xref: /illumos-gate/usr/src/uts/common/io/igb/igb_main.c (revision b6805bf78d2bbbeeaea8909a05623587b42d58b3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2007-2012 Intel Corporation. All rights reserved.
24  */
25 
26 /*
27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Copyright 2013, Nexenta Systems, Inc. All rights reserved.
29  */
30 
31 #include "igb_sw.h"
32 
33 static char ident[] = "Intel 1Gb Ethernet";
34 static char igb_version[] = "igb 1.1.18";
35 
36 /*
37  * Local function protoypes
38  */
39 static int igb_register_mac(igb_t *);
40 static int igb_identify_hardware(igb_t *);
41 static int igb_regs_map(igb_t *);
42 static void igb_init_properties(igb_t *);
43 static int igb_init_driver_settings(igb_t *);
44 static void igb_init_locks(igb_t *);
45 static void igb_destroy_locks(igb_t *);
46 static int igb_init_mac_address(igb_t *);
47 static int igb_init(igb_t *);
48 static int igb_init_adapter(igb_t *);
49 static void igb_stop_adapter(igb_t *);
50 static int igb_reset(igb_t *);
51 static void igb_tx_clean(igb_t *);
52 static boolean_t igb_tx_drain(igb_t *);
53 static boolean_t igb_rx_drain(igb_t *);
54 static int igb_alloc_rings(igb_t *);
55 static int igb_alloc_rx_data(igb_t *);
56 static void igb_free_rx_data(igb_t *);
57 static void igb_free_rings(igb_t *);
58 static void igb_setup_rings(igb_t *);
59 static void igb_setup_rx(igb_t *);
60 static void igb_setup_tx(igb_t *);
61 static void igb_setup_rx_ring(igb_rx_ring_t *);
62 static void igb_setup_tx_ring(igb_tx_ring_t *);
63 static void igb_setup_rss(igb_t *);
64 static void igb_setup_mac_rss_classify(igb_t *);
65 static void igb_setup_mac_classify(igb_t *);
66 static void igb_init_unicst(igb_t *);
67 static void igb_setup_multicst(igb_t *);
68 static void igb_get_phy_state(igb_t *);
69 static void igb_param_sync(igb_t *);
70 static void igb_get_conf(igb_t *);
71 static int igb_get_prop(igb_t *, char *, int, int, int);
72 static boolean_t igb_is_link_up(igb_t *);
73 static boolean_t igb_link_check(igb_t *);
74 static void igb_local_timer(void *);
75 static void igb_link_timer(void *);
76 static void igb_arm_watchdog_timer(igb_t *);
77 static void igb_start_watchdog_timer(igb_t *);
78 static void igb_restart_watchdog_timer(igb_t *);
79 static void igb_stop_watchdog_timer(igb_t *);
80 static void igb_start_link_timer(igb_t *);
81 static void igb_stop_link_timer(igb_t *);
82 static void igb_disable_adapter_interrupts(igb_t *);
83 static void igb_enable_adapter_interrupts_82575(igb_t *);
84 static void igb_enable_adapter_interrupts_82576(igb_t *);
85 static void igb_enable_adapter_interrupts_82580(igb_t *);
86 static boolean_t is_valid_mac_addr(uint8_t *);
87 static boolean_t igb_stall_check(igb_t *);
88 static boolean_t igb_set_loopback_mode(igb_t *, uint32_t);
89 static void igb_set_external_loopback(igb_t *);
90 static void igb_set_internal_phy_loopback(igb_t *);
91 static void igb_set_internal_serdes_loopback(igb_t *);
92 static boolean_t igb_find_mac_address(igb_t *);
93 static int igb_alloc_intrs(igb_t *);
94 static int igb_alloc_intr_handles(igb_t *, int);
95 static int igb_add_intr_handlers(igb_t *);
96 static void igb_rem_intr_handlers(igb_t *);
97 static void igb_rem_intrs(igb_t *);
98 static int igb_enable_intrs(igb_t *);
99 static int igb_disable_intrs(igb_t *);
100 static void igb_setup_msix_82575(igb_t *);
101 static void igb_setup_msix_82576(igb_t *);
102 static void igb_setup_msix_82580(igb_t *);
103 static uint_t igb_intr_legacy(void *, void *);
104 static uint_t igb_intr_msi(void *, void *);
105 static uint_t igb_intr_rx(void *, void *);
106 static uint_t igb_intr_tx(void *, void *);
107 static uint_t igb_intr_tx_other(void *, void *);
108 static void igb_intr_rx_work(igb_rx_ring_t *);
109 static void igb_intr_tx_work(igb_tx_ring_t *);
110 static void igb_intr_link_work(igb_t *);
111 static void igb_get_driver_control(struct e1000_hw *);
112 static void igb_release_driver_control(struct e1000_hw *);
113 
114 static int igb_attach(dev_info_t *, ddi_attach_cmd_t);
115 static int igb_detach(dev_info_t *, ddi_detach_cmd_t);
116 static int igb_resume(dev_info_t *);
117 static int igb_suspend(dev_info_t *);
118 static int igb_quiesce(dev_info_t *);
119 static void igb_unconfigure(dev_info_t *, igb_t *);
120 static int igb_fm_error_cb(dev_info_t *, ddi_fm_error_t *,
121     const void *);
122 static void igb_fm_init(igb_t *);
123 static void igb_fm_fini(igb_t *);
124 static void igb_release_multicast(igb_t *);
125 
126 char *igb_priv_props[] = {
127 	"_eee_support",
128 	"_tx_copy_thresh",
129 	"_tx_recycle_thresh",
130 	"_tx_overload_thresh",
131 	"_tx_resched_thresh",
132 	"_rx_copy_thresh",
133 	"_rx_limit_per_intr",
134 	"_intr_throttling",
135 	"_adv_pause_cap",
136 	"_adv_asym_pause_cap",
137 	NULL
138 };
139 
140 static struct cb_ops igb_cb_ops = {
141 	nulldev,		/* cb_open */
142 	nulldev,		/* cb_close */
143 	nodev,			/* cb_strategy */
144 	nodev,			/* cb_print */
145 	nodev,			/* cb_dump */
146 	nodev,			/* cb_read */
147 	nodev,			/* cb_write */
148 	nodev,			/* cb_ioctl */
149 	nodev,			/* cb_devmap */
150 	nodev,			/* cb_mmap */
151 	nodev,			/* cb_segmap */
152 	nochpoll,		/* cb_chpoll */
153 	ddi_prop_op,		/* cb_prop_op */
154 	NULL,			/* cb_stream */
155 	D_MP | D_HOTPLUG,	/* cb_flag */
156 	CB_REV,			/* cb_rev */
157 	nodev,			/* cb_aread */
158 	nodev			/* cb_awrite */
159 };
160 
161 static struct dev_ops igb_dev_ops = {
162 	DEVO_REV,		/* devo_rev */
163 	0,			/* devo_refcnt */
164 	NULL,			/* devo_getinfo */
165 	nulldev,		/* devo_identify */
166 	nulldev,		/* devo_probe */
167 	igb_attach,		/* devo_attach */
168 	igb_detach,		/* devo_detach */
169 	nodev,			/* devo_reset */
170 	&igb_cb_ops,		/* devo_cb_ops */
171 	NULL,			/* devo_bus_ops */
172 	ddi_power,		/* devo_power */
173 	igb_quiesce,	/* devo_quiesce */
174 };
175 
176 static struct modldrv igb_modldrv = {
177 	&mod_driverops,		/* Type of module.  This one is a driver */
178 	ident,			/* Discription string */
179 	&igb_dev_ops,		/* driver ops */
180 };
181 
182 static struct modlinkage igb_modlinkage = {
183 	MODREV_1, &igb_modldrv, NULL
184 };
185 
186 /* Access attributes for register mapping */
187 ddi_device_acc_attr_t igb_regs_acc_attr = {
188 	DDI_DEVICE_ATTR_V1,
189 	DDI_STRUCTURE_LE_ACC,
190 	DDI_STRICTORDER_ACC,
191 	DDI_FLAGERR_ACC
192 };
193 
194 #define	IGB_M_CALLBACK_FLAGS \
195 	(MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
196 
197 static mac_callbacks_t igb_m_callbacks = {
198 	IGB_M_CALLBACK_FLAGS,
199 	igb_m_stat,
200 	igb_m_start,
201 	igb_m_stop,
202 	igb_m_promisc,
203 	igb_m_multicst,
204 	NULL,
205 	NULL,
206 	NULL,
207 	igb_m_ioctl,
208 	igb_m_getcapab,
209 	NULL,
210 	NULL,
211 	igb_m_setprop,
212 	igb_m_getprop,
213 	igb_m_propinfo
214 };
215 
216 /*
217  * Initialize capabilities of each supported adapter type
218  */
219 static adapter_info_t igb_82575_cap = {
220 	/* limits */
221 	4,		/* maximum number of rx queues */
222 	1,		/* minimum number of rx queues */
223 	4,		/* default number of rx queues */
224 	4,		/* maximum number of tx queues */
225 	1,		/* minimum number of tx queues */
226 	4,		/* default number of tx queues */
227 	65535,		/* maximum interrupt throttle rate */
228 	0,		/* minimum interrupt throttle rate */
229 	200,		/* default interrupt throttle rate */
230 
231 	/* function pointers */
232 	igb_enable_adapter_interrupts_82575,
233 	igb_setup_msix_82575,
234 
235 	/* capabilities */
236 	(IGB_FLAG_HAS_DCA |	/* capability flags */
237 	IGB_FLAG_VMDQ_POOL),
238 
239 	0xffc00000		/* mask for RXDCTL register */
240 };
241 
242 static adapter_info_t igb_82576_cap = {
243 	/* limits */
244 	16,		/* maximum number of rx queues */
245 	1,		/* minimum number of rx queues */
246 	4,		/* default number of rx queues */
247 	16,		/* maximum number of tx queues */
248 	1,		/* minimum number of tx queues */
249 	4,		/* default number of tx queues */
250 	65535,		/* maximum interrupt throttle rate */
251 	0,		/* minimum interrupt throttle rate */
252 	200,		/* default interrupt throttle rate */
253 
254 	/* function pointers */
255 	igb_enable_adapter_interrupts_82576,
256 	igb_setup_msix_82576,
257 
258 	/* capabilities */
259 	(IGB_FLAG_HAS_DCA |	/* capability flags */
260 	IGB_FLAG_VMDQ_POOL |
261 	IGB_FLAG_NEED_CTX_IDX),
262 
263 	0xffe00000		/* mask for RXDCTL register */
264 };
265 
266 static adapter_info_t igb_82580_cap = {
267 	/* limits */
268 	8,		/* maximum number of rx queues */
269 	1,		/* minimum number of rx queues */
270 	4,		/* default number of rx queues */
271 	8,		/* maximum number of tx queues */
272 	1,		/* minimum number of tx queues */
273 	4,		/* default number of tx queues */
274 	65535,		/* maximum interrupt throttle rate */
275 	0,		/* minimum interrupt throttle rate */
276 	200,		/* default interrupt throttle rate */
277 
278 	/* function pointers */
279 	igb_enable_adapter_interrupts_82580,
280 	igb_setup_msix_82580,
281 
282 	/* capabilities */
283 	(IGB_FLAG_HAS_DCA |	/* capability flags */
284 	IGB_FLAG_VMDQ_POOL |
285 	IGB_FLAG_NEED_CTX_IDX),
286 
287 	0xffe00000		/* mask for RXDCTL register */
288 };
289 
290 static adapter_info_t igb_i350_cap = {
291 	/* limits */
292 	8,		/* maximum number of rx queues */
293 	1,		/* minimum number of rx queues */
294 	4,		/* default number of rx queues */
295 	8,		/* maximum number of tx queues */
296 	1,		/* minimum number of tx queues */
297 	4,		/* default number of tx queues */
298 	65535,		/* maximum interrupt throttle rate */
299 	0,		/* minimum interrupt throttle rate */
300 	200,		/* default interrupt throttle rate */
301 
302 	/* function pointers */
303 	igb_enable_adapter_interrupts_82580,
304 	igb_setup_msix_82580,
305 
306 	/* capabilities */
307 	(IGB_FLAG_HAS_DCA |	/* capability flags */
308 	IGB_FLAG_VMDQ_POOL |
309 	IGB_FLAG_NEED_CTX_IDX),
310 
311 	0xffe00000		/* mask for RXDCTL register */
312 };
313 
314 /*
315  * Module Initialization Functions
316  */
317 
318 int
319 _init(void)
320 {
321 	int status;
322 
323 	mac_init_ops(&igb_dev_ops, MODULE_NAME);
324 
325 	status = mod_install(&igb_modlinkage);
326 
327 	if (status != DDI_SUCCESS) {
328 		mac_fini_ops(&igb_dev_ops);
329 	}
330 
331 	return (status);
332 }
333 
334 int
335 _fini(void)
336 {
337 	int status;
338 
339 	status = mod_remove(&igb_modlinkage);
340 
341 	if (status == DDI_SUCCESS) {
342 		mac_fini_ops(&igb_dev_ops);
343 	}
344 
345 	return (status);
346 
347 }
348 
349 int
350 _info(struct modinfo *modinfop)
351 {
352 	int status;
353 
354 	status = mod_info(&igb_modlinkage, modinfop);
355 
356 	return (status);
357 }
358 
359 /*
360  * igb_attach - driver attach
361  *
362  * This function is the device specific initialization entry
363  * point. This entry point is required and must be written.
364  * The DDI_ATTACH command must be provided in the attach entry
365  * point. When attach() is called with cmd set to DDI_ATTACH,
366  * all normal kernel services (such as kmem_alloc(9F)) are
367  * available for use by the driver.
368  *
369  * The attach() function will be called once for each instance
370  * of  the  device  on  the  system with cmd set to DDI_ATTACH.
371  * Until attach() succeeds, the only driver entry points which
372  * may be called are open(9E) and getinfo(9E).
373  */
374 static int
375 igb_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
376 {
377 	igb_t *igb;
378 	struct igb_osdep *osdep;
379 	struct e1000_hw *hw;
380 	int instance;
381 
382 	/*
383 	 * Check the command and perform corresponding operations
384 	 */
385 	switch (cmd) {
386 	default:
387 		return (DDI_FAILURE);
388 
389 	case DDI_RESUME:
390 		return (igb_resume(devinfo));
391 
392 	case DDI_ATTACH:
393 		break;
394 	}
395 
396 	/* Get the device instance */
397 	instance = ddi_get_instance(devinfo);
398 
399 	/* Allocate memory for the instance data structure */
400 	igb = kmem_zalloc(sizeof (igb_t), KM_SLEEP);
401 
402 	igb->dip = devinfo;
403 	igb->instance = instance;
404 
405 	hw = &igb->hw;
406 	osdep = &igb->osdep;
407 	hw->back = osdep;
408 	osdep->igb = igb;
409 
410 	/* Attach the instance pointer to the dev_info data structure */
411 	ddi_set_driver_private(devinfo, igb);
412 
413 
414 	/* Initialize for fma support */
415 	igb->fm_capabilities = igb_get_prop(igb, "fm-capable",
416 	    0, 0x0f,
417 	    DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
418 	    DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE);
419 	igb_fm_init(igb);
420 	igb->attach_progress |= ATTACH_PROGRESS_FMINIT;
421 
422 	/*
423 	 * Map PCI config space registers
424 	 */
425 	if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
426 		igb_error(igb, "Failed to map PCI configurations");
427 		goto attach_fail;
428 	}
429 	igb->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
430 
431 	/*
432 	 * Identify the chipset family
433 	 */
434 	if (igb_identify_hardware(igb) != IGB_SUCCESS) {
435 		igb_error(igb, "Failed to identify hardware");
436 		goto attach_fail;
437 	}
438 
439 	/*
440 	 * Map device registers
441 	 */
442 	if (igb_regs_map(igb) != IGB_SUCCESS) {
443 		igb_error(igb, "Failed to map device registers");
444 		goto attach_fail;
445 	}
446 	igb->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
447 
448 	/*
449 	 * Initialize driver parameters
450 	 */
451 	igb_init_properties(igb);
452 	igb->attach_progress |= ATTACH_PROGRESS_PROPS;
453 
454 	/*
455 	 * Allocate interrupts
456 	 */
457 	if (igb_alloc_intrs(igb) != IGB_SUCCESS) {
458 		igb_error(igb, "Failed to allocate interrupts");
459 		goto attach_fail;
460 	}
461 	igb->attach_progress |= ATTACH_PROGRESS_ALLOC_INTR;
462 
463 	/*
464 	 * Allocate rx/tx rings based on the ring numbers.
465 	 * The actual numbers of rx/tx rings are decided by the number of
466 	 * allocated interrupt vectors, so we should allocate the rings after
467 	 * interrupts are allocated.
468 	 */
469 	if (igb_alloc_rings(igb) != IGB_SUCCESS) {
470 		igb_error(igb, "Failed to allocate rx/tx rings or groups");
471 		goto attach_fail;
472 	}
473 	igb->attach_progress |= ATTACH_PROGRESS_ALLOC_RINGS;
474 
475 	/*
476 	 * Add interrupt handlers
477 	 */
478 	if (igb_add_intr_handlers(igb) != IGB_SUCCESS) {
479 		igb_error(igb, "Failed to add interrupt handlers");
480 		goto attach_fail;
481 	}
482 	igb->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
483 
484 	/*
485 	 * Initialize driver parameters
486 	 */
487 	if (igb_init_driver_settings(igb) != IGB_SUCCESS) {
488 		igb_error(igb, "Failed to initialize driver settings");
489 		goto attach_fail;
490 	}
491 
492 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK) {
493 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
494 		goto attach_fail;
495 	}
496 
497 	/*
498 	 * Initialize mutexes for this device.
499 	 * Do this before enabling the interrupt handler and
500 	 * register the softint to avoid the condition where
501 	 * interrupt handler can try using uninitialized mutex
502 	 */
503 	igb_init_locks(igb);
504 	igb->attach_progress |= ATTACH_PROGRESS_LOCKS;
505 
506 	/*
507 	 * Initialize the adapter
508 	 */
509 	if (igb_init(igb) != IGB_SUCCESS) {
510 		igb_error(igb, "Failed to initialize adapter");
511 		goto attach_fail;
512 	}
513 	igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
514 
515 	/*
516 	 * Initialize statistics
517 	 */
518 	if (igb_init_stats(igb) != IGB_SUCCESS) {
519 		igb_error(igb, "Failed to initialize statistics");
520 		goto attach_fail;
521 	}
522 	igb->attach_progress |= ATTACH_PROGRESS_STATS;
523 
524 	/*
525 	 * Register the driver to the MAC
526 	 */
527 	if (igb_register_mac(igb) != IGB_SUCCESS) {
528 		igb_error(igb, "Failed to register MAC");
529 		goto attach_fail;
530 	}
531 	igb->attach_progress |= ATTACH_PROGRESS_MAC;
532 
533 	/*
534 	 * Now that mutex locks are initialized, and the chip is also
535 	 * initialized, enable interrupts.
536 	 */
537 	if (igb_enable_intrs(igb) != IGB_SUCCESS) {
538 		igb_error(igb, "Failed to enable DDI interrupts");
539 		goto attach_fail;
540 	}
541 	igb->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
542 
543 	igb_log(igb, "%s", igb_version);
544 	atomic_or_32(&igb->igb_state, IGB_INITIALIZED);
545 
546 	/*
547 	 * Newer models have Energy Efficient Ethernet, let's disable this by
548 	 * default.
549 	 */
550 	if (igb->hw.mac.type == e1000_i350)
551 		(void) e1000_set_eee_i350(&igb->hw);
552 
553 	return (DDI_SUCCESS);
554 
555 attach_fail:
556 	igb_unconfigure(devinfo, igb);
557 	return (DDI_FAILURE);
558 }
559 
560 /*
561  * igb_detach - driver detach
562  *
563  * The detach() function is the complement of the attach routine.
564  * If cmd is set to DDI_DETACH, detach() is used to remove  the
565  * state  associated  with  a  given  instance of a device node
566  * prior to the removal of that instance from the system.
567  *
568  * The detach() function will be called once for each  instance
569  * of the device for which there has been a successful attach()
570  * once there are no longer  any  opens  on  the  device.
571  *
572  * Interrupts routine are disabled, All memory allocated by this
573  * driver are freed.
574  */
575 static int
576 igb_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
577 {
578 	igb_t *igb;
579 
580 	/*
581 	 * Check detach command
582 	 */
583 	switch (cmd) {
584 	default:
585 		return (DDI_FAILURE);
586 
587 	case DDI_SUSPEND:
588 		return (igb_suspend(devinfo));
589 
590 	case DDI_DETACH:
591 		break;
592 	}
593 
594 
595 	/*
596 	 * Get the pointer to the driver private data structure
597 	 */
598 	igb = (igb_t *)ddi_get_driver_private(devinfo);
599 	if (igb == NULL)
600 		return (DDI_FAILURE);
601 
602 	/*
603 	 * Unregister MAC. If failed, we have to fail the detach
604 	 */
605 	if (mac_unregister(igb->mac_hdl) != 0) {
606 		igb_error(igb, "Failed to unregister MAC");
607 		return (DDI_FAILURE);
608 	}
609 	igb->attach_progress &= ~ATTACH_PROGRESS_MAC;
610 
611 	/*
612 	 * If the device is still running, it needs to be stopped first.
613 	 * This check is necessary because under some specific circumstances,
614 	 * the detach routine can be called without stopping the interface
615 	 * first.
616 	 */
617 	mutex_enter(&igb->gen_lock);
618 	if (igb->igb_state & IGB_STARTED) {
619 		atomic_and_32(&igb->igb_state, ~IGB_STARTED);
620 		igb_stop(igb, B_TRUE);
621 		mutex_exit(&igb->gen_lock);
622 		/* Disable and stop the watchdog timer */
623 		igb_disable_watchdog_timer(igb);
624 	} else
625 		mutex_exit(&igb->gen_lock);
626 
627 	/*
628 	 * Check if there are still rx buffers held by the upper layer.
629 	 * If so, fail the detach.
630 	 */
631 	if (!igb_rx_drain(igb))
632 		return (DDI_FAILURE);
633 
634 	/*
635 	 * Do the remaining unconfigure routines
636 	 */
637 	igb_unconfigure(devinfo, igb);
638 
639 	return (DDI_SUCCESS);
640 }
641 
642 /*
643  * quiesce(9E) entry point.
644  *
645  * This function is called when the system is single-threaded at high
646  * PIL with preemption disabled. Therefore, this function must not be
647  * blocked.
648  *
649  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
650  * DDI_FAILURE indicates an error condition and should almost never happen.
651  */
652 static int
653 igb_quiesce(dev_info_t *devinfo)
654 {
655 	igb_t *igb;
656 	struct e1000_hw *hw;
657 
658 	igb = (igb_t *)ddi_get_driver_private(devinfo);
659 
660 	if (igb == NULL)
661 		return (DDI_FAILURE);
662 
663 	hw = &igb->hw;
664 
665 	/*
666 	 * Disable the adapter interrupts
667 	 */
668 	igb_disable_adapter_interrupts(igb);
669 
670 	/* Tell firmware driver is no longer in control */
671 	igb_release_driver_control(hw);
672 
673 	/*
674 	 * Reset the chipset
675 	 */
676 	(void) e1000_reset_hw(hw);
677 
678 	/*
679 	 * Reset PHY if possible
680 	 */
681 	if (e1000_check_reset_block(hw) == E1000_SUCCESS)
682 		(void) e1000_phy_hw_reset(hw);
683 
684 	return (DDI_SUCCESS);
685 }
686 
687 /*
688  * igb_unconfigure - release all resources held by this instance
689  */
690 static void
691 igb_unconfigure(dev_info_t *devinfo, igb_t *igb)
692 {
693 	/*
694 	 * Disable interrupt
695 	 */
696 	if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
697 		(void) igb_disable_intrs(igb);
698 	}
699 
700 	/*
701 	 * Unregister MAC
702 	 */
703 	if (igb->attach_progress & ATTACH_PROGRESS_MAC) {
704 		(void) mac_unregister(igb->mac_hdl);
705 	}
706 
707 	/*
708 	 * Free statistics
709 	 */
710 	if (igb->attach_progress & ATTACH_PROGRESS_STATS) {
711 		kstat_delete((kstat_t *)igb->igb_ks);
712 	}
713 
714 	/*
715 	 * Remove interrupt handlers
716 	 */
717 	if (igb->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
718 		igb_rem_intr_handlers(igb);
719 	}
720 
721 	/*
722 	 * Remove interrupts
723 	 */
724 	if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_INTR) {
725 		igb_rem_intrs(igb);
726 	}
727 
728 	/*
729 	 * Remove driver properties
730 	 */
731 	if (igb->attach_progress & ATTACH_PROGRESS_PROPS) {
732 		(void) ddi_prop_remove_all(devinfo);
733 	}
734 
735 	/*
736 	 * Stop the adapter
737 	 */
738 	if (igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) {
739 		mutex_enter(&igb->gen_lock);
740 		igb_stop_adapter(igb);
741 		mutex_exit(&igb->gen_lock);
742 		if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
743 			ddi_fm_service_impact(igb->dip, DDI_SERVICE_UNAFFECTED);
744 	}
745 
746 	/*
747 	 * Free multicast table
748 	 */
749 	igb_release_multicast(igb);
750 
751 	/*
752 	 * Free register handle
753 	 */
754 	if (igb->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
755 		if (igb->osdep.reg_handle != NULL)
756 			ddi_regs_map_free(&igb->osdep.reg_handle);
757 	}
758 
759 	/*
760 	 * Free PCI config handle
761 	 */
762 	if (igb->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
763 		if (igb->osdep.cfg_handle != NULL)
764 			pci_config_teardown(&igb->osdep.cfg_handle);
765 	}
766 
767 	/*
768 	 * Free locks
769 	 */
770 	if (igb->attach_progress & ATTACH_PROGRESS_LOCKS) {
771 		igb_destroy_locks(igb);
772 	}
773 
774 	/*
775 	 * Free the rx/tx rings
776 	 */
777 	if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_RINGS) {
778 		igb_free_rings(igb);
779 	}
780 
781 	/*
782 	 * Remove FMA
783 	 */
784 	if (igb->attach_progress & ATTACH_PROGRESS_FMINIT) {
785 		igb_fm_fini(igb);
786 	}
787 
788 	/*
789 	 * Free the driver data structure
790 	 */
791 	kmem_free(igb, sizeof (igb_t));
792 
793 	ddi_set_driver_private(devinfo, NULL);
794 }
795 
796 /*
797  * igb_register_mac - Register the driver and its function pointers with
798  * the GLD interface
799  */
800 static int
801 igb_register_mac(igb_t *igb)
802 {
803 	struct e1000_hw *hw = &igb->hw;
804 	mac_register_t *mac;
805 	int status;
806 
807 	if ((mac = mac_alloc(MAC_VERSION)) == NULL)
808 		return (IGB_FAILURE);
809 
810 	mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
811 	mac->m_driver = igb;
812 	mac->m_dip = igb->dip;
813 	mac->m_src_addr = hw->mac.addr;
814 	mac->m_callbacks = &igb_m_callbacks;
815 	mac->m_min_sdu = 0;
816 	mac->m_max_sdu = igb->max_frame_size -
817 	    sizeof (struct ether_vlan_header) - ETHERFCSL;
818 	mac->m_margin = VLAN_TAGSZ;
819 	mac->m_priv_props = igb_priv_props;
820 	mac->m_v12n = MAC_VIRT_LEVEL1;
821 
822 	status = mac_register(mac, &igb->mac_hdl);
823 
824 	mac_free(mac);
825 
826 	return ((status == 0) ? IGB_SUCCESS : IGB_FAILURE);
827 }
828 
829 /*
830  * igb_identify_hardware - Identify the type of the chipset
831  */
832 static int
833 igb_identify_hardware(igb_t *igb)
834 {
835 	struct e1000_hw *hw = &igb->hw;
836 	struct igb_osdep *osdep = &igb->osdep;
837 
838 	/*
839 	 * Get the device id
840 	 */
841 	hw->vendor_id =
842 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
843 	hw->device_id =
844 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
845 	hw->revision_id =
846 	    pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
847 	hw->subsystem_device_id =
848 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
849 	hw->subsystem_vendor_id =
850 	    pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
851 
852 	/*
853 	 * Set the mac type of the adapter based on the device id
854 	 */
855 	if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
856 		return (IGB_FAILURE);
857 	}
858 
859 	/*
860 	 * Install adapter capabilities based on mac type
861 	 */
862 	switch (hw->mac.type) {
863 	case e1000_82575:
864 		igb->capab = &igb_82575_cap;
865 		break;
866 	case e1000_82576:
867 		igb->capab = &igb_82576_cap;
868 		break;
869 	case e1000_82580:
870 		igb->capab = &igb_82580_cap;
871 		break;
872 	case e1000_i350:
873 		igb->capab = &igb_i350_cap;
874 		break;
875 	default:
876 		return (IGB_FAILURE);
877 	}
878 
879 	return (IGB_SUCCESS);
880 }
881 
882 /*
883  * igb_regs_map - Map the device registers
884  */
885 static int
886 igb_regs_map(igb_t *igb)
887 {
888 	dev_info_t *devinfo = igb->dip;
889 	struct e1000_hw *hw = &igb->hw;
890 	struct igb_osdep *osdep = &igb->osdep;
891 	off_t mem_size;
892 
893 	/*
894 	 * First get the size of device registers to be mapped.
895 	 */
896 	if (ddi_dev_regsize(devinfo, IGB_ADAPTER_REGSET, &mem_size) !=
897 	    DDI_SUCCESS) {
898 		return (IGB_FAILURE);
899 	}
900 
901 	/*
902 	 * Call ddi_regs_map_setup() to map registers
903 	 */
904 	if ((ddi_regs_map_setup(devinfo, IGB_ADAPTER_REGSET,
905 	    (caddr_t *)&hw->hw_addr, 0,
906 	    mem_size, &igb_regs_acc_attr,
907 	    &osdep->reg_handle)) != DDI_SUCCESS) {
908 		return (IGB_FAILURE);
909 	}
910 
911 	return (IGB_SUCCESS);
912 }
913 
914 /*
915  * igb_init_properties - Initialize driver properties
916  */
917 static void
918 igb_init_properties(igb_t *igb)
919 {
920 	/*
921 	 * Get conf file properties, including link settings
922 	 * jumbo frames, ring number, descriptor number, etc.
923 	 */
924 	igb_get_conf(igb);
925 }
926 
927 /*
928  * igb_init_driver_settings - Initialize driver settings
929  *
930  * The settings include hardware function pointers, bus information,
931  * rx/tx rings settings, link state, and any other parameters that
932  * need to be setup during driver initialization.
933  */
934 static int
935 igb_init_driver_settings(igb_t *igb)
936 {
937 	struct e1000_hw *hw = &igb->hw;
938 	igb_rx_ring_t *rx_ring;
939 	igb_tx_ring_t *tx_ring;
940 	uint32_t rx_size;
941 	uint32_t tx_size;
942 	int i;
943 
944 	/*
945 	 * Initialize chipset specific hardware function pointers
946 	 */
947 	if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
948 		return (IGB_FAILURE);
949 	}
950 
951 	/*
952 	 * Get bus information
953 	 */
954 	if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
955 		return (IGB_FAILURE);
956 	}
957 
958 	/*
959 	 * Get the system page size
960 	 */
961 	igb->page_size = ddi_ptob(igb->dip, (ulong_t)1);
962 
963 	/*
964 	 * Set rx buffer size
965 	 * The IP header alignment room is counted in the calculation.
966 	 * The rx buffer size is in unit of 1K that is required by the
967 	 * chipset hardware.
968 	 */
969 	rx_size = igb->max_frame_size + IPHDR_ALIGN_ROOM;
970 	igb->rx_buf_size = ((rx_size >> 10) +
971 	    ((rx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
972 
973 	/*
974 	 * Set tx buffer size
975 	 */
976 	tx_size = igb->max_frame_size;
977 	igb->tx_buf_size = ((tx_size >> 10) +
978 	    ((tx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10;
979 
980 	/*
981 	 * Initialize rx/tx rings parameters
982 	 */
983 	for (i = 0; i < igb->num_rx_rings; i++) {
984 		rx_ring = &igb->rx_rings[i];
985 		rx_ring->index = i;
986 		rx_ring->igb = igb;
987 	}
988 
989 	for (i = 0; i < igb->num_tx_rings; i++) {
990 		tx_ring = &igb->tx_rings[i];
991 		tx_ring->index = i;
992 		tx_ring->igb = igb;
993 		if (igb->tx_head_wb_enable)
994 			tx_ring->tx_recycle = igb_tx_recycle_head_wb;
995 		else
996 			tx_ring->tx_recycle = igb_tx_recycle_legacy;
997 
998 		tx_ring->ring_size = igb->tx_ring_size;
999 		tx_ring->free_list_size = igb->tx_ring_size +
1000 		    (igb->tx_ring_size >> 1);
1001 	}
1002 
1003 	/*
1004 	 * Initialize values of interrupt throttling rates
1005 	 */
1006 	for (i = 1; i < MAX_NUM_EITR; i++)
1007 		igb->intr_throttling[i] = igb->intr_throttling[0];
1008 
1009 	/*
1010 	 * The initial link state should be "unknown"
1011 	 */
1012 	igb->link_state = LINK_STATE_UNKNOWN;
1013 
1014 	return (IGB_SUCCESS);
1015 }
1016 
1017 /*
1018  * igb_init_locks - Initialize locks
1019  */
1020 static void
1021 igb_init_locks(igb_t *igb)
1022 {
1023 	igb_rx_ring_t *rx_ring;
1024 	igb_tx_ring_t *tx_ring;
1025 	int i;
1026 
1027 	for (i = 0; i < igb->num_rx_rings; i++) {
1028 		rx_ring = &igb->rx_rings[i];
1029 		mutex_init(&rx_ring->rx_lock, NULL,
1030 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1031 	}
1032 
1033 	for (i = 0; i < igb->num_tx_rings; i++) {
1034 		tx_ring = &igb->tx_rings[i];
1035 		mutex_init(&tx_ring->tx_lock, NULL,
1036 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1037 		mutex_init(&tx_ring->recycle_lock, NULL,
1038 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1039 		mutex_init(&tx_ring->tcb_head_lock, NULL,
1040 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1041 		mutex_init(&tx_ring->tcb_tail_lock, NULL,
1042 		    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1043 	}
1044 
1045 	mutex_init(&igb->gen_lock, NULL,
1046 	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1047 
1048 	mutex_init(&igb->watchdog_lock, NULL,
1049 	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1050 
1051 	mutex_init(&igb->link_lock, NULL,
1052 	    MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri));
1053 }
1054 
1055 /*
1056  * igb_destroy_locks - Destroy locks
1057  */
1058 static void
1059 igb_destroy_locks(igb_t *igb)
1060 {
1061 	igb_rx_ring_t *rx_ring;
1062 	igb_tx_ring_t *tx_ring;
1063 	int i;
1064 
1065 	for (i = 0; i < igb->num_rx_rings; i++) {
1066 		rx_ring = &igb->rx_rings[i];
1067 		mutex_destroy(&rx_ring->rx_lock);
1068 	}
1069 
1070 	for (i = 0; i < igb->num_tx_rings; i++) {
1071 		tx_ring = &igb->tx_rings[i];
1072 		mutex_destroy(&tx_ring->tx_lock);
1073 		mutex_destroy(&tx_ring->recycle_lock);
1074 		mutex_destroy(&tx_ring->tcb_head_lock);
1075 		mutex_destroy(&tx_ring->tcb_tail_lock);
1076 	}
1077 
1078 	mutex_destroy(&igb->gen_lock);
1079 	mutex_destroy(&igb->watchdog_lock);
1080 	mutex_destroy(&igb->link_lock);
1081 }
1082 
1083 static int
1084 igb_resume(dev_info_t *devinfo)
1085 {
1086 	igb_t *igb;
1087 
1088 	igb = (igb_t *)ddi_get_driver_private(devinfo);
1089 	if (igb == NULL)
1090 		return (DDI_FAILURE);
1091 
1092 	mutex_enter(&igb->gen_lock);
1093 
1094 	/*
1095 	 * Enable interrupts
1096 	 */
1097 	if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1098 		if (igb_enable_intrs(igb) != IGB_SUCCESS) {
1099 			igb_error(igb, "Failed to enable DDI interrupts");
1100 			mutex_exit(&igb->gen_lock);
1101 			return (DDI_FAILURE);
1102 		}
1103 	}
1104 
1105 	if (igb->igb_state & IGB_STARTED) {
1106 		if (igb_start(igb, B_FALSE) != IGB_SUCCESS) {
1107 			mutex_exit(&igb->gen_lock);
1108 			return (DDI_FAILURE);
1109 		}
1110 
1111 		/*
1112 		 * Enable and start the watchdog timer
1113 		 */
1114 		igb_enable_watchdog_timer(igb);
1115 	}
1116 
1117 	atomic_and_32(&igb->igb_state, ~IGB_SUSPENDED);
1118 
1119 	mutex_exit(&igb->gen_lock);
1120 
1121 	return (DDI_SUCCESS);
1122 }
1123 
1124 static int
1125 igb_suspend(dev_info_t *devinfo)
1126 {
1127 	igb_t *igb;
1128 
1129 	igb = (igb_t *)ddi_get_driver_private(devinfo);
1130 	if (igb == NULL)
1131 		return (DDI_FAILURE);
1132 
1133 	mutex_enter(&igb->gen_lock);
1134 
1135 	atomic_or_32(&igb->igb_state, IGB_SUSPENDED);
1136 
1137 	/*
1138 	 * Disable interrupts
1139 	 */
1140 	if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1141 		(void) igb_disable_intrs(igb);
1142 	}
1143 
1144 	if (!(igb->igb_state & IGB_STARTED)) {
1145 		mutex_exit(&igb->gen_lock);
1146 		return (DDI_SUCCESS);
1147 	}
1148 
1149 	igb_stop(igb, B_FALSE);
1150 
1151 	mutex_exit(&igb->gen_lock);
1152 
1153 	/*
1154 	 * Disable and stop the watchdog timer
1155 	 */
1156 	igb_disable_watchdog_timer(igb);
1157 
1158 	return (DDI_SUCCESS);
1159 }
1160 
1161 static int
1162 igb_init(igb_t *igb)
1163 {
1164 	mutex_enter(&igb->gen_lock);
1165 
1166 	/*
1167 	 * Initilize the adapter
1168 	 */
1169 	if (igb_init_adapter(igb) != IGB_SUCCESS) {
1170 		mutex_exit(&igb->gen_lock);
1171 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1172 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1173 		return (IGB_FAILURE);
1174 	}
1175 
1176 	mutex_exit(&igb->gen_lock);
1177 
1178 	return (IGB_SUCCESS);
1179 }
1180 
1181 /*
1182  * igb_init_mac_address - Initialize the default MAC address
1183  *
1184  * On success, the MAC address is entered in the igb->hw.mac.addr
1185  * and hw->mac.perm_addr fields and the adapter's RAR(0) receive
1186  * address register.
1187  *
1188  * Important side effects:
1189  * 1. adapter is reset - this is required to put it in a known state.
1190  * 2. all of non-volatile memory (NVM) is read & checksummed - NVM is where
1191  * MAC address and all default settings are stored, so a valid checksum
1192  * is required.
1193  */
1194 static int
1195 igb_init_mac_address(igb_t *igb)
1196 {
1197 	struct e1000_hw *hw = &igb->hw;
1198 
1199 	ASSERT(mutex_owned(&igb->gen_lock));
1200 
1201 	/*
1202 	 * Reset chipset to put the hardware in a known state
1203 	 * before we try to get MAC address from NVM.
1204 	 */
1205 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1206 		igb_error(igb, "Adapter reset failed.");
1207 		goto init_mac_fail;
1208 	}
1209 
1210 	/*
1211 	 * NVM validation
1212 	 */
1213 	if (e1000_validate_nvm_checksum(hw) < 0) {
1214 		/*
1215 		 * Some PCI-E parts fail the first check due to
1216 		 * the link being in sleep state.  Call it again,
1217 		 * if it fails a second time its a real issue.
1218 		 */
1219 		if (e1000_validate_nvm_checksum(hw) < 0) {
1220 			igb_error(igb,
1221 			    "Invalid NVM checksum. Please contact "
1222 			    "the vendor to update the NVM.");
1223 			goto init_mac_fail;
1224 		}
1225 	}
1226 
1227 	/*
1228 	 * Get the mac address
1229 	 * This function should handle SPARC case correctly.
1230 	 */
1231 	if (!igb_find_mac_address(igb)) {
1232 		igb_error(igb, "Failed to get the mac address");
1233 		goto init_mac_fail;
1234 	}
1235 
1236 	/* Validate mac address */
1237 	if (!is_valid_mac_addr(hw->mac.addr)) {
1238 		igb_error(igb, "Invalid mac address");
1239 		goto init_mac_fail;
1240 	}
1241 
1242 	return (IGB_SUCCESS);
1243 
1244 init_mac_fail:
1245 	return (IGB_FAILURE);
1246 }
1247 
1248 /*
1249  * igb_init_adapter - Initialize the adapter
1250  */
1251 static int
1252 igb_init_adapter(igb_t *igb)
1253 {
1254 	struct e1000_hw *hw = &igb->hw;
1255 	uint32_t pba;
1256 	uint32_t high_water;
1257 	int oemid[2];
1258 	uint16_t nvmword;
1259 	u8 pbanum[E1000_PBANUM_LENGTH];
1260 	char eepromver[5];	/* f.ff */
1261 	int i;
1262 
1263 	ASSERT(mutex_owned(&igb->gen_lock));
1264 
1265 	/*
1266 	 * In order to obtain the default MAC address, this will reset the
1267 	 * adapter and validate the NVM that the address and many other
1268 	 * default settings come from.
1269 	 */
1270 	if (igb_init_mac_address(igb) != IGB_SUCCESS) {
1271 		igb_error(igb, "Failed to initialize MAC address");
1272 		goto init_adapter_fail;
1273 	}
1274 
1275 	/*
1276 	 * Setup flow control
1277 	 *
1278 	 * These parameters set thresholds for the adapter's generation(Tx)
1279 	 * and response(Rx) to Ethernet PAUSE frames.  These are just threshold
1280 	 * settings.  Flow control is enabled or disabled in the configuration
1281 	 * file.
1282 	 * High-water mark is set down from the top of the rx fifo (not
1283 	 * sensitive to max_frame_size) and low-water is set just below
1284 	 * high-water mark.
1285 	 * The high water mark must be low enough to fit one full frame above
1286 	 * it in the rx FIFO.  Should be the lower of:
1287 	 * 90% of the Rx FIFO size, or the full Rx FIFO size minus one full
1288 	 * frame.
1289 	 */
1290 	/*
1291 	 * The default setting of PBA is correct for 82575 and other supported
1292 	 * adapters do not have the E1000_PBA register, so PBA value is only
1293 	 * used for calculation here and is never written to the adapter.
1294 	 */
1295 	if (hw->mac.type == e1000_82575) {
1296 		pba = E1000_PBA_34K;
1297 	} else {
1298 		pba = E1000_PBA_64K;
1299 	}
1300 
1301 	high_water = min(((pba << 10) * 9 / 10),
1302 	    ((pba << 10) - igb->max_frame_size));
1303 
1304 	if (hw->mac.type == e1000_82575) {
1305 		/* 8-byte granularity */
1306 		hw->fc.high_water = high_water & 0xFFF8;
1307 		hw->fc.low_water = hw->fc.high_water - 8;
1308 	} else {
1309 		/* 16-byte granularity */
1310 		hw->fc.high_water = high_water & 0xFFF0;
1311 		hw->fc.low_water = hw->fc.high_water - 16;
1312 	}
1313 
1314 	hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1315 	hw->fc.send_xon = B_TRUE;
1316 
1317 	(void) e1000_validate_mdi_setting(hw);
1318 
1319 	/*
1320 	 * Reset the chipset hardware the second time to put PBA settings
1321 	 * into effect.
1322 	 */
1323 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1324 		igb_error(igb, "Second reset failed");
1325 		goto init_adapter_fail;
1326 	}
1327 
1328 	/*
1329 	 * Don't wait for auto-negotiation to complete
1330 	 */
1331 	hw->phy.autoneg_wait_to_complete = B_FALSE;
1332 
1333 	/*
1334 	 * Copper options
1335 	 */
1336 	if (hw->phy.media_type == e1000_media_type_copper) {
1337 		hw->phy.mdix = 0;	/* AUTO_ALL_MODES */
1338 		hw->phy.disable_polarity_correction = B_FALSE;
1339 		hw->phy.ms_type = e1000_ms_hw_default; /* E1000_MASTER_SLAVE */
1340 	}
1341 
1342 	/*
1343 	 * Initialize link settings
1344 	 */
1345 	(void) igb_setup_link(igb, B_FALSE);
1346 
1347 	/*
1348 	 * Configure/Initialize hardware
1349 	 */
1350 	if (e1000_init_hw(hw) != E1000_SUCCESS) {
1351 		igb_error(igb, "Failed to initialize hardware");
1352 		goto init_adapter_fail;
1353 	}
1354 
1355 	/*
1356 	 *  Start the link setup timer
1357 	 */
1358 	igb_start_link_timer(igb);
1359 
1360 	/*
1361 	 * Disable wakeup control by default
1362 	 */
1363 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1364 
1365 	/*
1366 	 * Record phy info in hw struct
1367 	 */
1368 	(void) e1000_get_phy_info(hw);
1369 
1370 	/*
1371 	 * Make sure driver has control
1372 	 */
1373 	igb_get_driver_control(hw);
1374 
1375 	/*
1376 	 * Restore LED settings to the default from EEPROM
1377 	 * to meet the standard for Sun platforms.
1378 	 */
1379 	(void) e1000_cleanup_led(hw);
1380 
1381 	/*
1382 	 * Setup MSI-X interrupts
1383 	 */
1384 	if (igb->intr_type == DDI_INTR_TYPE_MSIX)
1385 		igb->capab->setup_msix(igb);
1386 
1387 	/*
1388 	 * Initialize unicast addresses.
1389 	 */
1390 	igb_init_unicst(igb);
1391 
1392 	/*
1393 	 * Setup and initialize the mctable structures.
1394 	 */
1395 	igb_setup_multicst(igb);
1396 
1397 	/*
1398 	 * Set interrupt throttling rate
1399 	 */
1400 	for (i = 0; i < igb->intr_cnt; i++)
1401 		E1000_WRITE_REG(hw, E1000_EITR(i), igb->intr_throttling[i]);
1402 
1403 	/*
1404 	 * Read identifying information and place in devinfo.
1405 	 */
1406 	nvmword = 0xffff;
1407 	(void) e1000_read_nvm(&igb->hw, NVM_OEM_OFFSET_0, 1, &nvmword);
1408 	oemid[0] = (int)nvmword;
1409 	(void) e1000_read_nvm(&igb->hw, NVM_OEM_OFFSET_1, 1, &nvmword);
1410 	oemid[1] = (int)nvmword;
1411 	(void) ddi_prop_update_int_array(DDI_DEV_T_NONE, igb->dip,
1412 	    "oem-identifier", oemid, 2);
1413 
1414 	pbanum[0] = '\0';
1415 	(void) e1000_read_pba_string(&igb->hw, pbanum, sizeof (pbanum));
1416 	if (*pbanum != '\0') {
1417 		(void) ddi_prop_update_string(DDI_DEV_T_NONE, igb->dip,
1418 		    "printed-board-assembly", (char *)pbanum);
1419 	}
1420 
1421 	nvmword = 0xffff;
1422 	(void) e1000_read_nvm(&igb->hw, NVM_VERSION, 1, &nvmword);
1423 	if ((nvmword & 0xf00) == 0) {
1424 		(void) snprintf(eepromver, sizeof (eepromver), "%x.%x",
1425 		    (nvmword & 0xf000) >> 12, (nvmword & 0xff));
1426 		(void) ddi_prop_update_string(DDI_DEV_T_NONE, igb->dip,
1427 		    "nvm-version", eepromver);
1428 	}
1429 
1430 	/*
1431 	 * Save the state of the phy
1432 	 */
1433 	igb_get_phy_state(igb);
1434 
1435 	igb_param_sync(igb);
1436 
1437 	return (IGB_SUCCESS);
1438 
1439 init_adapter_fail:
1440 	/*
1441 	 * Reset PHY if possible
1442 	 */
1443 	if (e1000_check_reset_block(hw) == E1000_SUCCESS)
1444 		(void) e1000_phy_hw_reset(hw);
1445 
1446 	return (IGB_FAILURE);
1447 }
1448 
1449 /*
1450  * igb_stop_adapter - Stop the adapter
1451  */
1452 static void
1453 igb_stop_adapter(igb_t *igb)
1454 {
1455 	struct e1000_hw *hw = &igb->hw;
1456 
1457 	ASSERT(mutex_owned(&igb->gen_lock));
1458 
1459 	/* Stop the link setup timer */
1460 	igb_stop_link_timer(igb);
1461 
1462 	/* Tell firmware driver is no longer in control */
1463 	igb_release_driver_control(hw);
1464 
1465 	/*
1466 	 * Reset the chipset
1467 	 */
1468 	if (e1000_reset_hw(hw) != E1000_SUCCESS) {
1469 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1470 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1471 	}
1472 
1473 	/*
1474 	 * e1000_phy_hw_reset is not needed here, MAC reset above is sufficient
1475 	 */
1476 }
1477 
1478 /*
1479  * igb_reset - Reset the chipset and restart the driver.
1480  *
1481  * It involves stopping and re-starting the chipset,
1482  * and re-configuring the rx/tx rings.
1483  */
1484 static int
1485 igb_reset(igb_t *igb)
1486 {
1487 	int i;
1488 
1489 	mutex_enter(&igb->gen_lock);
1490 
1491 	ASSERT(igb->igb_state & IGB_STARTED);
1492 	atomic_and_32(&igb->igb_state, ~IGB_STARTED);
1493 
1494 	/*
1495 	 * Disable the adapter interrupts to stop any rx/tx activities
1496 	 * before draining pending data and resetting hardware.
1497 	 */
1498 	igb_disable_adapter_interrupts(igb);
1499 
1500 	/*
1501 	 * Drain the pending transmit packets
1502 	 */
1503 	(void) igb_tx_drain(igb);
1504 
1505 	for (i = 0; i < igb->num_rx_rings; i++)
1506 		mutex_enter(&igb->rx_rings[i].rx_lock);
1507 	for (i = 0; i < igb->num_tx_rings; i++)
1508 		mutex_enter(&igb->tx_rings[i].tx_lock);
1509 
1510 	/*
1511 	 * Stop the adapter
1512 	 */
1513 	igb_stop_adapter(igb);
1514 
1515 	/*
1516 	 * Clean the pending tx data/resources
1517 	 */
1518 	igb_tx_clean(igb);
1519 
1520 	/*
1521 	 * Start the adapter
1522 	 */
1523 	if (igb_init_adapter(igb) != IGB_SUCCESS) {
1524 		igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1525 		goto reset_failure;
1526 	}
1527 
1528 	/*
1529 	 * Setup the rx/tx rings
1530 	 */
1531 	igb->tx_ring_init = B_FALSE;
1532 	igb_setup_rings(igb);
1533 
1534 	atomic_and_32(&igb->igb_state, ~(IGB_ERROR | IGB_STALL));
1535 
1536 	/*
1537 	 * Enable adapter interrupts
1538 	 * The interrupts must be enabled after the driver state is START
1539 	 */
1540 	igb->capab->enable_intr(igb);
1541 
1542 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1543 		goto reset_failure;
1544 
1545 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1546 		goto reset_failure;
1547 
1548 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1549 		mutex_exit(&igb->tx_rings[i].tx_lock);
1550 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1551 		mutex_exit(&igb->rx_rings[i].rx_lock);
1552 
1553 	atomic_or_32(&igb->igb_state, IGB_STARTED);
1554 
1555 	mutex_exit(&igb->gen_lock);
1556 
1557 	return (IGB_SUCCESS);
1558 
1559 reset_failure:
1560 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1561 		mutex_exit(&igb->tx_rings[i].tx_lock);
1562 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1563 		mutex_exit(&igb->rx_rings[i].rx_lock);
1564 
1565 	mutex_exit(&igb->gen_lock);
1566 
1567 	ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1568 
1569 	return (IGB_FAILURE);
1570 }
1571 
1572 /*
1573  * igb_tx_clean - Clean the pending transmit packets and DMA resources
1574  */
1575 static void
1576 igb_tx_clean(igb_t *igb)
1577 {
1578 	igb_tx_ring_t *tx_ring;
1579 	tx_control_block_t *tcb;
1580 	link_list_t pending_list;
1581 	uint32_t desc_num;
1582 	int i, j;
1583 
1584 	LINK_LIST_INIT(&pending_list);
1585 
1586 	for (i = 0; i < igb->num_tx_rings; i++) {
1587 		tx_ring = &igb->tx_rings[i];
1588 
1589 		mutex_enter(&tx_ring->recycle_lock);
1590 
1591 		/*
1592 		 * Clean the pending tx data - the pending packets in the
1593 		 * work_list that have no chances to be transmitted again.
1594 		 *
1595 		 * We must ensure the chipset is stopped or the link is down
1596 		 * before cleaning the transmit packets.
1597 		 */
1598 		desc_num = 0;
1599 		for (j = 0; j < tx_ring->ring_size; j++) {
1600 			tcb = tx_ring->work_list[j];
1601 			if (tcb != NULL) {
1602 				desc_num += tcb->desc_num;
1603 
1604 				tx_ring->work_list[j] = NULL;
1605 
1606 				igb_free_tcb(tcb);
1607 
1608 				LIST_PUSH_TAIL(&pending_list, &tcb->link);
1609 			}
1610 		}
1611 
1612 		if (desc_num > 0) {
1613 			atomic_add_32(&tx_ring->tbd_free, desc_num);
1614 			ASSERT(tx_ring->tbd_free == tx_ring->ring_size);
1615 
1616 			/*
1617 			 * Reset the head and tail pointers of the tbd ring;
1618 			 * Reset the head write-back if it is enabled.
1619 			 */
1620 			tx_ring->tbd_head = 0;
1621 			tx_ring->tbd_tail = 0;
1622 			if (igb->tx_head_wb_enable)
1623 				*tx_ring->tbd_head_wb = 0;
1624 
1625 			E1000_WRITE_REG(&igb->hw, E1000_TDH(tx_ring->index), 0);
1626 			E1000_WRITE_REG(&igb->hw, E1000_TDT(tx_ring->index), 0);
1627 		}
1628 
1629 		mutex_exit(&tx_ring->recycle_lock);
1630 
1631 		/*
1632 		 * Add the tx control blocks in the pending list to
1633 		 * the free list.
1634 		 */
1635 		igb_put_free_list(tx_ring, &pending_list);
1636 	}
1637 }
1638 
1639 /*
1640  * igb_tx_drain - Drain the tx rings to allow pending packets to be transmitted
1641  */
1642 static boolean_t
1643 igb_tx_drain(igb_t *igb)
1644 {
1645 	igb_tx_ring_t *tx_ring;
1646 	boolean_t done;
1647 	int i, j;
1648 
1649 	/*
1650 	 * Wait for a specific time to allow pending tx packets
1651 	 * to be transmitted.
1652 	 *
1653 	 * Check the counter tbd_free to see if transmission is done.
1654 	 * No lock protection is needed here.
1655 	 *
1656 	 * Return B_TRUE if all pending packets have been transmitted;
1657 	 * Otherwise return B_FALSE;
1658 	 */
1659 	for (i = 0; i < TX_DRAIN_TIME; i++) {
1660 
1661 		done = B_TRUE;
1662 		for (j = 0; j < igb->num_tx_rings; j++) {
1663 			tx_ring = &igb->tx_rings[j];
1664 			done = done &&
1665 			    (tx_ring->tbd_free == tx_ring->ring_size);
1666 		}
1667 
1668 		if (done)
1669 			break;
1670 
1671 		msec_delay(1);
1672 	}
1673 
1674 	return (done);
1675 }
1676 
1677 /*
1678  * igb_rx_drain - Wait for all rx buffers to be released by upper layer
1679  */
1680 static boolean_t
1681 igb_rx_drain(igb_t *igb)
1682 {
1683 	boolean_t done;
1684 	int i;
1685 
1686 	/*
1687 	 * Polling the rx free list to check if those rx buffers held by
1688 	 * the upper layer are released.
1689 	 *
1690 	 * Check the counter rcb_free to see if all pending buffers are
1691 	 * released. No lock protection is needed here.
1692 	 *
1693 	 * Return B_TRUE if all pending buffers have been released;
1694 	 * Otherwise return B_FALSE;
1695 	 */
1696 	for (i = 0; i < RX_DRAIN_TIME; i++) {
1697 		done = (igb->rcb_pending == 0);
1698 
1699 		if (done)
1700 			break;
1701 
1702 		msec_delay(1);
1703 	}
1704 
1705 	return (done);
1706 }
1707 
1708 /*
1709  * igb_start - Start the driver/chipset
1710  */
1711 int
1712 igb_start(igb_t *igb, boolean_t alloc_buffer)
1713 {
1714 	int i;
1715 
1716 	ASSERT(mutex_owned(&igb->gen_lock));
1717 
1718 	if (alloc_buffer) {
1719 		if (igb_alloc_rx_data(igb) != IGB_SUCCESS) {
1720 			igb_error(igb,
1721 			    "Failed to allocate software receive rings");
1722 			return (IGB_FAILURE);
1723 		}
1724 
1725 		/* Allocate buffers for all the rx/tx rings */
1726 		if (igb_alloc_dma(igb) != IGB_SUCCESS) {
1727 			igb_error(igb, "Failed to allocate DMA resource");
1728 			return (IGB_FAILURE);
1729 		}
1730 
1731 		igb->tx_ring_init = B_TRUE;
1732 	} else {
1733 		igb->tx_ring_init = B_FALSE;
1734 	}
1735 
1736 	for (i = 0; i < igb->num_rx_rings; i++)
1737 		mutex_enter(&igb->rx_rings[i].rx_lock);
1738 	for (i = 0; i < igb->num_tx_rings; i++)
1739 		mutex_enter(&igb->tx_rings[i].tx_lock);
1740 
1741 	/*
1742 	 * Start the adapter
1743 	 */
1744 	if ((igb->attach_progress & ATTACH_PROGRESS_INIT_ADAPTER) == 0) {
1745 		if (igb_init_adapter(igb) != IGB_SUCCESS) {
1746 			igb_fm_ereport(igb, DDI_FM_DEVICE_INVAL_STATE);
1747 			goto start_failure;
1748 		}
1749 		igb->attach_progress |= ATTACH_PROGRESS_INIT_ADAPTER;
1750 	}
1751 
1752 	/*
1753 	 * Setup the rx/tx rings
1754 	 */
1755 	igb_setup_rings(igb);
1756 
1757 	/*
1758 	 * Enable adapter interrupts
1759 	 * The interrupts must be enabled after the driver state is START
1760 	 */
1761 	igb->capab->enable_intr(igb);
1762 
1763 	if (igb_check_acc_handle(igb->osdep.cfg_handle) != DDI_FM_OK)
1764 		goto start_failure;
1765 
1766 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1767 		goto start_failure;
1768 
1769 	if (igb->hw.mac.type == e1000_i350)
1770 		(void) e1000_set_eee_i350(&igb->hw);
1771 
1772 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1773 		mutex_exit(&igb->tx_rings[i].tx_lock);
1774 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1775 		mutex_exit(&igb->rx_rings[i].rx_lock);
1776 
1777 	return (IGB_SUCCESS);
1778 
1779 start_failure:
1780 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1781 		mutex_exit(&igb->tx_rings[i].tx_lock);
1782 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1783 		mutex_exit(&igb->rx_rings[i].rx_lock);
1784 
1785 	ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1786 
1787 	return (IGB_FAILURE);
1788 }
1789 
1790 /*
1791  * igb_stop - Stop the driver/chipset
1792  */
1793 void
1794 igb_stop(igb_t *igb, boolean_t free_buffer)
1795 {
1796 	int i;
1797 
1798 	ASSERT(mutex_owned(&igb->gen_lock));
1799 
1800 	igb->attach_progress &= ~ATTACH_PROGRESS_INIT_ADAPTER;
1801 
1802 	/*
1803 	 * Disable the adapter interrupts
1804 	 */
1805 	igb_disable_adapter_interrupts(igb);
1806 
1807 	/*
1808 	 * Drain the pending tx packets
1809 	 */
1810 	(void) igb_tx_drain(igb);
1811 
1812 	for (i = 0; i < igb->num_rx_rings; i++)
1813 		mutex_enter(&igb->rx_rings[i].rx_lock);
1814 	for (i = 0; i < igb->num_tx_rings; i++)
1815 		mutex_enter(&igb->tx_rings[i].tx_lock);
1816 
1817 	/*
1818 	 * Stop the adapter
1819 	 */
1820 	igb_stop_adapter(igb);
1821 
1822 	/*
1823 	 * Clean the pending tx data/resources
1824 	 */
1825 	igb_tx_clean(igb);
1826 
1827 	for (i = igb->num_tx_rings - 1; i >= 0; i--)
1828 		mutex_exit(&igb->tx_rings[i].tx_lock);
1829 	for (i = igb->num_rx_rings - 1; i >= 0; i--)
1830 		mutex_exit(&igb->rx_rings[i].rx_lock);
1831 
1832 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK)
1833 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
1834 
1835 	if (igb->link_state == LINK_STATE_UP) {
1836 		igb->link_state = LINK_STATE_UNKNOWN;
1837 		mac_link_update(igb->mac_hdl, igb->link_state);
1838 	}
1839 
1840 	if (free_buffer) {
1841 		/*
1842 		 * Release the DMA/memory resources of rx/tx rings
1843 		 */
1844 		igb_free_dma(igb);
1845 		igb_free_rx_data(igb);
1846 	}
1847 }
1848 
1849 /*
1850  * igb_alloc_rings - Allocate memory space for rx/tx rings
1851  */
1852 static int
1853 igb_alloc_rings(igb_t *igb)
1854 {
1855 	/*
1856 	 * Allocate memory space for rx rings
1857 	 */
1858 	igb->rx_rings = kmem_zalloc(
1859 	    sizeof (igb_rx_ring_t) * igb->num_rx_rings,
1860 	    KM_NOSLEEP);
1861 
1862 	if (igb->rx_rings == NULL) {
1863 		return (IGB_FAILURE);
1864 	}
1865 
1866 	/*
1867 	 * Allocate memory space for tx rings
1868 	 */
1869 	igb->tx_rings = kmem_zalloc(
1870 	    sizeof (igb_tx_ring_t) * igb->num_tx_rings,
1871 	    KM_NOSLEEP);
1872 
1873 	if (igb->tx_rings == NULL) {
1874 		kmem_free(igb->rx_rings,
1875 		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1876 		igb->rx_rings = NULL;
1877 		return (IGB_FAILURE);
1878 	}
1879 
1880 	/*
1881 	 * Allocate memory space for rx ring groups
1882 	 */
1883 	igb->rx_groups = kmem_zalloc(
1884 	    sizeof (igb_rx_group_t) * igb->num_rx_groups,
1885 	    KM_NOSLEEP);
1886 
1887 	if (igb->rx_groups == NULL) {
1888 		kmem_free(igb->rx_rings,
1889 		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1890 		kmem_free(igb->tx_rings,
1891 		    sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1892 		igb->rx_rings = NULL;
1893 		igb->tx_rings = NULL;
1894 		return (IGB_FAILURE);
1895 	}
1896 
1897 	return (IGB_SUCCESS);
1898 }
1899 
1900 /*
1901  * igb_free_rings - Free the memory space of rx/tx rings.
1902  */
1903 static void
1904 igb_free_rings(igb_t *igb)
1905 {
1906 	if (igb->rx_rings != NULL) {
1907 		kmem_free(igb->rx_rings,
1908 		    sizeof (igb_rx_ring_t) * igb->num_rx_rings);
1909 		igb->rx_rings = NULL;
1910 	}
1911 
1912 	if (igb->tx_rings != NULL) {
1913 		kmem_free(igb->tx_rings,
1914 		    sizeof (igb_tx_ring_t) * igb->num_tx_rings);
1915 		igb->tx_rings = NULL;
1916 	}
1917 
1918 	if (igb->rx_groups != NULL) {
1919 		kmem_free(igb->rx_groups,
1920 		    sizeof (igb_rx_group_t) * igb->num_rx_groups);
1921 		igb->rx_groups = NULL;
1922 	}
1923 }
1924 
1925 static int
1926 igb_alloc_rx_data(igb_t *igb)
1927 {
1928 	igb_rx_ring_t *rx_ring;
1929 	int i;
1930 
1931 	for (i = 0; i < igb->num_rx_rings; i++) {
1932 		rx_ring = &igb->rx_rings[i];
1933 		if (igb_alloc_rx_ring_data(rx_ring) != IGB_SUCCESS)
1934 			goto alloc_rx_rings_failure;
1935 	}
1936 	return (IGB_SUCCESS);
1937 
1938 alloc_rx_rings_failure:
1939 	igb_free_rx_data(igb);
1940 	return (IGB_FAILURE);
1941 }
1942 
1943 static void
1944 igb_free_rx_data(igb_t *igb)
1945 {
1946 	igb_rx_ring_t *rx_ring;
1947 	igb_rx_data_t *rx_data;
1948 	int i;
1949 
1950 	for (i = 0; i < igb->num_rx_rings; i++) {
1951 		rx_ring = &igb->rx_rings[i];
1952 
1953 		mutex_enter(&igb->rx_pending_lock);
1954 		rx_data = rx_ring->rx_data;
1955 
1956 		if (rx_data != NULL) {
1957 			rx_data->flag |= IGB_RX_STOPPED;
1958 
1959 			if (rx_data->rcb_pending == 0) {
1960 				igb_free_rx_ring_data(rx_data);
1961 				rx_ring->rx_data = NULL;
1962 			}
1963 		}
1964 
1965 		mutex_exit(&igb->rx_pending_lock);
1966 	}
1967 }
1968 
1969 /*
1970  * igb_setup_rings - Setup rx/tx rings
1971  */
1972 static void
1973 igb_setup_rings(igb_t *igb)
1974 {
1975 	/*
1976 	 * Setup the rx/tx rings, including the following:
1977 	 *
1978 	 * 1. Setup the descriptor ring and the control block buffers;
1979 	 * 2. Initialize necessary registers for receive/transmit;
1980 	 * 3. Initialize software pointers/parameters for receive/transmit;
1981 	 */
1982 	igb_setup_rx(igb);
1983 
1984 	igb_setup_tx(igb);
1985 }
1986 
1987 static void
1988 igb_setup_rx_ring(igb_rx_ring_t *rx_ring)
1989 {
1990 	igb_t *igb = rx_ring->igb;
1991 	igb_rx_data_t *rx_data = rx_ring->rx_data;
1992 	struct e1000_hw *hw = &igb->hw;
1993 	rx_control_block_t *rcb;
1994 	union e1000_adv_rx_desc	*rbd;
1995 	uint32_t size;
1996 	uint32_t buf_low;
1997 	uint32_t buf_high;
1998 	uint32_t rxdctl;
1999 	int i;
2000 
2001 	ASSERT(mutex_owned(&rx_ring->rx_lock));
2002 	ASSERT(mutex_owned(&igb->gen_lock));
2003 
2004 	/*
2005 	 * Initialize descriptor ring with buffer addresses
2006 	 */
2007 	for (i = 0; i < igb->rx_ring_size; i++) {
2008 		rcb = rx_data->work_list[i];
2009 		rbd = &rx_data->rbd_ring[i];
2010 
2011 		rbd->read.pkt_addr = rcb->rx_buf.dma_address;
2012 		rbd->read.hdr_addr = NULL;
2013 	}
2014 
2015 	/*
2016 	 * Initialize the base address registers
2017 	 */
2018 	buf_low = (uint32_t)rx_data->rbd_area.dma_address;
2019 	buf_high = (uint32_t)(rx_data->rbd_area.dma_address >> 32);
2020 	E1000_WRITE_REG(hw, E1000_RDBAH(rx_ring->index), buf_high);
2021 	E1000_WRITE_REG(hw, E1000_RDBAL(rx_ring->index), buf_low);
2022 
2023 	/*
2024 	 * Initialize the length register
2025 	 */
2026 	size = rx_data->ring_size * sizeof (union e1000_adv_rx_desc);
2027 	E1000_WRITE_REG(hw, E1000_RDLEN(rx_ring->index), size);
2028 
2029 	/*
2030 	 * Initialize buffer size & descriptor type
2031 	 */
2032 	E1000_WRITE_REG(hw, E1000_SRRCTL(rx_ring->index),
2033 	    ((igb->rx_buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) |
2034 	    E1000_SRRCTL_DESCTYPE_ADV_ONEBUF));
2035 
2036 	/*
2037 	 * Setup the Receive Descriptor Control Register (RXDCTL)
2038 	 */
2039 	rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rx_ring->index));
2040 	rxdctl &= igb->capab->rxdctl_mask;
2041 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2042 	rxdctl |= 16;		/* pthresh */
2043 	rxdctl |= 8 << 8;	/* hthresh */
2044 	rxdctl |= 1 << 16;	/* wthresh */
2045 	E1000_WRITE_REG(hw, E1000_RXDCTL(rx_ring->index), rxdctl);
2046 
2047 	rx_data->rbd_next = 0;
2048 }
2049 
2050 static void
2051 igb_setup_rx(igb_t *igb)
2052 {
2053 	igb_rx_ring_t *rx_ring;
2054 	igb_rx_data_t *rx_data;
2055 	igb_rx_group_t *rx_group;
2056 	struct e1000_hw *hw = &igb->hw;
2057 	uint32_t rctl, rxcsum;
2058 	uint32_t ring_per_group;
2059 	int i;
2060 
2061 	/*
2062 	 * Setup the Receive Control Register (RCTL), and enable the
2063 	 * receiver. The initial configuration is to: enable the receiver,
2064 	 * accept broadcasts, discard bad packets, accept long packets,
2065 	 * disable VLAN filter checking, and set receive buffer size to
2066 	 * 2k.  For 82575, also set the receive descriptor minimum
2067 	 * threshold size to 1/2 the ring.
2068 	 */
2069 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2070 
2071 	/*
2072 	 * Clear the field used for wakeup control.  This driver doesn't do
2073 	 * wakeup but leave this here for completeness.
2074 	 */
2075 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2076 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2077 
2078 	rctl |= (E1000_RCTL_EN |	/* Enable Receive Unit */
2079 	    E1000_RCTL_BAM |		/* Accept Broadcast Packets */
2080 	    E1000_RCTL_LPE |		/* Large Packet Enable */
2081 					/* Multicast filter offset */
2082 	    (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) |
2083 	    E1000_RCTL_RDMTS_HALF |	/* rx descriptor threshold */
2084 	    E1000_RCTL_SECRC);		/* Strip Ethernet CRC */
2085 
2086 	for (i = 0; i < igb->num_rx_groups; i++) {
2087 		rx_group = &igb->rx_groups[i];
2088 		rx_group->index = i;
2089 		rx_group->igb = igb;
2090 	}
2091 
2092 	/*
2093 	 * Set up all rx descriptor rings - must be called before receive unit
2094 	 * enabled.
2095 	 */
2096 	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2097 	for (i = 0; i < igb->num_rx_rings; i++) {
2098 		rx_ring = &igb->rx_rings[i];
2099 		igb_setup_rx_ring(rx_ring);
2100 
2101 		/*
2102 		 * Map a ring to a group by assigning a group index
2103 		 */
2104 		rx_ring->group_index = i / ring_per_group;
2105 	}
2106 
2107 	/*
2108 	 * Setup the Rx Long Packet Max Length register
2109 	 */
2110 	E1000_WRITE_REG(hw, E1000_RLPML, igb->max_frame_size);
2111 
2112 	/*
2113 	 * Hardware checksum settings
2114 	 */
2115 	if (igb->rx_hcksum_enable) {
2116 		rxcsum =
2117 		    E1000_RXCSUM_TUOFL |	/* TCP/UDP checksum */
2118 		    E1000_RXCSUM_IPOFL;		/* IP checksum */
2119 
2120 		E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2121 	}
2122 
2123 	/*
2124 	 * Setup classify and RSS for multiple receive queues
2125 	 */
2126 	switch (igb->vmdq_mode) {
2127 	case E1000_VMDQ_OFF:
2128 		/*
2129 		 * One ring group, only RSS is needed when more than
2130 		 * one ring enabled.
2131 		 */
2132 		if (igb->num_rx_rings > 1)
2133 			igb_setup_rss(igb);
2134 		break;
2135 	case E1000_VMDQ_MAC:
2136 		/*
2137 		 * Multiple groups, each group has one ring,
2138 		 * only the MAC classification is needed.
2139 		 */
2140 		igb_setup_mac_classify(igb);
2141 		break;
2142 	case E1000_VMDQ_MAC_RSS:
2143 		/*
2144 		 * Multiple groups and multiple rings, both
2145 		 * MAC classification and RSS are needed.
2146 		 */
2147 		igb_setup_mac_rss_classify(igb);
2148 		break;
2149 	}
2150 
2151 	/*
2152 	 * Enable the receive unit - must be done after all
2153 	 * the rx setup above.
2154 	 */
2155 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2156 
2157 	/*
2158 	 * Initialize all adapter ring head & tail pointers - must
2159 	 * be done after receive unit is enabled
2160 	 */
2161 	for (i = 0; i < igb->num_rx_rings; i++) {
2162 		rx_ring = &igb->rx_rings[i];
2163 		rx_data = rx_ring->rx_data;
2164 		E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2165 		E1000_WRITE_REG(hw, E1000_RDT(i), rx_data->ring_size - 1);
2166 	}
2167 
2168 	/*
2169 	 * 82575 with manageability enabled needs a special flush to make
2170 	 * sure the fifos start clean.
2171 	 */
2172 	if ((hw->mac.type == e1000_82575) &&
2173 	    (E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_RCV_TCO_EN)) {
2174 		e1000_rx_fifo_flush_82575(hw);
2175 	}
2176 }
2177 
2178 static void
2179 igb_setup_tx_ring(igb_tx_ring_t *tx_ring)
2180 {
2181 	igb_t *igb = tx_ring->igb;
2182 	struct e1000_hw *hw = &igb->hw;
2183 	uint32_t size;
2184 	uint32_t buf_low;
2185 	uint32_t buf_high;
2186 	uint32_t reg_val;
2187 
2188 	ASSERT(mutex_owned(&tx_ring->tx_lock));
2189 	ASSERT(mutex_owned(&igb->gen_lock));
2190 
2191 
2192 	/*
2193 	 * Initialize the length register
2194 	 */
2195 	size = tx_ring->ring_size * sizeof (union e1000_adv_tx_desc);
2196 	E1000_WRITE_REG(hw, E1000_TDLEN(tx_ring->index), size);
2197 
2198 	/*
2199 	 * Initialize the base address registers
2200 	 */
2201 	buf_low = (uint32_t)tx_ring->tbd_area.dma_address;
2202 	buf_high = (uint32_t)(tx_ring->tbd_area.dma_address >> 32);
2203 	E1000_WRITE_REG(hw, E1000_TDBAL(tx_ring->index), buf_low);
2204 	E1000_WRITE_REG(hw, E1000_TDBAH(tx_ring->index), buf_high);
2205 
2206 	/*
2207 	 * Setup head & tail pointers
2208 	 */
2209 	E1000_WRITE_REG(hw, E1000_TDH(tx_ring->index), 0);
2210 	E1000_WRITE_REG(hw, E1000_TDT(tx_ring->index), 0);
2211 
2212 	/*
2213 	 * Setup head write-back
2214 	 */
2215 	if (igb->tx_head_wb_enable) {
2216 		/*
2217 		 * The memory of the head write-back is allocated using
2218 		 * the extra tbd beyond the tail of the tbd ring.
2219 		 */
2220 		tx_ring->tbd_head_wb = (uint32_t *)
2221 		    ((uintptr_t)tx_ring->tbd_area.address + size);
2222 		*tx_ring->tbd_head_wb = 0;
2223 
2224 		buf_low = (uint32_t)
2225 		    (tx_ring->tbd_area.dma_address + size);
2226 		buf_high = (uint32_t)
2227 		    ((tx_ring->tbd_area.dma_address + size) >> 32);
2228 
2229 		/* Set the head write-back enable bit */
2230 		buf_low |= E1000_TX_HEAD_WB_ENABLE;
2231 
2232 		E1000_WRITE_REG(hw, E1000_TDWBAL(tx_ring->index), buf_low);
2233 		E1000_WRITE_REG(hw, E1000_TDWBAH(tx_ring->index), buf_high);
2234 
2235 		/*
2236 		 * Turn off relaxed ordering for head write back or it will
2237 		 * cause problems with the tx recycling
2238 		 */
2239 		reg_val = E1000_READ_REG(hw,
2240 		    E1000_DCA_TXCTRL(tx_ring->index));
2241 		reg_val &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
2242 		E1000_WRITE_REG(hw,
2243 		    E1000_DCA_TXCTRL(tx_ring->index), reg_val);
2244 	} else {
2245 		tx_ring->tbd_head_wb = NULL;
2246 	}
2247 
2248 	tx_ring->tbd_head = 0;
2249 	tx_ring->tbd_tail = 0;
2250 	tx_ring->tbd_free = tx_ring->ring_size;
2251 
2252 	if (igb->tx_ring_init == B_TRUE) {
2253 		tx_ring->tcb_head = 0;
2254 		tx_ring->tcb_tail = 0;
2255 		tx_ring->tcb_free = tx_ring->free_list_size;
2256 	}
2257 
2258 	/*
2259 	 * Enable TXDCTL per queue
2260 	 */
2261 	reg_val = E1000_READ_REG(hw, E1000_TXDCTL(tx_ring->index));
2262 	reg_val |= E1000_TXDCTL_QUEUE_ENABLE;
2263 	E1000_WRITE_REG(hw, E1000_TXDCTL(tx_ring->index), reg_val);
2264 
2265 	/*
2266 	 * Initialize hardware checksum offload settings
2267 	 */
2268 	bzero(&tx_ring->tx_context, sizeof (tx_context_t));
2269 }
2270 
2271 static void
2272 igb_setup_tx(igb_t *igb)
2273 {
2274 	igb_tx_ring_t *tx_ring;
2275 	struct e1000_hw *hw = &igb->hw;
2276 	uint32_t reg_val;
2277 	int i;
2278 
2279 	for (i = 0; i < igb->num_tx_rings; i++) {
2280 		tx_ring = &igb->tx_rings[i];
2281 		igb_setup_tx_ring(tx_ring);
2282 	}
2283 
2284 	/*
2285 	 * Setup the Transmit Control Register (TCTL)
2286 	 */
2287 	reg_val = E1000_READ_REG(hw, E1000_TCTL);
2288 	reg_val &= ~E1000_TCTL_CT;
2289 	reg_val |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2290 	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2291 
2292 	/* Enable transmits */
2293 	reg_val |= E1000_TCTL_EN;
2294 
2295 	E1000_WRITE_REG(hw, E1000_TCTL, reg_val);
2296 }
2297 
2298 /*
2299  * igb_setup_rss - Setup receive-side scaling feature
2300  */
2301 static void
2302 igb_setup_rss(igb_t *igb)
2303 {
2304 	struct e1000_hw *hw = &igb->hw;
2305 	uint32_t i, mrqc, rxcsum;
2306 	int shift = 0;
2307 	uint32_t random;
2308 	union e1000_reta {
2309 		uint32_t	dword;
2310 		uint8_t		bytes[4];
2311 	} reta;
2312 
2313 	/* Setup the Redirection Table */
2314 	if (hw->mac.type == e1000_82576) {
2315 		shift = 3;
2316 	} else if (hw->mac.type == e1000_82575) {
2317 		shift = 6;
2318 	}
2319 	for (i = 0; i < (32 * 4); i++) {
2320 		reta.bytes[i & 3] = (i % igb->num_rx_rings) << shift;
2321 		if ((i & 3) == 3) {
2322 			E1000_WRITE_REG(hw,
2323 			    (E1000_RETA(0) + (i & ~3)), reta.dword);
2324 		}
2325 	}
2326 
2327 	/* Fill out hash function seeds */
2328 	for (i = 0; i < 10; i++) {
2329 		(void) random_get_pseudo_bytes((uint8_t *)&random,
2330 		    sizeof (uint32_t));
2331 		E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2332 	}
2333 
2334 	/* Setup the Multiple Receive Queue Control register */
2335 	mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2336 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2337 	    E1000_MRQC_RSS_FIELD_IPV4_TCP |
2338 	    E1000_MRQC_RSS_FIELD_IPV6 |
2339 	    E1000_MRQC_RSS_FIELD_IPV6_TCP |
2340 	    E1000_MRQC_RSS_FIELD_IPV4_UDP |
2341 	    E1000_MRQC_RSS_FIELD_IPV6_UDP |
2342 	    E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2343 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2344 
2345 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2346 
2347 	/*
2348 	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2349 	 *
2350 	 * The Packet Checksum is not ethernet CRC. It is another kind of
2351 	 * checksum offloading provided by the 82575 chipset besides the IP
2352 	 * header checksum offloading and the TCP/UDP checksum offloading.
2353 	 * The Packet Checksum is by default computed over the entire packet
2354 	 * from the first byte of the DA through the last byte of the CRC,
2355 	 * including the Ethernet and IP headers.
2356 	 *
2357 	 * It is a hardware limitation that Packet Checksum is mutually
2358 	 * exclusive with RSS.
2359 	 */
2360 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2361 	rxcsum |= E1000_RXCSUM_PCSD;
2362 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2363 }
2364 
2365 /*
2366  * igb_setup_mac_rss_classify - Setup MAC classification and rss
2367  */
2368 static void
2369 igb_setup_mac_rss_classify(igb_t *igb)
2370 {
2371 	struct e1000_hw *hw = &igb->hw;
2372 	uint32_t i, mrqc, vmdctl, rxcsum;
2373 	uint32_t ring_per_group;
2374 	int shift_group0, shift_group1;
2375 	uint32_t random;
2376 	union e1000_reta {
2377 		uint32_t	dword;
2378 		uint8_t		bytes[4];
2379 	} reta;
2380 
2381 	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2382 
2383 	/* Setup the Redirection Table, it is shared between two groups */
2384 	shift_group0 = 2;
2385 	shift_group1 = 6;
2386 	for (i = 0; i < (32 * 4); i++) {
2387 		reta.bytes[i & 3] = ((i % ring_per_group) << shift_group0) |
2388 		    ((ring_per_group + (i % ring_per_group)) << shift_group1);
2389 		if ((i & 3) == 3) {
2390 			E1000_WRITE_REG(hw,
2391 			    (E1000_RETA(0) + (i & ~3)), reta.dword);
2392 		}
2393 	}
2394 
2395 	/* Fill out hash function seeds */
2396 	for (i = 0; i < 10; i++) {
2397 		(void) random_get_pseudo_bytes((uint8_t *)&random,
2398 		    sizeof (uint32_t));
2399 		E1000_WRITE_REG(hw, E1000_RSSRK(i), random);
2400 	}
2401 
2402 	/*
2403 	 * Setup the Multiple Receive Queue Control register,
2404 	 * enable VMDq based on packet destination MAC address and RSS.
2405 	 */
2406 	mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_RSS_GROUP;
2407 	mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2408 	    E1000_MRQC_RSS_FIELD_IPV4_TCP |
2409 	    E1000_MRQC_RSS_FIELD_IPV6 |
2410 	    E1000_MRQC_RSS_FIELD_IPV6_TCP |
2411 	    E1000_MRQC_RSS_FIELD_IPV4_UDP |
2412 	    E1000_MRQC_RSS_FIELD_IPV6_UDP |
2413 	    E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2414 	    E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2415 
2416 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2417 
2418 
2419 	/* Define the default group and default queues */
2420 	vmdctl = E1000_VMDQ_MAC_GROUP_DEFAULT_QUEUE;
2421 	E1000_WRITE_REG(hw, E1000_VT_CTL, vmdctl);
2422 
2423 	/*
2424 	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2425 	 *
2426 	 * The Packet Checksum is not ethernet CRC. It is another kind of
2427 	 * checksum offloading provided by the 82575 chipset besides the IP
2428 	 * header checksum offloading and the TCP/UDP checksum offloading.
2429 	 * The Packet Checksum is by default computed over the entire packet
2430 	 * from the first byte of the DA through the last byte of the CRC,
2431 	 * including the Ethernet and IP headers.
2432 	 *
2433 	 * It is a hardware limitation that Packet Checksum is mutually
2434 	 * exclusive with RSS.
2435 	 */
2436 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2437 	rxcsum |= E1000_RXCSUM_PCSD;
2438 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2439 }
2440 
2441 /*
2442  * igb_setup_mac_classify - Setup MAC classification feature
2443  */
2444 static void
2445 igb_setup_mac_classify(igb_t *igb)
2446 {
2447 	struct e1000_hw *hw = &igb->hw;
2448 	uint32_t mrqc, rxcsum;
2449 
2450 	/*
2451 	 * Setup the Multiple Receive Queue Control register,
2452 	 * enable VMDq based on packet destination MAC address.
2453 	 */
2454 	mrqc = E1000_MRQC_ENABLE_VMDQ_MAC_GROUP;
2455 	E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2456 
2457 	/*
2458 	 * Disable Packet Checksum to enable RSS for multiple receive queues.
2459 	 *
2460 	 * The Packet Checksum is not ethernet CRC. It is another kind of
2461 	 * checksum offloading provided by the 82575 chipset besides the IP
2462 	 * header checksum offloading and the TCP/UDP checksum offloading.
2463 	 * The Packet Checksum is by default computed over the entire packet
2464 	 * from the first byte of the DA through the last byte of the CRC,
2465 	 * including the Ethernet and IP headers.
2466 	 *
2467 	 * It is a hardware limitation that Packet Checksum is mutually
2468 	 * exclusive with RSS.
2469 	 */
2470 	rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2471 	rxcsum |= E1000_RXCSUM_PCSD;
2472 	E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2473 
2474 }
2475 
2476 /*
2477  * igb_init_unicst - Initialize the unicast addresses
2478  */
2479 static void
2480 igb_init_unicst(igb_t *igb)
2481 {
2482 	struct e1000_hw *hw = &igb->hw;
2483 	int slot;
2484 
2485 	/*
2486 	 * Here we should consider two situations:
2487 	 *
2488 	 * 1. Chipset is initialized the first time
2489 	 *    Initialize the multiple unicast addresses, and
2490 	 *    save the default MAC address.
2491 	 *
2492 	 * 2. Chipset is reset
2493 	 *    Recover the multiple unicast addresses from the
2494 	 *    software data structure to the RAR registers.
2495 	 */
2496 
2497 	/*
2498 	 * Clear the default MAC address in the RAR0 rgister,
2499 	 * which is loaded from EEPROM when system boot or chipreset,
2500 	 * this will cause the conficts with add_mac/rem_mac entry
2501 	 * points when VMDq is enabled. For this reason, the RAR0
2502 	 * must be cleared for both cases mentioned above.
2503 	 */
2504 	e1000_rar_clear(hw, 0);
2505 
2506 	if (!igb->unicst_init) {
2507 
2508 		/* Initialize the multiple unicast addresses */
2509 		igb->unicst_total = MAX_NUM_UNICAST_ADDRESSES;
2510 		igb->unicst_avail = igb->unicst_total;
2511 
2512 		for (slot = 0; slot < igb->unicst_total; slot++)
2513 			igb->unicst_addr[slot].mac.set = 0;
2514 
2515 		igb->unicst_init = B_TRUE;
2516 	} else {
2517 		/* Re-configure the RAR registers */
2518 		for (slot = 0; slot < igb->unicst_total; slot++) {
2519 			e1000_rar_set_vmdq(hw, igb->unicst_addr[slot].mac.addr,
2520 			    slot, igb->vmdq_mode,
2521 			    igb->unicst_addr[slot].mac.group_index);
2522 		}
2523 	}
2524 }
2525 
2526 /*
2527  * igb_unicst_find - Find the slot for the specified unicast address
2528  */
2529 int
2530 igb_unicst_find(igb_t *igb, const uint8_t *mac_addr)
2531 {
2532 	int slot;
2533 
2534 	ASSERT(mutex_owned(&igb->gen_lock));
2535 
2536 	for (slot = 0; slot < igb->unicst_total; slot++) {
2537 		if (bcmp(igb->unicst_addr[slot].mac.addr,
2538 		    mac_addr, ETHERADDRL) == 0)
2539 			return (slot);
2540 	}
2541 
2542 	return (-1);
2543 }
2544 
2545 /*
2546  * igb_unicst_set - Set the unicast address to the specified slot
2547  */
2548 int
2549 igb_unicst_set(igb_t *igb, const uint8_t *mac_addr,
2550     int slot)
2551 {
2552 	struct e1000_hw *hw = &igb->hw;
2553 
2554 	ASSERT(mutex_owned(&igb->gen_lock));
2555 
2556 	/*
2557 	 * Save the unicast address in the software data structure
2558 	 */
2559 	bcopy(mac_addr, igb->unicst_addr[slot].mac.addr, ETHERADDRL);
2560 
2561 	/*
2562 	 * Set the unicast address to the RAR register
2563 	 */
2564 	e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2565 
2566 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2567 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2568 		return (EIO);
2569 	}
2570 
2571 	return (0);
2572 }
2573 
2574 /*
2575  * igb_multicst_add - Add a multicst address
2576  */
2577 int
2578 igb_multicst_add(igb_t *igb, const uint8_t *multiaddr)
2579 {
2580 	struct ether_addr *new_table;
2581 	size_t new_len;
2582 	size_t old_len;
2583 
2584 	ASSERT(mutex_owned(&igb->gen_lock));
2585 
2586 	if ((multiaddr[0] & 01) == 0) {
2587 		igb_error(igb, "Illegal multicast address");
2588 		return (EINVAL);
2589 	}
2590 
2591 	if (igb->mcast_count >= igb->mcast_max_num) {
2592 		igb_error(igb, "Adapter requested more than %d mcast addresses",
2593 		    igb->mcast_max_num);
2594 		return (ENOENT);
2595 	}
2596 
2597 	if (igb->mcast_count == igb->mcast_alloc_count) {
2598 		old_len = igb->mcast_alloc_count *
2599 		    sizeof (struct ether_addr);
2600 		new_len = (igb->mcast_alloc_count + MCAST_ALLOC_COUNT) *
2601 		    sizeof (struct ether_addr);
2602 
2603 		new_table = kmem_alloc(new_len, KM_NOSLEEP);
2604 		if (new_table == NULL) {
2605 			igb_error(igb,
2606 			    "Not enough memory to alloc mcast table");
2607 			return (ENOMEM);
2608 		}
2609 
2610 		if (igb->mcast_table != NULL) {
2611 			bcopy(igb->mcast_table, new_table, old_len);
2612 			kmem_free(igb->mcast_table, old_len);
2613 		}
2614 		igb->mcast_alloc_count += MCAST_ALLOC_COUNT;
2615 		igb->mcast_table = new_table;
2616 	}
2617 
2618 	bcopy(multiaddr,
2619 	    &igb->mcast_table[igb->mcast_count], ETHERADDRL);
2620 	igb->mcast_count++;
2621 
2622 	/*
2623 	 * Update the multicast table in the hardware
2624 	 */
2625 	igb_setup_multicst(igb);
2626 
2627 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2628 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2629 		return (EIO);
2630 	}
2631 
2632 	return (0);
2633 }
2634 
2635 /*
2636  * igb_multicst_remove - Remove a multicst address
2637  */
2638 int
2639 igb_multicst_remove(igb_t *igb, const uint8_t *multiaddr)
2640 {
2641 	struct ether_addr *new_table;
2642 	size_t new_len;
2643 	size_t old_len;
2644 	int i;
2645 
2646 	ASSERT(mutex_owned(&igb->gen_lock));
2647 
2648 	for (i = 0; i < igb->mcast_count; i++) {
2649 		if (bcmp(multiaddr, &igb->mcast_table[i],
2650 		    ETHERADDRL) == 0) {
2651 			for (i++; i < igb->mcast_count; i++) {
2652 				igb->mcast_table[i - 1] =
2653 				    igb->mcast_table[i];
2654 			}
2655 			igb->mcast_count--;
2656 			break;
2657 		}
2658 	}
2659 
2660 	if ((igb->mcast_alloc_count - igb->mcast_count) >
2661 	    MCAST_ALLOC_COUNT) {
2662 		old_len = igb->mcast_alloc_count *
2663 		    sizeof (struct ether_addr);
2664 		new_len = (igb->mcast_alloc_count - MCAST_ALLOC_COUNT) *
2665 		    sizeof (struct ether_addr);
2666 
2667 		new_table = kmem_alloc(new_len, KM_NOSLEEP);
2668 		if (new_table != NULL) {
2669 			bcopy(igb->mcast_table, new_table, new_len);
2670 			kmem_free(igb->mcast_table, old_len);
2671 			igb->mcast_alloc_count -= MCAST_ALLOC_COUNT;
2672 			igb->mcast_table = new_table;
2673 		}
2674 	}
2675 
2676 	/*
2677 	 * Update the multicast table in the hardware
2678 	 */
2679 	igb_setup_multicst(igb);
2680 
2681 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
2682 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
2683 		return (EIO);
2684 	}
2685 
2686 	return (0);
2687 }
2688 
2689 static void
2690 igb_release_multicast(igb_t *igb)
2691 {
2692 	if (igb->mcast_table != NULL) {
2693 		kmem_free(igb->mcast_table,
2694 		    igb->mcast_alloc_count * sizeof (struct ether_addr));
2695 		igb->mcast_table = NULL;
2696 	}
2697 }
2698 
2699 /*
2700  * igb_setup_multicast - setup multicast data structures
2701  *
2702  * This routine initializes all of the multicast related structures
2703  * and save them in the hardware registers.
2704  */
2705 static void
2706 igb_setup_multicst(igb_t *igb)
2707 {
2708 	uint8_t *mc_addr_list;
2709 	uint32_t mc_addr_count;
2710 	struct e1000_hw *hw = &igb->hw;
2711 
2712 	ASSERT(mutex_owned(&igb->gen_lock));
2713 	ASSERT(igb->mcast_count <= igb->mcast_max_num);
2714 
2715 	mc_addr_list = (uint8_t *)igb->mcast_table;
2716 	mc_addr_count = igb->mcast_count;
2717 
2718 	/*
2719 	 * Update the multicase addresses to the MTA registers
2720 	 */
2721 	e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2722 }
2723 
2724 /*
2725  * igb_get_conf - Get driver configurations set in driver.conf
2726  *
2727  * This routine gets user-configured values out of the configuration
2728  * file igb.conf.
2729  *
2730  * For each configurable value, there is a minimum, a maximum, and a
2731  * default.
2732  * If user does not configure a value, use the default.
2733  * If user configures below the minimum, use the minumum.
2734  * If user configures above the maximum, use the maxumum.
2735  */
2736 static void
2737 igb_get_conf(igb_t *igb)
2738 {
2739 	struct e1000_hw *hw = &igb->hw;
2740 	uint32_t default_mtu;
2741 	uint32_t flow_control;
2742 	uint32_t ring_per_group;
2743 	int i;
2744 
2745 	/*
2746 	 * igb driver supports the following user configurations:
2747 	 *
2748 	 * Link configurations:
2749 	 *    adv_autoneg_cap
2750 	 *    adv_1000fdx_cap
2751 	 *    adv_100fdx_cap
2752 	 *    adv_100hdx_cap
2753 	 *    adv_10fdx_cap
2754 	 *    adv_10hdx_cap
2755 	 * Note: 1000hdx is not supported.
2756 	 *
2757 	 * Jumbo frame configuration:
2758 	 *    default_mtu
2759 	 *
2760 	 * Ethernet flow control configuration:
2761 	 *    flow_control
2762 	 *
2763 	 * Multiple rings configurations:
2764 	 *    tx_queue_number
2765 	 *    tx_ring_size
2766 	 *    rx_queue_number
2767 	 *    rx_ring_size
2768 	 *
2769 	 * Call igb_get_prop() to get the value for a specific
2770 	 * configuration parameter.
2771 	 */
2772 
2773 	/*
2774 	 * Link configurations
2775 	 */
2776 	igb->param_adv_autoneg_cap = igb_get_prop(igb,
2777 	    PROP_ADV_AUTONEG_CAP, 0, 1, 1);
2778 	igb->param_adv_1000fdx_cap = igb_get_prop(igb,
2779 	    PROP_ADV_1000FDX_CAP, 0, 1, 1);
2780 	igb->param_adv_100fdx_cap = igb_get_prop(igb,
2781 	    PROP_ADV_100FDX_CAP, 0, 1, 1);
2782 	igb->param_adv_100hdx_cap = igb_get_prop(igb,
2783 	    PROP_ADV_100HDX_CAP, 0, 1, 1);
2784 	igb->param_adv_10fdx_cap = igb_get_prop(igb,
2785 	    PROP_ADV_10FDX_CAP, 0, 1, 1);
2786 	igb->param_adv_10hdx_cap = igb_get_prop(igb,
2787 	    PROP_ADV_10HDX_CAP, 0, 1, 1);
2788 
2789 	/*
2790 	 * Jumbo frame configurations
2791 	 */
2792 	default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU,
2793 	    MIN_MTU, MAX_MTU, DEFAULT_MTU);
2794 
2795 	igb->max_frame_size = default_mtu +
2796 	    sizeof (struct ether_vlan_header) + ETHERFCSL;
2797 
2798 	/*
2799 	 * Ethernet flow control configuration
2800 	 */
2801 	flow_control = igb_get_prop(igb, PROP_FLOW_CONTROL,
2802 	    e1000_fc_none, 4, e1000_fc_full);
2803 	if (flow_control == 4)
2804 		flow_control = e1000_fc_default;
2805 
2806 	hw->fc.requested_mode = flow_control;
2807 
2808 	/*
2809 	 * Multiple rings configurations
2810 	 */
2811 	igb->tx_ring_size = igb_get_prop(igb, PROP_TX_RING_SIZE,
2812 	    MIN_TX_RING_SIZE, MAX_TX_RING_SIZE, DEFAULT_TX_RING_SIZE);
2813 	igb->rx_ring_size = igb_get_prop(igb, PROP_RX_RING_SIZE,
2814 	    MIN_RX_RING_SIZE, MAX_RX_RING_SIZE, DEFAULT_RX_RING_SIZE);
2815 
2816 	igb->mr_enable = igb_get_prop(igb, PROP_MR_ENABLE, 0, 1, 0);
2817 	igb->num_rx_groups = igb_get_prop(igb, PROP_RX_GROUP_NUM,
2818 	    MIN_RX_GROUP_NUM, MAX_RX_GROUP_NUM, DEFAULT_RX_GROUP_NUM);
2819 	/*
2820 	 * Currently we do not support VMDq for 82576 and 82580.
2821 	 * If it is e1000_82576, set num_rx_groups to 1.
2822 	 */
2823 	if (hw->mac.type >= e1000_82576)
2824 		igb->num_rx_groups = 1;
2825 
2826 	if (igb->mr_enable) {
2827 		igb->num_tx_rings = igb->capab->def_tx_que_num;
2828 		igb->num_rx_rings = igb->capab->def_rx_que_num;
2829 	} else {
2830 		igb->num_tx_rings = 1;
2831 		igb->num_rx_rings = 1;
2832 
2833 		if (igb->num_rx_groups > 1) {
2834 			igb_error(igb,
2835 			    "Invalid rx groups number. Please enable multiple "
2836 			    "rings first");
2837 			igb->num_rx_groups = 1;
2838 		}
2839 	}
2840 
2841 	/*
2842 	 * Check the divisibility between rx rings and rx groups.
2843 	 */
2844 	for (i = igb->num_rx_groups; i > 0; i--) {
2845 		if ((igb->num_rx_rings % i) == 0)
2846 			break;
2847 	}
2848 	if (i != igb->num_rx_groups) {
2849 		igb_error(igb,
2850 		    "Invalid rx groups number. Downgrade the rx group "
2851 		    "number to %d.", i);
2852 		igb->num_rx_groups = i;
2853 	}
2854 
2855 	/*
2856 	 * Get the ring number per group.
2857 	 */
2858 	ring_per_group = igb->num_rx_rings / igb->num_rx_groups;
2859 
2860 	if (igb->num_rx_groups == 1) {
2861 		/*
2862 		 * One rx ring group, the rx ring number is num_rx_rings.
2863 		 */
2864 		igb->vmdq_mode = E1000_VMDQ_OFF;
2865 	} else if (ring_per_group == 1) {
2866 		/*
2867 		 * Multiple rx groups, each group has one rx ring.
2868 		 */
2869 		igb->vmdq_mode = E1000_VMDQ_MAC;
2870 	} else {
2871 		/*
2872 		 * Multiple groups and multiple rings.
2873 		 */
2874 		igb->vmdq_mode = E1000_VMDQ_MAC_RSS;
2875 	}
2876 
2877 	/*
2878 	 * Tunable used to force an interrupt type. The only use is
2879 	 * for testing of the lesser interrupt types.
2880 	 * 0 = don't force interrupt type
2881 	 * 1 = force interrupt type MSIX
2882 	 * 2 = force interrupt type MSI
2883 	 * 3 = force interrupt type Legacy
2884 	 */
2885 	igb->intr_force = igb_get_prop(igb, PROP_INTR_FORCE,
2886 	    IGB_INTR_NONE, IGB_INTR_LEGACY, IGB_INTR_NONE);
2887 
2888 	igb->tx_hcksum_enable = igb_get_prop(igb, PROP_TX_HCKSUM_ENABLE,
2889 	    0, 1, 1);
2890 	igb->rx_hcksum_enable = igb_get_prop(igb, PROP_RX_HCKSUM_ENABLE,
2891 	    0, 1, 1);
2892 	igb->lso_enable = igb_get_prop(igb, PROP_LSO_ENABLE,
2893 	    0, 1, 1);
2894 	igb->tx_head_wb_enable = igb_get_prop(igb, PROP_TX_HEAD_WB_ENABLE,
2895 	    0, 1, 1);
2896 
2897 	/*
2898 	 * igb LSO needs the tx h/w checksum support.
2899 	 * Here LSO will be disabled if tx h/w checksum has been disabled.
2900 	 */
2901 	if (igb->tx_hcksum_enable == B_FALSE)
2902 		igb->lso_enable = B_FALSE;
2903 
2904 	igb->tx_copy_thresh = igb_get_prop(igb, PROP_TX_COPY_THRESHOLD,
2905 	    MIN_TX_COPY_THRESHOLD, MAX_TX_COPY_THRESHOLD,
2906 	    DEFAULT_TX_COPY_THRESHOLD);
2907 	igb->tx_recycle_thresh = igb_get_prop(igb, PROP_TX_RECYCLE_THRESHOLD,
2908 	    MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD,
2909 	    DEFAULT_TX_RECYCLE_THRESHOLD);
2910 	igb->tx_overload_thresh = igb_get_prop(igb, PROP_TX_OVERLOAD_THRESHOLD,
2911 	    MIN_TX_OVERLOAD_THRESHOLD, MAX_TX_OVERLOAD_THRESHOLD,
2912 	    DEFAULT_TX_OVERLOAD_THRESHOLD);
2913 	igb->tx_resched_thresh = igb_get_prop(igb, PROP_TX_RESCHED_THRESHOLD,
2914 	    MIN_TX_RESCHED_THRESHOLD,
2915 	    MIN(igb->tx_ring_size, MAX_TX_RESCHED_THRESHOLD),
2916 	    igb->tx_ring_size > DEFAULT_TX_RESCHED_THRESHOLD ?
2917 	    DEFAULT_TX_RESCHED_THRESHOLD : DEFAULT_TX_RESCHED_THRESHOLD_LOW);
2918 
2919 	igb->rx_copy_thresh = igb_get_prop(igb, PROP_RX_COPY_THRESHOLD,
2920 	    MIN_RX_COPY_THRESHOLD, MAX_RX_COPY_THRESHOLD,
2921 	    DEFAULT_RX_COPY_THRESHOLD);
2922 	igb->rx_limit_per_intr = igb_get_prop(igb, PROP_RX_LIMIT_PER_INTR,
2923 	    MIN_RX_LIMIT_PER_INTR, MAX_RX_LIMIT_PER_INTR,
2924 	    DEFAULT_RX_LIMIT_PER_INTR);
2925 
2926 	igb->intr_throttling[0] = igb_get_prop(igb, PROP_INTR_THROTTLING,
2927 	    igb->capab->min_intr_throttle,
2928 	    igb->capab->max_intr_throttle,
2929 	    igb->capab->def_intr_throttle);
2930 
2931 	/*
2932 	 * Max number of multicast addresses
2933 	 */
2934 	igb->mcast_max_num =
2935 	    igb_get_prop(igb, PROP_MCAST_MAX_NUM,
2936 	    MIN_MCAST_NUM, MAX_MCAST_NUM, DEFAULT_MCAST_NUM);
2937 }
2938 
2939 /*
2940  * igb_get_prop - Get a property value out of the configuration file igb.conf
2941  *
2942  * Caller provides the name of the property, a default value, a minimum
2943  * value, and a maximum value.
2944  *
2945  * Return configured value of the property, with default, minimum and
2946  * maximum properly applied.
2947  */
2948 static int
2949 igb_get_prop(igb_t *igb,
2950     char *propname,	/* name of the property */
2951     int minval,		/* minimum acceptable value */
2952     int maxval,		/* maximim acceptable value */
2953     int defval)		/* default value */
2954 {
2955 	int value;
2956 
2957 	/*
2958 	 * Call ddi_prop_get_int() to read the conf settings
2959 	 */
2960 	value = ddi_prop_get_int(DDI_DEV_T_ANY, igb->dip,
2961 	    DDI_PROP_DONTPASS, propname, defval);
2962 
2963 	if (value > maxval)
2964 		value = maxval;
2965 
2966 	if (value < minval)
2967 		value = minval;
2968 
2969 	return (value);
2970 }
2971 
2972 /*
2973  * igb_setup_link - Using the link properties to setup the link
2974  */
2975 int
2976 igb_setup_link(igb_t *igb, boolean_t setup_hw)
2977 {
2978 	struct e1000_mac_info *mac;
2979 	struct e1000_phy_info *phy;
2980 	boolean_t invalid;
2981 
2982 	mac = &igb->hw.mac;
2983 	phy = &igb->hw.phy;
2984 	invalid = B_FALSE;
2985 
2986 	if (igb->param_adv_autoneg_cap == 1) {
2987 		mac->autoneg = B_TRUE;
2988 		phy->autoneg_advertised = 0;
2989 
2990 		/*
2991 		 * 1000hdx is not supported for autonegotiation
2992 		 */
2993 		if (igb->param_adv_1000fdx_cap == 1)
2994 			phy->autoneg_advertised |= ADVERTISE_1000_FULL;
2995 
2996 		if (igb->param_adv_100fdx_cap == 1)
2997 			phy->autoneg_advertised |= ADVERTISE_100_FULL;
2998 
2999 		if (igb->param_adv_100hdx_cap == 1)
3000 			phy->autoneg_advertised |= ADVERTISE_100_HALF;
3001 
3002 		if (igb->param_adv_10fdx_cap == 1)
3003 			phy->autoneg_advertised |= ADVERTISE_10_FULL;
3004 
3005 		if (igb->param_adv_10hdx_cap == 1)
3006 			phy->autoneg_advertised |= ADVERTISE_10_HALF;
3007 
3008 		if (phy->autoneg_advertised == 0)
3009 			invalid = B_TRUE;
3010 	} else {
3011 		mac->autoneg = B_FALSE;
3012 
3013 		/*
3014 		 * 1000fdx and 1000hdx are not supported for forced link
3015 		 */
3016 		if (igb->param_adv_100fdx_cap == 1)
3017 			mac->forced_speed_duplex = ADVERTISE_100_FULL;
3018 		else if (igb->param_adv_100hdx_cap == 1)
3019 			mac->forced_speed_duplex = ADVERTISE_100_HALF;
3020 		else if (igb->param_adv_10fdx_cap == 1)
3021 			mac->forced_speed_duplex = ADVERTISE_10_FULL;
3022 		else if (igb->param_adv_10hdx_cap == 1)
3023 			mac->forced_speed_duplex = ADVERTISE_10_HALF;
3024 		else
3025 			invalid = B_TRUE;
3026 	}
3027 
3028 	if (invalid) {
3029 		igb_notice(igb, "Invalid link settings. Setup link to "
3030 		    "autonegotiation with full link capabilities.");
3031 		mac->autoneg = B_TRUE;
3032 		phy->autoneg_advertised = ADVERTISE_1000_FULL |
3033 		    ADVERTISE_100_FULL | ADVERTISE_100_HALF |
3034 		    ADVERTISE_10_FULL | ADVERTISE_10_HALF;
3035 	}
3036 
3037 	if (setup_hw) {
3038 		if (e1000_setup_link(&igb->hw) != E1000_SUCCESS)
3039 			return (IGB_FAILURE);
3040 	}
3041 
3042 	return (IGB_SUCCESS);
3043 }
3044 
3045 
3046 /*
3047  * igb_is_link_up - Check if the link is up
3048  */
3049 static boolean_t
3050 igb_is_link_up(igb_t *igb)
3051 {
3052 	struct e1000_hw *hw = &igb->hw;
3053 	boolean_t link_up = B_FALSE;
3054 
3055 	ASSERT(mutex_owned(&igb->gen_lock));
3056 
3057 	/*
3058 	 * get_link_status is set in the interrupt handler on link-status-change
3059 	 * or rx sequence error interrupt.  get_link_status will stay
3060 	 * false until the e1000_check_for_link establishes link only
3061 	 * for copper adapters.
3062 	 */
3063 	switch (hw->phy.media_type) {
3064 	case e1000_media_type_copper:
3065 		if (hw->mac.get_link_status) {
3066 			(void) e1000_check_for_link(hw);
3067 			link_up = !hw->mac.get_link_status;
3068 		} else {
3069 			link_up = B_TRUE;
3070 		}
3071 		break;
3072 	case e1000_media_type_fiber:
3073 		(void) e1000_check_for_link(hw);
3074 		link_up = (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
3075 		break;
3076 	case e1000_media_type_internal_serdes:
3077 		(void) e1000_check_for_link(hw);
3078 		link_up = hw->mac.serdes_has_link;
3079 		break;
3080 	}
3081 
3082 	return (link_up);
3083 }
3084 
3085 /*
3086  * igb_link_check - Link status processing
3087  */
3088 static boolean_t
3089 igb_link_check(igb_t *igb)
3090 {
3091 	struct e1000_hw *hw = &igb->hw;
3092 	uint16_t speed = 0, duplex = 0;
3093 	boolean_t link_changed = B_FALSE;
3094 
3095 	ASSERT(mutex_owned(&igb->gen_lock));
3096 
3097 	if (igb_is_link_up(igb)) {
3098 		/*
3099 		 * The Link is up, check whether it was marked as down earlier
3100 		 */
3101 		if (igb->link_state != LINK_STATE_UP) {
3102 			(void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
3103 			igb->link_speed = speed;
3104 			igb->link_duplex = duplex;
3105 			igb->link_state = LINK_STATE_UP;
3106 			link_changed = B_TRUE;
3107 			if (!igb->link_complete)
3108 				igb_stop_link_timer(igb);
3109 		}
3110 	} else if (igb->link_complete) {
3111 		if (igb->link_state != LINK_STATE_DOWN) {
3112 			igb->link_speed = 0;
3113 			igb->link_duplex = 0;
3114 			igb->link_state = LINK_STATE_DOWN;
3115 			link_changed = B_TRUE;
3116 		}
3117 	}
3118 
3119 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3120 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3121 		return (B_FALSE);
3122 	}
3123 
3124 	return (link_changed);
3125 }
3126 
3127 /*
3128  * igb_local_timer - driver watchdog function
3129  *
3130  * This function will handle the hardware stall check, link status
3131  * check and other routines.
3132  */
3133 static void
3134 igb_local_timer(void *arg)
3135 {
3136 	igb_t *igb = (igb_t *)arg;
3137 	boolean_t link_changed = B_FALSE;
3138 
3139 	if (igb->igb_state & IGB_ERROR) {
3140 		igb->reset_count++;
3141 		if (igb_reset(igb) == IGB_SUCCESS)
3142 			ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED);
3143 
3144 		igb_restart_watchdog_timer(igb);
3145 		return;
3146 	}
3147 
3148 	if (igb_stall_check(igb) || (igb->igb_state & IGB_STALL)) {
3149 		igb_fm_ereport(igb, DDI_FM_DEVICE_STALL);
3150 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_LOST);
3151 		igb->reset_count++;
3152 		if (igb_reset(igb) == IGB_SUCCESS)
3153 			ddi_fm_service_impact(igb->dip, DDI_SERVICE_RESTORED);
3154 
3155 		igb_restart_watchdog_timer(igb);
3156 		return;
3157 	}
3158 
3159 	mutex_enter(&igb->gen_lock);
3160 	if (!(igb->igb_state & IGB_SUSPENDED) && (igb->igb_state & IGB_STARTED))
3161 		link_changed = igb_link_check(igb);
3162 	mutex_exit(&igb->gen_lock);
3163 
3164 	if (link_changed)
3165 		mac_link_update(igb->mac_hdl, igb->link_state);
3166 
3167 	igb_restart_watchdog_timer(igb);
3168 }
3169 
3170 /*
3171  * igb_link_timer - link setup timer function
3172  *
3173  * It is called when the timer for link setup is expired, which indicates
3174  * the completion of the link setup. The link state will not be updated
3175  * until the link setup is completed. And the link state will not be sent
3176  * to the upper layer through mac_link_update() in this function. It will
3177  * be updated in the local timer routine or the interrupts service routine
3178  * after the interface is started (plumbed).
3179  */
3180 static void
3181 igb_link_timer(void *arg)
3182 {
3183 	igb_t *igb = (igb_t *)arg;
3184 
3185 	mutex_enter(&igb->link_lock);
3186 	igb->link_complete = B_TRUE;
3187 	igb->link_tid = 0;
3188 	mutex_exit(&igb->link_lock);
3189 }
3190 /*
3191  * igb_stall_check - check for transmit stall
3192  *
3193  * This function checks if the adapter is stalled (in transmit).
3194  *
3195  * It is called each time the watchdog timeout is invoked.
3196  * If the transmit descriptor reclaim continuously fails,
3197  * the watchdog value will increment by 1. If the watchdog
3198  * value exceeds the threshold, the igb is assumed to
3199  * have stalled and need to be reset.
3200  */
3201 static boolean_t
3202 igb_stall_check(igb_t *igb)
3203 {
3204 	igb_tx_ring_t *tx_ring;
3205 	struct e1000_hw *hw = &igb->hw;
3206 	boolean_t result;
3207 	int i;
3208 
3209 	if (igb->link_state != LINK_STATE_UP)
3210 		return (B_FALSE);
3211 
3212 	/*
3213 	 * If any tx ring is stalled, we'll reset the chipset
3214 	 */
3215 	result = B_FALSE;
3216 	for (i = 0; i < igb->num_tx_rings; i++) {
3217 		tx_ring = &igb->tx_rings[i];
3218 
3219 		if (tx_ring->recycle_fail > 0)
3220 			tx_ring->stall_watchdog++;
3221 		else
3222 			tx_ring->stall_watchdog = 0;
3223 
3224 		if (tx_ring->stall_watchdog >= STALL_WATCHDOG_TIMEOUT) {
3225 			result = B_TRUE;
3226 			if (hw->mac.type == e1000_82580) {
3227 				hw->dev_spec._82575.global_device_reset
3228 				    = B_TRUE;
3229 			}
3230 			break;
3231 		}
3232 	}
3233 
3234 	if (result) {
3235 		tx_ring->stall_watchdog = 0;
3236 		tx_ring->recycle_fail = 0;
3237 	}
3238 
3239 	return (result);
3240 }
3241 
3242 
3243 /*
3244  * is_valid_mac_addr - Check if the mac address is valid
3245  */
3246 static boolean_t
3247 is_valid_mac_addr(uint8_t *mac_addr)
3248 {
3249 	const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
3250 	const uint8_t addr_test2[6] =
3251 	    { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3252 
3253 	if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
3254 	    !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
3255 		return (B_FALSE);
3256 
3257 	return (B_TRUE);
3258 }
3259 
3260 static boolean_t
3261 igb_find_mac_address(igb_t *igb)
3262 {
3263 	struct e1000_hw *hw = &igb->hw;
3264 #ifdef __sparc
3265 	uchar_t *bytes;
3266 	struct ether_addr sysaddr;
3267 	uint_t nelts;
3268 	int err;
3269 	boolean_t found = B_FALSE;
3270 
3271 	/*
3272 	 * The "vendor's factory-set address" may already have
3273 	 * been extracted from the chip, but if the property
3274 	 * "local-mac-address" is set we use that instead.
3275 	 *
3276 	 * We check whether it looks like an array of 6
3277 	 * bytes (which it should, if OBP set it).  If we can't
3278 	 * make sense of it this way, we'll ignore it.
3279 	 */
3280 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3281 	    DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
3282 	if (err == DDI_PROP_SUCCESS) {
3283 		if (nelts == ETHERADDRL) {
3284 			while (nelts--)
3285 				hw->mac.addr[nelts] = bytes[nelts];
3286 			found = B_TRUE;
3287 		}
3288 		ddi_prop_free(bytes);
3289 	}
3290 
3291 	/*
3292 	 * Look up the OBP property "local-mac-address?". If the user has set
3293 	 * 'local-mac-address? = false', use "the system address" instead.
3294 	 */
3295 	if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, 0,
3296 	    "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
3297 		if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
3298 			if (localetheraddr(NULL, &sysaddr) != 0) {
3299 				bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
3300 				found = B_TRUE;
3301 			}
3302 		}
3303 		ddi_prop_free(bytes);
3304 	}
3305 
3306 	/*
3307 	 * Finally(!), if there's a valid "mac-address" property (created
3308 	 * if we netbooted from this interface), we must use this instead
3309 	 * of any of the above to ensure that the NFS/install server doesn't
3310 	 * get confused by the address changing as Solaris takes over!
3311 	 */
3312 	err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip,
3313 	    DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
3314 	if (err == DDI_PROP_SUCCESS) {
3315 		if (nelts == ETHERADDRL) {
3316 			while (nelts--)
3317 				hw->mac.addr[nelts] = bytes[nelts];
3318 			found = B_TRUE;
3319 		}
3320 		ddi_prop_free(bytes);
3321 	}
3322 
3323 	if (found) {
3324 		bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL);
3325 		return (B_TRUE);
3326 	}
3327 #endif
3328 
3329 	/*
3330 	 * Read the device MAC address from the EEPROM
3331 	 */
3332 	if (e1000_read_mac_addr(hw) != E1000_SUCCESS)
3333 		return (B_FALSE);
3334 
3335 	return (B_TRUE);
3336 }
3337 
3338 #pragma inline(igb_arm_watchdog_timer)
3339 
3340 static void
3341 igb_arm_watchdog_timer(igb_t *igb)
3342 {
3343 	/*
3344 	 * Fire a watchdog timer
3345 	 */
3346 	igb->watchdog_tid =
3347 	    timeout(igb_local_timer,
3348 	    (void *)igb, 1 * drv_usectohz(1000000));
3349 
3350 }
3351 
3352 /*
3353  * igb_enable_watchdog_timer - Enable and start the driver watchdog timer
3354  */
3355 void
3356 igb_enable_watchdog_timer(igb_t *igb)
3357 {
3358 	mutex_enter(&igb->watchdog_lock);
3359 
3360 	if (!igb->watchdog_enable) {
3361 		igb->watchdog_enable = B_TRUE;
3362 		igb->watchdog_start = B_TRUE;
3363 		igb_arm_watchdog_timer(igb);
3364 	}
3365 
3366 	mutex_exit(&igb->watchdog_lock);
3367 
3368 }
3369 
3370 /*
3371  * igb_disable_watchdog_timer - Disable and stop the driver watchdog timer
3372  */
3373 void
3374 igb_disable_watchdog_timer(igb_t *igb)
3375 {
3376 	timeout_id_t tid;
3377 
3378 	mutex_enter(&igb->watchdog_lock);
3379 
3380 	igb->watchdog_enable = B_FALSE;
3381 	igb->watchdog_start = B_FALSE;
3382 	tid = igb->watchdog_tid;
3383 	igb->watchdog_tid = 0;
3384 
3385 	mutex_exit(&igb->watchdog_lock);
3386 
3387 	if (tid != 0)
3388 		(void) untimeout(tid);
3389 
3390 }
3391 
3392 /*
3393  * igb_start_watchdog_timer - Start the driver watchdog timer
3394  */
3395 static void
3396 igb_start_watchdog_timer(igb_t *igb)
3397 {
3398 	mutex_enter(&igb->watchdog_lock);
3399 
3400 	if (igb->watchdog_enable) {
3401 		if (!igb->watchdog_start) {
3402 			igb->watchdog_start = B_TRUE;
3403 			igb_arm_watchdog_timer(igb);
3404 		}
3405 	}
3406 
3407 	mutex_exit(&igb->watchdog_lock);
3408 }
3409 
3410 /*
3411  * igb_restart_watchdog_timer - Restart the driver watchdog timer
3412  */
3413 static void
3414 igb_restart_watchdog_timer(igb_t *igb)
3415 {
3416 	mutex_enter(&igb->watchdog_lock);
3417 
3418 	if (igb->watchdog_start)
3419 		igb_arm_watchdog_timer(igb);
3420 
3421 	mutex_exit(&igb->watchdog_lock);
3422 }
3423 
3424 /*
3425  * igb_stop_watchdog_timer - Stop the driver watchdog timer
3426  */
3427 static void
3428 igb_stop_watchdog_timer(igb_t *igb)
3429 {
3430 	timeout_id_t tid;
3431 
3432 	mutex_enter(&igb->watchdog_lock);
3433 
3434 	igb->watchdog_start = B_FALSE;
3435 	tid = igb->watchdog_tid;
3436 	igb->watchdog_tid = 0;
3437 
3438 	mutex_exit(&igb->watchdog_lock);
3439 
3440 	if (tid != 0)
3441 		(void) untimeout(tid);
3442 }
3443 
3444 /*
3445  * igb_start_link_timer - Start the link setup timer
3446  */
3447 static void
3448 igb_start_link_timer(struct igb *igb)
3449 {
3450 	struct e1000_hw *hw = &igb->hw;
3451 	clock_t link_timeout;
3452 
3453 	if (hw->mac.autoneg)
3454 		link_timeout = PHY_AUTO_NEG_LIMIT *
3455 		    drv_usectohz(100000);
3456 	else
3457 		link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
3458 
3459 	mutex_enter(&igb->link_lock);
3460 	if (hw->phy.autoneg_wait_to_complete) {
3461 		igb->link_complete = B_TRUE;
3462 	} else {
3463 		igb->link_complete = B_FALSE;
3464 		igb->link_tid = timeout(igb_link_timer, (void *)igb,
3465 		    link_timeout);
3466 	}
3467 	mutex_exit(&igb->link_lock);
3468 }
3469 
3470 /*
3471  * igb_stop_link_timer - Stop the link setup timer
3472  */
3473 static void
3474 igb_stop_link_timer(struct igb *igb)
3475 {
3476 	timeout_id_t tid;
3477 
3478 	mutex_enter(&igb->link_lock);
3479 	igb->link_complete = B_TRUE;
3480 	tid = igb->link_tid;
3481 	igb->link_tid = 0;
3482 	mutex_exit(&igb->link_lock);
3483 
3484 	if (tid != 0)
3485 		(void) untimeout(tid);
3486 }
3487 
3488 /*
3489  * igb_disable_adapter_interrupts - Clear/disable all hardware interrupts
3490  */
3491 static void
3492 igb_disable_adapter_interrupts(igb_t *igb)
3493 {
3494 	struct e1000_hw *hw = &igb->hw;
3495 
3496 	/*
3497 	 * Set the IMC register to mask all the interrupts,
3498 	 * including the tx interrupts.
3499 	 */
3500 	E1000_WRITE_REG(hw, E1000_IMC, ~0);
3501 	E1000_WRITE_REG(hw, E1000_IAM, 0);
3502 
3503 	/*
3504 	 * Additional disabling for MSI-X
3505 	 */
3506 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3507 		E1000_WRITE_REG(hw, E1000_EIMC, ~0);
3508 		E1000_WRITE_REG(hw, E1000_EIAC, 0);
3509 		E1000_WRITE_REG(hw, E1000_EIAM, 0);
3510 	}
3511 
3512 	E1000_WRITE_FLUSH(hw);
3513 }
3514 
3515 /*
3516  * igb_enable_adapter_interrupts_82580 - Enable NIC interrupts for 82580
3517  */
3518 static void
3519 igb_enable_adapter_interrupts_82580(igb_t *igb)
3520 {
3521 	struct e1000_hw *hw = &igb->hw;
3522 
3523 	/* Clear any pending interrupts */
3524 	(void) E1000_READ_REG(hw, E1000_ICR);
3525 	igb->ims_mask |= E1000_IMS_DRSTA;
3526 
3527 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3528 
3529 		/* Interrupt enabling for MSI-X */
3530 		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3531 		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3532 		igb->ims_mask = (E1000_IMS_LSC | E1000_IMS_DRSTA);
3533 		E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3534 	} else { /* Interrupt enabling for MSI and legacy */
3535 		E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3536 		igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3537 		igb->ims_mask |= E1000_IMS_DRSTA;
3538 		E1000_WRITE_REG(hw, E1000_IMS, igb->ims_mask);
3539 	}
3540 
3541 	/* Disable auto-mask for ICR interrupt bits */
3542 	E1000_WRITE_REG(hw, E1000_IAM, 0);
3543 
3544 	E1000_WRITE_FLUSH(hw);
3545 }
3546 
3547 /*
3548  * igb_enable_adapter_interrupts_82576 - Enable NIC interrupts for 82576
3549  */
3550 static void
3551 igb_enable_adapter_interrupts_82576(igb_t *igb)
3552 {
3553 	struct e1000_hw *hw = &igb->hw;
3554 
3555 	/* Clear any pending interrupts */
3556 	(void) E1000_READ_REG(hw, E1000_ICR);
3557 
3558 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3559 
3560 		/* Interrupt enabling for MSI-X */
3561 		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3562 		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3563 		igb->ims_mask = E1000_IMS_LSC;
3564 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3565 	} else {
3566 		/* Interrupt enabling for MSI and legacy */
3567 		E1000_WRITE_REG(hw, E1000_IVAR0, E1000_IVAR_VALID);
3568 		igb->ims_mask = IMS_ENABLE_MASK | E1000_IMS_TXQE;
3569 		E1000_WRITE_REG(hw, E1000_IMS,
3570 		    (IMS_ENABLE_MASK | E1000_IMS_TXQE));
3571 	}
3572 
3573 	/* Disable auto-mask for ICR interrupt bits */
3574 	E1000_WRITE_REG(hw, E1000_IAM, 0);
3575 
3576 	E1000_WRITE_FLUSH(hw);
3577 }
3578 
3579 /*
3580  * igb_enable_adapter_interrupts_82575 - Enable NIC interrupts for 82575
3581  */
3582 static void
3583 igb_enable_adapter_interrupts_82575(igb_t *igb)
3584 {
3585 	struct e1000_hw *hw = &igb->hw;
3586 	uint32_t reg;
3587 
3588 	/* Clear any pending interrupts */
3589 	(void) E1000_READ_REG(hw, E1000_ICR);
3590 
3591 	if (igb->intr_type == DDI_INTR_TYPE_MSIX) {
3592 		/* Interrupt enabling for MSI-X */
3593 		E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask);
3594 		E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask);
3595 		igb->ims_mask = E1000_IMS_LSC;
3596 		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC);
3597 
3598 		/* Enable MSI-X PBA support */
3599 		reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
3600 		reg |= E1000_CTRL_EXT_PBA_CLR;
3601 
3602 		/* Non-selective interrupt clear-on-read */
3603 		reg |= E1000_CTRL_EXT_IRCA;	/* Called NSICR in the EAS */
3604 
3605 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
3606 	} else {
3607 		/* Interrupt enabling for MSI and legacy */
3608 		igb->ims_mask = IMS_ENABLE_MASK;
3609 		E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
3610 	}
3611 
3612 	E1000_WRITE_FLUSH(hw);
3613 }
3614 
3615 /*
3616  * Loopback Support
3617  */
3618 static lb_property_t lb_normal =
3619 	{ normal,	"normal",	IGB_LB_NONE		};
3620 static lb_property_t lb_external =
3621 	{ external,	"External",	IGB_LB_EXTERNAL		};
3622 static lb_property_t lb_phy =
3623 	{ internal,	"PHY",		IGB_LB_INTERNAL_PHY	};
3624 static lb_property_t lb_serdes =
3625 	{ internal,	"SerDes",	IGB_LB_INTERNAL_SERDES	};
3626 
3627 enum ioc_reply
3628 igb_loopback_ioctl(igb_t *igb, struct iocblk *iocp, mblk_t *mp)
3629 {
3630 	lb_info_sz_t *lbsp;
3631 	lb_property_t *lbpp;
3632 	struct e1000_hw *hw;
3633 	uint32_t *lbmp;
3634 	uint32_t size;
3635 	uint32_t value;
3636 
3637 	hw = &igb->hw;
3638 
3639 	if (mp->b_cont == NULL)
3640 		return (IOC_INVAL);
3641 
3642 	switch (iocp->ioc_cmd) {
3643 	default:
3644 		return (IOC_INVAL);
3645 
3646 	case LB_GET_INFO_SIZE:
3647 		size = sizeof (lb_info_sz_t);
3648 		if (iocp->ioc_count != size)
3649 			return (IOC_INVAL);
3650 
3651 		value = sizeof (lb_normal);
3652 		if (hw->phy.media_type == e1000_media_type_copper)
3653 			value += sizeof (lb_phy);
3654 		else
3655 			value += sizeof (lb_serdes);
3656 		value += sizeof (lb_external);
3657 
3658 		lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
3659 		*lbsp = value;
3660 		break;
3661 
3662 	case LB_GET_INFO:
3663 		value = sizeof (lb_normal);
3664 		if (hw->phy.media_type == e1000_media_type_copper)
3665 			value += sizeof (lb_phy);
3666 		else
3667 			value += sizeof (lb_serdes);
3668 		value += sizeof (lb_external);
3669 
3670 		size = value;
3671 		if (iocp->ioc_count != size)
3672 			return (IOC_INVAL);
3673 
3674 		value = 0;
3675 		lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
3676 
3677 		lbpp[value++] = lb_normal;
3678 		if (hw->phy.media_type == e1000_media_type_copper)
3679 			lbpp[value++] = lb_phy;
3680 		else
3681 			lbpp[value++] = lb_serdes;
3682 		lbpp[value++] = lb_external;
3683 		break;
3684 
3685 	case LB_GET_MODE:
3686 		size = sizeof (uint32_t);
3687 		if (iocp->ioc_count != size)
3688 			return (IOC_INVAL);
3689 
3690 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3691 		*lbmp = igb->loopback_mode;
3692 		break;
3693 
3694 	case LB_SET_MODE:
3695 		size = 0;
3696 		if (iocp->ioc_count != sizeof (uint32_t))
3697 			return (IOC_INVAL);
3698 
3699 		lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
3700 		if (!igb_set_loopback_mode(igb, *lbmp))
3701 			return (IOC_INVAL);
3702 		break;
3703 	}
3704 
3705 	iocp->ioc_count = size;
3706 	iocp->ioc_error = 0;
3707 
3708 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
3709 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
3710 		return (IOC_INVAL);
3711 	}
3712 
3713 	return (IOC_REPLY);
3714 }
3715 
3716 /*
3717  * igb_set_loopback_mode - Setup loopback based on the loopback mode
3718  */
3719 static boolean_t
3720 igb_set_loopback_mode(igb_t *igb, uint32_t mode)
3721 {
3722 	struct e1000_hw *hw;
3723 	int i;
3724 
3725 	if (mode == igb->loopback_mode)
3726 		return (B_TRUE);
3727 
3728 	hw = &igb->hw;
3729 
3730 	igb->loopback_mode = mode;
3731 
3732 	if (mode == IGB_LB_NONE) {
3733 		/* Reset the chip */
3734 		hw->phy.autoneg_wait_to_complete = B_TRUE;
3735 		(void) igb_reset(igb);
3736 		hw->phy.autoneg_wait_to_complete = B_FALSE;
3737 		return (B_TRUE);
3738 	}
3739 
3740 	mutex_enter(&igb->gen_lock);
3741 
3742 	switch (mode) {
3743 	default:
3744 		mutex_exit(&igb->gen_lock);
3745 		return (B_FALSE);
3746 
3747 	case IGB_LB_EXTERNAL:
3748 		igb_set_external_loopback(igb);
3749 		break;
3750 
3751 	case IGB_LB_INTERNAL_PHY:
3752 		igb_set_internal_phy_loopback(igb);
3753 		break;
3754 
3755 	case IGB_LB_INTERNAL_SERDES:
3756 		igb_set_internal_serdes_loopback(igb);
3757 		break;
3758 	}
3759 
3760 	mutex_exit(&igb->gen_lock);
3761 
3762 	/*
3763 	 * When external loopback is set, wait up to 1000ms to get the link up.
3764 	 * According to test, 1000ms can work and it's an experimental value.
3765 	 */
3766 	if (mode == IGB_LB_EXTERNAL) {
3767 		for (i = 0; i <= 10; i++) {
3768 			mutex_enter(&igb->gen_lock);
3769 			(void) igb_link_check(igb);
3770 			mutex_exit(&igb->gen_lock);
3771 
3772 			if (igb->link_state == LINK_STATE_UP)
3773 				break;
3774 
3775 			msec_delay(100);
3776 		}
3777 
3778 		if (igb->link_state != LINK_STATE_UP) {
3779 			/*
3780 			 * Does not support external loopback.
3781 			 * Reset driver to loopback none.
3782 			 */
3783 			igb->loopback_mode = IGB_LB_NONE;
3784 
3785 			/* Reset the chip */
3786 			hw->phy.autoneg_wait_to_complete = B_TRUE;
3787 			(void) igb_reset(igb);
3788 			hw->phy.autoneg_wait_to_complete = B_FALSE;
3789 
3790 			IGB_DEBUGLOG_0(igb, "Set external loopback failed, "
3791 			    "reset to loopback none.");
3792 
3793 			return (B_FALSE);
3794 		}
3795 	}
3796 
3797 	return (B_TRUE);
3798 }
3799 
3800 /*
3801  * igb_set_external_loopback - Set the external loopback mode
3802  */
3803 static void
3804 igb_set_external_loopback(igb_t *igb)
3805 {
3806 	struct e1000_hw *hw;
3807 	uint32_t ctrl_ext;
3808 
3809 	hw = &igb->hw;
3810 
3811 	/* Set link mode to PHY (00b) in the Extended Control register */
3812 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3813 	ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3814 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3815 
3816 	(void) e1000_write_phy_reg(hw, 0x0, 0x0140);
3817 	(void) e1000_write_phy_reg(hw, 0x9, 0x1a00);
3818 	(void) e1000_write_phy_reg(hw, 0x12, 0x1610);
3819 	(void) e1000_write_phy_reg(hw, 0x1f37, 0x3f1c);
3820 }
3821 
3822 /*
3823  * igb_set_internal_phy_loopback - Set the internal PHY loopback mode
3824  */
3825 static void
3826 igb_set_internal_phy_loopback(igb_t *igb)
3827 {
3828 	struct e1000_hw *hw;
3829 	uint32_t ctrl_ext;
3830 	uint16_t phy_ctrl;
3831 	uint16_t phy_pconf;
3832 
3833 	hw = &igb->hw;
3834 
3835 	/* Set link mode to PHY (00b) in the Extended Control register */
3836 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3837 	ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
3838 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3839 
3840 	/*
3841 	 * Set PHY control register (0x4140):
3842 	 *    Set full duplex mode
3843 	 *    Set loopback bit
3844 	 *    Clear auto-neg enable bit
3845 	 *    Set PHY speed
3846 	 */
3847 	phy_ctrl = MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000 | MII_CR_LOOPBACK;
3848 	(void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
3849 
3850 	/* Set the link disable bit in the Port Configuration register */
3851 	(void) e1000_read_phy_reg(hw, 0x10, &phy_pconf);
3852 	phy_pconf |= (uint16_t)1 << 14;
3853 	(void) e1000_write_phy_reg(hw, 0x10, phy_pconf);
3854 }
3855 
3856 /*
3857  * igb_set_internal_serdes_loopback - Set the internal SerDes loopback mode
3858  */
3859 static void
3860 igb_set_internal_serdes_loopback(igb_t *igb)
3861 {
3862 	struct e1000_hw *hw;
3863 	uint32_t ctrl_ext;
3864 	uint32_t ctrl;
3865 	uint32_t pcs_lctl;
3866 	uint32_t connsw;
3867 
3868 	hw = &igb->hw;
3869 
3870 	/* Set link mode to SerDes (11b) in the Extended Control register */
3871 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
3872 	ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
3873 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
3874 
3875 	/* Configure the SerDes to loopback */
3876 	E1000_WRITE_REG(hw, E1000_SCTL, 0x410);
3877 
3878 	/* Set Device Control register */
3879 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
3880 	ctrl |= (E1000_CTRL_FD |	/* Force full duplex */
3881 	    E1000_CTRL_SLU);		/* Force link up */
3882 	ctrl &= ~(E1000_CTRL_RFCE |	/* Disable receive flow control */
3883 	    E1000_CTRL_TFCE |		/* Disable transmit flow control */
3884 	    E1000_CTRL_LRST);		/* Clear link reset */
3885 	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3886 
3887 	/* Set PCS Link Control register */
3888 	pcs_lctl = E1000_READ_REG(hw, E1000_PCS_LCTL);
3889 	pcs_lctl |= (E1000_PCS_LCTL_FORCE_LINK |
3890 	    E1000_PCS_LCTL_FSD |
3891 	    E1000_PCS_LCTL_FDV_FULL |
3892 	    E1000_PCS_LCTL_FLV_LINK_UP);
3893 	pcs_lctl &= ~E1000_PCS_LCTL_AN_ENABLE;
3894 	E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_lctl);
3895 
3896 	/* Set the Copper/Fiber Switch Control - CONNSW register */
3897 	connsw = E1000_READ_REG(hw, E1000_CONNSW);
3898 	connsw &= ~E1000_CONNSW_ENRGSRC;
3899 	E1000_WRITE_REG(hw, E1000_CONNSW, connsw);
3900 }
3901 
3902 #pragma inline(igb_intr_rx_work)
3903 /*
3904  * igb_intr_rx_work - rx processing of ISR
3905  */
3906 static void
3907 igb_intr_rx_work(igb_rx_ring_t *rx_ring)
3908 {
3909 	mblk_t *mp;
3910 
3911 	mutex_enter(&rx_ring->rx_lock);
3912 	mp = igb_rx(rx_ring, IGB_NO_POLL);
3913 	mutex_exit(&rx_ring->rx_lock);
3914 
3915 	if (mp != NULL)
3916 		mac_rx_ring(rx_ring->igb->mac_hdl, rx_ring->ring_handle, mp,
3917 		    rx_ring->ring_gen_num);
3918 }
3919 
3920 #pragma inline(igb_intr_tx_work)
3921 /*
3922  * igb_intr_tx_work - tx processing of ISR
3923  */
3924 static void
3925 igb_intr_tx_work(igb_tx_ring_t *tx_ring)
3926 {
3927 	igb_t *igb = tx_ring->igb;
3928 
3929 	/* Recycle the tx descriptors */
3930 	tx_ring->tx_recycle(tx_ring);
3931 
3932 	/* Schedule the re-transmit */
3933 	if (tx_ring->reschedule &&
3934 	    (tx_ring->tbd_free >= igb->tx_resched_thresh)) {
3935 		tx_ring->reschedule = B_FALSE;
3936 		mac_tx_ring_update(tx_ring->igb->mac_hdl, tx_ring->ring_handle);
3937 		IGB_DEBUG_STAT(tx_ring->stat_reschedule);
3938 	}
3939 }
3940 
3941 #pragma inline(igb_intr_link_work)
3942 /*
3943  * igb_intr_link_work - link-status-change processing of ISR
3944  */
3945 static void
3946 igb_intr_link_work(igb_t *igb)
3947 {
3948 	boolean_t link_changed;
3949 
3950 	igb_stop_watchdog_timer(igb);
3951 
3952 	mutex_enter(&igb->gen_lock);
3953 
3954 	/*
3955 	 * Because we got a link-status-change interrupt, force
3956 	 * e1000_check_for_link() to look at phy
3957 	 */
3958 	igb->hw.mac.get_link_status = B_TRUE;
3959 
3960 	/* igb_link_check takes care of link status change */
3961 	link_changed = igb_link_check(igb);
3962 
3963 	/* Get new phy state */
3964 	igb_get_phy_state(igb);
3965 
3966 	mutex_exit(&igb->gen_lock);
3967 
3968 	if (link_changed)
3969 		mac_link_update(igb->mac_hdl, igb->link_state);
3970 
3971 	igb_start_watchdog_timer(igb);
3972 }
3973 
3974 /*
3975  * igb_intr_legacy - Interrupt handler for legacy interrupts
3976  */
3977 static uint_t
3978 igb_intr_legacy(void *arg1, void *arg2)
3979 {
3980 	igb_t *igb = (igb_t *)arg1;
3981 	igb_tx_ring_t *tx_ring;
3982 	uint32_t icr;
3983 	mblk_t *mp;
3984 	boolean_t tx_reschedule;
3985 	boolean_t link_changed;
3986 	uint_t result;
3987 
3988 	_NOTE(ARGUNUSED(arg2));
3989 
3990 	mutex_enter(&igb->gen_lock);
3991 
3992 	if (igb->igb_state & IGB_SUSPENDED) {
3993 		mutex_exit(&igb->gen_lock);
3994 		return (DDI_INTR_UNCLAIMED);
3995 	}
3996 
3997 	mp = NULL;
3998 	tx_reschedule = B_FALSE;
3999 	link_changed = B_FALSE;
4000 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4001 
4002 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4003 		mutex_exit(&igb->gen_lock);
4004 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4005 		atomic_or_32(&igb->igb_state, IGB_ERROR);
4006 		return (DDI_INTR_UNCLAIMED);
4007 	}
4008 
4009 	if (icr & E1000_ICR_INT_ASSERTED) {
4010 		/*
4011 		 * E1000_ICR_INT_ASSERTED bit was set:
4012 		 * Read(Clear) the ICR, claim this interrupt,
4013 		 * look for work to do.
4014 		 */
4015 		ASSERT(igb->num_rx_rings == 1);
4016 		ASSERT(igb->num_tx_rings == 1);
4017 
4018 		/* Make sure all interrupt causes cleared */
4019 		(void) E1000_READ_REG(&igb->hw, E1000_EICR);
4020 
4021 		if (icr & E1000_ICR_RXT0) {
4022 			mp = igb_rx(&igb->rx_rings[0], IGB_NO_POLL);
4023 		}
4024 
4025 		if (icr & E1000_ICR_TXDW) {
4026 			tx_ring = &igb->tx_rings[0];
4027 
4028 			/* Recycle the tx descriptors */
4029 			tx_ring->tx_recycle(tx_ring);
4030 
4031 			/* Schedule the re-transmit */
4032 			tx_reschedule = (tx_ring->reschedule &&
4033 			    (tx_ring->tbd_free >= igb->tx_resched_thresh));
4034 		}
4035 
4036 		if (icr & E1000_ICR_LSC) {
4037 			/*
4038 			 * Because we got a link-status-change interrupt, force
4039 			 * e1000_check_for_link() to look at phy
4040 			 */
4041 			igb->hw.mac.get_link_status = B_TRUE;
4042 
4043 			/* igb_link_check takes care of link status change */
4044 			link_changed = igb_link_check(igb);
4045 
4046 			/* Get new phy state */
4047 			igb_get_phy_state(igb);
4048 		}
4049 
4050 		if (icr & E1000_ICR_DRSTA) {
4051 			/* 82580 Full Device Reset needed */
4052 			atomic_or_32(&igb->igb_state, IGB_STALL);
4053 		}
4054 
4055 		result = DDI_INTR_CLAIMED;
4056 	} else {
4057 		/*
4058 		 * E1000_ICR_INT_ASSERTED bit was not set:
4059 		 * Don't claim this interrupt.
4060 		 */
4061 		result = DDI_INTR_UNCLAIMED;
4062 	}
4063 
4064 	mutex_exit(&igb->gen_lock);
4065 
4066 	/*
4067 	 * Do the following work outside of the gen_lock
4068 	 */
4069 	if (mp != NULL)
4070 		mac_rx(igb->mac_hdl, NULL, mp);
4071 
4072 	if (tx_reschedule)  {
4073 		tx_ring->reschedule = B_FALSE;
4074 		mac_tx_ring_update(igb->mac_hdl, tx_ring->ring_handle);
4075 		IGB_DEBUG_STAT(tx_ring->stat_reschedule);
4076 	}
4077 
4078 	if (link_changed)
4079 		mac_link_update(igb->mac_hdl, igb->link_state);
4080 
4081 	return (result);
4082 }
4083 
4084 /*
4085  * igb_intr_msi - Interrupt handler for MSI
4086  */
4087 static uint_t
4088 igb_intr_msi(void *arg1, void *arg2)
4089 {
4090 	igb_t *igb = (igb_t *)arg1;
4091 	uint32_t icr;
4092 
4093 	_NOTE(ARGUNUSED(arg2));
4094 
4095 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4096 
4097 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4098 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4099 		atomic_or_32(&igb->igb_state, IGB_ERROR);
4100 		return (DDI_INTR_CLAIMED);
4101 	}
4102 
4103 	/* Make sure all interrupt causes cleared */
4104 	(void) E1000_READ_REG(&igb->hw, E1000_EICR);
4105 
4106 	/*
4107 	 * For MSI interrupt, we have only one vector,
4108 	 * so we have only one rx ring and one tx ring enabled.
4109 	 */
4110 	ASSERT(igb->num_rx_rings == 1);
4111 	ASSERT(igb->num_tx_rings == 1);
4112 
4113 	if (icr & E1000_ICR_RXT0) {
4114 		igb_intr_rx_work(&igb->rx_rings[0]);
4115 	}
4116 
4117 	if (icr & E1000_ICR_TXDW) {
4118 		igb_intr_tx_work(&igb->tx_rings[0]);
4119 	}
4120 
4121 	if (icr & E1000_ICR_LSC) {
4122 		igb_intr_link_work(igb);
4123 	}
4124 
4125 	if (icr & E1000_ICR_DRSTA) {
4126 		/* 82580 Full Device Reset needed */
4127 		atomic_or_32(&igb->igb_state, IGB_STALL);
4128 	}
4129 
4130 	return (DDI_INTR_CLAIMED);
4131 }
4132 
4133 /*
4134  * igb_intr_rx - Interrupt handler for rx
4135  */
4136 static uint_t
4137 igb_intr_rx(void *arg1, void *arg2)
4138 {
4139 	igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)arg1;
4140 
4141 	_NOTE(ARGUNUSED(arg2));
4142 
4143 	/*
4144 	 * Only used via MSI-X vector so don't check cause bits
4145 	 * and only clean the given ring.
4146 	 */
4147 	igb_intr_rx_work(rx_ring);
4148 
4149 	return (DDI_INTR_CLAIMED);
4150 }
4151 
4152 /*
4153  * igb_intr_tx - Interrupt handler for tx
4154  */
4155 static uint_t
4156 igb_intr_tx(void *arg1, void *arg2)
4157 {
4158 	igb_tx_ring_t *tx_ring = (igb_tx_ring_t *)arg1;
4159 
4160 	_NOTE(ARGUNUSED(arg2));
4161 
4162 	/*
4163 	 * Only used via MSI-X vector so don't check cause bits
4164 	 * and only clean the given ring.
4165 	 */
4166 	igb_intr_tx_work(tx_ring);
4167 
4168 	return (DDI_INTR_CLAIMED);
4169 }
4170 
4171 /*
4172  * igb_intr_tx_other - Interrupt handler for both tx and other
4173  *
4174  */
4175 static uint_t
4176 igb_intr_tx_other(void *arg1, void *arg2)
4177 {
4178 	igb_t *igb = (igb_t *)arg1;
4179 	uint32_t icr;
4180 
4181 	_NOTE(ARGUNUSED(arg2));
4182 
4183 	icr = E1000_READ_REG(&igb->hw, E1000_ICR);
4184 
4185 	if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) {
4186 		ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED);
4187 		atomic_or_32(&igb->igb_state, IGB_ERROR);
4188 		return (DDI_INTR_CLAIMED);
4189 	}
4190 
4191 	/*
4192 	 * Look for tx reclaiming work first. Remember, in the
4193 	 * case of only interrupt sharing, only one tx ring is
4194 	 * used
4195 	 */
4196 	igb_intr_tx_work(&igb->tx_rings[0]);
4197 
4198 	/*
4199 	 * Check for "other" causes.
4200 	 */
4201 	if (icr & E1000_ICR_LSC) {
4202 		igb_intr_link_work(igb);
4203 	}
4204 
4205 	/*
4206 	 * The DOUTSYNC bit indicates a tx packet dropped because
4207 	 * DMA engine gets "out of sync". There isn't a real fix
4208 	 * for this. The Intel recommendation is to count the number
4209 	 * of occurrences so user can detect when it is happening.
4210 	 * The issue is non-fatal and there's no recovery action
4211 	 * available.
4212 	 */
4213 	if (icr & E1000_ICR_DOUTSYNC) {
4214 		IGB_STAT(igb->dout_sync);
4215 	}
4216 
4217 	if (icr & E1000_ICR_DRSTA) {
4218 		/* 82580 Full Device Reset needed */
4219 		atomic_or_32(&igb->igb_state, IGB_STALL);
4220 	}
4221 
4222 	return (DDI_INTR_CLAIMED);
4223 }
4224 
4225 /*
4226  * igb_alloc_intrs - Allocate interrupts for the driver
4227  *
4228  * Normal sequence is to try MSI-X; if not sucessful, try MSI;
4229  * if not successful, try Legacy.
4230  * igb->intr_force can be used to force sequence to start with
4231  * any of the 3 types.
4232  * If MSI-X is not used, number of tx/rx rings is forced to 1.
4233  */
4234 static int
4235 igb_alloc_intrs(igb_t *igb)
4236 {
4237 	dev_info_t *devinfo;
4238 	int intr_types;
4239 	int rc;
4240 
4241 	devinfo = igb->dip;
4242 
4243 	/* Get supported interrupt types */
4244 	rc = ddi_intr_get_supported_types(devinfo, &intr_types);
4245 
4246 	if (rc != DDI_SUCCESS) {
4247 		igb_log(igb,
4248 		    "Get supported interrupt types failed: %d", rc);
4249 		return (IGB_FAILURE);
4250 	}
4251 	IGB_DEBUGLOG_1(igb, "Supported interrupt types: %x", intr_types);
4252 
4253 	igb->intr_type = 0;
4254 
4255 	/* Install MSI-X interrupts */
4256 	if ((intr_types & DDI_INTR_TYPE_MSIX) &&
4257 	    (igb->intr_force <= IGB_INTR_MSIX)) {
4258 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSIX);
4259 
4260 		if (rc == IGB_SUCCESS)
4261 			return (IGB_SUCCESS);
4262 
4263 		igb_log(igb,
4264 		    "Allocate MSI-X failed, trying MSI interrupts...");
4265 	}
4266 
4267 	/* MSI-X not used, force rings to 1 */
4268 	igb->num_rx_rings = 1;
4269 	igb->num_tx_rings = 1;
4270 	igb_log(igb,
4271 	    "MSI-X not used, force rx and tx queue number to 1");
4272 
4273 	/* Install MSI interrupts */
4274 	if ((intr_types & DDI_INTR_TYPE_MSI) &&
4275 	    (igb->intr_force <= IGB_INTR_MSI)) {
4276 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_MSI);
4277 
4278 		if (rc == IGB_SUCCESS)
4279 			return (IGB_SUCCESS);
4280 
4281 		igb_log(igb,
4282 		    "Allocate MSI failed, trying Legacy interrupts...");
4283 	}
4284 
4285 	/* Install legacy interrupts */
4286 	if (intr_types & DDI_INTR_TYPE_FIXED) {
4287 		rc = igb_alloc_intr_handles(igb, DDI_INTR_TYPE_FIXED);
4288 
4289 		if (rc == IGB_SUCCESS)
4290 			return (IGB_SUCCESS);
4291 
4292 		igb_log(igb,
4293 		    "Allocate Legacy interrupts failed");
4294 	}
4295 
4296 	/* If none of the 3 types succeeded, return failure */
4297 	return (IGB_FAILURE);
4298 }
4299 
4300 /*
4301  * igb_alloc_intr_handles - Allocate interrupt handles.
4302  *
4303  * For legacy and MSI, only 1 handle is needed.  For MSI-X,
4304  * if fewer than 2 handles are available, return failure.
4305  * Upon success, this sets the number of Rx rings to a number that
4306  * matches the handles available for Rx interrupts.
4307  */
4308 static int
4309 igb_alloc_intr_handles(igb_t *igb, int intr_type)
4310 {
4311 	dev_info_t *devinfo;
4312 	int orig, request, count, avail, actual;
4313 	int diff, minimum;
4314 	int rc;
4315 
4316 	devinfo = igb->dip;
4317 
4318 	switch (intr_type) {
4319 	case DDI_INTR_TYPE_FIXED:
4320 		request = 1;	/* Request 1 legacy interrupt handle */
4321 		minimum = 1;
4322 		IGB_DEBUGLOG_0(igb, "interrupt type: legacy");
4323 		break;
4324 
4325 	case DDI_INTR_TYPE_MSI:
4326 		request = 1;	/* Request 1 MSI interrupt handle */
4327 		minimum = 1;
4328 		IGB_DEBUGLOG_0(igb, "interrupt type: MSI");
4329 		break;
4330 
4331 	case DDI_INTR_TYPE_MSIX:
4332 		/*
4333 		 * Number of vectors for the adapter is
4334 		 * # rx rings + # tx rings
4335 		 * One of tx vectors is for tx & other
4336 		 */
4337 		request = igb->num_rx_rings + igb->num_tx_rings;
4338 		orig = request;
4339 		minimum = 2;
4340 		IGB_DEBUGLOG_0(igb, "interrupt type: MSI-X");
4341 		break;
4342 
4343 	default:
4344 		igb_log(igb,
4345 		    "invalid call to igb_alloc_intr_handles(): %d\n",
4346 		    intr_type);
4347 		return (IGB_FAILURE);
4348 	}
4349 	IGB_DEBUGLOG_2(igb, "interrupt handles requested: %d  minimum: %d",
4350 	    request, minimum);
4351 
4352 	/*
4353 	 * Get number of supported interrupts
4354 	 */
4355 	rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
4356 	if ((rc != DDI_SUCCESS) || (count < minimum)) {
4357 		igb_log(igb,
4358 		    "Get supported interrupt number failed. "
4359 		    "Return: %d, count: %d", rc, count);
4360 		return (IGB_FAILURE);
4361 	}
4362 	IGB_DEBUGLOG_1(igb, "interrupts supported: %d", count);
4363 
4364 	/*
4365 	 * Get number of available interrupts
4366 	 */
4367 	rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
4368 	if ((rc != DDI_SUCCESS) || (avail < minimum)) {
4369 		igb_log(igb,
4370 		    "Get available interrupt number failed. "
4371 		    "Return: %d, available: %d", rc, avail);
4372 		return (IGB_FAILURE);
4373 	}
4374 	IGB_DEBUGLOG_1(igb, "interrupts available: %d", avail);
4375 
4376 	if (avail < request) {
4377 		igb_log(igb, "Request %d handles, %d available",
4378 		    request, avail);
4379 		request = avail;
4380 	}
4381 
4382 	actual = 0;
4383 	igb->intr_cnt = 0;
4384 
4385 	/*
4386 	 * Allocate an array of interrupt handles
4387 	 */
4388 	igb->intr_size = request * sizeof (ddi_intr_handle_t);
4389 	igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP);
4390 
4391 	rc = ddi_intr_alloc(devinfo, igb->htable, intr_type, 0,
4392 	    request, &actual, DDI_INTR_ALLOC_NORMAL);
4393 	if (rc != DDI_SUCCESS) {
4394 		igb_log(igb, "Allocate interrupts failed. "
4395 		    "return: %d, request: %d, actual: %d",
4396 		    rc, request, actual);
4397 		goto alloc_handle_fail;
4398 	}
4399 	IGB_DEBUGLOG_1(igb, "interrupts actually allocated: %d", actual);
4400 
4401 	igb->intr_cnt = actual;
4402 
4403 	if (actual < minimum) {
4404 		igb_log(igb, "Insufficient interrupt handles allocated: %d",
4405 		    actual);
4406 		goto alloc_handle_fail;
4407 	}
4408 
4409 	/*
4410 	 * For MSI-X, actual might force us to reduce number of tx & rx rings
4411 	 */
4412 	if ((intr_type == DDI_INTR_TYPE_MSIX) && (orig > actual)) {
4413 		diff = orig - actual;
4414 		if (diff < igb->num_tx_rings) {
4415 			igb_log(igb,
4416 			    "MSI-X vectors force Tx queue number to %d",
4417 			    igb->num_tx_rings - diff);
4418 			igb->num_tx_rings -= diff;
4419 		} else {
4420 			igb_log(igb,
4421 			    "MSI-X vectors force Tx queue number to 1");
4422 			igb->num_tx_rings = 1;
4423 
4424 			igb_log(igb,
4425 			    "MSI-X vectors force Rx queue number to %d",
4426 			    actual - 1);
4427 			igb->num_rx_rings = actual - 1;
4428 		}
4429 	}
4430 
4431 	/*
4432 	 * Get priority for first vector, assume remaining are all the same
4433 	 */
4434 	rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri);
4435 	if (rc != DDI_SUCCESS) {
4436 		igb_log(igb,
4437 		    "Get interrupt priority failed: %d", rc);
4438 		goto alloc_handle_fail;
4439 	}
4440 
4441 	rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap);
4442 	if (rc != DDI_SUCCESS) {
4443 		igb_log(igb,
4444 		    "Get interrupt cap failed: %d", rc);
4445 		goto alloc_handle_fail;
4446 	}
4447 
4448 	igb->intr_type = intr_type;
4449 
4450 	return (IGB_SUCCESS);
4451 
4452 alloc_handle_fail:
4453 	igb_rem_intrs(igb);
4454 
4455 	return (IGB_FAILURE);
4456 }
4457 
4458 /*
4459  * igb_add_intr_handlers - Add interrupt handlers based on the interrupt type
4460  *
4461  * Before adding the interrupt handlers, the interrupt vectors have
4462  * been allocated, and the rx/tx rings have also been allocated.
4463  */
4464 static int
4465 igb_add_intr_handlers(igb_t *igb)
4466 {
4467 	igb_rx_ring_t *rx_ring;
4468 	igb_tx_ring_t *tx_ring;
4469 	int vector;
4470 	int rc;
4471 	int i;
4472 
4473 	vector = 0;
4474 
4475 	switch (igb->intr_type) {
4476 	case DDI_INTR_TYPE_MSIX:
4477 		/* Add interrupt handler for tx + other */
4478 		tx_ring = &igb->tx_rings[0];
4479 		rc = ddi_intr_add_handler(igb->htable[vector],
4480 		    (ddi_intr_handler_t *)igb_intr_tx_other,
4481 		    (void *)igb, NULL);
4482 
4483 		if (rc != DDI_SUCCESS) {
4484 			igb_log(igb,
4485 			    "Add tx/other interrupt handler failed: %d", rc);
4486 			return (IGB_FAILURE);
4487 		}
4488 		tx_ring->intr_vector = vector;
4489 		vector++;
4490 
4491 		/* Add interrupt handler for each rx ring */
4492 		for (i = 0; i < igb->num_rx_rings; i++) {
4493 			rx_ring = &igb->rx_rings[i];
4494 
4495 			rc = ddi_intr_add_handler(igb->htable[vector],
4496 			    (ddi_intr_handler_t *)igb_intr_rx,
4497 			    (void *)rx_ring, NULL);
4498 
4499 			if (rc != DDI_SUCCESS) {
4500 				igb_log(igb,
4501 				    "Add rx interrupt handler failed. "
4502 				    "return: %d, rx ring: %d", rc, i);
4503 				for (vector--; vector >= 0; vector--) {
4504 					(void) ddi_intr_remove_handler(
4505 					    igb->htable[vector]);
4506 				}
4507 				return (IGB_FAILURE);
4508 			}
4509 
4510 			rx_ring->intr_vector = vector;
4511 
4512 			vector++;
4513 		}
4514 
4515 		/* Add interrupt handler for each tx ring from 2nd ring */
4516 		for (i = 1; i < igb->num_tx_rings; i++) {
4517 			tx_ring = &igb->tx_rings[i];
4518 
4519 			rc = ddi_intr_add_handler(igb->htable[vector],
4520 			    (ddi_intr_handler_t *)igb_intr_tx,
4521 			    (void *)tx_ring, NULL);
4522 
4523 			if (rc != DDI_SUCCESS) {
4524 				igb_log(igb,
4525 				    "Add tx interrupt handler failed. "
4526 				    "return: %d, tx ring: %d", rc, i);
4527 				for (vector--; vector >= 0; vector--) {
4528 					(void) ddi_intr_remove_handler(
4529 					    igb->htable[vector]);
4530 				}
4531 				return (IGB_FAILURE);
4532 			}
4533 
4534 			tx_ring->intr_vector = vector;
4535 
4536 			vector++;
4537 		}
4538 
4539 		break;
4540 
4541 	case DDI_INTR_TYPE_MSI:
4542 		/* Add interrupt handlers for the only vector */
4543 		rc = ddi_intr_add_handler(igb->htable[vector],
4544 		    (ddi_intr_handler_t *)igb_intr_msi,
4545 		    (void *)igb, NULL);
4546 
4547 		if (rc != DDI_SUCCESS) {
4548 			igb_log(igb,
4549 			    "Add MSI interrupt handler failed: %d", rc);
4550 			return (IGB_FAILURE);
4551 		}
4552 
4553 		rx_ring = &igb->rx_rings[0];
4554 		rx_ring->intr_vector = vector;
4555 
4556 		vector++;
4557 		break;
4558 
4559 	case DDI_INTR_TYPE_FIXED:
4560 		/* Add interrupt handlers for the only vector */
4561 		rc = ddi_intr_add_handler(igb->htable[vector],
4562 		    (ddi_intr_handler_t *)igb_intr_legacy,
4563 		    (void *)igb, NULL);
4564 
4565 		if (rc != DDI_SUCCESS) {
4566 			igb_log(igb,
4567 			    "Add legacy interrupt handler failed: %d", rc);
4568 			return (IGB_FAILURE);
4569 		}
4570 
4571 		rx_ring = &igb->rx_rings[0];
4572 		rx_ring->intr_vector = vector;
4573 
4574 		vector++;
4575 		break;
4576 
4577 	default:
4578 		return (IGB_FAILURE);
4579 	}
4580 
4581 	ASSERT(vector == igb->intr_cnt);
4582 
4583 	return (IGB_SUCCESS);
4584 }
4585 
4586 /*
4587  * igb_setup_msix_82575 - setup 82575 adapter to use MSI-X interrupts
4588  *
4589  * For each vector enabled on the adapter, Set the MSIXBM register accordingly
4590  */
4591 static void
4592 igb_setup_msix_82575(igb_t *igb)
4593 {
4594 	uint32_t eims = 0;
4595 	int i, vector;
4596 	struct e1000_hw *hw = &igb->hw;
4597 
4598 	/*
4599 	 * Set vector for tx ring 0 and other causes.
4600 	 * NOTE assumption that it is vector 0.
4601 	 */
4602 	vector = 0;
4603 
4604 	igb->eims_mask = E1000_EICR_TX_QUEUE0 | E1000_EICR_OTHER;
4605 	E1000_WRITE_REG(hw, E1000_MSIXBM(vector), igb->eims_mask);
4606 	vector++;
4607 
4608 	for (i = 0; i < igb->num_rx_rings; i++) {
4609 		/*
4610 		 * Set vector for each rx ring
4611 		 */
4612 		eims = (E1000_EICR_RX_QUEUE0 << i);
4613 		E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4614 
4615 		/*
4616 		 * Accumulate bits to enable in
4617 		 * igb_enable_adapter_interrupts_82575()
4618 		 */
4619 		igb->eims_mask |= eims;
4620 
4621 		vector++;
4622 	}
4623 
4624 	for (i = 1; i < igb->num_tx_rings; i++) {
4625 		/*
4626 		 * Set vector for each tx ring from 2nd tx ring
4627 		 */
4628 		eims = (E1000_EICR_TX_QUEUE0 << i);
4629 		E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims);
4630 
4631 		/*
4632 		 * Accumulate bits to enable in
4633 		 * igb_enable_adapter_interrupts_82575()
4634 		 */
4635 		igb->eims_mask |= eims;
4636 
4637 		vector++;
4638 	}
4639 
4640 	ASSERT(vector == igb->intr_cnt);
4641 
4642 	/*
4643 	 * Disable IAM for ICR interrupt bits
4644 	 */
4645 	E1000_WRITE_REG(hw, E1000_IAM, 0);
4646 	E1000_WRITE_FLUSH(hw);
4647 }
4648 
4649 /*
4650  * igb_setup_msix_82576 - setup 82576 adapter to use MSI-X interrupts
4651  *
4652  * 82576 uses a table based method for assigning vectors.  Each queue has a
4653  * single entry in the table to which we write a vector number along with a
4654  * "valid" bit.  The entry is a single byte in a 4-byte register.  Vectors
4655  * take a different position in the 4-byte register depending on whether
4656  * they are numbered above or below 8.
4657  */
4658 static void
4659 igb_setup_msix_82576(igb_t *igb)
4660 {
4661 	struct e1000_hw *hw = &igb->hw;
4662 	uint32_t ivar, index, vector;
4663 	int i;
4664 
4665 	/* must enable msi-x capability before IVAR settings */
4666 	E1000_WRITE_REG(hw, E1000_GPIE,
4667 	    (E1000_GPIE_MSIX_MODE | E1000_GPIE_PBA | E1000_GPIE_NSICR));
4668 
4669 	/*
4670 	 * Set vector for tx ring 0 and other causes.
4671 	 * NOTE assumption that it is vector 0.
4672 	 * This is also interdependent with installation of interrupt service
4673 	 * routines in igb_add_intr_handlers().
4674 	 */
4675 
4676 	/* assign "other" causes to vector 0 */
4677 	vector = 0;
4678 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4679 	E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4680 
4681 	/* assign tx ring 0 to vector 0 */
4682 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4683 	E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4684 
4685 	/* prepare to enable tx & other interrupt causes */
4686 	igb->eims_mask = (1 << vector);
4687 
4688 	vector ++;
4689 	for (i = 0; i < igb->num_rx_rings; i++) {
4690 		/*
4691 		 * Set vector for each rx ring
4692 		 */
4693 		index = (i & 0x7);
4694 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4695 
4696 		if (i < 8) {
4697 			/* vector goes into low byte of register */
4698 			ivar = ivar & 0xFFFFFF00;
4699 			ivar |= (vector | E1000_IVAR_VALID);
4700 		} else {
4701 			/* vector goes into third byte of register */
4702 			ivar = ivar & 0xFF00FFFF;
4703 			ivar |= ((vector | E1000_IVAR_VALID) << 16);
4704 		}
4705 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4706 
4707 		/* Accumulate interrupt-cause bits to enable */
4708 		igb->eims_mask |= (1 << vector);
4709 
4710 		vector ++;
4711 	}
4712 
4713 	for (i = 1; i < igb->num_tx_rings; i++) {
4714 		/*
4715 		 * Set vector for each tx ring from 2nd tx ring.
4716 		 * Note assumption that tx vectors numericall follow rx vectors.
4717 		 */
4718 		index = (i & 0x7);
4719 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4720 
4721 		if (i < 8) {
4722 			/* vector goes into second byte of register */
4723 			ivar = ivar & 0xFFFF00FF;
4724 			ivar |= ((vector | E1000_IVAR_VALID) << 8);
4725 		} else {
4726 			/* vector goes into fourth byte of register */
4727 			ivar = ivar & 0x00FFFFFF;
4728 			ivar |= (vector | E1000_IVAR_VALID) << 24;
4729 		}
4730 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4731 
4732 		/* Accumulate interrupt-cause bits to enable */
4733 		igb->eims_mask |= (1 << vector);
4734 
4735 		vector ++;
4736 	}
4737 
4738 	ASSERT(vector == igb->intr_cnt);
4739 }
4740 
4741 /*
4742  * igb_setup_msix_82580 - setup 82580 adapter to use MSI-X interrupts
4743  *
4744  * 82580 uses same table approach at 82576 but has fewer entries.  Each
4745  * queue has a single entry in the table to which we write a vector number
4746  * along with a "valid" bit.  Vectors take a different position in the
4747  * register depending on * whether * they are numbered above or below 4.
4748  */
4749 static void
4750 igb_setup_msix_82580(igb_t *igb)
4751 {
4752 	struct e1000_hw *hw = &igb->hw;
4753 	uint32_t ivar, index, vector;
4754 	int i;
4755 
4756 	/* must enable msi-x capability before IVAR settings */
4757 	E1000_WRITE_REG(hw, E1000_GPIE, (E1000_GPIE_MSIX_MODE |
4758 	    E1000_GPIE_PBA | E1000_GPIE_NSICR | E1000_GPIE_EIAME));
4759 	/*
4760 	 * Set vector for tx ring 0 and other causes.
4761 	 * NOTE assumption that it is vector 0.
4762 	 * This is also interdependent with installation of interrupt service
4763 	 * routines in igb_add_intr_handlers().
4764 	 */
4765 
4766 	/* assign "other" causes to vector 0 */
4767 	vector = 0;
4768 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4769 	E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
4770 
4771 	/* assign tx ring 0 to vector 0 */
4772 	ivar = ((vector | E1000_IVAR_VALID) << 8);
4773 	E1000_WRITE_REG(hw, E1000_IVAR0, ivar);
4774 
4775 	/* prepare to enable tx & other interrupt causes */
4776 	igb->eims_mask = (1 << vector);
4777 
4778 	vector ++;
4779 
4780 	for (i = 0; i < igb->num_rx_rings; i++) {
4781 		/*
4782 		 * Set vector for each rx ring
4783 		 */
4784 		index = (i >> 1);
4785 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4786 
4787 		if (i & 1) {
4788 			/* vector goes into third byte of register */
4789 			ivar = ivar & 0xFF00FFFF;
4790 			ivar |= ((vector | E1000_IVAR_VALID) << 16);
4791 		} else {
4792 			/* vector goes into low byte of register */
4793 			ivar = ivar & 0xFFFFFF00;
4794 			ivar |= (vector | E1000_IVAR_VALID);
4795 		}
4796 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4797 
4798 		/* Accumulate interrupt-cause bits to enable */
4799 		igb->eims_mask |= (1 << vector);
4800 
4801 		vector ++;
4802 	}
4803 
4804 	for (i = 1; i < igb->num_tx_rings; i++) {
4805 		/*
4806 		 * Set vector for each tx ring from 2nd tx ring.
4807 		 * Note assumption that tx vectors numericall follow rx vectors.
4808 		 */
4809 		index = (i >> 1);
4810 		ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4811 
4812 		if (i & 1) {
4813 			/* vector goes into high byte of register */
4814 			ivar = ivar & 0x00FFFFFF;
4815 			ivar |= ((vector | E1000_IVAR_VALID) << 24);
4816 		} else {
4817 			/* vector goes into second byte of register */
4818 			ivar = ivar & 0xFFFF00FF;
4819 			ivar |= (vector | E1000_IVAR_VALID) << 8;
4820 		}
4821 		E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
4822 
4823 		/* Accumulate interrupt-cause bits to enable */
4824 		igb->eims_mask |= (1 << vector);
4825 
4826 		vector ++;
4827 	}
4828 	ASSERT(vector == igb->intr_cnt);
4829 }
4830 
4831 /*
4832  * igb_rem_intr_handlers - remove the interrupt handlers
4833  */
4834 static void
4835 igb_rem_intr_handlers(igb_t *igb)
4836 {
4837 	int i;
4838 	int rc;
4839 
4840 	for (i = 0; i < igb->intr_cnt; i++) {
4841 		rc = ddi_intr_remove_handler(igb->htable[i]);
4842 		if (rc != DDI_SUCCESS) {
4843 			IGB_DEBUGLOG_1(igb,
4844 			    "Remove intr handler failed: %d", rc);
4845 		}
4846 	}
4847 }
4848 
4849 /*
4850  * igb_rem_intrs - remove the allocated interrupts
4851  */
4852 static void
4853 igb_rem_intrs(igb_t *igb)
4854 {
4855 	int i;
4856 	int rc;
4857 
4858 	for (i = 0; i < igb->intr_cnt; i++) {
4859 		rc = ddi_intr_free(igb->htable[i]);
4860 		if (rc != DDI_SUCCESS) {
4861 			IGB_DEBUGLOG_1(igb,
4862 			    "Free intr failed: %d", rc);
4863 		}
4864 	}
4865 
4866 	kmem_free(igb->htable, igb->intr_size);
4867 	igb->htable = NULL;
4868 }
4869 
4870 /*
4871  * igb_enable_intrs - enable all the ddi interrupts
4872  */
4873 static int
4874 igb_enable_intrs(igb_t *igb)
4875 {
4876 	int i;
4877 	int rc;
4878 
4879 	/* Enable interrupts */
4880 	if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
4881 		/* Call ddi_intr_block_enable() for MSI */
4882 		rc = ddi_intr_block_enable(igb->htable, igb->intr_cnt);
4883 		if (rc != DDI_SUCCESS) {
4884 			igb_log(igb,
4885 			    "Enable block intr failed: %d", rc);
4886 			return (IGB_FAILURE);
4887 		}
4888 	} else {
4889 		/* Call ddi_intr_enable() for Legacy/MSI non block enable */
4890 		for (i = 0; i < igb->intr_cnt; i++) {
4891 			rc = ddi_intr_enable(igb->htable[i]);
4892 			if (rc != DDI_SUCCESS) {
4893 				igb_log(igb,
4894 				    "Enable intr failed: %d", rc);
4895 				return (IGB_FAILURE);
4896 			}
4897 		}
4898 	}
4899 
4900 	return (IGB_SUCCESS);
4901 }
4902 
4903 /*
4904  * igb_disable_intrs - disable all the ddi interrupts
4905  */
4906 static int
4907 igb_disable_intrs(igb_t *igb)
4908 {
4909 	int i;
4910 	int rc;
4911 
4912 	/* Disable all interrupts */
4913 	if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) {
4914 		rc = ddi_intr_block_disable(igb->htable, igb->intr_cnt);
4915 		if (rc != DDI_SUCCESS) {
4916 			igb_log(igb,
4917 			    "Disable block intr failed: %d", rc);
4918 			return (IGB_FAILURE);
4919 		}
4920 	} else {
4921 		for (i = 0; i < igb->intr_cnt; i++) {
4922 			rc = ddi_intr_disable(igb->htable[i]);
4923 			if (rc != DDI_SUCCESS) {
4924 				igb_log(igb,
4925 				    "Disable intr failed: %d", rc);
4926 				return (IGB_FAILURE);
4927 			}
4928 		}
4929 	}
4930 
4931 	return (IGB_SUCCESS);
4932 }
4933 
4934 /*
4935  * igb_get_phy_state - Get and save the parameters read from PHY registers
4936  */
4937 static void
4938 igb_get_phy_state(igb_t *igb)
4939 {
4940 	struct e1000_hw *hw = &igb->hw;
4941 	uint16_t phy_ctrl;
4942 	uint16_t phy_status;
4943 	uint16_t phy_an_adv;
4944 	uint16_t phy_an_exp;
4945 	uint16_t phy_ext_status;
4946 	uint16_t phy_1000t_ctrl;
4947 	uint16_t phy_1000t_status;
4948 	uint16_t phy_lp_able;
4949 
4950 	ASSERT(mutex_owned(&igb->gen_lock));
4951 
4952 	if (hw->phy.media_type == e1000_media_type_copper) {
4953 		(void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
4954 		(void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status);
4955 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_an_adv);
4956 		(void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_an_exp);
4957 		(void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status);
4958 		(void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_1000t_ctrl);
4959 		(void) e1000_read_phy_reg(hw,
4960 		    PHY_1000T_STATUS, &phy_1000t_status);
4961 		(void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_lp_able);
4962 
4963 		igb->param_autoneg_cap =
4964 		    (phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
4965 		igb->param_pause_cap =
4966 		    (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
4967 		igb->param_asym_pause_cap =
4968 		    (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
4969 		igb->param_1000fdx_cap =
4970 		    ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
4971 		    (phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
4972 		igb->param_1000hdx_cap =
4973 		    ((phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
4974 		    (phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
4975 		igb->param_100t4_cap =
4976 		    (phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
4977 		igb->param_100fdx_cap = ((phy_status & MII_SR_100X_FD_CAPS) ||
4978 		    (phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
4979 		igb->param_100hdx_cap = ((phy_status & MII_SR_100X_HD_CAPS) ||
4980 		    (phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
4981 		igb->param_10fdx_cap =
4982 		    (phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
4983 		igb->param_10hdx_cap =
4984 		    (phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
4985 		igb->param_rem_fault =
4986 		    (phy_status & MII_SR_REMOTE_FAULT) ? 1 : 0;
4987 
4988 		igb->param_adv_autoneg_cap = hw->mac.autoneg;
4989 		igb->param_adv_pause_cap =
4990 		    (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
4991 		igb->param_adv_asym_pause_cap =
4992 		    (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
4993 		igb->param_adv_1000hdx_cap =
4994 		    (phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
4995 		igb->param_adv_100t4_cap =
4996 		    (phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
4997 		igb->param_adv_rem_fault =
4998 		    (phy_an_adv & NWAY_AR_REMOTE_FAULT) ? 1 : 0;
4999 		if (igb->param_adv_autoneg_cap == 1) {
5000 			igb->param_adv_1000fdx_cap =
5001 			    (phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0;
5002 			igb->param_adv_100fdx_cap =
5003 			    (phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0;
5004 			igb->param_adv_100hdx_cap =
5005 			    (phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0;
5006 			igb->param_adv_10fdx_cap =
5007 			    (phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
5008 			igb->param_adv_10hdx_cap =
5009 			    (phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
5010 		}
5011 
5012 		igb->param_lp_autoneg_cap =
5013 		    (phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
5014 		igb->param_lp_pause_cap =
5015 		    (phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
5016 		igb->param_lp_asym_pause_cap =
5017 		    (phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
5018 		igb->param_lp_1000fdx_cap =
5019 		    (phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
5020 		igb->param_lp_1000hdx_cap =
5021 		    (phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
5022 		igb->param_lp_100t4_cap =
5023 		    (phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
5024 		igb->param_lp_100fdx_cap =
5025 		    (phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
5026 		igb->param_lp_100hdx_cap =
5027 		    (phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
5028 		igb->param_lp_10fdx_cap =
5029 		    (phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
5030 		igb->param_lp_10hdx_cap =
5031 		    (phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
5032 		igb->param_lp_rem_fault =
5033 		    (phy_lp_able & NWAY_LPAR_REMOTE_FAULT) ? 1 : 0;
5034 	} else {
5035 		/*
5036 		 * 1Gig Fiber adapter only offers 1Gig Full Duplex.
5037 		 */
5038 		igb->param_autoneg_cap = 0;
5039 		igb->param_pause_cap = 1;
5040 		igb->param_asym_pause_cap = 1;
5041 		igb->param_1000fdx_cap = 1;
5042 		igb->param_1000hdx_cap = 0;
5043 		igb->param_100t4_cap = 0;
5044 		igb->param_100fdx_cap = 0;
5045 		igb->param_100hdx_cap = 0;
5046 		igb->param_10fdx_cap = 0;
5047 		igb->param_10hdx_cap = 0;
5048 
5049 		igb->param_adv_autoneg_cap = 0;
5050 		igb->param_adv_pause_cap = 1;
5051 		igb->param_adv_asym_pause_cap = 1;
5052 		igb->param_adv_1000fdx_cap = 1;
5053 		igb->param_adv_1000hdx_cap = 0;
5054 		igb->param_adv_100t4_cap = 0;
5055 		igb->param_adv_100fdx_cap = 0;
5056 		igb->param_adv_100hdx_cap = 0;
5057 		igb->param_adv_10fdx_cap = 0;
5058 		igb->param_adv_10hdx_cap = 0;
5059 
5060 		igb->param_lp_autoneg_cap = 0;
5061 		igb->param_lp_pause_cap = 0;
5062 		igb->param_lp_asym_pause_cap = 0;
5063 		igb->param_lp_1000fdx_cap = 0;
5064 		igb->param_lp_1000hdx_cap = 0;
5065 		igb->param_lp_100t4_cap = 0;
5066 		igb->param_lp_100fdx_cap = 0;
5067 		igb->param_lp_100hdx_cap = 0;
5068 		igb->param_lp_10fdx_cap = 0;
5069 		igb->param_lp_10hdx_cap = 0;
5070 		igb->param_lp_rem_fault = 0;
5071 	}
5072 }
5073 
5074 /*
5075  * synchronize the adv* and en* parameters.
5076  *
5077  * See comments in <sys/dld.h> for details of the *_en_*
5078  * parameters. The usage of ndd for setting adv parameters will
5079  * synchronize all the en parameters with the e1000g parameters,
5080  * implicitly disabling any settings made via dladm.
5081  */
5082 static void
5083 igb_param_sync(igb_t *igb)
5084 {
5085 	igb->param_en_1000fdx_cap = igb->param_adv_1000fdx_cap;
5086 	igb->param_en_1000hdx_cap = igb->param_adv_1000hdx_cap;
5087 	igb->param_en_100t4_cap = igb->param_adv_100t4_cap;
5088 	igb->param_en_100fdx_cap = igb->param_adv_100fdx_cap;
5089 	igb->param_en_100hdx_cap = igb->param_adv_100hdx_cap;
5090 	igb->param_en_10fdx_cap = igb->param_adv_10fdx_cap;
5091 	igb->param_en_10hdx_cap = igb->param_adv_10hdx_cap;
5092 }
5093 
5094 /*
5095  * igb_get_driver_control
5096  */
5097 static void
5098 igb_get_driver_control(struct e1000_hw *hw)
5099 {
5100 	uint32_t ctrl_ext;
5101 
5102 	/* Notify firmware that driver is in control of device */
5103 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5104 	ctrl_ext |= E1000_CTRL_EXT_DRV_LOAD;
5105 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5106 }
5107 
5108 /*
5109  * igb_release_driver_control
5110  */
5111 static void
5112 igb_release_driver_control(struct e1000_hw *hw)
5113 {
5114 	uint32_t ctrl_ext;
5115 
5116 	/* Notify firmware that driver is no longer in control of device */
5117 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5118 	ctrl_ext &= ~E1000_CTRL_EXT_DRV_LOAD;
5119 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5120 }
5121 
5122 /*
5123  * igb_atomic_reserve - Atomic decrease operation
5124  */
5125 int
5126 igb_atomic_reserve(uint32_t *count_p, uint32_t n)
5127 {
5128 	uint32_t oldval;
5129 	uint32_t newval;
5130 
5131 	/* ATOMICALLY */
5132 	do {
5133 		oldval = *count_p;
5134 		if (oldval < n)
5135 			return (-1);
5136 		newval = oldval - n;
5137 	} while (atomic_cas_32(count_p, oldval, newval) != oldval);
5138 
5139 	return (newval);
5140 }
5141 
5142 /*
5143  * FMA support
5144  */
5145 
5146 int
5147 igb_check_acc_handle(ddi_acc_handle_t handle)
5148 {
5149 	ddi_fm_error_t de;
5150 
5151 	ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
5152 	ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
5153 	return (de.fme_status);
5154 }
5155 
5156 int
5157 igb_check_dma_handle(ddi_dma_handle_t handle)
5158 {
5159 	ddi_fm_error_t de;
5160 
5161 	ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
5162 	return (de.fme_status);
5163 }
5164 
5165 /*
5166  * The IO fault service error handling callback function
5167  */
5168 /*ARGSUSED*/
5169 static int
5170 igb_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
5171 {
5172 	/*
5173 	 * as the driver can always deal with an error in any dma or
5174 	 * access handle, we can just return the fme_status value.
5175 	 */
5176 	pci_ereport_post(dip, err, NULL);
5177 	return (err->fme_status);
5178 }
5179 
5180 static void
5181 igb_fm_init(igb_t *igb)
5182 {
5183 	ddi_iblock_cookie_t iblk;
5184 	int fma_dma_flag;
5185 
5186 	/* Only register with IO Fault Services if we have some capability */
5187 	if (igb->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
5188 		igb_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
5189 	} else {
5190 		igb_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
5191 	}
5192 
5193 	if (igb->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
5194 		fma_dma_flag = 1;
5195 	} else {
5196 		fma_dma_flag = 0;
5197 	}
5198 
5199 	(void) igb_set_fma_flags(fma_dma_flag);
5200 
5201 	if (igb->fm_capabilities) {
5202 
5203 		/* Register capabilities with IO Fault Services */
5204 		ddi_fm_init(igb->dip, &igb->fm_capabilities, &iblk);
5205 
5206 		/*
5207 		 * Initialize pci ereport capabilities if ereport capable
5208 		 */
5209 		if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
5210 		    DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5211 			pci_ereport_setup(igb->dip);
5212 
5213 		/*
5214 		 * Register error callback if error callback capable
5215 		 */
5216 		if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5217 			ddi_fm_handler_register(igb->dip,
5218 			    igb_fm_error_cb, (void*) igb);
5219 	}
5220 }
5221 
5222 static void
5223 igb_fm_fini(igb_t *igb)
5224 {
5225 	/* Only unregister FMA capabilities if we registered some */
5226 	if (igb->fm_capabilities) {
5227 
5228 		/*
5229 		 * Release any resources allocated by pci_ereport_setup()
5230 		 */
5231 		if (DDI_FM_EREPORT_CAP(igb->fm_capabilities) ||
5232 		    DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5233 			pci_ereport_teardown(igb->dip);
5234 
5235 		/*
5236 		 * Un-register error callback if error callback capable
5237 		 */
5238 		if (DDI_FM_ERRCB_CAP(igb->fm_capabilities))
5239 			ddi_fm_handler_unregister(igb->dip);
5240 
5241 		/* Unregister from IO Fault Services */
5242 		ddi_fm_fini(igb->dip);
5243 	}
5244 }
5245 
5246 void
5247 igb_fm_ereport(igb_t *igb, char *detail)
5248 {
5249 	uint64_t ena;
5250 	char buf[FM_MAX_CLASS];
5251 
5252 	(void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
5253 	ena = fm_ena_generate(0, FM_ENA_FMT1);
5254 	if (DDI_FM_EREPORT_CAP(igb->fm_capabilities)) {
5255 		ddi_fm_ereport_post(igb->dip, buf, ena, DDI_NOSLEEP,
5256 		    FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
5257 	}
5258 }
5259