xref: /illumos-gate/usr/src/uts/common/io/devinfo.c (revision 581cede61ac9c14d8d4ea452562a567189eead78)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * driver for accessing kernel devinfo tree.
29  */
30 #include <sys/types.h>
31 #include <sys/pathname.h>
32 #include <sys/debug.h>
33 #include <sys/autoconf.h>
34 #include <sys/vmsystm.h>
35 #include <sys/conf.h>
36 #include <sys/file.h>
37 #include <sys/kmem.h>
38 #include <sys/modctl.h>
39 #include <sys/stat.h>
40 #include <sys/ddi.h>
41 #include <sys/sunddi.h>
42 #include <sys/sunldi_impl.h>
43 #include <sys/sunndi.h>
44 #include <sys/esunddi.h>
45 #include <sys/sunmdi.h>
46 #include <sys/ddi_impldefs.h>
47 #include <sys/ndi_impldefs.h>
48 #include <sys/mdi_impldefs.h>
49 #include <sys/devinfo_impl.h>
50 #include <sys/thread.h>
51 #include <sys/modhash.h>
52 #include <sys/bitmap.h>
53 #include <util/qsort.h>
54 #include <sys/disp.h>
55 #include <sys/kobj.h>
56 #include <sys/crc32.h>
57 
58 
59 #ifdef DEBUG
60 static int di_debug;
61 #define	dcmn_err(args) if (di_debug >= 1) cmn_err args
62 #define	dcmn_err2(args) if (di_debug >= 2) cmn_err args
63 #define	dcmn_err3(args) if (di_debug >= 3) cmn_err args
64 #else
65 #define	dcmn_err(args) /* nothing */
66 #define	dcmn_err2(args) /* nothing */
67 #define	dcmn_err3(args) /* nothing */
68 #endif
69 
70 /*
71  * We partition the space of devinfo minor nodes equally between the full and
72  * unprivileged versions of the driver.  The even-numbered minor nodes are the
73  * full version, while the odd-numbered ones are the read-only version.
74  */
75 static int di_max_opens = 32;
76 
77 static int di_prop_dyn = 1;		/* enable dynamic property support */
78 
79 #define	DI_FULL_PARENT		0
80 #define	DI_READONLY_PARENT	1
81 #define	DI_NODE_SPECIES		2
82 #define	DI_UNPRIVILEGED_NODE(x)	(((x) % 2) != 0)
83 
84 #define	IOC_IDLE	0	/* snapshot ioctl states */
85 #define	IOC_SNAP	1	/* snapshot in progress */
86 #define	IOC_DONE	2	/* snapshot done, but not copied out */
87 #define	IOC_COPY	3	/* copyout in progress */
88 
89 /*
90  * Keep max alignment so we can move snapshot to different platforms.
91  *
92  * NOTE: Most callers should rely on the di_checkmem return value
93  * being aligned, and reestablish *off_p with aligned value, instead
94  * of trying to align size of their allocations: this approach will
95  * minimize memory use.
96  */
97 #define	DI_ALIGN(addr)	((addr + 7l) & ~7l)
98 
99 /*
100  * To avoid wasting memory, make a linked list of memory chunks.
101  * Size of each chunk is buf_size.
102  */
103 struct di_mem {
104 	struct di_mem	*next;		/* link to next chunk */
105 	char		*buf;		/* contiguous kernel memory */
106 	size_t		buf_size;	/* size of buf in bytes */
107 	devmap_cookie_t	cook;		/* cookie from ddi_umem_alloc */
108 };
109 
110 /*
111  * This is a stack for walking the tree without using recursion.
112  * When the devinfo tree height is above some small size, one
113  * gets watchdog resets on sun4m.
114  */
115 struct di_stack {
116 	void		*offset[MAX_TREE_DEPTH];
117 	struct dev_info *dip[MAX_TREE_DEPTH];
118 	int		circ[MAX_TREE_DEPTH];
119 	int		depth;	/* depth of current node to be copied */
120 };
121 
122 #define	TOP_OFFSET(stack)	\
123 	((di_off_t *)(stack)->offset[(stack)->depth - 1])
124 #define	TOP_NODE(stack)		\
125 	((stack)->dip[(stack)->depth - 1])
126 #define	PARENT_OFFSET(stack)	\
127 	((di_off_t *)(stack)->offset[(stack)->depth - 2])
128 #define	EMPTY_STACK(stack)	((stack)->depth == 0)
129 #define	POP_STACK(stack)	{ \
130 	ndi_devi_exit((dev_info_t *)TOP_NODE(stack), \
131 		(stack)->circ[(stack)->depth - 1]); \
132 	((stack)->depth--); \
133 }
134 #define	PUSH_STACK(stack, node, off_p)	{ \
135 	ASSERT(node != NULL); \
136 	ndi_devi_enter((dev_info_t *)node, &(stack)->circ[(stack)->depth]); \
137 	(stack)->dip[(stack)->depth] = (node); \
138 	(stack)->offset[(stack)->depth] = (void *)(off_p); \
139 	((stack)->depth)++; \
140 }
141 
142 #define	DI_ALL_PTR(s)	DI_ALL(di_mem_addr((s), 0))
143 
144 /*
145  * With devfs, the device tree has no global locks. The device tree is
146  * dynamic and dips may come and go if they are not locked locally. Under
147  * these conditions, pointers are no longer reliable as unique IDs.
148  * Specifically, these pointers cannot be used as keys for hash tables
149  * as the same devinfo structure may be freed in one part of the tree only
150  * to be allocated as the structure for a different device in another
151  * part of the tree. This can happen if DR and the snapshot are
152  * happening concurrently.
153  * The following data structures act as keys for devinfo nodes and
154  * pathinfo nodes.
155  */
156 
157 enum di_ktype {
158 	DI_DKEY = 1,
159 	DI_PKEY = 2
160 };
161 
162 struct di_dkey {
163 	dev_info_t	*dk_dip;
164 	major_t		dk_major;
165 	int		dk_inst;
166 	pnode_t		dk_nodeid;
167 };
168 
169 struct di_pkey {
170 	mdi_pathinfo_t	*pk_pip;
171 	char		*pk_path_addr;
172 	dev_info_t	*pk_client;
173 	dev_info_t	*pk_phci;
174 };
175 
176 struct di_key {
177 	enum di_ktype	k_type;
178 	union {
179 		struct di_dkey dkey;
180 		struct di_pkey pkey;
181 	} k_u;
182 };
183 
184 
185 struct i_lnode;
186 
187 typedef struct i_link {
188 	/*
189 	 * If a di_link struct representing this i_link struct makes it
190 	 * into the snapshot, then self will point to the offset of
191 	 * the di_link struct in the snapshot
192 	 */
193 	di_off_t	self;
194 
195 	int		spec_type;	/* block or char access type */
196 	struct i_lnode	*src_lnode;	/* src i_lnode */
197 	struct i_lnode	*tgt_lnode;	/* tgt i_lnode */
198 	struct i_link	*src_link_next;	/* next src i_link /w same i_lnode */
199 	struct i_link	*tgt_link_next;	/* next tgt i_link /w same i_lnode */
200 } i_link_t;
201 
202 typedef struct i_lnode {
203 	/*
204 	 * If a di_lnode struct representing this i_lnode struct makes it
205 	 * into the snapshot, then self will point to the offset of
206 	 * the di_lnode struct in the snapshot
207 	 */
208 	di_off_t	self;
209 
210 	/*
211 	 * used for hashing and comparing i_lnodes
212 	 */
213 	int		modid;
214 
215 	/*
216 	 * public information describing a link endpoint
217 	 */
218 	struct di_node	*di_node;	/* di_node in snapshot */
219 	dev_t		devt;		/* devt */
220 
221 	/*
222 	 * i_link ptr to links coming into this i_lnode node
223 	 * (this i_lnode is the target of these i_links)
224 	 */
225 	i_link_t	*link_in;
226 
227 	/*
228 	 * i_link ptr to links going out of this i_lnode node
229 	 * (this i_lnode is the source of these i_links)
230 	 */
231 	i_link_t	*link_out;
232 } i_lnode_t;
233 
234 /*
235  * Soft state associated with each instance of driver open.
236  */
237 static struct di_state {
238 	di_off_t	mem_size;	/* total # bytes in memlist */
239 	struct di_mem	*memlist;	/* head of memlist */
240 	uint_t		command;	/* command from ioctl */
241 	int		di_iocstate;	/* snapshot ioctl state	*/
242 	mod_hash_t	*reg_dip_hash;
243 	mod_hash_t	*reg_pip_hash;
244 	int		lnode_count;
245 	int		link_count;
246 
247 	mod_hash_t	*lnode_hash;
248 	mod_hash_t	*link_hash;
249 } **di_states;
250 
251 static kmutex_t di_lock;	/* serialize instance assignment */
252 
253 typedef enum {
254 	DI_QUIET = 0,	/* DI_QUIET must always be 0 */
255 	DI_ERR,
256 	DI_INFO,
257 	DI_TRACE,
258 	DI_TRACE1,
259 	DI_TRACE2
260 } di_cache_debug_t;
261 
262 static uint_t	di_chunk = 32;		/* I/O chunk size in pages */
263 
264 #define	DI_CACHE_LOCK(c)	(mutex_enter(&(c).cache_lock))
265 #define	DI_CACHE_UNLOCK(c)	(mutex_exit(&(c).cache_lock))
266 #define	DI_CACHE_LOCKED(c)	(mutex_owned(&(c).cache_lock))
267 
268 /*
269  * Check that whole device tree is being configured as a pre-condition for
270  * cleaning up /etc/devices files.
271  */
272 #define	DEVICES_FILES_CLEANABLE(st)	\
273 	(((st)->command & DINFOSUBTREE) && ((st)->command & DINFOFORCE) && \
274 	strcmp(DI_ALL_PTR(st)->root_path, "/") == 0)
275 
276 #define	CACHE_DEBUG(args)	\
277 	{ if (di_cache_debug != DI_QUIET) di_cache_print args; }
278 
279 typedef struct phci_walk_arg {
280 	di_off_t	off;
281 	struct di_state	*st;
282 } phci_walk_arg_t;
283 
284 static int di_open(dev_t *, int, int, cred_t *);
285 static int di_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
286 static int di_close(dev_t, int, int, cred_t *);
287 static int di_info(dev_info_t *, ddi_info_cmd_t, void *, void **);
288 static int di_attach(dev_info_t *, ddi_attach_cmd_t);
289 static int di_detach(dev_info_t *, ddi_detach_cmd_t);
290 
291 static di_off_t di_copyformat(di_off_t, struct di_state *, intptr_t, int);
292 static di_off_t di_snapshot_and_clean(struct di_state *);
293 static di_off_t di_copydevnm(di_off_t *, struct di_state *);
294 static di_off_t di_copytree(struct dev_info *, di_off_t *, struct di_state *);
295 static di_off_t di_copynode(struct dev_info *, struct di_stack *,
296     struct di_state *);
297 static di_off_t di_getmdata(struct ddi_minor_data *, di_off_t *, di_off_t,
298     struct di_state *);
299 static di_off_t di_getppdata(struct dev_info *, di_off_t *, struct di_state *);
300 static di_off_t di_getdpdata(struct dev_info *, di_off_t *, struct di_state *);
301 static di_off_t di_getprop(int, struct ddi_prop **, di_off_t *,
302     struct di_state *, struct dev_info *);
303 static void di_allocmem(struct di_state *, size_t);
304 static void di_freemem(struct di_state *);
305 static void di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz);
306 static di_off_t di_checkmem(struct di_state *, di_off_t, size_t);
307 static void *di_mem_addr(struct di_state *, di_off_t);
308 static int di_setstate(struct di_state *, int);
309 static void di_register_dip(struct di_state *, dev_info_t *, di_off_t);
310 static void di_register_pip(struct di_state *, mdi_pathinfo_t *, di_off_t);
311 static di_off_t di_getpath_data(dev_info_t *, di_off_t *, di_off_t,
312     struct di_state *, int);
313 static di_off_t di_getlink_data(di_off_t, struct di_state *);
314 static int di_dip_find(struct di_state *st, dev_info_t *node, di_off_t *off_p);
315 
316 static int cache_args_valid(struct di_state *st, int *error);
317 static int snapshot_is_cacheable(struct di_state *st);
318 static int di_cache_lookup(struct di_state *st);
319 static int di_cache_update(struct di_state *st);
320 static void di_cache_print(di_cache_debug_t msglevel, char *fmt, ...);
321 static int build_vhci_list(dev_info_t *vh_devinfo, void *arg);
322 static int build_phci_list(dev_info_t *ph_devinfo, void *arg);
323 
324 extern int modrootloaded;
325 extern void mdi_walk_vhcis(int (*)(dev_info_t *, void *), void *);
326 extern void mdi_vhci_walk_phcis(dev_info_t *,
327 	int (*)(dev_info_t *, void *), void *);
328 
329 
330 static struct cb_ops di_cb_ops = {
331 	di_open,		/* open */
332 	di_close,		/* close */
333 	nodev,			/* strategy */
334 	nodev,			/* print */
335 	nodev,			/* dump */
336 	nodev,			/* read */
337 	nodev,			/* write */
338 	di_ioctl,		/* ioctl */
339 	nodev,			/* devmap */
340 	nodev,			/* mmap */
341 	nodev,			/* segmap */
342 	nochpoll,		/* poll */
343 	ddi_prop_op,		/* prop_op */
344 	NULL,			/* streamtab  */
345 	D_NEW | D_MP		/* Driver compatibility flag */
346 };
347 
348 static struct dev_ops di_ops = {
349 	DEVO_REV,		/* devo_rev, */
350 	0,			/* refcnt  */
351 	di_info,		/* info */
352 	nulldev,		/* identify */
353 	nulldev,		/* probe */
354 	di_attach,		/* attach */
355 	di_detach,		/* detach */
356 	nodev,			/* reset */
357 	&di_cb_ops,		/* driver operations */
358 	NULL			/* bus operations */
359 };
360 
361 /*
362  * Module linkage information for the kernel.
363  */
364 static struct modldrv modldrv = {
365 	&mod_driverops,
366 	"DEVINFO Driver",
367 	&di_ops
368 };
369 
370 static struct modlinkage modlinkage = {
371 	MODREV_1,
372 	&modldrv,
373 	NULL
374 };
375 
376 int
377 _init(void)
378 {
379 	int	error;
380 
381 	mutex_init(&di_lock, NULL, MUTEX_DRIVER, NULL);
382 
383 	error = mod_install(&modlinkage);
384 	if (error != 0) {
385 		mutex_destroy(&di_lock);
386 		return (error);
387 	}
388 
389 	return (0);
390 }
391 
392 int
393 _info(struct modinfo *modinfop)
394 {
395 	return (mod_info(&modlinkage, modinfop));
396 }
397 
398 int
399 _fini(void)
400 {
401 	int	error;
402 
403 	error = mod_remove(&modlinkage);
404 	if (error != 0) {
405 		return (error);
406 	}
407 
408 	mutex_destroy(&di_lock);
409 	return (0);
410 }
411 
412 static dev_info_t *di_dip;
413 
414 /*ARGSUSED*/
415 static int
416 di_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
417 {
418 	int	error = DDI_FAILURE;
419 
420 	switch (infocmd) {
421 	case DDI_INFO_DEVT2DEVINFO:
422 		*result = (void *)di_dip;
423 		error = DDI_SUCCESS;
424 		break;
425 	case DDI_INFO_DEVT2INSTANCE:
426 		/*
427 		 * All dev_t's map to the same, single instance.
428 		 */
429 		*result = (void *)0;
430 		error = DDI_SUCCESS;
431 		break;
432 	default:
433 		break;
434 	}
435 
436 	return (error);
437 }
438 
439 static int
440 di_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
441 {
442 	int	error = DDI_FAILURE;
443 
444 	switch (cmd) {
445 	case DDI_ATTACH:
446 		di_states = kmem_zalloc(
447 		    di_max_opens * sizeof (struct di_state *), KM_SLEEP);
448 
449 		if (ddi_create_minor_node(dip, "devinfo", S_IFCHR,
450 		    DI_FULL_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE ||
451 		    ddi_create_minor_node(dip, "devinfo,ro", S_IFCHR,
452 		    DI_READONLY_PARENT, DDI_PSEUDO, NULL) == DDI_FAILURE) {
453 			kmem_free(di_states,
454 			    di_max_opens * sizeof (struct di_state *));
455 			ddi_remove_minor_node(dip, NULL);
456 			error = DDI_FAILURE;
457 		} else {
458 			di_dip = dip;
459 			ddi_report_dev(dip);
460 
461 			error = DDI_SUCCESS;
462 		}
463 		break;
464 	default:
465 		error = DDI_FAILURE;
466 		break;
467 	}
468 
469 	return (error);
470 }
471 
472 static int
473 di_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
474 {
475 	int	error = DDI_FAILURE;
476 
477 	switch (cmd) {
478 	case DDI_DETACH:
479 		ddi_remove_minor_node(dip, NULL);
480 		di_dip = NULL;
481 		kmem_free(di_states, di_max_opens * sizeof (struct di_state *));
482 
483 		error = DDI_SUCCESS;
484 		break;
485 	default:
486 		error = DDI_FAILURE;
487 		break;
488 	}
489 
490 	return (error);
491 }
492 
493 /*
494  * Allow multiple opens by tweaking the dev_t such that it looks like each
495  * open is getting a different minor device.  Each minor gets a separate
496  * entry in the di_states[] table.  Based on the original minor number, we
497  * discriminate opens of the full and read-only nodes.  If all of the instances
498  * of the selected minor node are currently open, we return EAGAIN.
499  */
500 /*ARGSUSED*/
501 static int
502 di_open(dev_t *devp, int flag, int otyp, cred_t *credp)
503 {
504 	int	m;
505 	minor_t	minor_parent = getminor(*devp);
506 
507 	if (minor_parent != DI_FULL_PARENT &&
508 	    minor_parent != DI_READONLY_PARENT)
509 		return (ENXIO);
510 
511 	mutex_enter(&di_lock);
512 
513 	for (m = minor_parent; m < di_max_opens; m += DI_NODE_SPECIES) {
514 		if (di_states[m] != NULL)
515 			continue;
516 
517 		di_states[m] = kmem_zalloc(sizeof (struct di_state), KM_SLEEP);
518 		break;	/* It's ours. */
519 	}
520 
521 	if (m >= di_max_opens) {
522 		/*
523 		 * maximum open instance for device reached
524 		 */
525 		mutex_exit(&di_lock);
526 		dcmn_err((CE_WARN, "devinfo: maximum devinfo open reached"));
527 		return (EAGAIN);
528 	}
529 	mutex_exit(&di_lock);
530 
531 	ASSERT(m < di_max_opens);
532 	*devp = makedevice(getmajor(*devp), (minor_t)(m + DI_NODE_SPECIES));
533 
534 	dcmn_err((CE_CONT, "di_open: thread = %p, assigned minor = %d\n",
535 	    (void *)curthread, m + DI_NODE_SPECIES));
536 
537 	return (0);
538 }
539 
540 /*ARGSUSED*/
541 static int
542 di_close(dev_t dev, int flag, int otype, cred_t *cred_p)
543 {
544 	struct di_state	*st;
545 	int		m = (int)getminor(dev) - DI_NODE_SPECIES;
546 
547 	if (m < 0) {
548 		cmn_err(CE_WARN, "closing non-existent devinfo minor %d",
549 		    m + DI_NODE_SPECIES);
550 		return (ENXIO);
551 	}
552 
553 	st = di_states[m];
554 	ASSERT(m < di_max_opens && st != NULL);
555 
556 	di_freemem(st);
557 	kmem_free(st, sizeof (struct di_state));
558 
559 	/*
560 	 * empty slot in state table
561 	 */
562 	mutex_enter(&di_lock);
563 	di_states[m] = NULL;
564 	dcmn_err((CE_CONT, "di_close: thread = %p, assigned minor = %d\n",
565 	    (void *)curthread, m + DI_NODE_SPECIES));
566 	mutex_exit(&di_lock);
567 
568 	return (0);
569 }
570 
571 
572 /*ARGSUSED*/
573 static int
574 di_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
575 {
576 	int		rv, error;
577 	di_off_t	off;
578 	struct di_all	*all;
579 	struct di_state	*st;
580 	int		m = (int)getminor(dev) - DI_NODE_SPECIES;
581 	major_t		i;
582 	char		*drv_name;
583 	size_t		map_size, size;
584 	struct di_mem	*dcp;
585 	int		ndi_flags;
586 
587 	if (m < 0 || m >= di_max_opens) {
588 		return (ENXIO);
589 	}
590 
591 	st = di_states[m];
592 	ASSERT(st != NULL);
593 
594 	dcmn_err2((CE_CONT, "di_ioctl: mode = %x, cmd = %x\n", mode, cmd));
595 
596 	switch (cmd) {
597 	case DINFOIDENT:
598 		/*
599 		 * This is called from di_init to verify that the driver
600 		 * opened is indeed devinfo. The purpose is to guard against
601 		 * sending ioctl to an unknown driver in case of an
602 		 * unresolved major number conflict during bfu.
603 		 */
604 		*rvalp = DI_MAGIC;
605 		return (0);
606 
607 	case DINFOLODRV:
608 		/*
609 		 * Hold an installed driver and return the result
610 		 */
611 		if (DI_UNPRIVILEGED_NODE(m)) {
612 			/*
613 			 * Only the fully enabled instances may issue
614 			 * DINFOLDDRV.
615 			 */
616 			return (EACCES);
617 		}
618 
619 		drv_name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
620 		if (ddi_copyin((void *)arg, drv_name, MAXNAMELEN, mode) != 0) {
621 			kmem_free(drv_name, MAXNAMELEN);
622 			return (EFAULT);
623 		}
624 
625 		/*
626 		 * Some 3rd party driver's _init() walks the device tree,
627 		 * so we load the driver module before configuring driver.
628 		 */
629 		i = ddi_name_to_major(drv_name);
630 		if (ddi_hold_driver(i) == NULL) {
631 			kmem_free(drv_name, MAXNAMELEN);
632 			return (ENXIO);
633 		}
634 
635 		ndi_flags = NDI_DEVI_PERSIST | NDI_CONFIG | NDI_NO_EVENT;
636 
637 		/*
638 		 * i_ddi_load_drvconf() below will trigger a reprobe
639 		 * via reset_nexus_flags(). NDI_DRV_CONF_REPROBE isn't
640 		 * needed here.
641 		 */
642 		modunload_disable();
643 		(void) i_ddi_load_drvconf(i);
644 		(void) ndi_devi_config_driver(ddi_root_node(), ndi_flags, i);
645 		kmem_free(drv_name, MAXNAMELEN);
646 		ddi_rele_driver(i);
647 		rv = i_ddi_devs_attached(i);
648 		modunload_enable();
649 
650 		i_ddi_di_cache_invalidate(KM_SLEEP);
651 
652 		return ((rv == DDI_SUCCESS)? 0 : ENXIO);
653 
654 	case DINFOUSRLD:
655 		/*
656 		 * The case for copying snapshot to userland
657 		 */
658 		if (di_setstate(st, IOC_COPY) == -1)
659 			return (EBUSY);
660 
661 		map_size = DI_ALL_PTR(st)->map_size;
662 		if (map_size == 0) {
663 			(void) di_setstate(st, IOC_DONE);
664 			return (EFAULT);
665 		}
666 
667 		/*
668 		 * copyout the snapshot
669 		 */
670 		map_size = (map_size + PAGEOFFSET) & PAGEMASK;
671 
672 		/*
673 		 * Return the map size, so caller may do a sanity
674 		 * check against the return value of snapshot ioctl()
675 		 */
676 		*rvalp = (int)map_size;
677 
678 		/*
679 		 * Copy one chunk at a time
680 		 */
681 		off = 0;
682 		dcp = st->memlist;
683 		while (map_size) {
684 			size = dcp->buf_size;
685 			if (map_size <= size) {
686 				size = map_size;
687 			}
688 
689 			if (ddi_copyout(di_mem_addr(st, off),
690 			    (void *)(arg + off), size, mode) != 0) {
691 				(void) di_setstate(st, IOC_DONE);
692 				return (EFAULT);
693 			}
694 
695 			map_size -= size;
696 			off += size;
697 			dcp = dcp->next;
698 		}
699 
700 		di_freemem(st);
701 		(void) di_setstate(st, IOC_IDLE);
702 		return (0);
703 
704 	default:
705 		if ((cmd & ~DIIOC_MASK) != DIIOC) {
706 			/*
707 			 * Invalid ioctl command
708 			 */
709 			return (ENOTTY);
710 		}
711 		/*
712 		 * take a snapshot
713 		 */
714 		st->command = cmd & DIIOC_MASK;
715 		/*FALLTHROUGH*/
716 	}
717 
718 	/*
719 	 * Obtain enough memory to hold header + rootpath.  We prevent kernel
720 	 * memory exhaustion by freeing any previously allocated snapshot and
721 	 * refusing the operation; otherwise we would be allowing ioctl(),
722 	 * ioctl(), ioctl(), ..., panic.
723 	 */
724 	if (di_setstate(st, IOC_SNAP) == -1)
725 		return (EBUSY);
726 
727 	/*
728 	 * Initial memlist always holds di_all and the root_path - and
729 	 * is at least a page and size.
730 	 */
731 	size = sizeof (struct di_all) +
732 	    sizeof (((struct dinfo_io *)(NULL))->root_path);
733 	if (size < PAGESIZE)
734 		size = PAGESIZE;
735 	off = di_checkmem(st, 0, size);
736 	all = DI_ALL_PTR(st);
737 	off += sizeof (struct di_all);		/* real length of di_all */
738 
739 	all->devcnt = devcnt;
740 	all->command = st->command;
741 	all->version = DI_SNAPSHOT_VERSION;
742 	all->top_vhci_devinfo = 0;		/* filled by build_vhci_list. */
743 
744 	/*
745 	 * Note the endianness in case we need to transport snapshot
746 	 * over the network.
747 	 */
748 #if defined(_LITTLE_ENDIAN)
749 	all->endianness = DI_LITTLE_ENDIAN;
750 #else
751 	all->endianness = DI_BIG_ENDIAN;
752 #endif
753 
754 	/* Copyin ioctl args, store in the snapshot. */
755 	if (copyinstr((void *)arg, all->root_path,
756 	    sizeof (((struct dinfo_io *)(NULL))->root_path), &size) != 0) {
757 		di_freemem(st);
758 		(void) di_setstate(st, IOC_IDLE);
759 		return (EFAULT);
760 	}
761 	off += size;				/* real length of root_path */
762 
763 	if ((st->command & DINFOCLEANUP) && !DEVICES_FILES_CLEANABLE(st)) {
764 		di_freemem(st);
765 		(void) di_setstate(st, IOC_IDLE);
766 		return (EINVAL);
767 	}
768 
769 	error = 0;
770 	if ((st->command & DINFOCACHE) && !cache_args_valid(st, &error)) {
771 		di_freemem(st);
772 		(void) di_setstate(st, IOC_IDLE);
773 		return (error);
774 	}
775 
776 	/*
777 	 * Only the fully enabled version may force load drivers or read
778 	 * the parent private data from a driver.
779 	 */
780 	if ((st->command & (DINFOPRIVDATA | DINFOFORCE)) != 0 &&
781 	    DI_UNPRIVILEGED_NODE(m)) {
782 		di_freemem(st);
783 		(void) di_setstate(st, IOC_IDLE);
784 		return (EACCES);
785 	}
786 
787 	/* Do we need private data? */
788 	if (st->command & DINFOPRIVDATA) {
789 		arg += sizeof (((struct dinfo_io *)(NULL))->root_path);
790 
791 #ifdef _MULTI_DATAMODEL
792 		switch (ddi_model_convert_from(mode & FMODELS)) {
793 		case DDI_MODEL_ILP32: {
794 			/*
795 			 * Cannot copy private data from 64-bit kernel
796 			 * to 32-bit app
797 			 */
798 			di_freemem(st);
799 			(void) di_setstate(st, IOC_IDLE);
800 			return (EINVAL);
801 		}
802 		case DDI_MODEL_NONE:
803 			if ((off = di_copyformat(off, st, arg, mode)) == 0) {
804 				di_freemem(st);
805 				(void) di_setstate(st, IOC_IDLE);
806 				return (EFAULT);
807 			}
808 			break;
809 		}
810 #else /* !_MULTI_DATAMODEL */
811 		if ((off = di_copyformat(off, st, arg, mode)) == 0) {
812 			di_freemem(st);
813 			(void) di_setstate(st, IOC_IDLE);
814 			return (EFAULT);
815 		}
816 #endif /* _MULTI_DATAMODEL */
817 	}
818 
819 	all->top_devinfo = DI_ALIGN(off);
820 
821 	/*
822 	 * For cache lookups we reallocate memory from scratch,
823 	 * so the value of "all" is no longer valid.
824 	 */
825 	all = NULL;
826 
827 	if (st->command & DINFOCACHE) {
828 		*rvalp = di_cache_lookup(st);
829 	} else if (snapshot_is_cacheable(st)) {
830 		DI_CACHE_LOCK(di_cache);
831 		*rvalp = di_cache_update(st);
832 		DI_CACHE_UNLOCK(di_cache);
833 	} else
834 		*rvalp = di_snapshot_and_clean(st);
835 
836 	if (*rvalp) {
837 		DI_ALL_PTR(st)->map_size = *rvalp;
838 		(void) di_setstate(st, IOC_DONE);
839 	} else {
840 		di_freemem(st);
841 		(void) di_setstate(st, IOC_IDLE);
842 	}
843 
844 	return (0);
845 }
846 
847 /*
848  * Get a chunk of memory >= size, for the snapshot
849  */
850 static void
851 di_allocmem(struct di_state *st, size_t size)
852 {
853 	struct di_mem	*mem = kmem_zalloc(sizeof (struct di_mem), KM_SLEEP);
854 
855 	/*
856 	 * Round up size to nearest power of 2. If it is less
857 	 * than st->mem_size, set it to st->mem_size (i.e.,
858 	 * the mem_size is doubled every time) to reduce the
859 	 * number of memory allocations.
860 	 */
861 	size_t tmp = 1;
862 	while (tmp < size) {
863 		tmp <<= 1;
864 	}
865 	size = (tmp > st->mem_size) ? tmp : st->mem_size;
866 
867 	mem->buf = ddi_umem_alloc(size, DDI_UMEM_SLEEP, &mem->cook);
868 	mem->buf_size = size;
869 
870 	dcmn_err2((CE_CONT, "di_allocmem: mem_size=%x\n", st->mem_size));
871 
872 	if (st->mem_size == 0) {	/* first chunk */
873 		st->memlist = mem;
874 	} else {
875 		/*
876 		 * locate end of linked list and add a chunk at the end
877 		 */
878 		struct di_mem *dcp = st->memlist;
879 		while (dcp->next != NULL) {
880 			dcp = dcp->next;
881 		}
882 
883 		dcp->next = mem;
884 	}
885 
886 	st->mem_size += size;
887 }
888 
889 /*
890  * Copy upto bufsiz bytes of the memlist to buf
891  */
892 static void
893 di_copymem(struct di_state *st, caddr_t buf, size_t bufsiz)
894 {
895 	struct di_mem	*dcp;
896 	size_t		copysz;
897 
898 	if (st->mem_size == 0) {
899 		ASSERT(st->memlist == NULL);
900 		return;
901 	}
902 
903 	copysz = 0;
904 	for (dcp = st->memlist; dcp; dcp = dcp->next) {
905 
906 		ASSERT(bufsiz > 0);
907 
908 		if (bufsiz <= dcp->buf_size)
909 			copysz = bufsiz;
910 		else
911 			copysz = dcp->buf_size;
912 
913 		bcopy(dcp->buf, buf, copysz);
914 
915 		buf += copysz;
916 		bufsiz -= copysz;
917 
918 		if (bufsiz == 0)
919 			break;
920 	}
921 }
922 
923 /*
924  * Free all memory for the snapshot
925  */
926 static void
927 di_freemem(struct di_state *st)
928 {
929 	struct di_mem	*dcp, *tmp;
930 
931 	dcmn_err2((CE_CONT, "di_freemem\n"));
932 
933 	if (st->mem_size) {
934 		dcp = st->memlist;
935 		while (dcp) {	/* traverse the linked list */
936 			tmp = dcp;
937 			dcp = dcp->next;
938 			ddi_umem_free(tmp->cook);
939 			kmem_free(tmp, sizeof (struct di_mem));
940 		}
941 		st->mem_size = 0;
942 		st->memlist = NULL;
943 	}
944 
945 	ASSERT(st->mem_size == 0);
946 	ASSERT(st->memlist == NULL);
947 }
948 
949 /*
950  * Copies cached data to the di_state structure.
951  * Returns:
952  *	- size of data copied, on SUCCESS
953  *	- 0 on failure
954  */
955 static int
956 di_cache2mem(struct di_cache *cache, struct di_state *st)
957 {
958 	caddr_t	pa;
959 
960 	ASSERT(st->mem_size == 0);
961 	ASSERT(st->memlist == NULL);
962 	ASSERT(!servicing_interrupt());
963 	ASSERT(DI_CACHE_LOCKED(*cache));
964 
965 	if (cache->cache_size == 0) {
966 		ASSERT(cache->cache_data == NULL);
967 		CACHE_DEBUG((DI_ERR, "Empty cache. Skipping copy"));
968 		return (0);
969 	}
970 
971 	ASSERT(cache->cache_data);
972 
973 	di_allocmem(st, cache->cache_size);
974 
975 	pa = di_mem_addr(st, 0);
976 
977 	ASSERT(pa);
978 
979 	/*
980 	 * Verify that di_allocmem() allocates contiguous memory,
981 	 * so that it is safe to do straight bcopy()
982 	 */
983 	ASSERT(st->memlist != NULL);
984 	ASSERT(st->memlist->next == NULL);
985 	bcopy(cache->cache_data, pa, cache->cache_size);
986 
987 	return (cache->cache_size);
988 }
989 
990 /*
991  * Copies a snapshot from di_state to the cache
992  * Returns:
993  *	- 0 on failure
994  *	- size of copied data on success
995  */
996 static size_t
997 di_mem2cache(struct di_state *st, struct di_cache *cache)
998 {
999 	size_t	map_size;
1000 
1001 	ASSERT(cache->cache_size == 0);
1002 	ASSERT(cache->cache_data == NULL);
1003 	ASSERT(!servicing_interrupt());
1004 	ASSERT(DI_CACHE_LOCKED(*cache));
1005 
1006 	if (st->mem_size == 0) {
1007 		ASSERT(st->memlist == NULL);
1008 		CACHE_DEBUG((DI_ERR, "Empty memlist. Skipping copy"));
1009 		return (0);
1010 	}
1011 
1012 	ASSERT(st->memlist);
1013 
1014 	/*
1015 	 * The size of the memory list may be much larger than the
1016 	 * size of valid data (map_size). Cache only the valid data
1017 	 */
1018 	map_size = DI_ALL_PTR(st)->map_size;
1019 	if (map_size == 0 || map_size < sizeof (struct di_all) ||
1020 	    map_size > st->mem_size) {
1021 		CACHE_DEBUG((DI_ERR, "cannot cache: bad size: 0x%x", map_size));
1022 		return (0);
1023 	}
1024 
1025 	cache->cache_data = kmem_alloc(map_size, KM_SLEEP);
1026 	cache->cache_size = map_size;
1027 	di_copymem(st, cache->cache_data, cache->cache_size);
1028 
1029 	return (map_size);
1030 }
1031 
1032 /*
1033  * Make sure there is at least "size" bytes memory left before
1034  * going on. Otherwise, start on a new chunk.
1035  */
1036 static di_off_t
1037 di_checkmem(struct di_state *st, di_off_t off, size_t size)
1038 {
1039 	dcmn_err3((CE_CONT, "di_checkmem: off=%x size=%x\n",
1040 	    off, (int)size));
1041 
1042 	/*
1043 	 * di_checkmem() shouldn't be called with a size of zero.
1044 	 * But in case it is, we want to make sure we return a valid
1045 	 * offset within the memlist and not an offset that points us
1046 	 * at the end of the memlist.
1047 	 */
1048 	if (size == 0) {
1049 		dcmn_err((CE_WARN, "di_checkmem: invalid zero size used"));
1050 		size = 1;
1051 	}
1052 
1053 	off = DI_ALIGN(off);
1054 	if ((st->mem_size - off) < size) {
1055 		off = st->mem_size;
1056 		di_allocmem(st, size);
1057 	}
1058 
1059 	/* verify that return value is aligned */
1060 	ASSERT(off == DI_ALIGN(off));
1061 	return (off);
1062 }
1063 
1064 /*
1065  * Copy the private data format from ioctl arg.
1066  * On success, the ending offset is returned. On error 0 is returned.
1067  */
1068 static di_off_t
1069 di_copyformat(di_off_t off, struct di_state *st, intptr_t arg, int mode)
1070 {
1071 	di_off_t		size;
1072 	struct di_priv_data	*priv;
1073 	struct di_all		*all = DI_ALL_PTR(st);
1074 
1075 	dcmn_err2((CE_CONT, "di_copyformat: off=%x, arg=%p mode=%x\n",
1076 	    off, (void *)arg, mode));
1077 
1078 	/*
1079 	 * Copyin data and check version.
1080 	 * We only handle private data version 0.
1081 	 */
1082 	priv = kmem_alloc(sizeof (struct di_priv_data), KM_SLEEP);
1083 	if ((ddi_copyin((void *)arg, priv, sizeof (struct di_priv_data),
1084 	    mode) != 0) || (priv->version != DI_PRIVDATA_VERSION_0)) {
1085 		kmem_free(priv, sizeof (struct di_priv_data));
1086 		return (0);
1087 	}
1088 
1089 	/*
1090 	 * Save di_priv_data copied from userland in snapshot.
1091 	 */
1092 	all->pd_version = priv->version;
1093 	all->n_ppdata = priv->n_parent;
1094 	all->n_dpdata = priv->n_driver;
1095 
1096 	/*
1097 	 * copyin private data format, modify offset accordingly
1098 	 */
1099 	if (all->n_ppdata) {	/* parent private data format */
1100 		/*
1101 		 * check memory
1102 		 */
1103 		size = all->n_ppdata * sizeof (struct di_priv_format);
1104 		all->ppdata_format = off = di_checkmem(st, off, size);
1105 		if (ddi_copyin(priv->parent, di_mem_addr(st, off), size,
1106 		    mode) != 0) {
1107 			kmem_free(priv, sizeof (struct di_priv_data));
1108 			return (0);
1109 		}
1110 
1111 		off += size;
1112 	}
1113 
1114 	if (all->n_dpdata) {	/* driver private data format */
1115 		/*
1116 		 * check memory
1117 		 */
1118 		size = all->n_dpdata * sizeof (struct di_priv_format);
1119 		all->dpdata_format = off = di_checkmem(st, off, size);
1120 		if (ddi_copyin(priv->driver, di_mem_addr(st, off), size,
1121 		    mode) != 0) {
1122 			kmem_free(priv, sizeof (struct di_priv_data));
1123 			return (0);
1124 		}
1125 
1126 		off += size;
1127 	}
1128 
1129 	kmem_free(priv, sizeof (struct di_priv_data));
1130 	return (off);
1131 }
1132 
1133 /*
1134  * Return the real address based on the offset (off) within snapshot
1135  */
1136 static void *
1137 di_mem_addr(struct di_state *st, di_off_t off)
1138 {
1139 	struct di_mem	*dcp = st->memlist;
1140 
1141 	dcmn_err3((CE_CONT, "di_mem_addr: dcp=%p off=%x\n",
1142 	    (void *)dcp, off));
1143 
1144 	ASSERT(off < st->mem_size);
1145 
1146 	while (off >= dcp->buf_size) {
1147 		off -= dcp->buf_size;
1148 		dcp = dcp->next;
1149 	}
1150 
1151 	dcmn_err3((CE_CONT, "di_mem_addr: new off=%x, return = %p\n",
1152 	    off, (void *)(dcp->buf + off)));
1153 
1154 	return (dcp->buf + off);
1155 }
1156 
1157 /*
1158  * Ideally we would use the whole key to derive the hash
1159  * value. However, the probability that two keys will
1160  * have the same dip (or pip) is very low, so
1161  * hashing by dip (or pip) pointer should suffice.
1162  */
1163 static uint_t
1164 di_hash_byptr(void *arg, mod_hash_key_t key)
1165 {
1166 	struct di_key	*dik = key;
1167 	size_t		rshift;
1168 	void		*ptr;
1169 
1170 	ASSERT(arg == NULL);
1171 
1172 	switch (dik->k_type) {
1173 	case DI_DKEY:
1174 		ptr = dik->k_u.dkey.dk_dip;
1175 		rshift = highbit(sizeof (struct dev_info));
1176 		break;
1177 	case DI_PKEY:
1178 		ptr = dik->k_u.pkey.pk_pip;
1179 		rshift = highbit(sizeof (struct mdi_pathinfo));
1180 		break;
1181 	default:
1182 		panic("devinfo: unknown key type");
1183 		/*NOTREACHED*/
1184 	}
1185 	return (mod_hash_byptr((void *)rshift, ptr));
1186 }
1187 
1188 static void
1189 di_key_dtor(mod_hash_key_t key)
1190 {
1191 	char		*path_addr;
1192 	struct di_key	*dik = key;
1193 
1194 	switch (dik->k_type) {
1195 	case DI_DKEY:
1196 		break;
1197 	case DI_PKEY:
1198 		path_addr = dik->k_u.pkey.pk_path_addr;
1199 		if (path_addr)
1200 			kmem_free(path_addr, strlen(path_addr) + 1);
1201 		break;
1202 	default:
1203 		panic("devinfo: unknown key type");
1204 		/*NOTREACHED*/
1205 	}
1206 
1207 	kmem_free(dik, sizeof (struct di_key));
1208 }
1209 
1210 static int
1211 di_dkey_cmp(struct di_dkey *dk1, struct di_dkey *dk2)
1212 {
1213 	if (dk1->dk_dip !=  dk2->dk_dip)
1214 		return (dk1->dk_dip > dk2->dk_dip ? 1 : -1);
1215 
1216 	if (dk1->dk_major != DDI_MAJOR_T_NONE &&
1217 	    dk2->dk_major != DDI_MAJOR_T_NONE) {
1218 		if (dk1->dk_major !=  dk2->dk_major)
1219 			return (dk1->dk_major > dk2->dk_major ? 1 : -1);
1220 
1221 		if (dk1->dk_inst !=  dk2->dk_inst)
1222 			return (dk1->dk_inst > dk2->dk_inst ? 1 : -1);
1223 	}
1224 
1225 	if (dk1->dk_nodeid != dk2->dk_nodeid)
1226 		return (dk1->dk_nodeid > dk2->dk_nodeid ? 1 : -1);
1227 
1228 	return (0);
1229 }
1230 
1231 static int
1232 di_pkey_cmp(struct di_pkey *pk1, struct di_pkey *pk2)
1233 {
1234 	char	*p1, *p2;
1235 	int	rv;
1236 
1237 	if (pk1->pk_pip !=  pk2->pk_pip)
1238 		return (pk1->pk_pip > pk2->pk_pip ? 1 : -1);
1239 
1240 	p1 = pk1->pk_path_addr;
1241 	p2 = pk2->pk_path_addr;
1242 
1243 	p1 = p1 ? p1 : "";
1244 	p2 = p2 ? p2 : "";
1245 
1246 	rv = strcmp(p1, p2);
1247 	if (rv)
1248 		return (rv > 0  ? 1 : -1);
1249 
1250 	if (pk1->pk_client !=  pk2->pk_client)
1251 		return (pk1->pk_client > pk2->pk_client ? 1 : -1);
1252 
1253 	if (pk1->pk_phci !=  pk2->pk_phci)
1254 		return (pk1->pk_phci > pk2->pk_phci ? 1 : -1);
1255 
1256 	return (0);
1257 }
1258 
1259 static int
1260 di_key_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
1261 {
1262 	struct di_key	*dik1, *dik2;
1263 
1264 	dik1 = key1;
1265 	dik2 = key2;
1266 
1267 	if (dik1->k_type != dik2->k_type) {
1268 		panic("devinfo: mismatched keys");
1269 		/*NOTREACHED*/
1270 	}
1271 
1272 	switch (dik1->k_type) {
1273 	case DI_DKEY:
1274 		return (di_dkey_cmp(&(dik1->k_u.dkey), &(dik2->k_u.dkey)));
1275 	case DI_PKEY:
1276 		return (di_pkey_cmp(&(dik1->k_u.pkey), &(dik2->k_u.pkey)));
1277 	default:
1278 		panic("devinfo: unknown key type");
1279 		/*NOTREACHED*/
1280 	}
1281 }
1282 
1283 /*
1284  * This is the main function that takes a snapshot
1285  */
1286 static di_off_t
1287 di_snapshot(struct di_state *st)
1288 {
1289 	di_off_t	off;
1290 	struct di_all	*all;
1291 	dev_info_t	*rootnode;
1292 	char		buf[80];
1293 	int		plen;
1294 	char		*path;
1295 	vnode_t		*vp;
1296 
1297 	all = DI_ALL_PTR(st);
1298 	dcmn_err((CE_CONT, "Taking a snapshot of devinfo tree...\n"));
1299 
1300 	/*
1301 	 * Verify path before entrusting it to e_ddi_hold_devi_by_path because
1302 	 * some platforms have OBP bugs where executing the NDI_PROMNAME code
1303 	 * path against an invalid path results in panic.  The lookupnameat
1304 	 * is done relative to rootdir without a leading '/' on "devices/"
1305 	 * to force the lookup to occur in the global zone.
1306 	 */
1307 	plen = strlen("devices/") + strlen(all->root_path) + 1;
1308 	path = kmem_alloc(plen, KM_SLEEP);
1309 	(void) snprintf(path, plen, "devices/%s", all->root_path);
1310 	if (lookupnameat(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp, rootdir)) {
1311 		dcmn_err((CE_CONT, "Devinfo node %s not found\n",
1312 		    all->root_path));
1313 		kmem_free(path, plen);
1314 		return (0);
1315 	}
1316 	kmem_free(path, plen);
1317 	VN_RELE(vp);
1318 
1319 	/*
1320 	 * Hold the devinfo node referred by the path.
1321 	 */
1322 	rootnode = e_ddi_hold_devi_by_path(all->root_path, 0);
1323 	if (rootnode == NULL) {
1324 		dcmn_err((CE_CONT, "Devinfo node %s not found\n",
1325 		    all->root_path));
1326 		return (0);
1327 	}
1328 
1329 	(void) snprintf(buf, sizeof (buf),
1330 	    "devinfo registered dips (statep=%p)", (void *)st);
1331 
1332 	st->reg_dip_hash = mod_hash_create_extended(buf, 64,
1333 	    di_key_dtor, mod_hash_null_valdtor, di_hash_byptr,
1334 	    NULL, di_key_cmp, KM_SLEEP);
1335 
1336 
1337 	(void) snprintf(buf, sizeof (buf),
1338 	    "devinfo registered pips (statep=%p)", (void *)st);
1339 
1340 	st->reg_pip_hash = mod_hash_create_extended(buf, 64,
1341 	    di_key_dtor, mod_hash_null_valdtor, di_hash_byptr,
1342 	    NULL, di_key_cmp, KM_SLEEP);
1343 
1344 	/*
1345 	 * copy the device tree
1346 	 */
1347 	off = di_copytree(DEVI(rootnode), &all->top_devinfo, st);
1348 
1349 	if (DINFOPATH & st->command) {
1350 		mdi_walk_vhcis(build_vhci_list, st);
1351 	}
1352 
1353 	ddi_release_devi(rootnode);
1354 
1355 	/*
1356 	 * copy the devnames array
1357 	 */
1358 	all->devnames = off;
1359 	off = di_copydevnm(&all->devnames, st);
1360 
1361 
1362 	/* initialize the hash tables */
1363 	st->lnode_count = 0;
1364 	st->link_count = 0;
1365 
1366 	if (DINFOLYR & st->command) {
1367 		off = di_getlink_data(off, st);
1368 	}
1369 
1370 	/*
1371 	 * Free up hash tables
1372 	 */
1373 	mod_hash_destroy_hash(st->reg_dip_hash);
1374 	mod_hash_destroy_hash(st->reg_pip_hash);
1375 
1376 	/*
1377 	 * Record the timestamp now that we are done with snapshot.
1378 	 *
1379 	 * We compute the checksum later and then only if we cache
1380 	 * the snapshot, since checksumming adds some overhead.
1381 	 * The checksum is checked later if we read the cache file.
1382 	 * from disk.
1383 	 *
1384 	 * Set checksum field to 0 as CRC is calculated with that
1385 	 * field set to 0.
1386 	 */
1387 	all->snapshot_time = ddi_get_time();
1388 	all->cache_checksum = 0;
1389 
1390 	ASSERT(all->snapshot_time != 0);
1391 
1392 	return (off);
1393 }
1394 
1395 /*
1396  * Take a snapshot and clean /etc/devices files if DINFOCLEANUP is set
1397  */
1398 static di_off_t
1399 di_snapshot_and_clean(struct di_state *st)
1400 {
1401 	di_off_t	off;
1402 
1403 	modunload_disable();
1404 	off = di_snapshot(st);
1405 	if (off != 0 && (st->command & DINFOCLEANUP)) {
1406 		ASSERT(DEVICES_FILES_CLEANABLE(st));
1407 		/*
1408 		 * Cleanup /etc/devices files:
1409 		 * In order to accurately account for the system configuration
1410 		 * in /etc/devices files, the appropriate drivers must be
1411 		 * fully configured before the cleanup starts.
1412 		 * So enable modunload only after the cleanup.
1413 		 */
1414 		i_ddi_clean_devices_files();
1415 		/*
1416 		 * Remove backing store nodes for unused devices,
1417 		 * which retain past permissions customizations
1418 		 * and may be undesired for newly configured devices.
1419 		 */
1420 		dev_devices_cleanup();
1421 	}
1422 	modunload_enable();
1423 
1424 	return (off);
1425 }
1426 
1427 /*
1428  * construct vhci linkage in the snapshot.
1429  */
1430 static int
1431 build_vhci_list(dev_info_t *vh_devinfo, void *arg)
1432 {
1433 	struct di_all	*all;
1434 	struct di_node	*me;
1435 	struct di_state	*st;
1436 	di_off_t	off;
1437 	phci_walk_arg_t	pwa;
1438 
1439 	dcmn_err3((CE_CONT, "build_vhci list\n"));
1440 
1441 	dcmn_err3((CE_CONT, "vhci node %s%d\n",
1442 	    ddi_driver_name(vh_devinfo), ddi_get_instance(vh_devinfo)));
1443 
1444 	st = (struct di_state *)arg;
1445 	if (di_dip_find(st, vh_devinfo, &off) != 0) {
1446 		dcmn_err((CE_WARN, "di_dip_find error for the given node\n"));
1447 		return (DDI_WALK_TERMINATE);
1448 	}
1449 
1450 	dcmn_err3((CE_CONT, "st->mem_size: %d vh_devinfo off: 0x%x\n",
1451 	    st->mem_size, off));
1452 
1453 	all = DI_ALL_PTR(st);
1454 	if (all->top_vhci_devinfo == 0) {
1455 		all->top_vhci_devinfo = off;
1456 	} else {
1457 		me = DI_NODE(di_mem_addr(st, all->top_vhci_devinfo));
1458 
1459 		while (me->next_vhci != 0) {
1460 			me = DI_NODE(di_mem_addr(st, me->next_vhci));
1461 		}
1462 
1463 		me->next_vhci = off;
1464 	}
1465 
1466 	pwa.off = off;
1467 	pwa.st = st;
1468 	mdi_vhci_walk_phcis(vh_devinfo, build_phci_list, &pwa);
1469 
1470 	return (DDI_WALK_CONTINUE);
1471 }
1472 
1473 /*
1474  * construct phci linkage for the given vhci in the snapshot.
1475  */
1476 static int
1477 build_phci_list(dev_info_t *ph_devinfo, void *arg)
1478 {
1479 	struct di_node	*vh_di_node;
1480 	struct di_node	*me;
1481 	phci_walk_arg_t	*pwa;
1482 	di_off_t	off;
1483 
1484 	pwa = (phci_walk_arg_t *)arg;
1485 
1486 	dcmn_err3((CE_CONT, "build_phci list for vhci at offset: 0x%x\n",
1487 	    pwa->off));
1488 
1489 	vh_di_node = DI_NODE(di_mem_addr(pwa->st, pwa->off));
1490 	if (di_dip_find(pwa->st, ph_devinfo, &off) != 0) {
1491 		dcmn_err((CE_WARN, "di_dip_find error for the given node\n"));
1492 		return (DDI_WALK_TERMINATE);
1493 	}
1494 
1495 	dcmn_err3((CE_CONT, "phci node %s%d, at offset 0x%x\n",
1496 	    ddi_driver_name(ph_devinfo), ddi_get_instance(ph_devinfo), off));
1497 
1498 	if (vh_di_node->top_phci == 0) {
1499 		vh_di_node->top_phci = off;
1500 		return (DDI_WALK_CONTINUE);
1501 	}
1502 
1503 	me = DI_NODE(di_mem_addr(pwa->st, vh_di_node->top_phci));
1504 
1505 	while (me->next_phci != 0) {
1506 		me = DI_NODE(di_mem_addr(pwa->st, me->next_phci));
1507 	}
1508 	me->next_phci = off;
1509 
1510 	return (DDI_WALK_CONTINUE);
1511 }
1512 
1513 /*
1514  * Assumes all devinfo nodes in device tree have been snapshotted
1515  */
1516 static void
1517 snap_driver_list(struct di_state *st, struct devnames *dnp, di_off_t *off_p)
1518 {
1519 	struct dev_info	*node;
1520 	struct di_node	*me;
1521 	di_off_t	off;
1522 
1523 	ASSERT(mutex_owned(&dnp->dn_lock));
1524 
1525 	node = DEVI(dnp->dn_head);
1526 	for (; node; node = node->devi_next) {
1527 		if (di_dip_find(st, (dev_info_t *)node, &off) != 0)
1528 			continue;
1529 
1530 		ASSERT(off > 0);
1531 		me = DI_NODE(di_mem_addr(st, off));
1532 		ASSERT(me->next == 0 || me->next == -1);
1533 		/*
1534 		 * Only nodes which were BOUND when they were
1535 		 * snapshotted will be added to per-driver list.
1536 		 */
1537 		if (me->next != -1)
1538 			continue;
1539 
1540 		*off_p = off;
1541 		off_p = &me->next;
1542 	}
1543 
1544 	*off_p = 0;
1545 }
1546 
1547 /*
1548  * Copy the devnames array, so we have a list of drivers in the snapshot.
1549  * Also makes it possible to locate the per-driver devinfo nodes.
1550  */
1551 static di_off_t
1552 di_copydevnm(di_off_t *off_p, struct di_state *st)
1553 {
1554 	int		i;
1555 	di_off_t	off;
1556 	size_t		size;
1557 	struct di_devnm	*dnp;
1558 
1559 	dcmn_err2((CE_CONT, "di_copydevnm: *off_p = %p\n", (void *)off_p));
1560 
1561 	/*
1562 	 * make sure there is some allocated memory
1563 	 */
1564 	size = devcnt * sizeof (struct di_devnm);
1565 	*off_p = off = di_checkmem(st, *off_p, size);
1566 	dnp = DI_DEVNM(di_mem_addr(st, off));
1567 	off += size;
1568 
1569 	dcmn_err((CE_CONT, "Start copying devnamesp[%d] at offset 0x%x\n",
1570 	    devcnt, off));
1571 
1572 	for (i = 0; i < devcnt; i++) {
1573 		if (devnamesp[i].dn_name == NULL) {
1574 			continue;
1575 		}
1576 
1577 		/*
1578 		 * dn_name is not freed during driver unload or removal.
1579 		 *
1580 		 * There is a race condition when make_devname() changes
1581 		 * dn_name during our strcpy. This should be rare since
1582 		 * only add_drv does this. At any rate, we never had a
1583 		 * problem with ddi_name_to_major(), which should have
1584 		 * the same problem.
1585 		 */
1586 		dcmn_err2((CE_CONT, "di_copydevnm: %s%d, off=%x\n",
1587 		    devnamesp[i].dn_name, devnamesp[i].dn_instance, off));
1588 
1589 		size = strlen(devnamesp[i].dn_name) + 1;
1590 		dnp[i].name = off = di_checkmem(st, off, size);
1591 		(void) strcpy((char *)di_mem_addr(st, off),
1592 		    devnamesp[i].dn_name);
1593 		off += size;
1594 
1595 		mutex_enter(&devnamesp[i].dn_lock);
1596 
1597 		/*
1598 		 * Snapshot per-driver node list
1599 		 */
1600 		snap_driver_list(st, &devnamesp[i], &dnp[i].head);
1601 
1602 		/*
1603 		 * This is not used by libdevinfo, leave it for now
1604 		 */
1605 		dnp[i].flags = devnamesp[i].dn_flags;
1606 		dnp[i].instance = devnamesp[i].dn_instance;
1607 
1608 		/*
1609 		 * get global properties
1610 		 */
1611 		if ((DINFOPROP & st->command) &&
1612 		    devnamesp[i].dn_global_prop_ptr) {
1613 			dnp[i].global_prop = off;
1614 			off = di_getprop(DI_PROP_GLB_LIST,
1615 			    &devnamesp[i].dn_global_prop_ptr->prop_list,
1616 			    &dnp[i].global_prop, st, NULL);
1617 		}
1618 
1619 		/*
1620 		 * Bit encode driver ops: & bus_ops, cb_ops, & cb_ops->cb_str
1621 		 */
1622 		if (CB_DRV_INSTALLED(devopsp[i])) {
1623 			if (devopsp[i]->devo_cb_ops) {
1624 				dnp[i].ops |= DI_CB_OPS;
1625 				if (devopsp[i]->devo_cb_ops->cb_str)
1626 					dnp[i].ops |= DI_STREAM_OPS;
1627 			}
1628 			if (NEXUS_DRV(devopsp[i])) {
1629 				dnp[i].ops |= DI_BUS_OPS;
1630 			}
1631 		}
1632 
1633 		mutex_exit(&devnamesp[i].dn_lock);
1634 	}
1635 
1636 	dcmn_err((CE_CONT, "End copying devnamesp at offset 0x%x\n", off));
1637 
1638 	return (off);
1639 }
1640 
1641 /*
1642  * Copy the kernel devinfo tree. The tree and the devnames array forms
1643  * the entire snapshot (see also di_copydevnm).
1644  */
1645 static di_off_t
1646 di_copytree(struct dev_info *root, di_off_t *off_p, struct di_state *st)
1647 {
1648 	di_off_t	off;
1649 	struct dev_info	*node;
1650 	struct di_stack	*dsp = kmem_zalloc(sizeof (struct di_stack), KM_SLEEP);
1651 
1652 	dcmn_err((CE_CONT, "di_copytree: root = %p, *off_p = %x\n",
1653 	    (void *)root, *off_p));
1654 
1655 	/* force attach drivers */
1656 	if (i_ddi_devi_attached((dev_info_t *)root) &&
1657 	    (st->command & DINFOSUBTREE) && (st->command & DINFOFORCE)) {
1658 		(void) ndi_devi_config((dev_info_t *)root,
1659 		    NDI_CONFIG | NDI_DEVI_PERSIST | NDI_NO_EVENT |
1660 		    NDI_DRV_CONF_REPROBE);
1661 	}
1662 
1663 	/*
1664 	 * Push top_devinfo onto a stack
1665 	 *
1666 	 * The stack is necessary to avoid recursion, which can overrun
1667 	 * the kernel stack.
1668 	 */
1669 	PUSH_STACK(dsp, root, off_p);
1670 
1671 	/*
1672 	 * As long as there is a node on the stack, copy the node.
1673 	 * di_copynode() is responsible for pushing and popping
1674 	 * child and sibling nodes on the stack.
1675 	 */
1676 	while (!EMPTY_STACK(dsp)) {
1677 		node = TOP_NODE(dsp);
1678 		off = di_copynode(node, dsp, st);
1679 	}
1680 
1681 	/*
1682 	 * Free the stack structure
1683 	 */
1684 	kmem_free(dsp, sizeof (struct di_stack));
1685 
1686 	return (off);
1687 }
1688 
1689 /*
1690  * This is the core function, which copies all data associated with a single
1691  * node into the snapshot. The amount of information is determined by the
1692  * ioctl command.
1693  */
1694 static di_off_t
1695 di_copynode(struct dev_info *node, struct di_stack *dsp, struct di_state *st)
1696 {
1697 	di_off_t	off;
1698 	struct di_node	*me;
1699 	size_t		size;	struct dev_info *n;
1700 
1701 	dcmn_err2((CE_CONT, "di_copynode: depth = %x\n", dsp->depth));
1702 	ASSERT((node != NULL) && (node == TOP_NODE(dsp)));
1703 
1704 	/*
1705 	 * check memory usage, and fix offsets accordingly.
1706 	 */
1707 	size = sizeof (struct di_node);
1708 	*(TOP_OFFSET(dsp)) = off = di_checkmem(st, *(TOP_OFFSET(dsp)), size);
1709 	me = DI_NODE(di_mem_addr(st, off));
1710 	me->self = off;
1711 	off += size;
1712 
1713 	dcmn_err((CE_CONT, "copy node %s, instance #%d, at offset 0x%x\n",
1714 	    node->devi_node_name, node->devi_instance, off));
1715 
1716 	/*
1717 	 * Node parameters:
1718 	 * self		-- offset of current node within snapshot
1719 	 * nodeid	-- pointer to PROM node (tri-valued)
1720 	 * state	-- hot plugging device state
1721 	 * node_state	-- devinfo node state
1722 	 */
1723 	me->instance = node->devi_instance;
1724 	me->nodeid = node->devi_nodeid;
1725 	me->node_class = node->devi_node_class;
1726 	me->attributes = node->devi_node_attributes;
1727 	me->state = node->devi_state;
1728 	me->flags = node->devi_flags;
1729 	me->node_state = node->devi_node_state;
1730 	me->next_vhci = 0;		/* Filled up by build_vhci_list. */
1731 	me->top_phci = 0;		/* Filled up by build_phci_list. */
1732 	me->next_phci = 0;		/* Filled up by build_phci_list. */
1733 	me->multipath_component = MULTIPATH_COMPONENT_NONE; /* set default. */
1734 	me->user_private_data = NULL;
1735 
1736 	/*
1737 	 * Get parent's offset in snapshot from the stack
1738 	 * and store it in the current node
1739 	 */
1740 	if (dsp->depth > 1) {
1741 		me->parent = *(PARENT_OFFSET(dsp));
1742 	}
1743 
1744 	/*
1745 	 * Save the offset of this di_node in a hash table.
1746 	 * This is used later to resolve references to this
1747 	 * dip from other parts of the tree (per-driver list,
1748 	 * multipathing linkages, layered usage linkages).
1749 	 * The key used for the hash table is derived from
1750 	 * information in the dip.
1751 	 */
1752 	di_register_dip(st, (dev_info_t *)node, me->self);
1753 
1754 #ifdef	DEVID_COMPATIBILITY
1755 	/* check for devid as property marker */
1756 	if (node->devi_devid_str) {
1757 		ddi_devid_t	devid;
1758 
1759 		/*
1760 		 * The devid is now represented as a property. For
1761 		 * compatibility with di_devid() interface in libdevinfo we
1762 		 * must return it as a binary structure in the snapshot. When
1763 		 * (if) di_devid() is removed from libdevinfo then the code
1764 		 * related to DEVID_COMPATIBILITY can be removed.
1765 		 */
1766 		if (ddi_devid_str_decode(node->devi_devid_str, &devid, NULL) ==
1767 		    DDI_SUCCESS) {
1768 			size = ddi_devid_sizeof(devid);
1769 			off = di_checkmem(st, off, size);
1770 			me->devid = off;
1771 			bcopy(devid, di_mem_addr(st, off), size);
1772 			off += size;
1773 			ddi_devid_free(devid);
1774 		}
1775 	}
1776 #endif	/* DEVID_COMPATIBILITY */
1777 
1778 	if (node->devi_node_name) {
1779 		size = strlen(node->devi_node_name) + 1;
1780 		me->node_name = off = di_checkmem(st, off, size);
1781 		(void) strcpy(di_mem_addr(st, off), node->devi_node_name);
1782 		off += size;
1783 	}
1784 
1785 	if (node->devi_compat_names && (node->devi_compat_length > 1)) {
1786 		size = node->devi_compat_length;
1787 		me->compat_names = off = di_checkmem(st, off, size);
1788 		me->compat_length = (int)size;
1789 		bcopy(node->devi_compat_names, di_mem_addr(st, off), size);
1790 		off += size;
1791 	}
1792 
1793 	if (node->devi_addr) {
1794 		size = strlen(node->devi_addr) + 1;
1795 		me->address = off = di_checkmem(st, off, size);
1796 		(void) strcpy(di_mem_addr(st, off), node->devi_addr);
1797 		off += size;
1798 	}
1799 
1800 	if (node->devi_binding_name) {
1801 		size = strlen(node->devi_binding_name) + 1;
1802 		me->bind_name = off = di_checkmem(st, off, size);
1803 		(void) strcpy(di_mem_addr(st, off), node->devi_binding_name);
1804 		off += size;
1805 	}
1806 
1807 	me->drv_major = node->devi_major;
1808 
1809 	/*
1810 	 * If the dip is BOUND, set the next pointer of the
1811 	 * per-instance list to -1, indicating that it is yet to be resolved.
1812 	 * This will be resolved later in snap_driver_list().
1813 	 */
1814 	if (me->drv_major != -1) {
1815 		me->next = -1;
1816 	} else {
1817 		me->next = 0;
1818 	}
1819 
1820 	/*
1821 	 * An optimization to skip mutex_enter when not needed.
1822 	 */
1823 	if (!((DINFOMINOR | DINFOPROP | DINFOPATH) & st->command)) {
1824 		goto priv_data;
1825 	}
1826 
1827 	/*
1828 	 * LOCKING: We already have an active ndi_devi_enter to gather the
1829 	 * minor data, and we will take devi_lock to gather properties as
1830 	 * needed off di_getprop.
1831 	 */
1832 	if (!(DINFOMINOR & st->command)) {
1833 		goto path;
1834 	}
1835 
1836 	ASSERT(DEVI_BUSY_OWNED(node));
1837 	if (node->devi_minor) {		/* minor data */
1838 		me->minor_data = off;
1839 		off = di_getmdata(node->devi_minor, &me->minor_data,
1840 		    me->self, st);
1841 	}
1842 
1843 path:
1844 	if (!(DINFOPATH & st->command)) {
1845 		goto property;
1846 	}
1847 
1848 	if (MDI_VHCI(node)) {
1849 		me->multipath_component = MULTIPATH_COMPONENT_VHCI;
1850 	}
1851 
1852 	if (MDI_CLIENT(node)) {
1853 		me->multipath_component = MULTIPATH_COMPONENT_CLIENT;
1854 		me->multipath_client = off;
1855 		off = di_getpath_data((dev_info_t *)node, &me->multipath_client,
1856 		    me->self, st, 1);
1857 		dcmn_err((CE_WARN, "me->multipath_client = %x for node %p "
1858 		    "component type = %d.  off=%d",
1859 		    me->multipath_client,
1860 		    (void *)node, node->devi_mdi_component, off));
1861 	}
1862 
1863 	if (MDI_PHCI(node)) {
1864 		me->multipath_component = MULTIPATH_COMPONENT_PHCI;
1865 		me->multipath_phci = off;
1866 		off = di_getpath_data((dev_info_t *)node, &me->multipath_phci,
1867 		    me->self, st, 0);
1868 		dcmn_err((CE_WARN, "me->multipath_phci = %x for node %p "
1869 		    "component type = %d.  off=%d",
1870 		    me->multipath_phci,
1871 		    (void *)node, node->devi_mdi_component, off));
1872 	}
1873 
1874 property:
1875 	if (!(DINFOPROP & st->command)) {
1876 		goto priv_data;
1877 	}
1878 
1879 	if (node->devi_drv_prop_ptr) {	/* driver property list */
1880 		me->drv_prop = off;
1881 		off = di_getprop(DI_PROP_DRV_LIST, &node->devi_drv_prop_ptr,
1882 		    &me->drv_prop, st, node);
1883 	}
1884 
1885 	if (node->devi_sys_prop_ptr) {	/* system property list */
1886 		me->sys_prop = off;
1887 		off = di_getprop(DI_PROP_SYS_LIST, &node->devi_sys_prop_ptr,
1888 		    &me->sys_prop, st, node);
1889 	}
1890 
1891 	if (node->devi_hw_prop_ptr) {	/* hardware property list */
1892 		me->hw_prop = off;
1893 		off = di_getprop(DI_PROP_HW_LIST, &node->devi_hw_prop_ptr,
1894 		    &me->hw_prop, st, node);
1895 	}
1896 
1897 	if (node->devi_global_prop_list == NULL) {
1898 		me->glob_prop = (di_off_t)-1;	/* not global property */
1899 	} else {
1900 		/*
1901 		 * Make copy of global property list if this devinfo refers
1902 		 * global properties different from what's on the devnames
1903 		 * array. It can happen if there has been a forced
1904 		 * driver.conf update. See mod_drv(1M).
1905 		 */
1906 		ASSERT(me->drv_major != -1);
1907 		if (node->devi_global_prop_list !=
1908 		    devnamesp[me->drv_major].dn_global_prop_ptr) {
1909 			me->glob_prop = off;
1910 			off = di_getprop(DI_PROP_GLB_LIST,
1911 			    &node->devi_global_prop_list->prop_list,
1912 			    &me->glob_prop, st, node);
1913 		}
1914 	}
1915 
1916 priv_data:
1917 	if (!(DINFOPRIVDATA & st->command)) {
1918 		goto pm_info;
1919 	}
1920 
1921 	if (ddi_get_parent_data((dev_info_t *)node) != NULL) {
1922 		me->parent_data = off;
1923 		off = di_getppdata(node, &me->parent_data, st);
1924 	}
1925 
1926 	if (ddi_get_driver_private((dev_info_t *)node) != NULL) {
1927 		me->driver_data = off;
1928 		off = di_getdpdata(node, &me->driver_data, st);
1929 	}
1930 
1931 pm_info: /* NOT implemented */
1932 
1933 subtree:
1934 	/* keep the stack aligned */
1935 	off = DI_ALIGN(off);
1936 
1937 	if (!(DINFOSUBTREE & st->command)) {
1938 		POP_STACK(dsp);
1939 		return (off);
1940 	}
1941 
1942 child:
1943 	/*
1944 	 * If there is a visible child--push child onto stack.
1945 	 * Hold the parent (me) busy while doing so.
1946 	 */
1947 	if ((n = node->devi_child) != NULL) {
1948 		/* skip hidden nodes */
1949 		while (n && ndi_dev_is_hidden_node((dev_info_t *)n))
1950 			n = n->devi_sibling;
1951 		if (n) {
1952 			me->child = off;
1953 			PUSH_STACK(dsp, n, &me->child);
1954 			return (me->child);
1955 		}
1956 	}
1957 
1958 sibling:
1959 	/*
1960 	 * Done with any child nodes, unroll the stack till a visible
1961 	 * sibling of a parent node is found or root node is reached.
1962 	 */
1963 	POP_STACK(dsp);
1964 	while (!EMPTY_STACK(dsp)) {
1965 		if ((n = node->devi_sibling) != NULL) {
1966 			/* skip hidden nodes */
1967 			while (n && ndi_dev_is_hidden_node((dev_info_t *)n))
1968 				n = n->devi_sibling;
1969 			if (n) {
1970 				me->sibling = DI_ALIGN(off);
1971 				PUSH_STACK(dsp, n, &me->sibling);
1972 				return (me->sibling);
1973 			}
1974 		}
1975 		node = TOP_NODE(dsp);
1976 		me = DI_NODE(di_mem_addr(st, *(TOP_OFFSET(dsp))));
1977 		POP_STACK(dsp);
1978 	}
1979 
1980 	/*
1981 	 * DONE with all nodes
1982 	 */
1983 	return (off);
1984 }
1985 
1986 static i_lnode_t *
1987 i_lnode_alloc(int modid)
1988 {
1989 	i_lnode_t	*i_lnode;
1990 
1991 	i_lnode = kmem_zalloc(sizeof (i_lnode_t), KM_SLEEP);
1992 
1993 	ASSERT(modid != -1);
1994 	i_lnode->modid = modid;
1995 
1996 	return (i_lnode);
1997 }
1998 
1999 static void
2000 i_lnode_free(i_lnode_t *i_lnode)
2001 {
2002 	kmem_free(i_lnode, sizeof (i_lnode_t));
2003 }
2004 
2005 static void
2006 i_lnode_check_free(i_lnode_t *i_lnode)
2007 {
2008 	/* This lnode and its dip must have been snapshotted */
2009 	ASSERT(i_lnode->self > 0);
2010 	ASSERT(i_lnode->di_node->self > 0);
2011 
2012 	/* at least 1 link (in or out) must exist for this lnode */
2013 	ASSERT(i_lnode->link_in || i_lnode->link_out);
2014 
2015 	i_lnode_free(i_lnode);
2016 }
2017 
2018 static i_link_t *
2019 i_link_alloc(int spec_type)
2020 {
2021 	i_link_t	*i_link;
2022 
2023 	i_link = kmem_zalloc(sizeof (i_link_t), KM_SLEEP);
2024 	i_link->spec_type = spec_type;
2025 
2026 	return (i_link);
2027 }
2028 
2029 static void
2030 i_link_check_free(i_link_t *i_link)
2031 {
2032 	/* This link must have been snapshotted */
2033 	ASSERT(i_link->self > 0);
2034 
2035 	/* Both endpoint lnodes must exist for this link */
2036 	ASSERT(i_link->src_lnode);
2037 	ASSERT(i_link->tgt_lnode);
2038 
2039 	kmem_free(i_link, sizeof (i_link_t));
2040 }
2041 
2042 /*ARGSUSED*/
2043 static uint_t
2044 i_lnode_hashfunc(void *arg, mod_hash_key_t key)
2045 {
2046 	i_lnode_t	*i_lnode = (i_lnode_t *)key;
2047 	struct di_node	*ptr;
2048 	dev_t		dev;
2049 
2050 	dev = i_lnode->devt;
2051 	if (dev != DDI_DEV_T_NONE)
2052 		return (i_lnode->modid + getminor(dev) + getmajor(dev));
2053 
2054 	ptr = i_lnode->di_node;
2055 	ASSERT(ptr->self > 0);
2056 	if (ptr) {
2057 		uintptr_t k = (uintptr_t)ptr;
2058 		k >>= (int)highbit(sizeof (struct di_node));
2059 		return ((uint_t)k);
2060 	}
2061 
2062 	return (i_lnode->modid);
2063 }
2064 
2065 static int
2066 i_lnode_cmp(void *arg1, void *arg2)
2067 {
2068 	i_lnode_t	*i_lnode1 = (i_lnode_t *)arg1;
2069 	i_lnode_t	*i_lnode2 = (i_lnode_t *)arg2;
2070 
2071 	if (i_lnode1->modid != i_lnode2->modid) {
2072 		return ((i_lnode1->modid < i_lnode2->modid) ? -1 : 1);
2073 	}
2074 
2075 	if (i_lnode1->di_node != i_lnode2->di_node)
2076 		return ((i_lnode1->di_node < i_lnode2->di_node) ? -1 : 1);
2077 
2078 	if (i_lnode1->devt != i_lnode2->devt)
2079 		return ((i_lnode1->devt < i_lnode2->devt) ? -1 : 1);
2080 
2081 	return (0);
2082 }
2083 
2084 /*
2085  * An lnode represents a {dip, dev_t} tuple. A link represents a
2086  * {src_lnode, tgt_lnode, spec_type} tuple.
2087  * The following callback assumes that LDI framework ref-counts the
2088  * src_dip and tgt_dip while invoking this callback.
2089  */
2090 static int
2091 di_ldi_callback(const ldi_usage_t *ldi_usage, void *arg)
2092 {
2093 	struct di_state	*st = (struct di_state *)arg;
2094 	i_lnode_t	*src_lnode, *tgt_lnode, *i_lnode;
2095 	i_link_t	**i_link_next, *i_link;
2096 	di_off_t	soff, toff;
2097 	mod_hash_val_t	nodep = NULL;
2098 	int		res;
2099 
2100 	/*
2101 	 * if the source or target of this device usage information doesn't
2102 	 * correspond to a device node then we don't report it via
2103 	 * libdevinfo so return.
2104 	 */
2105 	if ((ldi_usage->src_dip == NULL) || (ldi_usage->tgt_dip == NULL))
2106 		return (LDI_USAGE_CONTINUE);
2107 
2108 	ASSERT(e_ddi_devi_holdcnt(ldi_usage->src_dip));
2109 	ASSERT(e_ddi_devi_holdcnt(ldi_usage->tgt_dip));
2110 
2111 	/*
2112 	 * Skip the ldi_usage if either src or tgt dip is not in the
2113 	 * snapshot. This saves us from pruning bad lnodes/links later.
2114 	 */
2115 	if (di_dip_find(st, ldi_usage->src_dip, &soff) != 0)
2116 		return (LDI_USAGE_CONTINUE);
2117 	if (di_dip_find(st, ldi_usage->tgt_dip, &toff) != 0)
2118 		return (LDI_USAGE_CONTINUE);
2119 
2120 	ASSERT(soff > 0);
2121 	ASSERT(toff > 0);
2122 
2123 	/*
2124 	 * allocate an i_lnode and add it to the lnode hash
2125 	 * if it is not already present. For this particular
2126 	 * link the lnode is a source, but it may
2127 	 * participate as tgt or src in any number of layered
2128 	 * operations - so it may already be in the hash.
2129 	 */
2130 	i_lnode = i_lnode_alloc(ldi_usage->src_modid);
2131 	i_lnode->di_node = DI_NODE(di_mem_addr(st, soff));
2132 	i_lnode->devt = ldi_usage->src_devt;
2133 
2134 	res = mod_hash_find(st->lnode_hash, i_lnode, &nodep);
2135 	if (res == MH_ERR_NOTFOUND) {
2136 		/*
2137 		 * new i_lnode
2138 		 * add it to the hash and increment the lnode count
2139 		 */
2140 		res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode);
2141 		ASSERT(res == 0);
2142 		st->lnode_count++;
2143 		src_lnode = i_lnode;
2144 	} else {
2145 		/* this i_lnode already exists in the lnode_hash */
2146 		i_lnode_free(i_lnode);
2147 		src_lnode = (i_lnode_t *)nodep;
2148 	}
2149 
2150 	/*
2151 	 * allocate a tgt i_lnode and add it to the lnode hash
2152 	 */
2153 	i_lnode = i_lnode_alloc(ldi_usage->tgt_modid);
2154 	i_lnode->di_node = DI_NODE(di_mem_addr(st, toff));
2155 	i_lnode->devt = ldi_usage->tgt_devt;
2156 
2157 	res = mod_hash_find(st->lnode_hash, i_lnode, &nodep);
2158 	if (res == MH_ERR_NOTFOUND) {
2159 		/*
2160 		 * new i_lnode
2161 		 * add it to the hash and increment the lnode count
2162 		 */
2163 		res = mod_hash_insert(st->lnode_hash, i_lnode, i_lnode);
2164 		ASSERT(res == 0);
2165 		st->lnode_count++;
2166 		tgt_lnode = i_lnode;
2167 	} else {
2168 		/* this i_lnode already exists in the lnode_hash */
2169 		i_lnode_free(i_lnode);
2170 		tgt_lnode = (i_lnode_t *)nodep;
2171 	}
2172 
2173 	/*
2174 	 * allocate a i_link
2175 	 */
2176 	i_link = i_link_alloc(ldi_usage->tgt_spec_type);
2177 	i_link->src_lnode = src_lnode;
2178 	i_link->tgt_lnode = tgt_lnode;
2179 
2180 	/*
2181 	 * add this link onto the src i_lnodes outbound i_link list
2182 	 */
2183 	i_link_next = &(src_lnode->link_out);
2184 	while (*i_link_next != NULL) {
2185 		if ((i_lnode_cmp(tgt_lnode, (*i_link_next)->tgt_lnode) == 0) &&
2186 		    (i_link->spec_type == (*i_link_next)->spec_type)) {
2187 			/* this link already exists */
2188 			kmem_free(i_link, sizeof (i_link_t));
2189 			return (LDI_USAGE_CONTINUE);
2190 		}
2191 		i_link_next = &((*i_link_next)->src_link_next);
2192 	}
2193 	*i_link_next = i_link;
2194 
2195 	/*
2196 	 * add this link onto the tgt i_lnodes inbound i_link list
2197 	 */
2198 	i_link_next = &(tgt_lnode->link_in);
2199 	while (*i_link_next != NULL) {
2200 		ASSERT(i_lnode_cmp(src_lnode, (*i_link_next)->src_lnode) != 0);
2201 		i_link_next = &((*i_link_next)->tgt_link_next);
2202 	}
2203 	*i_link_next = i_link;
2204 
2205 	/*
2206 	 * add this i_link to the link hash
2207 	 */
2208 	res = mod_hash_insert(st->link_hash, i_link, i_link);
2209 	ASSERT(res == 0);
2210 	st->link_count++;
2211 
2212 	return (LDI_USAGE_CONTINUE);
2213 }
2214 
2215 struct i_layer_data {
2216 	struct di_state	*st;
2217 	int		lnode_count;
2218 	int		link_count;
2219 	di_off_t	lnode_off;
2220 	di_off_t	link_off;
2221 };
2222 
2223 /*ARGSUSED*/
2224 static uint_t
2225 i_link_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2226 {
2227 	i_link_t		*i_link  = (i_link_t *)key;
2228 	struct i_layer_data	*data = arg;
2229 	struct di_link		*me;
2230 	struct di_lnode		*melnode;
2231 	struct di_node		*medinode;
2232 
2233 	ASSERT(i_link->self == 0);
2234 
2235 	i_link->self = data->link_off +
2236 	    (data->link_count * sizeof (struct di_link));
2237 	data->link_count++;
2238 
2239 	ASSERT(data->link_off > 0 && data->link_count > 0);
2240 	ASSERT(data->lnode_count == data->st->lnode_count); /* lnodes done */
2241 	ASSERT(data->link_count <= data->st->link_count);
2242 
2243 	/* fill in fields for the di_link snapshot */
2244 	me = DI_LINK(di_mem_addr(data->st, i_link->self));
2245 	me->self = i_link->self;
2246 	me->spec_type = i_link->spec_type;
2247 
2248 	/*
2249 	 * The src_lnode and tgt_lnode i_lnode_t for this i_link_t
2250 	 * are created during the LDI table walk. Since we are
2251 	 * walking the link hash, the lnode hash has already been
2252 	 * walked and the lnodes have been snapshotted. Save lnode
2253 	 * offsets.
2254 	 */
2255 	me->src_lnode = i_link->src_lnode->self;
2256 	me->tgt_lnode = i_link->tgt_lnode->self;
2257 
2258 	/*
2259 	 * Save this link's offset in the src_lnode snapshot's link_out
2260 	 * field
2261 	 */
2262 	melnode = DI_LNODE(di_mem_addr(data->st, me->src_lnode));
2263 	me->src_link_next = melnode->link_out;
2264 	melnode->link_out = me->self;
2265 
2266 	/*
2267 	 * Put this link on the tgt_lnode's link_in field
2268 	 */
2269 	melnode = DI_LNODE(di_mem_addr(data->st, me->tgt_lnode));
2270 	me->tgt_link_next = melnode->link_in;
2271 	melnode->link_in = me->self;
2272 
2273 	/*
2274 	 * An i_lnode_t is only created if the corresponding dip exists
2275 	 * in the snapshot. A pointer to the di_node is saved in the
2276 	 * i_lnode_t when it is allocated. For this link, get the di_node
2277 	 * for the source lnode. Then put the link on the di_node's list
2278 	 * of src links
2279 	 */
2280 	medinode = i_link->src_lnode->di_node;
2281 	me->src_node_next = medinode->src_links;
2282 	medinode->src_links = me->self;
2283 
2284 	/*
2285 	 * Put this link on the tgt_links list of the target
2286 	 * dip.
2287 	 */
2288 	medinode = i_link->tgt_lnode->di_node;
2289 	me->tgt_node_next = medinode->tgt_links;
2290 	medinode->tgt_links = me->self;
2291 
2292 	return (MH_WALK_CONTINUE);
2293 }
2294 
2295 /*ARGSUSED*/
2296 static uint_t
2297 i_lnode_walker(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
2298 {
2299 	i_lnode_t		*i_lnode = (i_lnode_t *)key;
2300 	struct i_layer_data	*data = arg;
2301 	struct di_lnode		*me;
2302 	struct di_node		*medinode;
2303 
2304 	ASSERT(i_lnode->self == 0);
2305 
2306 	i_lnode->self = data->lnode_off +
2307 	    (data->lnode_count * sizeof (struct di_lnode));
2308 	data->lnode_count++;
2309 
2310 	ASSERT(data->lnode_off > 0 && data->lnode_count > 0);
2311 	ASSERT(data->link_count == 0); /* links not done yet */
2312 	ASSERT(data->lnode_count <= data->st->lnode_count);
2313 
2314 	/* fill in fields for the di_lnode snapshot */
2315 	me = DI_LNODE(di_mem_addr(data->st, i_lnode->self));
2316 	me->self = i_lnode->self;
2317 
2318 	if (i_lnode->devt == DDI_DEV_T_NONE) {
2319 		me->dev_major = DDI_MAJOR_T_NONE;
2320 		me->dev_minor = DDI_MAJOR_T_NONE;
2321 	} else {
2322 		me->dev_major = getmajor(i_lnode->devt);
2323 		me->dev_minor = getminor(i_lnode->devt);
2324 	}
2325 
2326 	/*
2327 	 * The dip corresponding to this lnode must exist in
2328 	 * the snapshot or we wouldn't have created the i_lnode_t
2329 	 * during LDI walk. Save the offset of the dip.
2330 	 */
2331 	ASSERT(i_lnode->di_node && i_lnode->di_node->self > 0);
2332 	me->node = i_lnode->di_node->self;
2333 
2334 	/*
2335 	 * There must be at least one link in or out of this lnode
2336 	 * or we wouldn't have created it. These fields will be set
2337 	 * during the link hash walk.
2338 	 */
2339 	ASSERT((i_lnode->link_in != NULL) || (i_lnode->link_out != NULL));
2340 
2341 	/*
2342 	 * set the offset of the devinfo node associated with this
2343 	 * lnode. Also update the node_next next pointer.  this pointer
2344 	 * is set if there are multiple lnodes associated with the same
2345 	 * devinfo node.  (could occure when multiple minor nodes
2346 	 * are open for one device, etc.)
2347 	 */
2348 	medinode = i_lnode->di_node;
2349 	me->node_next = medinode->lnodes;
2350 	medinode->lnodes = me->self;
2351 
2352 	return (MH_WALK_CONTINUE);
2353 }
2354 
2355 static di_off_t
2356 di_getlink_data(di_off_t off, struct di_state *st)
2357 {
2358 	struct i_layer_data	data = {0};
2359 	size_t			size;
2360 
2361 	dcmn_err2((CE_CONT, "di_copylyr: off = %x\n", off));
2362 
2363 	st->lnode_hash = mod_hash_create_extended("di_lnode_hash", 32,
2364 	    mod_hash_null_keydtor, (void (*)(mod_hash_val_t))i_lnode_check_free,
2365 	    i_lnode_hashfunc, NULL, i_lnode_cmp, KM_SLEEP);
2366 
2367 	st->link_hash = mod_hash_create_ptrhash("di_link_hash", 32,
2368 	    (void (*)(mod_hash_val_t))i_link_check_free, sizeof (i_link_t));
2369 
2370 	/* get driver layering information */
2371 	(void) ldi_usage_walker(st, di_ldi_callback);
2372 
2373 	/* check if there is any link data to include in the snapshot */
2374 	if (st->lnode_count == 0) {
2375 		ASSERT(st->link_count == 0);
2376 		goto out;
2377 	}
2378 
2379 	ASSERT(st->link_count != 0);
2380 
2381 	/* get a pointer to snapshot memory for all the di_lnodes */
2382 	size = sizeof (struct di_lnode) * st->lnode_count;
2383 	data.lnode_off = off = di_checkmem(st, off, size);
2384 	off += size;
2385 
2386 	/* get a pointer to snapshot memory for all the di_links */
2387 	size = sizeof (struct di_link) * st->link_count;
2388 	data.link_off = off = di_checkmem(st, off, size);
2389 	off += size;
2390 
2391 	data.lnode_count = data.link_count = 0;
2392 	data.st = st;
2393 
2394 	/*
2395 	 * We have lnodes and links that will go into the
2396 	 * snapshot, so let's walk the respective hashes
2397 	 * and snapshot them. The various linkages are
2398 	 * also set up during the walk.
2399 	 */
2400 	mod_hash_walk(st->lnode_hash, i_lnode_walker, (void *)&data);
2401 	ASSERT(data.lnode_count == st->lnode_count);
2402 
2403 	mod_hash_walk(st->link_hash, i_link_walker, (void *)&data);
2404 	ASSERT(data.link_count == st->link_count);
2405 
2406 out:
2407 	/* free up the i_lnodes and i_links used to create the snapshot */
2408 	mod_hash_destroy_hash(st->lnode_hash);
2409 	mod_hash_destroy_hash(st->link_hash);
2410 	st->lnode_count = 0;
2411 	st->link_count = 0;
2412 
2413 	return (off);
2414 }
2415 
2416 
2417 /*
2418  * Copy all minor data nodes attached to a devinfo node into the snapshot.
2419  * It is called from di_copynode with active ndi_devi_enter to protect
2420  * the list of minor nodes.
2421  */
2422 static di_off_t
2423 di_getmdata(struct ddi_minor_data *mnode, di_off_t *off_p, di_off_t node,
2424 	struct di_state *st)
2425 {
2426 	di_off_t	off;
2427 	struct di_minor	*me;
2428 	size_t		size;
2429 
2430 	dcmn_err2((CE_CONT, "di_getmdata:\n"));
2431 
2432 	/*
2433 	 * check memory first
2434 	 */
2435 	off = di_checkmem(st, *off_p, sizeof (struct di_minor));
2436 	*off_p = off;
2437 
2438 	do {
2439 		me = DI_MINOR(di_mem_addr(st, off));
2440 		me->self = off;
2441 		me->type = mnode->type;
2442 		me->node = node;
2443 		me->user_private_data = NULL;
2444 
2445 		off += sizeof (struct di_minor);
2446 
2447 		/*
2448 		 * Split dev_t to major/minor, so it works for
2449 		 * both ILP32 and LP64 model
2450 		 */
2451 		me->dev_major = getmajor(mnode->ddm_dev);
2452 		me->dev_minor = getminor(mnode->ddm_dev);
2453 		me->spec_type = mnode->ddm_spec_type;
2454 
2455 		if (mnode->ddm_name) {
2456 			size = strlen(mnode->ddm_name) + 1;
2457 			me->name = off = di_checkmem(st, off, size);
2458 			(void) strcpy(di_mem_addr(st, off), mnode->ddm_name);
2459 			off += size;
2460 		}
2461 
2462 		if (mnode->ddm_node_type) {
2463 			size = strlen(mnode->ddm_node_type) + 1;
2464 			me->node_type = off = di_checkmem(st, off, size);
2465 			(void) strcpy(di_mem_addr(st, off),
2466 			    mnode->ddm_node_type);
2467 			off += size;
2468 		}
2469 
2470 		off = di_checkmem(st, off, sizeof (struct di_minor));
2471 		me->next = off;
2472 		mnode = mnode->next;
2473 	} while (mnode);
2474 
2475 	me->next = 0;
2476 
2477 	return (off);
2478 }
2479 
2480 /*
2481  * di_register_dip(), di_find_dip(): The dip must be protected
2482  * from deallocation when using these routines - this can either
2483  * be a reference count, a busy hold or a per-driver lock.
2484  */
2485 
2486 static void
2487 di_register_dip(struct di_state *st, dev_info_t *dip, di_off_t off)
2488 {
2489 	struct dev_info	*node = DEVI(dip);
2490 	struct di_key	*key = kmem_zalloc(sizeof (*key), KM_SLEEP);
2491 	struct di_dkey	*dk;
2492 
2493 	ASSERT(dip);
2494 	ASSERT(off > 0);
2495 
2496 	key->k_type = DI_DKEY;
2497 	dk = &(key->k_u.dkey);
2498 
2499 	dk->dk_dip = dip;
2500 	dk->dk_major = node->devi_major;
2501 	dk->dk_inst = node->devi_instance;
2502 	dk->dk_nodeid = node->devi_nodeid;
2503 
2504 	if (mod_hash_insert(st->reg_dip_hash, (mod_hash_key_t)key,
2505 	    (mod_hash_val_t)(uintptr_t)off) != 0) {
2506 		panic(
2507 		    "duplicate devinfo (%p) registered during device "
2508 		    "tree walk", (void *)dip);
2509 	}
2510 }
2511 
2512 
2513 static int
2514 di_dip_find(struct di_state *st, dev_info_t *dip, di_off_t *off_p)
2515 {
2516 	/*
2517 	 * uintptr_t must be used because it matches the size of void *;
2518 	 * mod_hash expects clients to place results into pointer-size
2519 	 * containers; since di_off_t is always a 32-bit offset, alignment
2520 	 * would otherwise be broken on 64-bit kernels.
2521 	 */
2522 	uintptr_t	offset;
2523 	struct		di_key key = {0};
2524 	struct		di_dkey *dk;
2525 
2526 	ASSERT(st->reg_dip_hash);
2527 	ASSERT(dip);
2528 	ASSERT(off_p);
2529 
2530 
2531 	key.k_type = DI_DKEY;
2532 	dk = &(key.k_u.dkey);
2533 
2534 	dk->dk_dip = dip;
2535 	dk->dk_major = DEVI(dip)->devi_major;
2536 	dk->dk_inst = DEVI(dip)->devi_instance;
2537 	dk->dk_nodeid = DEVI(dip)->devi_nodeid;
2538 
2539 	if (mod_hash_find(st->reg_dip_hash, (mod_hash_key_t)&key,
2540 	    (mod_hash_val_t *)&offset) == 0) {
2541 		*off_p = (di_off_t)offset;
2542 		return (0);
2543 	} else {
2544 		return (-1);
2545 	}
2546 }
2547 
2548 /*
2549  * di_register_pip(), di_find_pip(): The pip must be protected from deallocation
2550  * when using these routines. The caller must do this by protecting the
2551  * client(or phci)<->pip linkage while traversing the list and then holding the
2552  * pip when it is found in the list.
2553  */
2554 
2555 static void
2556 di_register_pip(struct di_state *st, mdi_pathinfo_t *pip, di_off_t off)
2557 {
2558 	struct di_key	*key = kmem_zalloc(sizeof (*key), KM_SLEEP);
2559 	char		*path_addr;
2560 	struct di_pkey	*pk;
2561 
2562 	ASSERT(pip);
2563 	ASSERT(off > 0);
2564 
2565 	key->k_type = DI_PKEY;
2566 	pk = &(key->k_u.pkey);
2567 
2568 	pk->pk_pip = pip;
2569 	path_addr = mdi_pi_get_addr(pip);
2570 	if (path_addr)
2571 		pk->pk_path_addr = i_ddi_strdup(path_addr, KM_SLEEP);
2572 	pk->pk_client = mdi_pi_get_client(pip);
2573 	pk->pk_phci = mdi_pi_get_phci(pip);
2574 
2575 	if (mod_hash_insert(st->reg_pip_hash, (mod_hash_key_t)key,
2576 	    (mod_hash_val_t)(uintptr_t)off) != 0) {
2577 		panic(
2578 		    "duplicate pathinfo (%p) registered during device "
2579 		    "tree walk", (void *)pip);
2580 	}
2581 }
2582 
2583 /*
2584  * As with di_register_pip, the caller must hold or lock the pip
2585  */
2586 static int
2587 di_pip_find(struct di_state *st, mdi_pathinfo_t *pip, di_off_t *off_p)
2588 {
2589 	/*
2590 	 * uintptr_t must be used because it matches the size of void *;
2591 	 * mod_hash expects clients to place results into pointer-size
2592 	 * containers; since di_off_t is always a 32-bit offset, alignment
2593 	 * would otherwise be broken on 64-bit kernels.
2594 	 */
2595 	uintptr_t	offset;
2596 	struct di_key	key = {0};
2597 	struct di_pkey	*pk;
2598 
2599 	ASSERT(st->reg_pip_hash);
2600 	ASSERT(off_p);
2601 
2602 	if (pip == NULL) {
2603 		*off_p = 0;
2604 		return (0);
2605 	}
2606 
2607 	key.k_type = DI_PKEY;
2608 	pk = &(key.k_u.pkey);
2609 
2610 	pk->pk_pip = pip;
2611 	pk->pk_path_addr = mdi_pi_get_addr(pip);
2612 	pk->pk_client = mdi_pi_get_client(pip);
2613 	pk->pk_phci = mdi_pi_get_phci(pip);
2614 
2615 	if (mod_hash_find(st->reg_pip_hash, (mod_hash_key_t)&key,
2616 	    (mod_hash_val_t *)&offset) == 0) {
2617 		*off_p = (di_off_t)offset;
2618 		return (0);
2619 	} else {
2620 		return (-1);
2621 	}
2622 }
2623 
2624 static di_path_state_t
2625 path_state_convert(mdi_pathinfo_state_t st)
2626 {
2627 	switch (st) {
2628 	case MDI_PATHINFO_STATE_ONLINE:
2629 		return (DI_PATH_STATE_ONLINE);
2630 	case MDI_PATHINFO_STATE_STANDBY:
2631 		return (DI_PATH_STATE_STANDBY);
2632 	case MDI_PATHINFO_STATE_OFFLINE:
2633 		return (DI_PATH_STATE_OFFLINE);
2634 	case MDI_PATHINFO_STATE_FAULT:
2635 		return (DI_PATH_STATE_FAULT);
2636 	default:
2637 		return (DI_PATH_STATE_UNKNOWN);
2638 	}
2639 }
2640 
2641 
2642 static di_off_t
2643 di_path_getprop(mdi_pathinfo_t *pip, di_off_t *off_p,
2644     struct di_state *st)
2645 {
2646 	nvpair_t		*prop = NULL;
2647 	struct di_path_prop	*me;
2648 	int			off;
2649 	size_t			size;
2650 	char			*str;
2651 	uchar_t			*buf;
2652 	uint_t			nelems;
2653 
2654 	off = *off_p;
2655 	if (mdi_pi_get_next_prop(pip, NULL) == NULL) {
2656 		*off_p = 0;
2657 		return (off);
2658 	}
2659 
2660 	off = di_checkmem(st, off, sizeof (struct di_path_prop));
2661 	*off_p = off;
2662 
2663 	while (prop = mdi_pi_get_next_prop(pip, prop)) {
2664 		me = DI_PATHPROP(di_mem_addr(st, off));
2665 		me->self = off;
2666 		off += sizeof (struct di_path_prop);
2667 
2668 		/*
2669 		 * property name
2670 		 */
2671 		size = strlen(nvpair_name(prop)) + 1;
2672 		me->prop_name = off = di_checkmem(st, off, size);
2673 		(void) strcpy(di_mem_addr(st, off), nvpair_name(prop));
2674 		off += size;
2675 
2676 		switch (nvpair_type(prop)) {
2677 		case DATA_TYPE_BYTE:
2678 		case DATA_TYPE_INT16:
2679 		case DATA_TYPE_UINT16:
2680 		case DATA_TYPE_INT32:
2681 		case DATA_TYPE_UINT32:
2682 			me->prop_type = DDI_PROP_TYPE_INT;
2683 			size = sizeof (int32_t);
2684 			off = di_checkmem(st, off, size);
2685 			(void) nvpair_value_int32(prop,
2686 			    (int32_t *)di_mem_addr(st, off));
2687 			break;
2688 
2689 		case DATA_TYPE_INT64:
2690 		case DATA_TYPE_UINT64:
2691 			me->prop_type = DDI_PROP_TYPE_INT64;
2692 			size = sizeof (int64_t);
2693 			off = di_checkmem(st, off, size);
2694 			(void) nvpair_value_int64(prop,
2695 			    (int64_t *)di_mem_addr(st, off));
2696 			break;
2697 
2698 		case DATA_TYPE_STRING:
2699 			me->prop_type = DDI_PROP_TYPE_STRING;
2700 			(void) nvpair_value_string(prop, &str);
2701 			size = strlen(str) + 1;
2702 			off = di_checkmem(st, off, size);
2703 			(void) strcpy(di_mem_addr(st, off), str);
2704 			break;
2705 
2706 		case DATA_TYPE_BYTE_ARRAY:
2707 		case DATA_TYPE_INT16_ARRAY:
2708 		case DATA_TYPE_UINT16_ARRAY:
2709 		case DATA_TYPE_INT32_ARRAY:
2710 		case DATA_TYPE_UINT32_ARRAY:
2711 		case DATA_TYPE_INT64_ARRAY:
2712 		case DATA_TYPE_UINT64_ARRAY:
2713 			me->prop_type = DDI_PROP_TYPE_BYTE;
2714 			(void) nvpair_value_byte_array(prop, &buf, &nelems);
2715 			size = nelems;
2716 			if (nelems != 0) {
2717 				off = di_checkmem(st, off, size);
2718 				bcopy(buf, di_mem_addr(st, off), size);
2719 			}
2720 			break;
2721 
2722 		default:	/* Unknown or unhandled type; skip it */
2723 			size = 0;
2724 			break;
2725 		}
2726 
2727 		if (size > 0) {
2728 			me->prop_data = off;
2729 		}
2730 
2731 		me->prop_len = (int)size;
2732 		off += size;
2733 
2734 		off = di_checkmem(st, off, sizeof (struct di_path_prop));
2735 		me->prop_next = off;
2736 	}
2737 
2738 	me->prop_next = 0;
2739 	return (off);
2740 }
2741 
2742 
2743 static void
2744 di_path_one_endpoint(struct di_path *me, di_off_t noff, di_off_t **off_pp,
2745     int get_client)
2746 {
2747 	if (get_client) {
2748 		ASSERT(me->path_client == 0);
2749 		me->path_client = noff;
2750 		ASSERT(me->path_c_link == 0);
2751 		*off_pp = &me->path_c_link;
2752 		me->path_snap_state &=
2753 		    ~(DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOCLINK);
2754 	} else {
2755 		ASSERT(me->path_phci == 0);
2756 		me->path_phci = noff;
2757 		ASSERT(me->path_p_link == 0);
2758 		*off_pp = &me->path_p_link;
2759 		me->path_snap_state &=
2760 		    ~(DI_PATH_SNAP_NOPHCI | DI_PATH_SNAP_NOPLINK);
2761 	}
2762 }
2763 
2764 /*
2765  * off_p: pointer to the linkage field. This links pips along the client|phci
2766  *	   linkage list.
2767  * noff  : Offset for the endpoint dip snapshot.
2768  */
2769 static di_off_t
2770 di_getpath_data(dev_info_t *dip, di_off_t *off_p, di_off_t noff,
2771     struct di_state *st, int get_client)
2772 {
2773 	di_off_t	off;
2774 	mdi_pathinfo_t	*pip;
2775 	struct di_path	*me;
2776 	mdi_pathinfo_t	*(*next_pip)(dev_info_t *, mdi_pathinfo_t *);
2777 	size_t		size;
2778 
2779 	dcmn_err2((CE_WARN, "di_getpath_data: client = %d", get_client));
2780 
2781 	/*
2782 	 * The naming of the following mdi_xyz() is unfortunately
2783 	 * non-intuitive. mdi_get_next_phci_path() follows the
2784 	 * client_link i.e. the list of pip's belonging to the
2785 	 * given client dip.
2786 	 */
2787 	if (get_client)
2788 		next_pip = &mdi_get_next_phci_path;
2789 	else
2790 		next_pip = &mdi_get_next_client_path;
2791 
2792 	off = *off_p;
2793 
2794 	pip = NULL;
2795 	while (pip = (*next_pip)(dip, pip)) {
2796 		mdi_pathinfo_state_t state;
2797 		di_off_t stored_offset;
2798 
2799 		dcmn_err((CE_WARN, "marshalling pip = %p", (void *)pip));
2800 
2801 		mdi_pi_lock(pip);
2802 
2803 		if (di_pip_find(st, pip, &stored_offset) != -1) {
2804 			/*
2805 			 * We've already seen this pathinfo node so we need to
2806 			 * take care not to snap it again; However, one endpoint
2807 			 * and linkage will be set here. The other endpoint
2808 			 * and linkage has already been set when the pip was
2809 			 * first snapshotted i.e. when the other endpoint dip
2810 			 * was snapshotted.
2811 			 */
2812 			me = DI_PATH(di_mem_addr(st, stored_offset));
2813 			*off_p = stored_offset;
2814 
2815 			di_path_one_endpoint(me, noff, &off_p, get_client);
2816 
2817 			/*
2818 			 * The other endpoint and linkage were set when this
2819 			 * pip was snapshotted. So we are done with both
2820 			 * endpoints and linkages.
2821 			 */
2822 			ASSERT(!(me->path_snap_state &
2823 			    (DI_PATH_SNAP_NOCLIENT|DI_PATH_SNAP_NOPHCI)));
2824 			ASSERT(!(me->path_snap_state &
2825 			    (DI_PATH_SNAP_NOCLINK|DI_PATH_SNAP_NOPLINK)));
2826 
2827 			mdi_pi_unlock(pip);
2828 			continue;
2829 		}
2830 
2831 		/*
2832 		 * Now that we need to snapshot this pip, check memory
2833 		 */
2834 		size = sizeof (struct di_path);
2835 		*off_p = off = di_checkmem(st, off, size);
2836 		me = DI_PATH(di_mem_addr(st, off));
2837 		me->self = off;
2838 		off += size;
2839 
2840 		me->path_snap_state =
2841 		    DI_PATH_SNAP_NOCLINK | DI_PATH_SNAP_NOPLINK;
2842 		me->path_snap_state |=
2843 		    DI_PATH_SNAP_NOCLIENT | DI_PATH_SNAP_NOPHCI;
2844 
2845 		/*
2846 		 * Zero out fields as di_checkmem() doesn't guarantee
2847 		 * zero-filled memory
2848 		 */
2849 		me->path_client = me->path_phci = 0;
2850 		me->path_c_link = me->path_p_link = 0;
2851 
2852 		di_path_one_endpoint(me, noff, &off_p, get_client);
2853 
2854 		/*
2855 		 * Note the existence of this pathinfo
2856 		 */
2857 		di_register_pip(st, pip, me->self);
2858 
2859 		state = mdi_pi_get_state(pip);
2860 		me->path_state = path_state_convert(state);
2861 
2862 		me->path_instance = mdi_pi_get_path_instance(pip);
2863 
2864 		/*
2865 		 * Get intermediate addressing info.
2866 		 */
2867 		size = strlen(mdi_pi_get_addr(pip)) + 1;
2868 		me->path_addr = off = di_checkmem(st, off, size);
2869 		(void) strcpy(di_mem_addr(st, off), mdi_pi_get_addr(pip));
2870 		off += size;
2871 
2872 		/*
2873 		 * Get path properties if props are to be included in the
2874 		 * snapshot
2875 		 */
2876 		if (DINFOPROP & st->command) {
2877 			me->path_prop = off;
2878 			off = di_path_getprop(pip, &me->path_prop, st);
2879 		} else {
2880 			me->path_prop = 0;
2881 		}
2882 
2883 		mdi_pi_unlock(pip);
2884 	}
2885 
2886 	*off_p = 0;
2887 	return (off);
2888 }
2889 
2890 /*
2891  * Return driver prop_op entry point for the specified devinfo node.
2892  *
2893  * To return a non-NULL value:
2894  * - driver must be attached and held:
2895  *   If driver is not attached we ignore the driver property list.
2896  *   No one should rely on such properties.
2897  * - driver "cb_prop_op != ddi_prop_op":
2898  *   If "cb_prop_op == ddi_prop_op", framework does not need to call driver.
2899  *   XXX or parent's bus_prop_op != ddi_bus_prop_op
2900  */
2901 static int
2902 (*di_getprop_prop_op(struct dev_info *dip))
2903 	(dev_t, dev_info_t *, ddi_prop_op_t, int, char *, caddr_t, int *)
2904 {
2905 	struct dev_ops	*ops;
2906 
2907 	/* If driver is not attached we ignore the driver property list. */
2908 	if ((dip == NULL) || !i_ddi_devi_attached((dev_info_t *)dip))
2909 		return (NULL);
2910 
2911 	/*
2912 	 * Some nexus drivers incorrectly set cb_prop_op to nodev, nulldev,
2913 	 * or even NULL.
2914 	 */
2915 	ops = dip->devi_ops;
2916 	if (ops && ops->devo_cb_ops &&
2917 	    (ops->devo_cb_ops->cb_prop_op != ddi_prop_op) &&
2918 	    (ops->devo_cb_ops->cb_prop_op != nodev) &&
2919 	    (ops->devo_cb_ops->cb_prop_op != nulldev) &&
2920 	    (ops->devo_cb_ops->cb_prop_op != NULL))
2921 		return (ops->devo_cb_ops->cb_prop_op);
2922 	return (NULL);
2923 }
2924 
2925 static di_off_t
2926 di_getprop_add(int list, int dyn, struct di_state *st, struct dev_info *dip,
2927     int (*prop_op)(),
2928     char *name, dev_t devt, int aflags, int alen, caddr_t aval,
2929     di_off_t off, di_off_t **off_pp)
2930 {
2931 	int		need_free = 0;
2932 	dev_t		pdevt;
2933 	int		pflags;
2934 	int		rv;
2935 	caddr_t		val;
2936 	int		len;
2937 	size_t		size;
2938 	struct di_prop	*pp;
2939 
2940 	/* If we have prop_op function, ask driver for latest value */
2941 	if (prop_op) {
2942 		ASSERT(dip);
2943 
2944 		/* Must search DDI_DEV_T_NONE with DDI_DEV_T_ANY */
2945 		pdevt = (devt == DDI_DEV_T_NONE) ? DDI_DEV_T_ANY : devt;
2946 
2947 		/*
2948 		 * We have type information in flags, but are invoking an
2949 		 * old non-typed prop_op(9E) interface. Since not all types are
2950 		 * part of DDI_PROP_TYPE_ANY (example is DDI_PROP_TYPE_INT64),
2951 		 * we set DDI_PROP_CONSUMER_TYPED - causing the framework to
2952 		 * expand type bits beyond DDI_PROP_TYPE_ANY.  This allows us
2953 		 * to use the legacy prop_op(9E) interface to obtain updates
2954 		 * non-DDI_PROP_TYPE_ANY dynamic properties.
2955 		 */
2956 		pflags = aflags & ~DDI_PROP_TYPE_MASK;
2957 		pflags |= DDI_PROP_DONTPASS | DDI_PROP_NOTPROM |
2958 		    DDI_PROP_CONSUMER_TYPED;
2959 
2960 		/*
2961 		 * Hold and exit across prop_op(9E) to avoid lock order
2962 		 * issues between
2963 		 *   [ndi_devi_enter() ..prop_op(9E).. driver-lock]
2964 		 * .vs.
2965 		 *   [..ioctl(9E).. driver-lock ..ddi_remove_minor_node(9F)..
2966 		 *   ndi_devi_enter()]
2967 		 * ordering.
2968 		 */
2969 		ndi_hold_devi((dev_info_t *)dip);
2970 		ndi_devi_exit((dev_info_t *)dip, dip->devi_circular);
2971 		rv = (*prop_op)(pdevt, (dev_info_t *)dip,
2972 		    PROP_LEN_AND_VAL_ALLOC, pflags, name, &val, &len);
2973 		ndi_devi_enter((dev_info_t *)dip, &dip->devi_circular);
2974 		ndi_rele_devi((dev_info_t *)dip);
2975 
2976 		if (rv == DDI_PROP_SUCCESS) {
2977 			need_free = 1;		/* dynamic prop obtained */
2978 		} else if (dyn) {
2979 			/*
2980 			 * A dynamic property must succeed prop_op(9E) to show
2981 			 * up in the snapshot - that is the only source of its
2982 			 * value.
2983 			 */
2984 			return (off);		/* dynamic prop not supported */
2985 		} else {
2986 			/*
2987 			 * In case calling the driver caused an update off
2988 			 * prop_op(9E) of a non-dynamic property (code leading
2989 			 * to ddi_prop_change), we defer picking up val and
2990 			 * len informatiojn until after prop_op(9E) to ensure
2991 			 * that we snapshot the latest value.
2992 			 */
2993 			val = aval;
2994 			len = alen;
2995 
2996 		}
2997 	} else {
2998 		val = aval;
2999 		len = alen;
3000 	}
3001 
3002 	dcmn_err((CE_CONT, "di_getprop_add: list %d %s len %d val %p\n",
3003 	    list, name ? name : "NULL", len, (void *)val));
3004 
3005 	size = sizeof (struct di_prop);
3006 	**off_pp = off = di_checkmem(st, off, size);
3007 	pp = DI_PROP(di_mem_addr(st, off));
3008 	pp->self = off;
3009 	off += size;
3010 
3011 	pp->dev_major = getmajor(devt);
3012 	pp->dev_minor = getminor(devt);
3013 	pp->prop_flags = aflags;
3014 	pp->prop_list = list;
3015 
3016 	/* property name */
3017 	if (name) {
3018 		size = strlen(name) + 1;
3019 		pp->prop_name = off = di_checkmem(st, off, size);
3020 		(void) strcpy(di_mem_addr(st, off), name);
3021 		off += size;
3022 	} else {
3023 		pp->prop_name = -1;
3024 	}
3025 
3026 	pp->prop_len = len;
3027 	if (val == NULL) {
3028 		pp->prop_data = -1;
3029 	} else if (len != 0) {
3030 		size = len;
3031 		pp->prop_data = off = di_checkmem(st, off, size);
3032 		bcopy(val, di_mem_addr(st, off), size);
3033 		off += size;
3034 	}
3035 
3036 	pp->next = 0;			/* assume tail for now */
3037 	*off_pp = &pp->next;		/* return pointer to our next */
3038 
3039 	if (need_free)			/* free PROP_LEN_AND_VAL_ALLOC alloc */
3040 		kmem_free(val, len);
3041 	return (off);
3042 }
3043 
3044 
3045 /*
3046  * Copy a list of properties attached to a devinfo node. Called from
3047  * di_copynode with active ndi_devi_enter. The major number is passed in case
3048  * we need to call driver's prop_op entry. The value of list indicates
3049  * which list we are copying. Possible values are:
3050  * DI_PROP_DRV_LIST, DI_PROP_SYS_LIST, DI_PROP_GLB_LIST, DI_PROP_HW_LIST
3051  */
3052 static di_off_t
3053 di_getprop(int list, struct ddi_prop **pprop, di_off_t *off_p,
3054     struct di_state *st, struct dev_info *dip)
3055 {
3056 	struct ddi_prop		*prop;
3057 	int			(*prop_op)();
3058 	int			off;
3059 	struct ddi_minor_data	*mn;
3060 	i_ddi_prop_dyn_t	*dp;
3061 	struct plist {
3062 		struct plist	*pl_next;
3063 		char		*pl_name;
3064 		int		pl_flags;
3065 		dev_t		pl_dev;
3066 		int		pl_len;
3067 		caddr_t		pl_val;
3068 	}			*pl, *pl0, **plp;
3069 
3070 	ASSERT(st != NULL);
3071 
3072 	off = *off_p;
3073 	*off_p = 0;
3074 	dcmn_err((CE_CONT, "di_getprop: copy property list %d at addr %p\n",
3075 	    list, (void *)*pprop));
3076 
3077 	/* get pointer to driver's prop_op(9E) implementation if DRV_LIST */
3078 	prop_op = (list == DI_PROP_DRV_LIST) ? di_getprop_prop_op(dip) : NULL;
3079 
3080 	/*
3081 	 * Form private list of properties, holding devi_lock for properties
3082 	 * that hang off the dip.
3083 	 */
3084 	if (dip)
3085 		mutex_enter(&(dip->devi_lock));
3086 	for (pl0 = NULL, plp = &pl0, prop = *pprop;
3087 	    prop; plp = &pl->pl_next, prop = prop->prop_next) {
3088 		pl = kmem_alloc(sizeof (*pl), KM_SLEEP);
3089 		*plp = pl;
3090 		pl->pl_next = NULL;
3091 		if (prop->prop_name)
3092 			pl->pl_name = i_ddi_strdup(prop->prop_name, KM_SLEEP);
3093 		else
3094 			pl->pl_name = NULL;
3095 		pl->pl_flags = prop->prop_flags;
3096 		pl->pl_dev = prop->prop_dev;
3097 		if (prop->prop_len) {
3098 			pl->pl_len = prop->prop_len;
3099 			pl->pl_val = kmem_alloc(pl->pl_len, KM_SLEEP);
3100 			bcopy(prop->prop_val, pl->pl_val, pl->pl_len);
3101 		} else {
3102 			pl->pl_len = 0;
3103 			pl->pl_val = NULL;
3104 		}
3105 	}
3106 	if (dip)
3107 		mutex_exit(&(dip->devi_lock));
3108 
3109 	/*
3110 	 * Now that we have dropped devi_lock, perform a second-pass to
3111 	 * add properties to the snapshot.  We do this as a second pass
3112 	 * because we may need to call prop_op(9E) and we can't hold
3113 	 * devi_lock across that call.
3114 	 */
3115 	for (pl = pl0; pl; pl = pl0) {
3116 		pl0 = pl->pl_next;
3117 		off = di_getprop_add(list, 0, st, dip, prop_op, pl->pl_name,
3118 		    pl->pl_dev, pl->pl_flags, pl->pl_len, pl->pl_val,
3119 		    off, &off_p);
3120 		if (pl->pl_val)
3121 			kmem_free(pl->pl_val, pl->pl_len);
3122 		if (pl->pl_name)
3123 			kmem_free(pl->pl_name, strlen(pl->pl_name) + 1);
3124 		kmem_free(pl, sizeof (*pl));
3125 	}
3126 
3127 	/*
3128 	 * If there is no prop_op or dynamic property support has been
3129 	 * disabled, we are done.
3130 	 */
3131 	if ((prop_op == NULL) || (di_prop_dyn == 0)) {
3132 		*off_p = 0;
3133 		return (off);
3134 	}
3135 
3136 	/* Add dynamic driver properties to snapshot */
3137 	for (dp = i_ddi_prop_dyn_driver_get((dev_info_t *)dip);
3138 	    dp && dp->dp_name; dp++) {
3139 		if (dp->dp_spec_type) {
3140 			/* if spec_type, property of matching minor */
3141 			ASSERT(DEVI_BUSY_OWNED(dip));
3142 			for (mn = dip->devi_minor; mn; mn = mn->next) {
3143 				if (mn->ddm_spec_type != dp->dp_spec_type)
3144 					continue;
3145 				off = di_getprop_add(list, 1, st, dip, prop_op,
3146 				    dp->dp_name, mn->ddm_dev, dp->dp_type,
3147 				    0, NULL, off, &off_p);
3148 			}
3149 		} else {
3150 			/* property of devinfo node */
3151 			off = di_getprop_add(list, 1, st, dip, prop_op,
3152 			    dp->dp_name, DDI_DEV_T_NONE, dp->dp_type,
3153 			    0, NULL, off, &off_p);
3154 		}
3155 	}
3156 
3157 	/* Add dynamic parent properties to snapshot */
3158 	for (dp = i_ddi_prop_dyn_parent_get((dev_info_t *)dip);
3159 	    dp && dp->dp_name; dp++) {
3160 		if (dp->dp_spec_type) {
3161 			/* if spec_type, property of matching minor */
3162 			ASSERT(DEVI_BUSY_OWNED(dip));
3163 			for (mn = dip->devi_minor; mn; mn = mn->next) {
3164 				if (mn->ddm_spec_type != dp->dp_spec_type)
3165 					continue;
3166 				off = di_getprop_add(list, 1, st, dip, prop_op,
3167 				    dp->dp_name, mn->ddm_dev, dp->dp_type,
3168 				    0, NULL, off, &off_p);
3169 			}
3170 		} else {
3171 			/* property of devinfo node */
3172 			off = di_getprop_add(list, 1, st, dip, prop_op,
3173 			    dp->dp_name, DDI_DEV_T_NONE, dp->dp_type,
3174 			    0, NULL, off, &off_p);
3175 		}
3176 	}
3177 
3178 	*off_p = 0;
3179 	return (off);
3180 }
3181 
3182 /*
3183  * find private data format attached to a dip
3184  * parent = 1 to match driver name of parent dip (for parent private data)
3185  *	0 to match driver name of current dip (for driver private data)
3186  */
3187 #define	DI_MATCH_DRIVER	0
3188 #define	DI_MATCH_PARENT	1
3189 
3190 struct di_priv_format *
3191 di_match_drv_name(struct dev_info *node, struct di_state *st, int match)
3192 {
3193 	int			i, count, len;
3194 	char			*drv_name;
3195 	major_t			major;
3196 	struct di_all		*all;
3197 	struct di_priv_format	*form;
3198 
3199 	dcmn_err2((CE_CONT, "di_match_drv_name: node = %s, match = %x\n",
3200 	    node->devi_node_name, match));
3201 
3202 	if (match == DI_MATCH_PARENT) {
3203 		node = DEVI(node->devi_parent);
3204 	}
3205 
3206 	if (node == NULL) {
3207 		return (NULL);
3208 	}
3209 
3210 	major = node->devi_major;
3211 	if (major == (major_t)(-1)) {
3212 		return (NULL);
3213 	}
3214 
3215 	/*
3216 	 * Match the driver name.
3217 	 */
3218 	drv_name = ddi_major_to_name(major);
3219 	if ((drv_name == NULL) || *drv_name == '\0') {
3220 		return (NULL);
3221 	}
3222 
3223 	/* Now get the di_priv_format array */
3224 	all = DI_ALL_PTR(st);
3225 	if (match == DI_MATCH_PARENT) {
3226 		count = all->n_ppdata;
3227 		form = DI_PRIV_FORMAT(di_mem_addr(st, all->ppdata_format));
3228 	} else {
3229 		count = all->n_dpdata;
3230 		form = DI_PRIV_FORMAT(di_mem_addr(st, all->dpdata_format));
3231 	}
3232 
3233 	len = strlen(drv_name);
3234 	for (i = 0; i < count; i++) {
3235 		char *tmp;
3236 
3237 		tmp = form[i].drv_name;
3238 		while (tmp && (*tmp != '\0')) {
3239 			if (strncmp(drv_name, tmp, len) == 0) {
3240 				return (&form[i]);
3241 			}
3242 			/*
3243 			 * Move to next driver name, skipping a white space
3244 			 */
3245 			if (tmp = strchr(tmp, ' ')) {
3246 				tmp++;
3247 			}
3248 		}
3249 	}
3250 
3251 	return (NULL);
3252 }
3253 
3254 /*
3255  * The following functions copy data as specified by the format passed in.
3256  * To prevent invalid format from panicing the system, we call on_fault().
3257  * A return value of 0 indicates an error. Otherwise, the total offset
3258  * is returned.
3259  */
3260 #define	DI_MAX_PRIVDATA	(PAGESIZE >> 1)	/* max private data size */
3261 
3262 static di_off_t
3263 di_getprvdata(struct di_priv_format *pdp, struct dev_info *node,
3264     void *data, di_off_t *off_p, struct di_state *st)
3265 {
3266 	caddr_t		pa;
3267 	void		*ptr;
3268 	int		i, size, repeat;
3269 	di_off_t	off, off0, *tmp;
3270 	char		*path;
3271 	label_t		ljb;
3272 
3273 	dcmn_err2((CE_CONT, "di_getprvdata:\n"));
3274 
3275 	/*
3276 	 * check memory availability. Private data size is
3277 	 * limited to DI_MAX_PRIVDATA.
3278 	 */
3279 	off = di_checkmem(st, *off_p, DI_MAX_PRIVDATA);
3280 	*off_p = off;
3281 
3282 	if ((pdp->bytes == 0) || pdp->bytes > DI_MAX_PRIVDATA) {
3283 		goto failure;
3284 	}
3285 
3286 	if (!on_fault(&ljb)) {
3287 		/* copy the struct */
3288 		bcopy(data, di_mem_addr(st, off), pdp->bytes);
3289 		off0 = DI_ALIGN(pdp->bytes);	/* XXX remove DI_ALIGN */
3290 
3291 		/* dereferencing pointers */
3292 		for (i = 0; i < MAX_PTR_IN_PRV; i++) {
3293 
3294 			if (pdp->ptr[i].size == 0) {
3295 				goto success;	/* no more ptrs */
3296 			}
3297 
3298 			/*
3299 			 * first, get the pointer content
3300 			 */
3301 			if ((pdp->ptr[i].offset < 0) ||
3302 			    (pdp->ptr[i].offset > pdp->bytes - sizeof (char *)))
3303 				goto failure;	/* wrong offset */
3304 
3305 			pa = di_mem_addr(st, off + pdp->ptr[i].offset);
3306 
3307 			/* save a tmp ptr to store off_t later */
3308 			tmp = (di_off_t *)(intptr_t)pa;
3309 
3310 			/* get pointer value, if NULL continue */
3311 			ptr = *((void **) (intptr_t)pa);
3312 			if (ptr == NULL) {
3313 				continue;
3314 			}
3315 
3316 			/*
3317 			 * next, find the repeat count (array dimension)
3318 			 */
3319 			repeat = pdp->ptr[i].len_offset;
3320 
3321 			/*
3322 			 * Positive value indicates a fixed sized array.
3323 			 * 0 or negative value indicates variable sized array.
3324 			 *
3325 			 * For variable sized array, the variable must be
3326 			 * an int member of the structure, with an offset
3327 			 * equal to the absolution value of struct member.
3328 			 */
3329 			if (repeat > pdp->bytes - sizeof (int)) {
3330 				goto failure;	/* wrong offset */
3331 			}
3332 
3333 			if (repeat >= 0) {
3334 				repeat = *((int *)
3335 				    (intptr_t)((caddr_t)data + repeat));
3336 			} else {
3337 				repeat = -repeat;
3338 			}
3339 
3340 			/*
3341 			 * next, get the size of the object to be copied
3342 			 */
3343 			size = pdp->ptr[i].size * repeat;
3344 
3345 			/*
3346 			 * Arbitrarily limit the total size of object to be
3347 			 * copied (1 byte to 1/4 page).
3348 			 */
3349 			if ((size <= 0) || (size > (DI_MAX_PRIVDATA - off0))) {
3350 				goto failure;	/* wrong size or too big */
3351 			}
3352 
3353 			/*
3354 			 * Now copy the data
3355 			 */
3356 			*tmp = off0;
3357 			bcopy(ptr, di_mem_addr(st, off + off0), size);
3358 			off0 += DI_ALIGN(size);	/* XXX remove DI_ALIGN */
3359 		}
3360 	} else {
3361 		goto failure;
3362 	}
3363 
3364 success:
3365 	/*
3366 	 * success if reached here
3367 	 */
3368 	no_fault();
3369 	return (off + off0);
3370 	/*NOTREACHED*/
3371 
3372 failure:
3373 	/*
3374 	 * fault occurred
3375 	 */
3376 	no_fault();
3377 	path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3378 	cmn_err(CE_WARN, "devinfo: fault on private data for '%s' at %p",
3379 	    ddi_pathname((dev_info_t *)node, path), data);
3380 	kmem_free(path, MAXPATHLEN);
3381 	*off_p = -1;	/* set private data to indicate error */
3382 
3383 	return (off);
3384 }
3385 
3386 /*
3387  * get parent private data; on error, returns original offset
3388  */
3389 static di_off_t
3390 di_getppdata(struct dev_info *node, di_off_t *off_p, struct di_state *st)
3391 {
3392 	int			off;
3393 	struct di_priv_format	*ppdp;
3394 
3395 	dcmn_err2((CE_CONT, "di_getppdata:\n"));
3396 
3397 	/* find the parent data format */
3398 	if ((ppdp = di_match_drv_name(node, st, DI_MATCH_PARENT)) == NULL) {
3399 		off = *off_p;
3400 		*off_p = 0;	/* set parent data to none */
3401 		return (off);
3402 	}
3403 
3404 	return (di_getprvdata(ppdp, node,
3405 	    ddi_get_parent_data((dev_info_t *)node), off_p, st));
3406 }
3407 
3408 /*
3409  * get parent private data; returns original offset
3410  */
3411 static di_off_t
3412 di_getdpdata(struct dev_info *node, di_off_t *off_p, struct di_state *st)
3413 {
3414 	int			off;
3415 	struct di_priv_format	*dpdp;
3416 
3417 	dcmn_err2((CE_CONT, "di_getdpdata:"));
3418 
3419 	/* find the parent data format */
3420 	if ((dpdp = di_match_drv_name(node, st, DI_MATCH_DRIVER)) == NULL) {
3421 		off = *off_p;
3422 		*off_p = 0;	/* set driver data to none */
3423 		return (off);
3424 	}
3425 
3426 	return (di_getprvdata(dpdp, node,
3427 	    ddi_get_driver_private((dev_info_t *)node), off_p, st));
3428 }
3429 
3430 /*
3431  * The driver is stateful across DINFOCPYALL and DINFOUSRLD.
3432  * This function encapsulates the state machine:
3433  *
3434  *	-> IOC_IDLE -> IOC_SNAP -> IOC_DONE -> IOC_COPY ->
3435  *	|		SNAPSHOT		USRLD	 |
3436  *	--------------------------------------------------
3437  *
3438  * Returns 0 on success and -1 on failure
3439  */
3440 static int
3441 di_setstate(struct di_state *st, int new_state)
3442 {
3443 	int	ret = 0;
3444 
3445 	mutex_enter(&di_lock);
3446 	switch (new_state) {
3447 	case IOC_IDLE:
3448 	case IOC_DONE:
3449 		break;
3450 	case IOC_SNAP:
3451 		if (st->di_iocstate != IOC_IDLE)
3452 			ret = -1;
3453 		break;
3454 	case IOC_COPY:
3455 		if (st->di_iocstate != IOC_DONE)
3456 			ret = -1;
3457 		break;
3458 	default:
3459 		ret = -1;
3460 	}
3461 
3462 	if (ret == 0)
3463 		st->di_iocstate = new_state;
3464 	else
3465 		cmn_err(CE_NOTE, "incorrect state transition from %d to %d",
3466 		    st->di_iocstate, new_state);
3467 	mutex_exit(&di_lock);
3468 	return (ret);
3469 }
3470 
3471 /*
3472  * We cannot assume the presence of the entire
3473  * snapshot in this routine. All we are guaranteed
3474  * is the di_all struct + 1 byte (for root_path)
3475  */
3476 static int
3477 header_plus_one_ok(struct di_all *all)
3478 {
3479 	/*
3480 	 * Refuse to read old versions
3481 	 */
3482 	if (all->version != DI_SNAPSHOT_VERSION) {
3483 		CACHE_DEBUG((DI_ERR, "bad version: 0x%x", all->version));
3484 		return (0);
3485 	}
3486 
3487 	if (all->cache_magic != DI_CACHE_MAGIC) {
3488 		CACHE_DEBUG((DI_ERR, "bad magic #: 0x%x", all->cache_magic));
3489 		return (0);
3490 	}
3491 
3492 	if (all->snapshot_time == 0) {
3493 		CACHE_DEBUG((DI_ERR, "bad timestamp: %ld", all->snapshot_time));
3494 		return (0);
3495 	}
3496 
3497 	if (all->top_devinfo == 0) {
3498 		CACHE_DEBUG((DI_ERR, "NULL top devinfo"));
3499 		return (0);
3500 	}
3501 
3502 	if (all->map_size < sizeof (*all) + 1) {
3503 		CACHE_DEBUG((DI_ERR, "bad map size: %u", all->map_size));
3504 		return (0);
3505 	}
3506 
3507 	if (all->root_path[0] != '/' || all->root_path[1] != '\0') {
3508 		CACHE_DEBUG((DI_ERR, "bad rootpath: %c%c",
3509 		    all->root_path[0], all->root_path[1]));
3510 		return (0);
3511 	}
3512 
3513 	/*
3514 	 * We can't check checksum here as we just have the header
3515 	 */
3516 
3517 	return (1);
3518 }
3519 
3520 static int
3521 chunk_write(struct vnode *vp, offset_t off, caddr_t buf, size_t len)
3522 {
3523 	rlim64_t	rlimit;
3524 	ssize_t		resid;
3525 	int		error = 0;
3526 
3527 
3528 	rlimit = RLIM64_INFINITY;
3529 
3530 	while (len) {
3531 		resid = 0;
3532 		error = vn_rdwr(UIO_WRITE, vp, buf, len, off,
3533 		    UIO_SYSSPACE, FSYNC, rlimit, kcred, &resid);
3534 
3535 		if (error || resid < 0) {
3536 			error = error ? error : EIO;
3537 			CACHE_DEBUG((DI_ERR, "write error: %d", error));
3538 			break;
3539 		}
3540 
3541 		/*
3542 		 * Check if we are making progress
3543 		 */
3544 		if (resid >= len) {
3545 			error = ENOSPC;
3546 			break;
3547 		}
3548 		buf += len - resid;
3549 		off += len - resid;
3550 		len = resid;
3551 	}
3552 
3553 	return (error);
3554 }
3555 
3556 static void
3557 di_cache_write(struct di_cache *cache)
3558 {
3559 	struct di_all	*all;
3560 	struct vnode	*vp;
3561 	int		oflags;
3562 	size_t		map_size;
3563 	size_t		chunk;
3564 	offset_t	off;
3565 	int		error;
3566 	char		*buf;
3567 
3568 	ASSERT(DI_CACHE_LOCKED(*cache));
3569 	ASSERT(!servicing_interrupt());
3570 
3571 	if (cache->cache_size == 0) {
3572 		ASSERT(cache->cache_data == NULL);
3573 		CACHE_DEBUG((DI_ERR, "Empty cache. Skipping write"));
3574 		return;
3575 	}
3576 
3577 	ASSERT(cache->cache_size > 0);
3578 	ASSERT(cache->cache_data);
3579 
3580 	if (!modrootloaded || rootvp == NULL || vn_is_readonly(rootvp)) {
3581 		CACHE_DEBUG((DI_ERR, "Can't write to rootFS. Skipping write"));
3582 		return;
3583 	}
3584 
3585 	all = (struct di_all *)cache->cache_data;
3586 
3587 	if (!header_plus_one_ok(all)) {
3588 		CACHE_DEBUG((DI_ERR, "Invalid header. Skipping write"));
3589 		return;
3590 	}
3591 
3592 	ASSERT(strcmp(all->root_path, "/") == 0);
3593 
3594 	/*
3595 	 * The cache_size is the total allocated memory for the cache.
3596 	 * The map_size is the actual size of valid data in the cache.
3597 	 * map_size may be smaller than cache_size but cannot exceed
3598 	 * cache_size.
3599 	 */
3600 	if (all->map_size > cache->cache_size) {
3601 		CACHE_DEBUG((DI_ERR, "map_size (0x%x) > cache_size (0x%x)."
3602 		    " Skipping write", all->map_size, cache->cache_size));
3603 		return;
3604 	}
3605 
3606 	/*
3607 	 * First unlink the temp file
3608 	 */
3609 	error = vn_remove(DI_CACHE_TEMP, UIO_SYSSPACE, RMFILE);
3610 	if (error && error != ENOENT) {
3611 		CACHE_DEBUG((DI_ERR, "%s: unlink failed: %d",
3612 		    DI_CACHE_TEMP, error));
3613 	}
3614 
3615 	if (error == EROFS) {
3616 		CACHE_DEBUG((DI_ERR, "RDONLY FS. Skipping write"));
3617 		return;
3618 	}
3619 
3620 	vp = NULL;
3621 	oflags = (FCREAT|FWRITE);
3622 	if (error = vn_open(DI_CACHE_TEMP, UIO_SYSSPACE, oflags,
3623 	    DI_CACHE_PERMS, &vp, CRCREAT, 0)) {
3624 		CACHE_DEBUG((DI_ERR, "%s: create failed: %d",
3625 		    DI_CACHE_TEMP, error));
3626 		return;
3627 	}
3628 
3629 	ASSERT(vp);
3630 
3631 	/*
3632 	 * Paranoid: Check if the file is on a read-only FS
3633 	 */
3634 	if (vn_is_readonly(vp)) {
3635 		CACHE_DEBUG((DI_ERR, "cannot write: readonly FS"));
3636 		goto fail;
3637 	}
3638 
3639 	/*
3640 	 * Note that we only write map_size bytes to disk - this saves
3641 	 * space as the actual cache size may be larger than size of
3642 	 * valid data in the cache.
3643 	 * Another advantage is that it makes verification of size
3644 	 * easier when the file is read later.
3645 	 */
3646 	map_size = all->map_size;
3647 	off = 0;
3648 	buf = cache->cache_data;
3649 
3650 	while (map_size) {
3651 		ASSERT(map_size > 0);
3652 		/*
3653 		 * Write in chunks so that VM system
3654 		 * is not overwhelmed
3655 		 */
3656 		if (map_size > di_chunk * PAGESIZE)
3657 			chunk = di_chunk * PAGESIZE;
3658 		else
3659 			chunk = map_size;
3660 
3661 		error = chunk_write(vp, off, buf, chunk);
3662 		if (error) {
3663 			CACHE_DEBUG((DI_ERR, "write failed: off=0x%x: %d",
3664 			    off, error));
3665 			goto fail;
3666 		}
3667 
3668 		off += chunk;
3669 		buf += chunk;
3670 		map_size -= chunk;
3671 
3672 		/* If low on memory, give pageout a chance to run */
3673 		if (freemem < desfree)
3674 			delay(1);
3675 	}
3676 
3677 	/*
3678 	 * Now sync the file and close it
3679 	 */
3680 	if (error = VOP_FSYNC(vp, FSYNC, kcred, NULL)) {
3681 		CACHE_DEBUG((DI_ERR, "FSYNC failed: %d", error));
3682 	}
3683 
3684 	if (error = VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred, NULL)) {
3685 		CACHE_DEBUG((DI_ERR, "close() failed: %d", error));
3686 		VN_RELE(vp);
3687 		return;
3688 	}
3689 
3690 	VN_RELE(vp);
3691 
3692 	/*
3693 	 * Now do the rename
3694 	 */
3695 	if (error = vn_rename(DI_CACHE_TEMP, DI_CACHE_FILE, UIO_SYSSPACE)) {
3696 		CACHE_DEBUG((DI_ERR, "rename failed: %d", error));
3697 		return;
3698 	}
3699 
3700 	CACHE_DEBUG((DI_INFO, "Cache write successful."));
3701 
3702 	return;
3703 
3704 fail:
3705 	(void) VOP_CLOSE(vp, oflags, 1, (offset_t)0, kcred, NULL);
3706 	VN_RELE(vp);
3707 }
3708 
3709 
3710 /*
3711  * Since we could be called early in boot,
3712  * use kobj_read_file()
3713  */
3714 static void
3715 di_cache_read(struct di_cache *cache)
3716 {
3717 	struct _buf	*file;
3718 	struct di_all	*all;
3719 	int		n;
3720 	size_t		map_size, sz, chunk;
3721 	offset_t	off;
3722 	caddr_t		buf;
3723 	uint32_t	saved_crc, crc;
3724 
3725 	ASSERT(modrootloaded);
3726 	ASSERT(DI_CACHE_LOCKED(*cache));
3727 	ASSERT(cache->cache_data == NULL);
3728 	ASSERT(cache->cache_size == 0);
3729 	ASSERT(!servicing_interrupt());
3730 
3731 	file = kobj_open_file(DI_CACHE_FILE);
3732 	if (file == (struct _buf *)-1) {
3733 		CACHE_DEBUG((DI_ERR, "%s: open failed: %d",
3734 		    DI_CACHE_FILE, ENOENT));
3735 		return;
3736 	}
3737 
3738 	/*
3739 	 * Read in the header+root_path first. The root_path must be "/"
3740 	 */
3741 	all = kmem_zalloc(sizeof (*all) + 1, KM_SLEEP);
3742 	n = kobj_read_file(file, (caddr_t)all, sizeof (*all) + 1, 0);
3743 
3744 	if ((n != sizeof (*all) + 1) || !header_plus_one_ok(all)) {
3745 		kmem_free(all, sizeof (*all) + 1);
3746 		kobj_close_file(file);
3747 		CACHE_DEBUG((DI_ERR, "cache header: read error or invalid"));
3748 		return;
3749 	}
3750 
3751 	map_size = all->map_size;
3752 
3753 	kmem_free(all, sizeof (*all) + 1);
3754 
3755 	ASSERT(map_size >= sizeof (*all) + 1);
3756 
3757 	buf = di_cache.cache_data = kmem_alloc(map_size, KM_SLEEP);
3758 	sz = map_size;
3759 	off = 0;
3760 	while (sz) {
3761 		/* Don't overload VM with large reads */
3762 		chunk = (sz > di_chunk * PAGESIZE) ? di_chunk * PAGESIZE : sz;
3763 		n = kobj_read_file(file, buf, chunk, off);
3764 		if (n != chunk) {
3765 			CACHE_DEBUG((DI_ERR, "%s: read error at offset: %lld",
3766 			    DI_CACHE_FILE, off));
3767 			goto fail;
3768 		}
3769 		off += chunk;
3770 		buf += chunk;
3771 		sz -= chunk;
3772 	}
3773 
3774 	ASSERT(off == map_size);
3775 
3776 	/*
3777 	 * Read past expected EOF to verify size.
3778 	 */
3779 	if (kobj_read_file(file, (caddr_t)&sz, 1, off) > 0) {
3780 		CACHE_DEBUG((DI_ERR, "%s: file size changed", DI_CACHE_FILE));
3781 		goto fail;
3782 	}
3783 
3784 	all = (struct di_all *)di_cache.cache_data;
3785 	if (!header_plus_one_ok(all)) {
3786 		CACHE_DEBUG((DI_ERR, "%s: file header changed", DI_CACHE_FILE));
3787 		goto fail;
3788 	}
3789 
3790 	/*
3791 	 * Compute CRC with checksum field in the cache data set to 0
3792 	 */
3793 	saved_crc = all->cache_checksum;
3794 	all->cache_checksum = 0;
3795 	CRC32(crc, di_cache.cache_data, map_size, -1U, crc32_table);
3796 	all->cache_checksum = saved_crc;
3797 
3798 	if (crc != all->cache_checksum) {
3799 		CACHE_DEBUG((DI_ERR,
3800 		    "%s: checksum error: expected=0x%x actual=0x%x",
3801 		    DI_CACHE_FILE, all->cache_checksum, crc));
3802 		goto fail;
3803 	}
3804 
3805 	if (all->map_size != map_size) {
3806 		CACHE_DEBUG((DI_ERR, "%s: map size changed", DI_CACHE_FILE));
3807 		goto fail;
3808 	}
3809 
3810 	kobj_close_file(file);
3811 
3812 	di_cache.cache_size = map_size;
3813 
3814 	return;
3815 
3816 fail:
3817 	kmem_free(di_cache.cache_data, map_size);
3818 	kobj_close_file(file);
3819 	di_cache.cache_data = NULL;
3820 	di_cache.cache_size = 0;
3821 }
3822 
3823 
3824 /*
3825  * Checks if arguments are valid for using the cache.
3826  */
3827 static int
3828 cache_args_valid(struct di_state *st, int *error)
3829 {
3830 	ASSERT(error);
3831 	ASSERT(st->mem_size > 0);
3832 	ASSERT(st->memlist != NULL);
3833 
3834 	if (!modrootloaded || !i_ddi_io_initialized()) {
3835 		CACHE_DEBUG((DI_ERR,
3836 		    "cache lookup failure: I/O subsystem not inited"));
3837 		*error = ENOTACTIVE;
3838 		return (0);
3839 	}
3840 
3841 	/*
3842 	 * No other flags allowed with DINFOCACHE
3843 	 */
3844 	if (st->command != (DINFOCACHE & DIIOC_MASK)) {
3845 		CACHE_DEBUG((DI_ERR,
3846 		    "cache lookup failure: bad flags: 0x%x",
3847 		    st->command));
3848 		*error = EINVAL;
3849 		return (0);
3850 	}
3851 
3852 	if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) {
3853 		CACHE_DEBUG((DI_ERR,
3854 		    "cache lookup failure: bad root: %s",
3855 		    DI_ALL_PTR(st)->root_path));
3856 		*error = EINVAL;
3857 		return (0);
3858 	}
3859 
3860 	CACHE_DEBUG((DI_INFO, "cache lookup args ok: 0x%x", st->command));
3861 
3862 	*error = 0;
3863 
3864 	return (1);
3865 }
3866 
3867 static int
3868 snapshot_is_cacheable(struct di_state *st)
3869 {
3870 	ASSERT(st->mem_size > 0);
3871 	ASSERT(st->memlist != NULL);
3872 
3873 	if ((st->command & DI_CACHE_SNAPSHOT_FLAGS) !=
3874 	    (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK)) {
3875 		CACHE_DEBUG((DI_INFO,
3876 		    "not cacheable: incompatible flags: 0x%x",
3877 		    st->command));
3878 		return (0);
3879 	}
3880 
3881 	if (strcmp(DI_ALL_PTR(st)->root_path, "/") != 0) {
3882 		CACHE_DEBUG((DI_INFO,
3883 		    "not cacheable: incompatible root path: %s",
3884 		    DI_ALL_PTR(st)->root_path));
3885 		return (0);
3886 	}
3887 
3888 	CACHE_DEBUG((DI_INFO, "cacheable snapshot request: 0x%x", st->command));
3889 
3890 	return (1);
3891 }
3892 
3893 static int
3894 di_cache_lookup(struct di_state *st)
3895 {
3896 	size_t	rval;
3897 	int	cache_valid;
3898 
3899 	ASSERT(cache_args_valid(st, &cache_valid));
3900 	ASSERT(modrootloaded);
3901 
3902 	DI_CACHE_LOCK(di_cache);
3903 
3904 	/*
3905 	 * The following assignment determines the validity
3906 	 * of the cache as far as this snapshot is concerned.
3907 	 */
3908 	cache_valid = di_cache.cache_valid;
3909 
3910 	if (cache_valid && di_cache.cache_data == NULL) {
3911 		di_cache_read(&di_cache);
3912 		/* check for read or file error */
3913 		if (di_cache.cache_data == NULL)
3914 			cache_valid = 0;
3915 	}
3916 
3917 	if (cache_valid) {
3918 		/*
3919 		 * Ok, the cache was valid as of this particular
3920 		 * snapshot. Copy the cached snapshot. This is safe
3921 		 * to do as the cache cannot be freed (we hold the
3922 		 * cache lock). Free the memory allocated in di_state
3923 		 * up until this point - we will simply copy everything
3924 		 * in the cache.
3925 		 */
3926 
3927 		ASSERT(di_cache.cache_data != NULL);
3928 		ASSERT(di_cache.cache_size > 0);
3929 
3930 		di_freemem(st);
3931 
3932 		rval = 0;
3933 		if (di_cache2mem(&di_cache, st) > 0) {
3934 			/*
3935 			 * map_size is size of valid data in the
3936 			 * cached snapshot and may be less than
3937 			 * size of the cache.
3938 			 */
3939 			ASSERT(DI_ALL_PTR(st));
3940 			rval = DI_ALL_PTR(st)->map_size;
3941 
3942 			ASSERT(rval >= sizeof (struct di_all));
3943 			ASSERT(rval <= di_cache.cache_size);
3944 		}
3945 	} else {
3946 		/*
3947 		 * The cache isn't valid, we need to take a snapshot.
3948 		 * Set the command flags appropriately
3949 		 */
3950 		ASSERT(st->command == (DINFOCACHE & DIIOC_MASK));
3951 		st->command = (DI_CACHE_SNAPSHOT_FLAGS & DIIOC_MASK);
3952 		rval = di_cache_update(st);
3953 		st->command = (DINFOCACHE & DIIOC_MASK);
3954 	}
3955 
3956 	DI_CACHE_UNLOCK(di_cache);
3957 
3958 	/*
3959 	 * For cached snapshots, the devinfo driver always returns
3960 	 * a snapshot rooted at "/".
3961 	 */
3962 	ASSERT(rval == 0 || strcmp(DI_ALL_PTR(st)->root_path, "/") == 0);
3963 
3964 	return ((int)rval);
3965 }
3966 
3967 /*
3968  * This is a forced update of the cache  - the previous state of the cache
3969  * may be:
3970  *	- unpopulated
3971  *	- populated and invalid
3972  *	- populated and valid
3973  */
3974 static int
3975 di_cache_update(struct di_state *st)
3976 {
3977 	int		rval;
3978 	uint32_t	crc;
3979 	struct di_all	*all;
3980 
3981 	ASSERT(DI_CACHE_LOCKED(di_cache));
3982 	ASSERT(snapshot_is_cacheable(st));
3983 
3984 	/*
3985 	 * Free the in-core cache and the on-disk file (if they exist)
3986 	 */
3987 	i_ddi_di_cache_free(&di_cache);
3988 
3989 	/*
3990 	 * Set valid flag before taking the snapshot,
3991 	 * so that any invalidations that arrive
3992 	 * during or after the snapshot are not
3993 	 * removed by us.
3994 	 */
3995 	atomic_or_32(&di_cache.cache_valid, 1);
3996 
3997 	rval = di_snapshot_and_clean(st);
3998 
3999 	if (rval == 0) {
4000 		CACHE_DEBUG((DI_ERR, "can't update cache: bad snapshot"));
4001 		return (0);
4002 	}
4003 
4004 	DI_ALL_PTR(st)->map_size = rval;
4005 	if (di_mem2cache(st, &di_cache) == 0) {
4006 		CACHE_DEBUG((DI_ERR, "can't update cache: copy failed"));
4007 		return (0);
4008 	}
4009 
4010 	ASSERT(di_cache.cache_data);
4011 	ASSERT(di_cache.cache_size > 0);
4012 
4013 	/*
4014 	 * Now that we have cached the snapshot, compute its checksum.
4015 	 * The checksum is only computed over the valid data in the
4016 	 * cache, not the entire cache.
4017 	 * Also, set all the fields (except checksum) before computing
4018 	 * checksum.
4019 	 */
4020 	all = (struct di_all *)di_cache.cache_data;
4021 	all->cache_magic = DI_CACHE_MAGIC;
4022 	all->map_size = rval;
4023 
4024 	ASSERT(all->cache_checksum == 0);
4025 	CRC32(crc, di_cache.cache_data, all->map_size, -1U, crc32_table);
4026 	all->cache_checksum = crc;
4027 
4028 	di_cache_write(&di_cache);
4029 
4030 	return (rval);
4031 }
4032 
4033 static void
4034 di_cache_print(di_cache_debug_t msglevel, char *fmt, ...)
4035 {
4036 	va_list	ap;
4037 
4038 	if (di_cache_debug <= DI_QUIET)
4039 		return;
4040 
4041 	if (di_cache_debug < msglevel)
4042 		return;
4043 
4044 	switch (msglevel) {
4045 		case DI_ERR:
4046 			msglevel = CE_WARN;
4047 			break;
4048 		case DI_INFO:
4049 		case DI_TRACE:
4050 		default:
4051 			msglevel = CE_NOTE;
4052 			break;
4053 	}
4054 
4055 	va_start(ap, fmt);
4056 	vcmn_err(msglevel, fmt, ap);
4057 	va_end(ap);
4058 }
4059