xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp_fusion.c (revision c5991125ddc49f996e4c3aed94b3b5f3fcb8a9a4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2015 by Delphix. All rights reserved.
24  * Copyright 2024 Oxide Computer Company
25  */
26 
27 #include <sys/types.h>
28 #include <sys/stream.h>
29 #include <sys/strsun.h>
30 #include <sys/strsubr.h>
31 #include <sys/debug.h>
32 #include <sys/sdt.h>
33 #include <sys/cmn_err.h>
34 #include <sys/tihdr.h>
35 
36 #include <inet/common.h>
37 #include <inet/optcom.h>
38 #include <inet/ip.h>
39 #include <inet/ip_if.h>
40 #include <inet/ip_impl.h>
41 #include <inet/tcp.h>
42 #include <inet/tcp_impl.h>
43 #include <inet/ipsec_impl.h>
44 #include <inet/ipclassifier.h>
45 #include <inet/ipp_common.h>
46 #include <inet/ip_if.h>
47 
48 /*
49  * This file implements TCP fusion - a protocol-less data path for TCP
50  * loopback connections.  The fusion of two local TCP endpoints occurs
51  * at connection establishment time.  Various conditions (see details
52  * in tcp_fuse()) need to be met for fusion to be successful.  If it
53  * fails, we fall back to the regular TCP data path; if it succeeds,
54  * both endpoints proceed to use tcp_fuse_output() as the transmit path.
55  * tcp_fuse_output() enqueues application data directly onto the peer's
56  * receive queue; no protocol processing is involved.
57  *
58  * Sychronization is handled by squeue and the mutex tcp_non_sq_lock.
59  * One of the requirements for fusion to succeed is that both endpoints
60  * need to be using the same squeue.  This ensures that neither side
61  * can disappear while the other side is still sending data. Flow
62  * control information is manipulated outside the squeue, so the
63  * tcp_non_sq_lock must be held when touching tcp_flow_stopped.
64  */
65 
66 /*
67  * Setting this to false means we disable fusion altogether and
68  * loopback connections would go through the protocol paths.
69  */
70 boolean_t do_tcp_fusion = B_TRUE;
71 
72 /*
73  * This routine gets called by the eager tcp upon changing state from
74  * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
75  * and the active connect tcp such that the regular tcp processings
76  * may be bypassed under allowable circumstances.  Because the fusion
77  * requires both endpoints to be in the same squeue, it does not work
78  * for simultaneous active connects because there is no easy way to
79  * switch from one squeue to another once the connection is created.
80  * This is different from the eager tcp case where we assign it the
81  * same squeue as the one given to the active connect tcp during open.
82  */
83 void
84 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcpha_t *tcpha)
85 {
86 	conn_t		*peer_connp, *connp = tcp->tcp_connp;
87 	tcp_t		*peer_tcp;
88 	tcp_stack_t	*tcps = tcp->tcp_tcps;
89 	netstack_t	*ns;
90 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
91 
92 	ASSERT(!tcp->tcp_fused);
93 	ASSERT(tcp->tcp_loopback);
94 	ASSERT(tcp->tcp_loopback_peer == NULL);
95 	/*
96 	 * We need to inherit conn_rcvbuf of the listener tcp,
97 	 * but we can't really use tcp_listener since we get here after
98 	 * sending up T_CONN_IND and tcp_tli_accept() may be called
99 	 * independently, at which point tcp_listener is cleared;
100 	 * this is why we use tcp_saved_listener. The listener itself
101 	 * is guaranteed to be around until tcp_accept_finish() is called
102 	 * on this eager -- this won't happen until we're done since we're
103 	 * inside the eager's perimeter now.
104 	 */
105 	ASSERT(tcp->tcp_saved_listener != NULL);
106 	/*
107 	 * Lookup peer endpoint; search for the remote endpoint having
108 	 * the reversed address-port quadruplet in ESTABLISHED state,
109 	 * which is guaranteed to be unique in the system.  Zone check
110 	 * is applied accordingly for loopback address, but not for
111 	 * local address since we want fusion to happen across Zones.
112 	 */
113 	if (connp->conn_ipversion == IPV4_VERSION) {
114 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
115 		    (ipha_t *)iphdr, tcpha, ipst);
116 	} else {
117 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
118 		    (ip6_t *)iphdr, tcpha, ipst);
119 	}
120 
121 	/*
122 	 * We can only proceed if peer exists, resides in the same squeue
123 	 * as our conn and is not raw-socket. We also restrict fusion to
124 	 * endpoints of the same type (STREAMS or non-STREAMS). The squeue
125 	 * assignment of this eager tcp was done earlier at the time of SYN
126 	 * processing in ip_fanout_tcp{_v6}.  Note that similar squeues by
127 	 * itself doesn't guarantee a safe condition to fuse, hence we perform
128 	 * additional tests below.
129 	 */
130 	ASSERT(peer_connp == NULL || peer_connp != connp);
131 	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
132 	    !IPCL_IS_TCP(peer_connp) ||
133 	    IPCL_IS_NONSTR(connp) != IPCL_IS_NONSTR(peer_connp)) {
134 		if (peer_connp != NULL) {
135 			TCP_STAT(tcps, tcp_fusion_unqualified);
136 			CONN_DEC_REF(peer_connp);
137 		}
138 		return;
139 	}
140 	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */
141 
142 	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
143 	ASSERT(peer_tcp->tcp_loopback_peer == NULL);
144 	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
145 
146 	/*
147 	 * Due to IRE changes the peer and us might not agree on tcp_loopback.
148 	 * We bail in that case.
149 	 */
150 	if (!peer_tcp->tcp_loopback) {
151 		TCP_STAT(tcps, tcp_fusion_unqualified);
152 		CONN_DEC_REF(peer_connp);
153 		return;
154 	}
155 	/*
156 	 * Fuse the endpoints; we perform further checks against both
157 	 * tcp endpoints to ensure that a fusion is allowed to happen.
158 	 */
159 	ns = tcps->tcps_netstack;
160 	ipst = ns->netstack_ip;
161 
162 	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
163 	    tcp->tcp_xmit_head == NULL && peer_tcp->tcp_xmit_head == NULL) {
164 		mblk_t *mp = NULL;
165 		queue_t *peer_rq = peer_connp->conn_rq;
166 
167 		ASSERT(!TCP_IS_DETACHED(peer_tcp));
168 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
169 		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
170 
171 		/*
172 		 * We need to drain data on both endpoints during unfuse.
173 		 * If we need to send up SIGURG at the time of draining,
174 		 * we want to be sure that an mblk is readily available.
175 		 * This is why we pre-allocate the M_PCSIG mblks for both
176 		 * endpoints which will only be used during/after unfuse.
177 		 * The mblk might already exist if we are doing a re-fuse.
178 		 */
179 		if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
180 			ASSERT(!IPCL_IS_NONSTR(peer_tcp->tcp_connp));
181 
182 			if (tcp->tcp_fused_sigurg_mp == NULL) {
183 				if ((mp = allocb(1, BPRI_HI)) == NULL)
184 					goto failed;
185 				tcp->tcp_fused_sigurg_mp = mp;
186 			}
187 
188 			if (peer_tcp->tcp_fused_sigurg_mp == NULL) {
189 				if ((mp = allocb(1, BPRI_HI)) == NULL)
190 					goto failed;
191 				peer_tcp->tcp_fused_sigurg_mp = mp;
192 			}
193 
194 			if ((mp = allocb(sizeof (struct stroptions),
195 			    BPRI_HI)) == NULL)
196 				goto failed;
197 		}
198 
199 		/* Fuse both endpoints */
200 		peer_tcp->tcp_loopback_peer = tcp;
201 		tcp->tcp_loopback_peer = peer_tcp;
202 		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
203 
204 		/*
205 		 * We never use regular tcp paths in fusion and should
206 		 * therefore clear tcp_unsent on both endpoints.  Having
207 		 * them set to non-zero values means asking for trouble
208 		 * especially after unfuse, where we may end up sending
209 		 * through regular tcp paths which expect xmit_list and
210 		 * friends to be correctly setup.
211 		 */
212 		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
213 
214 		tcp_timers_stop(tcp);
215 		tcp_timers_stop(peer_tcp);
216 
217 		/*
218 		 * Set receive buffer and max packet size for the
219 		 * active open tcp.
220 		 * eager's values will be set in tcp_accept_finish.
221 		 */
222 		(void) tcp_rwnd_set(peer_tcp, peer_tcp->tcp_connp->conn_rcvbuf);
223 
224 		/*
225 		 * Set the write offset value to zero since we won't
226 		 * be needing any room for TCP/IP headers.
227 		 */
228 		if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) {
229 			struct stroptions *stropt;
230 
231 			DB_TYPE(mp) = M_SETOPTS;
232 			mp->b_wptr += sizeof (*stropt);
233 
234 			stropt = (struct stroptions *)mp->b_rptr;
235 			stropt->so_flags = SO_WROFF | SO_MAXBLK;
236 			stropt->so_wroff = 0;
237 			stropt->so_maxblk = INFPSZ;
238 
239 			/* Send the options up */
240 			putnext(peer_rq, mp);
241 		} else {
242 			struct sock_proto_props sopp;
243 
244 			/* The peer is a non-STREAMS end point */
245 			ASSERT(IPCL_IS_TCP(peer_connp));
246 
247 			sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_MAXBLK;
248 			sopp.sopp_wroff = 0;
249 			sopp.sopp_maxblk = INFPSZ;
250 			(*peer_connp->conn_upcalls->su_set_proto_props)
251 			    (peer_connp->conn_upper_handle, &sopp);
252 		}
253 	} else {
254 		TCP_STAT(tcps, tcp_fusion_unqualified);
255 	}
256 	CONN_DEC_REF(peer_connp);
257 	return;
258 
259 failed:
260 	if (tcp->tcp_fused_sigurg_mp != NULL) {
261 		freeb(tcp->tcp_fused_sigurg_mp);
262 		tcp->tcp_fused_sigurg_mp = NULL;
263 	}
264 	if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
265 		freeb(peer_tcp->tcp_fused_sigurg_mp);
266 		peer_tcp->tcp_fused_sigurg_mp = NULL;
267 	}
268 	CONN_DEC_REF(peer_connp);
269 }
270 
271 /*
272  * Unfuse a previously-fused pair of tcp loopback endpoints.
273  */
274 void
275 tcp_unfuse(tcp_t *tcp)
276 {
277 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
278 	tcp_stack_t *tcps = tcp->tcp_tcps;
279 
280 	ASSERT(tcp->tcp_fused && peer_tcp != NULL);
281 	ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
282 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
283 	ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
284 
285 	/*
286 	 * Cancel any pending push timers.
287 	 */
288 	if (tcp->tcp_push_tid != 0) {
289 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
290 		tcp->tcp_push_tid = 0;
291 	}
292 	if (peer_tcp->tcp_push_tid != 0) {
293 		(void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid);
294 		peer_tcp->tcp_push_tid = 0;
295 	}
296 
297 	/*
298 	 * Drain any pending data; Note that in case of a detached tcp, the
299 	 * draining will happen later after the tcp is unfused.  For non-
300 	 * urgent data, this can be handled by the regular tcp_rcv_drain().
301 	 * If we have urgent data sitting in the receive list, we will
302 	 * need to send up a SIGURG signal first before draining the data.
303 	 * All of these will be handled by the code in tcp_fuse_rcv_drain()
304 	 * when called from tcp_rcv_drain().
305 	 */
306 	if (!TCP_IS_DETACHED(tcp)) {
307 		(void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp,
308 		    &tcp->tcp_fused_sigurg_mp);
309 	}
310 	if (!TCP_IS_DETACHED(peer_tcp)) {
311 		(void) tcp_fuse_rcv_drain(peer_tcp->tcp_connp->conn_rq,
312 		    peer_tcp,  &peer_tcp->tcp_fused_sigurg_mp);
313 	}
314 
315 	/* Lift up any flow-control conditions */
316 	mutex_enter(&tcp->tcp_non_sq_lock);
317 	if (tcp->tcp_flow_stopped) {
318 		tcp_clrqfull(tcp);
319 		TCP_STAT(tcps, tcp_fusion_backenabled);
320 	}
321 	mutex_exit(&tcp->tcp_non_sq_lock);
322 
323 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
324 	if (peer_tcp->tcp_flow_stopped) {
325 		tcp_clrqfull(peer_tcp);
326 		TCP_STAT(tcps, tcp_fusion_backenabled);
327 	}
328 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
329 
330 	/*
331 	 * Update tha_seq and tha_ack in the header template
332 	 */
333 	tcp->tcp_tcpha->tha_seq = htonl(tcp->tcp_snxt);
334 	tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
335 	peer_tcp->tcp_tcpha->tha_seq = htonl(peer_tcp->tcp_snxt);
336 	peer_tcp->tcp_tcpha->tha_ack = htonl(peer_tcp->tcp_rnxt);
337 
338 	/* Unfuse the endpoints */
339 	peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
340 	peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
341 }
342 
343 /*
344  * Fusion output routine used to handle urgent data sent by STREAMS based
345  * endpoints. This routine is called by tcp_fuse_output() for handling
346  * non-M_DATA mblks.
347  */
348 void
349 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
350 {
351 	mblk_t *mp1;
352 	struct T_exdata_ind *tei;
353 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
354 	mblk_t *head, *prev_head = NULL;
355 	tcp_stack_t	*tcps = tcp->tcp_tcps;
356 
357 	ASSERT(tcp->tcp_fused);
358 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
359 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
360 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
361 	ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
362 	ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
363 
364 	/*
365 	 * Urgent data arrives in the form of T_EXDATA_REQ from above.
366 	 * Each occurence denotes a new urgent pointer.  For each new
367 	 * urgent pointer we signal (SIGURG) the receiving app to indicate
368 	 * that it needs to go into urgent mode.  This is similar to the
369 	 * urgent data handling in the regular tcp.  We don't need to keep
370 	 * track of where the urgent pointer is, because each T_EXDATA_REQ
371 	 * "advances" the urgent pointer for us.
372 	 *
373 	 * The actual urgent data carried by T_EXDATA_REQ is then prepended
374 	 * by a T_EXDATA_IND before being enqueued behind any existing data
375 	 * destined for the receiving app.  There is only a single urgent
376 	 * pointer (out-of-band mark) for a given tcp.  If the new urgent
377 	 * data arrives before the receiving app reads some existing urgent
378 	 * data, the previous marker is lost.  This behavior is emulated
379 	 * accordingly below, by removing any existing T_EXDATA_IND messages
380 	 * and essentially converting old urgent data into non-urgent.
381 	 */
382 	ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
383 	/* Let sender get out of urgent mode */
384 	tcp->tcp_valid_bits &= ~TCP_URG_VALID;
385 
386 	/*
387 	 * This flag indicates that a signal needs to be sent up.
388 	 * This flag will only get cleared once SIGURG is delivered and
389 	 * is not affected by the tcp_fused flag -- delivery will still
390 	 * happen even after an endpoint is unfused, to handle the case
391 	 * where the sending endpoint immediately closes/unfuses after
392 	 * sending urgent data and the accept is not yet finished.
393 	 */
394 	peer_tcp->tcp_fused_sigurg = B_TRUE;
395 
396 	/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
397 	DB_TYPE(mp) = M_PROTO;
398 	tei = (struct T_exdata_ind *)mp->b_rptr;
399 	tei->PRIM_type = T_EXDATA_IND;
400 	tei->MORE_flag = 0;
401 	mp->b_wptr = (uchar_t *)&tei[1];
402 
403 	TCP_STAT(tcps, tcp_fusion_urg);
404 	TCPS_BUMP_MIB(tcps, tcpOutUrg);
405 
406 	head = peer_tcp->tcp_rcv_list;
407 	while (head != NULL) {
408 		/*
409 		 * Remove existing T_EXDATA_IND, keep the data which follows
410 		 * it and relink our list.  Note that we don't modify the
411 		 * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
412 		 */
413 		if (DB_TYPE(head) != M_DATA) {
414 			mp1 = head;
415 
416 			ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
417 			head = mp1->b_cont;
418 			mp1->b_cont = NULL;
419 			head->b_next = mp1->b_next;
420 			mp1->b_next = NULL;
421 			if (prev_head != NULL)
422 				prev_head->b_next = head;
423 			if (peer_tcp->tcp_rcv_list == mp1)
424 				peer_tcp->tcp_rcv_list = head;
425 			if (peer_tcp->tcp_rcv_last_head == mp1)
426 				peer_tcp->tcp_rcv_last_head = head;
427 			freeb(mp1);
428 		}
429 		prev_head = head;
430 		head = head->b_next;
431 	}
432 }
433 
434 /*
435  * Fusion output routine, called by tcp_output() and tcp_wput_proto().
436  * If we are modifying any member that can be changed outside the squeue,
437  * like tcp_flow_stopped, we need to take tcp_non_sq_lock.
438  */
439 boolean_t
440 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
441 {
442 	conn_t		*connp = tcp->tcp_connp;
443 	tcp_t		*peer_tcp = tcp->tcp_loopback_peer;
444 	conn_t		*peer_connp = peer_tcp->tcp_connp;
445 	boolean_t	flow_stopped, peer_data_queued = B_FALSE;
446 	boolean_t	urgent = (DB_TYPE(mp) != M_DATA);
447 	boolean_t	push = B_TRUE;
448 	mblk_t		*mp1 = mp;
449 	uint_t		ip_hdr_len;
450 	uint32_t	recv_size = send_size;
451 	tcp_stack_t	*tcps = tcp->tcp_tcps;
452 	netstack_t	*ns = tcps->tcps_netstack;
453 	ip_stack_t	*ipst = ns->netstack_ip;
454 	ipsec_stack_t	*ipss = ns->netstack_ipsec;
455 	iaflags_t	ixaflags = connp->conn_ixa->ixa_flags;
456 	boolean_t	do_ipsec, hooks_out, hooks_in, ipobs_enabled;
457 
458 	ASSERT(tcp->tcp_fused);
459 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
460 	ASSERT(connp->conn_sqp == peer_connp->conn_sqp);
461 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
462 	    DB_TYPE(mp) == M_PCPROTO);
463 
464 	if (send_size == 0) {
465 		freemsg(mp);
466 		return (B_TRUE);
467 	}
468 
469 	/*
470 	 * Check enforcement of the minimum TTL policy differences in the
471 	 * connection as this can change even after fusion. If we detect a
472 	 * mismatch, unfuse and allow normal stack processing to handle this.
473 	 */
474 	if (peer_connp->conn_min_ttl != 0 && peer_connp->conn_min_ttl >
475 	    connp->conn_xmit_ipp.ipp_unicast_hops) {
476 		goto unfuse;
477 	}
478 
479 	/*
480 	 * Handle urgent data; we either send up SIGURG to the peer now
481 	 * or do it later when we drain, in case the peer is detached
482 	 * or if we're short of memory for M_PCSIG mblk.
483 	 */
484 	if (urgent) {
485 		tcp_fuse_output_urg(tcp, mp);
486 
487 		mp1 = mp->b_cont;
488 	}
489 
490 	/*
491 	 * Check that we are still using an IRE_LOCAL or IRE_LOOPBACK before
492 	 * further processes.
493 	 */
494 	if (!ip_output_verify_local(connp->conn_ixa))
495 		goto unfuse;
496 
497 	/*
498 	 * Build IP and TCP header in case we have something that needs the
499 	 * headers. Those cases are:
500 	 * 1. IPsec
501 	 * 2. IPobs
502 	 * 3. FW_HOOKS
503 	 *
504 	 * If tcp_xmit_mp() fails to dupb() the message, unfuse the connection
505 	 * and back to regular path.
506 	 */
507 	if (ixaflags & IXAF_IS_IPV4) {
508 		do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) ||
509 		    CONN_INBOUND_POLICY_PRESENT(peer_connp, ipss);
510 
511 		hooks_out = HOOKS4_INTERESTED_LOOPBACK_OUT(ipst);
512 		hooks_in = HOOKS4_INTERESTED_LOOPBACK_IN(ipst);
513 		ipobs_enabled = (ipst->ips_ip4_observe.he_interested != 0);
514 	} else {
515 		do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) ||
516 		    CONN_INBOUND_POLICY_PRESENT_V6(peer_connp, ipss);
517 
518 		hooks_out = HOOKS6_INTERESTED_LOOPBACK_OUT(ipst);
519 		hooks_in = HOOKS6_INTERESTED_LOOPBACK_IN(ipst);
520 		ipobs_enabled = (ipst->ips_ip6_observe.he_interested != 0);
521 	}
522 
523 	/* We do logical 'or' for efficiency */
524 	if (ipobs_enabled | do_ipsec | hooks_in | hooks_out) {
525 		if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL,
526 		    tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL)
527 			/* If tcp_xmit_mp fails, use regular path */
528 			goto unfuse;
529 
530 		/*
531 		 * Leave all IP relevant processes to ip_output_process_local(),
532 		 * which handles IPsec, IPobs, and FW_HOOKS.
533 		 */
534 		mp1 = ip_output_process_local(mp1, connp->conn_ixa, hooks_out,
535 		    hooks_in, do_ipsec ? peer_connp : NULL);
536 
537 		/* If the message is dropped for any reason. */
538 		if (mp1 == NULL)
539 			goto unfuse;
540 
541 		/*
542 		 * Data length might have been changed by FW_HOOKS.
543 		 * We assume that the first mblk contains the TCP/IP headers.
544 		 */
545 		if (hooks_in || hooks_out) {
546 			tcpha_t *tcpha;
547 
548 			ip_hdr_len = (ixaflags & IXAF_IS_IPV4) ?
549 			    IPH_HDR_LENGTH((ipha_t *)mp1->b_rptr) :
550 			    ip_hdr_length_v6(mp1, (ip6_t *)mp1->b_rptr);
551 
552 			tcpha = (tcpha_t *)&mp1->b_rptr[ip_hdr_len];
553 			ASSERT((uchar_t *)tcpha + sizeof (tcpha_t) <=
554 			    mp1->b_wptr);
555 			recv_size += htonl(tcpha->tha_seq) - tcp->tcp_snxt;
556 
557 		}
558 
559 		/*
560 		 * The message duplicated by tcp_xmit_mp is freed.
561 		 * Note: the original message passed in remains unchanged.
562 		 */
563 		freemsg(mp1);
564 	}
565 
566 	/*
567 	 * Enqueue data into the peer's receive list; we may or may not
568 	 * drain the contents depending on the conditions below.
569 	 *
570 	 * For non-STREAMS sockets we normally queue data directly in the
571 	 * socket by calling the su_recv upcall. However, if the peer is
572 	 * detached we use tcp_rcv_enqueue() instead. Queued data will be
573 	 * drained when the accept completes (in tcp_accept_finish()).
574 	 */
575 	if (IPCL_IS_NONSTR(peer_connp) &&
576 	    !TCP_IS_DETACHED(peer_tcp)) {
577 		int error;
578 		int flags = 0;
579 
580 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
581 		    (tcp->tcp_urg == tcp->tcp_snxt)) {
582 			flags = MSG_OOB;
583 			(*peer_connp->conn_upcalls->su_signal_oob)
584 			    (peer_connp->conn_upper_handle, 0);
585 			tcp->tcp_valid_bits &= ~TCP_URG_VALID;
586 		}
587 		if ((*peer_connp->conn_upcalls->su_recv)(
588 		    peer_connp->conn_upper_handle, mp, recv_size,
589 		    flags, &error, &push) < 0) {
590 			ASSERT(error != EOPNOTSUPP);
591 			peer_data_queued = B_TRUE;
592 		}
593 	} else {
594 		if (IPCL_IS_NONSTR(peer_connp) &&
595 		    (tcp->tcp_valid_bits & TCP_URG_VALID) &&
596 		    (tcp->tcp_urg == tcp->tcp_snxt)) {
597 			/*
598 			 * Can not deal with urgent pointers
599 			 * that arrive before the connection has been
600 			 * accept()ed.
601 			 */
602 			tcp->tcp_valid_bits &= ~TCP_URG_VALID;
603 			freemsg(mp);
604 			return (B_TRUE);
605 		}
606 
607 		tcp_rcv_enqueue(peer_tcp, mp, recv_size,
608 		    tcp->tcp_connp->conn_cred);
609 
610 		/* In case it wrapped around and also to keep it constant */
611 		peer_tcp->tcp_rwnd += recv_size;
612 	}
613 
614 	/*
615 	 * Exercise flow-control when needed; we will get back-enabled
616 	 * in either tcp_accept_finish(), tcp_unfuse(), or when data is
617 	 * consumed. If peer endpoint is detached, we emulate streams flow
618 	 * control by checking the peer's queue size and high water mark;
619 	 * otherwise we simply use canputnext() to decide if we need to stop
620 	 * our flow.
621 	 *
622 	 * Since we are accessing our tcp_flow_stopped and might modify it,
623 	 * we need to take tcp->tcp_non_sq_lock.
624 	 */
625 	mutex_enter(&tcp->tcp_non_sq_lock);
626 	flow_stopped = tcp->tcp_flow_stopped;
627 	if ((TCP_IS_DETACHED(peer_tcp) &&
628 	    (peer_tcp->tcp_rcv_cnt >= peer_connp->conn_rcvbuf)) ||
629 	    (!TCP_IS_DETACHED(peer_tcp) &&
630 	    !IPCL_IS_NONSTR(peer_connp) && !canputnext(peer_connp->conn_rq))) {
631 		peer_data_queued = B_TRUE;
632 	}
633 
634 	if (!flow_stopped && (peer_data_queued ||
635 	    (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf))) {
636 		tcp_setqfull(tcp);
637 		flow_stopped = B_TRUE;
638 		TCP_STAT(tcps, tcp_fusion_flowctl);
639 		DTRACE_PROBE3(tcp__fuse__output__flowctl, tcp_t *, tcp,
640 		    uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt);
641 	} else if (flow_stopped && !peer_data_queued &&
642 	    (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat)) {
643 		tcp_clrqfull(tcp);
644 		TCP_STAT(tcps, tcp_fusion_backenabled);
645 		flow_stopped = B_FALSE;
646 	}
647 	mutex_exit(&tcp->tcp_non_sq_lock);
648 
649 	ipst->ips_loopback_packets++;
650 	tcp->tcp_last_sent_len = send_size;
651 
652 	/* Need to adjust the following SNMP MIB-related variables */
653 	tcp->tcp_snxt += send_size;
654 	tcp->tcp_suna = tcp->tcp_snxt;
655 	peer_tcp->tcp_rnxt += recv_size;
656 	peer_tcp->tcp_last_recv_len = recv_size;
657 	peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
658 
659 	TCPS_BUMP_MIB(tcps, tcpOutDataSegs);
660 	TCPS_BUMP_MIB(tcps, tcpHCOutSegs);
661 	TCPS_UPDATE_MIB(tcps, tcpOutDataBytes, send_size);
662 	tcp->tcp_cs.tcp_out_data_bytes += send_size;
663 	tcp->tcp_cs.tcp_out_data_segs++;
664 
665 	TCPS_BUMP_MIB(tcps, tcpHCInSegs);
666 	TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs);
667 	TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, send_size);
668 	peer_tcp->tcp_cs.tcp_in_data_inorder_bytes += send_size;
669 	peer_tcp->tcp_cs.tcp_in_data_inorder_segs++;
670 
671 	DTRACE_TCP5(send, void, NULL, ip_xmit_attr_t *, connp->conn_ixa,
672 	    __dtrace_tcp_void_ip_t *, NULL, tcp_t *, tcp,
673 	    __dtrace_tcp_tcph_t *, NULL);
674 	DTRACE_TCP5(receive, void, NULL, ip_xmit_attr_t *,
675 	    peer_connp->conn_ixa, __dtrace_tcp_void_ip_t *, NULL,
676 	    tcp_t *, peer_tcp, __dtrace_tcp_tcph_t *, NULL);
677 
678 	if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
679 	    !TCP_IS_DETACHED(peer_tcp)) {
680 		/*
681 		 * Drain the peer's receive queue it has urgent data or if
682 		 * we're not flow-controlled.
683 		 */
684 		if (urgent || !flow_stopped) {
685 			ASSERT(peer_tcp->tcp_rcv_list != NULL);
686 			/*
687 			 * For TLI-based streams, a thread in tcp_accept_swap()
688 			 * can race with us.  That thread will ensure that the
689 			 * correct peer_connp->conn_rq is globally visible
690 			 * before peer_tcp->tcp_detached is visible as clear,
691 			 * but we must also ensure that the load of conn_rq
692 			 * cannot be reordered to be before the tcp_detached
693 			 * check.
694 			 */
695 			membar_consumer();
696 			(void) tcp_fuse_rcv_drain(peer_connp->conn_rq, peer_tcp,
697 			    NULL);
698 		}
699 	}
700 	return (B_TRUE);
701 unfuse:
702 	tcp_unfuse(tcp);
703 	return (B_FALSE);
704 }
705 
706 /*
707  * This routine gets called to deliver data upstream on a fused or
708  * previously fused tcp loopback endpoint; the latter happens only
709  * when there is a pending SIGURG signal plus urgent data that can't
710  * be sent upstream in the past.
711  */
712 boolean_t
713 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
714 {
715 	mblk_t *mp;
716 	conn_t	*connp = tcp->tcp_connp;
717 
718 #ifdef DEBUG
719 	uint_t cnt = 0;
720 #endif
721 	tcp_stack_t	*tcps = tcp->tcp_tcps;
722 	tcp_t		*peer_tcp = tcp->tcp_loopback_peer;
723 
724 	ASSERT(tcp->tcp_loopback);
725 	ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
726 	ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
727 	ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused);
728 
729 	/* No need for the push timer now, in case it was scheduled */
730 	if (tcp->tcp_push_tid != 0) {
731 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
732 		tcp->tcp_push_tid = 0;
733 	}
734 	/*
735 	 * If there's urgent data sitting in receive list and we didn't
736 	 * get a chance to send up a SIGURG signal, make sure we send
737 	 * it first before draining in order to ensure that SIOCATMARK
738 	 * works properly.
739 	 */
740 	if (tcp->tcp_fused_sigurg) {
741 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
742 
743 		tcp->tcp_fused_sigurg = B_FALSE;
744 		/*
745 		 * sigurg_mpp is normally NULL, i.e. when we're still
746 		 * fused and didn't get here because of tcp_unfuse().
747 		 * In this case try hard to allocate the M_PCSIG mblk.
748 		 */
749 		if (sigurg_mpp == NULL &&
750 		    (mp = allocb(1, BPRI_HI)) == NULL &&
751 		    (mp = allocb_tryhard(1)) == NULL) {
752 			/* Alloc failed; try again next time */
753 			tcp->tcp_push_tid = TCP_TIMER(tcp,
754 			    tcp_push_timer, tcps->tcps_push_timer_interval);
755 			return (B_TRUE);
756 		} else if (sigurg_mpp != NULL) {
757 			/*
758 			 * Use the supplied M_PCSIG mblk; it means we're
759 			 * either unfused or in the process of unfusing,
760 			 * and the drain must happen now.
761 			 */
762 			mp = *sigurg_mpp;
763 			*sigurg_mpp = NULL;
764 		}
765 		ASSERT(mp != NULL);
766 
767 		/* Send up the signal */
768 		DB_TYPE(mp) = M_PCSIG;
769 		*mp->b_wptr++ = (uchar_t)SIGURG;
770 		putnext(q, mp);
771 
772 		/*
773 		 * Let the regular tcp_rcv_drain() path handle
774 		 * draining the data if we're no longer fused.
775 		 */
776 		if (!tcp->tcp_fused)
777 			return (B_FALSE);
778 	}
779 
780 	/* Drain the data */
781 	while ((mp = tcp->tcp_rcv_list) != NULL) {
782 		tcp->tcp_rcv_list = mp->b_next;
783 		mp->b_next = NULL;
784 #ifdef DEBUG
785 		cnt += msgdsize(mp);
786 #endif
787 		ASSERT(!IPCL_IS_NONSTR(connp));
788 		putnext(q, mp);
789 		TCP_STAT(tcps, tcp_fusion_putnext);
790 	}
791 
792 #ifdef DEBUG
793 	ASSERT(cnt == tcp->tcp_rcv_cnt);
794 #endif
795 	tcp->tcp_rcv_last_head = NULL;
796 	tcp->tcp_rcv_last_tail = NULL;
797 	tcp->tcp_rcv_cnt = 0;
798 	tcp->tcp_rwnd = tcp->tcp_connp->conn_rcvbuf;
799 
800 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
801 	if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <=
802 	    peer_tcp->tcp_connp->conn_sndlowat)) {
803 		tcp_clrqfull(peer_tcp);
804 		TCP_STAT(tcps, tcp_fusion_backenabled);
805 	}
806 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
807 
808 	return (B_TRUE);
809 }
810 
811 /*
812  * Calculate the size of receive buffer for a fused tcp endpoint.
813  */
814 size_t
815 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
816 {
817 	tcp_stack_t	*tcps = tcp->tcp_tcps;
818 	uint32_t	max_win;
819 
820 	ASSERT(tcp->tcp_fused);
821 
822 	/* Ensure that value is within the maximum upper bound */
823 	if (rwnd > tcps->tcps_max_buf)
824 		rwnd = tcps->tcps_max_buf;
825 	/*
826 	 * Round up to system page size in case SO_RCVBUF is modified
827 	 * after SO_SNDBUF; the latter is also similarly rounded up.
828 	 */
829 	rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
830 	max_win = TCP_MAXWIN << tcp->tcp_rcv_ws;
831 	if (rwnd > max_win) {
832 		rwnd = max_win - (max_win % tcp->tcp_mss);
833 		if (rwnd < tcp->tcp_mss)
834 			rwnd = max_win;
835 	}
836 
837 	/*
838 	 * Record high water mark, this is used for flow-control
839 	 * purposes in tcp_fuse_output().
840 	 */
841 	tcp->tcp_connp->conn_rcvbuf = rwnd;
842 	tcp->tcp_rwnd = rwnd;
843 	return (rwnd);
844 }
845 
846 /*
847  * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
848  */
849 int
850 tcp_fuse_maxpsz(tcp_t *tcp)
851 {
852 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
853 	conn_t *connp = tcp->tcp_connp;
854 	uint_t sndbuf = connp->conn_sndbuf;
855 	uint_t maxpsz = sndbuf;
856 
857 	ASSERT(tcp->tcp_fused);
858 	ASSERT(peer_tcp != NULL);
859 	ASSERT(peer_tcp->tcp_connp->conn_rcvbuf != 0);
860 	/*
861 	 * In the fused loopback case, we want the stream head to split
862 	 * up larger writes into smaller chunks for a more accurate flow-
863 	 * control accounting.  Our maxpsz is half of the sender's send
864 	 * buffer or the receiver's receive buffer, whichever is smaller.
865 	 * We round up the buffer to system page size due to the lack of
866 	 * TCP MSS concept in Fusion.
867 	 */
868 	if (maxpsz > peer_tcp->tcp_connp->conn_rcvbuf)
869 		maxpsz = peer_tcp->tcp_connp->conn_rcvbuf;
870 	maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
871 
872 	return (maxpsz);
873 }
874 
875 /*
876  * Called to release flow control.
877  */
878 void
879 tcp_fuse_backenable(tcp_t *tcp)
880 {
881 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
882 
883 	ASSERT(tcp->tcp_fused);
884 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
885 	ASSERT(peer_tcp->tcp_loopback_peer == tcp);
886 	ASSERT(!TCP_IS_DETACHED(tcp));
887 	ASSERT(tcp->tcp_connp->conn_sqp ==
888 	    peer_tcp->tcp_connp->conn_sqp);
889 
890 	if (tcp->tcp_rcv_list != NULL)
891 		(void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp, NULL);
892 
893 	mutex_enter(&peer_tcp->tcp_non_sq_lock);
894 	if (peer_tcp->tcp_flow_stopped &&
895 	    (TCP_UNSENT_BYTES(peer_tcp) <=
896 	    peer_tcp->tcp_connp->conn_sndlowat)) {
897 		tcp_clrqfull(peer_tcp);
898 	}
899 	mutex_exit(&peer_tcp->tcp_non_sq_lock);
900 
901 	TCP_STAT(tcp->tcp_tcps, tcp_fusion_backenabled);
902 }
903