xref: /illumos-gate/usr/src/uts/common/io/audio/drv/audiots/audiots.c (revision d67944fbe3fa0b31893a7116a09b0718eecf6078)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 
27 /*
28  * audiots Audio Driver
29  *
30  * This Audio Driver controls the T2 audio core in the ALI M1553
31  * southbridge chip. This chip supports multiple play streams, but just
32  * a single record stream. It also supports wave table synthesis and
33  * hardware MIDI and joystick ports. Unfortunately the MIDI ports are
34  * not available because their pins have been re-assigned to expose
35  * interrupts. We also aren't going to do anything with the joystick
36  * ports. The audio core controls an AC-97 V2.1 Codec.
37  *
38  * The DMA engine uses a single buffer which is large enough to hold
39  * two interrupts worth of data. When it gets to the mid point an
40  * interrupt is generated and data is either sent (for record) or
41  * requested and put in that half of the buffer (for play). When the
42  * second half is played we do the same, but the audio core loops the
43  * pointer back to the beginning.
44  *
45  * The audio core has a bug in silicon that doesn't let it read the AC-97
46  * Codec's register. T2 has provided an algorithm that attempts to read the
47  * the Codec several times. This is probably heuristic and thus isn't
48  * absolutely guaranteed to work. However we do have to place a limit on
49  * the looping, otherwise when we read a valid 0x00 we would never exit
50  * the loop. Unfortunately there is also a problem with writing the AC-97
51  * Codec's registers as well. Thus we read it back to verify the write.
52  *
53  * The AC'97 common code provides shadow state for AC'97 registers for us,
54  * so we only need to read those registers during early startup (primarily
55  * to determine codec id and capabilities.)
56  *
57  * We don't save any of the audio controller registers during normal
58  * operation. When we need to save register state we only have to save
59  * the aram and eram. The rest of the controller state is never modified
60  * from the initial programming. Thus restoring the controller state
61  * can be done from audiots_chip_init() as well.
62  *
63  *
64  * WARNING: The SME birdsnest platform uses a PCI bridge chip between the
65  *	CPU and the southbridge containing the audio core. There is
66  *	a bug in silicon that causes a bogus parity error. With the mixer
67  *	reimplementation project, Bug 4374774, the audio driver is always
68  *	set to the best precision and number of channels. Thus when turning
69  *	the mixer on and off the only thing that changes is the sample rate.
70  *	This change in programming doesn't trigger the silicon error.
71  *	Thus the supported channels must always be 2 and the precision
72  *	must always be 16-bits. This will keep any future change in the
73  *	mixer from exposing this bug.
74  *
75  * Due to a hardware bug, system power management is not supported by this
76  * driver.
77  *
78  *	CAUTION: If audio controller state is changed outside of aram
79  *		and eram then that information must be saved and restored
80  *		during power management shutdown and bringup.
81  *
82  *	NOTE: The AC-97 Codec's reset pin is set to PCI reset, so we
83  *		can't power down the Codec all the way.
84  *
85  *	NOTE: This driver depends on the drv/audio and misc/ac97
86  *		modules being loaded first.
87  *
88  *	NOTE: Don't OR the ap_stop register to stop a play or record. This
89  *		will just stop all active channels because a read of ap_stop
90  *		returns ap_start. Just set the ap_stop register with the
91  *		channels you want to stop. The same goes for ap_start.
92  *
93  *	NOTE: There is a hardware problem with P2 rev motherboards. After
94  *		prolonged use, reading the AC97 register will always return
95  *		busy. The AC97 register is now useless. Consequently, we are no
96  *		longer able to program the Codec. This work around disables
97  *		audio when this state is detected. It's not great, but its
98  *		better than having audio blasting out at 100% all the time.
99  *
100  *	NOTE: Power Management testing has also exposed this AC97 timeout
101  *		problem. Management has decided this is too risky for customers
102  *		and hence they want power management support removed from the
103  *		audio subsystem. All PM support is now removed.
104  */
105 
106 #include <sys/modctl.h>
107 #include <sys/kmem.h>
108 #include <sys/pci.h>
109 #include <sys/ddi.h>
110 #include <sys/sunddi.h>
111 #include <sys/debug.h>
112 #include <sys/note.h>
113 #include <sys/audio/audio_driver.h>
114 #include <sys/audio/ac97.h>
115 #include "audiots.h"
116 
117 /*
118  * Module linkage routines for the kernel
119  */
120 static int audiots_attach(dev_info_t *, ddi_attach_cmd_t);
121 static int audiots_detach(dev_info_t *, ddi_detach_cmd_t);
122 static int audiots_quiesce(dev_info_t *);
123 
124 /*
125  * Entry point routine prototypes
126  */
127 static int audiots_open(void *, int, unsigned *, unsigned *, caddr_t *);
128 static void audiots_close(void *);
129 static int audiots_start(void *);
130 static void audiots_stop(void *);
131 static int audiots_format(void *);
132 static int audiots_channels(void *);
133 static int audiots_rate(void *);
134 static void audiots_chinfo(void *, int, unsigned *, unsigned *);
135 static uint64_t audiots_count(void *);
136 static void audiots_sync(void *, unsigned);
137 static size_t audiots_qlen(void *);
138 
139 static audio_engine_ops_t	audiots_engine_ops = {
140 	AUDIO_ENGINE_VERSION,
141 	audiots_open,
142 	audiots_close,
143 	audiots_start,
144 	audiots_stop,
145 	audiots_count,
146 	audiots_format,
147 	audiots_channels,
148 	audiots_rate,
149 	audiots_sync,
150 	audiots_qlen,
151 	audiots_chinfo
152 };
153 
154 /*
155  * Local Routine Prototypes
156  */
157 static void audiots_power_up(audiots_state_t *);
158 static void audiots_chip_init(audiots_state_t *);
159 static uint16_t audiots_get_ac97(void *, uint8_t);
160 static void audiots_set_ac97(void *, uint8_t, uint16_t);
161 static int audiots_init_state(audiots_state_t *, dev_info_t *);
162 static uint_t audiots_intr(caddr_t);
163 static int audiots_map_regs(dev_info_t *, audiots_state_t *);
164 static void audiots_update_port(audiots_port_t *);
165 static void audiots_start_port(audiots_port_t *);
166 static void audiots_stop_port(audiots_port_t *);
167 static uint16_t audiots_read_ac97(audiots_state_t *, int);
168 static void audiots_stop_everything(audiots_state_t *);
169 static void audiots_destroy(audiots_state_t *);
170 static int audiots_alloc_port(audiots_state_t *, int);
171 static void audiots_reset_port(audiots_port_t *);
172 
173 /*
174  * Global variables, but viewable only by this file.
175  */
176 
177 /* anchor for soft state structures */
178 static void *audiots_statep;
179 
180 /* driver name, so we don't have to call ddi_driver_name() or hard code strs */
181 static char *audiots_name = TS_NAME;
182 
183 /*
184  * DDI Structures
185  */
186 
187 /* Device operations structure */
188 static struct dev_ops audiots_dev_ops = {
189 	DEVO_REV,		/* devo_rev */
190 	0,			/* devo_refcnt */
191 	NULL,			/* devo_getinfo */
192 	nulldev,		/* devo_identify - obsolete */
193 	nulldev,		/* devo_probe */
194 	audiots_attach,		/* devo_attach */
195 	audiots_detach,		/* devo_detach */
196 	nodev,			/* devo_reset */
197 	NULL,			/* devo_cb_ops */
198 	NULL,			/* devo_bus_ops */
199 	NULL,			/* devo_power */
200 	audiots_quiesce,	/* devo_quiesce */
201 };
202 
203 /* Linkage structure for loadable drivers */
204 static struct modldrv audiots_modldrv = {
205 	&mod_driverops,		/* drv_modops */
206 	TS_MOD_NAME,		/* drv_linkinfo */
207 	&audiots_dev_ops	/* drv_dev_ops */
208 };
209 
210 /* Module linkage structure */
211 static struct modlinkage audiots_modlinkage = {
212 	MODREV_1,			/* ml_rev */
213 	(void *)&audiots_modldrv,	/* ml_linkage */
214 	NULL				/* NULL terminates the list */
215 };
216 
217 
218 /*
219  * NOTE: Grover OBP v4.0.166 and rev G of the ALI Southbridge chip force the
220  * audiots driver to use the upper 2 GB DMA address range. However to maintain
221  * backwards compatibility with older systems/OBP, we're going to try the full
222  * 4 GB DMA range.
223  *
224  * Eventually, this will be set back to using the proper high 2 GB DMA range.
225  */
226 
227 /* Device attribute structure - full 4 gig address range */
228 static ddi_dma_attr_t audiots_attr = {
229 	DMA_ATTR_VERSION,		/* version */
230 	0x0000000000000000LL,		/* dlim_addr_lo */
231 	0x00000000ffffffffLL,		/* dlim_addr_hi */
232 	0x0000000000003fffLL,		/* DMA counter register - 16 bits */
233 	0x0000000000000008LL,		/* DMA address alignment, 64-bit */
234 	0x0000007f,			/* 1 through 64 byte burst sizes */
235 	0x00000001,			/* min effective DMA size */
236 	0x0000000000003fffLL,		/* maximum transfer size, 16k */
237 	0x000000000000ffffLL,		/* segment boundary, 64k */
238 	0x00000001,			/* s/g list length, no s/g */
239 	0x00000001,			/* granularity of device, don't care */
240 	0				/* DMA flags */
241 };
242 
243 static ddi_device_acc_attr_t ts_acc_attr = {
244 	DDI_DEVICE_ATTR_V0,
245 	DDI_NEVERSWAP_ACC,
246 	DDI_STRICTORDER_ACC
247 };
248 
249 static ddi_device_acc_attr_t ts_regs_attr = {
250 	DDI_DEVICE_ATTR_V0,
251 	DDI_STRUCTURE_LE_ACC,
252 	DDI_STRICTORDER_ACC
253 };
254 
255 /*
256  * _init()
257  *
258  * Description:
259  *	Driver initialization, called when driver is first loaded.
260  *	This is how access is initially given to all the static structures.
261  *
262  * Arguments:
263  *	None
264  *
265  * Returns:
266  *	ddi_soft_state_init() status, see ddi_soft_state_init(9f), or
267  *	mod_install() status, see mod_install(9f)
268  */
269 int
270 _init(void)
271 {
272 	int		error;
273 
274 	audio_init_ops(&audiots_dev_ops, TS_NAME);
275 
276 	/* initialize the soft state */
277 	if ((error = ddi_soft_state_init(&audiots_statep,
278 	    sizeof (audiots_state_t), 1)) != 0) {
279 		audio_fini_ops(&audiots_dev_ops);
280 		return (error);
281 	}
282 
283 	if ((error = mod_install(&audiots_modlinkage)) != 0) {
284 		audio_fini_ops(&audiots_dev_ops);
285 		ddi_soft_state_fini(&audiots_statep);
286 	}
287 
288 	return (error);
289 }
290 
291 /*
292  * _fini()
293  *
294  * Description:
295  *	Module de-initialization, called when the driver is to be unloaded.
296  *
297  * Arguments:
298  *	None
299  *
300  * Returns:
301  *	mod_remove() status, see mod_remove(9f)
302  */
303 int
304 _fini(void)
305 {
306 	int		error;
307 
308 	if ((error = mod_remove(&audiots_modlinkage)) != 0) {
309 		return (error);
310 	}
311 
312 	/* free the soft state internal structures */
313 	ddi_soft_state_fini(&audiots_statep);
314 
315 	/* clean up ops */
316 	audio_fini_ops(&audiots_dev_ops);
317 
318 	return (0);
319 }
320 
321 /*
322  * _info()
323  *
324  * Description:
325  *	Module information, returns infomation about the driver.
326  *
327  * Arguments:
328  *	modinfo *modinfop	Pointer to the opaque modinfo structure
329  *
330  * Returns:
331  *	mod_info() status, see mod_info(9f)
332  */
333 int
334 _info(struct modinfo *modinfop)
335 {
336 	int		error;
337 
338 	error = mod_info(&audiots_modlinkage, modinfop);
339 
340 	return (error);
341 }
342 
343 
344 /*
345  * audiots_attach()
346  *
347  * Description:
348  *	Attach an instance of the audiots driver. This routine does the
349  *	device dependent attach tasks.
350  *
351  * Arguments:
352  *	dev_info_t	*dip	Pointer to the device's dev_info struct
353  *	ddi_attach_cmd_t cmd	Attach command
354  *
355  * Returns:
356  *	DDI_SUCCESS		The driver was initialized properly
357  *	DDI_FAILURE		The driver couldn't be initialized properly
358  */
359 static int
360 audiots_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
361 {
362 	audiots_state_t		*state;
363 	int			instance;
364 
365 	instance = ddi_get_instance(dip);
366 
367 	switch (cmd) {
368 	case DDI_ATTACH:
369 		break;
370 	case DDI_RESUME:
371 
372 		/* we've already allocated the state structure so get ptr */
373 		if ((state = ddi_get_soft_state(audiots_statep, instance)) ==
374 		    NULL) {
375 			/* this will probably panic */
376 			cmn_err(CE_WARN,
377 			    "!%s%d: RESUME get soft state failed",
378 			    audiots_name, instance);
379 			return (DDI_FAILURE);
380 		}
381 
382 		ASSERT(dip == state->ts_dip);
383 
384 		/* suspend/resume resets the chip, so we have no more faults */
385 		if (state->ts_flags & TS_AUDIO_READ_FAILED) {
386 			ddi_dev_report_fault(state->ts_dip,
387 			    DDI_SERVICE_RESTORED,
388 			    DDI_DEVICE_FAULT,
389 			    "check port, gain, balance, and mute settings");
390 			/* and clear the fault state flags */
391 			state->ts_flags &=
392 			    ~(TS_AUDIO_READ_FAILED|TS_READ_FAILURE_PRINTED);
393 		}
394 
395 		audiots_power_up(state);
396 		audiots_chip_init(state);
397 		ac97_resume(state->ts_ac97);
398 
399 		mutex_enter(&state->ts_lock);
400 		/*
401 		 * Initialize/reset ports.  Done under the lock, to
402 		 * avoid race with interrupt service routine.
403 		 */
404 		state->ts_suspended = B_FALSE;
405 		for (int i = 0; i < TS_NUM_PORTS; i++) {
406 			audiots_port_t	*port = state->ts_ports[i];
407 			if (port != NULL) {
408 				/* relocate any streams properly */
409 				if (port->tp_engine)
410 					audio_engine_reset(port->tp_engine);
411 
412 				/* do a hardware reset on the port */
413 				audiots_reset_port(port);
414 				if (port->tp_started) {
415 					audiots_start_port(port);
416 				} else {
417 					audiots_stop_port(port);
418 				}
419 			}
420 		}
421 		mutex_exit(&state->ts_lock);
422 
423 		return (DDI_SUCCESS);
424 
425 	default:
426 		cmn_err(CE_WARN, "!%s%d: attach() unknown command: 0x%x",
427 		    audiots_name, instance, cmd);
428 		return (DDI_FAILURE);
429 	}
430 
431 	/* before we do anything make sure that we haven't had a h/w failure */
432 	if (ddi_get_devstate(dip) == DDI_DEVSTATE_DOWN) {
433 		cmn_err(CE_WARN, "%s%d: The audio hardware has "
434 		    "been disabled.", audiots_name, instance);
435 		cmn_err(CE_CONT, "Please reboot to restore audio.");
436 		return (DDI_FAILURE);
437 	}
438 
439 	/* we don't support high level interrupts in this driver */
440 	if (ddi_intr_hilevel(dip, 0) != 0) {
441 		cmn_err(CE_WARN, "!%s%d: unsupported high level interrupt",
442 		    audiots_name, instance);
443 		return (DDI_FAILURE);
444 	}
445 
446 	/* allocate the state structure */
447 	if (ddi_soft_state_zalloc(audiots_statep, instance) == DDI_FAILURE) {
448 		cmn_err(CE_WARN, "!%s%d: soft state allocate failed",
449 		    audiots_name, instance);
450 		return (DDI_FAILURE);
451 	}
452 
453 	/*
454 	 * WARNING: From here on all errors require that we free memory,
455 	 *	including the state structure.
456 	 */
457 
458 	/* get the state structure - cannot fail */
459 	state = ddi_get_soft_state(audiots_statep, instance);
460 	ASSERT(state != NULL);
461 
462 	if ((state->ts_adev = audio_dev_alloc(dip, 0)) == NULL) {
463 		cmn_err(CE_WARN, "unable to allocate audio dev");
464 		goto error;
465 	}
466 
467 	/* map in the registers, allocate DMA buffers, etc. */
468 	if (audiots_map_regs(dip, state) == DDI_FAILURE) {
469 		audio_dev_warn(state->ts_adev, "unable to map registers");
470 		goto error;
471 	}
472 
473 	/* initialize the audio state structures */
474 	if (audiots_init_state(state, dip) == DDI_FAILURE) {
475 		audio_dev_warn(state->ts_adev, "init state structure failed");
476 		goto error;
477 	}
478 
479 	/* power up */
480 	audiots_power_up(state);
481 
482 	/* initialize the audio controller */
483 	audiots_chip_init(state);
484 
485 	/* initialize the AC-97 Codec */
486 	ac97_init(state->ts_ac97, state->ts_adev);
487 
488 	/* put the engine interrupts into a known state -- all off */
489 	ddi_put32(state->ts_acch, &state->ts_regs->aud_regs.ap_ainten,
490 	    TS_ALL_DMA_OFF);
491 
492 	/* call the framework attach routine */
493 	if (audio_dev_register(state->ts_adev) != DDI_SUCCESS) {
494 		audio_dev_warn(state->ts_adev, "unable to register audio");
495 		goto error;
496 	}
497 
498 	/* set up kernel statistics */
499 	state->ts_ksp = kstat_create(TS_NAME, instance, TS_NAME,
500 	    "controller", KSTAT_TYPE_INTR, 1, KSTAT_FLAG_PERSISTENT);
501 	if (state->ts_ksp != NULL) {
502 		kstat_install(state->ts_ksp);
503 	}
504 
505 	/* set up the interrupt handler */
506 	if (ddi_add_intr(dip, 0, NULL, NULL, audiots_intr,
507 	    (caddr_t)state) != DDI_SUCCESS) {
508 		audio_dev_warn(state->ts_adev,
509 		    "failed to register interrupt handler");
510 		goto error;
511 	}
512 	state->ts_flags |= TS_INTR_INSTALLED;
513 
514 	/* everything worked out, so report the device */
515 	ddi_report_dev(dip);
516 
517 	return (DDI_SUCCESS);
518 
519 error:
520 	audiots_destroy(state);
521 	return (DDI_FAILURE);
522 }
523 
524 /*
525  * audiots_detach()
526  *
527  * Description:
528  *	Detach an instance of the audiots driver.
529  *
530  * Arguments:
531  *	dev_info_t	*dip	Pointer to the device's dev_info struct
532  *	ddi_detach_cmd_t cmd	Detach command
533  *
534  * Returns:
535  *	DDI_SUCCESS		The driver was detached
536  *	DDI_FAILURE		The driver couldn't be detached
537  */
538 static int
539 audiots_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
540 {
541 	audiots_state_t		*state;
542 	int			instance;
543 
544 	instance = ddi_get_instance(dip);
545 
546 	/* get the state structure */
547 	if ((state = ddi_get_soft_state(audiots_statep, instance)) == NULL) {
548 		cmn_err(CE_WARN, "!%s%d: detach get soft state failed",
549 		    audiots_name, instance);
550 		return (DDI_FAILURE);
551 	}
552 
553 	switch (cmd) {
554 	case DDI_DETACH:
555 		break;
556 	case DDI_SUSPEND:
557 
558 		ac97_suspend(state->ts_ac97);
559 
560 		mutex_enter(&state->ts_lock);
561 
562 		state->ts_suspended = B_TRUE;	/* stop new ops */
563 
564 		/* we may already be powered down, so only save state if up */
565 
566 		/* stop playing and recording */
567 		(void) audiots_stop_everything(state);
568 
569 		mutex_exit(&state->ts_lock);
570 
571 		return (DDI_SUCCESS);
572 
573 	default:
574 		return (DDI_FAILURE);
575 	}
576 
577 	/* attempt to unregister from the framework first */
578 	if (audio_dev_unregister(state->ts_adev) != DDI_SUCCESS) {
579 		return (DDI_FAILURE);
580 	}
581 
582 	audiots_destroy(state);
583 
584 	return (DDI_SUCCESS);
585 
586 }
587 
588 /*
589  * audiots_quiesce()
590  *
591  * Description:
592  *	Quiesce an instance of the audiots driver. Stops all DMA and
593  *	interrupts.
594  *
595  * Arguments:
596  *	dev_info_t	*dip	Pointer to the device's dev_info struct
597  *
598  * Returns:
599  *	DDI_SUCCESS		The driver was quiesced
600  *	DDI_SUCCESS		The driver was NOT quiesced
601  */
602 static int
603 audiots_quiesce(dev_info_t *dip)
604 {
605 	audiots_state_t		*state;
606 	int			instance;
607 
608 	instance = ddi_get_instance(dip);
609 
610 	/* get the state structure */
611 	if ((state = ddi_get_soft_state(audiots_statep, instance)) == NULL) {
612 		return (DDI_FAILURE);
613 	}
614 
615 	audiots_stop_everything(state);
616 
617 	return (DDI_SUCCESS);
618 }
619 
620 /*
621  * audiots_power_up()
622  *
623  * Description
624  *	Ensure that the device is running in PCI power state D0.
625  */
626 static void
627 audiots_power_up(audiots_state_t *state)
628 {
629 	ddi_acc_handle_t	pcih = state->ts_pcih;
630 	uint8_t			ptr;
631 	uint16_t		pmcsr;
632 
633 	if ((pci_config_get16(pcih, PCI_CONF_STAT) & PCI_STAT_CAP) == 0) {
634 		/* does not implement PCI capabilities -- no PM */
635 		return;
636 	}
637 
638 	ptr = pci_config_get8(pcih, PCI_CONF_CAP_PTR);
639 	for (;;) {
640 		if (ptr == PCI_CAP_NEXT_PTR_NULL) {
641 			/* PM capability not found */
642 			return;
643 		}
644 		if (pci_config_get8(pcih, ptr + PCI_CAP_ID) == PCI_CAP_ID_PM) {
645 			/* found it */
646 			break;
647 		}
648 		ptr = pci_config_get8(pcih, ptr + PCI_CAP_NEXT_PTR);
649 	}
650 
651 	/* if we got here, then got valid PMCSR pointer */
652 	ptr += PCI_PMCSR;
653 
654 	/* check to see if we are already in state D0 */
655 	pmcsr = pci_config_get16(pcih, ptr);
656 	if ((pmcsr & PCI_PMCSR_STATE_MASK) != PCI_PMCSR_D0) {
657 
658 		/* D3hot (or any other state) -> D0 */
659 		pmcsr &= ~PCI_PMCSR_STATE_MASK;
660 		pmcsr |= PCI_PMCSR_D0;
661 		pci_config_put16(pcih, ptr, pmcsr);
662 	}
663 
664 	/*
665 	 * Wait for it to power up - PCI spec says 10 ms is enough.
666 	 * We double it.  Note that no locks are held when this routine
667 	 * is called, so we can sleep (we are in attach context only).
668 	 *
669 	 * We do this delay even if already powerd up, just to make
670 	 * sure we aren't seeing something that *just* transitioned
671 	 * into D0 state.
672 	 */
673 	delay(drv_usectohz(TS_20MS));
674 
675 	/* clear PME# flag */
676 	pmcsr = pci_config_get16(pcih, ptr);
677 	pci_config_put16(pcih, ptr, pmcsr | PCI_PMCSR_PME_STAT);
678 }
679 
680 /*
681  * audiots_chip_init()
682  *
683  * Description:
684  *	Initialize the audio core.
685  *
686  * Arguments:
687  *	audiots_state_t	*state		The device's state structure
688  *
689  * Returns:
690  *	void
691  */
692 static void
693 audiots_chip_init(audiots_state_t *state)
694 {
695 	ddi_acc_handle_t	handle = state->ts_acch;
696 	audiots_regs_t		*regs = state->ts_regs;
697 	int			str;
698 
699 	/* start with all interrupts & dma channels disabled */
700 	ddi_put32(handle, &regs->aud_regs.ap_stop, TS_ALL_DMA_ENGINES);
701 	ddi_put32(handle, &regs->aud_regs.ap_ainten, TS_ALL_DMA_OFF);
702 
703 	/* set global music and wave volume to 0dB */
704 	ddi_put32(handle, &regs->aud_regs.ap_volume, 0x0);
705 
706 	/* enable end interrupts for all channels. */
707 	ddi_put32(handle, &regs->aud_regs.ap_cir_gc, AP_CIR_GC_ENDLP_IE);
708 
709 	/* for each stream, set gain and vol settings */
710 	for (str = 0; str < TS_MAX_HW_CHANNELS; str++) {
711 		/*
712 		 * Set volume to all off, 1st left and then right.
713 		 * These are never changed, so we don't have to save them.
714 		 */
715 		ddi_put16(handle,
716 		    &regs->aud_ram[str].eram.eram_gvsel_pan_vol,
717 		    (ERAM_WAVE_VOL|ERAM_PAN_LEFT|ERAM_PAN_0dB|
718 		    ERAM_VOL_MAX_ATTEN));
719 		ddi_put16(handle,
720 		    &regs->aud_ram[str].eram.eram_gvsel_pan_vol,
721 		    (ERAM_WAVE_VOL|ERAM_PAN_RIGHT|ERAM_PAN_0dB|
722 		    ERAM_VOL_MAX_ATTEN));
723 
724 		/*
725 		 * The envelope engine *MUST* remain in still mode (off).
726 		 * Otherwise bad things like gain randomly disappearing might
727 		 * happen. See bug #4332773.
728 		 */
729 
730 		ddi_put32(handle, &regs->aud_ram[str].eram.eram_ebuf1,
731 		    ERAM_EBUF_STILL);
732 		ddi_put32(handle, &regs->aud_ram[str].eram.eram_ebuf2,
733 		    ERAM_EBUF_STILL);
734 
735 		/* program the initial eram and aram rate */
736 		ddi_put16(handle, &regs->aud_ram[str].aram.aram_delta,
737 		    1 << TS_SRC_SHIFT);
738 		ddi_put16(handle, &regs->aud_ram[str].eram.eram_ctrl_ec,
739 		    ERAM_16_BITS | ERAM_STEREO | ERAM_LOOP_MODE |
740 		    ERAM_SIGNED_PCM);
741 	}
742 
743 	/* program channel 31 for record */
744 	OR_SET_WORD(handle, &state->ts_regs->aud_regs.ap_global_control,
745 	    (AP_CLOGAL_CTRL_E_PCMIN_CH31|AP_CLOGAL_CTRL_PCM_OUT_AC97|
746 	    AP_CLOGAL_CTRL_MMC_FROM_MIXER|AP_CLOGAL_CTRL_PCM_OUT_TO_AC97));
747 
748 	/* do a warm reset, which powers up the Codec */
749 	OR_SET_WORD(handle, &state->ts_regs->aud_regs.ap_sctrl,
750 	    AP_SCTRL_WRST_CODEC);
751 	drv_usecwait(2);
752 	AND_SET_WORD(handle, &state->ts_regs->aud_regs.ap_sctrl,
753 	    ~AP_SCTRL_WRST_CODEC);
754 
755 	/* do a warm reset via the Codec, yes, I'm being paranoid! */
756 	audiots_set_ac97(state, AC97_RESET_REGISTER, 0);
757 
758 	/* Make sure the Codec is powered up. */
759 	int i = TS_WAIT_CNT;
760 	while ((audiots_get_ac97(state, AC97_POWERDOWN_CTRL_STAT_REGISTER) &
761 	    PCSR_POWERD_UP) != PCSR_POWERD_UP && i--) {
762 		drv_usecwait(1);
763 	}
764 
765 }
766 
767 /*
768  * audiots_get_ac97()
769  *
770  * Description:
771  *	Get the value in the specified AC-97 Codec register. There is a
772  *	bug in silicon which forces us to do multiple reads of the Codec's
773  *	register. This algorithm was provided by T2 and is heuristic in
774  *	nature. Unfortunately we have no guarantees that the real answer
775  *	isn't 0x0000, which is what we get when a read fails. So we loop
776  *	TS_LOOP_CNT times before we give up. We just have to hope this is
777  *	sufficient to give us the correct value.
778  *
779  * Arguments:
780  *	audiots_state_t	*state		The device's state structure
781  *	int		reg		AC-97 register number
782  *
783  * Returns:
784  *	unsigned short		The value in the specified register
785  */
786 static uint16_t
787 audiots_get_ac97(void *arg, uint8_t reg)
788 {
789 	audiots_state_t		*state = arg;
790 	ddi_acc_handle_t	handle = state->ts_acch;
791 	uint16_t		*data;
792 	int			count;
793 	int			delay;
794 	uint16_t		first;
795 	uint16_t		next;
796 
797 	if (state->ts_revid == AC_REV_ID1) {
798 		data = &state->ts_regs->aud_regs.ap_acrd_35D_data;
799 	} else {
800 		data = &state->ts_regs->aud_regs.ap_acrdwr_data;
801 	}
802 
803 	/* make sure the register is good */
804 	reg &= AP_ACRD_INDEX_MASK;
805 	for (count = TS_LOOP_CNT; count--; ) {
806 		if ((first = audiots_read_ac97(state, reg)) != 0) {
807 			next = first;
808 			break;
809 		}
810 
811 		delay = TS_DELAY_CNT;
812 		while (delay--) {
813 			(void) ddi_get16(handle, data);
814 		}
815 
816 		if ((next = audiots_read_ac97(state, reg)) != 0) {
817 			break;
818 		}
819 	}
820 
821 	/*
822 	 * Arggg, if you let the next read happen too soon then it fails.
823 	 * 12 usec fails, 13 usec succeeds. So set it to 20 for safety.
824 	 */
825 	drv_usecwait(TS_20US);
826 
827 	return (next);
828 
829 }
830 
831 /*
832  * audiots_init_state()
833  *
834  * Description:
835  *	This routine initializes the audio driver's state structure.
836  *	This includes reading the properties.
837  *
838  *	CAUTION: This routine cannot allocate resources, unless it frees
839  *		them before returning for an error. Also, error_destroy:
840  *		in audiots_attach() would need to be fixed as well.
841  *
842  *	NOTE: birdsnest supports CD ROM input. We check for the cdrom
843  *		property. If there we turn it on.
844  *
845  * Arguments:
846  *	audiots_state_t	*state		The device's state structure
847  *	dev_info_t	*dip		Pointer to the device's dev_info struct
848  *
849  * Returns:
850  *	DDI_SUCCESS			State structure initialized
851  *	DDI_FAILURE			State structure not initialized
852  */
853 static int
854 audiots_init_state(audiots_state_t *state, dev_info_t *dip)
855 {
856 	state->ts_ac97 = ac97_alloc(dip, audiots_get_ac97,
857 	    audiots_set_ac97, state);
858 
859 	if (state->ts_ac97 == NULL) {
860 		return (DDI_FAILURE);
861 	}
862 
863 	/* save the device info pointer */
864 	state->ts_dip = dip;
865 
866 	/* get the iblock cookie needed for interrupt context */
867 	if (ddi_get_iblock_cookie(dip, 0, &state->ts_iblock) != DDI_SUCCESS) {
868 		audio_dev_warn(state->ts_adev,
869 		    "cannot get iblock cookie");
870 		return (DDI_FAILURE);
871 	}
872 
873 	/* initialize the state mutexes and condition variables */
874 	mutex_init(&state->ts_lock, NULL, MUTEX_DRIVER, state->ts_iblock);
875 	state->ts_flags |= TS_MUTEX_INIT;
876 
877 	for (int i = 0; i < TS_NUM_PORTS; i++) {
878 		if (audiots_alloc_port(state, i) != DDI_SUCCESS) {
879 			return (DDI_FAILURE);
880 		}
881 	}
882 	/* init power management state */
883 	state->ts_suspended = B_FALSE;
884 
885 	return (DDI_SUCCESS);
886 
887 }
888 
889 /*
890  * audiots_intr()
891  *
892  * Description:
893  *	Interrupt service routine for both play and record. For play we
894  *	get the next buffers worth of audio. For record we send it on to
895  *	the mixer.
896  *
897  *	NOTE: This device needs to make sure any PIO access required to clear
898  *	its interrupt has made it out on the PCI bus before returning from its
899  *	interrupt handler so that the interrupt has been deasserted. This is
900  *	done by rereading the address engine interrupt register.
901  *
902  * Arguments:
903  *	caddr_t		T	Pointer to the interrupting device's state
904  *				structure
905  *
906  * Returns:
907  *	DDI_INTR_CLAIMED	Interrupt claimed and processed
908  *	DDI_INTR_UNCLAIMED	Interrupt not claimed, and thus ignored
909  */
910 static uint_t
911 audiots_intr(caddr_t T)
912 {
913 	audiots_state_t		*state = (void *)T;
914 	audiots_regs_t		*regs = state->ts_regs;
915 	ddi_acc_handle_t	handle = state->ts_acch;
916 	uint32_t		interrupts;
917 
918 	mutex_enter(&state->ts_lock);
919 
920 	if (state->ts_suspended) {
921 		mutex_exit(&state->ts_lock);
922 		return (DDI_INTR_UNCLAIMED);
923 	}
924 
925 	interrupts = ddi_get32(handle, &regs->aud_regs.ap_aint);
926 	if (interrupts == 0) {
927 		mutex_exit(&state->ts_lock);
928 		/* no interrupts to process, so it's not us */
929 		return (DDI_INTR_UNCLAIMED);
930 	}
931 
932 	/*
933 	 * Clear the interrupts to acknowledge.  Also, reread the
934 	 * interrupt reg to ensure that PIO write has completed.
935 	 */
936 	ddi_put32(handle, &regs->aud_regs.ap_aint, interrupts);
937 	(void) ddi_get32(handle, &regs->aud_regs.ap_aint);
938 
939 	/* update the kernel interrupt statistics */
940 	if (state->ts_ksp) {
941 		TS_KIOP(state)->intrs[KSTAT_INTR_HARD]++;
942 	}
943 
944 	mutex_exit(&state->ts_lock);
945 
946 	for (int i = 0; i < TS_NUM_PORTS; i++) {
947 		audiots_port_t	*port = state->ts_ports[i];
948 
949 		if (((interrupts & port->tp_int_mask) == 0) ||
950 		    (!port->tp_started))
951 			continue;
952 
953 		if (i == TS_INPUT_PORT) {
954 			audio_engine_produce(port->tp_engine);
955 		} else {
956 			audio_engine_consume(port->tp_engine);
957 		}
958 	}
959 
960 	return (DDI_INTR_CLAIMED);
961 
962 }
963 
964 /*
965  * audiots_map_regs()
966  *
967  * Description:
968  *	This routine maps the registers in.
969  *
970  *	Once the config space registers are mapped in we determine if the
971  *	audio core may be power managed. It should, but if it doesn't,
972  *	then trying to may cause the core to hang.
973  *
974  *	CAUTION: Make sure all errors call audio_dev_warn().
975  *
976  * Arguments:
977  *	dev_info_t	*dip            Pointer to the device's devinfo
978  *	audiots_state_t	*state          The device's state structure
979  * Returns:
980  *	DDI_SUCCESS		Registers successfully mapped
981  *	DDI_FAILURE		Registers not successfully mapped
982  */
983 static int
984 audiots_map_regs(dev_info_t *dip, audiots_state_t *state)
985 {
986 	char	rev[16];
987 	char	*name;
988 
989 	/* map in the registers, the config and memory mapped registers */
990 	if (pci_config_setup(dip, &state->ts_pcih) != DDI_SUCCESS) {
991 		audio_dev_warn(state->ts_adev,
992 		    "unable to map PCI configuration space");
993 		return (DDI_FAILURE);
994 	}
995 
996 	/* Read the Audio Controller's vendor, device, and revision IDs */
997 	state->ts_devid =
998 	    (pci_config_get16(state->ts_pcih, PCI_CONF_VENID) << 16) |
999 	    pci_config_get16(state->ts_pcih, PCI_CONF_DEVID);
1000 	state->ts_revid = pci_config_get8(state->ts_pcih, PCI_CONF_REVID);
1001 
1002 	if (ddi_regs_map_setup(dip, TS_MEM_MAPPED_REGS,
1003 	    (caddr_t *)&state->ts_regs, 0, 0, &ts_regs_attr, &state->ts_acch) !=
1004 	    DDI_SUCCESS) {
1005 		audio_dev_warn(state->ts_adev,
1006 		    "unable to map PCI device registers");
1007 		return (DDI_FAILURE);
1008 	}
1009 
1010 	switch (state->ts_devid) {
1011 	case 0x10b95451:
1012 		name = "ALI M5451";
1013 		break;
1014 	default:
1015 		name = "audiots";
1016 		break;
1017 	}
1018 	(void) snprintf(rev, sizeof (rev), "Rev %x", state->ts_revid);
1019 	audio_dev_set_description(state->ts_adev, name);
1020 	audio_dev_set_version(state->ts_adev, rev);
1021 
1022 	return (DDI_SUCCESS);
1023 }
1024 
1025 /*
1026  * audiots_alloc_port()
1027  *
1028  * Description:
1029  *	This routine allocates the DMA handles and the memory for the
1030  *	DMA engines to use. It then binds each of the buffers to its
1031  *	respective handle, getting a DMA cookie.
1032  *
1033  *	NOTE: All of the ddi_dma_... routines sleep if they cannot get
1034  *		memory. This means these calls should always succeed.
1035  *
1036  *	NOTE: ddi_dma_alloc_handle() attempts to use the full 4 GB DMA address
1037  *		range. This is to work around Southbridge rev E/G OBP issues.
1038  *		(See Grover OBP note above)
1039  *
1040  *	CAUTION: Make sure all errors call audio_dev_warn().
1041  *
1042  * Arguments:
1043  *	audiots_port_t	*state          The port structure for a device stream
1044  *	int		num		The port number
1045  *
1046  * Returns:
1047  *	DDI_SUCCESS		DMA resources mapped
1048  *	DDI_FAILURE		DMA resources not successfully mapped
1049  */
1050 int
1051 audiots_alloc_port(audiots_state_t *state, int num)
1052 {
1053 	audiots_port_t		*port;
1054 	dev_info_t		*dip = state->ts_dip;
1055 	audio_dev_t		*adev = state->ts_adev;
1056 	char			*prop;
1057 	int			dir;
1058 	unsigned		caps;
1059 	ddi_dma_cookie_t	cookie;
1060 	unsigned		count;
1061 	int			rc;
1062 	ddi_acc_handle_t	regsh = state->ts_acch;
1063 	uint32_t		*gcptr = &state->ts_regs->aud_regs.ap_cir_gc;
1064 	char			*namestr;
1065 
1066 	port = kmem_zalloc(sizeof (*port), KM_SLEEP);
1067 	state->ts_ports[num] = port;
1068 	port->tp_num = num;
1069 	port->tp_state = state;
1070 	port->tp_started = B_FALSE;
1071 	port->tp_rate = 48000;
1072 
1073 	if (num == TS_INPUT_PORT) {
1074 		prop = "record-interrupts";
1075 		dir = DDI_DMA_READ;
1076 		caps = ENGINE_INPUT_CAP;
1077 		port->tp_dma_stream = 31;
1078 		port->tp_int_stream = 2;
1079 		port->tp_sync_dir = DDI_DMA_SYNC_FORKERNEL;
1080 	} else {
1081 		prop = "play-interrupts";
1082 		dir = DDI_DMA_WRITE;
1083 		caps = ENGINE_OUTPUT_CAP;
1084 		port->tp_dma_stream = 0;
1085 		port->tp_int_stream = 1;
1086 		port->tp_sync_dir = DDI_DMA_SYNC_FORDEV;
1087 	}
1088 	port->tp_int_mask = (1U << port->tp_int_stream);
1089 	port->tp_dma_mask = (1U << port->tp_dma_stream);
1090 
1091 	/* get the number of interrupts per second */
1092 	port->tp_intrs = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
1093 	    DDI_PROP_DONTPASS, prop, TS_INTS);
1094 
1095 	/* make sure the values are good */
1096 	if (port->tp_intrs < TS_MIN_INTS) {
1097 		audio_dev_warn(adev, "%s too low, %d, resetting to %d",
1098 		    prop, port->tp_intrs, TS_INTS);
1099 		port->tp_intrs = TS_INTS;
1100 	} else if (port->tp_intrs > TS_MAX_INTS) {
1101 		audio_dev_warn(adev, "%s too high, %d, resetting to %d",
1102 		    prop, port->tp_intrs, TS_INTS);
1103 		port->tp_intrs = TS_INTS;
1104 	}
1105 
1106 	/*
1107 	 * Now allocate space.  We configure for the worst case.  The
1108 	 * worst (biggest) case is 48000 kHz, at 4 bytes per frame
1109 	 * (16-bit stereo), with the lowest interrupt frequency.  We
1110 	 * need two fragments though, and each half has to be rounded
1111 	 * up to allow for alignment considerations.
1112 	 */
1113 
1114 	/* allocate dma handle */
1115 	rc = ddi_dma_alloc_handle(dip, &audiots_attr, DDI_DMA_SLEEP,
1116 	    NULL, &port->tp_dmah);
1117 	if (rc != DDI_SUCCESS) {
1118 		audio_dev_warn(adev, "ddi_dma_alloc_handle failed: %d", rc);
1119 		return (DDI_FAILURE);
1120 	}
1121 	/* allocate DMA buffer */
1122 	rc = ddi_dma_mem_alloc(port->tp_dmah, TS_BUFSZ, &ts_acc_attr,
1123 	    DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &port->tp_kaddr,
1124 	    &port->tp_size, &port->tp_acch);
1125 	if (rc == DDI_FAILURE) {
1126 		audio_dev_warn(adev, "dma_mem_alloc failed");
1127 		return (DDI_FAILURE);
1128 	}
1129 
1130 	/* bind DMA buffer */
1131 	rc = ddi_dma_addr_bind_handle(port->tp_dmah, NULL,
1132 	    port->tp_kaddr, port->tp_size, dir|DDI_DMA_CONSISTENT,
1133 	    DDI_DMA_SLEEP, NULL, &cookie, &count);
1134 	if (rc != DDI_DMA_MAPPED) {
1135 		audio_dev_warn(adev,
1136 		    "ddi_dma_addr_bind_handle failed: %d", rc);
1137 		return (DDI_FAILURE);
1138 	}
1139 	ASSERT(count == 1);
1140 
1141 	port->tp_paddr = cookie.dmac_address;
1142 	if ((unsigned)port->tp_paddr & 0x80000000U) {
1143 		ddi_put32(regsh, gcptr,
1144 		    ddi_get32(regsh, gcptr) | AP_CIR_GC_SYS_MEM_4G_ENABLE);
1145 	} else {
1146 		ddi_put32(regsh, gcptr,
1147 		    ddi_get32(regsh, gcptr) & ~(AP_CIR_GC_SYS_MEM_4G_ENABLE));
1148 	}
1149 	port->tp_engine = audio_engine_alloc(&audiots_engine_ops, caps);
1150 	if (port->tp_engine == NULL) {
1151 		audio_dev_warn(adev, "audio_engine_alloc failed");
1152 		return (DDI_FAILURE);
1153 	}
1154 
1155 	audio_engine_set_private(port->tp_engine, port);
1156 	audio_dev_add_engine(adev, port->tp_engine);
1157 
1158 	state->ts_swapped = B_FALSE;
1159 
1160 	/*
1161 	 * SPARCLE platform specific hack.  For reasons that I can't
1162 	 * seem to fathom, the SPARCLE platform only gets the
1163 	 * endianness correct when transferring whole 32-bit words and
1164 	 * using little endian mapping.  That isn't compatible with
1165 	 * the audio framework's access mode, so we have to set up
1166 	 * explicit swapping of the left and right channels.
1167 	 *
1168 	 * The real mystery here is why this is required for Tadpole
1169 	 * SPARCLE, but not for any other standard Sun platforms that
1170 	 * I've tested.
1171 	 *
1172 	 * "swap_channels" property can be used in driver.conf to
1173 	 * force the left/right as well.
1174 	 */
1175 	rc = ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 0,
1176 	    "name", &namestr);
1177 	if (rc == DDI_PROP_SUCCESS) {
1178 		if (strcmp(namestr, "TAD,SPARCLE") == 0) {
1179 			state->ts_swapped = B_TRUE;
1180 		}
1181 		ddi_prop_free(namestr);
1182 	}
1183 
1184 	state->ts_swapped = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
1185 	    DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, "swap_channels",
1186 	    state->ts_swapped);
1187 
1188 	return (DDI_SUCCESS);
1189 }
1190 
1191 /*
1192  * audiots_read_ac97()
1193  *
1194  * Description:
1195  *	This routine actually reads the AC-97 Codec's register. It may
1196  *	be called several times to succeed.
1197  *
1198  * NOTE:
1199  * 	Revision M1535D B1-C of the ALI SouthBridge includes a workaround for
1200  *	the broken busy flag. Resetting the busy flag requires a software tweak
1201  *	to go with the worked around hardware. When we detect failure, we make
1202  *	10 attempts to reset the chip before we fail. This should reset the new
1203  *	SB systems. On all SB systems, this will increse the read delay
1204  *	slightly, but shouldn't bother it otherwise.
1205  *
1206  * Arguments:
1207  *	audiots_state_t	*state		The device's state structure
1208  *	int		reg		AC-97 register number
1209  *
1210  * Returns:
1211  *	unsigned short		The value in the specified register
1212  */
1213 static uint16_t
1214 audiots_read_ac97(audiots_state_t *state, int reg)
1215 {
1216 	ddi_acc_handle_t	acch = state->ts_acch;
1217 	uint16_t		*addr;
1218 	uint16_t		*data;
1219 	uint32_t		*stimer = &state->ts_regs->aud_regs.ap_stimer;
1220 	uint32_t		chk1;
1221 	uint32_t		chk2;
1222 	int			resets = 0;
1223 	int			i;
1224 
1225 	if (state->ts_revid == AC_REV_ID1) {
1226 		addr = &state->ts_regs->aud_regs.ap_acrd_35D_reg;
1227 		data = &state->ts_regs->aud_regs.ap_acrd_35D_data;
1228 	} else {
1229 		addr = &state->ts_regs->aud_regs.ap_acrdwr_reg;
1230 		data = &state->ts_regs->aud_regs.ap_acrdwr_data;
1231 	}
1232 
1233 first_read:
1234 	/* wait for ready to send read request */
1235 	for (i = 0; i < TS_READ_TRIES; i++) {
1236 		if (!(ddi_get16(acch, addr) & AP_ACRD_R_READ_BUSY)) {
1237 			break;
1238 		}
1239 		/* don't beat on the bus */
1240 		drv_usecwait(1);
1241 	}
1242 	if (i >= TS_READ_TRIES) {
1243 		if (resets < TS_RESET_TRIES) {
1244 			/* Attempt to reset */
1245 			drv_usecwait(TS_20US);
1246 			ddi_put16(acch, addr, TS_SB_RESET);
1247 			resets++;
1248 			goto first_read;
1249 		} else {
1250 			state->ts_flags |= TS_AUDIO_READ_FAILED;
1251 			if (!(state->ts_flags & TS_READ_FAILURE_PRINTED)) {
1252 				ddi_dev_report_fault(state->ts_dip,
1253 				    DDI_SERVICE_LOST, DDI_DEVICE_FAULT,
1254 				    "Unable to communicate with AC97 CODEC");
1255 				audio_dev_warn(state->ts_adev,
1256 				    "The audio AC97 register has timed out.");
1257 				audio_dev_warn(state->ts_adev,
1258 				    "Audio is now disabled.");
1259 				audio_dev_warn(state->ts_adev,
1260 				    "Please reboot to restore audio.");
1261 
1262 				/* Don't flood the console */
1263 				state->ts_flags |= TS_READ_FAILURE_PRINTED;
1264 			}
1265 		}
1266 		return (0);
1267 	}
1268 
1269 	/* program the register to read */
1270 	ddi_put16(acch, addr, (reg|AP_ACRD_W_PRIMARY_CODEC|
1271 	    AP_ACRD_W_READ_MIXER_REG|AP_ACRD_W_AUDIO_READ_REQ&
1272 	    (~AP_ACWR_W_SELECT_WRITE)));
1273 
1274 	/* hardware bug work around */
1275 	chk1 = ddi_get32(acch, stimer);
1276 	chk2 = ddi_get32(acch, stimer);
1277 	i = TS_WAIT_CNT;
1278 	while (chk1 == chk2 && i) {
1279 		chk2 = ddi_get32(acch, stimer);
1280 		i--;
1281 	}
1282 	OR_SET_SHORT(acch, addr, AP_ACRD_W_READ_MIXER_REG);
1283 	resets = 0;
1284 
1285 second_read:
1286 	/* wait again for read to send read request */
1287 	for (i = 0; i < TS_READ_TRIES; i++) {
1288 		if (!(ddi_get16(acch, addr) & AP_ACRD_R_READ_BUSY)) {
1289 			break;
1290 		}
1291 		/* don't beat on the bus */
1292 		drv_usecwait(1);
1293 	}
1294 	if (i >= TS_READ_TRIES) {
1295 		if (resets < TS_RESET_TRIES) {
1296 			/* Attempt to reset */
1297 			drv_usecwait(TS_20US);
1298 			ddi_put16(acch, addr, TS_SB_RESET);
1299 			resets++;
1300 			goto second_read;
1301 		} else {
1302 			state->ts_flags |= TS_AUDIO_READ_FAILED;
1303 			if (!(state->ts_flags & TS_READ_FAILURE_PRINTED)) {
1304 				ddi_dev_report_fault(state->ts_dip,
1305 				    DDI_SERVICE_LOST, DDI_DEVICE_FAULT,
1306 				    "Unable to communicate with AC97 CODEC");
1307 				audio_dev_warn(state->ts_adev,
1308 				    "The audio AC97 register has timed out.");
1309 				audio_dev_warn(state->ts_adev,
1310 				    "Audio is now disabled.");
1311 				audio_dev_warn(state->ts_adev,
1312 				    "Please reboot to restore audio.");
1313 
1314 				/* Don't flood the console */
1315 				state->ts_flags |= TS_READ_FAILURE_PRINTED;
1316 			}
1317 		}
1318 		return (0);
1319 	}
1320 
1321 	return (ddi_get16(acch, data));
1322 
1323 }	/* audiots_read_ac97() */
1324 
1325 /*
1326  * audiots_set_ac97()
1327  *
1328  * Description:
1329  *	Set the value in the specified AC-97 Codec register. Just like
1330  *	reading the AC-97 Codec, it is possible there is a problem writing
1331  *	it as well. So we loop.
1332  *
1333  * Arguments:
1334  *	audiots_state_t	*state		The device's state structure
1335  *	int		reg		AC-97 register number
1336  *	uint16_t	value		The value to write
1337  *
1338  * Returns:
1339  *	void
1340  */
1341 static void
1342 audiots_set_ac97(void *arg, uint8_t reg8, uint16_t data)
1343 {
1344 	audiots_state_t	*state = arg;
1345 	ddi_acc_handle_t handle = state->ts_acch;
1346 	uint16_t	*data_addr = &state->ts_regs->aud_regs.ap_acrdwr_data;
1347 	uint16_t	*reg_addr = &state->ts_regs->aud_regs.ap_acrdwr_reg;
1348 	int		count;
1349 	int		i;
1350 	uint16_t	tmp_short;
1351 	uint16_t	reg = reg8;
1352 
1353 	reg &= AP_ACWR_INDEX_MASK;
1354 
1355 	/* Don't touch the reserved bits on the pre 35D+ SouthBridge */
1356 	if (state->ts_revid == AC_REV_ID1) {
1357 		reg |= AP_ACWR_W_PRIMARY_CODEC|AP_ACWR_W_WRITE_MIXER_REG;
1358 	} else {
1359 		reg |= AP_ACWR_W_PRIMARY_CODEC|AP_ACWR_W_WRITE_MIXER_REG|
1360 		    AP_ACWR_W_SELECT_WRITE;
1361 	}
1362 
1363 	for (count = TS_LOOP_CNT; count--; ) {
1364 		/* wait for ready to write */
1365 		for (i = 0; i < TS_WAIT_CNT; i++) {
1366 			if (!(ddi_get16(handle, reg_addr) &
1367 			    AP_ACWR_R_WRITE_BUSY)) {
1368 				/* ready to write */
1369 				ddi_put16(handle, reg_addr, reg);
1370 
1371 				/* Write the data */
1372 				ddi_put16(handle, data_addr, data);
1373 				break;
1374 			}
1375 		}
1376 		if (i >= TS_WAIT_CNT) {
1377 			/* try again */
1378 			continue;
1379 		}
1380 
1381 		/* wait for write to complete */
1382 		for (i = 0; i < TS_WAIT_CNT; i++) {
1383 			if (!(ddi_get16(handle, reg_addr) &
1384 			    AP_ACWR_R_WRITE_BUSY)) {
1385 				/* done writing */
1386 				break;
1387 			}
1388 		}
1389 
1390 		/* verify the value written */
1391 		tmp_short = audiots_get_ac97(state, reg8);
1392 		if (data == tmp_short) {
1393 			/* successfully loaded, so we can return */
1394 			return;
1395 		}
1396 	}
1397 
1398 }	/* audiots_set_ac97() */
1399 
1400 /*
1401  * audiots_reset_port()
1402  *
1403  * Description:
1404  *	Initializes the hardware for a DMA engine.
1405  *	We only support stereo 16-bit linear PCM (signed native endian).
1406  *
1407  *	The audio core uses a single DMA buffer which is divided into two
1408  *	halves. An interrupt is generated when the middle of the buffer has
1409  *	been reached and at the end. The audio core resets the pointer back
1410  *	to the beginning automatically. After the interrupt the driver clears
1411  *	the buffer and asks the mixer for more audio samples. If there aren't
1412  *	enough then silence is played out.
1413  *
1414  * Arguments:
1415  *	audiots_port_t	*port		The DMA engine to reset
1416  *
1417  * Returns:
1418  *	void
1419  */
1420 static void
1421 audiots_reset_port(audiots_port_t *port)
1422 {
1423 	audiots_state_t		*state = port->tp_state;
1424 	ddi_acc_handle_t	handle = state->ts_acch;
1425 	audiots_regs_t		*regs = state->ts_regs;
1426 	audiots_aram_t		*aram;
1427 	audiots_eram_t		*eram;
1428 	unsigned		delta;
1429 	uint16_t		ctrl;
1430 	uint16_t		gvsel;
1431 	uint16_t		eso;
1432 
1433 	if (state->ts_suspended)
1434 		return;
1435 
1436 	port->tp_cso = 0;
1437 
1438 	gvsel = ERAM_WAVE_VOL | ERAM_PAN_0dB | ERAM_VOL_DEFAULT;
1439 	ctrl = ERAM_16_BITS | ERAM_STEREO | ERAM_LOOP_MODE | ERAM_SIGNED_PCM;
1440 	for (int i = 0; i < 2; i++) {
1441 
1442 		delta = (port->tp_rate << TS_SRC_SHIFT) / TS_RATE;
1443 
1444 		if (i == 0) {
1445 			/* first do the DMA stream */
1446 			aram = &regs->aud_ram[port->tp_dma_stream].aram;
1447 			eram = &regs->aud_ram[port->tp_dma_stream].eram;
1448 			if (port->tp_num == TS_INPUT_PORT) {
1449 				delta = (TS_RATE << TS_SRC_SHIFT) /
1450 				    port->tp_rate;
1451 			}
1452 			eso = port->tp_nframes - 1;
1453 		} else {
1454 			/* else do the interrupt stream */
1455 			aram = &regs->aud_ram[port->tp_int_stream].aram;
1456 			eram = &regs->aud_ram[port->tp_int_stream].eram;
1457 			/* interrupt stream is silent */
1458 			gvsel |= ERAM_VOL_MAX_ATTEN;
1459 			eso = port->tp_fragfr - 1;
1460 		}
1461 
1462 		/* program the sample rate */
1463 		ddi_put16(handle, &aram->aram_delta, (uint16_t)delta);
1464 
1465 		/* program the precision, number of channels and loop mode */
1466 		ddi_put16(handle, &eram->eram_ctrl_ec, ctrl);
1467 
1468 		/* program the volume settings */
1469 		ddi_put16(handle, &eram->eram_gvsel_pan_vol, gvsel);
1470 
1471 		/* set ALPHA and FMS to 0 */
1472 		ddi_put16(handle, &aram->aram_alpha_fms, 0x0);
1473 
1474 		/* set CSO to 0 */
1475 		ddi_put16(handle, &aram->aram_cso, 0x0);
1476 
1477 		/* set LBA */
1478 		ddi_put32(handle, &aram->aram_cptr_lba,
1479 		    port->tp_paddr & ARAM_LBA_MASK);
1480 
1481 		/* set ESO */
1482 		ddi_put16(handle, &aram->aram_eso, eso);
1483 	}
1484 
1485 	/* stop the DMA & interrupt engines */
1486 	ddi_put32(handle, &regs->aud_regs.ap_stop,
1487 	    port->tp_int_mask | port->tp_dma_mask);
1488 
1489 	/* enable interrupts */
1490 	OR_SET_WORD(handle, &regs->aud_regs.ap_ainten, port->tp_int_mask);
1491 }
1492 
1493 /*
1494  * audiots_open()
1495  *
1496  * Description:
1497  *	Opens a DMA engine for use.  Will also ensure the device is powered
1498  *	up if not already done so.
1499  *
1500  * Arguments:
1501  *	void		*arg		The DMA engine to set up
1502  *	int		flag		Open flags
1503  *	unsigned	*fragfrp	Receives number of frames per fragment
1504  *	unsigned	*nfragsp	Receives number of fragments
1505  *	caddr_t		*bufp		Receives kernel data buffer
1506  *
1507  * Returns:
1508  *	0	on success
1509  *	errno	on failure
1510  */
1511 static int
1512 audiots_open(void *arg, int flag,
1513     unsigned *fragfrp, unsigned *nfragsp, caddr_t *bufp)
1514 {
1515 	audiots_port_t	*port = arg;
1516 	unsigned	nfrag;
1517 
1518 	_NOTE(ARGUNUSED(flag));
1519 
1520 	/*
1521 	 * Round up - we have to have a sample that is a whole number
1522 	 * of 64-bit words.  Since our frames are 4 bytes wide, we
1523 	 * just need an even number of frames.
1524 	 */
1525 	port->tp_fragfr = port->tp_rate / port->tp_intrs;
1526 	port->tp_fragfr = (port->tp_fragfr + 1) & ~1;
1527 	nfrag = port->tp_size / (port->tp_fragfr * TS_FRAMESZ);
1528 	port->tp_nframes = nfrag * port->tp_fragfr;
1529 	port->tp_started = B_FALSE;
1530 	port->tp_count = 0;
1531 	port->tp_cso = 0;
1532 	*fragfrp = port->tp_fragfr;
1533 	*nfragsp = nfrag;
1534 	*bufp = port->tp_kaddr;
1535 
1536 	/*
1537 	 * This should always be true because we used a worst case
1538 	 * assumption when calculating the port->tp_size.
1539 	 */
1540 	ASSERT((port->tp_fragfr * nfrag) <= port->tp_size);
1541 
1542 	mutex_enter(&port->tp_state->ts_lock);
1543 	audiots_reset_port(port);
1544 	mutex_exit(&port->tp_state->ts_lock);
1545 
1546 	return (0);
1547 }
1548 
1549 /*
1550  * audiots_close()
1551  *
1552  * Description:
1553  *	Closes an audio DMA engine that was previously opened.  Since
1554  *	nobody is using it, we take this opportunity to possibly power
1555  *	down the entire device.
1556  *
1557  * Arguments:
1558  *	void	*arg		The DMA engine to shut down
1559  *
1560  * Returns:
1561  *	void
1562  */
1563 static void
1564 audiots_close(void *arg)
1565 {
1566 	audiots_port_t	*port = arg;
1567 	audiots_state_t	*state = port->tp_state;
1568 
1569 	mutex_enter(&state->ts_lock);
1570 	audiots_stop_port(port);
1571 	port->tp_started = B_FALSE;
1572 	mutex_exit(&state->ts_lock);
1573 }
1574 
1575 /*
1576  * audiots_stop()
1577  *
1578  * Description:
1579  *	This is called by the framework to stop a port that is
1580  *	transferring data.
1581  *
1582  * Arguments:
1583  *	void	*arg		The DMA engine to stop
1584  *
1585  * Returns:
1586  *	void
1587  */
1588 static void
1589 audiots_stop(void *arg)
1590 {
1591 	audiots_port_t	*port = arg;
1592 	audiots_state_t	*state = port->tp_state;
1593 
1594 	mutex_enter(&state->ts_lock);
1595 	if (port->tp_started) {
1596 		audiots_stop_port(port);
1597 	}
1598 	port->tp_started = B_FALSE;
1599 	mutex_exit(&state->ts_lock);
1600 }
1601 
1602 /*
1603  * audiots_start()
1604  *
1605  * Description:
1606  *	This is called by the framework to start a port transferring data.
1607  *
1608  * Arguments:
1609  *	void	*arg		The DMA engine to start
1610  *
1611  * Returns:
1612  *	0 	on success (never fails, errno if it did)
1613  */
1614 static int
1615 audiots_start(void *arg)
1616 {
1617 	audiots_port_t	*port = arg;
1618 	audiots_state_t	*state = port->tp_state;
1619 
1620 	mutex_enter(&state->ts_lock);
1621 	if (!port->tp_started) {
1622 		audiots_start_port(port);
1623 		port->tp_started = B_TRUE;
1624 	}
1625 	mutex_exit(&state->ts_lock);
1626 	return (0);
1627 }
1628 
1629 /*
1630  * audiots_chinfo()
1631  *
1632  * Description:
1633  *	This is called by the framework to query the channel offsets
1634  *	and ordering.
1635  *
1636  * Arguments:
1637  *	void	*arg		The DMA engine to query
1638  *	int	chan		Channel number.
1639  *	unsigned *offset	Starting offset of channel.
1640  *	unsigned *incr		Increment (in samples) between frames.
1641  *
1642  * Returns:
1643  *	0 indicating rate array is range instead of enumeration
1644  */
1645 
1646 static void
1647 audiots_chinfo(void *arg, int chan, unsigned *offset, unsigned *incr)
1648 {
1649 	audiots_port_t *port = arg;
1650 
1651 	/* if channels are swapped (SPARCLE), then deal with it */
1652 	if (port->tp_state->ts_swapped) {
1653 		*offset = (chan ? 0 : 1);
1654 	} else {
1655 		*offset = chan;
1656 	}
1657 	*incr = 2;
1658 }
1659 
1660 /*
1661  * audiots_format()
1662  *
1663  * Description:
1664  *	Called by the framework to query the format for the device.
1665  *
1666  * Arguments:
1667  *	void	*arg		The DMA engine to query
1668  *
1669  * Returns:
1670  *	AUDIO_FORMAT_S16_LE.
1671  */
1672 static int
1673 audiots_format(void *arg)
1674 {
1675 	_NOTE(ARGUNUSED(arg));
1676 
1677 	return (AUDIO_FORMAT_S16_LE);
1678 }
1679 
1680 
1681 /*
1682  * audiots_channels()
1683  *
1684  * Description:
1685  *	Called by the framework to query the channnels for the device.
1686  *
1687  * Arguments:
1688  *	void	*arg		The DMA engine to query
1689  *
1690  * Returns:
1691  *	2 (Stereo).
1692  */
1693 static int
1694 audiots_channels(void *arg)
1695 {
1696 	_NOTE(ARGUNUSED(arg));
1697 
1698 	return (2);
1699 }
1700 
1701 /*
1702  * audiots_rate()
1703  *
1704  * Description:
1705  *	Called by the framework to query the sample rates for the device.
1706  *
1707  * Arguments:
1708  *	void	*arg		The DMA engine to query
1709  *
1710  * Returns:
1711  *	Sample rate in HZ (always 48000).
1712  */
1713 static int
1714 audiots_rate(void *arg)
1715 {
1716 	audiots_port_t *port = arg;
1717 
1718 	return (port->tp_rate);
1719 }
1720 
1721 /*
1722  * audiots_count()
1723  *
1724  * Description:
1725  *	This is called by the framework to get the engine's frame counter
1726  *
1727  * Arguments:
1728  *	void	*arg		The DMA engine to query
1729  *
1730  * Returns:
1731  *	frame count for current engine
1732  */
1733 static uint64_t
1734 audiots_count(void *arg)
1735 {
1736 	audiots_port_t	*port = arg;
1737 	audiots_state_t	*state = port->tp_state;
1738 	uint64_t	val;
1739 
1740 	mutex_enter(&state->ts_lock);
1741 	audiots_update_port(port);
1742 
1743 	val = port->tp_count;
1744 	mutex_exit(&state->ts_lock);
1745 	return (val);
1746 }
1747 
1748 /*
1749  * audiots_sync()
1750  *
1751  * Description:
1752  *	This is called by the framework to synchronize DMA caches.
1753  *	We also leverage this do some endian swapping, because on SPARC
1754  *	the chip accesses the DMA region using 32-bit little-endian
1755  *	accesses.  Its not enough to just use the framework's sample
1756  *	conversion logic, because the channels will also be backwards.
1757  *
1758  * Arguments:
1759  *	void	*arg		The DMA engine to sync
1760  *
1761  * Returns:
1762  *	void
1763  */
1764 static void
1765 audiots_sync(void *arg, unsigned nframes)
1766 {
1767 	audiots_port_t *port = arg;
1768 	_NOTE(ARGUNUSED(nframes));
1769 
1770 	(void) ddi_dma_sync(port->tp_dmah, 0, 0, port->tp_sync_dir);
1771 }
1772 
1773 /*
1774  * audiots_qlen()
1775  *
1776  * Description:
1777  *	This is called by the framework to determine on-device queue length.
1778  *
1779  * Arguments:
1780  *	void	*arg		The DMA engine to query
1781  *
1782  * Returns:
1783  *	hardware queue length not reported by count (0 for this device)
1784  */
1785 static size_t
1786 audiots_qlen(void *arg)
1787 {
1788 	_NOTE(ARGUNUSED(arg));
1789 	return (0);
1790 }
1791 
1792 /*
1793  * audiots_start_port()
1794  *
1795  * Description:
1796  *	The audio core uses a single DMA buffer which is divided into two
1797  *	halves. An interrupt is generated when the middle of the buffer has
1798  *	been reached and at the end. The audio core resets the pointer back
1799  *	to the beginning automatically. After the interrupt the driver clears
1800  *	the buffer and asks the mixer for more audio samples. If there aren't
1801  *	enough then silence is played out.
1802  *
1803  * Arguments:
1804  *	audiots_port_t	*port		The DMA engine to start up
1805  *
1806  * Returns:
1807  *	void
1808  */
1809 static void
1810 audiots_start_port(audiots_port_t *port)
1811 {
1812 	audiots_state_t		*state = port->tp_state;
1813 	audiots_regs_t		*regs = state->ts_regs;
1814 	ddi_acc_handle_t	handle = state->ts_acch;
1815 
1816 	ASSERT(mutex_owned(&state->ts_lock));
1817 
1818 	/* if suspended then do nothing else */
1819 	if (state->ts_suspended)  {
1820 		return;
1821 	}
1822 
1823 	/* make sure it starts playing */
1824 	ddi_put32(handle, &regs->aud_regs.ap_start,
1825 	    port->tp_dma_mask | port->tp_int_mask);
1826 
1827 	ASSERT(mutex_owned(&state->ts_lock));
1828 }
1829 
1830 /*
1831  * audiots_stop_port()
1832  *
1833  * Description:
1834  *	This routine stops a DMA engine.
1835  *
1836  * Arguments:
1837  *	audiots_port_t	*port		The port to stop
1838  *
1839  * Returns:
1840  *	void
1841  */
1842 static void
1843 audiots_stop_port(audiots_port_t *port)
1844 {
1845 	audiots_state_t *state = port->tp_state;
1846 
1847 	ASSERT(mutex_owned(&state->ts_lock));
1848 
1849 	if (state->ts_suspended)
1850 		return;
1851 
1852 	ddi_put32(state->ts_acch, &state->ts_regs->aud_regs.ap_stop,
1853 	    port->tp_int_mask | port->tp_dma_mask);
1854 
1855 	ASSERT(mutex_owned(&state->ts_lock));
1856 }
1857 
1858 /*
1859  * audiots_update_port()
1860  *
1861  * Description:
1862  *	This routine updates the ports frame counter from hardware, and
1863  *	gracefully handles wraps.
1864  *
1865  * Arguments:
1866  *	audiots_port_t	*port		The port to stop
1867  *
1868  * Returns:
1869  *	void
1870  */
1871 static void
1872 audiots_update_port(audiots_port_t *port)
1873 {
1874 	audiots_state_t		*state = port->tp_state;
1875 
1876 	uint16_t		cso;
1877 	unsigned		n;
1878 
1879 	ASSERT(mutex_owned(&state->ts_lock));
1880 
1881 	if (state->ts_suspended)
1882 		return;
1883 
1884 	cso = ddi_get16(state->ts_acch,
1885 	    &state->ts_regs->aud_ram[port->tp_dma_stream].aram.aram_cso);
1886 
1887 	n = (cso >= port->tp_cso) ?
1888 	    cso - port->tp_cso :
1889 	    cso + port->tp_nframes - port->tp_cso;
1890 
1891 	port->tp_cso = cso;
1892 	port->tp_count += n;
1893 }
1894 
1895 /*
1896  * audiots_stop_everything()
1897  *
1898  * Description:
1899  *	This routine disables the address engine interrupt for all 32 DMA
1900  *	engines. Just to be sure, it then explicitly issues a stop command to
1901  *	the address engine and envelope engines for all 32 channels.
1902  *
1903  * NOTE:
1904  *
1905  * 	There is a hardware bug that generates a spurious interrupt
1906  *	when the DMA engines are stopped. It's not consistent - it
1907  *	happens every 1 out of 6 stops or so. It will show up as a
1908  *	record interrupt. The problem is that once the driver is
1909  *	detached or if the system goes into low power mode, nobody
1910  *	will service that interrupt. The system will eventually become
1911  *	unusable.
1912  *
1913  * Arguments:
1914  *	audiots_state_t	*state		The device's state structure
1915  *
1916  * Returns:
1917  *	void
1918  */
1919 static void
1920 audiots_stop_everything(audiots_state_t *state)
1921 {
1922 	if (state->ts_acch == NULL)
1923 		return;
1924 
1925 	ddi_put32(state->ts_acch, &state->ts_regs->aud_regs.ap_ainten,
1926 	    TS_ALL_DMA_OFF);
1927 
1928 	ddi_put32(state->ts_acch, &state->ts_regs->aud_regs.ap_stop,
1929 	    TS_ALL_DMA_ENGINES);
1930 
1931 	ddi_put32(state->ts_acch, &state->ts_regs->aud_regs.ap_aint,
1932 	    TS_ALL_DMA_ENGINES);
1933 }
1934 
1935 /*
1936  * audiots_free_port()
1937  *
1938  * Description:
1939  *	This routine unbinds the DMA cookies, frees the DMA buffers,
1940  *	deallocates the DMA handles.
1941  *
1942  * Arguments:
1943  *	audiots_port_t	*port	The port structure for a device stream.
1944  *
1945  * Returns:
1946  *	None
1947  */
1948 void
1949 audiots_free_port(audiots_port_t *port)
1950 {
1951 	if (port == NULL)
1952 		return;
1953 
1954 	if (port->tp_engine) {
1955 		audio_dev_remove_engine(port->tp_state->ts_adev,
1956 		    port->tp_engine);
1957 		audio_engine_free(port->tp_engine);
1958 	}
1959 	if (port->tp_paddr) {
1960 		(void) ddi_dma_unbind_handle(port->tp_dmah);
1961 	}
1962 	if (port->tp_acch) {
1963 		ddi_dma_mem_free(&port->tp_acch);
1964 	}
1965 	if (port->tp_dmah) {
1966 		ddi_dma_free_handle(&port->tp_dmah);
1967 	}
1968 	kmem_free(port, sizeof (*port));
1969 }
1970 
1971 /*
1972  * audiots_destroy()
1973  *
1974  * Description:
1975  *	This routine releases all resources held by the device instance,
1976  *	as part of either detach or a failure in attach.
1977  *
1978  * Arguments:
1979  *	audiots_state_t	*state	The device soft state.
1980  *
1981  * Returns:
1982  *	None
1983  */
1984 void
1985 audiots_destroy(audiots_state_t *state)
1986 {
1987 	audiots_stop_everything(state);
1988 
1989 	if (state->ts_flags & TS_INTR_INSTALLED)
1990 		ddi_remove_intr(state->ts_dip, 0, NULL);
1991 
1992 	if (state->ts_ksp)
1993 		kstat_delete(state->ts_ksp);
1994 
1995 	for (int i = 0; i < TS_NUM_PORTS; i++)
1996 		audiots_free_port(state->ts_ports[i]);
1997 
1998 	if (state->ts_acch)
1999 		ddi_regs_map_free(&state->ts_acch);
2000 
2001 	if (state->ts_pcih)
2002 		pci_config_teardown(&state->ts_pcih);
2003 
2004 	if (state->ts_ac97)
2005 		ac97_free(state->ts_ac97);
2006 
2007 	if (state->ts_adev)
2008 		audio_dev_free(state->ts_adev);
2009 
2010 	if (state->ts_flags & TS_MUTEX_INIT) {
2011 		mutex_destroy(&state->ts_lock);
2012 	}
2013 
2014 	ddi_soft_state_free(audiots_statep, ddi_get_instance(state->ts_dip));
2015 }
2016