xref: /illumos-gate/usr/src/uts/common/io/ib/adapters/hermon/hermon_srq.c (revision b6805bf78d2bbbeeaea8909a05623587b42d58b3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  * hermon_srq.c
28  *    Hermon Shared Receive Queue Processing Routines
29  *
30  *    Implements all the routines necessary for allocating, freeing, querying,
31  *    modifying and posting shared receive queues.
32  */
33 
34 #include <sys/types.h>
35 #include <sys/conf.h>
36 #include <sys/ddi.h>
37 #include <sys/sunddi.h>
38 #include <sys/modctl.h>
39 #include <sys/bitmap.h>
40 
41 #include <sys/ib/adapters/hermon/hermon.h>
42 
43 static void hermon_srq_sgl_to_logwqesz(hermon_state_t *state, uint_t num_sgl,
44     hermon_qp_wq_type_t wq_type, uint_t *logwqesz, uint_t *max_sgl);
45 
46 /*
47  * hermon_srq_alloc()
48  *    Context: Can be called only from user or kernel context.
49  */
50 int
51 hermon_srq_alloc(hermon_state_t *state, hermon_srq_info_t *srqinfo,
52     uint_t sleepflag)
53 {
54 	ibt_srq_hdl_t		ibt_srqhdl;
55 	hermon_pdhdl_t		pd;
56 	ibt_srq_sizes_t		*sizes;
57 	ibt_srq_sizes_t		*real_sizes;
58 	hermon_srqhdl_t		*srqhdl;
59 	ibt_srq_flags_t		flags;
60 	hermon_rsrc_t		*srqc, *rsrc;
61 	hermon_hw_srqc_t	srqc_entry;
62 	uint32_t		*buf;
63 	hermon_srqhdl_t		srq;
64 	hermon_umap_db_entry_t	*umapdb;
65 	ibt_mr_attr_t		mr_attr;
66 	hermon_mr_options_t	mr_op;
67 	hermon_mrhdl_t		mr;
68 	uint64_t		value, srq_desc_off;
69 	uint32_t		log_srq_size;
70 	uint32_t		uarpg;
71 	uint_t			srq_is_umap;
72 	int			flag, status;
73 	uint_t			max_sgl;
74 	uint_t			wqesz;
75 	uint_t			srq_wr_sz;
76 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*sizes))
77 
78 	/*
79 	 * options-->wq_location used to be for location, now explicitly
80 	 * LOCATION_NORMAL
81 	 */
82 
83 	/*
84 	 * Extract the necessary info from the hermon_srq_info_t structure
85 	 */
86 	real_sizes = srqinfo->srqi_real_sizes;
87 	sizes	   = srqinfo->srqi_sizes;
88 	pd	   = srqinfo->srqi_pd;
89 	ibt_srqhdl = srqinfo->srqi_ibt_srqhdl;
90 	flags	   = srqinfo->srqi_flags;
91 	srqhdl	   = srqinfo->srqi_srqhdl;
92 
93 	/*
94 	 * Determine whether SRQ is being allocated for userland access or
95 	 * whether it is being allocated for kernel access.  If the SRQ is
96 	 * being allocated for userland access, then lookup the UAR doorbell
97 	 * page number for the current process.  Note:  If this is not found
98 	 * (e.g. if the process has not previously open()'d the Hermon driver),
99 	 * then an error is returned.
100 	 */
101 	srq_is_umap = (flags & IBT_SRQ_USER_MAP) ? 1 : 0;
102 	if (srq_is_umap) {
103 		status = hermon_umap_db_find(state->hs_instance, ddi_get_pid(),
104 		    MLNX_UMAP_UARPG_RSRC, &value, 0, NULL);
105 		if (status != DDI_SUCCESS) {
106 			status = IBT_INVALID_PARAM;
107 			goto srqalloc_fail3;
108 		}
109 		uarpg = ((hermon_rsrc_t *)(uintptr_t)value)->hr_indx;
110 	} else {
111 		uarpg = state->hs_kernel_uar_index;
112 	}
113 
114 	/* Increase PD refcnt */
115 	hermon_pd_refcnt_inc(pd);
116 
117 	/* Allocate an SRQ context entry */
118 	status = hermon_rsrc_alloc(state, HERMON_SRQC, 1, sleepflag, &srqc);
119 	if (status != DDI_SUCCESS) {
120 		status = IBT_INSUFF_RESOURCE;
121 		goto srqalloc_fail1;
122 	}
123 
124 	/* Allocate the SRQ Handle entry */
125 	status = hermon_rsrc_alloc(state, HERMON_SRQHDL, 1, sleepflag, &rsrc);
126 	if (status != DDI_SUCCESS) {
127 		status = IBT_INSUFF_RESOURCE;
128 		goto srqalloc_fail2;
129 	}
130 
131 	srq = (hermon_srqhdl_t)rsrc->hr_addr;
132 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*srq))
133 
134 	bzero(srq, sizeof (struct hermon_sw_srq_s));
135 	/* Calculate the SRQ number */
136 
137 	/* just use the index, implicit in Hermon */
138 	srq->srq_srqnum = srqc->hr_indx;
139 
140 	/*
141 	 * If this will be a user-mappable SRQ, then allocate an entry for
142 	 * the "userland resources database".  This will later be added to
143 	 * the database (after all further SRQ operations are successful).
144 	 * If we fail here, we must undo the reference counts and the
145 	 * previous resource allocation.
146 	 */
147 	if (srq_is_umap) {
148 		umapdb = hermon_umap_db_alloc(state->hs_instance,
149 		    srq->srq_srqnum, MLNX_UMAP_SRQMEM_RSRC,
150 		    (uint64_t)(uintptr_t)rsrc);
151 		if (umapdb == NULL) {
152 			status = IBT_INSUFF_RESOURCE;
153 			goto srqalloc_fail3;
154 		}
155 	}
156 
157 	/*
158 	 * Allocate the doorbell record.  Hermon just needs one for the
159 	 * SRQ, and use uarpg (above) as the uar index
160 	 */
161 
162 	status = hermon_dbr_alloc(state, uarpg, &srq->srq_wq_dbr_acchdl,
163 	    &srq->srq_wq_vdbr, &srq->srq_wq_pdbr, &srq->srq_rdbr_mapoffset);
164 	if (status != DDI_SUCCESS) {
165 		status = IBT_INSUFF_RESOURCE;
166 		goto srqalloc_fail4;
167 	}
168 
169 	/*
170 	 * Calculate the appropriate size for the SRQ.
171 	 * Note:  All Hermon SRQs must be a power-of-2 in size.  Also
172 	 * they may not be any smaller than HERMON_SRQ_MIN_SIZE.  This step
173 	 * is to round the requested size up to the next highest power-of-2
174 	 */
175 	srq_wr_sz = max(sizes->srq_wr_sz + 1, HERMON_SRQ_MIN_SIZE);
176 	log_srq_size = highbit(srq_wr_sz);
177 	if ((srq_wr_sz & (srq_wr_sz - 1)) == 0) {
178 		log_srq_size = log_srq_size - 1;
179 	}
180 
181 	/*
182 	 * Next we verify that the rounded-up size is valid (i.e. consistent
183 	 * with the device limits and/or software-configured limits).  If not,
184 	 * then obviously we have a lot of cleanup to do before returning.
185 	 */
186 	if (log_srq_size > state->hs_cfg_profile->cp_log_max_srq_sz) {
187 		status = IBT_HCA_WR_EXCEEDED;
188 		goto srqalloc_fail4a;
189 	}
190 
191 	/*
192 	 * Next we verify that the requested number of SGL is valid (i.e.
193 	 * consistent with the device limits and/or software-configured
194 	 * limits).  If not, then obviously the same cleanup needs to be done.
195 	 */
196 	max_sgl = state->hs_ibtfinfo.hca_attr->hca_max_srq_sgl;
197 	if (sizes->srq_sgl_sz > max_sgl) {
198 		status = IBT_HCA_SGL_EXCEEDED;
199 		goto srqalloc_fail4a;
200 	}
201 
202 	/*
203 	 * Determine the SRQ's WQE sizes.  This depends on the requested
204 	 * number of SGLs.  Note: This also has the side-effect of
205 	 * calculating the real number of SGLs (for the calculated WQE size)
206 	 */
207 	hermon_srq_sgl_to_logwqesz(state, sizes->srq_sgl_sz,
208 	    HERMON_QP_WQ_TYPE_RECVQ, &srq->srq_wq_log_wqesz,
209 	    &srq->srq_wq_sgl);
210 
211 	/*
212 	 * Allocate the memory for SRQ work queues.  Note:  The location from
213 	 * which we will allocate these work queues is always
214 	 * QUEUE_LOCATION_NORMAL.  Since Hermon work queues are not
215 	 * allowed to cross a 32-bit (4GB) boundary, the alignment of the work
216 	 * queue memory is very important.  We used to allocate work queues
217 	 * (the combined receive and send queues) so that they would be aligned
218 	 * on their combined size.  That alignment guaranteed that they would
219 	 * never cross the 4GB boundary (Hermon work queues are on the order of
220 	 * MBs at maximum).  Now we are able to relax this alignment constraint
221 	 * by ensuring that the IB address assigned to the queue memory (as a
222 	 * result of the hermon_mr_register() call) is offset from zero.
223 	 * Previously, we had wanted to use the ddi_dma_mem_alloc() routine to
224 	 * guarantee the alignment, but when attempting to use IOMMU bypass
225 	 * mode we found that we were not allowed to specify any alignment that
226 	 * was more restrictive than the system page size.  So we avoided this
227 	 * constraint by passing two alignment values, one for the memory
228 	 * allocation itself and the other for the DMA handle (for later bind).
229 	 * This used to cause more memory than necessary to be allocated (in
230 	 * order to guarantee the more restrictive alignment contraint).  But
231 	 * be guaranteeing the zero-based IB virtual address for the queue, we
232 	 * are able to conserve this memory.
233 	 *
234 	 * Note: If SRQ is not user-mappable, then it may come from either
235 	 * kernel system memory or from HCA-attached local DDR memory.
236 	 *
237 	 * Note2: We align this queue on a pagesize boundary.  This is required
238 	 * to make sure that all the resulting IB addresses will start at 0, for
239 	 * a zero-based queue.  By making sure we are aligned on at least a
240 	 * page, any offset we use into our queue will be the same as when we
241 	 * perform hermon_srq_modify() operations later.
242 	 */
243 	wqesz = (1 << srq->srq_wq_log_wqesz);
244 	srq->srq_wqinfo.qa_size = (1 << log_srq_size) * wqesz;
245 	srq->srq_wqinfo.qa_alloc_align = PAGESIZE;
246 	srq->srq_wqinfo.qa_bind_align = PAGESIZE;
247 	if (srq_is_umap) {
248 		srq->srq_wqinfo.qa_location = HERMON_QUEUE_LOCATION_USERLAND;
249 	} else {
250 		srq->srq_wqinfo.qa_location = HERMON_QUEUE_LOCATION_NORMAL;
251 	}
252 	status = hermon_queue_alloc(state, &srq->srq_wqinfo, sleepflag);
253 	if (status != DDI_SUCCESS) {
254 		status = IBT_INSUFF_RESOURCE;
255 		goto srqalloc_fail4a;
256 	}
257 	buf = (uint32_t *)srq->srq_wqinfo.qa_buf_aligned;
258 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*buf))
259 
260 	/*
261 	 * Register the memory for the SRQ work queues.  The memory for the SRQ
262 	 * must be registered in the Hermon cMPT tables.  This gives us the LKey
263 	 * to specify in the SRQ context later.  Note: If the work queue is to
264 	 * be allocated from DDR memory, then only a "bypass" mapping is
265 	 * appropriate.  And if the SRQ memory is user-mappable, then we force
266 	 * DDI_DMA_CONSISTENT mapping.  Also, in order to meet the alignment
267 	 * restriction, we pass the "mro_bind_override_addr" flag in the call
268 	 * to hermon_mr_register().  This guarantees that the resulting IB vaddr
269 	 * will be zero-based (modulo the offset into the first page).  If we
270 	 * fail here, we still have the bunch of resource and reference count
271 	 * cleanup to do.
272 	 */
273 	flag = (sleepflag == HERMON_SLEEP) ? IBT_MR_SLEEP :
274 	    IBT_MR_NOSLEEP;
275 	mr_attr.mr_vaddr = (uint64_t)(uintptr_t)buf;
276 	mr_attr.mr_len   = srq->srq_wqinfo.qa_size;
277 	mr_attr.mr_as    = NULL;
278 	mr_attr.mr_flags = flag | IBT_MR_ENABLE_LOCAL_WRITE;
279 	mr_op.mro_bind_type   = state->hs_cfg_profile->cp_iommu_bypass;
280 	mr_op.mro_bind_dmahdl = srq->srq_wqinfo.qa_dmahdl;
281 	mr_op.mro_bind_override_addr = 1;
282 	status = hermon_mr_register(state, pd, &mr_attr, &mr,
283 	    &mr_op, HERMON_SRQ_CMPT);
284 	if (status != DDI_SUCCESS) {
285 		status = IBT_INSUFF_RESOURCE;
286 		goto srqalloc_fail5;
287 	}
288 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*mr))
289 
290 	/*
291 	 * Calculate the offset between the kernel virtual address space
292 	 * and the IB virtual address space.  This will be used when
293 	 * posting work requests to properly initialize each WQE.
294 	 */
295 	srq_desc_off = (uint64_t)(uintptr_t)srq->srq_wqinfo.qa_buf_aligned -
296 	    (uint64_t)mr->mr_bindinfo.bi_addr;
297 
298 	srq->srq_wq_wqhdr = hermon_wrid_wqhdr_create(1 << log_srq_size);
299 
300 	/*
301 	 * Fill in all the return arguments (if necessary).  This includes
302 	 * real queue size and real SGLs.
303 	 */
304 	if (real_sizes != NULL) {
305 		real_sizes->srq_wr_sz = (1 << log_srq_size) - 1;
306 		real_sizes->srq_sgl_sz = srq->srq_wq_sgl;
307 	}
308 
309 	/*
310 	 * Fill in the SRQC entry.  This is the final step before passing
311 	 * ownership of the SRQC entry to the Hermon hardware.  We use all of
312 	 * the information collected/calculated above to fill in the
313 	 * requisite portions of the SRQC.  Note: If this SRQ is going to be
314 	 * used for userland access, then we need to set the UAR page number
315 	 * appropriately (otherwise it's a "don't care")
316 	 */
317 	bzero(&srqc_entry, sizeof (hermon_hw_srqc_t));
318 	srqc_entry.state	   = HERMON_SRQ_STATE_HW_OWNER;
319 	srqc_entry.log_srq_size	   = log_srq_size;
320 	srqc_entry.srqn		   = srq->srq_srqnum;
321 	srqc_entry.log_rq_stride   = srq->srq_wq_log_wqesz - 4;
322 					/* 16-byte chunks */
323 
324 	srqc_entry.page_offs	   = srq->srq_wqinfo.qa_pgoffs >> 6;
325 	srqc_entry.log2_pgsz	   = mr->mr_log2_pgsz;
326 	srqc_entry.mtt_base_addrh  = (uint32_t)((mr->mr_mttaddr >> 32) & 0xFF);
327 	srqc_entry.mtt_base_addrl  = mr->mr_mttaddr >> 3;
328 	srqc_entry.pd		   = pd->pd_pdnum;
329 	srqc_entry.dbr_addrh = (uint32_t)((uint64_t)srq->srq_wq_pdbr >> 32);
330 	srqc_entry.dbr_addrl = (uint32_t)((uint64_t)srq->srq_wq_pdbr >> 2);
331 
332 	/*
333 	 * all others - specifically, xrcd, cqn_xrc, lwm, wqe_cnt, and wqe_cntr
334 	 * are zero thanks to the bzero of the structure
335 	 */
336 
337 	/*
338 	 * Write the SRQC entry to hardware.  Lastly, we pass ownership of
339 	 * the entry to the hardware (using the Hermon SW2HW_SRQ firmware
340 	 * command).  Note: In general, this operation shouldn't fail.  But
341 	 * if it does, we have to undo everything we've done above before
342 	 * returning error.
343 	 */
344 	status = hermon_cmn_ownership_cmd_post(state, SW2HW_SRQ, &srqc_entry,
345 	    sizeof (hermon_hw_srqc_t), srq->srq_srqnum,
346 	    sleepflag);
347 	if (status != HERMON_CMD_SUCCESS) {
348 		cmn_err(CE_CONT, "Hermon: SW2HW_SRQ command failed: %08x\n",
349 		    status);
350 		if (status == HERMON_CMD_INVALID_STATUS) {
351 			hermon_fm_ereport(state, HCA_SYS_ERR, HCA_ERR_SRV_LOST);
352 		}
353 		status = ibc_get_ci_failure(0);
354 		goto srqalloc_fail8;
355 	}
356 
357 	/*
358 	 * Fill in the rest of the Hermon SRQ handle.  We can update
359 	 * the following fields for use in further operations on the SRQ.
360 	 */
361 	srq->srq_srqcrsrcp = srqc;
362 	srq->srq_rsrcp	   = rsrc;
363 	srq->srq_mrhdl	   = mr;
364 	srq->srq_refcnt	   = 0;
365 	srq->srq_is_umap   = srq_is_umap;
366 	srq->srq_uarpg	   = uarpg;
367 	srq->srq_umap_dhp  = (devmap_cookie_t)NULL;
368 	srq->srq_pdhdl	   = pd;
369 	srq->srq_wq_bufsz  = (1 << log_srq_size);
370 	srq->srq_wq_buf	   = buf;
371 	srq->srq_desc_off  = srq_desc_off;
372 	srq->srq_hdlrarg   = (void *)ibt_srqhdl;
373 	srq->srq_state	   = 0;
374 	srq->srq_real_sizes.srq_wr_sz = (1 << log_srq_size);
375 	srq->srq_real_sizes.srq_sgl_sz = srq->srq_wq_sgl;
376 
377 	/*
378 	 * Put SRQ handle in Hermon SRQNum-to-SRQhdl list.  Then fill in the
379 	 * "srqhdl" and return success
380 	 */
381 	hermon_icm_set_num_to_hdl(state, HERMON_SRQC, srqc->hr_indx, srq);
382 
383 	/*
384 	 * If this is a user-mappable SRQ, then we need to insert the
385 	 * previously allocated entry into the "userland resources database".
386 	 * This will allow for later lookup during devmap() (i.e. mmap())
387 	 * calls.
388 	 */
389 	if (srq->srq_is_umap) {
390 		hermon_umap_db_add(umapdb);
391 	} else {	/* initialize work queue for kernel SRQs */
392 		int i, len, last;
393 		uint16_t *desc;
394 
395 		desc = (uint16_t *)buf;
396 		len = wqesz / sizeof (*desc);
397 		last = srq->srq_wq_bufsz - 1;
398 		for (i = 0; i < last; i++) {
399 			desc[1] = htons(i + 1);
400 			desc += len;
401 		}
402 		srq->srq_wq_wqhdr->wq_tail = last;
403 		srq->srq_wq_wqhdr->wq_head = 0;
404 	}
405 
406 	*srqhdl = srq;
407 
408 	return (status);
409 
410 /*
411  * The following is cleanup for all possible failure cases in this routine
412  */
413 srqalloc_fail8:
414 	hermon_wrid_wqhdr_destroy(srq->srq_wq_wqhdr);
415 srqalloc_fail7:
416 	if (hermon_mr_deregister(state, &mr, HERMON_MR_DEREG_ALL,
417 	    HERMON_SLEEPFLAG_FOR_CONTEXT()) != DDI_SUCCESS) {
418 		HERMON_WARNING(state, "failed to deregister SRQ memory");
419 	}
420 srqalloc_fail5:
421 	hermon_queue_free(&srq->srq_wqinfo);
422 srqalloc_fail4a:
423 	hermon_dbr_free(state, uarpg, srq->srq_wq_vdbr);
424 srqalloc_fail4:
425 	if (srq_is_umap) {
426 		hermon_umap_db_free(umapdb);
427 	}
428 srqalloc_fail3:
429 	hermon_rsrc_free(state, &rsrc);
430 srqalloc_fail2:
431 	hermon_rsrc_free(state, &srqc);
432 srqalloc_fail1:
433 	hermon_pd_refcnt_dec(pd);
434 srqalloc_fail:
435 	return (status);
436 }
437 
438 
439 /*
440  * hermon_srq_free()
441  *    Context: Can be called only from user or kernel context.
442  */
443 /* ARGSUSED */
444 int
445 hermon_srq_free(hermon_state_t *state, hermon_srqhdl_t *srqhdl,
446     uint_t sleepflag)
447 {
448 	hermon_rsrc_t		*srqc, *rsrc;
449 	hermon_umap_db_entry_t	*umapdb;
450 	uint64_t		value;
451 	hermon_srqhdl_t		srq;
452 	hermon_mrhdl_t		mr;
453 	hermon_pdhdl_t		pd;
454 	hermon_hw_srqc_t	srqc_entry;
455 	uint32_t		srqnum;
456 	uint_t			maxprot;
457 	int			status;
458 
459 	/*
460 	 * Pull all the necessary information from the Hermon Shared Receive
461 	 * Queue handle.  This is necessary here because the resource for the
462 	 * SRQ handle is going to be freed up as part of this operation.
463 	 */
464 	srq	= *srqhdl;
465 	mutex_enter(&srq->srq_lock);
466 	srqc	= srq->srq_srqcrsrcp;
467 	rsrc	= srq->srq_rsrcp;
468 	pd	= srq->srq_pdhdl;
469 	mr	= srq->srq_mrhdl;
470 	srqnum	= srq->srq_srqnum;
471 
472 	/*
473 	 * If there are work queues still associated with the SRQ, then return
474 	 * an error.  Otherwise, we will be holding the SRQ lock.
475 	 */
476 	if (srq->srq_refcnt != 0) {
477 		mutex_exit(&srq->srq_lock);
478 		return (IBT_SRQ_IN_USE);
479 	}
480 
481 	/*
482 	 * If this was a user-mappable SRQ, then we need to remove its entry
483 	 * from the "userland resources database".  If it is also currently
484 	 * mmap()'d out to a user process, then we need to call
485 	 * devmap_devmem_remap() to remap the SRQ memory to an invalid mapping.
486 	 * We also need to invalidate the SRQ tracking information for the
487 	 * user mapping.
488 	 */
489 	if (srq->srq_is_umap) {
490 		status = hermon_umap_db_find(state->hs_instance,
491 		    srq->srq_srqnum, MLNX_UMAP_SRQMEM_RSRC, &value,
492 		    HERMON_UMAP_DB_REMOVE, &umapdb);
493 		if (status != DDI_SUCCESS) {
494 			mutex_exit(&srq->srq_lock);
495 			HERMON_WARNING(state, "failed to find in database");
496 			return (ibc_get_ci_failure(0));
497 		}
498 		hermon_umap_db_free(umapdb);
499 		if (srq->srq_umap_dhp != NULL) {
500 			maxprot = (PROT_READ | PROT_WRITE | PROT_USER);
501 			status = devmap_devmem_remap(srq->srq_umap_dhp,
502 			    state->hs_dip, 0, 0, srq->srq_wqinfo.qa_size,
503 			    maxprot, DEVMAP_MAPPING_INVALID, NULL);
504 			if (status != DDI_SUCCESS) {
505 				mutex_exit(&srq->srq_lock);
506 				HERMON_WARNING(state, "failed in SRQ memory "
507 				    "devmap_devmem_remap()");
508 				return (ibc_get_ci_failure(0));
509 			}
510 			srq->srq_umap_dhp = (devmap_cookie_t)NULL;
511 		}
512 	}
513 
514 	/*
515 	 * Put NULL into the Hermon SRQNum-to-SRQHdl list.  This will allow any
516 	 * in-progress events to detect that the SRQ corresponding to this
517 	 * number has been freed.
518 	 */
519 	hermon_icm_set_num_to_hdl(state, HERMON_SRQC, srqc->hr_indx, NULL);
520 
521 	mutex_exit(&srq->srq_lock);
522 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*srq));
523 
524 	/*
525 	 * Reclaim SRQC entry from hardware (using the Hermon HW2SW_SRQ
526 	 * firmware command).  If the ownership transfer fails for any reason,
527 	 * then it is an indication that something (either in HW or SW) has
528 	 * gone seriously wrong.
529 	 */
530 	status = hermon_cmn_ownership_cmd_post(state, HW2SW_SRQ, &srqc_entry,
531 	    sizeof (hermon_hw_srqc_t), srqnum, sleepflag);
532 	if (status != HERMON_CMD_SUCCESS) {
533 		HERMON_WARNING(state, "failed to reclaim SRQC ownership");
534 		cmn_err(CE_CONT, "Hermon: HW2SW_SRQ command failed: %08x\n",
535 		    status);
536 		if (status == HERMON_CMD_INVALID_STATUS) {
537 			hermon_fm_ereport(state, HCA_SYS_ERR, HCA_ERR_SRV_LOST);
538 		}
539 		return (ibc_get_ci_failure(0));
540 	}
541 
542 	/*
543 	 * Deregister the memory for the Shared Receive Queue.  If this fails
544 	 * for any reason, then it is an indication that something (either
545 	 * in HW or SW) has gone seriously wrong.  So we print a warning
546 	 * message and return.
547 	 */
548 	status = hermon_mr_deregister(state, &mr, HERMON_MR_DEREG_ALL,
549 	    sleepflag);
550 	if (status != DDI_SUCCESS) {
551 		HERMON_WARNING(state, "failed to deregister SRQ memory");
552 		return (IBT_FAILURE);
553 	}
554 
555 	hermon_wrid_wqhdr_destroy(srq->srq_wq_wqhdr);
556 
557 	/* Free the memory for the SRQ */
558 	hermon_queue_free(&srq->srq_wqinfo);
559 
560 	/* Free the dbr */
561 	hermon_dbr_free(state, srq->srq_uarpg, srq->srq_wq_vdbr);
562 
563 	/* Free the Hermon SRQ Handle */
564 	hermon_rsrc_free(state, &rsrc);
565 
566 	/* Free the SRQC entry resource */
567 	hermon_rsrc_free(state, &srqc);
568 
569 	/* Decrement the reference count on the protection domain (PD) */
570 	hermon_pd_refcnt_dec(pd);
571 
572 	/* Set the srqhdl pointer to NULL and return success */
573 	*srqhdl = NULL;
574 
575 	return (DDI_SUCCESS);
576 }
577 
578 
579 /*
580  * hermon_srq_modify()
581  *    Context: Can be called only from user or kernel context.
582  */
583 int
584 hermon_srq_modify(hermon_state_t *state, hermon_srqhdl_t srq, uint_t size,
585     uint_t *real_size, uint_t sleepflag)
586 {
587 	hermon_qalloc_info_t	new_srqinfo, old_srqinfo;
588 	hermon_rsrc_t		*mtt, *old_mtt;
589 	hermon_bind_info_t	bind;
590 	hermon_bind_info_t	old_bind;
591 	hermon_mrhdl_t		mr;
592 	hermon_hw_srqc_t	srqc_entry;
593 	hermon_hw_dmpt_t	mpt_entry;
594 	uint64_t		*wre_new, *wre_old;
595 	uint64_t		mtt_addr;
596 	uint64_t		srq_pgoffs;
597 	uint64_t		srq_desc_off;
598 	uint32_t		*buf, srq_old_bufsz;
599 	uint32_t		wqesz;
600 	uint_t			max_srq_size;
601 	uint_t			mtt_pgsize_bits;
602 	uint_t			log_srq_size, maxprot;
603 	int			status;
604 
605 	if ((state->hs_devlim.mod_wr_srq == 0) ||
606 	    (state->hs_cfg_profile->cp_srq_resize_enabled == 0))
607 		return (IBT_NOT_SUPPORTED);
608 
609 	/*
610 	 * If size requested is larger than device capability, return
611 	 * Insufficient Resources
612 	 */
613 	max_srq_size = (1 << state->hs_cfg_profile->cp_log_max_srq_sz);
614 	if (size > max_srq_size) {
615 		return (IBT_HCA_WR_EXCEEDED);
616 	}
617 
618 	/*
619 	 * Calculate the appropriate size for the SRQ.
620 	 * Note:  All Hermon SRQs must be a power-of-2 in size.  Also
621 	 * they may not be any smaller than HERMON_SRQ_MIN_SIZE.  This step
622 	 * is to round the requested size up to the next highest power-of-2
623 	 */
624 	size = max(size, HERMON_SRQ_MIN_SIZE);
625 	log_srq_size = highbit(size);
626 	if ((size & (size - 1)) == 0) {
627 		log_srq_size = log_srq_size - 1;
628 	}
629 
630 	/*
631 	 * Next we verify that the rounded-up size is valid (i.e. consistent
632 	 * with the device limits and/or software-configured limits).
633 	 */
634 	if (log_srq_size > state->hs_cfg_profile->cp_log_max_srq_sz) {
635 		status = IBT_HCA_WR_EXCEEDED;
636 		goto srqmodify_fail;
637 	}
638 
639 	/*
640 	 * Allocate the memory for newly resized Shared Receive Queue.
641 	 *
642 	 * Note: If SRQ is not user-mappable, then it may come from either
643 	 * kernel system memory or from HCA-attached local DDR memory.
644 	 *
645 	 * Note2: We align this queue on a pagesize boundary.  This is required
646 	 * to make sure that all the resulting IB addresses will start at 0,
647 	 * for a zero-based queue.  By making sure we are aligned on at least a
648 	 * page, any offset we use into our queue will be the same as it was
649 	 * when we allocated it at hermon_srq_alloc() time.
650 	 */
651 	wqesz = (1 << srq->srq_wq_log_wqesz);
652 	new_srqinfo.qa_size = (1 << log_srq_size) * wqesz;
653 	new_srqinfo.qa_alloc_align = PAGESIZE;
654 	new_srqinfo.qa_bind_align  = PAGESIZE;
655 	if (srq->srq_is_umap) {
656 		new_srqinfo.qa_location = HERMON_QUEUE_LOCATION_USERLAND;
657 	} else {
658 		new_srqinfo.qa_location = HERMON_QUEUE_LOCATION_NORMAL;
659 	}
660 	status = hermon_queue_alloc(state, &new_srqinfo, sleepflag);
661 	if (status != DDI_SUCCESS) {
662 		status = IBT_INSUFF_RESOURCE;
663 		goto srqmodify_fail;
664 	}
665 	buf = (uint32_t *)new_srqinfo.qa_buf_aligned;
666 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(*buf))
667 
668 	/*
669 	 * Allocate the memory for the new WRE list.  This will be used later
670 	 * when we resize the wridlist based on the new SRQ size.
671 	 */
672 	wre_new = kmem_zalloc((1 << log_srq_size) * sizeof (uint64_t),
673 	    sleepflag);
674 	if (wre_new == NULL) {
675 		status = IBT_INSUFF_RESOURCE;
676 		goto srqmodify_fail;
677 	}
678 
679 	/*
680 	 * Fill in the "bind" struct.  This struct provides the majority
681 	 * of the information that will be used to distinguish between an
682 	 * "addr" binding (as is the case here) and a "buf" binding (see
683 	 * below).  The "bind" struct is later passed to hermon_mr_mem_bind()
684 	 * which does most of the "heavy lifting" for the Hermon memory
685 	 * registration routines.
686 	 */
687 	_NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(bind))
688 	bzero(&bind, sizeof (hermon_bind_info_t));
689 	bind.bi_type  = HERMON_BINDHDL_VADDR;
690 	bind.bi_addr  = (uint64_t)(uintptr_t)buf;
691 	bind.bi_len   = new_srqinfo.qa_size;
692 	bind.bi_as    = NULL;
693 	bind.bi_flags = sleepflag == HERMON_SLEEP ? IBT_MR_SLEEP :
694 	    IBT_MR_NOSLEEP | IBT_MR_ENABLE_LOCAL_WRITE;
695 	bind.bi_bypass = state->hs_cfg_profile->cp_iommu_bypass;
696 
697 	status = hermon_mr_mtt_bind(state, &bind, new_srqinfo.qa_dmahdl, &mtt,
698 	    &mtt_pgsize_bits, 0); /* no relaxed ordering */
699 	if (status != DDI_SUCCESS) {
700 		status = status;
701 		kmem_free(wre_new, (1 << log_srq_size) *
702 		    sizeof (uint64_t));
703 		hermon_queue_free(&new_srqinfo);
704 		goto srqmodify_fail;
705 	}
706 
707 	/*
708 	 * Calculate the offset between the kernel virtual address space
709 	 * and the IB virtual address space.  This will be used when
710 	 * posting work requests to properly initialize each WQE.
711 	 *
712 	 * Note: bind addr is zero-based (from alloc) so we calculate the
713 	 * correct new offset here.
714 	 */
715 	bind.bi_addr = bind.bi_addr & ((1 << mtt_pgsize_bits) - 1);
716 	srq_desc_off = (uint64_t)(uintptr_t)new_srqinfo.qa_buf_aligned -
717 	    (uint64_t)bind.bi_addr;
718 	srq_pgoffs   = (uint_t)
719 	    ((uintptr_t)new_srqinfo.qa_buf_aligned & HERMON_PAGEOFFSET);
720 
721 	/*
722 	 * Fill in the MPT entry.  This is the final step before passing
723 	 * ownership of the MPT entry to the Hermon hardware.  We use all of
724 	 * the information collected/calculated above to fill in the
725 	 * requisite portions of the MPT.
726 	 */
727 	bzero(&mpt_entry, sizeof (hermon_hw_dmpt_t));
728 	mpt_entry.reg_win_len	= bind.bi_len;
729 	mtt_addr = (mtt->hr_indx << HERMON_MTT_SIZE_SHIFT);
730 	mpt_entry.mtt_addr_h = mtt_addr >> 32;
731 	mpt_entry.mtt_addr_l = mtt_addr >> 3;
732 
733 	/*
734 	 * for hermon we build up a new srqc and pass that (partially filled
735 	 * to resize SRQ instead of modifying the (d)mpt directly
736 	 */
737 
738 
739 
740 	/*
741 	 * Now we grab the SRQ lock.  Since we will be updating the actual
742 	 * SRQ location and the producer/consumer indexes, we should hold
743 	 * the lock.
744 	 *
745 	 * We do a HERMON_NOSLEEP here (and below), though, because we are
746 	 * holding the "srq_lock" and if we got raised to interrupt level
747 	 * by priority inversion, we would not want to block in this routine
748 	 * waiting for success.
749 	 */
750 	mutex_enter(&srq->srq_lock);
751 
752 	/*
753 	 * Copy old entries to new buffer
754 	 */
755 	srq_old_bufsz = srq->srq_wq_bufsz;
756 	bcopy(srq->srq_wq_buf, buf, srq_old_bufsz * wqesz);
757 
758 	/*
759 	 * Setup MPT information for use in the MODIFY_MPT command
760 	 */
761 	mr = srq->srq_mrhdl;
762 	mutex_enter(&mr->mr_lock);
763 
764 	/*
765 	 * now, setup the srqc information needed for resize - limit the
766 	 * values, but use the same structure as the srqc
767 	 */
768 
769 	srqc_entry.log_srq_size	  = log_srq_size;
770 	srqc_entry.page_offs	  = srq_pgoffs >> 6;
771 	srqc_entry.log2_pgsz	  = mr->mr_log2_pgsz;
772 	srqc_entry.mtt_base_addrl = (uint64_t)mtt_addr >> 32;
773 	srqc_entry.mtt_base_addrh = mtt_addr >> 3;
774 
775 	/*
776 	 * RESIZE_SRQ
777 	 *
778 	 * If this fails for any reason, then it is an indication that
779 	 * something (either in HW or SW) has gone seriously wrong.  So we
780 	 * print a warning message and return.
781 	 */
782 	status = hermon_resize_srq_cmd_post(state, &srqc_entry,
783 	    srq->srq_srqnum, sleepflag);
784 	if (status != HERMON_CMD_SUCCESS) {
785 		cmn_err(CE_CONT, "Hermon: RESIZE_SRQ command failed: %08x\n",
786 		    status);
787 		if (status == HERMON_CMD_INVALID_STATUS) {
788 			hermon_fm_ereport(state, HCA_SYS_ERR, HCA_ERR_SRV_LOST);
789 		}
790 		(void) hermon_mr_mtt_unbind(state, &bind, mtt);
791 		kmem_free(wre_new, (1 << log_srq_size) *
792 		    sizeof (uint64_t));
793 		hermon_queue_free(&new_srqinfo);
794 		mutex_exit(&mr->mr_lock);
795 		mutex_exit(&srq->srq_lock);
796 		return (ibc_get_ci_failure(0));
797 	}
798 	/*
799 	 * Update the Hermon Shared Receive Queue handle with all the new
800 	 * information.  At the same time, save away all the necessary
801 	 * information for freeing up the old resources
802 	 */
803 	old_srqinfo	   = srq->srq_wqinfo;
804 	old_mtt		   = srq->srq_mrhdl->mr_mttrsrcp;
805 	bcopy(&srq->srq_mrhdl->mr_bindinfo, &old_bind,
806 	    sizeof (hermon_bind_info_t));
807 
808 	/* Now set the new info */
809 	srq->srq_wqinfo	   = new_srqinfo;
810 	srq->srq_wq_buf	   = buf;
811 	srq->srq_wq_bufsz  = (1 << log_srq_size);
812 	bcopy(&bind, &srq->srq_mrhdl->mr_bindinfo, sizeof (hermon_bind_info_t));
813 	srq->srq_mrhdl->mr_mttrsrcp = mtt;
814 	srq->srq_desc_off  = srq_desc_off;
815 	srq->srq_real_sizes.srq_wr_sz = (1 << log_srq_size);
816 
817 	/* Update MR mtt pagesize */
818 	mr->mr_logmttpgsz = mtt_pgsize_bits;
819 	mutex_exit(&mr->mr_lock);
820 
821 	/*
822 	 * Initialize new wridlist, if needed.
823 	 *
824 	 * If a wridlist already is setup on an SRQ (the QP associated with an
825 	 * SRQ has moved "from_reset") then we must update this wridlist based
826 	 * on the new SRQ size.  We allocate the new size of Work Request ID
827 	 * Entries, copy over the old entries to the new list, and
828 	 * re-initialize the srq wridlist in non-umap case
829 	 */
830 	wre_old = srq->srq_wq_wqhdr->wq_wrid;
831 
832 	bcopy(wre_old, wre_new, srq_old_bufsz * sizeof (uint64_t));
833 
834 	/* Setup new sizes in wre */
835 	srq->srq_wq_wqhdr->wq_wrid = wre_new;
836 
837 	/*
838 	 * If "old" SRQ was a user-mappable SRQ that is currently mmap()'d out
839 	 * to a user process, then we need to call devmap_devmem_remap() to
840 	 * invalidate the mapping to the SRQ memory.  We also need to
841 	 * invalidate the SRQ tracking information for the user mapping.
842 	 *
843 	 * Note: On failure, the remap really shouldn't ever happen.  So, if it
844 	 * does, it is an indication that something has gone seriously wrong.
845 	 * So we print a warning message and return error (knowing, of course,
846 	 * that the "old" SRQ memory will be leaked)
847 	 */
848 	if ((srq->srq_is_umap) && (srq->srq_umap_dhp != NULL)) {
849 		maxprot = (PROT_READ | PROT_WRITE | PROT_USER);
850 		status = devmap_devmem_remap(srq->srq_umap_dhp,
851 		    state->hs_dip, 0, 0, srq->srq_wqinfo.qa_size, maxprot,
852 		    DEVMAP_MAPPING_INVALID, NULL);
853 		if (status != DDI_SUCCESS) {
854 			mutex_exit(&srq->srq_lock);
855 			HERMON_WARNING(state, "failed in SRQ memory "
856 			    "devmap_devmem_remap()");
857 			/* We can, however, free the memory for old wre */
858 			kmem_free(wre_old, srq_old_bufsz * sizeof (uint64_t));
859 			return (ibc_get_ci_failure(0));
860 		}
861 		srq->srq_umap_dhp = (devmap_cookie_t)NULL;
862 	}
863 
864 	/*
865 	 * Drop the SRQ lock now.  The only thing left to do is to free up
866 	 * the old resources.
867 	 */
868 	mutex_exit(&srq->srq_lock);
869 
870 	/*
871 	 * Unbind the MTT entries.
872 	 */
873 	status = hermon_mr_mtt_unbind(state, &old_bind, old_mtt);
874 	if (status != DDI_SUCCESS) {
875 		HERMON_WARNING(state, "failed to unbind old SRQ memory");
876 		status = ibc_get_ci_failure(0);
877 		goto srqmodify_fail;
878 	}
879 
880 	/* Free the memory for old wre */
881 	kmem_free(wre_old, srq_old_bufsz * sizeof (uint64_t));
882 
883 	/* Free the memory for the old SRQ */
884 	hermon_queue_free(&old_srqinfo);
885 
886 	/*
887 	 * Fill in the return arguments (if necessary).  This includes the
888 	 * real new completion queue size.
889 	 */
890 	if (real_size != NULL) {
891 		*real_size = (1 << log_srq_size);
892 	}
893 
894 	return (DDI_SUCCESS);
895 
896 srqmodify_fail:
897 	return (status);
898 }
899 
900 
901 /*
902  * hermon_srq_refcnt_inc()
903  *    Context: Can be called from interrupt or base context.
904  */
905 void
906 hermon_srq_refcnt_inc(hermon_srqhdl_t srq)
907 {
908 	mutex_enter(&srq->srq_lock);
909 	srq->srq_refcnt++;
910 	mutex_exit(&srq->srq_lock);
911 }
912 
913 
914 /*
915  * hermon_srq_refcnt_dec()
916  *    Context: Can be called from interrupt or base context.
917  */
918 void
919 hermon_srq_refcnt_dec(hermon_srqhdl_t srq)
920 {
921 	mutex_enter(&srq->srq_lock);
922 	srq->srq_refcnt--;
923 	mutex_exit(&srq->srq_lock);
924 }
925 
926 
927 /*
928  * hermon_srqhdl_from_srqnum()
929  *    Context: Can be called from interrupt or base context.
930  *
931  *    This routine is important because changing the unconstrained
932  *    portion of the SRQ number is critical to the detection of a
933  *    potential race condition in the SRQ handler code (i.e. the case
934  *    where a SRQ is freed and alloc'd again before an event for the
935  *    "old" SRQ can be handled).
936  *
937  *    While this is not a perfect solution (not sure that one exists)
938  *    it does help to mitigate the chance that this race condition will
939  *    cause us to deliver a "stale" event to the new SRQ owner.  Note:
940  *    this solution does not scale well because the number of constrained
941  *    bits increases (and, hence, the number of unconstrained bits
942  *    decreases) as the number of supported SRQ grows.  For small and
943  *    intermediate values, it should hopefully provide sufficient
944  *    protection.
945  */
946 hermon_srqhdl_t
947 hermon_srqhdl_from_srqnum(hermon_state_t *state, uint_t srqnum)
948 {
949 	uint_t	srqindx, srqmask;
950 
951 	/* Calculate the SRQ table index from the srqnum */
952 	srqmask = (1 << state->hs_cfg_profile->cp_log_num_srq) - 1;
953 	srqindx = srqnum & srqmask;
954 	return (hermon_icm_num_to_hdl(state, HERMON_SRQC, srqindx));
955 }
956 
957 
958 /*
959  * hermon_srq_sgl_to_logwqesz()
960  *    Context: Can be called from interrupt or base context.
961  */
962 static void
963 hermon_srq_sgl_to_logwqesz(hermon_state_t *state, uint_t num_sgl,
964     hermon_qp_wq_type_t wq_type, uint_t *logwqesz, uint_t *max_sgl)
965 {
966 	uint_t	max_size, log2, actual_sgl;
967 
968 	switch (wq_type) {
969 	case HERMON_QP_WQ_TYPE_RECVQ:
970 		/*
971 		 * Use requested maximum SGL to calculate max descriptor size
972 		 * (while guaranteeing that the descriptor size is a
973 		 * power-of-2 cachelines).
974 		 */
975 		max_size = (HERMON_QP_WQE_MLX_SRQ_HDRS + (num_sgl << 4));
976 		log2 = highbit(max_size);
977 		if ((max_size & (max_size - 1)) == 0) {
978 			log2 = log2 - 1;
979 		}
980 
981 		/* Make sure descriptor is at least the minimum size */
982 		log2 = max(log2, HERMON_QP_WQE_LOG_MINIMUM);
983 
984 		/* Calculate actual number of SGL (given WQE size) */
985 		actual_sgl = ((1 << log2) - HERMON_QP_WQE_MLX_SRQ_HDRS) >> 4;
986 		break;
987 
988 	default:
989 		HERMON_WARNING(state, "unexpected work queue type");
990 		break;
991 	}
992 
993 	/* Fill in the return values */
994 	*logwqesz = log2;
995 	*max_sgl  = min(state->hs_cfg_profile->cp_srq_max_sgl, actual_sgl);
996 }
997