofi_taskq_nthreads);
1174 
1175 		/*
1176 		 * If the pre-allocated buffer size does not match
1177 		 * the size of the I/O request, re-allocate it with
1178 		 * the appropriate size
1179 		 */
1180 		if (lsp->ls_comp_bufs[j].bufsize < bp->b_bcount) {
1181 			if (lsp->ls_comp_bufs[j].bufsize > 0)
1182 				kmem_free(lsp->ls_comp_bufs[j].buf,
1183 				    lsp->ls_comp_bufs[j].bufsize);
1184 			lsp->ls_comp_bufs[j].buf = kmem_alloc(bp->b_bcount,
1185 			    KM_SLEEP);
1186 			lsp->ls_comp_bufs[j].bufsize = bp->b_bcount;
1187 		}
1188 		compressed_seg = lsp->ls_comp_bufs[j].buf;
1189 
1190 		/*
1191 		 * Map in the calculated number of blocks
1192 		 */
1193 		error = lofi_mapped_rdwr((caddr_t)compressed_seg, salign,
1194 		    bp, lsp);
1195 
1196 		bp->b_bcount = oblkcount;
1197 		bp->b_resid = oblkcount;
1198 		if (error != 0)
1199 			goto done;
1200 
1201 		/*
1202 		 * decompress compressed blocks start
1203 		 */
1204 		cmpbuf = compressed_seg + sdiff;
1205 		for (i = sblkno; i <= eblkno; i++) {
1206 			ASSERT(i < lsp->ls_comp_index_sz - 1);
1207 			uchar_t *useg;
1208 
1209 			/*
1210 			 * The last segment is special in that it is
1211 			 * most likely not going to be the same
1212 			 * (uncompressed) size as the other segments.
1213 			 */
1214 			if (i == (lsp->ls_comp_index_sz - 2)) {
1215 				seglen = lsp->ls_uncomp_last_seg_sz;
1216 			} else {
1217 				seglen = lsp->ls_uncomp_seg_sz;
1218 			}
1219 
1220 			/*
1221 			 * Each of the segment index entries contains
1222 			 * the starting block number for that segment.
1223 			 * The number of compressed bytes in a segment
1224 			 * is thus the difference between the starting
1225 			 * block number of this segment and the starting
1226 			 * block number of the next segment.
1227 			 */
1228 			cmpbytes = lsp->ls_comp_seg_index[i + 1] -
1229 			    lsp->ls_comp_seg_index[i];
1230 
1231 			/*
1232 			 * The first byte in a compressed segment is a flag
1233 			 * that indicates whether this segment is compressed
1234 			 * at all.
1235 			 *
1236 			 * The variable 'useg' is used (instead of
1237 			 * uncompressed_seg) in this loop to keep a
1238 			 * reference to the uncompressed segment.
1239 			 *
1240 			 * N.B. If 'useg' is replaced with uncompressed_seg,
1241 			 * it leads to memory leaks and heap corruption in
1242 			 * corner cases where compressed segments lie
1243 			 * adjacent to uncompressed segments.
1244 			 */
1245 			if (*cmpbuf == UNCOMPRESSED) {
1246 				useg = cmpbuf + SEGHDR;
1247 			} else {
1248 				if (uncompressed_seg == NULL)
1249 					uncompressed_seg =
1250 					    kmem_alloc(lsp->ls_uncomp_seg_sz,
1251 					    KM_SLEEP);
1252 				useg = uncompressed_seg;
1253 				uncompressed_seg_index = i;
1254 
1255 				if (li->l_decompress((cmpbuf + SEGHDR),
1256 				    (cmpbytes - SEGHDR), uncompressed_seg,
1257 				    &seglen, li->l_level) != 0) {
1258 					error = EIO;
1259 					goto done;
1260 				}
1261 			}
1262 
1263 			/*
1264 			 * Determine how much uncompressed data we
1265 			 * have to copy and copy it
1266 			 */
1267 			xfersize = lsp->ls_uncomp_seg_sz - sblkoff;
1268 			if (i == eblkno)
1269 				xfersize -= (lsp->ls_uncomp_seg_sz - eblkoff);
1270 
1271 			bcopy((useg + sblkoff), bufaddr, xfersize);
1272 
1273 			cmpbuf += cmpbytes;
1274 			bufaddr += xfersize;
1275 			bp->b_resid -= xfersize;
1276 			sblkoff = 0;
1277 
1278 			if (bp->b_resid == 0)
1279 				break;
1280 		} /* decompress compressed blocks ends */
1281 
1282 		/*
1283 		 * Skip to done if there is no uncompressed data to cache
1284 		 */
1285 		if (uncompressed_seg == NULL)
1286 			goto done;
1287 
1288 		/*
1289 		 * Add the data for the last decompressed segment to
1290 		 * the cache.
1291 		 *
1292 		 * In case the uncompressed segment data was added to (and
1293 		 * is referenced by) the cache, make sure we don't free it
1294 		 * here.
1295 		 */
1296 		mutex_enter(&lsp->ls_comp_cache_lock);
1297 		if ((lc = lofi_add_comp_data(lsp, uncompressed_seg_index,
1298 		    uncompressed_seg)) != NULL) {
1299 			uncompressed_seg = NULL;
1300 		}
1301 		mutex_exit(&lsp->ls_comp_cache_lock);
1302 
1303 done:
1304 		if (compressed_seg != NULL) {
1305 			mutex_enter(&lsp->ls_comp_bufs_lock);
1306 			lsp->ls_comp_bufs[j].inuse = 0;
1307 			mutex_exit(&lsp->ls_comp_bufs_lock);
1308 		}
1309 		if (uncompressed_seg != NULL)
1310 			kmem_free(uncompressed_seg, lsp->ls_uncomp_seg_sz);
1311 	} /* end of handling compressed files */
1312 
1313 	if ((error == 0) && (syncflag != 0))
1314 		error = VOP_FSYNC(lsp->ls_vp, syncflag, kcred, NULL);
1315 
1316 errout:
1317 	if (bufinited && lsp->ls_kstat) {
1318 		size_t n_done = bp->b_bcount - bp->b_resid;
1319 		kstat_io_t *kioptr;
1320 
1321 		mutex_enter(lsp->ls_kstat->ks_lock);
1322 		kioptr = KSTAT_IO_PTR(lsp->ls_kstat);
1323 		if (bp->b_flags & B_READ) {
1324 			kioptr->nread += n_done;
1325 			kioptr->reads++;
1326 		} else {
1327 			kioptr->nwritten += n_done;
1328 			kioptr->writes++;
1329 		}
1330 		kstat_runq_exit(kioptr);
1331 		mutex_exit(lsp->ls_kstat->ks_lock);
1332 	}
1333 
1334 	mutex_enter(&lsp->ls_vp_lock);
1335 	if (--lsp->ls_vp_iocount == 0)
1336 		cv_broadcast(&lsp->ls_vp_cv);
1337 	mutex_exit(&lsp->ls_vp_lock);
1338 
1339 	bioerror(bp, error);
1340 	biodone(bp);
1341 }
1342 
1343 static int
1344 lofi_strategy(struct buf *bp)
1345 {
1346 	struct lofi_state *lsp;
1347 	offset_t	offset;
1348 
1349 	/*
1350 	 * We cannot just do I/O here, because the current thread
1351 	 * _might_ end up back in here because the underlying filesystem
1352 	 * wants a buffer, which eventually gets into bio_recycle and
1353 	 * might call into lofi to write out a delayed-write buffer.
1354 	 * This is bad if the filesystem above lofi is the same as below.
1355 	 *
1356 	 * We could come up with a complex strategy using threads to
1357 	 * do the I/O asynchronously, or we could use task queues. task
1358 	 * queues were incredibly easy so they win.
1359 	 */
1360 	lsp = ddi_get_soft_state(lofi_statep, getminor(bp->b_edev));
1361 	if (lsp == NULL) {
1362 		bioerror(bp, ENXIO);
1363 		biodone(bp);
1364 		return (0);
1365 	}
1366 
1367 	mutex_enter(&lsp->ls_vp_lock);
1368 	if (lsp->ls_vp == NULL || lsp->ls_vp_closereq) {
1369 		bioerror(bp, EIO);
1370 		biodone(bp);
1371 		mutex_exit(&lsp->ls_vp_lock);
1372 		return (0);
1373 	}
1374 
1375 	offset = bp->b_lblkno * DEV_BSIZE;	/* offset within file */
1376 	if (lsp->ls_crypto_enabled) {
1377 		/* encrypted data really begins after crypto header */
1378 		offset += lsp->ls_crypto_offset;
1379 	}
1380 	if (offset == lsp->ls_vp_size) {
1381 		/* EOF */
1382 		if ((bp->b_flags & B_READ) != 0) {
1383 			bp->b_resid = bp->b_bcount;
1384 			bioerror(bp, 0);
1385 		} else {
1386 			/* writes should fail */
1387 			bioerror(bp, ENXIO);
1388 		}
1389 		biodone(bp);
1390 		mutex_exit(&lsp->ls_vp_lock);
1391 		return (0);
1392 	}
1393 	if (offset > lsp->ls_vp_size) {
1394 		bioerror(bp, ENXIO);
1395 		biodone(bp);
1396 		mutex_exit(&lsp->ls_vp_lock);
1397 		return (0);
1398 	}
1399 	lsp->ls_vp_iocount++;
1400 	mutex_exit(&lsp->ls_vp_lock);
1401 
1402 	if (lsp->ls_kstat) {
1403 		mutex_enter(lsp->ls_kstat->ks_lock);
1404 		kstat_waitq_enter(KSTAT_IO_PTR(lsp->ls_kstat));
1405 		mutex_exit(lsp->ls_kstat->ks_lock);
1406 	}
1407 	(void) taskq_dispatch(lsp->ls_taskq, lofi_strategy_task, bp, KM_SLEEP);
1408 	return (0);
1409 }
1410 
1411 /*ARGSUSED2*/
1412 static int
1413 lofi_read(dev_t dev, struct uio *uio, struct cred *credp)
1414 {
1415 	if (getminor(dev) == 0)
1416 		return (EINVAL);
1417 	UIO_CHECK(uio);
1418 	return (physio(lofi_strategy, NULL, dev, B_READ, minphys, uio));
1419 }
1420 
1421 /*ARGSUSED2*/
1422 static int
1423 lofi_write(dev_t dev, struct uio *uio, struct cred *credp)
1424 {
1425 	if (getminor(dev) == 0)
1426 		return (EINVAL);
1427 	UIO_CHECK(uio);
1428 	return (physio(lofi_strategy, NULL, dev, B_WRITE, minphys, uio));
1429 }
1430 
1431 /*ARGSUSED2*/
1432 static int
1433 lofi_aread(dev_t dev, struct aio_req *aio, struct cred *credp)
1434 {
1435 	if (getminor(dev) == 0)
1436 		return (EINVAL);
1437 	UIO_CHECK(aio->aio_uio);
1438 	return (aphysio(lofi_strategy, anocancel, dev, B_READ, minphys, aio));
1439 }
1440 
1441 /*ARGSUSED2*/
1442 static int
1443 lofi_awrite(dev_t dev, struct aio_req *aio, struct cred *credp)
1444 {
1445 	if (getminor(dev) == 0)
1446 		return (EINVAL);
1447 	UIO_CHECK(aio->aio_uio);
1448 	return (aphysio(lofi_strategy, anocancel, dev, B_WRITE, minphys, aio));
1449 }
1450 
1451 /*ARGSUSED*/
1452 static int
1453 lofi_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1454 {
1455 	switch (infocmd) {
1456 	case DDI_INFO_DEVT2DEVINFO:
1457 		*result = lofi_dip;
1458 		return (DDI_SUCCESS);
1459 	case DDI_INFO_DEVT2INSTANCE:
1460 		*result = 0;
1461 		return (DDI_SUCCESS);
1462 	}
1463 	return (DDI_FAILURE);
1464 }
1465 
1466 static int
1467 lofi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
1468 {
1469 	int	error;
1470 
1471 	if (cmd != DDI_ATTACH)
1472 		return (DDI_FAILURE);
1473 
1474 	lofi_minor_id = id_space_create("lofi_minor_id", 1, L_MAXMIN32 + 1);
1475 
1476 	if (!lofi_minor_id)
1477 		return (DDI_FAILURE);
1478 
1479 	error = ddi_soft_state_zalloc(lofi_statep, 0);
1480 	if (error == DDI_FAILURE) {
1481 		id_space_destroy(lofi_minor_id);
1482 		return (DDI_FAILURE);
1483 	}
1484 	error = ddi_create_minor_node(dip, LOFI_CTL_NODE, S_IFCHR, 0,
1485 	    DDI_PSEUDO, NULL);
1486 	if (error == DDI_FAILURE) {
1487 		ddi_soft_state_free(lofi_statep, 0);
1488 		id_space_destroy(lofi_minor_id);
1489 		return (DDI_FAILURE);
1490 	}
1491 	/* driver handles kernel-issued IOCTLs */
1492 	if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
1493 	    DDI_KERNEL_IOCTL, NULL, 0) != DDI_PROP_SUCCESS) {
1494 		ddi_remove_minor_node(dip, NULL);
1495 		ddi_soft_state_free(lofi_statep, 0);
1496 		id_space_destroy(lofi_minor_id);
1497 		return (DDI_FAILURE);
1498 	}
1499 
1500 	zone_key_create(&lofi_zone_key, NULL, lofi_zone_shutdown, NULL);
1501 
1502 	lofi_dip = dip;
1503 	ddi_report_dev(dip);
1504 	return (DDI_SUCCESS);
1505 }
1506 
1507 static int
1508 lofi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
1509 {
1510 	if (cmd != DDI_DETACH)
1511 		return (DDI_FAILURE);
1512 
1513 	mutex_enter(&lofi_lock);
1514 
1515 	if (!list_is_empty(&lofi_list)) {
1516 		mutex_exit(&lofi_lock);
1517 		return (DDI_FAILURE);
1518 	}
1519 
1520 	lofi_dip = NULL;
1521 	ddi_remove_minor_node(dip, NULL);
1522 	ddi_prop_remove_all(dip);
1523 
1524 	mutex_exit(&lofi_lock);
1525 
1526 	if (zone_key_delete(lofi_zone_key) != 0)
1527 		cmn_err(CE_WARN, "failed to delete zone key");
1528 
1529 	ddi_soft_state_free(lofi_statep, 0);
1530 
1531 	id_space_destroy(lofi_minor_id);
1532 
1533 	return (DDI_SUCCESS);
1534 }
1535 
1536 /*
1537  * With addition of encryption, be careful that encryption key is wiped before
1538  * kernel memory structures are freed, and also that key is not accidentally
1539  * passed out into userland structures.
1540  */
1541 static void
1542 free_lofi_ioctl(struct lofi_ioctl *klip)
1543 {
1544 	/* Make sure this encryption key doesn't stick around */
1545 	bzero(klip->li_key, sizeof (klip->li_key));
1546 	kmem_free(klip, sizeof (struct lofi_ioctl));
1547 }
1548 
1549 /*
1550  * These two just simplify the rest of the ioctls that need to copyin/out
1551  * the lofi_ioctl structure.
1552  */
1553 int
1554 copy_in_lofi_ioctl(const struct lofi_ioctl *ulip, struct lofi_ioctl **klipp,
1555     int flag)
1556 {
1557 	struct lofi_ioctl *klip;
1558 	int	error;
1559 
1560 	klip = *klipp = kmem_alloc(sizeof (struct lofi_ioctl), KM_SLEEP);
1561 	error = ddi_copyin(ulip, klip, sizeof (struct lofi_ioctl), flag);
1562 	if (error)
1563 		goto err;
1564 
1565 	/* ensure NULL termination */
1566 	klip->li_filename[MAXPATHLEN-1] = '\0';
1567 	klip->li_algorithm[MAXALGLEN-1] = '\0';
1568 	klip->li_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
1569 	klip->li_iv_cipher[CRYPTO_MAX_MECH_NAME-1] = '\0';
1570 
1571 	if (klip->li_minor > L_MAXMIN32) {
1572 		error = EINVAL;
1573 		goto err;
1574 	}
1575 
1576 	return (0);
1577 
1578 err:
1579 	free_lofi_ioctl(klip);
1580 	return (error);
1581 }
1582 
1583 int
1584 copy_out_lofi_ioctl(const struct lofi_ioctl *klip, struct lofi_ioctl *ulip,
1585 	int flag)
1586 {
1587 	int	error;
1588 
1589 	/*
1590 	 * NOTE: Do NOT copy the crypto_key_t "back" to userland.
1591 	 * This ensures that an attacker can't trivially find the
1592 	 * key for a mapping just by issuing the ioctl.
1593 	 *
1594 	 * It can still be found by poking around in kmem with mdb(1),
1595 	 * but there is no point in making it easy when the info isn't
1596 	 * of any use in this direction anyway.
1597 	 *
1598 	 * Either way we don't actually have the raw key stored in
1599 	 * a form that we can get it anyway, since we just used it
1600 	 * to create a ctx template and didn't keep "the original".
1601 	 */
1602 	error = ddi_copyout(klip, ulip, sizeof (struct lofi_ioctl), flag);
1603 	if (error)
1604 		return (EFAULT);
1605 	return (0);
1606 }
1607 
1608 static int
1609 lofi_access(struct lofi_state *lsp)
1610 {
1611 	ASSERT(MUTEX_HELD(&lofi_lock));
1612 	if (INGLOBALZONE(curproc) || lsp->ls_zone.zref_zone == curzone)
1613 		return (0);
1614 	return (EPERM);
1615 }
1616 
1617 /*
1618  * Find the lofi state for the given filename. We compare by vnode to
1619  * allow the global zone visibility into NGZ lofi nodes.
1620  */
1621 static int
1622 file_to_lofi_nocheck(char *filename, boolean_t readonly,
1623     struct lofi_state **lspp)
1624 {
1625 	struct lofi_state *lsp;
1626 	vnode_t *vp = NULL;
1627 	int err = 0;
1628 	int rdfiles = 0;
1629 
1630 	ASSERT(MUTEX_HELD(&lofi_lock));
1631 
1632 	if ((err = lookupname(filename, UIO_SYSSPACE, FOLLOW,
1633 	    NULLVPP, &vp)) != 0)
1634 		goto out;
1635 
1636 	if (vp->v_type == VREG) {
1637 		vnode_t *realvp;
1638 		if (VOP_REALVP(vp, &realvp, NULL) == 0) {
1639 			VN_HOLD(realvp);
1640 			VN_RELE(vp);
1641 			vp = realvp;
1642 		}
1643 	}
1644 
1645 	for (lsp = list_head(&lofi_list); lsp != NULL;
1646 	    lsp = list_next(&lofi_list, lsp)) {
1647 		if (lsp->ls_vp == vp) {
1648 			if (lspp != NULL)
1649 				*lspp = lsp;
1650 			if (lsp->ls_readonly) {
1651 				rdfiles++;
1652 				/* Skip if '-r' is specified */
1653 				if (readonly)
1654 					continue;
1655 			}
1656 			goto out;
1657 		}
1658 	}
1659 
1660 	err = ENOENT;
1661 
1662 	/*
1663 	 * If a filename is given as an argument for lofi_unmap, we shouldn't
1664 	 * allow unmap if there are multiple read-only lofi devices associated
1665 	 * with this file.
1666 	 */
1667 	if (lspp != NULL) {
1668 		if (rdfiles == 1)
1669 			err = 0;
1670 		else if (rdfiles > 1)
1671 			err = EBUSY;
1672 	}
1673 
1674 out:
1675 	if (vp != NULL)
1676 		VN_RELE(vp);
1677 	return (err);
1678 }
1679 
1680 /*
1681  * Find the minor for the given filename, checking the zone can access
1682  * it.
1683  */
1684 static int
1685 file_to_lofi(char *filename, boolean_t readonly, struct lofi_state **lspp)
1686 {
1687 	int err = 0;
1688 
1689 	ASSERT(MUTEX_HELD(&lofi_lock));
1690 
1691 	if ((err = file_to_lofi_nocheck(filename, readonly, lspp)) != 0)
1692 		return (err);
1693 
1694 	if ((err = lofi_access(*lspp)) != 0)
1695 		return (err);
1696 
1697 	return (0);
1698 }
1699 
1700 /*
1701  * Fakes up a disk geometry, and one big partition, based on the size
1702  * of the file. This is needed because we allow newfs'ing the device,
1703  * and newfs will do several disk ioctls to figure out the geometry and
1704  * partition information. It uses that information to determine the parameters
1705  * to pass to mkfs. Geometry is pretty much irrelevant these days, but we
1706  * have to support it.
1707  */
1708 static void
1709 fake_disk_geometry(struct lofi_state *lsp)
1710 {
1711 	u_offset_t dsize = lsp->ls_vp_size - lsp->ls_crypto_offset;
1712 
1713 	/* dk_geom - see dkio(7I) */
1714 	/*
1715 	 * dkg_ncyl _could_ be set to one here (one big cylinder with gobs
1716 	 * of sectors), but that breaks programs like fdisk which want to
1717 	 * partition a disk by cylinder. With one cylinder, you can't create
1718 	 * an fdisk partition and put pcfs on it for testing (hard to pick
1719 	 * a number between one and one).
1720 	 *
1721 	 * The cheezy floppy test is an attempt to not have too few cylinders
1722 	 * for a small file, or so many on a big file that you waste space
1723 	 * for backup superblocks or cylinder group structures.
1724 	 */
1725 	if (dsize < (2 * 1024 * 1024)) /* floppy? */
1726 		lsp->ls_dkg.dkg_ncyl = dsize / (100 * 1024);
1727 	else
1728 		lsp->ls_dkg.dkg_ncyl = dsize / (300 * 1024);
1729 	/* in case file file is < 100k */
1730 	if (lsp->ls_dkg.dkg_ncyl == 0)
1731 		lsp->ls_dkg.dkg_ncyl = 1;
1732 	lsp->ls_dkg.dkg_acyl = 0;
1733 	lsp->ls_dkg.dkg_bcyl = 0;
1734 	lsp->ls_dkg.dkg_nhead = 1;
1735 	lsp->ls_dkg.dkg_obs1 = 0;
1736 	lsp->ls_dkg.dkg_intrlv = 0;
1737 	lsp->ls_dkg.dkg_obs2 = 0;
1738 	lsp->ls_dkg.dkg_obs3 = 0;
1739 	lsp->ls_dkg.dkg_apc = 0;
1740 	lsp->ls_dkg.dkg_rpm = 7200;
1741 	lsp->ls_dkg.dkg_pcyl = lsp->ls_dkg.dkg_ncyl + lsp->ls_dkg.dkg_acyl;
1742 	lsp->ls_dkg.dkg_nsect = dsize / (DEV_BSIZE * lsp->ls_dkg.dkg_ncyl);
1743 	lsp->ls_dkg.dkg_write_reinstruct = 0;
1744 	lsp->ls_dkg.dkg_read_reinstruct = 0;
1745 
1746 	/* vtoc - see dkio(7I) */
1747 	bzero(&lsp->ls_vtoc, sizeof (struct vtoc));
1748 	lsp->ls_vtoc.v_sanity = VTOC_SANE;
1749 	lsp->ls_vtoc.v_version = V_VERSION;
1750 	(void) strncpy(lsp->ls_vtoc.v_volume, LOFI_DRIVER_NAME,
1751 	    sizeof (lsp->ls_vtoc.v_volume));
1752 	lsp->ls_vtoc.v_sectorsz = DEV_BSIZE;
1753 	lsp->ls_vtoc.v_nparts = 1;
1754 	lsp->ls_vtoc.v_part[0].p_tag = V_UNASSIGNED;
1755 
1756 	/*
1757 	 * A compressed file is read-only, other files can
1758 	 * be read-write
1759 	 */
1760 	if (lsp->ls_uncomp_seg_sz > 0) {
1761 		lsp->ls_vtoc.v_part[0].p_flag = V_UNMNT | V_RONLY;
1762 	} else {
1763 		lsp->ls_vtoc.v_part[0].p_flag = V_UNMNT;
1764 	}
1765 	lsp->ls_vtoc.v_part[0].p_start = (daddr_t)0;
1766 	/*
1767 	 * The partition size cannot just be the number of sectors, because
1768 	 * that might not end on a cylinder boundary. And if that's the case,
1769 	 * newfs/mkfs will print a scary warning. So just figure the size
1770 	 * based on the number of cylinders and sectors/cylinder.
1771 	 */
1772 	lsp->ls_vtoc.v_part[0].p_size = lsp->ls_dkg.dkg_pcyl *
1773 	    lsp->ls_dkg.dkg_nsect * lsp->ls_dkg.dkg_nhead;
1774 
1775 	/* dk_cinfo - see dkio(7I) */
1776 	bzero(&lsp->ls_ci, sizeof (struct dk_cinfo));
1777 	(void) strcpy(lsp->ls_ci.dki_cname, LOFI_DRIVER_NAME);
1778 	lsp->ls_ci.dki_ctype = DKC_MD;
1779 	lsp->ls_ci.dki_flags = 0;
1780 	lsp->ls_ci.dki_cnum = 0;
1781 	lsp->ls_ci.dki_addr = 0;
1782 	lsp->ls_ci.dki_space = 0;
1783 	lsp->ls_ci.dki_prio = 0;
1784 	lsp->ls_ci.dki_vec = 0;
1785 	(void) strcpy(lsp->ls_ci.dki_dname, LOFI_DRIVER_NAME);
1786 	lsp->ls_ci.dki_unit = 0;
1787 	lsp->ls_ci.dki_slave = 0;
1788 	lsp->ls_ci.dki_partition = 0;
1789 	/*
1790 	 * newfs uses this to set maxcontig. Must not be < 16, or it
1791 	 * will be 0 when newfs multiplies it by DEV_BSIZE and divides
1792 	 * it by the block size. Then tunefs doesn't work because
1793 	 * maxcontig is 0.
1794 	 */
1795 	lsp->ls_ci.dki_maxtransfer = 16;
1796 }
1797 
1798 /*
1799  * map in a compressed file
1800  *
1801  * Read in the header and the index that follows.
1802  *
1803  * The header is as follows -
1804  *
1805  * Signature (name of the compression algorithm)
1806  * Compression segment size (a multiple of 512)
1807  * Number of index entries
1808  * Size of the last block
1809  * The array containing the index entries
1810  *
1811  * The header information is always stored in
1812  * network byte order on disk.
1813  */
1814 static int
1815 lofi_map_compressed_file(struct lofi_state *lsp, char *buf)
1816 {
1817 	uint32_t index_sz, header_len, i;
1818 	ssize_t	resid;
1819 	enum uio_rw rw;
1820 	char *tbuf = buf;
1821 	int error;
1822 
1823 	/* The signature has already been read */
1824 	tbuf += sizeof (lsp->ls_comp_algorithm);
1825 	bcopy(tbuf, &(lsp->ls_uncomp_seg_sz), sizeof (lsp->ls_uncomp_seg_sz));
1826 	lsp->ls_uncomp_seg_sz = ntohl(lsp->ls_uncomp_seg_sz);
1827 
1828 	/*
1829 	 * The compressed segment size must be a power of 2
1830 	 */
1831 	if (lsp->ls_uncomp_seg_sz < DEV_BSIZE ||
1832 	    !ISP2(lsp->ls_uncomp_seg_sz))
1833 		return (EINVAL);
1834 
1835 	for (i = 0; !((lsp->ls_uncomp_seg_sz >> i) & 1); i++)
1836 		;
1837 
1838 	lsp->ls_comp_seg_shift = i;
1839 
1840 	tbuf += sizeof (lsp->ls_uncomp_seg_sz);
1841 	bcopy(tbuf, &(lsp->ls_comp_index_sz), sizeof (lsp->ls_comp_index_sz));
1842 	lsp->ls_comp_index_sz = ntohl(lsp->ls_comp_index_sz);
1843 
1844 	tbuf += sizeof (lsp->ls_comp_index_sz);
1845 	bcopy(tbuf, &(lsp->ls_uncomp_last_seg_sz),
1846 	    sizeof (lsp->ls_uncomp_last_seg_sz));
1847 	lsp->ls_uncomp_last_seg_sz = ntohl(lsp->ls_uncomp_last_seg_sz);
1848 
1849 	/*
1850 	 * Compute the total size of the uncompressed data
1851 	 * for use in fake_disk_geometry and other calculations.
1852 	 * Disk geometry has to be faked with respect to the
1853 	 * actual uncompressed data size rather than the
1854 	 * compressed file size.
1855 	 */
1856 	lsp->ls_vp_size =
1857 	    (u_offset_t)(lsp->ls_comp_index_sz - 2) * lsp->ls_uncomp_seg_sz
1858 	    + lsp->ls_uncomp_last_seg_sz;
1859 
1860 	/*
1861 	 * Index size is rounded up to DEV_BSIZE for ease
1862 	 * of segmapping
1863 	 */
1864 	index_sz = sizeof (*lsp->ls_comp_seg_index) * lsp->ls_comp_index_sz;
1865 	header_len = sizeof (lsp->ls_comp_algorithm) +
1866 	    sizeof (lsp->ls_uncomp_seg_sz) +
1867 	    sizeof (lsp->ls_comp_index_sz) +
1868 	    sizeof (lsp->ls_uncomp_last_seg_sz);
1869 	lsp->ls_comp_offbase = header_len + index_sz;
1870 
1871 	index_sz += header_len;
1872 	index_sz = roundup(index_sz, DEV_BSIZE);
1873 
1874 	lsp->ls_comp_index_data = kmem_alloc(index_sz, KM_SLEEP);
1875 	lsp->ls_comp_index_data_sz = index_sz;
1876 
1877 	/*
1878 	 * Read in the index -- this has a side-effect
1879 	 * of reading in the header as well
1880 	 */
1881 	rw = UIO_READ;
1882 	error = vn_rdwr(rw, lsp->ls_vp, lsp->ls_comp_index_data, index_sz,
1883 	    0, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
1884 
1885 	if (error != 0)
1886 		return (error);
1887 
1888 	/* Skip the header, this is where the index really begins */
1889 	lsp->ls_comp_seg_index =
1890 	    /*LINTED*/
1891 	    (uint64_t *)(lsp->ls_comp_index_data + header_len);
1892 
1893 	/*
1894 	 * Now recompute offsets in the index to account for
1895 	 * the header length
1896 	 */
1897 	for (i = 0; i < lsp->ls_comp_index_sz; i++) {
1898 		lsp->ls_comp_seg_index[i] = lsp->ls_comp_offbase +
1899 		    BE_64(lsp->ls_comp_seg_index[i]);
1900 	}
1901 
1902 	return (error);
1903 }
1904 
1905 static int
1906 lofi_init_crypto(struct lofi_state *lsp, struct lofi_ioctl *klip)
1907 {
1908 	struct crypto_meta chead;
1909 	char buf[DEV_BSIZE];
1910 	ssize_t	resid;
1911 	char *marker;
1912 	int error;
1913 	int ret;
1914 	int i;
1915 
1916 	if (!klip->li_crypto_enabled)
1917 		return (0);
1918 
1919 	/*
1920 	 * All current algorithms have a max of 448 bits.
1921 	 */
1922 	if (klip->li_iv_len > CRYPTO_BITS2BYTES(512))
1923 		return (EINVAL);
1924 
1925 	if (CRYPTO_BITS2BYTES(klip->li_key_len) > sizeof (klip->li_key))
1926 		return (EINVAL);
1927 
1928 	lsp->ls_crypto_enabled = klip->li_crypto_enabled;
1929 
1930 	mutex_init(&lsp->ls_crypto_lock, NULL, MUTEX_DRIVER, NULL);
1931 
1932 	lsp->ls_mech.cm_type = crypto_mech2id(klip->li_cipher);
1933 	if (lsp->ls_mech.cm_type == CRYPTO_MECH_INVALID) {
1934 		cmn_err(CE_WARN, "invalid cipher %s requested for %s",
1935 		    klip->li_cipher, klip->li_filename);
1936 		return (EINVAL);
1937 	}
1938 
1939 	/* this is just initialization here */
1940 	lsp->ls_mech.cm_param = NULL;
1941 	lsp->ls_mech.cm_param_len = 0;
1942 
1943 	lsp->ls_iv_type = klip->li_iv_type;
1944 	lsp->ls_iv_mech.cm_type = crypto_mech2id(klip->li_iv_cipher);
1945 	if (lsp->ls_iv_mech.cm_type == CRYPTO_MECH_INVALID) {
1946 		cmn_err(CE_WARN, "invalid iv cipher %s requested"
1947 		    " for %s", klip->li_iv_cipher, klip->li_filename);
1948 		return (EINVAL);
1949 	}
1950 
1951 	/* iv mech must itself take a null iv */
1952 	lsp->ls_iv_mech.cm_param = NULL;
1953 	lsp->ls_iv_mech.cm_param_len = 0;
1954 	lsp->ls_iv_len = klip->li_iv_len;
1955 
1956 	/*
1957 	 * Create ctx using li_cipher & the raw li_key after checking
1958 	 * that it isn't a weak key.
1959 	 */
1960 	lsp->ls_key.ck_format = CRYPTO_KEY_RAW;
1961 	lsp->ls_key.ck_length = klip->li_key_len;
1962 	lsp->ls_key.ck_data = kmem_alloc(
1963 	    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length), KM_SLEEP);
1964 	bcopy(klip->li_key, lsp->ls_key.ck_data,
1965 	    CRYPTO_BITS2BYTES(lsp->ls_key.ck_length));
1966 
1967 	ret = crypto_key_check(&lsp->ls_mech, &lsp->ls_key);
1968 	if (ret != CRYPTO_SUCCESS) {
1969 		cmn_err(CE_WARN, "weak key check failed for cipher "
1970 		    "%s on file %s (0x%x)", klip->li_cipher,
1971 		    klip->li_filename, ret);
1972 		return (EINVAL);
1973 	}
1974 
1975 	error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE,
1976 	    CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
1977 	if (error != 0)
1978 		return (error);
1979 
1980 	/*
1981 	 * This is the case where the header in the lofi image is already
1982 	 * initialized to indicate it is encrypted.
1983 	 */
1984 	if (strncmp(buf, lofi_crypto_magic, sizeof (lofi_crypto_magic)) == 0) {
1985 		/*
1986 		 * The encryption header information is laid out this way:
1987 		 *	6 bytes:	hex "CFLOFI"
1988 		 *	2 bytes:	version = 0 ... for now
1989 		 *	96 bytes:	reserved1 (not implemented yet)
1990 		 *	4 bytes:	data_sector = 2 ... for now
1991 		 *	more...		not implemented yet
1992 		 */
1993 
1994 		marker = buf;
1995 
1996 		/* copy the magic */
1997 		bcopy(marker, lsp->ls_crypto.magic,
1998 		    sizeof (lsp->ls_crypto.magic));
1999 		marker += sizeof (lsp->ls_crypto.magic);
2000 
2001 		/* read the encryption version number */
2002 		bcopy(marker, &(lsp->ls_crypto.version),
2003 		    sizeof (lsp->ls_crypto.version));
2004 		lsp->ls_crypto.version = ntohs(lsp->ls_crypto.version);
2005 		marker += sizeof (lsp->ls_crypto.version);
2006 
2007 		/* read a chunk of reserved data */
2008 		bcopy(marker, lsp->ls_crypto.reserved1,
2009 		    sizeof (lsp->ls_crypto.reserved1));
2010 		marker += sizeof (lsp->ls_crypto.reserved1);
2011 
2012 		/* read block number where encrypted data begins */
2013 		bcopy(marker, &(lsp->ls_crypto.data_sector),
2014 		    sizeof (lsp->ls_crypto.data_sector));
2015 		lsp->ls_crypto.data_sector = ntohl(lsp->ls_crypto.data_sector);
2016 		marker += sizeof (lsp->ls_crypto.data_sector);
2017 
2018 		/* and ignore the rest until it is implemented */
2019 
2020 		lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2021 		return (0);
2022 	}
2023 
2024 	/*
2025 	 * We've requested encryption, but no magic was found, so it must be
2026 	 * a new image.
2027 	 */
2028 
2029 	for (i = 0; i < sizeof (struct crypto_meta); i++) {
2030 		if (buf[i] != '\0')
2031 			return (EINVAL);
2032 	}
2033 
2034 	marker = buf;
2035 	bcopy(lofi_crypto_magic, marker, sizeof (lofi_crypto_magic));
2036 	marker += sizeof (lofi_crypto_magic);
2037 	chead.version = htons(LOFI_CRYPTO_VERSION);
2038 	bcopy(&(chead.version), marker, sizeof (chead.version));
2039 	marker += sizeof (chead.version);
2040 	marker += sizeof (chead.reserved1);
2041 	chead.data_sector = htonl(LOFI_CRYPTO_DATA_SECTOR);
2042 	bcopy(&(chead.data_sector), marker, sizeof (chead.data_sector));
2043 
2044 	/* write the header */
2045 	error = vn_rdwr(UIO_WRITE, lsp->ls_vp, buf, DEV_BSIZE,
2046 	    CRYOFF, UIO_SYSSPACE, 0, RLIM64_INFINITY, kcred, &resid);
2047 	if (error != 0)
2048 		return (error);
2049 
2050 	/* fix things up so it looks like we read this info */
2051 	bcopy(lofi_crypto_magic, lsp->ls_crypto.magic,
2052 	    sizeof (lofi_crypto_magic));
2053 	lsp->ls_crypto.version = LOFI_CRYPTO_VERSION;
2054 	lsp->ls_crypto.data_sector = LOFI_CRYPTO_DATA_SECTOR;
2055 	lsp->ls_crypto_offset = lsp->ls_crypto.data_sector * DEV_BSIZE;
2056 	return (0);
2057 }
2058 
2059 /*
2060  * Check to see if the passed in signature is a valid one.  If it is
2061  * valid, return the index into lofi_compress_table.
2062  *
2063  * Return -1 if it is invalid
2064  */
2065 static int
2066 lofi_compress_select(const char *signature)
2067 {
2068 	int i;
2069 
2070 	for (i = 0; i < LOFI_COMPRESS_FUNCTIONS; i++) {
2071 		if (strcmp(lofi_compress_table[i].l_name, signature) == 0)
2072 			return (i);
2073 	}
2074 
2075 	return (-1);
2076 }
2077 
2078 static int
2079 lofi_init_compress(struct lofi_state *lsp)
2080 {
2081 	char buf[DEV_BSIZE];
2082 	int compress_index;
2083 	ssize_t	resid;
2084 	int error;
2085 
2086 	error = vn_rdwr(UIO_READ, lsp->ls_vp, buf, DEV_BSIZE, 0, UIO_SYSSPACE,
2087 	    0, RLIM64_INFINITY, kcred, &resid);
2088 
2089 	if (error != 0)
2090 		return (error);
2091 
2092 	if ((compress_index = lofi_compress_select(buf)) == -1)
2093 		return (0);
2094 
2095 	/* compression and encryption are mutually exclusive */
2096 	if (lsp->ls_crypto_enabled)
2097 		return (ENOTSUP);
2098 
2099 	/* initialize compression info for compressed lofi */
2100 	lsp->ls_comp_algorithm_index = compress_index;
2101 	(void) strlcpy(lsp->ls_comp_algorithm,
2102 	    lofi_compress_table[compress_index].l_name,
2103 	    sizeof (lsp->ls_comp_algorithm));
2104 
2105 	/* Finally setup per-thread pre-allocated buffers */
2106 	lsp->ls_comp_bufs = kmem_zalloc(lofi_taskq_nthreads *
2107 	    sizeof (struct compbuf), KM_SLEEP);
2108 
2109 	return (lofi_map_compressed_file(lsp, buf));
2110 }
2111 
2112 /*
2113  * map a file to a minor number. Return the minor number.
2114  */
2115 static int
2116 lofi_map_file(dev_t dev, struct lofi_ioctl *ulip, int pickminor,
2117     int *rvalp, struct cred *credp, int ioctl_flag)
2118 {
2119 	minor_t	minor = (minor_t)-1;
2120 	struct lofi_state *lsp = NULL;
2121 	struct lofi_ioctl *klip;
2122 	int	error;
2123 	struct vnode *vp = NULL;
2124 	vattr_t	vattr;
2125 	int	flag;
2126 	dev_t	newdev;
2127 	char	namebuf[50];
2128 
2129 	error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2130 	if (error != 0)
2131 		return (error);
2132 
2133 	mutex_enter(&lofi_lock);
2134 
2135 	mutex_enter(&curproc->p_lock);
2136 	if ((error = rctl_incr_lofi(curproc, curproc->p_zone, 1)) != 0) {
2137 		mutex_exit(&curproc->p_lock);
2138 		mutex_exit(&lofi_lock);
2139 		free_lofi_ioctl(klip);
2140 		return (error);
2141 	}
2142 	mutex_exit(&curproc->p_lock);
2143 
2144 	if (file_to_lofi_nocheck(klip->li_filename, klip->li_readonly,
2145 	    NULL) == 0) {
2146 		error = EBUSY;
2147 		goto err;
2148 	}
2149 
2150 	if (pickminor) {
2151 		minor = (minor_t)id_allocff_nosleep(lofi_minor_id);
2152 		if (minor == (minor_t)-1) {
2153 			error = EAGAIN;
2154 			goto err;
2155 		}
2156 	} else {
2157 		if (ddi_get_soft_state(lofi_statep, klip->li_minor) != NULL) {
2158 			error = EEXIST;
2159 			goto err;
2160 		}
2161 
2162 		minor = (minor_t)
2163 		    id_alloc_specific_nosleep(lofi_minor_id, klip->li_minor);
2164 		ASSERT(minor != (minor_t)-1);
2165 	}
2166 
2167 	flag = FREAD | FWRITE | FOFFMAX | FEXCL;
2168 	error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0, &vp, 0, 0);
2169 	if (error) {
2170 		/* try read-only */
2171 		flag &= ~FWRITE;
2172 		error = vn_open(klip->li_filename, UIO_SYSSPACE, flag, 0,
2173 		    &vp, 0, 0);
2174 		if (error)
2175 			goto err;
2176 	}
2177 
2178 	if (!V_ISLOFIABLE(vp->v_type)) {
2179 		error = EINVAL;
2180 		goto err;
2181 	}
2182 
2183 	vattr.va_mask = AT_SIZE;
2184 	error = VOP_GETATTR(vp, &vattr, 0, credp, NULL);
2185 	if (error)
2186 		goto err;
2187 
2188 	/* the file needs to be a multiple of the block size */
2189 	if ((vattr.va_size % DEV_BSIZE) != 0) {
2190 		error = EINVAL;
2191 		goto err;
2192 	}
2193 
2194 	/* lsp alloc+init */
2195 
2196 	error = ddi_soft_state_zalloc(lofi_statep, minor);
2197 	if (error == DDI_FAILURE) {
2198 		error = ENOMEM;
2199 		goto err;
2200 	}
2201 
2202 	lsp = ddi_get_soft_state(lofi_statep, minor);
2203 	list_insert_tail(&lofi_list, lsp);
2204 
2205 	newdev = makedevice(getmajor(dev), minor);
2206 	lsp->ls_dev = newdev;
2207 	zone_init_ref(&lsp->ls_zone);
2208 	zone_hold_ref(curzone, &lsp->ls_zone, ZONE_REF_LOFI);
2209 	lsp->ls_uncomp_seg_sz = 0;
2210 	lsp->ls_comp_algorithm[0] = '\0';
2211 	lsp->ls_crypto_offset = 0;
2212 
2213 	cv_init(&lsp->ls_vp_cv, NULL, CV_DRIVER, NULL);
2214 	mutex_init(&lsp->ls_comp_cache_lock, NULL, MUTEX_DRIVER, NULL);
2215 	mutex_init(&lsp->ls_comp_bufs_lock, NULL, MUTEX_DRIVER, NULL);
2216 	mutex_init(&lsp->ls_kstat_lock, NULL, MUTEX_DRIVER, NULL);
2217 	mutex_init(&lsp->ls_vp_lock, NULL, MUTEX_DRIVER, NULL);
2218 
2219 	(void) snprintf(namebuf, sizeof (namebuf), "%s_taskq_%d",
2220 	    LOFI_DRIVER_NAME, minor);
2221 	lsp->ls_taskq = taskq_create_proc(namebuf, lofi_taskq_nthreads,
2222 	    minclsyspri, 1, lofi_taskq_maxalloc, curzone->zone_zsched, 0);
2223 
2224 	list_create(&lsp->ls_comp_cache, sizeof (struct lofi_comp_cache),
2225 	    offsetof(struct lofi_comp_cache, lc_list));
2226 
2227 	/*
2228 	 * save open mode so file can be closed properly and vnode counts
2229 	 * updated correctly.
2230 	 */
2231 	lsp->ls_openflag = flag;
2232 
2233 	lsp->ls_vp = vp;
2234 	lsp->ls_stacked_vp = vp;
2235 	/*
2236 	 * Try to handle stacked lofs vnodes.
2237 	 */
2238 	if (vp->v_type == VREG) {
2239 		vnode_t *realvp;
2240 
2241 		if (VOP_REALVP(vp, &realvp, NULL) == 0) {
2242 			/*
2243 			 * We need to use the realvp for uniqueness
2244 			 * checking, but keep the stacked vp for
2245 			 * LOFI_GET_FILENAME display.
2246 			 */
2247 			VN_HOLD(realvp);
2248 			lsp->ls_vp = realvp;
2249 		}
2250 	}
2251 
2252 	lsp->ls_vp_size = vattr.va_size;
2253 	lsp->ls_vp_comp_size = lsp->ls_vp_size;
2254 
2255 	lsp->ls_kstat = kstat_create_zone(LOFI_DRIVER_NAME, minor,
2256 	    NULL, "disk", KSTAT_TYPE_IO, 1, 0, getzoneid());
2257 
2258 	if (lsp->ls_kstat == NULL) {
2259 		error = ENOMEM;
2260 		goto err;
2261 	}
2262 
2263 	lsp->ls_kstat->ks_lock = &lsp->ls_kstat_lock;
2264 	kstat_zone_add(lsp->ls_kstat, GLOBAL_ZONEID);
2265 
2266 	lsp->ls_readonly = klip->li_readonly;
2267 
2268 	if ((error = lofi_init_crypto(lsp, klip)) != 0)
2269 		goto err;
2270 
2271 	if ((error = lofi_init_compress(lsp)) != 0)
2272 		goto err;
2273 
2274 	fake_disk_geometry(lsp);
2275 
2276 	/* create minor nodes */
2277 
2278 	(void) snprintf(namebuf, sizeof (namebuf), "%d", minor);
2279 	error = ddi_create_minor_node(lofi_dip, namebuf, S_IFBLK, minor,
2280 	    DDI_PSEUDO, NULL);
2281 	if (error != DDI_SUCCESS) {
2282 		error = ENXIO;
2283 		goto err;
2284 	}
2285 
2286 	(void) snprintf(namebuf, sizeof (namebuf), "%d,raw", minor);
2287 	error = ddi_create_minor_node(lofi_dip, namebuf, S_IFCHR, minor,
2288 	    DDI_PSEUDO, NULL);
2289 	if (error != DDI_SUCCESS) {
2290 		/* remove block node */
2291 		(void) snprintf(namebuf, sizeof (namebuf), "%d", minor);
2292 		ddi_remove_minor_node(lofi_dip, namebuf);
2293 		error = ENXIO;
2294 		goto err;
2295 	}
2296 
2297 	/* create DDI properties */
2298 
2299 	if ((ddi_prop_update_int64(newdev, lofi_dip, SIZE_PROP_NAME,
2300 	    lsp->ls_vp_size - lsp->ls_crypto_offset)) != DDI_PROP_SUCCESS) {
2301 		error = EINVAL;
2302 		goto nodeerr;
2303 	}
2304 
2305 	if ((ddi_prop_update_int64(newdev, lofi_dip, NBLOCKS_PROP_NAME,
2306 	    (lsp->ls_vp_size - lsp->ls_crypto_offset) / DEV_BSIZE))
2307 	    != DDI_PROP_SUCCESS) {
2308 		error = EINVAL;
2309 		goto nodeerr;
2310 	}
2311 
2312 	if (ddi_prop_update_string(newdev, lofi_dip, ZONE_PROP_NAME,
2313 	    (char *)curproc->p_zone->zone_name) != DDI_PROP_SUCCESS) {
2314 		error = EINVAL;
2315 		goto nodeerr;
2316 	}
2317 
2318 	kstat_install(lsp->ls_kstat);
2319 
2320 	mutex_exit(&lofi_lock);
2321 
2322 	if (rvalp)
2323 		*rvalp = (int)minor;
2324 	klip->li_minor = minor;
2325 	(void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2326 	free_lofi_ioctl(klip);
2327 	return (0);
2328 
2329 nodeerr:
2330 	lofi_free_dev(newdev);
2331 err:
2332 	if (lsp != NULL) {
2333 		lofi_destroy(lsp, credp);
2334 	} else {
2335 		if (vp != NULL) {
2336 			(void) VOP_CLOSE(vp, flag, 1, 0, credp, NULL);
2337 			VN_RELE(vp);
2338 		}
2339 
2340 		if (minor != (minor_t)-1)
2341 			id_free(lofi_minor_id, minor);
2342 
2343 		rctl_decr_lofi(curproc->p_zone, 1);
2344 	}
2345 
2346 	mutex_exit(&lofi_lock);
2347 	free_lofi_ioctl(klip);
2348 	return (error);
2349 }
2350 
2351 /*
2352  * unmap a file.
2353  */
2354 static int
2355 lofi_unmap_file(struct lofi_ioctl *ulip, int byfilename,
2356     struct cred *credp, int ioctl_flag)
2357 {
2358 	struct lofi_state *lsp;
2359 	struct lofi_ioctl *klip;
2360 	int err;
2361 
2362 	err = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2363 	if (err != 0)
2364 		return (err);
2365 
2366 	mutex_enter(&lofi_lock);
2367 	if (byfilename) {
2368 		if ((err = file_to_lofi(klip->li_filename, klip->li_readonly,
2369 		    &lsp)) != 0) {
2370 			mutex_exit(&lofi_lock);
2371 			return (err);
2372 		}
2373 	} else if (klip->li_minor == 0) {
2374 		mutex_exit(&lofi_lock);
2375 		free_lofi_ioctl(klip);
2376 		return (ENXIO);
2377 	} else {
2378 		lsp = ddi_get_soft_state(lofi_statep, klip->li_minor);
2379 	}
2380 
2381 	if (lsp == NULL || lsp->ls_vp == NULL || lofi_access(lsp) != 0) {
2382 		mutex_exit(&lofi_lock);
2383 		free_lofi_ioctl(klip);
2384 		return (ENXIO);
2385 	}
2386 
2387 	klip->li_minor = getminor(lsp->ls_dev);
2388 
2389 	/*
2390 	 * If it's still held open, we'll do one of three things:
2391 	 *
2392 	 * If no flag is set, just return EBUSY.
2393 	 *
2394 	 * If the 'cleanup' flag is set, unmap and remove the device when
2395 	 * the last user finishes.
2396 	 *
2397 	 * If the 'force' flag is set, then we forcibly close the underlying
2398 	 * file.  Subsequent operations will fail, and the DKIOCSTATE ioctl
2399 	 * will return DKIO_DEV_GONE.  When the device is last closed, the
2400 	 * device will be cleaned up appropriately.
2401 	 *
2402 	 * This is complicated by the fact that we may have outstanding
2403 	 * dispatched I/Os.  Rather than having a single mutex to serialize all
2404 	 * I/O, we keep a count of the number of outstanding I/O requests
2405 	 * (ls_vp_iocount), as well as a flag to indicate that no new I/Os
2406 	 * should be dispatched (ls_vp_closereq).
2407 	 *
2408 	 * We set the flag, wait for the number of outstanding I/Os to reach 0,
2409 	 * and then close the underlying vnode.
2410 	 */
2411 	if (is_opened(lsp)) {
2412 		if (klip->li_force) {
2413 			mutex_enter(&lsp->ls_vp_lock);
2414 			lsp->ls_vp_closereq = B_TRUE;
2415 			/* wake up any threads waiting on dkiocstate */
2416 			cv_broadcast(&lsp->ls_vp_cv);
2417 			while (lsp->ls_vp_iocount > 0)
2418 				cv_wait(&lsp->ls_vp_cv, &lsp->ls_vp_lock);
2419 			mutex_exit(&lsp->ls_vp_lock);
2420 
2421 			goto out;
2422 		} else if (klip->li_cleanup) {
2423 			lsp->ls_cleanup = 1;
2424 			mutex_exit(&lofi_lock);
2425 			free_lofi_ioctl(klip);
2426 			return (0);
2427 		}
2428 
2429 		mutex_exit(&lofi_lock);
2430 		free_lofi_ioctl(klip);
2431 		return (EBUSY);
2432 	}
2433 
2434 out:
2435 	lofi_free_dev(lsp->ls_dev);
2436 	lofi_destroy(lsp, credp);
2437 
2438 	mutex_exit(&lofi_lock);
2439 	(void) copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2440 	free_lofi_ioctl(klip);
2441 	return (0);
2442 }
2443 
2444 /*
2445  * get the filename given the minor number, or the minor number given
2446  * the name.
2447  */
2448 /*ARGSUSED*/
2449 static int
2450 lofi_get_info(dev_t dev, struct lofi_ioctl *ulip, int which,
2451     struct cred *credp, int ioctl_flag)
2452 {
2453 	struct lofi_ioctl *klip;
2454 	struct lofi_state *lsp;
2455 	int	error;
2456 
2457 	error = copy_in_lofi_ioctl(ulip, &klip, ioctl_flag);
2458 	if (error != 0)
2459 		return (error);
2460 
2461 	switch (which) {
2462 	case LOFI_GET_FILENAME:
2463 		if (klip->li_minor == 0) {
2464 			free_lofi_ioctl(klip);
2465 			return (EINVAL);
2466 		}
2467 
2468 		mutex_enter(&lofi_lock);
2469 		lsp = ddi_get_soft_state(lofi_statep, klip->li_minor);
2470 		if (lsp == NULL || lofi_access(lsp) != 0) {
2471 			mutex_exit(&lofi_lock);
2472 			free_lofi_ioctl(klip);
2473 			return (ENXIO);
2474 		}
2475 
2476 		/*
2477 		 * This may fail if, for example, we're trying to look
2478 		 * up a zoned NFS path from the global zone.
2479 		 */
2480 		if (vnodetopath(NULL, lsp->ls_stacked_vp, klip->li_filename,
2481 		    sizeof (klip->li_filename), CRED()) != 0) {
2482 			(void) strlcpy(klip->li_filename, "?",
2483 			    sizeof (klip->li_filename));
2484 		}
2485 
2486 		klip->li_readonly = lsp->ls_readonly;
2487 
2488 		(void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
2489 		    sizeof (klip->li_algorithm));
2490 		klip->li_crypto_enabled = lsp->ls_crypto_enabled;
2491 		mutex_exit(&lofi_lock);
2492 		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2493 		free_lofi_ioctl(klip);
2494 		return (error);
2495 	case LOFI_GET_MINOR:
2496 		mutex_enter(&lofi_lock);
2497 		error = file_to_lofi(klip->li_filename,
2498 		    klip->li_readonly, &lsp);
2499 		if (error == 0)
2500 			klip->li_minor = getminor(lsp->ls_dev);
2501 		mutex_exit(&lofi_lock);
2502 
2503 		if (error == 0)
2504 			error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2505 
2506 		free_lofi_ioctl(klip);
2507 		return (error);
2508 	case LOFI_CHECK_COMPRESSED:
2509 		mutex_enter(&lofi_lock);
2510 		error = file_to_lofi(klip->li_filename,
2511 		    klip->li_readonly, &lsp);
2512 		if (error != 0) {
2513 			mutex_exit(&lofi_lock);
2514 			free_lofi_ioctl(klip);
2515 			return (error);
2516 		}
2517 
2518 		klip->li_minor = getminor(lsp->ls_dev);
2519 		(void) strlcpy(klip->li_algorithm, lsp->ls_comp_algorithm,
2520 		    sizeof (klip->li_algorithm));
2521 
2522 		mutex_exit(&lofi_lock);
2523 		error = copy_out_lofi_ioctl(klip, ulip, ioctl_flag);
2524 		free_lofi_ioctl(klip);
2525 		return (error);
2526 	default:
2527 		free_lofi_ioctl(klip);
2528 		return (EINVAL);
2529 	}
2530 }
2531 
2532 static int
2533 lofi_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp,
2534     int *rvalp)
2535 {
2536 	int	error;
2537 	enum dkio_state dkstate;
2538 	struct lofi_state *lsp;
2539 	minor_t	minor;
2540 
2541 	minor = getminor(dev);
2542 	/* lofi ioctls only apply to the master device */
2543 	if (minor == 0) {
2544 		struct lofi_ioctl *lip = (struct lofi_ioctl *)arg;
2545 
2546 		/*
2547 		 * the query command only need read-access - i.e., normal
2548 		 * users are allowed to do those on the ctl device as
2549 		 * long as they can open it read-only.
2550 		 */
2551 		switch (cmd) {
2552 		case LOFI_MAP_FILE:
2553 			if ((flag & FWRITE) == 0)
2554 				return (EPERM);
2555 			return (lofi_map_file(dev, lip, 1, rvalp, credp, flag));
2556 		case LOFI_MAP_FILE_MINOR:
2557 			if ((flag & FWRITE) == 0)
2558 				return (EPERM);
2559 			return (lofi_map_file(dev, lip, 0, rvalp, credp, flag));
2560 		case LOFI_UNMAP_FILE:
2561 			if ((flag & FWRITE) == 0)
2562 				return (EPERM);
2563 			return (lofi_unmap_file(lip, 1, credp, flag));
2564 		case LOFI_UNMAP_FILE_MINOR:
2565 			if ((flag & FWRITE) == 0)
2566 				return (EPERM);
2567 			return (lofi_unmap_file(lip, 0, credp, flag));
2568 		case LOFI_GET_FILENAME:
2569 			return (lofi_get_info(dev, lip, LOFI_GET_FILENAME,
2570 			    credp, flag));
2571 		case LOFI_GET_MINOR:
2572 			return (lofi_get_info(dev, lip, LOFI_GET_MINOR,
2573 			    credp, flag));
2574 
2575 		/*
2576 		 * This API made limited sense when this value was fixed
2577 		 * at LOFI_MAX_FILES.  However, its use to iterate
2578 		 * across all possible devices in lofiadm means we don't
2579 		 * want to return L_MAXMIN32, but the highest
2580 		 * *allocated* minor.
2581 		 */
2582 		case LOFI_GET_MAXMINOR:
2583 			minor = 0;
2584 
2585 			mutex_enter(&lofi_lock);
2586 
2587 			for (lsp = list_head(&lofi_list); lsp != NULL;
2588 			    lsp = list_next(&lofi_list, lsp)) {
2589 				if (lofi_access(lsp) != 0)
2590 					continue;
2591 
2592 				if (getminor(lsp->ls_dev) > minor)
2593 					minor = getminor(lsp->ls_dev);
2594 			}
2595 
2596 			mutex_exit(&lofi_lock);
2597 
2598 			error = ddi_copyout(&minor, &lip->li_minor,
2599 			    sizeof (minor), flag);
2600 			if (error)
2601 				return (EFAULT);
2602 			return (0);
2603 
2604 		case LOFI_CHECK_COMPRESSED:
2605 			return (lofi_get_info(dev, lip, LOFI_CHECK_COMPRESSED,
2606 			    credp, flag));
2607 		default:
2608 			return (EINVAL);
2609 		}
2610 	}
2611 
2612 	mutex_enter(&lofi_lock);
2613 	lsp = ddi_get_soft_state(lofi_statep, minor);
2614 	if (lsp == NULL || lsp->ls_vp_closereq) {
2615 		mutex_exit(&lofi_lock);
2616 		return (ENXIO);
2617 	}
2618 	mutex_exit(&lofi_lock);
2619 
2620 	/*
2621 	 * We explicitly allow DKIOCSTATE, but all other ioctls should fail with
2622 	 * EIO as if the device was no longer present.
2623 	 */
2624 	if (lsp->ls_vp == NULL && cmd != DKIOCSTATE)
2625 		return (EIO);
2626 
2627 	/* these are for faking out utilities like newfs */
2628 	switch (cmd) {
2629 	case DKIOCGVTOC:
2630 		switch (ddi_model_convert_from(flag & FMODELS)) {
2631 		case DDI_MODEL_ILP32: {
2632 			struct vtoc32 vtoc32;
2633 
2634 			vtoctovtoc32(lsp->ls_vtoc, vtoc32);
2635 			if (ddi_copyout(&vtoc32, (void *)arg,
2636 			    sizeof (struct vtoc32), flag))
2637 				return (EFAULT);
2638 			break;
2639 			}
2640 
2641 		case DDI_MODEL_NONE:
2642 			if (ddi_copyout(&lsp->ls_vtoc, (void *)arg,
2643 			    sizeof (struct vtoc), flag))
2644 				return (EFAULT);
2645 			break;
2646 		}
2647 		return (0);
2648 	case DKIOCINFO:
2649 		error = ddi_copyout(&lsp->ls_ci, (void *)arg,
2650 		    sizeof (struct dk_cinfo), flag);
2651 		if (error)
2652 			return (EFAULT);
2653 		return (0);
2654 	case DKIOCG_VIRTGEOM:
2655 	case DKIOCG_PHYGEOM:
2656 	case DKIOCGGEOM:
2657 		error = ddi_copyout(&lsp->ls_dkg, (void *)arg,
2658 		    sizeof (struct dk_geom), flag);
2659 		if (error)
2660 			return (EFAULT);
2661 		return (0);
2662 	case DKIOCSTATE:
2663 		/*
2664 		 * Normally, lofi devices are always in the INSERTED state.  If
2665 		 * a device is forcefully unmapped, then the device transitions
2666 		 * to the DKIO_DEV_GONE state.
2667 		 */
2668 		if (ddi_copyin((void *)arg, &dkstate, sizeof (dkstate),
2669 		    flag) != 0)
2670 			return (EFAULT);
2671 
2672 		mutex_enter(&lsp->ls_vp_lock);
2673 		lsp->ls_vp_iocount++;
2674 		while (((dkstate == DKIO_INSERTED && lsp->ls_vp != NULL) ||
2675 		    (dkstate == DKIO_DEV_GONE && lsp->ls_vp == NULL)) &&
2676 		    !lsp->ls_vp_closereq) {
2677 			/*
2678 			 * By virtue of having the device open, we know that
2679 			 * 'lsp' will remain valid when we return.
2680 			 */
2681 			if (!cv_wait_sig(&lsp->ls_vp_cv,
2682 			    &lsp->ls_vp_lock)) {
2683 				lsp->ls_vp_iocount--;
2684 				cv_broadcast(&lsp->ls_vp_cv);
2685 				mutex_exit(&lsp->ls_vp_lock);
2686 				return (EINTR);
2687 			}
2688 		}
2689 
2690 		dkstate = (!lsp->ls_vp_closereq && lsp->ls_vp != NULL ?
2691 		    DKIO_INSERTED : DKIO_DEV_GONE);
2692 		lsp->ls_vp_iocount--;
2693 		cv_broadcast(&lsp->ls_vp_cv);
2694 		mutex_exit(&lsp->ls_vp_lock);
2695 
2696 		if (ddi_copyout(&dkstate, (void *)arg,
2697 		    sizeof (dkstate), flag) != 0)
2698 			return (EFAULT);
2699 		return (0);
2700 	default:
2701 		return (ENOTTY);
2702 	}
2703 }
2704 
2705 static struct cb_ops lofi_cb_ops = {
2706 	lofi_open,		/* open */
2707 	lofi_close,		/* close */
2708 	lofi_strategy,		/* strategy */
2709 	nodev,			/* print */
2710 	nodev,			/* dump */
2711 	lofi_read,		/* read */
2712 	lofi_write,		/* write */
2713 	lofi_ioctl,		/* ioctl */
2714 	nodev,			/* devmap */
2715 	nodev,			/* mmap */
2716 	nodev,			/* segmap */
2717 	nochpoll,		/* poll */
2718 	ddi_prop_op,		/* prop_op */
2719 	0,			/* streamtab  */
2720 	D_64BIT | D_NEW | D_MP,	/* Driver compatibility flag */
2721 	CB_REV,
2722 	lofi_aread,
2723 	lofi_awrite
2724 };
2725 
2726 static struct dev_ops lofi_ops = {
2727 	DEVO_REV,		/* devo_rev, */
2728 	0,			/* refcnt  */
2729 	lofi_info,		/* info */
2730 	nulldev,		/* identify */
2731 	nulldev,		/* probe */
2732 	lofi_attach,		/* attach */
2733 	lofi_detach,		/* detach */
2734 	nodev,			/* reset */
2735 	&lofi_cb_ops,		/* driver operations */
2736 	NULL,			/* no bus operations */
2737 	NULL,			/* power */
2738 	ddi_quiesce_not_needed,	/* quiesce */
2739 };
2740 
2741 static struct modldrv modldrv = {
2742 	&mod_driverops,
2743 	"loopback file driver",
2744 	&lofi_ops,
2745 };
2746 
2747 static struct modlinkage modlinkage = {
2748 	MODREV_1,
2749 	&modldrv,
2750 	NULL
2751 };
2752 
2753 int
2754 _init(void)
2755 {
2756 	int error;
2757 
2758 	list_create(&lofi_list, sizeof (struct lofi_state),
2759 	    offsetof(struct lofi_state, ls_list));
2760 
2761 	error = ddi_soft_state_init(&lofi_statep,
2762 	    sizeof (struct lofi_state), 0);
2763 	if (error)
2764 		return (error);
2765 
2766 	mutex_init(&lofi_lock, NULL, MUTEX_DRIVER, NULL);
2767 
2768 	error = mod_install(&modlinkage);
2769 	if (error) {
2770 		mutex_destroy(&lofi_lock);
2771 		ddi_soft_state_fini(&lofi_statep);
2772 		list_destroy(&lofi_list);
2773 	}
2774 
2775 	return (error);
2776 }
2777 
2778 int
2779 _fini(void)
2780 {
2781 	int	error;
2782 
2783 	mutex_enter(&lofi_lock);
2784 
2785 	if (!list_is_empty(&lofi_list)) {
2786 		mutex_exit(&lofi_lock);
2787 		return (EBUSY);
2788 	}
2789 
2790 	mutex_exit(&lofi_lock);
2791 
2792 	error = mod_remove(&modlinkage);
2793 	if (error)
2794 		return (error);
2795 
2796 	mutex_destroy(&lofi_lock);
2797 	ddi_soft_state_fini(&lofi_statep);
2798 	list_destroy(&lofi_list);
2799 
2800 	return (error);
2801 }
2802 
2803 int
2804 _info(struct modinfo *modinfop)
2805 {
2806 	return (mod_info(&modlinkage, modinfop));
2807 }
2808