xref: /illumos-gate/usr/src/uts/common/inet/tcp/tcp.c (revision d67944fbe3fa0b31893a7116a09b0718eecf6078)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 /* Copyright (c) 1990 Mentat Inc. */
27 
28 #include <sys/types.h>
29 #include <sys/stream.h>
30 #include <sys/strsun.h>
31 #include <sys/strsubr.h>
32 #include <sys/stropts.h>
33 #include <sys/strlog.h>
34 #define	_SUN_TPI_VERSION 2
35 #include <sys/tihdr.h>
36 #include <sys/timod.h>
37 #include <sys/ddi.h>
38 #include <sys/sunddi.h>
39 #include <sys/suntpi.h>
40 #include <sys/xti_inet.h>
41 #include <sys/cmn_err.h>
42 #include <sys/debug.h>
43 #include <sys/sdt.h>
44 #include <sys/vtrace.h>
45 #include <sys/kmem.h>
46 #include <sys/ethernet.h>
47 #include <sys/cpuvar.h>
48 #include <sys/dlpi.h>
49 #include <sys/multidata.h>
50 #include <sys/multidata_impl.h>
51 #include <sys/pattr.h>
52 #include <sys/policy.h>
53 #include <sys/priv.h>
54 #include <sys/zone.h>
55 #include <sys/sunldi.h>
56 
57 #include <sys/errno.h>
58 #include <sys/signal.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sockio.h>
62 #include <sys/isa_defs.h>
63 #include <sys/md5.h>
64 #include <sys/random.h>
65 #include <sys/uio.h>
66 #include <sys/systm.h>
67 #include <netinet/in.h>
68 #include <netinet/tcp.h>
69 #include <netinet/ip6.h>
70 #include <netinet/icmp6.h>
71 #include <net/if.h>
72 #include <net/route.h>
73 #include <inet/ipsec_impl.h>
74 
75 #include <inet/common.h>
76 #include <inet/ip.h>
77 #include <inet/ip_impl.h>
78 #include <inet/ip6.h>
79 #include <inet/ip_ndp.h>
80 #include <inet/proto_set.h>
81 #include <inet/mib2.h>
82 #include <inet/nd.h>
83 #include <inet/optcom.h>
84 #include <inet/snmpcom.h>
85 #include <inet/kstatcom.h>
86 #include <inet/tcp.h>
87 #include <inet/tcp_impl.h>
88 #include <inet/udp_impl.h>
89 #include <net/pfkeyv2.h>
90 #include <inet/ipsec_info.h>
91 #include <inet/ipdrop.h>
92 
93 #include <inet/ipclassifier.h>
94 #include <inet/ip_ire.h>
95 #include <inet/ip_ftable.h>
96 #include <inet/ip_if.h>
97 #include <inet/ipp_common.h>
98 #include <inet/ip_netinfo.h>
99 #include <sys/squeue_impl.h>
100 #include <sys/squeue.h>
101 #include <inet/kssl/ksslapi.h>
102 #include <sys/tsol/label.h>
103 #include <sys/tsol/tnet.h>
104 #include <rpc/pmap_prot.h>
105 #include <sys/callo.h>
106 
107 /*
108  * TCP Notes: aka FireEngine Phase I (PSARC 2002/433)
109  *
110  * (Read the detailed design doc in PSARC case directory)
111  *
112  * The entire tcp state is contained in tcp_t and conn_t structure
113  * which are allocated in tandem using ipcl_conn_create() and passing
114  * IPCL_CONNTCP as a flag. We use 'conn_ref' and 'conn_lock' to protect
115  * the references on the tcp_t. The tcp_t structure is never compressed
116  * and packets always land on the correct TCP perimeter from the time
117  * eager is created till the time tcp_t dies (as such the old mentat
118  * TCP global queue is not used for detached state and no IPSEC checking
119  * is required). The global queue is still allocated to send out resets
120  * for connection which have no listeners and IP directly calls
121  * tcp_xmit_listeners_reset() which does any policy check.
122  *
123  * Protection and Synchronisation mechanism:
124  *
125  * The tcp data structure does not use any kind of lock for protecting
126  * its state but instead uses 'squeues' for mutual exclusion from various
127  * read and write side threads. To access a tcp member, the thread should
128  * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS,
129  * or SQ_NODRAIN). Since the squeues allow a direct function call, caller
130  * can pass any tcp function having prototype of edesc_t as argument
131  * (different from traditional STREAMs model where packets come in only
132  * designated entry points). The list of functions that can be directly
133  * called via squeue are listed before the usual function prototype.
134  *
135  * Referencing:
136  *
137  * TCP is MT-Hot and we use a reference based scheme to make sure that the
138  * tcp structure doesn't disappear when its needed. When the application
139  * creates an outgoing connection or accepts an incoming connection, we
140  * start out with 2 references on 'conn_ref'. One for TCP and one for IP.
141  * The IP reference is just a symbolic reference since ip_tcpclose()
142  * looks at tcp structure after tcp_close_output() returns which could
143  * have dropped the last TCP reference. So as long as the connection is
144  * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the
145  * conn_t. The classifier puts its own reference when the connection is
146  * inserted in listen or connected hash. Anytime a thread needs to enter
147  * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr
148  * on write side or by doing a classify on read side and then puts a
149  * reference on the conn before doing squeue_enter/tryenter/fill. For
150  * read side, the classifier itself puts the reference under fanout lock
151  * to make sure that tcp can't disappear before it gets processed. The
152  * squeue will drop this reference automatically so the called function
153  * doesn't have to do a DEC_REF.
154  *
155  * Opening a new connection:
156  *
157  * The outgoing connection open is pretty simple. tcp_open() does the
158  * work in creating the conn/tcp structure and initializing it. The
159  * squeue assignment is done based on the CPU the application
160  * is running on. So for outbound connections, processing is always done
161  * on application CPU which might be different from the incoming CPU
162  * being interrupted by the NIC. An optimal way would be to figure out
163  * the NIC <-> CPU binding at listen time, and assign the outgoing
164  * connection to the squeue attached to the CPU that will be interrupted
165  * for incoming packets (we know the NIC based on the bind IP address).
166  * This might seem like a problem if more data is going out but the
167  * fact is that in most cases the transmit is ACK driven transmit where
168  * the outgoing data normally sits on TCP's xmit queue waiting to be
169  * transmitted.
170  *
171  * Accepting a connection:
172  *
173  * This is a more interesting case because of various races involved in
174  * establishing a eager in its own perimeter. Read the meta comment on
175  * top of tcp_conn_request(). But briefly, the squeue is picked by
176  * ip_tcp_input()/ip_fanout_tcp_v6() based on the interrupted CPU.
177  *
178  * Closing a connection:
179  *
180  * The close is fairly straight forward. tcp_close() calls tcp_close_output()
181  * via squeue to do the close and mark the tcp as detached if the connection
182  * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its
183  * reference but tcp_close() drop IP's reference always. So if tcp was
184  * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP
185  * and 1 because it is in classifier's connected hash. This is the condition
186  * we use to determine that its OK to clean up the tcp outside of squeue
187  * when time wait expires (check the ref under fanout and conn_lock and
188  * if it is 2, remove it from fanout hash and kill it).
189  *
190  * Although close just drops the necessary references and marks the
191  * tcp_detached state, tcp_close needs to know the tcp_detached has been
192  * set (under squeue) before letting the STREAM go away (because a
193  * inbound packet might attempt to go up the STREAM while the close
194  * has happened and tcp_detached is not set). So a special lock and
195  * flag is used along with a condition variable (tcp_closelock, tcp_closed,
196  * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked
197  * tcp_detached.
198  *
199  * Special provisions and fast paths:
200  *
201  * We make special provision for (AF_INET, SOCK_STREAM) sockets which
202  * can't have 'ipv6_recvpktinfo' set and for these type of sockets, IP
203  * will never send a M_CTL to TCP. As such, ip_tcp_input() which handles
204  * all TCP packets from the wire makes a IPCL_IS_TCP4_CONNECTED_NO_POLICY
205  * check to send packets directly to tcp_rput_data via squeue. Everyone
206  * else comes through tcp_input() on the read side.
207  *
208  * We also make special provisions for sockfs by marking tcp_issocket
209  * whenever we have only sockfs on top of TCP. This allows us to skip
210  * putting the tcp in acceptor hash since a sockfs listener can never
211  * become acceptor and also avoid allocating a tcp_t for acceptor STREAM
212  * since eager has already been allocated and the accept now happens
213  * on acceptor STREAM. There is a big blob of comment on top of
214  * tcp_conn_request explaining the new accept. When socket is POP'd,
215  * sockfs sends us an ioctl to mark the fact and we go back to old
216  * behaviour. Once tcp_issocket is unset, its never set for the
217  * life of that connection.
218  *
219  * IPsec notes :
220  *
221  * Since a packet is always executed on the correct TCP perimeter
222  * all IPsec processing is defered to IP including checking new
223  * connections and setting IPSEC policies for new connection. The
224  * only exception is tcp_xmit_listeners_reset() which is called
225  * directly from IP and needs to policy check to see if TH_RST
226  * can be sent out.
227  *
228  * PFHooks notes :
229  *
230  * For mdt case, one meta buffer contains multiple packets. Mblks for every
231  * packet are assembled and passed to the hooks. When packets are blocked,
232  * or boundary of any packet is changed, the mdt processing is stopped, and
233  * packets of the meta buffer are send to the IP path one by one.
234  */
235 
236 /*
237  * Values for squeue switch:
238  * 1: SQ_NODRAIN
239  * 2: SQ_PROCESS
240  * 3: SQ_FILL
241  */
242 int tcp_squeue_wput = 2;	/* /etc/systems */
243 int tcp_squeue_flag;
244 
245 /*
246  * This controls how tiny a write must be before we try to copy it
247  * into the the mblk on the tail of the transmit queue.  Not much
248  * speedup is observed for values larger than sixteen.  Zero will
249  * disable the optimisation.
250  */
251 int tcp_tx_pull_len = 16;
252 
253 /*
254  * TCP Statistics.
255  *
256  * How TCP statistics work.
257  *
258  * There are two types of statistics invoked by two macros.
259  *
260  * TCP_STAT(name) does non-atomic increment of a named stat counter. It is
261  * supposed to be used in non MT-hot paths of the code.
262  *
263  * TCP_DBGSTAT(name) does atomic increment of a named stat counter. It is
264  * supposed to be used for DEBUG purposes and may be used on a hot path.
265  *
266  * Both TCP_STAT and TCP_DBGSTAT counters are available using kstat
267  * (use "kstat tcp" to get them).
268  *
269  * There is also additional debugging facility that marks tcp_clean_death()
270  * instances and saves them in tcp_t structure. It is triggered by
271  * TCP_TAG_CLEAN_DEATH define. Also, there is a global array of counters for
272  * tcp_clean_death() calls that counts the number of times each tag was hit. It
273  * is triggered by TCP_CLD_COUNTERS define.
274  *
275  * How to add new counters.
276  *
277  * 1) Add a field in the tcp_stat structure describing your counter.
278  * 2) Add a line in the template in tcp_kstat2_init() with the name
279  *    of the counter.
280  *
281  *    IMPORTANT!! - make sure that both are in sync !!
282  * 3) Use either TCP_STAT or TCP_DBGSTAT with the name.
283  *
284  * Please avoid using private counters which are not kstat-exported.
285  *
286  * TCP_TAG_CLEAN_DEATH set to 1 enables tagging of tcp_clean_death() instances
287  * in tcp_t structure.
288  *
289  * TCP_MAX_CLEAN_DEATH_TAG is the maximum number of possible clean death tags.
290  */
291 
292 #ifndef TCP_DEBUG_COUNTER
293 #ifdef DEBUG
294 #define	TCP_DEBUG_COUNTER 1
295 #else
296 #define	TCP_DEBUG_COUNTER 0
297 #endif
298 #endif
299 
300 #define	TCP_CLD_COUNTERS 0
301 
302 #define	TCP_TAG_CLEAN_DEATH 1
303 #define	TCP_MAX_CLEAN_DEATH_TAG 32
304 
305 #ifdef lint
306 static int _lint_dummy_;
307 #endif
308 
309 #if TCP_CLD_COUNTERS
310 static uint_t tcp_clean_death_stat[TCP_MAX_CLEAN_DEATH_TAG];
311 #define	TCP_CLD_STAT(x) tcp_clean_death_stat[x]++
312 #elif defined(lint)
313 #define	TCP_CLD_STAT(x) ASSERT(_lint_dummy_ == 0);
314 #else
315 #define	TCP_CLD_STAT(x)
316 #endif
317 
318 #if TCP_DEBUG_COUNTER
319 #define	TCP_DBGSTAT(tcps, x)	\
320 	atomic_add_64(&((tcps)->tcps_statistics.x.value.ui64), 1)
321 #define	TCP_G_DBGSTAT(x)	\
322 	atomic_add_64(&(tcp_g_statistics.x.value.ui64), 1)
323 #elif defined(lint)
324 #define	TCP_DBGSTAT(tcps, x) ASSERT(_lint_dummy_ == 0);
325 #define	TCP_G_DBGSTAT(x) ASSERT(_lint_dummy_ == 0);
326 #else
327 #define	TCP_DBGSTAT(tcps, x)
328 #define	TCP_G_DBGSTAT(x)
329 #endif
330 
331 #define	TCP_G_STAT(x)	(tcp_g_statistics.x.value.ui64++)
332 
333 tcp_g_stat_t	tcp_g_statistics;
334 kstat_t		*tcp_g_kstat;
335 
336 /*
337  * Call either ip_output or ip_output_v6. This replaces putnext() calls on the
338  * tcp write side.
339  */
340 #define	CALL_IP_WPUT(connp, q, mp) {					\
341 	ASSERT(((q)->q_flag & QREADR) == 0);				\
342 	TCP_DBGSTAT(connp->conn_netstack->netstack_tcp, tcp_ip_output);	\
343 	connp->conn_send(connp, (mp), (q), IP_WPUT);			\
344 }
345 
346 /* Macros for timestamp comparisons */
347 #define	TSTMP_GEQ(a, b)	((int32_t)((a)-(b)) >= 0)
348 #define	TSTMP_LT(a, b)	((int32_t)((a)-(b)) < 0)
349 
350 /*
351  * Parameters for TCP Initial Send Sequence number (ISS) generation.  When
352  * tcp_strong_iss is set to 1, which is the default, the ISS is calculated
353  * by adding three components: a time component which grows by 1 every 4096
354  * nanoseconds (versus every 4 microseconds suggested by RFC 793, page 27);
355  * a per-connection component which grows by 125000 for every new connection;
356  * and an "extra" component that grows by a random amount centered
357  * approximately on 64000.  This causes the the ISS generator to cycle every
358  * 4.89 hours if no TCP connections are made, and faster if connections are
359  * made.
360  *
361  * When tcp_strong_iss is set to 0, ISS is calculated by adding two
362  * components: a time component which grows by 250000 every second; and
363  * a per-connection component which grows by 125000 for every new connections.
364  *
365  * A third method, when tcp_strong_iss is set to 2, for generating ISS is
366  * prescribed by Steve Bellovin.  This involves adding time, the 125000 per
367  * connection, and a one-way hash (MD5) of the connection ID <sport, dport,
368  * src, dst>, a "truly" random (per RFC 1750) number, and a console-entered
369  * password.
370  */
371 #define	ISS_INCR	250000
372 #define	ISS_NSEC_SHT	12
373 
374 static sin_t	sin_null;	/* Zero address for quick clears */
375 static sin6_t	sin6_null;	/* Zero address for quick clears */
376 
377 /*
378  * This implementation follows the 4.3BSD interpretation of the urgent
379  * pointer and not RFC 1122. Switching to RFC 1122 behavior would cause
380  * incompatible changes in protocols like telnet and rlogin.
381  */
382 #define	TCP_OLD_URP_INTERPRETATION	1
383 
384 #define	TCP_IS_DETACHED_NONEAGER(tcp)	\
385 	(TCP_IS_DETACHED(tcp) && \
386 	    (!(tcp)->tcp_hard_binding))
387 
388 /*
389  * TCP reassembly macros.  We hide starting and ending sequence numbers in
390  * b_next and b_prev of messages on the reassembly queue.  The messages are
391  * chained using b_cont.  These macros are used in tcp_reass() so we don't
392  * have to see the ugly casts and assignments.
393  */
394 #define	TCP_REASS_SEQ(mp)		((uint32_t)(uintptr_t)((mp)->b_next))
395 #define	TCP_REASS_SET_SEQ(mp, u)	((mp)->b_next = \
396 					(mblk_t *)(uintptr_t)(u))
397 #define	TCP_REASS_END(mp)		((uint32_t)(uintptr_t)((mp)->b_prev))
398 #define	TCP_REASS_SET_END(mp, u)	((mp)->b_prev = \
399 					(mblk_t *)(uintptr_t)(u))
400 
401 /*
402  * Implementation of TCP Timers.
403  * =============================
404  *
405  * INTERFACE:
406  *
407  * There are two basic functions dealing with tcp timers:
408  *
409  *	timeout_id_t	tcp_timeout(connp, func, time)
410  * 	clock_t		tcp_timeout_cancel(connp, timeout_id)
411  *	TCP_TIMER_RESTART(tcp, intvl)
412  *
413  * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func'
414  * after 'time' ticks passed. The function called by timeout() must adhere to
415  * the same restrictions as a driver soft interrupt handler - it must not sleep
416  * or call other functions that might sleep. The value returned is the opaque
417  * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to
418  * cancel the request. The call to tcp_timeout() may fail in which case it
419  * returns zero. This is different from the timeout(9F) function which never
420  * fails.
421  *
422  * The call-back function 'func' always receives 'connp' as its single
423  * argument. It is always executed in the squeue corresponding to the tcp
424  * structure. The tcp structure is guaranteed to be present at the time the
425  * call-back is called.
426  *
427  * NOTE: The call-back function 'func' is never called if tcp is in
428  * 	the TCPS_CLOSED state.
429  *
430  * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout()
431  * request. locks acquired by the call-back routine should not be held across
432  * the call to tcp_timeout_cancel() or a deadlock may result.
433  *
434  * tcp_timeout_cancel() returns -1 if it can not cancel the timeout request.
435  * Otherwise, it returns an integer value greater than or equal to 0. In
436  * particular, if the call-back function is already placed on the squeue, it can
437  * not be canceled.
438  *
439  * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called
440  * 	within squeue context corresponding to the tcp instance. Since the
441  *	call-back is also called via the same squeue, there are no race
442  *	conditions described in untimeout(9F) manual page since all calls are
443  *	strictly serialized.
444  *
445  *      TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout
446  *	stored in tcp_timer_tid and starts a new one using
447  *	MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back
448  *	and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid
449  *	field.
450  *
451  * NOTE: since the timeout cancellation is not guaranteed, the cancelled
452  *	call-back may still be called, so it is possible tcp_timer() will be
453  *	called several times. This should not be a problem since tcp_timer()
454  *	should always check the tcp instance state.
455  *
456  *
457  * IMPLEMENTATION:
458  *
459  * TCP timers are implemented using three-stage process. The call to
460  * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function
461  * when the timer expires. The tcp_timer_callback() arranges the call of the
462  * tcp_timer_handler() function via squeue corresponding to the tcp
463  * instance. The tcp_timer_handler() calls actual requested timeout call-back
464  * and passes tcp instance as an argument to it. Information is passed between
465  * stages using the tcp_timer_t structure which contains the connp pointer, the
466  * tcp call-back to call and the timeout id returned by the timeout(9F).
467  *
468  * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t -
469  * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo
470  * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout()
471  * returns the pointer to this mblk.
472  *
473  * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It
474  * looks like a normal mblk without actual dblk attached to it.
475  *
476  * To optimize performance each tcp instance holds a small cache of timer
477  * mblocks. In the current implementation it caches up to two timer mblocks per
478  * tcp instance. The cache is preserved over tcp frees and is only freed when
479  * the whole tcp structure is destroyed by its kmem destructor. Since all tcp
480  * timer processing happens on a corresponding squeue, the cache manipulation
481  * does not require any locks. Experiments show that majority of timer mblocks
482  * allocations are satisfied from the tcp cache and do not involve kmem calls.
483  *
484  * The tcp_timeout() places a refhold on the connp instance which guarantees
485  * that it will be present at the time the call-back function fires. The
486  * tcp_timer_handler() drops the reference after calling the call-back, so the
487  * call-back function does not need to manipulate the references explicitly.
488  */
489 
490 typedef struct tcp_timer_s {
491 	conn_t	*connp;
492 	void 	(*tcpt_proc)(void *);
493 	callout_id_t   tcpt_tid;
494 } tcp_timer_t;
495 
496 static kmem_cache_t *tcp_timercache;
497 kmem_cache_t	*tcp_sack_info_cache;
498 kmem_cache_t	*tcp_iphc_cache;
499 
500 /*
501  * For scalability, we must not run a timer for every TCP connection
502  * in TIME_WAIT state.  To see why, consider (for time wait interval of
503  * 4 minutes):
504  *	1000 connections/sec * 240 seconds/time wait = 240,000 active conn's
505  *
506  * This list is ordered by time, so you need only delete from the head
507  * until you get to entries which aren't old enough to delete yet.
508  * The list consists of only the detached TIME_WAIT connections.
509  *
510  * Note that the timer (tcp_time_wait_expire) is started when the tcp_t
511  * becomes detached TIME_WAIT (either by changing the state and already
512  * being detached or the other way around). This means that the TIME_WAIT
513  * state can be extended (up to doubled) if the connection doesn't become
514  * detached for a long time.
515  *
516  * The list manipulations (including tcp_time_wait_next/prev)
517  * are protected by the tcp_time_wait_lock. The content of the
518  * detached TIME_WAIT connections is protected by the normal perimeters.
519  *
520  * This list is per squeue and squeues are shared across the tcp_stack_t's.
521  * Things on tcp_time_wait_head remain associated with the tcp_stack_t
522  * and conn_netstack.
523  * The tcp_t's that are added to tcp_free_list are disassociated and
524  * have NULL tcp_tcps and conn_netstack pointers.
525  */
526 typedef struct tcp_squeue_priv_s {
527 	kmutex_t	tcp_time_wait_lock;
528 	callout_id_t	tcp_time_wait_tid;
529 	tcp_t		*tcp_time_wait_head;
530 	tcp_t		*tcp_time_wait_tail;
531 	tcp_t		*tcp_free_list;
532 	uint_t		tcp_free_list_cnt;
533 } tcp_squeue_priv_t;
534 
535 /*
536  * TCP_TIME_WAIT_DELAY governs how often the time_wait_collector runs.
537  * Running it every 5 seconds seems to give the best results.
538  */
539 #define	TCP_TIME_WAIT_DELAY drv_usectohz(5000000)
540 
541 /*
542  * To prevent memory hog, limit the number of entries in tcp_free_list
543  * to 1% of available memory / number of cpus
544  */
545 uint_t tcp_free_list_max_cnt = 0;
546 
547 #define	TCP_XMIT_LOWATER	4096
548 #define	TCP_XMIT_HIWATER	49152
549 #define	TCP_RECV_LOWATER	2048
550 #define	TCP_RECV_HIWATER	49152
551 
552 /*
553  *  PAWS needs a timer for 24 days.  This is the number of ticks in 24 days
554  */
555 #define	PAWS_TIMEOUT	((clock_t)(24*24*60*60*hz))
556 
557 #define	TIDUSZ	4096	/* transport interface data unit size */
558 
559 /*
560  * Bind hash list size and has function.  It has to be a power of 2 for
561  * hashing.
562  */
563 #define	TCP_BIND_FANOUT_SIZE	512
564 #define	TCP_BIND_HASH(lport) (ntohs(lport) & (TCP_BIND_FANOUT_SIZE - 1))
565 /*
566  * Size of listen and acceptor hash list.  It has to be a power of 2 for
567  * hashing.
568  */
569 #define	TCP_FANOUT_SIZE		256
570 
571 #ifdef	_ILP32
572 #define	TCP_ACCEPTOR_HASH(accid)					\
573 		(((uint_t)(accid) >> 8) & (TCP_FANOUT_SIZE - 1))
574 #else
575 #define	TCP_ACCEPTOR_HASH(accid)					\
576 		((uint_t)(accid) & (TCP_FANOUT_SIZE - 1))
577 #endif	/* _ILP32 */
578 
579 #define	IP_ADDR_CACHE_SIZE	2048
580 #define	IP_ADDR_CACHE_HASH(faddr)					\
581 	(ntohl(faddr) & (IP_ADDR_CACHE_SIZE -1))
582 
583 /*
584  * TCP options struct returned from tcp_parse_options.
585  */
586 typedef struct tcp_opt_s {
587 	uint32_t	tcp_opt_mss;
588 	uint32_t	tcp_opt_wscale;
589 	uint32_t	tcp_opt_ts_val;
590 	uint32_t	tcp_opt_ts_ecr;
591 	tcp_t		*tcp;
592 } tcp_opt_t;
593 
594 /*
595  * TCP option struct passing information b/w lisenter and eager.
596  */
597 struct tcp_options {
598 	uint_t			to_flags;
599 	ssize_t			to_boundif;	/* IPV6_BOUND_IF */
600 };
601 
602 #define	TCPOPT_BOUNDIF		0x00000001	/* set IPV6_BOUND_IF */
603 #define	TCPOPT_RECVPKTINFO	0x00000002	/* set IPV6_RECVPKTINFO */
604 
605 /*
606  * RFC1323-recommended phrasing of TSTAMP option, for easier parsing
607  */
608 
609 #ifdef _BIG_ENDIAN
610 #define	TCPOPT_NOP_NOP_TSTAMP ((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \
611 	(TCPOPT_TSTAMP << 8) | 10)
612 #else
613 #define	TCPOPT_NOP_NOP_TSTAMP ((10 << 24) | (TCPOPT_TSTAMP << 16) | \
614 	(TCPOPT_NOP << 8) | TCPOPT_NOP)
615 #endif
616 
617 /*
618  * Flags returned from tcp_parse_options.
619  */
620 #define	TCP_OPT_MSS_PRESENT	1
621 #define	TCP_OPT_WSCALE_PRESENT	2
622 #define	TCP_OPT_TSTAMP_PRESENT	4
623 #define	TCP_OPT_SACK_OK_PRESENT	8
624 #define	TCP_OPT_SACK_PRESENT	16
625 
626 /* TCP option length */
627 #define	TCPOPT_NOP_LEN		1
628 #define	TCPOPT_MAXSEG_LEN	4
629 #define	TCPOPT_WS_LEN		3
630 #define	TCPOPT_REAL_WS_LEN	(TCPOPT_WS_LEN+1)
631 #define	TCPOPT_TSTAMP_LEN	10
632 #define	TCPOPT_REAL_TS_LEN	(TCPOPT_TSTAMP_LEN+2)
633 #define	TCPOPT_SACK_OK_LEN	2
634 #define	TCPOPT_REAL_SACK_OK_LEN	(TCPOPT_SACK_OK_LEN+2)
635 #define	TCPOPT_REAL_SACK_LEN	4
636 #define	TCPOPT_MAX_SACK_LEN	36
637 #define	TCPOPT_HEADER_LEN	2
638 
639 /* TCP cwnd burst factor. */
640 #define	TCP_CWND_INFINITE	65535
641 #define	TCP_CWND_SS		3
642 #define	TCP_CWND_NORMAL		5
643 
644 /* Maximum TCP initial cwin (start/restart). */
645 #define	TCP_MAX_INIT_CWND	8
646 
647 /*
648  * Initialize cwnd according to RFC 3390.  def_max_init_cwnd is
649  * either tcp_slow_start_initial or tcp_slow_start_after idle
650  * depending on the caller.  If the upper layer has not used the
651  * TCP_INIT_CWND option to change the initial cwnd, tcp_init_cwnd
652  * should be 0 and we use the formula in RFC 3390 to set tcp_cwnd.
653  * If the upper layer has changed set the tcp_init_cwnd, just use
654  * it to calculate the tcp_cwnd.
655  */
656 #define	SET_TCP_INIT_CWND(tcp, mss, def_max_init_cwnd)			\
657 {									\
658 	if ((tcp)->tcp_init_cwnd == 0) {				\
659 		(tcp)->tcp_cwnd = MIN(def_max_init_cwnd * (mss),	\
660 		    MIN(4 * (mss), MAX(2 * (mss), 4380 / (mss) * (mss)))); \
661 	} else {							\
662 		(tcp)->tcp_cwnd = (tcp)->tcp_init_cwnd * (mss);		\
663 	}								\
664 	tcp->tcp_cwnd_cnt = 0;						\
665 }
666 
667 /* TCP Timer control structure */
668 typedef struct tcpt_s {
669 	pfv_t	tcpt_pfv;	/* The routine we are to call */
670 	tcp_t	*tcpt_tcp;	/* The parameter we are to pass in */
671 } tcpt_t;
672 
673 /*
674  * Functions called directly via squeue having a prototype of edesc_t.
675  */
676 void		tcp_conn_request(void *arg, mblk_t *mp, void *arg2);
677 static void	tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2);
678 void		tcp_accept_finish(void *arg, mblk_t *mp, void *arg2);
679 static void	tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2);
680 static void	tcp_wput_proto(void *arg, mblk_t *mp, void *arg2);
681 void 		tcp_input(void *arg, mblk_t *mp, void *arg2);
682 void		tcp_rput_data(void *arg, mblk_t *mp, void *arg2);
683 static void	tcp_close_output(void *arg, mblk_t *mp, void *arg2);
684 void		tcp_output(void *arg, mblk_t *mp, void *arg2);
685 void		tcp_output_urgent(void *arg, mblk_t *mp, void *arg2);
686 static void	tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2);
687 static void	tcp_timer_handler(void *arg, mblk_t *mp, void *arg2);
688 static void	tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2);
689 
690 
691 /* Prototype for TCP functions */
692 static void	tcp_random_init(void);
693 int		tcp_random(void);
694 static void	tcp_tli_accept(tcp_t *tcp, mblk_t *mp);
695 static void	tcp_accept_swap(tcp_t *listener, tcp_t *acceptor,
696 		    tcp_t *eager);
697 static int	tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp);
698 static in_port_t tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
699     int reuseaddr, boolean_t quick_connect, boolean_t bind_to_req_port_only,
700     boolean_t user_specified);
701 static void	tcp_closei_local(tcp_t *tcp);
702 static void	tcp_close_detached(tcp_t *tcp);
703 static boolean_t tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph,
704 			mblk_t *idmp, mblk_t **defermp);
705 static void	tcp_tpi_connect(tcp_t *tcp, mblk_t *mp);
706 static int	tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp,
707 		    in_port_t dstport, uint_t srcid, cred_t *cr, pid_t pid);
708 static int 	tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp,
709 		    in_port_t dstport, uint32_t flowinfo, uint_t srcid,
710 		    uint32_t scope_id, cred_t *cr, pid_t pid);
711 static int	tcp_clean_death(tcp_t *tcp, int err, uint8_t tag);
712 static void	tcp_def_q_set(tcp_t *tcp, mblk_t *mp);
713 static void	tcp_disconnect(tcp_t *tcp, mblk_t *mp);
714 static char	*tcp_display(tcp_t *tcp, char *, char);
715 static boolean_t tcp_eager_blowoff(tcp_t *listener, t_scalar_t seqnum);
716 static void	tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only);
717 static void	tcp_eager_unlink(tcp_t *tcp);
718 static void	tcp_err_ack(tcp_t *tcp, mblk_t *mp, int tlierr,
719 		    int unixerr);
720 static void	tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
721 		    int tlierr, int unixerr);
722 static int	tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp,
723 		    cred_t *cr);
724 static int	tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp,
725 		    char *value, caddr_t cp, cred_t *cr);
726 static int	tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp,
727 		    char *value, caddr_t cp, cred_t *cr);
728 static int	tcp_tpistate(tcp_t *tcp);
729 static void	tcp_bind_hash_insert(tf_t *tf, tcp_t *tcp,
730     int caller_holds_lock);
731 static void	tcp_bind_hash_remove(tcp_t *tcp);
732 static tcp_t	*tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *);
733 void		tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp);
734 static void	tcp_acceptor_hash_remove(tcp_t *tcp);
735 static void	tcp_capability_req(tcp_t *tcp, mblk_t *mp);
736 static void	tcp_info_req(tcp_t *tcp, mblk_t *mp);
737 static void	tcp_addr_req(tcp_t *tcp, mblk_t *mp);
738 static void	tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *mp);
739 void		tcp_g_q_setup(tcp_stack_t *);
740 void		tcp_g_q_create(tcp_stack_t *);
741 void		tcp_g_q_destroy(tcp_stack_t *);
742 static int	tcp_header_init_ipv4(tcp_t *tcp);
743 static int	tcp_header_init_ipv6(tcp_t *tcp);
744 int		tcp_init(tcp_t *tcp, queue_t *q);
745 static int	tcp_init_values(tcp_t *tcp);
746 static mblk_t	*tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic);
747 static void	tcp_ip_ire_mark_advice(tcp_t *tcp);
748 static void	tcp_ip_notify(tcp_t *tcp);
749 static mblk_t	*tcp_ire_mp(mblk_t **mpp);
750 static void	tcp_iss_init(tcp_t *tcp);
751 static void	tcp_keepalive_killer(void *arg);
752 static int	tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt);
753 static void	tcp_mss_set(tcp_t *tcp, uint32_t size, boolean_t do_ss);
754 static int	tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp,
755 		    int *do_disconnectp, int *t_errorp, int *sys_errorp);
756 static boolean_t tcp_allow_connopt_set(int level, int name);
757 int		tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr);
758 int		tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr);
759 int		tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level,
760 		    int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp,
761 		    uchar_t *outvalp, void *thisdg_attrs, cred_t *cr,
762 		    mblk_t *mblk);
763 static void	tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha);
764 static int	tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly,
765 		    uchar_t *ptr, uint_t len);
766 static int	tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr);
767 static boolean_t tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt,
768     tcp_stack_t *);
769 static int	tcp_param_set(queue_t *q, mblk_t *mp, char *value,
770 		    caddr_t cp, cred_t *cr);
771 static int	tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value,
772 		    caddr_t cp, cred_t *cr);
773 static void	tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *);
774 static int	tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value,
775 		    caddr_t cp, cred_t *cr);
776 static void	tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_cnt);
777 static mblk_t	*tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start);
778 static void	tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp);
779 static void	tcp_reinit(tcp_t *tcp);
780 static void	tcp_reinit_values(tcp_t *tcp);
781 
782 static uint_t	tcp_rwnd_reopen(tcp_t *tcp);
783 static uint_t	tcp_rcv_drain(tcp_t *tcp);
784 static void	tcp_sack_rxmit(tcp_t *tcp, uint_t *flags);
785 static boolean_t tcp_send_rst_chk(tcp_stack_t *);
786 static void	tcp_ss_rexmit(tcp_t *tcp);
787 static mblk_t	*tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp);
788 static void	tcp_process_options(tcp_t *, tcph_t *);
789 static void	tcp_rput_common(tcp_t *tcp, mblk_t *mp);
790 static void	tcp_rsrv(queue_t *q);
791 static int	tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd);
792 static int	tcp_snmp_state(tcp_t *tcp);
793 static void	tcp_timer(void *arg);
794 static void	tcp_timer_callback(void *);
795 static in_port_t tcp_update_next_port(in_port_t port, const tcp_t *tcp,
796     boolean_t random);
797 static in_port_t tcp_get_next_priv_port(const tcp_t *);
798 static void	tcp_wput_sock(queue_t *q, mblk_t *mp);
799 static void	tcp_wput_fallback(queue_t *q, mblk_t *mp);
800 void		tcp_tpi_accept(queue_t *q, mblk_t *mp);
801 static void	tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent);
802 static void	tcp_wput_flush(tcp_t *tcp, mblk_t *mp);
803 static void	tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp);
804 static int	tcp_send(queue_t *q, tcp_t *tcp, const int mss,
805 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
806 		    const int num_sack_blk, int *usable, uint_t *snxt,
807 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
808 		    const int mdt_thres);
809 static int	tcp_multisend(queue_t *q, tcp_t *tcp, const int mss,
810 		    const int tcp_hdr_len, const int tcp_tcp_hdr_len,
811 		    const int num_sack_blk, int *usable, uint_t *snxt,
812 		    int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
813 		    const int mdt_thres);
814 static void	tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now,
815 		    int num_sack_blk);
816 static void	tcp_wsrv(queue_t *q);
817 static int	tcp_xmit_end(tcp_t *tcp);
818 static void	tcp_ack_timer(void *arg);
819 static mblk_t	*tcp_ack_mp(tcp_t *tcp);
820 static void	tcp_xmit_early_reset(char *str, mblk_t *mp,
821 		    uint32_t seq, uint32_t ack, int ctl, uint_t ip_hdr_len,
822 		    zoneid_t zoneid, tcp_stack_t *, conn_t *connp);
823 static void	tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq,
824 		    uint32_t ack, int ctl);
825 static int	setmaxps(queue_t *q, int maxpsz);
826 static void	tcp_set_rto(tcp_t *, time_t);
827 static boolean_t tcp_check_policy(tcp_t *, mblk_t *, ipha_t *, ip6_t *,
828 		    boolean_t, boolean_t);
829 static void	tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp,
830 		    boolean_t ipsec_mctl);
831 static int	tcp_build_hdrs(tcp_t *);
832 static void	tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp,
833 		    uint32_t seg_seq, uint32_t seg_ack, int seg_len,
834 		    tcph_t *tcph);
835 boolean_t	tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp);
836 static mblk_t	*tcp_mdt_info_mp(mblk_t *);
837 static void	tcp_mdt_update(tcp_t *, ill_mdt_capab_t *, boolean_t);
838 static int	tcp_mdt_add_attrs(multidata_t *, const mblk_t *,
839 		    const boolean_t, const uint32_t, const uint32_t,
840 		    const uint32_t, const uint32_t, tcp_stack_t *);
841 static void	tcp_multisend_data(tcp_t *, ire_t *, const ill_t *, mblk_t *,
842 		    const uint_t, const uint_t, boolean_t *);
843 static mblk_t	*tcp_lso_info_mp(mblk_t *);
844 static void	tcp_lso_update(tcp_t *, ill_lso_capab_t *);
845 static void	tcp_send_data(tcp_t *, queue_t *, mblk_t *);
846 extern mblk_t	*tcp_timermp_alloc(int);
847 extern void	tcp_timermp_free(tcp_t *);
848 static void	tcp_timer_free(tcp_t *tcp, mblk_t *mp);
849 static void	tcp_stop_lingering(tcp_t *tcp);
850 static void	tcp_close_linger_timeout(void *arg);
851 static void	*tcp_stack_init(netstackid_t stackid, netstack_t *ns);
852 static void	tcp_stack_shutdown(netstackid_t stackid, void *arg);
853 static void	tcp_stack_fini(netstackid_t stackid, void *arg);
854 static void	*tcp_g_kstat_init(tcp_g_stat_t *);
855 static void	tcp_g_kstat_fini(kstat_t *);
856 static void	*tcp_kstat_init(netstackid_t, tcp_stack_t *);
857 static void	tcp_kstat_fini(netstackid_t, kstat_t *);
858 static void	*tcp_kstat2_init(netstackid_t, tcp_stat_t *);
859 static void	tcp_kstat2_fini(netstackid_t, kstat_t *);
860 static int	tcp_kstat_update(kstat_t *kp, int rw);
861 void		tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp);
862 static int	tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
863 			tcph_t *tcph, uint_t ipvers, mblk_t *idmp);
864 static int	tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
865 			tcph_t *tcph, mblk_t *idmp);
866 static int	tcp_squeue_switch(int);
867 
868 static int	tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t);
869 static int	tcp_openv4(queue_t *, dev_t *, int, int, cred_t *);
870 static int	tcp_openv6(queue_t *, dev_t *, int, int, cred_t *);
871 static int	tcp_tpi_close(queue_t *, int);
872 static int	tcp_tpi_close_accept(queue_t *);
873 
874 static void	tcp_squeue_add(squeue_t *);
875 static boolean_t tcp_zcopy_check(tcp_t *);
876 static void	tcp_zcopy_notify(tcp_t *);
877 static mblk_t	*tcp_zcopy_disable(tcp_t *, mblk_t *);
878 static mblk_t	*tcp_zcopy_backoff(tcp_t *, mblk_t *, int);
879 static void	tcp_ire_ill_check(tcp_t *, ire_t *, ill_t *, boolean_t);
880 
881 extern void	tcp_kssl_input(tcp_t *, mblk_t *);
882 
883 void tcp_eager_kill(void *arg, mblk_t *mp, void *arg2);
884 void tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2);
885 
886 static int tcp_accept(sock_lower_handle_t, sock_lower_handle_t,
887 	    sock_upper_handle_t, cred_t *);
888 static int tcp_listen(sock_lower_handle_t, int, cred_t *);
889 static int tcp_post_ip_bind(tcp_t *, mblk_t *, int, cred_t *, pid_t);
890 static int tcp_do_listen(conn_t *, struct sockaddr *, socklen_t, int, cred_t *,
891     boolean_t);
892 static int tcp_do_connect(conn_t *, const struct sockaddr *, socklen_t,
893     cred_t *, pid_t);
894 static int tcp_do_bind(conn_t *, struct sockaddr *, socklen_t, cred_t *,
895     boolean_t);
896 static int tcp_do_unbind(conn_t *);
897 static int tcp_bind_check(conn_t *, struct sockaddr *, socklen_t, cred_t *,
898     boolean_t);
899 
900 static void tcp_ulp_newconn(conn_t *, conn_t *, mblk_t *);
901 
902 /*
903  * Routines related to the TCP_IOC_ABORT_CONN ioctl command.
904  *
905  * TCP_IOC_ABORT_CONN is a non-transparent ioctl command used for aborting
906  * TCP connections. To invoke this ioctl, a tcp_ioc_abort_conn_t structure
907  * (defined in tcp.h) needs to be filled in and passed into the kernel
908  * via an I_STR ioctl command (see streamio(7I)). The tcp_ioc_abort_conn_t
909  * structure contains the four-tuple of a TCP connection and a range of TCP
910  * states (specified by ac_start and ac_end). The use of wildcard addresses
911  * and ports is allowed. Connections with a matching four tuple and a state
912  * within the specified range will be aborted. The valid states for the
913  * ac_start and ac_end fields are in the range TCPS_SYN_SENT to TCPS_TIME_WAIT,
914  * inclusive.
915  *
916  * An application which has its connection aborted by this ioctl will receive
917  * an error that is dependent on the connection state at the time of the abort.
918  * If the connection state is < TCPS_TIME_WAIT, an application should behave as
919  * though a RST packet has been received.  If the connection state is equal to
920  * TCPS_TIME_WAIT, the 2MSL timeout will immediately be canceled by the kernel
921  * and all resources associated with the connection will be freed.
922  */
923 static mblk_t	*tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *, tcp_t *);
924 static void	tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *);
925 static void	tcp_ioctl_abort_handler(tcp_t *, mblk_t *);
926 static int	tcp_ioctl_abort(tcp_ioc_abort_conn_t *, tcp_stack_t *tcps);
927 static void	tcp_ioctl_abort_conn(queue_t *, mblk_t *);
928 static int	tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *, int, int *,
929     boolean_t, tcp_stack_t *);
930 
931 static struct module_info tcp_rinfo =  {
932 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER
933 };
934 
935 static struct module_info tcp_winfo =  {
936 	TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16
937 };
938 
939 /*
940  * Entry points for TCP as a device. The normal case which supports
941  * the TCP functionality.
942  * We have separate open functions for the /dev/tcp and /dev/tcp6 devices.
943  */
944 struct qinit tcp_rinitv4 = {
945 	NULL, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo
946 };
947 
948 struct qinit tcp_rinitv6 = {
949 	NULL, (pfi_t)tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo
950 };
951 
952 struct qinit tcp_winit = {
953 	(pfi_t)tcp_wput, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
954 };
955 
956 /* Initial entry point for TCP in socket mode. */
957 struct qinit tcp_sock_winit = {
958 	(pfi_t)tcp_wput_sock, (pfi_t)tcp_wsrv, NULL, NULL, NULL, &tcp_winfo
959 };
960 
961 /* TCP entry point during fallback */
962 struct qinit tcp_fallback_sock_winit = {
963 	(pfi_t)tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo
964 };
965 
966 /*
967  * Entry points for TCP as a acceptor STREAM opened by sockfs when doing
968  * an accept. Avoid allocating data structures since eager has already
969  * been created.
970  */
971 struct qinit tcp_acceptor_rinit = {
972 	NULL, (pfi_t)tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo
973 };
974 
975 struct qinit tcp_acceptor_winit = {
976 	(pfi_t)tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo
977 };
978 
979 /*
980  * Entry points for TCP loopback (read side only)
981  * The open routine is only used for reopens, thus no need to
982  * have a separate one for tcp_openv6.
983  */
984 struct qinit tcp_loopback_rinit = {
985 	(pfi_t)0, (pfi_t)tcp_rsrv, tcp_openv4, tcp_tpi_close, (pfi_t)0,
986 	&tcp_rinfo, NULL, tcp_fuse_rrw, tcp_fuse_rinfop, STRUIOT_STANDARD
987 };
988 
989 /* For AF_INET aka /dev/tcp */
990 struct streamtab tcpinfov4 = {
991 	&tcp_rinitv4, &tcp_winit
992 };
993 
994 /* For AF_INET6 aka /dev/tcp6 */
995 struct streamtab tcpinfov6 = {
996 	&tcp_rinitv6, &tcp_winit
997 };
998 
999 sock_downcalls_t sock_tcp_downcalls;
1000 
1001 /*
1002  * Have to ensure that tcp_g_q_close is not done by an
1003  * interrupt thread.
1004  */
1005 static taskq_t *tcp_taskq;
1006 
1007 /* Setable only in /etc/system. Move to ndd? */
1008 boolean_t tcp_icmp_source_quench = B_FALSE;
1009 
1010 /*
1011  * Following assumes TPI alignment requirements stay along 32 bit
1012  * boundaries
1013  */
1014 #define	ROUNDUP32(x) \
1015 	(((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1))
1016 
1017 /* Template for response to info request. */
1018 static struct T_info_ack tcp_g_t_info_ack = {
1019 	T_INFO_ACK,		/* PRIM_type */
1020 	0,			/* TSDU_size */
1021 	T_INFINITE,		/* ETSDU_size */
1022 	T_INVALID,		/* CDATA_size */
1023 	T_INVALID,		/* DDATA_size */
1024 	sizeof (sin_t),		/* ADDR_size */
1025 	0,			/* OPT_size - not initialized here */
1026 	TIDUSZ,			/* TIDU_size */
1027 	T_COTS_ORD,		/* SERV_type */
1028 	TCPS_IDLE,		/* CURRENT_state */
1029 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1030 };
1031 
1032 static struct T_info_ack tcp_g_t_info_ack_v6 = {
1033 	T_INFO_ACK,		/* PRIM_type */
1034 	0,			/* TSDU_size */
1035 	T_INFINITE,		/* ETSDU_size */
1036 	T_INVALID,		/* CDATA_size */
1037 	T_INVALID,		/* DDATA_size */
1038 	sizeof (sin6_t),	/* ADDR_size */
1039 	0,			/* OPT_size - not initialized here */
1040 	TIDUSZ,		/* TIDU_size */
1041 	T_COTS_ORD,		/* SERV_type */
1042 	TCPS_IDLE,		/* CURRENT_state */
1043 	(XPG4_1|EXPINLINE)	/* PROVIDER_flag */
1044 };
1045 
1046 #define	MS	1L
1047 #define	SECONDS	(1000 * MS)
1048 #define	MINUTES	(60 * SECONDS)
1049 #define	HOURS	(60 * MINUTES)
1050 #define	DAYS	(24 * HOURS)
1051 
1052 #define	PARAM_MAX (~(uint32_t)0)
1053 
1054 /* Max size IP datagram is 64k - 1 */
1055 #define	TCP_MSS_MAX_IPV4 (IP_MAXPACKET - (sizeof (ipha_t) + sizeof (tcph_t)))
1056 #define	TCP_MSS_MAX_IPV6 (IP_MAXPACKET - (sizeof (ip6_t) + sizeof (tcph_t)))
1057 /* Max of the above */
1058 #define	TCP_MSS_MAX	TCP_MSS_MAX_IPV4
1059 
1060 /* Largest TCP port number */
1061 #define	TCP_MAX_PORT	(64 * 1024 - 1)
1062 
1063 /*
1064  * tcp_wroff_xtra is the extra space in front of TCP/IP header for link
1065  * layer header.  It has to be a multiple of 4.
1066  */
1067 static tcpparam_t lcl_tcp_wroff_xtra_param = { 0, 256, 32, "tcp_wroff_xtra" };
1068 #define	tcps_wroff_xtra	tcps_wroff_xtra_param->tcp_param_val
1069 
1070 /*
1071  * All of these are alterable, within the min/max values given, at run time.
1072  * Note that the default value of "tcp_time_wait_interval" is four minutes,
1073  * per the TCP spec.
1074  */
1075 /* BEGIN CSTYLED */
1076 static tcpparam_t	lcl_tcp_param_arr[] = {
1077  /*min		max		value		name */
1078  { 1*SECONDS,	10*MINUTES,	1*MINUTES,	"tcp_time_wait_interval"},
1079  { 1,		PARAM_MAX,	128,		"tcp_conn_req_max_q" },
1080  { 0,		PARAM_MAX,	1024,		"tcp_conn_req_max_q0" },
1081  { 1,		1024,		1,		"tcp_conn_req_min" },
1082  { 0*MS,	20*SECONDS,	0*MS,		"tcp_conn_grace_period" },
1083  { 128,		(1<<30),	1024*1024,	"tcp_cwnd_max" },
1084  { 0,		10,		0,		"tcp_debug" },
1085  { 1024,	(32*1024),	1024,		"tcp_smallest_nonpriv_port"},
1086  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_cinterval"},
1087  { 1*SECONDS,	PARAM_MAX,	3*MINUTES,	"tcp_ip_abort_linterval"},
1088  { 500*MS,	PARAM_MAX,	8*MINUTES,	"tcp_ip_abort_interval"},
1089  { 1*SECONDS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_cinterval"},
1090  { 500*MS,	PARAM_MAX,	10*SECONDS,	"tcp_ip_notify_interval"},
1091  { 1,		255,		64,		"tcp_ipv4_ttl"},
1092  { 10*SECONDS,	10*DAYS,	2*HOURS,	"tcp_keepalive_interval"},
1093  { 0,		100,		10,		"tcp_maxpsz_multiplier" },
1094  { 1,		TCP_MSS_MAX_IPV4, 536,		"tcp_mss_def_ipv4"},
1095  { 1,		TCP_MSS_MAX_IPV4, TCP_MSS_MAX_IPV4, "tcp_mss_max_ipv4"},
1096  { 1,		TCP_MSS_MAX,	108,		"tcp_mss_min"},
1097  { 1,		(64*1024)-1,	(4*1024)-1,	"tcp_naglim_def"},
1098  { 1*MS,	20*SECONDS,	3*SECONDS,	"tcp_rexmit_interval_initial"},
1099  { 1*MS,	2*HOURS,	60*SECONDS,	"tcp_rexmit_interval_max"},
1100  { 1*MS,	2*HOURS,	400*MS,		"tcp_rexmit_interval_min"},
1101  { 1*MS,	1*MINUTES,	100*MS,		"tcp_deferred_ack_interval" },
1102  { 0,		16,		0,		"tcp_snd_lowat_fraction" },
1103  { 0,		128000,		0,		"tcp_sth_rcv_hiwat" },
1104  { 0,		128000,		0,		"tcp_sth_rcv_lowat" },
1105  { 1,		10000,		3,		"tcp_dupack_fast_retransmit" },
1106  { 0,		1,		0,		"tcp_ignore_path_mtu" },
1107  { 1024,	TCP_MAX_PORT,	32*1024,	"tcp_smallest_anon_port"},
1108  { 1024,	TCP_MAX_PORT,	TCP_MAX_PORT,	"tcp_largest_anon_port"},
1109  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_HIWATER,"tcp_xmit_hiwat"},
1110  { TCP_XMIT_LOWATER, (1<<30), TCP_XMIT_LOWATER,"tcp_xmit_lowat"},
1111  { TCP_RECV_LOWATER, (1<<30), TCP_RECV_HIWATER,"tcp_recv_hiwat"},
1112  { 1,		65536,		4,		"tcp_recv_hiwat_minmss"},
1113  { 1*SECONDS,	PARAM_MAX,	675*SECONDS,	"tcp_fin_wait_2_flush_interval"},
1114  { 8192,	(1<<30),	1024*1024,	"tcp_max_buf"},
1115 /*
1116  * Question:  What default value should I set for tcp_strong_iss?
1117  */
1118  { 0,		2,		1,		"tcp_strong_iss"},
1119  { 0,		65536,		20,		"tcp_rtt_updates"},
1120  { 0,		1,		1,		"tcp_wscale_always"},
1121  { 0,		1,		0,		"tcp_tstamp_always"},
1122  { 0,		1,		1,		"tcp_tstamp_if_wscale"},
1123  { 0*MS,	2*HOURS,	0*MS,		"tcp_rexmit_interval_extra"},
1124  { 0,		16,		2,		"tcp_deferred_acks_max"},
1125  { 1,		16384,		4,		"tcp_slow_start_after_idle"},
1126  { 1,		4,		4,		"tcp_slow_start_initial"},
1127  { 0,		2,		2,		"tcp_sack_permitted"},
1128  { 0,		1,		1,		"tcp_compression_enabled"},
1129  { 0,		IPV6_MAX_HOPS,	IPV6_DEFAULT_HOPS,	"tcp_ipv6_hoplimit"},
1130  { 1,		TCP_MSS_MAX_IPV6, 1220,		"tcp_mss_def_ipv6"},
1131  { 1,		TCP_MSS_MAX_IPV6, TCP_MSS_MAX_IPV6, "tcp_mss_max_ipv6"},
1132  { 0,		1,		0,		"tcp_rev_src_routes"},
1133  { 10*MS,	500*MS,		50*MS,		"tcp_local_dack_interval"},
1134  { 0,		16,		8,		"tcp_local_dacks_max"},
1135  { 0,		2,		1,		"tcp_ecn_permitted"},
1136  { 0,		1,		1,		"tcp_rst_sent_rate_enabled"},
1137  { 0,		PARAM_MAX,	40,		"tcp_rst_sent_rate"},
1138  { 0,		100*MS,		50*MS,		"tcp_push_timer_interval"},
1139  { 0,		1,		0,		"tcp_use_smss_as_mss_opt"},
1140  { 0,		PARAM_MAX,	8*MINUTES,	"tcp_keepalive_abort_interval"},
1141 };
1142 /* END CSTYLED */
1143 
1144 /*
1145  * tcp_mdt_hdr_{head,tail}_min are the leading and trailing spaces of
1146  * each header fragment in the header buffer.  Each parameter value has
1147  * to be a multiple of 4 (32-bit aligned).
1148  */
1149 static tcpparam_t lcl_tcp_mdt_head_param =
1150 	{ 32, 256, 32, "tcp_mdt_hdr_head_min" };
1151 static tcpparam_t lcl_tcp_mdt_tail_param =
1152 	{ 0,  256, 32, "tcp_mdt_hdr_tail_min" };
1153 #define	tcps_mdt_hdr_head_min	tcps_mdt_head_param->tcp_param_val
1154 #define	tcps_mdt_hdr_tail_min	tcps_mdt_tail_param->tcp_param_val
1155 
1156 /*
1157  * tcp_mdt_max_pbufs is the upper limit value that tcp uses to figure out
1158  * the maximum number of payload buffers associated per Multidata.
1159  */
1160 static tcpparam_t lcl_tcp_mdt_max_pbufs_param =
1161 	{ 1, MULTIDATA_MAX_PBUFS, MULTIDATA_MAX_PBUFS, "tcp_mdt_max_pbufs" };
1162 #define	tcps_mdt_max_pbufs	tcps_mdt_max_pbufs_param->tcp_param_val
1163 
1164 /* Round up the value to the nearest mss. */
1165 #define	MSS_ROUNDUP(value, mss)		((((value) - 1) / (mss) + 1) * (mss))
1166 
1167 /*
1168  * Set ECN capable transport (ECT) code point in IP header.
1169  *
1170  * Note that there are 2 ECT code points '01' and '10', which are called
1171  * ECT(1) and ECT(0) respectively.  Here we follow the original ECT code
1172  * point ECT(0) for TCP as described in RFC 2481.
1173  */
1174 #define	SET_ECT(tcp, iph) \
1175 	if ((tcp)->tcp_ipversion == IPV4_VERSION) { \
1176 		/* We need to clear the code point first. */ \
1177 		((ipha_t *)(iph))->ipha_type_of_service &= 0xFC; \
1178 		((ipha_t *)(iph))->ipha_type_of_service |= IPH_ECN_ECT0; \
1179 	} else { \
1180 		((ip6_t *)(iph))->ip6_vcf &= htonl(0xFFCFFFFF); \
1181 		((ip6_t *)(iph))->ip6_vcf |= htonl(IPH_ECN_ECT0 << 20); \
1182 	}
1183 
1184 /*
1185  * The format argument to pass to tcp_display().
1186  * DISP_PORT_ONLY means that the returned string has only port info.
1187  * DISP_ADDR_AND_PORT means that the returned string also contains the
1188  * remote and local IP address.
1189  */
1190 #define	DISP_PORT_ONLY		1
1191 #define	DISP_ADDR_AND_PORT	2
1192 
1193 #define	IS_VMLOANED_MBLK(mp) \
1194 	(((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0)
1195 
1196 
1197 /* Enable or disable b_cont M_MULTIDATA chaining for MDT. */
1198 boolean_t tcp_mdt_chain = B_TRUE;
1199 
1200 /*
1201  * MDT threshold in the form of effective send MSS multiplier; we take
1202  * the MDT path if the amount of unsent data exceeds the threshold value
1203  * (default threshold is 1*SMSS).
1204  */
1205 uint_t tcp_mdt_smss_threshold = 1;
1206 
1207 uint32_t do_tcpzcopy = 1;		/* 0: disable, 1: enable, 2: force */
1208 
1209 /*
1210  * Forces all connections to obey the value of the tcps_maxpsz_multiplier
1211  * tunable settable via NDD.  Otherwise, the per-connection behavior is
1212  * determined dynamically during tcp_adapt_ire(), which is the default.
1213  */
1214 boolean_t tcp_static_maxpsz = B_FALSE;
1215 
1216 /* Setable in /etc/system */
1217 /* If set to 0, pick ephemeral port sequentially; otherwise randomly. */
1218 uint32_t tcp_random_anon_port = 1;
1219 
1220 /*
1221  * To reach to an eager in Q0 which can be dropped due to an incoming
1222  * new SYN request when Q0 is full, a new doubly linked list is
1223  * introduced. This list allows to select an eager from Q0 in O(1) time.
1224  * This is needed to avoid spending too much time walking through the
1225  * long list of eagers in Q0 when tcp_drop_q0() is called. Each member of
1226  * this new list has to be a member of Q0.
1227  * This list is headed by listener's tcp_t. When the list is empty,
1228  * both the pointers - tcp_eager_next_drop_q0 and tcp_eager_prev_drop_q0,
1229  * of listener's tcp_t point to listener's tcp_t itself.
1230  *
1231  * Given an eager in Q0 and a listener, MAKE_DROPPABLE() puts the eager
1232  * in the list. MAKE_UNDROPPABLE() takes the eager out of the list.
1233  * These macros do not affect the eager's membership to Q0.
1234  */
1235 
1236 
1237 #define	MAKE_DROPPABLE(listener, eager)					\
1238 	if ((eager)->tcp_eager_next_drop_q0 == NULL) {			\
1239 		(listener)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0\
1240 		    = (eager);						\
1241 		(eager)->tcp_eager_prev_drop_q0 = (listener);		\
1242 		(eager)->tcp_eager_next_drop_q0 =			\
1243 		    (listener)->tcp_eager_next_drop_q0;			\
1244 		(listener)->tcp_eager_next_drop_q0 = (eager);		\
1245 	}
1246 
1247 #define	MAKE_UNDROPPABLE(eager)						\
1248 	if ((eager)->tcp_eager_next_drop_q0 != NULL) {			\
1249 		(eager)->tcp_eager_next_drop_q0->tcp_eager_prev_drop_q0	\
1250 		    = (eager)->tcp_eager_prev_drop_q0;			\
1251 		(eager)->tcp_eager_prev_drop_q0->tcp_eager_next_drop_q0	\
1252 		    = (eager)->tcp_eager_next_drop_q0;			\
1253 		(eager)->tcp_eager_prev_drop_q0 = NULL;			\
1254 		(eager)->tcp_eager_next_drop_q0 = NULL;			\
1255 	}
1256 
1257 /*
1258  * If tcp_drop_ack_unsent_cnt is greater than 0, when TCP receives more
1259  * than tcp_drop_ack_unsent_cnt number of ACKs which acknowledge unsent
1260  * data, TCP will not respond with an ACK.  RFC 793 requires that
1261  * TCP responds with an ACK for such a bogus ACK.  By not following
1262  * the RFC, we prevent TCP from getting into an ACK storm if somehow
1263  * an attacker successfully spoofs an acceptable segment to our
1264  * peer; or when our peer is "confused."
1265  */
1266 uint32_t tcp_drop_ack_unsent_cnt = 10;
1267 
1268 /*
1269  * Hook functions to enable cluster networking
1270  * On non-clustered systems these vectors must always be NULL.
1271  */
1272 
1273 void (*cl_inet_listen)(netstackid_t stack_id, uint8_t protocol,
1274 			    sa_family_t addr_family, uint8_t *laddrp,
1275 			    in_port_t lport, void *args) = NULL;
1276 void (*cl_inet_unlisten)(netstackid_t stack_id, uint8_t protocol,
1277 			    sa_family_t addr_family, uint8_t *laddrp,
1278 			    in_port_t lport, void *args) = NULL;
1279 
1280 int (*cl_inet_connect2)(netstackid_t stack_id, uint8_t protocol,
1281 			    boolean_t is_outgoing,
1282 			    sa_family_t addr_family,
1283 			    uint8_t *laddrp, in_port_t lport,
1284 			    uint8_t *faddrp, in_port_t fport,
1285 			    void *args) = NULL;
1286 
1287 void (*cl_inet_disconnect)(netstackid_t stack_id, uint8_t protocol,
1288 			    sa_family_t addr_family, uint8_t *laddrp,
1289 			    in_port_t lport, uint8_t *faddrp,
1290 			    in_port_t fport, void *args) = NULL;
1291 
1292 /*
1293  * The following are defined in ip.c
1294  */
1295 extern int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
1296 			    sa_family_t addr_family, uint8_t *laddrp,
1297 			    void *args);
1298 extern uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
1299 			    sa_family_t addr_family, uint8_t *laddrp,
1300 			    uint8_t *faddrp, void *args);
1301 
1302 
1303 /*
1304  * int CL_INET_CONNECT(conn_t *cp, tcp_t *tcp, boolean_t is_outgoing, int err)
1305  */
1306 #define	CL_INET_CONNECT(connp, tcp, is_outgoing, err) {		\
1307 	(err) = 0;						\
1308 	if (cl_inet_connect2 != NULL) {				\
1309 		/*						\
1310 		 * Running in cluster mode - register active connection	\
1311 		 * information						\
1312 		 */							\
1313 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1314 			if ((tcp)->tcp_ipha->ipha_src != 0) {		\
1315 				(err) = (*cl_inet_connect2)(		\
1316 				    (connp)->conn_netstack->netstack_stackid,\
1317 				    IPPROTO_TCP, is_outgoing, AF_INET,	\
1318 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_src)),\
1319 				    (in_port_t)(tcp)->tcp_lport,	\
1320 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1321 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1322 			}						\
1323 		} else {						\
1324 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1325 			    &(tcp)->tcp_ip6h->ip6_src)) {		\
1326 				(err) = (*cl_inet_connect2)(		\
1327 				    (connp)->conn_netstack->netstack_stackid,\
1328 				    IPPROTO_TCP, is_outgoing, AF_INET6,	\
1329 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_src)),\
1330 				    (in_port_t)(tcp)->tcp_lport,	\
1331 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1332 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1333 			}						\
1334 		}							\
1335 	}								\
1336 }
1337 
1338 #define	CL_INET_DISCONNECT(connp, tcp)	{				\
1339 	if (cl_inet_disconnect != NULL) {				\
1340 		/*							\
1341 		 * Running in cluster mode - deregister active		\
1342 		 * connection information				\
1343 		 */							\
1344 		if ((tcp)->tcp_ipversion == IPV4_VERSION) {		\
1345 			if ((tcp)->tcp_ip_src != 0) {			\
1346 				(*cl_inet_disconnect)(			\
1347 				    (connp)->conn_netstack->netstack_stackid,\
1348 				    IPPROTO_TCP, AF_INET,		\
1349 				    (uint8_t *)(&((tcp)->tcp_ip_src)),	\
1350 				    (in_port_t)(tcp)->tcp_lport,	\
1351 				    (uint8_t *)(&((tcp)->tcp_ipha->ipha_dst)),\
1352 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1353 			}						\
1354 		} else {						\
1355 			if (!IN6_IS_ADDR_UNSPECIFIED(			\
1356 			    &(tcp)->tcp_ip_src_v6)) {			\
1357 				(*cl_inet_disconnect)(			\
1358 				    (connp)->conn_netstack->netstack_stackid,\
1359 				    IPPROTO_TCP, AF_INET6,		\
1360 				    (uint8_t *)(&((tcp)->tcp_ip_src_v6)),\
1361 				    (in_port_t)(tcp)->tcp_lport,	\
1362 				    (uint8_t *)(&((tcp)->tcp_ip6h->ip6_dst)),\
1363 				    (in_port_t)(tcp)->tcp_fport, NULL);	\
1364 			}						\
1365 		}							\
1366 	}								\
1367 }
1368 
1369 /*
1370  * Cluster networking hook for traversing current connection list.
1371  * This routine is used to extract the current list of live connections
1372  * which must continue to to be dispatched to this node.
1373  */
1374 int cl_tcp_walk_list(netstackid_t stack_id,
1375     int (*callback)(cl_tcp_info_t *, void *), void *arg);
1376 
1377 static int cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *),
1378     void *arg, tcp_stack_t *tcps);
1379 
1380 #define	DTRACE_IP_FASTPATH(mp, iph, ill, ipha, ip6h) 			\
1381 	DTRACE_IP7(send, mblk_t *, mp, conn_t *, NULL, void_ip_t *,	\
1382 	    iph, __dtrace_ipsr_ill_t *, ill, ipha_t *, ipha,		\
1383 	    ip6_t *, ip6h, int, 0);
1384 
1385 /*
1386  * Figure out the value of window scale opton.  Note that the rwnd is
1387  * ASSUMED to be rounded up to the nearest MSS before the calculation.
1388  * We cannot find the scale value and then do a round up of tcp_rwnd
1389  * because the scale value may not be correct after that.
1390  *
1391  * Set the compiler flag to make this function inline.
1392  */
1393 static void
1394 tcp_set_ws_value(tcp_t *tcp)
1395 {
1396 	int i;
1397 	uint32_t rwnd = tcp->tcp_rwnd;
1398 
1399 	for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT;
1400 	    i++, rwnd >>= 1)
1401 		;
1402 	tcp->tcp_rcv_ws = i;
1403 }
1404 
1405 /*
1406  * Remove a connection from the list of detached TIME_WAIT connections.
1407  * It returns B_FALSE if it can't remove the connection from the list
1408  * as the connection has already been removed from the list due to an
1409  * earlier call to tcp_time_wait_remove(); otherwise it returns B_TRUE.
1410  */
1411 static boolean_t
1412 tcp_time_wait_remove(tcp_t *tcp, tcp_squeue_priv_t *tcp_time_wait)
1413 {
1414 	boolean_t	locked = B_FALSE;
1415 
1416 	if (tcp_time_wait == NULL) {
1417 		tcp_time_wait = *((tcp_squeue_priv_t **)
1418 		    squeue_getprivate(tcp->tcp_connp->conn_sqp, SQPRIVATE_TCP));
1419 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1420 		locked = B_TRUE;
1421 	} else {
1422 		ASSERT(MUTEX_HELD(&tcp_time_wait->tcp_time_wait_lock));
1423 	}
1424 
1425 	if (tcp->tcp_time_wait_expire == 0) {
1426 		ASSERT(tcp->tcp_time_wait_next == NULL);
1427 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1428 		if (locked)
1429 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1430 		return (B_FALSE);
1431 	}
1432 	ASSERT(TCP_IS_DETACHED(tcp));
1433 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1434 
1435 	if (tcp == tcp_time_wait->tcp_time_wait_head) {
1436 		ASSERT(tcp->tcp_time_wait_prev == NULL);
1437 		tcp_time_wait->tcp_time_wait_head = tcp->tcp_time_wait_next;
1438 		if (tcp_time_wait->tcp_time_wait_head != NULL) {
1439 			tcp_time_wait->tcp_time_wait_head->tcp_time_wait_prev =
1440 			    NULL;
1441 		} else {
1442 			tcp_time_wait->tcp_time_wait_tail = NULL;
1443 		}
1444 	} else if (tcp == tcp_time_wait->tcp_time_wait_tail) {
1445 		ASSERT(tcp != tcp_time_wait->tcp_time_wait_head);
1446 		ASSERT(tcp->tcp_time_wait_next == NULL);
1447 		tcp_time_wait->tcp_time_wait_tail = tcp->tcp_time_wait_prev;
1448 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1449 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = NULL;
1450 	} else {
1451 		ASSERT(tcp->tcp_time_wait_prev->tcp_time_wait_next == tcp);
1452 		ASSERT(tcp->tcp_time_wait_next->tcp_time_wait_prev == tcp);
1453 		tcp->tcp_time_wait_prev->tcp_time_wait_next =
1454 		    tcp->tcp_time_wait_next;
1455 		tcp->tcp_time_wait_next->tcp_time_wait_prev =
1456 		    tcp->tcp_time_wait_prev;
1457 	}
1458 	tcp->tcp_time_wait_next = NULL;
1459 	tcp->tcp_time_wait_prev = NULL;
1460 	tcp->tcp_time_wait_expire = 0;
1461 
1462 	if (locked)
1463 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1464 	return (B_TRUE);
1465 }
1466 
1467 /*
1468  * Add a connection to the list of detached TIME_WAIT connections
1469  * and set its time to expire.
1470  */
1471 static void
1472 tcp_time_wait_append(tcp_t *tcp)
1473 {
1474 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1475 	tcp_squeue_priv_t *tcp_time_wait =
1476 	    *((tcp_squeue_priv_t **)squeue_getprivate(tcp->tcp_connp->conn_sqp,
1477 	    SQPRIVATE_TCP));
1478 
1479 	tcp_timers_stop(tcp);
1480 
1481 	/* Freed above */
1482 	ASSERT(tcp->tcp_timer_tid == 0);
1483 	ASSERT(tcp->tcp_ack_tid == 0);
1484 
1485 	/* must have happened at the time of detaching the tcp */
1486 	ASSERT(tcp->tcp_ptpahn == NULL);
1487 	ASSERT(tcp->tcp_flow_stopped == 0);
1488 	ASSERT(tcp->tcp_time_wait_next == NULL);
1489 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1490 	ASSERT(tcp->tcp_time_wait_expire == NULL);
1491 	ASSERT(tcp->tcp_listener == NULL);
1492 
1493 	tcp->tcp_time_wait_expire = ddi_get_lbolt();
1494 	/*
1495 	 * The value computed below in tcp->tcp_time_wait_expire may
1496 	 * appear negative or wrap around. That is ok since our
1497 	 * interest is only in the difference between the current lbolt
1498 	 * value and tcp->tcp_time_wait_expire. But the value should not
1499 	 * be zero, since it means the tcp is not in the TIME_WAIT list.
1500 	 * The corresponding comparison in tcp_time_wait_collector() uses
1501 	 * modular arithmetic.
1502 	 */
1503 	tcp->tcp_time_wait_expire +=
1504 	    drv_usectohz(tcps->tcps_time_wait_interval * 1000);
1505 	if (tcp->tcp_time_wait_expire == 0)
1506 		tcp->tcp_time_wait_expire = 1;
1507 
1508 	ASSERT(TCP_IS_DETACHED(tcp));
1509 	ASSERT(tcp->tcp_state == TCPS_TIME_WAIT);
1510 	ASSERT(tcp->tcp_time_wait_next == NULL);
1511 	ASSERT(tcp->tcp_time_wait_prev == NULL);
1512 	TCP_DBGSTAT(tcps, tcp_time_wait);
1513 
1514 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1515 	if (tcp_time_wait->tcp_time_wait_head == NULL) {
1516 		ASSERT(tcp_time_wait->tcp_time_wait_tail == NULL);
1517 		tcp_time_wait->tcp_time_wait_head = tcp;
1518 	} else {
1519 		ASSERT(tcp_time_wait->tcp_time_wait_tail != NULL);
1520 		ASSERT(tcp_time_wait->tcp_time_wait_tail->tcp_state ==
1521 		    TCPS_TIME_WAIT);
1522 		tcp_time_wait->tcp_time_wait_tail->tcp_time_wait_next = tcp;
1523 		tcp->tcp_time_wait_prev = tcp_time_wait->tcp_time_wait_tail;
1524 	}
1525 	tcp_time_wait->tcp_time_wait_tail = tcp;
1526 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1527 }
1528 
1529 /* ARGSUSED */
1530 void
1531 tcp_timewait_output(void *arg, mblk_t *mp, void *arg2)
1532 {
1533 	conn_t	*connp = (conn_t *)arg;
1534 	tcp_t	*tcp = connp->conn_tcp;
1535 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1536 
1537 	ASSERT(tcp != NULL);
1538 	if (tcp->tcp_state == TCPS_CLOSED) {
1539 		return;
1540 	}
1541 
1542 	ASSERT((tcp->tcp_family == AF_INET &&
1543 	    tcp->tcp_ipversion == IPV4_VERSION) ||
1544 	    (tcp->tcp_family == AF_INET6 &&
1545 	    (tcp->tcp_ipversion == IPV4_VERSION ||
1546 	    tcp->tcp_ipversion == IPV6_VERSION)));
1547 	ASSERT(!tcp->tcp_listener);
1548 
1549 	TCP_STAT(tcps, tcp_time_wait_reap);
1550 	ASSERT(TCP_IS_DETACHED(tcp));
1551 
1552 	/*
1553 	 * Because they have no upstream client to rebind or tcp_close()
1554 	 * them later, we axe the connection here and now.
1555 	 */
1556 	tcp_close_detached(tcp);
1557 }
1558 
1559 /*
1560  * Remove cached/latched IPsec references.
1561  */
1562 void
1563 tcp_ipsec_cleanup(tcp_t *tcp)
1564 {
1565 	conn_t		*connp = tcp->tcp_connp;
1566 
1567 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1568 
1569 	if (connp->conn_latch != NULL) {
1570 		IPLATCH_REFRELE(connp->conn_latch,
1571 		    connp->conn_netstack);
1572 		connp->conn_latch = NULL;
1573 	}
1574 	if (connp->conn_policy != NULL) {
1575 		IPPH_REFRELE(connp->conn_policy, connp->conn_netstack);
1576 		connp->conn_policy = NULL;
1577 	}
1578 }
1579 
1580 /*
1581  * Cleaup before placing on free list.
1582  * Disassociate from the netstack/tcp_stack_t since the freelist
1583  * is per squeue and not per netstack.
1584  */
1585 void
1586 tcp_cleanup(tcp_t *tcp)
1587 {
1588 	mblk_t		*mp;
1589 	char		*tcp_iphc;
1590 	int		tcp_iphc_len;
1591 	int		tcp_hdr_grown;
1592 	tcp_sack_info_t	*tcp_sack_info;
1593 	conn_t		*connp = tcp->tcp_connp;
1594 	tcp_stack_t	*tcps = tcp->tcp_tcps;
1595 	netstack_t	*ns = tcps->tcps_netstack;
1596 	mblk_t		*tcp_rsrv_mp;
1597 
1598 	tcp_bind_hash_remove(tcp);
1599 
1600 	/* Cleanup that which needs the netstack first */
1601 	tcp_ipsec_cleanup(tcp);
1602 
1603 	tcp_free(tcp);
1604 
1605 	/* Release any SSL context */
1606 	if (tcp->tcp_kssl_ent != NULL) {
1607 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
1608 		tcp->tcp_kssl_ent = NULL;
1609 	}
1610 
1611 	if (tcp->tcp_kssl_ctx != NULL) {
1612 		kssl_release_ctx(tcp->tcp_kssl_ctx);
1613 		tcp->tcp_kssl_ctx = NULL;
1614 	}
1615 	tcp->tcp_kssl_pending = B_FALSE;
1616 
1617 	conn_delete_ire(connp, NULL);
1618 
1619 	/*
1620 	 * Since we will bzero the entire structure, we need to
1621 	 * remove it and reinsert it in global hash list. We
1622 	 * know the walkers can't get to this conn because we
1623 	 * had set CONDEMNED flag earlier and checked reference
1624 	 * under conn_lock so walker won't pick it and when we
1625 	 * go the ipcl_globalhash_remove() below, no walker
1626 	 * can get to it.
1627 	 */
1628 	ipcl_globalhash_remove(connp);
1629 
1630 	/*
1631 	 * Now it is safe to decrement the reference counts.
1632 	 * This might be the last reference on the netstack and TCPS
1633 	 * in which case it will cause the tcp_g_q_close and
1634 	 * the freeing of the IP Instance.
1635 	 */
1636 	connp->conn_netstack = NULL;
1637 	netstack_rele(ns);
1638 	ASSERT(tcps != NULL);
1639 	tcp->tcp_tcps = NULL;
1640 	TCPS_REFRELE(tcps);
1641 
1642 	/* Save some state */
1643 	mp = tcp->tcp_timercache;
1644 
1645 	tcp_sack_info = tcp->tcp_sack_info;
1646 	tcp_iphc = tcp->tcp_iphc;
1647 	tcp_iphc_len = tcp->tcp_iphc_len;
1648 	tcp_hdr_grown = tcp->tcp_hdr_grown;
1649 	tcp_rsrv_mp = tcp->tcp_rsrv_mp;
1650 
1651 	if (connp->conn_cred != NULL) {
1652 		crfree(connp->conn_cred);
1653 		connp->conn_cred = NULL;
1654 	}
1655 	if (connp->conn_peercred != NULL) {
1656 		crfree(connp->conn_peercred);
1657 		connp->conn_peercred = NULL;
1658 	}
1659 	ipcl_conn_cleanup(connp);
1660 	connp->conn_flags = IPCL_TCPCONN;
1661 	bzero(tcp, sizeof (tcp_t));
1662 
1663 	/* restore the state */
1664 	tcp->tcp_timercache = mp;
1665 
1666 	tcp->tcp_sack_info = tcp_sack_info;
1667 	tcp->tcp_iphc = tcp_iphc;
1668 	tcp->tcp_iphc_len = tcp_iphc_len;
1669 	tcp->tcp_hdr_grown = tcp_hdr_grown;
1670 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
1671 
1672 	tcp->tcp_connp = connp;
1673 
1674 	ASSERT(connp->conn_tcp == tcp);
1675 	ASSERT(connp->conn_flags & IPCL_TCPCONN);
1676 	connp->conn_state_flags = CONN_INCIPIENT;
1677 	ASSERT(connp->conn_ulp == IPPROTO_TCP);
1678 	ASSERT(connp->conn_ref == 1);
1679 }
1680 
1681 /*
1682  * Blows away all tcps whose TIME_WAIT has expired. List traversal
1683  * is done forwards from the head.
1684  * This walks all stack instances since
1685  * tcp_time_wait remains global across all stacks.
1686  */
1687 /* ARGSUSED */
1688 void
1689 tcp_time_wait_collector(void *arg)
1690 {
1691 	tcp_t *tcp;
1692 	clock_t now;
1693 	mblk_t *mp;
1694 	conn_t *connp;
1695 	kmutex_t *lock;
1696 	boolean_t removed;
1697 
1698 	squeue_t *sqp = (squeue_t *)arg;
1699 	tcp_squeue_priv_t *tcp_time_wait =
1700 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
1701 
1702 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1703 	tcp_time_wait->tcp_time_wait_tid = 0;
1704 
1705 	if (tcp_time_wait->tcp_free_list != NULL &&
1706 	    tcp_time_wait->tcp_free_list->tcp_in_free_list == B_TRUE) {
1707 		TCP_G_STAT(tcp_freelist_cleanup);
1708 		while ((tcp = tcp_time_wait->tcp_free_list) != NULL) {
1709 			tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
1710 			tcp->tcp_time_wait_next = NULL;
1711 			tcp_time_wait->tcp_free_list_cnt--;
1712 			ASSERT(tcp->tcp_tcps == NULL);
1713 			CONN_DEC_REF(tcp->tcp_connp);
1714 		}
1715 		ASSERT(tcp_time_wait->tcp_free_list_cnt == 0);
1716 	}
1717 
1718 	/*
1719 	 * In order to reap time waits reliably, we should use a
1720 	 * source of time that is not adjustable by the user -- hence
1721 	 * the call to ddi_get_lbolt().
1722 	 */
1723 	now = ddi_get_lbolt();
1724 	while ((tcp = tcp_time_wait->tcp_time_wait_head) != NULL) {
1725 		/*
1726 		 * Compare times using modular arithmetic, since
1727 		 * lbolt can wrapover.
1728 		 */
1729 		if ((now - tcp->tcp_time_wait_expire) < 0) {
1730 			break;
1731 		}
1732 
1733 		removed = tcp_time_wait_remove(tcp, tcp_time_wait);
1734 		ASSERT(removed);
1735 
1736 		connp = tcp->tcp_connp;
1737 		ASSERT(connp->conn_fanout != NULL);
1738 		lock = &connp->conn_fanout->connf_lock;
1739 		/*
1740 		 * This is essentially a TW reclaim fast path optimization for
1741 		 * performance where the timewait collector checks under the
1742 		 * fanout lock (so that no one else can get access to the
1743 		 * conn_t) that the refcnt is 2 i.e. one for TCP and one for
1744 		 * the classifier hash list. If ref count is indeed 2, we can
1745 		 * just remove the conn under the fanout lock and avoid
1746 		 * cleaning up the conn under the squeue, provided that
1747 		 * clustering callbacks are not enabled. If clustering is
1748 		 * enabled, we need to make the clustering callback before
1749 		 * setting the CONDEMNED flag and after dropping all locks and
1750 		 * so we forego this optimization and fall back to the slow
1751 		 * path. Also please see the comments in tcp_closei_local
1752 		 * regarding the refcnt logic.
1753 		 *
1754 		 * Since we are holding the tcp_time_wait_lock, its better
1755 		 * not to block on the fanout_lock because other connections
1756 		 * can't add themselves to time_wait list. So we do a
1757 		 * tryenter instead of mutex_enter.
1758 		 */
1759 		if (mutex_tryenter(lock)) {
1760 			mutex_enter(&connp->conn_lock);
1761 			if ((connp->conn_ref == 2) &&
1762 			    (cl_inet_disconnect == NULL)) {
1763 				ipcl_hash_remove_locked(connp,
1764 				    connp->conn_fanout);
1765 				/*
1766 				 * Set the CONDEMNED flag now itself so that
1767 				 * the refcnt cannot increase due to any
1768 				 * walker. But we have still not cleaned up
1769 				 * conn_ire_cache. This is still ok since
1770 				 * we are going to clean it up in tcp_cleanup
1771 				 * immediately and any interface unplumb
1772 				 * thread will wait till the ire is blown away
1773 				 */
1774 				connp->conn_state_flags |= CONN_CONDEMNED;
1775 				mutex_exit(lock);
1776 				mutex_exit(&connp->conn_lock);
1777 				if (tcp_time_wait->tcp_free_list_cnt <
1778 				    tcp_free_list_max_cnt) {
1779 					/* Add to head of tcp_free_list */
1780 					mutex_exit(
1781 					    &tcp_time_wait->tcp_time_wait_lock);
1782 					tcp_cleanup(tcp);
1783 					ASSERT(connp->conn_latch == NULL);
1784 					ASSERT(connp->conn_policy == NULL);
1785 					ASSERT(tcp->tcp_tcps == NULL);
1786 					ASSERT(connp->conn_netstack == NULL);
1787 
1788 					mutex_enter(
1789 					    &tcp_time_wait->tcp_time_wait_lock);
1790 					tcp->tcp_time_wait_next =
1791 					    tcp_time_wait->tcp_free_list;
1792 					tcp_time_wait->tcp_free_list = tcp;
1793 					tcp_time_wait->tcp_free_list_cnt++;
1794 					continue;
1795 				} else {
1796 					/* Do not add to tcp_free_list */
1797 					mutex_exit(
1798 					    &tcp_time_wait->tcp_time_wait_lock);
1799 					tcp_bind_hash_remove(tcp);
1800 					conn_delete_ire(tcp->tcp_connp, NULL);
1801 					tcp_ipsec_cleanup(tcp);
1802 					CONN_DEC_REF(tcp->tcp_connp);
1803 				}
1804 			} else {
1805 				CONN_INC_REF_LOCKED(connp);
1806 				mutex_exit(lock);
1807 				mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1808 				mutex_exit(&connp->conn_lock);
1809 				/*
1810 				 * We can reuse the closemp here since conn has
1811 				 * detached (otherwise we wouldn't even be in
1812 				 * time_wait list). tcp_closemp_used can safely
1813 				 * be changed without taking a lock as no other
1814 				 * thread can concurrently access it at this
1815 				 * point in the connection lifecycle.
1816 				 */
1817 
1818 				if (tcp->tcp_closemp.b_prev == NULL)
1819 					tcp->tcp_closemp_used = B_TRUE;
1820 				else
1821 					cmn_err(CE_PANIC,
1822 					    "tcp_timewait_collector: "
1823 					    "concurrent use of tcp_closemp: "
1824 					    "connp %p tcp %p\n", (void *)connp,
1825 					    (void *)tcp);
1826 
1827 				TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1828 				mp = &tcp->tcp_closemp;
1829 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1830 				    tcp_timewait_output, connp,
1831 				    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1832 			}
1833 		} else {
1834 			mutex_enter(&connp->conn_lock);
1835 			CONN_INC_REF_LOCKED(connp);
1836 			mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1837 			mutex_exit(&connp->conn_lock);
1838 			/*
1839 			 * We can reuse the closemp here since conn has
1840 			 * detached (otherwise we wouldn't even be in
1841 			 * time_wait list). tcp_closemp_used can safely
1842 			 * be changed without taking a lock as no other
1843 			 * thread can concurrently access it at this
1844 			 * point in the connection lifecycle.
1845 			 */
1846 
1847 			if (tcp->tcp_closemp.b_prev == NULL)
1848 				tcp->tcp_closemp_used = B_TRUE;
1849 			else
1850 				cmn_err(CE_PANIC, "tcp_timewait_collector: "
1851 				    "concurrent use of tcp_closemp: "
1852 				    "connp %p tcp %p\n", (void *)connp,
1853 				    (void *)tcp);
1854 
1855 			TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
1856 			mp = &tcp->tcp_closemp;
1857 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
1858 			    tcp_timewait_output, connp,
1859 			    SQ_FILL, SQTAG_TCP_TIMEWAIT);
1860 		}
1861 		mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
1862 	}
1863 
1864 	if (tcp_time_wait->tcp_free_list != NULL)
1865 		tcp_time_wait->tcp_free_list->tcp_in_free_list = B_TRUE;
1866 
1867 	tcp_time_wait->tcp_time_wait_tid =
1868 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
1869 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
1870 	    CALLOUT_FLAG_ROUNDUP);
1871 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
1872 }
1873 
1874 /*
1875  * Reply to a clients T_CONN_RES TPI message. This function
1876  * is used only for TLI/XTI listener. Sockfs sends T_CONN_RES
1877  * on the acceptor STREAM and processed in tcp_wput_accept().
1878  * Read the block comment on top of tcp_conn_request().
1879  */
1880 static void
1881 tcp_tli_accept(tcp_t *listener, mblk_t *mp)
1882 {
1883 	tcp_t	*acceptor;
1884 	tcp_t	*eager;
1885 	tcp_t   *tcp;
1886 	struct T_conn_res	*tcr;
1887 	t_uscalar_t	acceptor_id;
1888 	t_scalar_t	seqnum;
1889 	mblk_t	*opt_mp = NULL;	/* T_OPTMGMT_REQ messages */
1890 	struct tcp_options *tcpopt;
1891 	mblk_t	*ok_mp;
1892 	mblk_t	*mp1;
1893 	tcp_stack_t	*tcps = listener->tcp_tcps;
1894 
1895 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
1896 		tcp_err_ack(listener, mp, TPROTO, 0);
1897 		return;
1898 	}
1899 	tcr = (struct T_conn_res *)mp->b_rptr;
1900 
1901 	/*
1902 	 * Under ILP32 the stream head points tcr->ACCEPTOR_id at the
1903 	 * read side queue of the streams device underneath us i.e. the
1904 	 * read side queue of 'ip'. Since we can't deference QUEUE_ptr we
1905 	 * look it up in the queue_hash.  Under LP64 it sends down the
1906 	 * minor_t of the accepting endpoint.
1907 	 *
1908 	 * Once the acceptor/eager are modified (in tcp_accept_swap) the
1909 	 * fanout hash lock is held.
1910 	 * This prevents any thread from entering the acceptor queue from
1911 	 * below (since it has not been hard bound yet i.e. any inbound
1912 	 * packets will arrive on the listener or default tcp queue and
1913 	 * go through tcp_lookup).
1914 	 * The CONN_INC_REF will prevent the acceptor from closing.
1915 	 *
1916 	 * XXX It is still possible for a tli application to send down data
1917 	 * on the accepting stream while another thread calls t_accept.
1918 	 * This should not be a problem for well-behaved applications since
1919 	 * the T_OK_ACK is sent after the queue swapping is completed.
1920 	 *
1921 	 * If the accepting fd is the same as the listening fd, avoid
1922 	 * queue hash lookup since that will return an eager listener in a
1923 	 * already established state.
1924 	 */
1925 	acceptor_id = tcr->ACCEPTOR_id;
1926 	mutex_enter(&listener->tcp_eager_lock);
1927 	if (listener->tcp_acceptor_id == acceptor_id) {
1928 		eager = listener->tcp_eager_next_q;
1929 		/* only count how many T_CONN_INDs so don't count q0 */
1930 		if ((listener->tcp_conn_req_cnt_q != 1) ||
1931 		    (eager->tcp_conn_req_seqnum != tcr->SEQ_number)) {
1932 			mutex_exit(&listener->tcp_eager_lock);
1933 			tcp_err_ack(listener, mp, TBADF, 0);
1934 			return;
1935 		}
1936 		if (listener->tcp_conn_req_cnt_q0 != 0) {
1937 			/* Throw away all the eagers on q0. */
1938 			tcp_eager_cleanup(listener, 1);
1939 		}
1940 		if (listener->tcp_syn_defense) {
1941 			listener->tcp_syn_defense = B_FALSE;
1942 			if (listener->tcp_ip_addr_cache != NULL) {
1943 				kmem_free(listener->tcp_ip_addr_cache,
1944 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
1945 				listener->tcp_ip_addr_cache = NULL;
1946 			}
1947 		}
1948 		/*
1949 		 * Transfer tcp_conn_req_max to the eager so that when
1950 		 * a disconnect occurs we can revert the endpoint to the
1951 		 * listen state.
1952 		 */
1953 		eager->tcp_conn_req_max = listener->tcp_conn_req_max;
1954 		ASSERT(listener->tcp_conn_req_cnt_q0 == 0);
1955 		/*
1956 		 * Get a reference on the acceptor just like the
1957 		 * tcp_acceptor_hash_lookup below.
1958 		 */
1959 		acceptor = listener;
1960 		CONN_INC_REF(acceptor->tcp_connp);
1961 	} else {
1962 		acceptor = tcp_acceptor_hash_lookup(acceptor_id, tcps);
1963 		if (acceptor == NULL) {
1964 			if (listener->tcp_debug) {
1965 				(void) strlog(TCP_MOD_ID, 0, 1,
1966 				    SL_ERROR|SL_TRACE,
1967 				    "tcp_accept: did not find acceptor 0x%x\n",
1968 				    acceptor_id);
1969 			}
1970 			mutex_exit(&listener->tcp_eager_lock);
1971 			tcp_err_ack(listener, mp, TPROVMISMATCH, 0);
1972 			return;
1973 		}
1974 		/*
1975 		 * Verify acceptor state. The acceptable states for an acceptor
1976 		 * include TCPS_IDLE and TCPS_BOUND.
1977 		 */
1978 		switch (acceptor->tcp_state) {
1979 		case TCPS_IDLE:
1980 			/* FALLTHRU */
1981 		case TCPS_BOUND:
1982 			break;
1983 		default:
1984 			CONN_DEC_REF(acceptor->tcp_connp);
1985 			mutex_exit(&listener->tcp_eager_lock);
1986 			tcp_err_ack(listener, mp, TOUTSTATE, 0);
1987 			return;
1988 		}
1989 	}
1990 
1991 	/* The listener must be in TCPS_LISTEN */
1992 	if (listener->tcp_state != TCPS_LISTEN) {
1993 		CONN_DEC_REF(acceptor->tcp_connp);
1994 		mutex_exit(&listener->tcp_eager_lock);
1995 		tcp_err_ack(listener, mp, TOUTSTATE, 0);
1996 		return;
1997 	}
1998 
1999 	/*
2000 	 * Rendezvous with an eager connection request packet hanging off
2001 	 * 'tcp' that has the 'seqnum' tag.  We tagged the detached open
2002 	 * tcp structure when the connection packet arrived in
2003 	 * tcp_conn_request().
2004 	 */
2005 	seqnum = tcr->SEQ_number;
2006 	eager = listener;
2007 	do {
2008 		eager = eager->tcp_eager_next_q;
2009 		if (eager == NULL) {
2010 			CONN_DEC_REF(acceptor->tcp_connp);
2011 			mutex_exit(&listener->tcp_eager_lock);
2012 			tcp_err_ack(listener, mp, TBADSEQ, 0);
2013 			return;
2014 		}
2015 	} while (eager->tcp_conn_req_seqnum != seqnum);
2016 	mutex_exit(&listener->tcp_eager_lock);
2017 
2018 	/*
2019 	 * At this point, both acceptor and listener have 2 ref
2020 	 * that they begin with. Acceptor has one additional ref
2021 	 * we placed in lookup while listener has 3 additional
2022 	 * ref for being behind the squeue (tcp_accept() is
2023 	 * done on listener's squeue); being in classifier hash;
2024 	 * and eager's ref on listener.
2025 	 */
2026 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2027 	ASSERT(acceptor->tcp_connp->conn_ref >= 3);
2028 
2029 	/*
2030 	 * The eager at this point is set in its own squeue and
2031 	 * could easily have been killed (tcp_accept_finish will
2032 	 * deal with that) because of a TH_RST so we can only
2033 	 * ASSERT for a single ref.
2034 	 */
2035 	ASSERT(eager->tcp_connp->conn_ref >= 1);
2036 
2037 	/* Pre allocate the stroptions mblk also */
2038 	opt_mp = allocb(MAX(sizeof (struct tcp_options),
2039 	    sizeof (struct T_conn_res)), BPRI_HI);
2040 	if (opt_mp == NULL) {
2041 		CONN_DEC_REF(acceptor->tcp_connp);
2042 		CONN_DEC_REF(eager->tcp_connp);
2043 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2044 		return;
2045 	}
2046 	DB_TYPE(opt_mp) = M_SETOPTS;
2047 	opt_mp->b_wptr += sizeof (struct tcp_options);
2048 	tcpopt = (struct tcp_options *)opt_mp->b_rptr;
2049 	tcpopt->to_flags = 0;
2050 
2051 	/*
2052 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
2053 	 * from listener to acceptor.
2054 	 */
2055 	if (listener->tcp_bound_if != 0) {
2056 		tcpopt->to_flags |= TCPOPT_BOUNDIF;
2057 		tcpopt->to_boundif = listener->tcp_bound_if;
2058 	}
2059 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
2060 		tcpopt->to_flags |= TCPOPT_RECVPKTINFO;
2061 	}
2062 
2063 	/* Re-use mp1 to hold a copy of mp, in case reallocb fails */
2064 	if ((mp1 = copymsg(mp)) == NULL) {
2065 		CONN_DEC_REF(acceptor->tcp_connp);
2066 		CONN_DEC_REF(eager->tcp_connp);
2067 		freemsg(opt_mp);
2068 		tcp_err_ack(listener, mp, TSYSERR, ENOMEM);
2069 		return;
2070 	}
2071 
2072 	tcr = (struct T_conn_res *)mp1->b_rptr;
2073 
2074 	/*
2075 	 * This is an expanded version of mi_tpi_ok_ack_alloc()
2076 	 * which allocates a larger mblk and appends the new
2077 	 * local address to the ok_ack.  The address is copied by
2078 	 * soaccept() for getsockname().
2079 	 */
2080 	{
2081 		int extra;
2082 
2083 		extra = (eager->tcp_family == AF_INET) ?
2084 		    sizeof (sin_t) : sizeof (sin6_t);
2085 
2086 		/*
2087 		 * Try to re-use mp, if possible.  Otherwise, allocate
2088 		 * an mblk and return it as ok_mp.  In any case, mp
2089 		 * is no longer usable upon return.
2090 		 */
2091 		if ((ok_mp = mi_tpi_ok_ack_alloc_extra(mp, extra)) == NULL) {
2092 			CONN_DEC_REF(acceptor->tcp_connp);
2093 			CONN_DEC_REF(eager->tcp_connp);
2094 			freemsg(opt_mp);
2095 			/* Original mp has been freed by now, so use mp1 */
2096 			tcp_err_ack(listener, mp1, TSYSERR, ENOMEM);
2097 			return;
2098 		}
2099 
2100 		mp = NULL;	/* We should never use mp after this point */
2101 
2102 		switch (extra) {
2103 		case sizeof (sin_t): {
2104 				sin_t *sin = (sin_t *)ok_mp->b_wptr;
2105 
2106 				ok_mp->b_wptr += extra;
2107 				sin->sin_family = AF_INET;
2108 				sin->sin_port = eager->tcp_lport;
2109 				sin->sin_addr.s_addr =
2110 				    eager->tcp_ipha->ipha_src;
2111 				break;
2112 			}
2113 		case sizeof (sin6_t): {
2114 				sin6_t *sin6 = (sin6_t *)ok_mp->b_wptr;
2115 
2116 				ok_mp->b_wptr += extra;
2117 				sin6->sin6_family = AF_INET6;
2118 				sin6->sin6_port = eager->tcp_lport;
2119 				if (eager->tcp_ipversion == IPV4_VERSION) {
2120 					sin6->sin6_flowinfo = 0;
2121 					IN6_IPADDR_TO_V4MAPPED(
2122 					    eager->tcp_ipha->ipha_src,
2123 					    &sin6->sin6_addr);
2124 				} else {
2125 					ASSERT(eager->tcp_ip6h != NULL);
2126 					sin6->sin6_flowinfo =
2127 					    eager->tcp_ip6h->ip6_vcf &
2128 					    ~IPV6_VERS_AND_FLOW_MASK;
2129 					sin6->sin6_addr =
2130 					    eager->tcp_ip6h->ip6_src;
2131 				}
2132 				sin6->sin6_scope_id = 0;
2133 				sin6->__sin6_src_id = 0;
2134 				break;
2135 			}
2136 		default:
2137 			break;
2138 		}
2139 		ASSERT(ok_mp->b_wptr <= ok_mp->b_datap->db_lim);
2140 	}
2141 
2142 	/*
2143 	 * If there are no options we know that the T_CONN_RES will
2144 	 * succeed. However, we can't send the T_OK_ACK upstream until
2145 	 * the tcp_accept_swap is done since it would be dangerous to
2146 	 * let the application start using the new fd prior to the swap.
2147 	 */
2148 	tcp_accept_swap(listener, acceptor, eager);
2149 
2150 	/*
2151 	 * tcp_accept_swap unlinks eager from listener but does not drop
2152 	 * the eager's reference on the listener.
2153 	 */
2154 	ASSERT(eager->tcp_listener == NULL);
2155 	ASSERT(listener->tcp_connp->conn_ref >= 5);
2156 
2157 	/*
2158 	 * The eager is now associated with its own queue. Insert in
2159 	 * the hash so that the connection can be reused for a future
2160 	 * T_CONN_RES.
2161 	 */
2162 	tcp_acceptor_hash_insert(acceptor_id, eager);
2163 
2164 	/*
2165 	 * We now do the processing of options with T_CONN_RES.
2166 	 * We delay till now since we wanted to have queue to pass to
2167 	 * option processing routines that points back to the right
2168 	 * instance structure which does not happen until after
2169 	 * tcp_accept_swap().
2170 	 *
2171 	 * Note:
2172 	 * The sanity of the logic here assumes that whatever options
2173 	 * are appropriate to inherit from listner=>eager are done
2174 	 * before this point, and whatever were to be overridden (or not)
2175 	 * in transfer logic from eager=>acceptor in tcp_accept_swap().
2176 	 * [ Warning: acceptor endpoint can have T_OPTMGMT_REQ done to it
2177 	 *   before its ACCEPTOR_id comes down in T_CONN_RES ]
2178 	 * This may not be true at this point in time but can be fixed
2179 	 * independently. This option processing code starts with
2180 	 * the instantiated acceptor instance and the final queue at
2181 	 * this point.
2182 	 */
2183 
2184 	if (tcr->OPT_length != 0) {
2185 		/* Options to process */
2186 		int t_error = 0;
2187 		int sys_error = 0;
2188 		int do_disconnect = 0;
2189 
2190 		if (tcp_conprim_opt_process(eager, mp1,
2191 		    &do_disconnect, &t_error, &sys_error) < 0) {
2192 			eager->tcp_accept_error = 1;
2193 			if (do_disconnect) {
2194 				/*
2195 				 * An option failed which does not allow
2196 				 * connection to be accepted.
2197 				 *
2198 				 * We allow T_CONN_RES to succeed and
2199 				 * put a T_DISCON_IND on the eager queue.
2200 				 */
2201 				ASSERT(t_error == 0 && sys_error == 0);
2202 				eager->tcp_send_discon_ind = 1;
2203 			} else {
2204 				ASSERT(t_error != 0);
2205 				freemsg(ok_mp);
2206 				/*
2207 				 * Original mp was either freed or set
2208 				 * to ok_mp above, so use mp1 instead.
2209 				 */
2210 				tcp_err_ack(listener, mp1, t_error, sys_error);
2211 				goto finish;
2212 			}
2213 		}
2214 		/*
2215 		 * Most likely success in setting options (except if
2216 		 * eager->tcp_send_discon_ind set).
2217 		 * mp1 option buffer represented by OPT_length/offset
2218 		 * potentially modified and contains results of setting
2219 		 * options at this point
2220 		 */
2221 	}
2222 
2223 	/* We no longer need mp1, since all options processing has passed */
2224 	freemsg(mp1);
2225 
2226 	putnext(listener->tcp_rq, ok_mp);
2227 
2228 	mutex_enter(&listener->tcp_eager_lock);
2229 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
2230 		tcp_t	*tail;
2231 		mblk_t	*conn_ind;
2232 
2233 		/*
2234 		 * This path should not be executed if listener and
2235 		 * acceptor streams are the same.
2236 		 */
2237 		ASSERT(listener != acceptor);
2238 
2239 		tcp = listener->tcp_eager_prev_q0;
2240 		/*
2241 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
2242 		 * deferred T_conn_ind queue. We need to get to the head of
2243 		 * the queue in order to send up T_conn_ind the same order as
2244 		 * how the 3WHS is completed.
2245 		 */
2246 		while (tcp != listener) {
2247 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0)
2248 				break;
2249 			else
2250 				tcp = tcp->tcp_eager_prev_q0;
2251 		}
2252 		ASSERT(tcp != listener);
2253 		conn_ind = tcp->tcp_conn.tcp_eager_conn_ind;
2254 		ASSERT(conn_ind != NULL);
2255 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
2256 
2257 		/* Move from q0 to q */
2258 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
2259 		listener->tcp_conn_req_cnt_q0--;
2260 		listener->tcp_conn_req_cnt_q++;
2261 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
2262 		    tcp->tcp_eager_prev_q0;
2263 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
2264 		    tcp->tcp_eager_next_q0;
2265 		tcp->tcp_eager_prev_q0 = NULL;
2266 		tcp->tcp_eager_next_q0 = NULL;
2267 		tcp->tcp_conn_def_q0 = B_FALSE;
2268 
2269 		/* Make sure the tcp isn't in the list of droppables */
2270 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
2271 		    tcp->tcp_eager_prev_drop_q0 == NULL);
2272 
2273 		/*
2274 		 * Insert at end of the queue because sockfs sends
2275 		 * down T_CONN_RES in chronological order. Leaving
2276 		 * the older conn indications at front of the queue
2277 		 * helps reducing search time.
2278 		 */
2279 		tail = listener->tcp_eager_last_q;
2280 		if (tail != NULL)
2281 			tail->tcp_eager_next_q = tcp;
2282 		else
2283 			listener->tcp_eager_next_q = tcp;
2284 		listener->tcp_eager_last_q = tcp;
2285 		tcp->tcp_eager_next_q = NULL;
2286 		mutex_exit(&listener->tcp_eager_lock);
2287 		putnext(tcp->tcp_rq, conn_ind);
2288 	} else {
2289 		mutex_exit(&listener->tcp_eager_lock);
2290 	}
2291 
2292 	/*
2293 	 * Done with the acceptor - free it
2294 	 *
2295 	 * Note: from this point on, no access to listener should be made
2296 	 * as listener can be equal to acceptor.
2297 	 */
2298 finish:
2299 	ASSERT(acceptor->tcp_detached);
2300 	ASSERT(tcps->tcps_g_q != NULL);
2301 	ASSERT(!IPCL_IS_NONSTR(acceptor->tcp_connp));
2302 	acceptor->tcp_rq = tcps->tcps_g_q;
2303 	acceptor->tcp_wq = WR(tcps->tcps_g_q);
2304 	(void) tcp_clean_death(acceptor, 0, 2);
2305 	CONN_DEC_REF(acceptor->tcp_connp);
2306 
2307 	/*
2308 	 * In case we already received a FIN we have to make tcp_rput send
2309 	 * the ordrel_ind. This will also send up a window update if the window
2310 	 * has opened up.
2311 	 *
2312 	 * In the normal case of a successful connection acceptance
2313 	 * we give the O_T_BIND_REQ to the read side put procedure as an
2314 	 * indication that this was just accepted. This tells tcp_rput to
2315 	 * pass up any data queued in tcp_rcv_list.
2316 	 *
2317 	 * In the fringe case where options sent with T_CONN_RES failed and
2318 	 * we required, we would be indicating a T_DISCON_IND to blow
2319 	 * away this connection.
2320 	 */
2321 
2322 	/*
2323 	 * XXX: we currently have a problem if XTI application closes the
2324 	 * acceptor stream in between. This problem exists in on10-gate also
2325 	 * and is well know but nothing can be done short of major rewrite
2326 	 * to fix it. Now it is possible to take care of it by assigning TLI/XTI
2327 	 * eager same squeue as listener (we can distinguish non socket
2328 	 * listeners at the time of handling a SYN in tcp_conn_request)
2329 	 * and do most of the work that tcp_accept_finish does here itself
2330 	 * and then get behind the acceptor squeue to access the acceptor
2331 	 * queue.
2332 	 */
2333 	/*
2334 	 * We already have a ref on tcp so no need to do one before squeue_enter
2335 	 */
2336 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, opt_mp, tcp_accept_finish,
2337 	    eager->tcp_connp, SQ_FILL, SQTAG_TCP_ACCEPT_FINISH);
2338 }
2339 
2340 /*
2341  * Swap information between the eager and acceptor for a TLI/XTI client.
2342  * The sockfs accept is done on the acceptor stream and control goes
2343  * through tcp_wput_accept() and tcp_accept()/tcp_accept_swap() is not
2344  * called. In either case, both the eager and listener are in their own
2345  * perimeter (squeue) and the code has to deal with potential race.
2346  *
2347  * See the block comment on top of tcp_accept() and tcp_wput_accept().
2348  */
2349 static void
2350 tcp_accept_swap(tcp_t *listener, tcp_t *acceptor, tcp_t *eager)
2351 {
2352 	conn_t	*econnp, *aconnp;
2353 
2354 	ASSERT(eager->tcp_rq == listener->tcp_rq);
2355 	ASSERT(eager->tcp_detached && !acceptor->tcp_detached);
2356 	ASSERT(!eager->tcp_hard_bound);
2357 	ASSERT(!TCP_IS_SOCKET(acceptor));
2358 	ASSERT(!TCP_IS_SOCKET(eager));
2359 	ASSERT(!TCP_IS_SOCKET(listener));
2360 
2361 	acceptor->tcp_detached = B_TRUE;
2362 	/*
2363 	 * To permit stream re-use by TLI/XTI, the eager needs a copy of
2364 	 * the acceptor id.
2365 	 */
2366 	eager->tcp_acceptor_id = acceptor->tcp_acceptor_id;
2367 
2368 	/* remove eager from listen list... */
2369 	mutex_enter(&listener->tcp_eager_lock);
2370 	tcp_eager_unlink(eager);
2371 	ASSERT(eager->tcp_eager_next_q == NULL &&
2372 	    eager->tcp_eager_last_q == NULL);
2373 	ASSERT(eager->tcp_eager_next_q0 == NULL &&
2374 	    eager->tcp_eager_prev_q0 == NULL);
2375 	mutex_exit(&listener->tcp_eager_lock);
2376 	eager->tcp_rq = acceptor->tcp_rq;
2377 	eager->tcp_wq = acceptor->tcp_wq;
2378 
2379 	econnp = eager->tcp_connp;
2380 	aconnp = acceptor->tcp_connp;
2381 
2382 	eager->tcp_rq->q_ptr = econnp;
2383 	eager->tcp_wq->q_ptr = econnp;
2384 
2385 	/*
2386 	 * In the TLI/XTI loopback case, we are inside the listener's squeue,
2387 	 * which might be a different squeue from our peer TCP instance.
2388 	 * For TCP Fusion, the peer expects that whenever tcp_detached is
2389 	 * clear, our TCP queues point to the acceptor's queues.  Thus, use
2390 	 * membar_producer() to ensure that the assignments of tcp_rq/tcp_wq
2391 	 * above reach global visibility prior to the clearing of tcp_detached.
2392 	 */
2393 	membar_producer();
2394 	eager->tcp_detached = B_FALSE;
2395 
2396 	ASSERT(eager->tcp_ack_tid == 0);
2397 
2398 	econnp->conn_dev = aconnp->conn_dev;
2399 	econnp->conn_minor_arena = aconnp->conn_minor_arena;
2400 	ASSERT(econnp->conn_minor_arena != NULL);
2401 	if (eager->tcp_cred != NULL)
2402 		crfree(eager->tcp_cred);
2403 	eager->tcp_cred = econnp->conn_cred = aconnp->conn_cred;
2404 	ASSERT(econnp->conn_netstack == aconnp->conn_netstack);
2405 	ASSERT(eager->tcp_tcps == acceptor->tcp_tcps);
2406 
2407 	aconnp->conn_cred = NULL;
2408 
2409 	econnp->conn_zoneid = aconnp->conn_zoneid;
2410 	econnp->conn_allzones = aconnp->conn_allzones;
2411 
2412 	econnp->conn_mac_exempt = aconnp->conn_mac_exempt;
2413 	aconnp->conn_mac_exempt = B_FALSE;
2414 
2415 	ASSERT(aconnp->conn_peercred == NULL);
2416 
2417 	/* Do the IPC initialization */
2418 	CONN_INC_REF(econnp);
2419 
2420 	econnp->conn_multicast_loop = aconnp->conn_multicast_loop;
2421 	econnp->conn_af_isv6 = aconnp->conn_af_isv6;
2422 	econnp->conn_pkt_isv6 = aconnp->conn_pkt_isv6;
2423 
2424 	/* Done with old IPC. Drop its ref on its connp */
2425 	CONN_DEC_REF(aconnp);
2426 }
2427 
2428 
2429 /*
2430  * Adapt to the information, such as rtt and rtt_sd, provided from the
2431  * ire cached in conn_cache_ire. If no ire cached, do a ire lookup.
2432  *
2433  * Checks for multicast and broadcast destination address.
2434  * Returns zero on failure; non-zero if ok.
2435  *
2436  * Note that the MSS calculation here is based on the info given in
2437  * the IRE.  We do not do any calculation based on TCP options.  They
2438  * will be handled in tcp_rput_other() and tcp_rput_data() when TCP
2439  * knows which options to use.
2440  *
2441  * Note on how TCP gets its parameters for a connection.
2442  *
2443  * When a tcp_t structure is allocated, it gets all the default parameters.
2444  * In tcp_adapt_ire(), it gets those metric parameters, like rtt, rtt_sd,
2445  * spipe, rpipe, ... from the route metrics.  Route metric overrides the
2446  * default.
2447  *
2448  * An incoming SYN with a multicast or broadcast destination address, is dropped
2449  * in 1 of 2 places.
2450  *
2451  * 1. If the packet was received over the wire it is dropped in
2452  * ip_rput_process_broadcast()
2453  *
2454  * 2. If the packet was received through internal IP loopback, i.e. the packet
2455  * was generated and received on the same machine, it is dropped in
2456  * ip_wput_local()
2457  *
2458  * An incoming SYN with a multicast or broadcast source address is always
2459  * dropped in tcp_adapt_ire. The same logic in tcp_adapt_ire also serves to
2460  * reject an attempt to connect to a broadcast or multicast (destination)
2461  * address.
2462  */
2463 static int
2464 tcp_adapt_ire(tcp_t *tcp, mblk_t *ire_mp)
2465 {
2466 	ire_t		*ire;
2467 	ire_t		*sire = NULL;
2468 	iulp_t		*ire_uinfo = NULL;
2469 	uint32_t	mss_max;
2470 	uint32_t	mss;
2471 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
2472 	conn_t		*connp = tcp->tcp_connp;
2473 	boolean_t	ire_cacheable = B_FALSE;
2474 	zoneid_t	zoneid = connp->conn_zoneid;
2475 	int		match_flags = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT |
2476 	    MATCH_IRE_SECATTR;
2477 	ts_label_t	*tsl = crgetlabel(CONN_CRED(connp));
2478 	ill_t		*ill = NULL;
2479 	boolean_t	incoming = (ire_mp == NULL);
2480 	tcp_stack_t	*tcps = tcp->tcp_tcps;
2481 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
2482 
2483 	ASSERT(connp->conn_ire_cache == NULL);
2484 
2485 	if (tcp->tcp_ipversion == IPV4_VERSION) {
2486 
2487 		if (CLASSD(tcp->tcp_connp->conn_rem)) {
2488 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
2489 			return (0);
2490 		}
2491 		/*
2492 		 * If IP_NEXTHOP is set, then look for an IRE_CACHE
2493 		 * for the destination with the nexthop as gateway.
2494 		 * ire_ctable_lookup() is used because this particular
2495 		 * ire, if it exists, will be marked private.
2496 		 * If that is not available, use the interface ire
2497 		 * for the nexthop.
2498 		 *
2499 		 * TSol: tcp_update_label will detect label mismatches based
2500 		 * only on the destination's label, but that would not
2501 		 * detect label mismatches based on the security attributes
2502 		 * of routes or next hop gateway. Hence we need to pass the
2503 		 * label to ire_ftable_lookup below in order to locate the
2504 		 * right prefix (and/or) ire cache. Similarly we also need
2505 		 * pass the label to the ire_cache_lookup below to locate
2506 		 * the right ire that also matches on the label.
2507 		 */
2508 		if (tcp->tcp_connp->conn_nexthop_set) {
2509 			ire = ire_ctable_lookup(tcp->tcp_connp->conn_rem,
2510 			    tcp->tcp_connp->conn_nexthop_v4, 0, NULL, zoneid,
2511 			    tsl, MATCH_IRE_MARK_PRIVATE_ADDR | MATCH_IRE_GW,
2512 			    ipst);
2513 			if (ire == NULL) {
2514 				ire = ire_ftable_lookup(
2515 				    tcp->tcp_connp->conn_nexthop_v4,
2516 				    0, 0, IRE_INTERFACE, NULL, NULL, zoneid, 0,
2517 				    tsl, match_flags, ipst);
2518 				if (ire == NULL)
2519 					return (0);
2520 			} else {
2521 				ire_uinfo = &ire->ire_uinfo;
2522 			}
2523 		} else {
2524 			ire = ire_cache_lookup(tcp->tcp_connp->conn_rem,
2525 			    zoneid, tsl, ipst);
2526 			if (ire != NULL) {
2527 				ire_cacheable = B_TRUE;
2528 				ire_uinfo = (ire_mp != NULL) ?
2529 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2530 				    &ire->ire_uinfo;
2531 
2532 			} else {
2533 				if (ire_mp == NULL) {
2534 					ire = ire_ftable_lookup(
2535 					    tcp->tcp_connp->conn_rem,
2536 					    0, 0, 0, NULL, &sire, zoneid, 0,
2537 					    tsl, (MATCH_IRE_RECURSIVE |
2538 					    MATCH_IRE_DEFAULT), ipst);
2539 					if (ire == NULL)
2540 						return (0);
2541 					ire_uinfo = (sire != NULL) ?
2542 					    &sire->ire_uinfo :
2543 					    &ire->ire_uinfo;
2544 				} else {
2545 					ire = (ire_t *)ire_mp->b_rptr;
2546 					ire_uinfo =
2547 					    &((ire_t *)
2548 					    ire_mp->b_rptr)->ire_uinfo;
2549 				}
2550 			}
2551 		}
2552 		ASSERT(ire != NULL);
2553 
2554 		if ((ire->ire_src_addr == INADDR_ANY) ||
2555 		    (ire->ire_type & IRE_BROADCAST)) {
2556 			/*
2557 			 * ire->ire_mp is non null when ire_mp passed in is used
2558 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2559 			 */
2560 			if (ire->ire_mp == NULL)
2561 				ire_refrele(ire);
2562 			if (sire != NULL)
2563 				ire_refrele(sire);
2564 			return (0);
2565 		}
2566 
2567 		if (tcp->tcp_ipha->ipha_src == INADDR_ANY) {
2568 			ipaddr_t src_addr;
2569 
2570 			/*
2571 			 * ip_bind_connected() has stored the correct source
2572 			 * address in conn_src.
2573 			 */
2574 			src_addr = tcp->tcp_connp->conn_src;
2575 			tcp->tcp_ipha->ipha_src = src_addr;
2576 			/*
2577 			 * Copy of the src addr. in tcp_t is needed
2578 			 * for the lookup funcs.
2579 			 */
2580 			IN6_IPADDR_TO_V4MAPPED(src_addr, &tcp->tcp_ip_src_v6);
2581 		}
2582 		/*
2583 		 * Set the fragment bit so that IP will tell us if the MTU
2584 		 * should change. IP tells us the latest setting of
2585 		 * ip_path_mtu_discovery through ire_frag_flag.
2586 		 */
2587 		if (ipst->ips_ip_path_mtu_discovery) {
2588 			tcp->tcp_ipha->ipha_fragment_offset_and_flags =
2589 			    htons(IPH_DF);
2590 		}
2591 		/*
2592 		 * If ire_uinfo is NULL, this is the IRE_INTERFACE case
2593 		 * for IP_NEXTHOP. No cache ire has been found for the
2594 		 * destination and we are working with the nexthop's
2595 		 * interface ire. Since we need to forward all packets
2596 		 * to the nexthop first, we "blindly" set tcp_localnet
2597 		 * to false, eventhough the destination may also be
2598 		 * onlink.
2599 		 */
2600 		if (ire_uinfo == NULL)
2601 			tcp->tcp_localnet = 0;
2602 		else
2603 			tcp->tcp_localnet = (ire->ire_gateway_addr == 0);
2604 	} else {
2605 		/*
2606 		 * For incoming connection ire_mp = NULL
2607 		 * For outgoing connection ire_mp != NULL
2608 		 * Technically we should check conn_incoming_ill
2609 		 * when ire_mp is NULL and conn_outgoing_ill when
2610 		 * ire_mp is non-NULL. But this is performance
2611 		 * critical path and for IPV*_BOUND_IF, outgoing
2612 		 * and incoming ill are always set to the same value.
2613 		 */
2614 		ill_t	*dst_ill = NULL;
2615 		ipif_t  *dst_ipif = NULL;
2616 
2617 		ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill);
2618 
2619 		if (connp->conn_outgoing_ill != NULL) {
2620 			/* Outgoing or incoming path */
2621 			int   err;
2622 
2623 			dst_ill = conn_get_held_ill(connp,
2624 			    &connp->conn_outgoing_ill, &err);
2625 			if (err == ILL_LOOKUP_FAILED || dst_ill == NULL) {
2626 				ip1dbg(("tcp_adapt_ire: ill_lookup failed\n"));
2627 				return (0);
2628 			}
2629 			match_flags |= MATCH_IRE_ILL;
2630 			dst_ipif = dst_ill->ill_ipif;
2631 		}
2632 		ire = ire_ctable_lookup_v6(&tcp->tcp_connp->conn_remv6,
2633 		    0, 0, dst_ipif, zoneid, tsl, match_flags, ipst);
2634 
2635 		if (ire != NULL) {
2636 			ire_cacheable = B_TRUE;
2637 			ire_uinfo = (ire_mp != NULL) ?
2638 			    &((ire_t *)ire_mp->b_rptr)->ire_uinfo:
2639 			    &ire->ire_uinfo;
2640 		} else {
2641 			if (ire_mp == NULL) {
2642 				ire = ire_ftable_lookup_v6(
2643 				    &tcp->tcp_connp->conn_remv6,
2644 				    0, 0, 0, dst_ipif, &sire, zoneid,
2645 				    0, tsl, match_flags, ipst);
2646 				if (ire == NULL) {
2647 					if (dst_ill != NULL)
2648 						ill_refrele(dst_ill);
2649 					return (0);
2650 				}
2651 				ire_uinfo = (sire != NULL) ? &sire->ire_uinfo :
2652 				    &ire->ire_uinfo;
2653 			} else {
2654 				ire = (ire_t *)ire_mp->b_rptr;
2655 				ire_uinfo =
2656 				    &((ire_t *)ire_mp->b_rptr)->ire_uinfo;
2657 			}
2658 		}
2659 		if (dst_ill != NULL)
2660 			ill_refrele(dst_ill);
2661 
2662 		ASSERT(ire != NULL);
2663 		ASSERT(ire_uinfo != NULL);
2664 
2665 		if (IN6_IS_ADDR_UNSPECIFIED(&ire->ire_src_addr_v6) ||
2666 		    IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) {
2667 			/*
2668 			 * ire->ire_mp is non null when ire_mp passed in is used
2669 			 * ire->ire_mp is set in ip_bind_insert_ire[_v6]().
2670 			 */
2671 			if (ire->ire_mp == NULL)
2672 				ire_refrele(ire);
2673 			if (sire != NULL)
2674 				ire_refrele(sire);
2675 			return (0);
2676 		}
2677 
2678 		if (IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
2679 			in6_addr_t	src_addr;
2680 
2681 			/*
2682 			 * ip_bind_connected_v6() has stored the correct source
2683 			 * address per IPv6 addr. selection policy in
2684 			 * conn_src_v6.
2685 			 */
2686 			src_addr = tcp->tcp_connp->conn_srcv6;
2687 
2688 			tcp->tcp_ip6h->ip6_src = src_addr;
2689 			/*
2690 			 * Copy of the src addr. in tcp_t is needed
2691 			 * for the lookup funcs.
2692 			 */
2693 			tcp->tcp_ip_src_v6 = src_addr;
2694 			ASSERT(IN6_ARE_ADDR_EQUAL(&tcp->tcp_ip6h->ip6_src,
2695 			    &connp->conn_srcv6));
2696 		}
2697 		tcp->tcp_localnet =
2698 		    IN6_IS_ADDR_UNSPECIFIED(&ire->ire_gateway_addr_v6);
2699 	}
2700 
2701 	/*
2702 	 * This allows applications to fail quickly when connections are made
2703 	 * to dead hosts. Hosts can be labeled dead by adding a reject route
2704 	 * with both the RTF_REJECT and RTF_PRIVATE flags set.
2705 	 */
2706 	if ((ire->ire_flags & RTF_REJECT) &&
2707 	    (ire->ire_flags & RTF_PRIVATE))
2708 		goto error;
2709 
2710 	/*
2711 	 * Make use of the cached rtt and rtt_sd values to calculate the
2712 	 * initial RTO.  Note that they are already initialized in
2713 	 * tcp_init_values().
2714 	 * If ire_uinfo is NULL, i.e., we do not have a cache ire for
2715 	 * IP_NEXTHOP, but instead are using the interface ire for the
2716 	 * nexthop, then we do not use the ire_uinfo from that ire to
2717 	 * do any initializations.
2718 	 */
2719 	if (ire_uinfo != NULL) {
2720 		if (ire_uinfo->iulp_rtt != 0) {
2721 			clock_t	rto;
2722 
2723 			tcp->tcp_rtt_sa = ire_uinfo->iulp_rtt;
2724 			tcp->tcp_rtt_sd = ire_uinfo->iulp_rtt_sd;
2725 			rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
2726 			    tcps->tcps_rexmit_interval_extra +
2727 			    (tcp->tcp_rtt_sa >> 5);
2728 
2729 			if (rto > tcps->tcps_rexmit_interval_max) {
2730 				tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
2731 			} else if (rto < tcps->tcps_rexmit_interval_min) {
2732 				tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
2733 			} else {
2734 				tcp->tcp_rto = rto;
2735 			}
2736 		}
2737 		if (ire_uinfo->iulp_ssthresh != 0)
2738 			tcp->tcp_cwnd_ssthresh = ire_uinfo->iulp_ssthresh;
2739 		else
2740 			tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
2741 		if (ire_uinfo->iulp_spipe > 0) {
2742 			tcp->tcp_xmit_hiwater = MIN(ire_uinfo->iulp_spipe,
2743 			    tcps->tcps_max_buf);
2744 			if (tcps->tcps_snd_lowat_fraction != 0)
2745 				tcp->tcp_xmit_lowater = tcp->tcp_xmit_hiwater /
2746 				    tcps->tcps_snd_lowat_fraction;
2747 			(void) tcp_maxpsz_set(tcp, B_TRUE);
2748 		}
2749 		/*
2750 		 * Note that up till now, acceptor always inherits receive
2751 		 * window from the listener.  But if there is a metrics
2752 		 * associated with a host, we should use that instead of
2753 		 * inheriting it from listener. Thus we need to pass this
2754 		 * info back to the caller.
2755 		 */
2756 		if (ire_uinfo->iulp_rpipe > 0) {
2757 			tcp->tcp_rwnd = MIN(ire_uinfo->iulp_rpipe,
2758 			    tcps->tcps_max_buf);
2759 		}
2760 
2761 		if (ire_uinfo->iulp_rtomax > 0) {
2762 			tcp->tcp_second_timer_threshold =
2763 			    ire_uinfo->iulp_rtomax;
2764 		}
2765 
2766 		/*
2767 		 * Use the metric option settings, iulp_tstamp_ok and
2768 		 * iulp_wscale_ok, only for active open. What this means
2769 		 * is that if the other side uses timestamp or window
2770 		 * scale option, TCP will also use those options. That
2771 		 * is for passive open.  If the application sets a
2772 		 * large window, window scale is enabled regardless of
2773 		 * the value in iulp_wscale_ok.  This is the behavior
2774 		 * since 2.6.  So we keep it.
2775 		 * The only case left in passive open processing is the
2776 		 * check for SACK.
2777 		 * For ECN, it should probably be like SACK.  But the
2778 		 * current value is binary, so we treat it like the other
2779 		 * cases.  The metric only controls active open.For passive
2780 		 * open, the ndd param, tcp_ecn_permitted, controls the
2781 		 * behavior.
2782 		 */
2783 		if (!tcp_detached) {
2784 			/*
2785 			 * The if check means that the following can only
2786 			 * be turned on by the metrics only IRE, but not off.
2787 			 */
2788 			if (ire_uinfo->iulp_tstamp_ok)
2789 				tcp->tcp_snd_ts_ok = B_TRUE;
2790 			if (ire_uinfo->iulp_wscale_ok)
2791 				tcp->tcp_snd_ws_ok = B_TRUE;
2792 			if (ire_uinfo->iulp_sack == 2)
2793 				tcp->tcp_snd_sack_ok = B_TRUE;
2794 			if (ire_uinfo->iulp_ecn_ok)
2795 				tcp->tcp_ecn_ok = B_TRUE;
2796 		} else {
2797 			/*
2798 			 * Passive open.
2799 			 *
2800 			 * As above, the if check means that SACK can only be
2801 			 * turned on by the metric only IRE.
2802 			 */
2803 			if (ire_uinfo->iulp_sack > 0) {
2804 				tcp->tcp_snd_sack_ok = B_TRUE;
2805 			}
2806 		}
2807 	}
2808 
2809 
2810 	/*
2811 	 * XXX: Note that currently, ire_max_frag can be as small as 68
2812 	 * because of PMTUd.  So tcp_mss may go to negative if combined
2813 	 * length of all those options exceeds 28 bytes.  But because
2814 	 * of the tcp_mss_min check below, we may not have a problem if
2815 	 * tcp_mss_min is of a reasonable value.  The default is 1 so
2816 	 * the negative problem still exists.  And the check defeats PMTUd.
2817 	 * In fact, if PMTUd finds that the MSS should be smaller than
2818 	 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min
2819 	 * value.
2820 	 *
2821 	 * We do not deal with that now.  All those problems related to
2822 	 * PMTUd will be fixed later.
2823 	 */
2824 	ASSERT(ire->ire_max_frag != 0);
2825 	mss = tcp->tcp_if_mtu = ire->ire_max_frag;
2826 	if (tcp->tcp_ipp_fields & IPPF_USE_MIN_MTU) {
2827 		if (tcp->tcp_ipp_use_min_mtu == IPV6_USE_MIN_MTU_NEVER) {
2828 			mss = MIN(mss, IPV6_MIN_MTU);
2829 		}
2830 	}
2831 
2832 	/* Sanity check for MSS value. */
2833 	if (tcp->tcp_ipversion == IPV4_VERSION)
2834 		mss_max = tcps->tcps_mss_max_ipv4;
2835 	else
2836 		mss_max = tcps->tcps_mss_max_ipv6;
2837 
2838 	if (tcp->tcp_ipversion == IPV6_VERSION &&
2839 	    (ire->ire_frag_flag & IPH_FRAG_HDR)) {
2840 		/*
2841 		 * After receiving an ICMPv6 "packet too big" message with a
2842 		 * MTU < 1280, and for multirouted IPv6 packets, the IP layer
2843 		 * will insert a 8-byte fragment header in every packet; we
2844 		 * reduce the MSS by that amount here.
2845 		 */
2846 		mss -= sizeof (ip6_frag_t);
2847 	}
2848 
2849 	if (tcp->tcp_ipsec_overhead == 0)
2850 		tcp->tcp_ipsec_overhead = conn_ipsec_length(connp);
2851 
2852 	mss -= tcp->tcp_ipsec_overhead;
2853 
2854 	if (mss < tcps->tcps_mss_min)
2855 		mss = tcps->tcps_mss_min;
2856 	if (mss > mss_max)
2857 		mss = mss_max;
2858 
2859 	/* Note that this is the maximum MSS, excluding all options. */
2860 	tcp->tcp_mss = mss;
2861 
2862 	/*
2863 	 * Initialize the ISS here now that we have the full connection ID.
2864 	 * The RFC 1948 method of initial sequence number generation requires
2865 	 * knowledge of the full connection ID before setting the ISS.
2866 	 */
2867 
2868 	tcp_iss_init(tcp);
2869 
2870 	if (ire->ire_type & (IRE_LOOPBACK | IRE_LOCAL))
2871 		tcp->tcp_loopback = B_TRUE;
2872 
2873 	if (sire != NULL)
2874 		IRE_REFRELE(sire);
2875 
2876 	/*
2877 	 * If we got an IRE_CACHE and an ILL, go through their properties;
2878 	 * otherwise, this is deferred until later when we have an IRE_CACHE.
2879 	 */
2880 	if (tcp->tcp_loopback ||
2881 	    (ire_cacheable && (ill = ire_to_ill(ire)) != NULL)) {
2882 		/*
2883 		 * For incoming, see if this tcp may be MDT-capable.  For
2884 		 * outgoing, this process has been taken care of through
2885 		 * tcp_rput_other.
2886 		 */
2887 		tcp_ire_ill_check(tcp, ire, ill, incoming);
2888 		tcp->tcp_ire_ill_check_done = B_TRUE;
2889 	}
2890 
2891 	mutex_enter(&connp->conn_lock);
2892 	/*
2893 	 * Make sure that conn is not marked incipient
2894 	 * for incoming connections. A blind
2895 	 * removal of incipient flag is cheaper than
2896 	 * check and removal.
2897 	 */
2898 	connp->conn_state_flags &= ~CONN_INCIPIENT;
2899 
2900 	/*
2901 	 * Must not cache forwarding table routes
2902 	 * or recache an IRE after the conn_t has
2903 	 * had conn_ire_cache cleared and is flagged
2904 	 * unusable, (see the CONN_CACHE_IRE() macro).
2905 	 */
2906 	if (ire_cacheable && CONN_CACHE_IRE(connp)) {
2907 		rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
2908 		if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
2909 			connp->conn_ire_cache = ire;
2910 			IRE_UNTRACE_REF(ire);
2911 			rw_exit(&ire->ire_bucket->irb_lock);
2912 			mutex_exit(&connp->conn_lock);
2913 			return (1);
2914 		}
2915 		rw_exit(&ire->ire_bucket->irb_lock);
2916 	}
2917 	mutex_exit(&connp->conn_lock);
2918 
2919 	if (ire->ire_mp == NULL)
2920 		ire_refrele(ire);
2921 	return (1);
2922 
2923 error:
2924 	if (ire->ire_mp == NULL)
2925 		ire_refrele(ire);
2926 	if (sire != NULL)
2927 		ire_refrele(sire);
2928 	return (0);
2929 }
2930 
2931 static void
2932 tcp_tpi_bind(tcp_t *tcp, mblk_t *mp)
2933 {
2934 	int	error;
2935 	conn_t	*connp = tcp->tcp_connp;
2936 	struct sockaddr	*sa;
2937 	mblk_t  *mp1;
2938 	struct T_bind_req *tbr;
2939 	int	backlog;
2940 	socklen_t	len;
2941 	sin_t	*sin;
2942 	sin6_t	*sin6;
2943 	cred_t		*cr;
2944 
2945 	/*
2946 	 * All Solaris components should pass a db_credp
2947 	 * for this TPI message, hence we ASSERT.
2948 	 * But in case there is some other M_PROTO that looks
2949 	 * like a TPI message sent by some other kernel
2950 	 * component, we check and return an error.
2951 	 */
2952 	cr = msg_getcred(mp, NULL);
2953 	ASSERT(cr != NULL);
2954 	if (cr == NULL) {
2955 		tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
2956 		return;
2957 	}
2958 
2959 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
2960 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tbr)) {
2961 		if (tcp->tcp_debug) {
2962 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
2963 			    "tcp_tpi_bind: bad req, len %u",
2964 			    (uint_t)(mp->b_wptr - mp->b_rptr));
2965 		}
2966 		tcp_err_ack(tcp, mp, TPROTO, 0);
2967 		return;
2968 	}
2969 	/* Make sure the largest address fits */
2970 	mp1 = reallocb(mp, sizeof (struct T_bind_ack) + sizeof (sin6_t) + 1, 1);
2971 	if (mp1 == NULL) {
2972 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
2973 		return;
2974 	}
2975 	mp = mp1;
2976 	tbr = (struct T_bind_req *)mp->b_rptr;
2977 
2978 	backlog = tbr->CONIND_number;
2979 	len = tbr->ADDR_length;
2980 
2981 	switch (len) {
2982 	case 0:		/* request for a generic port */
2983 		tbr->ADDR_offset = sizeof (struct T_bind_req);
2984 		if (tcp->tcp_family == AF_INET) {
2985 			tbr->ADDR_length = sizeof (sin_t);
2986 			sin = (sin_t *)&tbr[1];
2987 			*sin = sin_null;
2988 			sin->sin_family = AF_INET;
2989 			sa = (struct sockaddr *)sin;
2990 			len = sizeof (sin_t);
2991 			mp->b_wptr = (uchar_t *)&sin[1];
2992 		} else {
2993 			ASSERT(tcp->tcp_family == AF_INET6);
2994 			tbr->ADDR_length = sizeof (sin6_t);
2995 			sin6 = (sin6_t *)&tbr[1];
2996 			*sin6 = sin6_null;
2997 			sin6->sin6_family = AF_INET6;
2998 			sa = (struct sockaddr *)sin6;
2999 			len = sizeof (sin6_t);
3000 			mp->b_wptr = (uchar_t *)&sin6[1];
3001 		}
3002 		break;
3003 
3004 	case sizeof (sin_t):    /* Complete IPv4 address */
3005 		sa = (struct sockaddr *)mi_offset_param(mp, tbr->ADDR_offset,
3006 		    sizeof (sin_t));
3007 		break;
3008 
3009 	case sizeof (sin6_t): /* Complete IPv6 address */
3010 		sa = (struct sockaddr *)mi_offset_param(mp,
3011 		    tbr->ADDR_offset, sizeof (sin6_t));
3012 		break;
3013 
3014 	default:
3015 		if (tcp->tcp_debug) {
3016 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
3017 			    "tcp_tpi_bind: bad address length, %d",
3018 			    tbr->ADDR_length);
3019 		}
3020 		tcp_err_ack(tcp, mp, TBADADDR, 0);
3021 		return;
3022 	}
3023 
3024 	if (backlog > 0) {
3025 		error = tcp_do_listen(connp, sa, len, backlog, DB_CRED(mp),
3026 		    tbr->PRIM_type != O_T_BIND_REQ);
3027 	} else {
3028 		error = tcp_do_bind(connp, sa, len, DB_CRED(mp),
3029 		    tbr->PRIM_type != O_T_BIND_REQ);
3030 	}
3031 done:
3032 	if (error > 0) {
3033 		tcp_err_ack(tcp, mp, TSYSERR, error);
3034 	} else if (error < 0) {
3035 		tcp_err_ack(tcp, mp, -error, 0);
3036 	} else {
3037 		/*
3038 		 * Update port information as sockfs/tpi needs it for checking
3039 		 */
3040 		if (tcp->tcp_family == AF_INET) {
3041 			sin = (sin_t *)sa;
3042 			sin->sin_port = tcp->tcp_lport;
3043 		} else {
3044 			sin6 = (sin6_t *)sa;
3045 			sin6->sin6_port = tcp->tcp_lport;
3046 		}
3047 		mp->b_datap->db_type = M_PCPROTO;
3048 		tbr->PRIM_type = T_BIND_ACK;
3049 		putnext(tcp->tcp_rq, mp);
3050 	}
3051 }
3052 
3053 /*
3054  * If the "bind_to_req_port_only" parameter is set, if the requested port
3055  * number is available, return it, If not return 0
3056  *
3057  * If "bind_to_req_port_only" parameter is not set and
3058  * If the requested port number is available, return it.  If not, return
3059  * the first anonymous port we happen across.  If no anonymous ports are
3060  * available, return 0. addr is the requested local address, if any.
3061  *
3062  * In either case, when succeeding update the tcp_t to record the port number
3063  * and insert it in the bind hash table.
3064  *
3065  * Note that TCP over IPv4 and IPv6 sockets can use the same port number
3066  * without setting SO_REUSEADDR. This is needed so that they
3067  * can be viewed as two independent transport protocols.
3068  */
3069 static in_port_t
3070 tcp_bindi(tcp_t *tcp, in_port_t port, const in6_addr_t *laddr,
3071     int reuseaddr, boolean_t quick_connect,
3072     boolean_t bind_to_req_port_only, boolean_t user_specified)
3073 {
3074 	/* number of times we have run around the loop */
3075 	int count = 0;
3076 	/* maximum number of times to run around the loop */
3077 	int loopmax;
3078 	conn_t *connp = tcp->tcp_connp;
3079 	zoneid_t zoneid = connp->conn_zoneid;
3080 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3081 
3082 	/*
3083 	 * Lookup for free addresses is done in a loop and "loopmax"
3084 	 * influences how long we spin in the loop
3085 	 */
3086 	if (bind_to_req_port_only) {
3087 		/*
3088 		 * If the requested port is busy, don't bother to look
3089 		 * for a new one. Setting loop maximum count to 1 has
3090 		 * that effect.
3091 		 */
3092 		loopmax = 1;
3093 	} else {
3094 		/*
3095 		 * If the requested port is busy, look for a free one
3096 		 * in the anonymous port range.
3097 		 * Set loopmax appropriately so that one does not look
3098 		 * forever in the case all of the anonymous ports are in use.
3099 		 */
3100 		if (tcp->tcp_anon_priv_bind) {
3101 			/*
3102 			 * loopmax =
3103 			 * 	(IPPORT_RESERVED-1) - tcp_min_anonpriv_port + 1
3104 			 */
3105 			loopmax = IPPORT_RESERVED -
3106 			    tcps->tcps_min_anonpriv_port;
3107 		} else {
3108 			loopmax = (tcps->tcps_largest_anon_port -
3109 			    tcps->tcps_smallest_anon_port + 1);
3110 		}
3111 	}
3112 	do {
3113 		uint16_t	lport;
3114 		tf_t		*tbf;
3115 		tcp_t		*ltcp;
3116 		conn_t		*lconnp;
3117 
3118 		lport = htons(port);
3119 
3120 		/*
3121 		 * Ensure that the tcp_t is not currently in the bind hash.
3122 		 * Hold the lock on the hash bucket to ensure that
3123 		 * the duplicate check plus the insertion is an atomic
3124 		 * operation.
3125 		 *
3126 		 * This function does an inline lookup on the bind hash list
3127 		 * Make sure that we access only members of tcp_t
3128 		 * and that we don't look at tcp_tcp, since we are not
3129 		 * doing a CONN_INC_REF.
3130 		 */
3131 		tcp_bind_hash_remove(tcp);
3132 		tbf = &tcps->tcps_bind_fanout[TCP_BIND_HASH(lport)];
3133 		mutex_enter(&tbf->tf_lock);
3134 		for (ltcp = tbf->tf_tcp; ltcp != NULL;
3135 		    ltcp = ltcp->tcp_bind_hash) {
3136 			if (lport == ltcp->tcp_lport)
3137 				break;
3138 		}
3139 
3140 		for (; ltcp != NULL; ltcp = ltcp->tcp_bind_hash_port) {
3141 			boolean_t not_socket;
3142 			boolean_t exclbind;
3143 
3144 			lconnp = ltcp->tcp_connp;
3145 
3146 			/*
3147 			 * On a labeled system, we must treat bindings to ports
3148 			 * on shared IP addresses by sockets with MAC exemption
3149 			 * privilege as being in all zones, as there's
3150 			 * otherwise no way to identify the right receiver.
3151 			 */
3152 			if (!(IPCL_ZONE_MATCH(ltcp->tcp_connp, zoneid) ||
3153 			    IPCL_ZONE_MATCH(connp,
3154 			    ltcp->tcp_connp->conn_zoneid)) &&
3155 			    !lconnp->conn_mac_exempt &&
3156 			    !connp->conn_mac_exempt)
3157 				continue;
3158 
3159 			/*
3160 			 * If TCP_EXCLBIND is set for either the bound or
3161 			 * binding endpoint, the semantics of bind
3162 			 * is changed according to the following.
3163 			 *
3164 			 * spec = specified address (v4 or v6)
3165 			 * unspec = unspecified address (v4 or v6)
3166 			 * A = specified addresses are different for endpoints
3167 			 *
3168 			 * bound	bind to		allowed
3169 			 * -------------------------------------
3170 			 * unspec	unspec		no
3171 			 * unspec	spec		no
3172 			 * spec		unspec		no
3173 			 * spec		spec		yes if A
3174 			 *
3175 			 * For labeled systems, SO_MAC_EXEMPT behaves the same
3176 			 * as TCP_EXCLBIND, except that zoneid is ignored.
3177 			 *
3178 			 * Note:
3179 			 *
3180 			 * 1. Because of TLI semantics, an endpoint can go
3181 			 * back from, say TCP_ESTABLISHED to TCPS_LISTEN or
3182 			 * TCPS_BOUND, depending on whether it is originally
3183 			 * a listener or not.  That is why we need to check
3184 			 * for states greater than or equal to TCPS_BOUND
3185 			 * here.
3186 			 *
3187 			 * 2. Ideally, we should only check for state equals
3188 			 * to TCPS_LISTEN. And the following check should be
3189 			 * added.
3190 			 *
3191 			 * if (ltcp->tcp_state == TCPS_LISTEN ||
3192 			 *	!reuseaddr || !ltcp->tcp_reuseaddr) {
3193 			 *		...
3194 			 * }
3195 			 *
3196 			 * The semantics will be changed to this.  If the
3197 			 * endpoint on the list is in state not equal to
3198 			 * TCPS_LISTEN and both endpoints have SO_REUSEADDR
3199 			 * set, let the bind succeed.
3200 			 *
3201 			 * Because of (1), we cannot do that for TLI
3202 			 * endpoints.  But we can do that for socket endpoints.
3203 			 * If in future, we can change this going back
3204 			 * semantics, we can use the above check for TLI also.
3205 			 */
3206 			not_socket = !(TCP_IS_SOCKET(ltcp) &&
3207 			    TCP_IS_SOCKET(tcp));
3208 			exclbind = ltcp->tcp_exclbind || tcp->tcp_exclbind;
3209 
3210 			if (lconnp->conn_mac_exempt || connp->conn_mac_exempt ||
3211 			    (exclbind && (not_socket ||
3212 			    ltcp->tcp_state <= TCPS_ESTABLISHED))) {
3213 				if (V6_OR_V4_INADDR_ANY(
3214 				    ltcp->tcp_bound_source_v6) ||
3215 				    V6_OR_V4_INADDR_ANY(*laddr) ||
3216 				    IN6_ARE_ADDR_EQUAL(laddr,
3217 				    &ltcp->tcp_bound_source_v6)) {
3218 					break;
3219 				}
3220 				continue;
3221 			}
3222 
3223 			/*
3224 			 * Check ipversion to allow IPv4 and IPv6 sockets to
3225 			 * have disjoint port number spaces, if *_EXCLBIND
3226 			 * is not set and only if the application binds to a
3227 			 * specific port. We use the same autoassigned port
3228 			 * number space for IPv4 and IPv6 sockets.
3229 			 */
3230 			if (tcp->tcp_ipversion != ltcp->tcp_ipversion &&
3231 			    bind_to_req_port_only)
3232 				continue;
3233 
3234 			/*
3235 			 * Ideally, we should make sure that the source
3236 			 * address, remote address, and remote port in the
3237 			 * four tuple for this tcp-connection is unique.
3238 			 * However, trying to find out the local source
3239 			 * address would require too much code duplication
3240 			 * with IP, since IP needs needs to have that code
3241 			 * to support userland TCP implementations.
3242 			 */
3243 			if (quick_connect &&
3244 			    (ltcp->tcp_state > TCPS_LISTEN) &&
3245 			    ((tcp->tcp_fport != ltcp->tcp_fport) ||
3246 			    !IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
3247 			    &ltcp->tcp_remote_v6)))
3248 				continue;
3249 
3250 			if (!reuseaddr) {
3251 				/*
3252 				 * No socket option SO_REUSEADDR.
3253 				 * If existing port is bound to
3254 				 * a non-wildcard IP address
3255 				 * and the requesting stream is
3256 				 * bound to a distinct
3257 				 * different IP addresses
3258 				 * (non-wildcard, also), keep
3259 				 * going.
3260 				 */
3261 				if (!V6_OR_V4_INADDR_ANY(*laddr) &&
3262 				    !V6_OR_V4_INADDR_ANY(
3263 				    ltcp->tcp_bound_source_v6) &&
3264 				    !IN6_ARE_ADDR_EQUAL(laddr,
3265 				    &ltcp->tcp_bound_source_v6))
3266 					continue;
3267 				if (ltcp->tcp_state >= TCPS_BOUND) {
3268 					/*
3269 					 * This port is being used and
3270 					 * its state is >= TCPS_BOUND,
3271 					 * so we can't bind to it.
3272 					 */
3273 					break;
3274 				}
3275 			} else {
3276 				/*
3277 				 * socket option SO_REUSEADDR is set on the
3278 				 * binding tcp_t.
3279 				 *
3280 				 * If two streams are bound to
3281 				 * same IP address or both addr
3282 				 * and bound source are wildcards
3283 				 * (INADDR_ANY), we want to stop
3284 				 * searching.
3285 				 * We have found a match of IP source
3286 				 * address and source port, which is
3287 				 * refused regardless of the
3288 				 * SO_REUSEADDR setting, so we break.
3289 				 */
3290 				if (IN6_ARE_ADDR_EQUAL(laddr,
3291 				    &ltcp->tcp_bound_source_v6) &&
3292 				    (ltcp->tcp_state == TCPS_LISTEN ||
3293 				    ltcp->tcp_state == TCPS_BOUND))
3294 					break;
3295 			}
3296 		}
3297 		if (ltcp != NULL) {
3298 			/* The port number is busy */
3299 			mutex_exit(&tbf->tf_lock);
3300 		} else {
3301 			/*
3302 			 * This port is ours. Insert in fanout and mark as
3303 			 * bound to prevent others from getting the port
3304 			 * number.
3305 			 */
3306 			tcp->tcp_state = TCPS_BOUND;
3307 			tcp->tcp_lport = htons(port);
3308 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
3309 
3310 			ASSERT(&tcps->tcps_bind_fanout[TCP_BIND_HASH(
3311 			    tcp->tcp_lport)] == tbf);
3312 			tcp_bind_hash_insert(tbf, tcp, 1);
3313 
3314 			mutex_exit(&tbf->tf_lock);
3315 
3316 			/*
3317 			 * We don't want tcp_next_port_to_try to "inherit"
3318 			 * a port number supplied by the user in a bind.
3319 			 */
3320 			if (user_specified)
3321 				return (port);
3322 
3323 			/*
3324 			 * This is the only place where tcp_next_port_to_try
3325 			 * is updated. After the update, it may or may not
3326 			 * be in the valid range.
3327 			 */
3328 			if (!tcp->tcp_anon_priv_bind)
3329 				tcps->tcps_next_port_to_try = port + 1;
3330 			return (port);
3331 		}
3332 
3333 		if (tcp->tcp_anon_priv_bind) {
3334 			port = tcp_get_next_priv_port(tcp);
3335 		} else {
3336 			if (count == 0 && user_specified) {
3337 				/*
3338 				 * We may have to return an anonymous port. So
3339 				 * get one to start with.
3340 				 */
3341 				port =
3342 				    tcp_update_next_port(
3343 				    tcps->tcps_next_port_to_try,
3344 				    tcp, B_TRUE);
3345 				user_specified = B_FALSE;
3346 			} else {
3347 				port = tcp_update_next_port(port + 1, tcp,
3348 				    B_FALSE);
3349 			}
3350 		}
3351 		if (port == 0)
3352 			break;
3353 
3354 		/*
3355 		 * Don't let this loop run forever in the case where
3356 		 * all of the anonymous ports are in use.
3357 		 */
3358 	} while (++count < loopmax);
3359 	return (0);
3360 }
3361 
3362 /*
3363  * tcp_clean_death / tcp_close_detached must not be called more than once
3364  * on a tcp. Thus every function that potentially calls tcp_clean_death
3365  * must check for the tcp state before calling tcp_clean_death.
3366  * Eg. tcp_input, tcp_rput_data, tcp_eager_kill, tcp_clean_death_wrapper,
3367  * tcp_timer_handler, all check for the tcp state.
3368  */
3369 /* ARGSUSED */
3370 void
3371 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2)
3372 {
3373 	tcp_t	*tcp = ((conn_t *)arg)->conn_tcp;
3374 
3375 	freemsg(mp);
3376 	if (tcp->tcp_state > TCPS_BOUND)
3377 		(void) tcp_clean_death(((conn_t *)arg)->conn_tcp,
3378 		    ETIMEDOUT, 5);
3379 }
3380 
3381 /*
3382  * We are dying for some reason.  Try to do it gracefully.  (May be called
3383  * as writer.)
3384  *
3385  * Return -1 if the structure was not cleaned up (if the cleanup had to be
3386  * done by a service procedure).
3387  * TBD - Should the return value distinguish between the tcp_t being
3388  * freed and it being reinitialized?
3389  */
3390 static int
3391 tcp_clean_death(tcp_t *tcp, int err, uint8_t tag)
3392 {
3393 	mblk_t	*mp;
3394 	queue_t	*q;
3395 	conn_t	*connp = tcp->tcp_connp;
3396 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3397 
3398 	TCP_CLD_STAT(tag);
3399 
3400 #if TCP_TAG_CLEAN_DEATH
3401 	tcp->tcp_cleandeathtag = tag;
3402 #endif
3403 
3404 	if (tcp->tcp_fused)
3405 		tcp_unfuse(tcp);
3406 
3407 	if (tcp->tcp_linger_tid != 0 &&
3408 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3409 		tcp_stop_lingering(tcp);
3410 	}
3411 
3412 	ASSERT(tcp != NULL);
3413 	ASSERT((tcp->tcp_family == AF_INET &&
3414 	    tcp->tcp_ipversion == IPV4_VERSION) ||
3415 	    (tcp->tcp_family == AF_INET6 &&
3416 	    (tcp->tcp_ipversion == IPV4_VERSION ||
3417 	    tcp->tcp_ipversion == IPV6_VERSION)));
3418 
3419 	if (TCP_IS_DETACHED(tcp)) {
3420 		if (tcp->tcp_hard_binding) {
3421 			/*
3422 			 * Its an eager that we are dealing with. We close the
3423 			 * eager but in case a conn_ind has already gone to the
3424 			 * listener, let tcp_accept_finish() send a discon_ind
3425 			 * to the listener and drop the last reference. If the
3426 			 * listener doesn't even know about the eager i.e. the
3427 			 * conn_ind hasn't gone up, blow away the eager and drop
3428 			 * the last reference as well. If the conn_ind has gone
3429 			 * up, state should be BOUND. tcp_accept_finish
3430 			 * will figure out that the connection has received a
3431 			 * RST and will send a DISCON_IND to the application.
3432 			 */
3433 			tcp_closei_local(tcp);
3434 			if (!tcp->tcp_tconnind_started) {
3435 				CONN_DEC_REF(connp);
3436 			} else {
3437 				tcp->tcp_state = TCPS_BOUND;
3438 			}
3439 		} else {
3440 			tcp_close_detached(tcp);
3441 		}
3442 		return (0);
3443 	}
3444 
3445 	TCP_STAT(tcps, tcp_clean_death_nondetached);
3446 
3447 	q = tcp->tcp_rq;
3448 
3449 	/* Trash all inbound data */
3450 	if (!IPCL_IS_NONSTR(connp)) {
3451 		ASSERT(q != NULL);
3452 		flushq(q, FLUSHALL);
3453 	}
3454 
3455 	/*
3456 	 * If we are at least part way open and there is error
3457 	 * (err==0 implies no error)
3458 	 * notify our client by a T_DISCON_IND.
3459 	 */
3460 	if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) {
3461 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
3462 		    !TCP_IS_SOCKET(tcp)) {
3463 			/*
3464 			 * Send M_FLUSH according to TPI. Because sockets will
3465 			 * (and must) ignore FLUSHR we do that only for TPI
3466 			 * endpoints and sockets in STREAMS mode.
3467 			 */
3468 			(void) putnextctl1(q, M_FLUSH, FLUSHR);
3469 		}
3470 		if (tcp->tcp_debug) {
3471 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
3472 			    "tcp_clean_death: discon err %d", err);
3473 		}
3474 		if (IPCL_IS_NONSTR(connp)) {
3475 			/* Direct socket, use upcall */
3476 			(*connp->conn_upcalls->su_disconnected)(
3477 			    connp->conn_upper_handle, tcp->tcp_connid, err);
3478 		} else {
3479 			mp = mi_tpi_discon_ind(NULL, err, 0);
3480 			if (mp != NULL) {
3481 				putnext(q, mp);
3482 			} else {
3483 				if (tcp->tcp_debug) {
3484 					(void) strlog(TCP_MOD_ID, 0, 1,
3485 					    SL_ERROR|SL_TRACE,
3486 					    "tcp_clean_death, sending M_ERROR");
3487 				}
3488 				(void) putnextctl1(q, M_ERROR, EPROTO);
3489 			}
3490 		}
3491 		if (tcp->tcp_state <= TCPS_SYN_RCVD) {
3492 			/* SYN_SENT or SYN_RCVD */
3493 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3494 		} else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) {
3495 			/* ESTABLISHED or CLOSE_WAIT */
3496 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3497 		}
3498 	}
3499 
3500 	tcp_reinit(tcp);
3501 	if (IPCL_IS_NONSTR(connp))
3502 		(void) tcp_do_unbind(connp);
3503 
3504 	return (-1);
3505 }
3506 
3507 /*
3508  * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout
3509  * to expire, stop the wait and finish the close.
3510  */
3511 static void
3512 tcp_stop_lingering(tcp_t *tcp)
3513 {
3514 	clock_t	delta = 0;
3515 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3516 
3517 	tcp->tcp_linger_tid = 0;
3518 	if (tcp->tcp_state > TCPS_LISTEN) {
3519 		tcp_acceptor_hash_remove(tcp);
3520 		mutex_enter(&tcp->tcp_non_sq_lock);
3521 		if (tcp->tcp_flow_stopped) {
3522 			tcp_clrqfull(tcp);
3523 		}
3524 		mutex_exit(&tcp->tcp_non_sq_lock);
3525 
3526 		if (tcp->tcp_timer_tid != 0) {
3527 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3528 			tcp->tcp_timer_tid = 0;
3529 		}
3530 		/*
3531 		 * Need to cancel those timers which will not be used when
3532 		 * TCP is detached.  This has to be done before the tcp_wq
3533 		 * is set to the global queue.
3534 		 */
3535 		tcp_timers_stop(tcp);
3536 
3537 		tcp->tcp_detached = B_TRUE;
3538 		ASSERT(tcps->tcps_g_q != NULL);
3539 		tcp->tcp_rq = tcps->tcps_g_q;
3540 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3541 
3542 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3543 			tcp_time_wait_append(tcp);
3544 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3545 			goto finish;
3546 		}
3547 
3548 		/*
3549 		 * If delta is zero the timer event wasn't executed and was
3550 		 * successfully canceled. In this case we need to restart it
3551 		 * with the minimal delta possible.
3552 		 */
3553 		if (delta >= 0) {
3554 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3555 			    delta ? delta : 1);
3556 		}
3557 	} else {
3558 		tcp_closei_local(tcp);
3559 		CONN_DEC_REF(tcp->tcp_connp);
3560 	}
3561 finish:
3562 	/* Signal closing thread that it can complete close */
3563 	mutex_enter(&tcp->tcp_closelock);
3564 	tcp->tcp_detached = B_TRUE;
3565 	ASSERT(tcps->tcps_g_q != NULL);
3566 
3567 	tcp->tcp_rq = tcps->tcps_g_q;
3568 	tcp->tcp_wq = WR(tcps->tcps_g_q);
3569 
3570 	tcp->tcp_closed = 1;
3571 	cv_signal(&tcp->tcp_closecv);
3572 	mutex_exit(&tcp->tcp_closelock);
3573 }
3574 
3575 /*
3576  * Handle lingering timeouts. This function is called when the SO_LINGER timeout
3577  * expires.
3578  */
3579 static void
3580 tcp_close_linger_timeout(void *arg)
3581 {
3582 	conn_t	*connp = (conn_t *)arg;
3583 	tcp_t 	*tcp = connp->conn_tcp;
3584 
3585 	tcp->tcp_client_errno = ETIMEDOUT;
3586 	tcp_stop_lingering(tcp);
3587 }
3588 
3589 static void
3590 tcp_close_common(conn_t *connp, int flags)
3591 {
3592 	tcp_t		*tcp = connp->conn_tcp;
3593 	mblk_t 		*mp = &tcp->tcp_closemp;
3594 	boolean_t	conn_ioctl_cleanup_reqd = B_FALSE;
3595 	mblk_t		*bp;
3596 
3597 	ASSERT(connp->conn_ref >= 2);
3598 
3599 	/*
3600 	 * Mark the conn as closing. ill_pending_mp_add will not
3601 	 * add any mp to the pending mp list, after this conn has
3602 	 * started closing. Same for sq_pending_mp_add
3603 	 */
3604 	mutex_enter(&connp->conn_lock);
3605 	connp->conn_state_flags |= CONN_CLOSING;
3606 	if (connp->conn_oper_pending_ill != NULL)
3607 		conn_ioctl_cleanup_reqd = B_TRUE;
3608 	CONN_INC_REF_LOCKED(connp);
3609 	mutex_exit(&connp->conn_lock);
3610 	tcp->tcp_closeflags = (uint8_t)flags;
3611 	ASSERT(connp->conn_ref >= 3);
3612 
3613 	/*
3614 	 * tcp_closemp_used is used below without any protection of a lock
3615 	 * as we don't expect any one else to use it concurrently at this
3616 	 * point otherwise it would be a major defect.
3617 	 */
3618 
3619 	if (mp->b_prev == NULL)
3620 		tcp->tcp_closemp_used = B_TRUE;
3621 	else
3622 		cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: "
3623 		    "connp %p tcp %p\n", (void *)connp, (void *)tcp);
3624 
3625 	TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15);
3626 
3627 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp,
3628 	    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3629 
3630 	mutex_enter(&tcp->tcp_closelock);
3631 	while (!tcp->tcp_closed) {
3632 		if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) {
3633 			/*
3634 			 * The cv_wait_sig() was interrupted. We now do the
3635 			 * following:
3636 			 *
3637 			 * 1) If the endpoint was lingering, we allow this
3638 			 * to be interrupted by cancelling the linger timeout
3639 			 * and closing normally.
3640 			 *
3641 			 * 2) Revert to calling cv_wait()
3642 			 *
3643 			 * We revert to using cv_wait() to avoid an
3644 			 * infinite loop which can occur if the calling
3645 			 * thread is higher priority than the squeue worker
3646 			 * thread and is bound to the same cpu.
3647 			 */
3648 			if (tcp->tcp_linger && tcp->tcp_lingertime > 0) {
3649 				mutex_exit(&tcp->tcp_closelock);
3650 				/* Entering squeue, bump ref count. */
3651 				CONN_INC_REF(connp);
3652 				bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
3653 				SQUEUE_ENTER_ONE(connp->conn_sqp, bp,
3654 				    tcp_linger_interrupted, connp,
3655 				    tcp_squeue_flag, SQTAG_IP_TCP_CLOSE);
3656 				mutex_enter(&tcp->tcp_closelock);
3657 			}
3658 			break;
3659 		}
3660 	}
3661 	while (!tcp->tcp_closed)
3662 		cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock);
3663 	mutex_exit(&tcp->tcp_closelock);
3664 
3665 	/*
3666 	 * In the case of listener streams that have eagers in the q or q0
3667 	 * we wait for the eagers to drop their reference to us. tcp_rq and
3668 	 * tcp_wq of the eagers point to our queues. By waiting for the
3669 	 * refcnt to drop to 1, we are sure that the eagers have cleaned
3670 	 * up their queue pointers and also dropped their references to us.
3671 	 */
3672 	if (tcp->tcp_wait_for_eagers) {
3673 		mutex_enter(&connp->conn_lock);
3674 		while (connp->conn_ref != 1) {
3675 			cv_wait(&connp->conn_cv, &connp->conn_lock);
3676 		}
3677 		mutex_exit(&connp->conn_lock);
3678 	}
3679 	/*
3680 	 * ioctl cleanup. The mp is queued in the
3681 	 * ill_pending_mp or in the sq_pending_mp.
3682 	 */
3683 	if (conn_ioctl_cleanup_reqd)
3684 		conn_ioctl_cleanup(connp);
3685 
3686 	tcp->tcp_cpid = -1;
3687 }
3688 
3689 static int
3690 tcp_tpi_close(queue_t *q, int flags)
3691 {
3692 	conn_t		*connp;
3693 
3694 	ASSERT(WR(q)->q_next == NULL);
3695 
3696 	if (flags & SO_FALLBACK) {
3697 		/*
3698 		 * stream is being closed while in fallback
3699 		 * simply free the resources that were allocated
3700 		 */
3701 		inet_minor_free(WR(q)->q_ptr, (dev_t)(RD(q)->q_ptr));
3702 		qprocsoff(q);
3703 		goto done;
3704 	}
3705 
3706 	connp = Q_TO_CONN(q);
3707 	/*
3708 	 * We are being closed as /dev/tcp or /dev/tcp6.
3709 	 */
3710 	tcp_close_common(connp, flags);
3711 
3712 	qprocsoff(q);
3713 	inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
3714 
3715 	/*
3716 	 * Drop IP's reference on the conn. This is the last reference
3717 	 * on the connp if the state was less than established. If the
3718 	 * connection has gone into timewait state, then we will have
3719 	 * one ref for the TCP and one more ref (total of two) for the
3720 	 * classifier connected hash list (a timewait connections stays
3721 	 * in connected hash till closed).
3722 	 *
3723 	 * We can't assert the references because there might be other
3724 	 * transient reference places because of some walkers or queued
3725 	 * packets in squeue for the timewait state.
3726 	 */
3727 	CONN_DEC_REF(connp);
3728 done:
3729 	q->q_ptr = WR(q)->q_ptr = NULL;
3730 	return (0);
3731 }
3732 
3733 static int
3734 tcp_tpi_close_accept(queue_t *q)
3735 {
3736 	vmem_t	*minor_arena;
3737 	dev_t	conn_dev;
3738 
3739 	ASSERT(WR(q)->q_qinfo == &tcp_acceptor_winit);
3740 
3741 	/*
3742 	 * We had opened an acceptor STREAM for sockfs which is
3743 	 * now being closed due to some error.
3744 	 */
3745 	qprocsoff(q);
3746 
3747 	minor_arena = (vmem_t *)WR(q)->q_ptr;
3748 	conn_dev = (dev_t)RD(q)->q_ptr;
3749 	ASSERT(minor_arena != NULL);
3750 	ASSERT(conn_dev != 0);
3751 	inet_minor_free(minor_arena, conn_dev);
3752 	q->q_ptr = WR(q)->q_ptr = NULL;
3753 	return (0);
3754 }
3755 
3756 /*
3757  * Called by tcp_close() routine via squeue when lingering is
3758  * interrupted by a signal.
3759  */
3760 
3761 /* ARGSUSED */
3762 static void
3763 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2)
3764 {
3765 	conn_t	*connp = (conn_t *)arg;
3766 	tcp_t	*tcp = connp->conn_tcp;
3767 
3768 	freeb(mp);
3769 	if (tcp->tcp_linger_tid != 0 &&
3770 	    TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) {
3771 		tcp_stop_lingering(tcp);
3772 		tcp->tcp_client_errno = EINTR;
3773 	}
3774 }
3775 
3776 /*
3777  * Called by streams close routine via squeues when our client blows off her
3778  * descriptor, we take this to mean: "close the stream state NOW, close the tcp
3779  * connection politely" When SO_LINGER is set (with a non-zero linger time and
3780  * it is not a nonblocking socket) then this routine sleeps until the FIN is
3781  * acked.
3782  *
3783  * NOTE: tcp_close potentially returns error when lingering.
3784  * However, the stream head currently does not pass these errors
3785  * to the application. 4.4BSD only returns EINTR and EWOULDBLOCK
3786  * errors to the application (from tsleep()) and not errors
3787  * like ECONNRESET caused by receiving a reset packet.
3788  */
3789 
3790 /* ARGSUSED */
3791 static void
3792 tcp_close_output(void *arg, mblk_t *mp, void *arg2)
3793 {
3794 	char	*msg;
3795 	conn_t	*connp = (conn_t *)arg;
3796 	tcp_t	*tcp = connp->conn_tcp;
3797 	clock_t	delta = 0;
3798 	tcp_stack_t	*tcps = tcp->tcp_tcps;
3799 
3800 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
3801 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
3802 
3803 	mutex_enter(&tcp->tcp_eager_lock);
3804 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
3805 		/* Cleanup for listener */
3806 		tcp_eager_cleanup(tcp, 0);
3807 		tcp->tcp_wait_for_eagers = 1;
3808 	}
3809 	mutex_exit(&tcp->tcp_eager_lock);
3810 
3811 	connp->conn_mdt_ok = B_FALSE;
3812 	tcp->tcp_mdt = B_FALSE;
3813 
3814 	connp->conn_lso_ok = B_FALSE;
3815 	tcp->tcp_lso = B_FALSE;
3816 
3817 	msg = NULL;
3818 	switch (tcp->tcp_state) {
3819 	case TCPS_CLOSED:
3820 	case TCPS_IDLE:
3821 	case TCPS_BOUND:
3822 	case TCPS_LISTEN:
3823 		break;
3824 	case TCPS_SYN_SENT:
3825 		msg = "tcp_close, during connect";
3826 		break;
3827 	case TCPS_SYN_RCVD:
3828 		/*
3829 		 * Close during the connect 3-way handshake
3830 		 * but here there may or may not be pending data
3831 		 * already on queue. Process almost same as in
3832 		 * the ESTABLISHED state.
3833 		 */
3834 		/* FALLTHRU */
3835 	default:
3836 		if (tcp->tcp_fused)
3837 			tcp_unfuse(tcp);
3838 
3839 		/*
3840 		 * If SO_LINGER has set a zero linger time, abort the
3841 		 * connection with a reset.
3842 		 */
3843 		if (tcp->tcp_linger && tcp->tcp_lingertime == 0) {
3844 			msg = "tcp_close, zero lingertime";
3845 			break;
3846 		}
3847 
3848 		ASSERT(tcp->tcp_hard_bound || tcp->tcp_hard_binding);
3849 		/*
3850 		 * Abort connection if there is unread data queued.
3851 		 */
3852 		if (tcp->tcp_rcv_list || tcp->tcp_reass_head) {
3853 			msg = "tcp_close, unread data";
3854 			break;
3855 		}
3856 		/*
3857 		 * tcp_hard_bound is now cleared thus all packets go through
3858 		 * tcp_lookup. This fact is used by tcp_detach below.
3859 		 *
3860 		 * We have done a qwait() above which could have possibly
3861 		 * drained more messages in turn causing transition to a
3862 		 * different state. Check whether we have to do the rest
3863 		 * of the processing or not.
3864 		 */
3865 		if (tcp->tcp_state <= TCPS_LISTEN)
3866 			break;
3867 
3868 		/*
3869 		 * Transmit the FIN before detaching the tcp_t.
3870 		 * After tcp_detach returns this queue/perimeter
3871 		 * no longer owns the tcp_t thus others can modify it.
3872 		 */
3873 		(void) tcp_xmit_end(tcp);
3874 
3875 		/*
3876 		 * If lingering on close then wait until the fin is acked,
3877 		 * the SO_LINGER time passes, or a reset is sent/received.
3878 		 */
3879 		if (tcp->tcp_linger && tcp->tcp_lingertime > 0 &&
3880 		    !(tcp->tcp_fin_acked) &&
3881 		    tcp->tcp_state >= TCPS_ESTABLISHED) {
3882 			if (tcp->tcp_closeflags & (FNDELAY|FNONBLOCK)) {
3883 				tcp->tcp_client_errno = EWOULDBLOCK;
3884 			} else if (tcp->tcp_client_errno == 0) {
3885 
3886 				ASSERT(tcp->tcp_linger_tid == 0);
3887 
3888 				tcp->tcp_linger_tid = TCP_TIMER(tcp,
3889 				    tcp_close_linger_timeout,
3890 				    tcp->tcp_lingertime * hz);
3891 
3892 				/* tcp_close_linger_timeout will finish close */
3893 				if (tcp->tcp_linger_tid == 0)
3894 					tcp->tcp_client_errno = ENOSR;
3895 				else
3896 					return;
3897 			}
3898 
3899 			/*
3900 			 * Check if we need to detach or just close
3901 			 * the instance.
3902 			 */
3903 			if (tcp->tcp_state <= TCPS_LISTEN)
3904 				break;
3905 		}
3906 
3907 		/*
3908 		 * Make sure that no other thread will access the tcp_rq of
3909 		 * this instance (through lookups etc.) as tcp_rq will go
3910 		 * away shortly.
3911 		 */
3912 		tcp_acceptor_hash_remove(tcp);
3913 
3914 		mutex_enter(&tcp->tcp_non_sq_lock);
3915 		if (tcp->tcp_flow_stopped) {
3916 			tcp_clrqfull(tcp);
3917 		}
3918 		mutex_exit(&tcp->tcp_non_sq_lock);
3919 
3920 		if (tcp->tcp_timer_tid != 0) {
3921 			delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
3922 			tcp->tcp_timer_tid = 0;
3923 		}
3924 		/*
3925 		 * Need to cancel those timers which will not be used when
3926 		 * TCP is detached.  This has to be done before the tcp_wq
3927 		 * is set to the global queue.
3928 		 */
3929 		tcp_timers_stop(tcp);
3930 
3931 		tcp->tcp_detached = B_TRUE;
3932 		if (tcp->tcp_state == TCPS_TIME_WAIT) {
3933 			tcp_time_wait_append(tcp);
3934 			TCP_DBGSTAT(tcps, tcp_detach_time_wait);
3935 			ASSERT(connp->conn_ref >= 3);
3936 			goto finish;
3937 		}
3938 
3939 		/*
3940 		 * If delta is zero the timer event wasn't executed and was
3941 		 * successfully canceled. In this case we need to restart it
3942 		 * with the minimal delta possible.
3943 		 */
3944 		if (delta >= 0)
3945 			tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer,
3946 			    delta ? delta : 1);
3947 
3948 		ASSERT(connp->conn_ref >= 3);
3949 		goto finish;
3950 	}
3951 
3952 	/* Detach did not complete. Still need to remove q from stream. */
3953 	if (msg) {
3954 		if (tcp->tcp_state == TCPS_ESTABLISHED ||
3955 		    tcp->tcp_state == TCPS_CLOSE_WAIT)
3956 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
3957 		if (tcp->tcp_state == TCPS_SYN_SENT ||
3958 		    tcp->tcp_state == TCPS_SYN_RCVD)
3959 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
3960 		tcp_xmit_ctl(msg, tcp,  tcp->tcp_snxt, 0, TH_RST);
3961 	}
3962 
3963 	tcp_closei_local(tcp);
3964 	CONN_DEC_REF(connp);
3965 	ASSERT(connp->conn_ref >= 2);
3966 
3967 finish:
3968 	/*
3969 	 * Although packets are always processed on the correct
3970 	 * tcp's perimeter and access is serialized via squeue's,
3971 	 * IP still needs a queue when sending packets in time_wait
3972 	 * state so use WR(tcps_g_q) till ip_output() can be
3973 	 * changed to deal with just connp. For read side, we
3974 	 * could have set tcp_rq to NULL but there are some cases
3975 	 * in tcp_rput_data() from early days of this code which
3976 	 * do a putnext without checking if tcp is closed. Those
3977 	 * need to be identified before both tcp_rq and tcp_wq
3978 	 * can be set to NULL and tcps_g_q can disappear forever.
3979 	 */
3980 	mutex_enter(&tcp->tcp_closelock);
3981 	/*
3982 	 * Don't change the queues in the case of a listener that has
3983 	 * eagers in its q or q0. It could surprise the eagers.
3984 	 * Instead wait for the eagers outside the squeue.
3985 	 */
3986 	if (!tcp->tcp_wait_for_eagers) {
3987 		tcp->tcp_detached = B_TRUE;
3988 		/*
3989 		 * When default queue is closing we set tcps_g_q to NULL
3990 		 * after the close is done.
3991 		 */
3992 		ASSERT(tcps->tcps_g_q != NULL);
3993 		tcp->tcp_rq = tcps->tcps_g_q;
3994 		tcp->tcp_wq = WR(tcps->tcps_g_q);
3995 	}
3996 
3997 	/* Signal tcp_close() to finish closing. */
3998 	tcp->tcp_closed = 1;
3999 	cv_signal(&tcp->tcp_closecv);
4000 	mutex_exit(&tcp->tcp_closelock);
4001 }
4002 
4003 /*
4004  * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp.
4005  * Some stream heads get upset if they see these later on as anything but NULL.
4006  */
4007 static void
4008 tcp_close_mpp(mblk_t **mpp)
4009 {
4010 	mblk_t	*mp;
4011 
4012 	if ((mp = *mpp) != NULL) {
4013 		do {
4014 			mp->b_next = NULL;
4015 			mp->b_prev = NULL;
4016 		} while ((mp = mp->b_cont) != NULL);
4017 
4018 		mp = *mpp;
4019 		*mpp = NULL;
4020 		freemsg(mp);
4021 	}
4022 }
4023 
4024 /* Do detached close. */
4025 static void
4026 tcp_close_detached(tcp_t *tcp)
4027 {
4028 	if (tcp->tcp_fused)
4029 		tcp_unfuse(tcp);
4030 
4031 	/*
4032 	 * Clustering code serializes TCP disconnect callbacks and
4033 	 * cluster tcp list walks by blocking a TCP disconnect callback
4034 	 * if a cluster tcp list walk is in progress. This ensures
4035 	 * accurate accounting of TCPs in the cluster code even though
4036 	 * the TCP list walk itself is not atomic.
4037 	 */
4038 	tcp_closei_local(tcp);
4039 	CONN_DEC_REF(tcp->tcp_connp);
4040 }
4041 
4042 /*
4043  * Stop all TCP timers, and free the timer mblks if requested.
4044  */
4045 void
4046 tcp_timers_stop(tcp_t *tcp)
4047 {
4048 	if (tcp->tcp_timer_tid != 0) {
4049 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid);
4050 		tcp->tcp_timer_tid = 0;
4051 	}
4052 	if (tcp->tcp_ka_tid != 0) {
4053 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid);
4054 		tcp->tcp_ka_tid = 0;
4055 	}
4056 	if (tcp->tcp_ack_tid != 0) {
4057 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
4058 		tcp->tcp_ack_tid = 0;
4059 	}
4060 	if (tcp->tcp_push_tid != 0) {
4061 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
4062 		tcp->tcp_push_tid = 0;
4063 	}
4064 }
4065 
4066 /*
4067  * The tcp_t is going away. Remove it from all lists and set it
4068  * to TCPS_CLOSED. The freeing up of memory is deferred until
4069  * tcp_inactive. This is needed since a thread in tcp_rput might have
4070  * done a CONN_INC_REF on this structure before it was removed from the
4071  * hashes.
4072  */
4073 static void
4074 tcp_closei_local(tcp_t *tcp)
4075 {
4076 	ire_t 	*ire;
4077 	conn_t	*connp = tcp->tcp_connp;
4078 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4079 
4080 	if (!TCP_IS_SOCKET(tcp))
4081 		tcp_acceptor_hash_remove(tcp);
4082 
4083 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
4084 	tcp->tcp_ibsegs = 0;
4085 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
4086 	tcp->tcp_obsegs = 0;
4087 
4088 	/*
4089 	 * If we are an eager connection hanging off a listener that
4090 	 * hasn't formally accepted the connection yet, get off his
4091 	 * list and blow off any data that we have accumulated.
4092 	 */
4093 	if (tcp->tcp_listener != NULL) {
4094 		tcp_t	*listener = tcp->tcp_listener;
4095 		mutex_enter(&listener->tcp_eager_lock);
4096 		/*
4097 		 * tcp_tconnind_started == B_TRUE means that the
4098 		 * conn_ind has already gone to listener. At
4099 		 * this point, eager will be closed but we
4100 		 * leave it in listeners eager list so that
4101 		 * if listener decides to close without doing
4102 		 * accept, we can clean this up. In tcp_wput_accept
4103 		 * we take care of the case of accept on closed
4104 		 * eager.
4105 		 */
4106 		if (!tcp->tcp_tconnind_started) {
4107 			tcp_eager_unlink(tcp);
4108 			mutex_exit(&listener->tcp_eager_lock);
4109 			/*
4110 			 * We don't want to have any pointers to the
4111 			 * listener queue, after we have released our
4112 			 * reference on the listener
4113 			 */
4114 			ASSERT(tcps->tcps_g_q != NULL);
4115 			tcp->tcp_rq = tcps->tcps_g_q;
4116 			tcp->tcp_wq = WR(tcps->tcps_g_q);
4117 			CONN_DEC_REF(listener->tcp_connp);
4118 		} else {
4119 			mutex_exit(&listener->tcp_eager_lock);
4120 		}
4121 	}
4122 
4123 	/* Stop all the timers */
4124 	tcp_timers_stop(tcp);
4125 
4126 	if (tcp->tcp_state == TCPS_LISTEN) {
4127 		if (tcp->tcp_ip_addr_cache) {
4128 			kmem_free((void *)tcp->tcp_ip_addr_cache,
4129 			    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
4130 			tcp->tcp_ip_addr_cache = NULL;
4131 		}
4132 	}
4133 	mutex_enter(&tcp->tcp_non_sq_lock);
4134 	if (tcp->tcp_flow_stopped)
4135 		tcp_clrqfull(tcp);
4136 	mutex_exit(&tcp->tcp_non_sq_lock);
4137 
4138 	tcp_bind_hash_remove(tcp);
4139 	/*
4140 	 * If the tcp_time_wait_collector (which runs outside the squeue)
4141 	 * is trying to remove this tcp from the time wait list, we will
4142 	 * block in tcp_time_wait_remove while trying to acquire the
4143 	 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also
4144 	 * requires the ipcl_hash_remove to be ordered after the
4145 	 * tcp_time_wait_remove for the refcnt checks to work correctly.
4146 	 */
4147 	if (tcp->tcp_state == TCPS_TIME_WAIT)
4148 		(void) tcp_time_wait_remove(tcp, NULL);
4149 	CL_INET_DISCONNECT(connp, tcp);
4150 	ipcl_hash_remove(connp);
4151 
4152 	/*
4153 	 * Delete the cached ire in conn_ire_cache and also mark
4154 	 * the conn as CONDEMNED
4155 	 */
4156 	mutex_enter(&connp->conn_lock);
4157 	connp->conn_state_flags |= CONN_CONDEMNED;
4158 	ire = connp->conn_ire_cache;
4159 	connp->conn_ire_cache = NULL;
4160 	mutex_exit(&connp->conn_lock);
4161 	if (ire != NULL)
4162 		IRE_REFRELE_NOTR(ire);
4163 
4164 	/* Need to cleanup any pending ioctls */
4165 	ASSERT(tcp->tcp_time_wait_next == NULL);
4166 	ASSERT(tcp->tcp_time_wait_prev == NULL);
4167 	ASSERT(tcp->tcp_time_wait_expire == 0);
4168 	tcp->tcp_state = TCPS_CLOSED;
4169 
4170 	/* Release any SSL context */
4171 	if (tcp->tcp_kssl_ent != NULL) {
4172 		kssl_release_ent(tcp->tcp_kssl_ent, NULL, KSSL_NO_PROXY);
4173 		tcp->tcp_kssl_ent = NULL;
4174 	}
4175 	if (tcp->tcp_kssl_ctx != NULL) {
4176 		kssl_release_ctx(tcp->tcp_kssl_ctx);
4177 		tcp->tcp_kssl_ctx = NULL;
4178 	}
4179 	tcp->tcp_kssl_pending = B_FALSE;
4180 
4181 	tcp_ipsec_cleanup(tcp);
4182 }
4183 
4184 /*
4185  * tcp is dying (called from ipcl_conn_destroy and error cases).
4186  * Free the tcp_t in either case.
4187  */
4188 void
4189 tcp_free(tcp_t *tcp)
4190 {
4191 	mblk_t	*mp;
4192 	ip6_pkt_t	*ipp;
4193 
4194 	ASSERT(tcp != NULL);
4195 	ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL);
4196 
4197 	tcp->tcp_rq = NULL;
4198 	tcp->tcp_wq = NULL;
4199 
4200 	tcp_close_mpp(&tcp->tcp_xmit_head);
4201 	tcp_close_mpp(&tcp->tcp_reass_head);
4202 	if (tcp->tcp_rcv_list != NULL) {
4203 		/* Free b_next chain */
4204 		tcp_close_mpp(&tcp->tcp_rcv_list);
4205 	}
4206 	if ((mp = tcp->tcp_urp_mp) != NULL) {
4207 		freemsg(mp);
4208 	}
4209 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
4210 		freemsg(mp);
4211 	}
4212 
4213 	if (tcp->tcp_fused_sigurg_mp != NULL) {
4214 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
4215 		freeb(tcp->tcp_fused_sigurg_mp);
4216 		tcp->tcp_fused_sigurg_mp = NULL;
4217 	}
4218 
4219 	if (tcp->tcp_ordrel_mp != NULL) {
4220 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
4221 		freeb(tcp->tcp_ordrel_mp);
4222 		tcp->tcp_ordrel_mp = NULL;
4223 	}
4224 
4225 	if (tcp->tcp_sack_info != NULL) {
4226 		if (tcp->tcp_notsack_list != NULL) {
4227 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
4228 		}
4229 		bzero(tcp->tcp_sack_info, sizeof (tcp_sack_info_t));
4230 	}
4231 
4232 	if (tcp->tcp_hopopts != NULL) {
4233 		mi_free(tcp->tcp_hopopts);
4234 		tcp->tcp_hopopts = NULL;
4235 		tcp->tcp_hopoptslen = 0;
4236 	}
4237 	ASSERT(tcp->tcp_hopoptslen == 0);
4238 	if (tcp->tcp_dstopts != NULL) {
4239 		mi_free(tcp->tcp_dstopts);
4240 		tcp->tcp_dstopts = NULL;
4241 		tcp->tcp_dstoptslen = 0;
4242 	}
4243 	ASSERT(tcp->tcp_dstoptslen == 0);
4244 	if (tcp->tcp_rtdstopts != NULL) {
4245 		mi_free(tcp->tcp_rtdstopts);
4246 		tcp->tcp_rtdstopts = NULL;
4247 		tcp->tcp_rtdstoptslen = 0;
4248 	}
4249 	ASSERT(tcp->tcp_rtdstoptslen == 0);
4250 	if (tcp->tcp_rthdr != NULL) {
4251 		mi_free(tcp->tcp_rthdr);
4252 		tcp->tcp_rthdr = NULL;
4253 		tcp->tcp_rthdrlen = 0;
4254 	}
4255 	ASSERT(tcp->tcp_rthdrlen == 0);
4256 
4257 	ipp = &tcp->tcp_sticky_ipp;
4258 	if (ipp->ipp_fields & (IPPF_HOPOPTS | IPPF_RTDSTOPTS | IPPF_DSTOPTS |
4259 	    IPPF_RTHDR))
4260 		ip6_pkt_free(ipp);
4261 
4262 	/*
4263 	 * Free memory associated with the tcp/ip header template.
4264 	 */
4265 
4266 	if (tcp->tcp_iphc != NULL)
4267 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4268 
4269 	/*
4270 	 * Following is really a blowing away a union.
4271 	 * It happens to have exactly two members of identical size
4272 	 * the following code is enough.
4273 	 */
4274 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
4275 }
4276 
4277 
4278 /*
4279  * Put a connection confirmation message upstream built from the
4280  * address information within 'iph' and 'tcph'.  Report our success or failure.
4281  */
4282 static boolean_t
4283 tcp_conn_con(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph, mblk_t *idmp,
4284     mblk_t **defermp)
4285 {
4286 	sin_t	sin;
4287 	sin6_t	sin6;
4288 	mblk_t	*mp;
4289 	char	*optp = NULL;
4290 	int	optlen = 0;
4291 
4292 	if (defermp != NULL)
4293 		*defermp = NULL;
4294 
4295 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL) {
4296 		/*
4297 		 * Return in T_CONN_CON results of option negotiation through
4298 		 * the T_CONN_REQ. Note: If there is an real end-to-end option
4299 		 * negotiation, then what is received from remote end needs
4300 		 * to be taken into account but there is no such thing (yet?)
4301 		 * in our TCP/IP.
4302 		 * Note: We do not use mi_offset_param() here as
4303 		 * tcp_opts_conn_req contents do not directly come from
4304 		 * an application and are either generated in kernel or
4305 		 * from user input that was already verified.
4306 		 */
4307 		mp = tcp->tcp_conn.tcp_opts_conn_req;
4308 		optp = (char *)(mp->b_rptr +
4309 		    ((struct T_conn_req *)mp->b_rptr)->OPT_offset);
4310 		optlen = (int)
4311 		    ((struct T_conn_req *)mp->b_rptr)->OPT_length;
4312 	}
4313 
4314 	if (IPH_HDR_VERSION(iphdr) == IPV4_VERSION) {
4315 		ipha_t *ipha = (ipha_t *)iphdr;
4316 
4317 		/* packet is IPv4 */
4318 		if (tcp->tcp_family == AF_INET) {
4319 			sin = sin_null;
4320 			sin.sin_addr.s_addr = ipha->ipha_src;
4321 			sin.sin_port = *(uint16_t *)tcph->th_lport;
4322 			sin.sin_family = AF_INET;
4323 			mp = mi_tpi_conn_con(NULL, (char *)&sin,
4324 			    (int)sizeof (sin_t), optp, optlen);
4325 		} else {
4326 			sin6 = sin6_null;
4327 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4328 			sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4329 			sin6.sin6_family = AF_INET6;
4330 			mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4331 			    (int)sizeof (sin6_t), optp, optlen);
4332 
4333 		}
4334 	} else {
4335 		ip6_t	*ip6h = (ip6_t *)iphdr;
4336 
4337 		ASSERT(IPH_HDR_VERSION(iphdr) == IPV6_VERSION);
4338 		ASSERT(tcp->tcp_family == AF_INET6);
4339 		sin6 = sin6_null;
4340 		sin6.sin6_addr = ip6h->ip6_src;
4341 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4342 		sin6.sin6_family = AF_INET6;
4343 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4344 		mp = mi_tpi_conn_con(NULL, (char *)&sin6,
4345 		    (int)sizeof (sin6_t), optp, optlen);
4346 	}
4347 
4348 	if (!mp)
4349 		return (B_FALSE);
4350 
4351 	mblk_copycred(mp, idmp);
4352 
4353 	if (defermp == NULL) {
4354 		conn_t *connp = tcp->tcp_connp;
4355 		if (IPCL_IS_NONSTR(connp)) {
4356 			cred_t *cr;
4357 			pid_t cpid;
4358 
4359 			cr = msg_getcred(mp, &cpid);
4360 			(*connp->conn_upcalls->su_connected)
4361 			    (connp->conn_upper_handle, tcp->tcp_connid, cr,
4362 			    cpid);
4363 			freemsg(mp);
4364 		} else {
4365 			putnext(tcp->tcp_rq, mp);
4366 		}
4367 	} else {
4368 		*defermp = mp;
4369 	}
4370 
4371 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
4372 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
4373 	return (B_TRUE);
4374 }
4375 
4376 /*
4377  * Defense for the SYN attack -
4378  * 1. When q0 is full, drop from the tail (tcp_eager_prev_drop_q0) the oldest
4379  *    one from the list of droppable eagers. This list is a subset of q0.
4380  *    see comments before the definition of MAKE_DROPPABLE().
4381  * 2. Don't drop a SYN request before its first timeout. This gives every
4382  *    request at least til the first timeout to complete its 3-way handshake.
4383  * 3. Maintain tcp_syn_rcvd_timeout as an accurate count of how many
4384  *    requests currently on the queue that has timed out. This will be used
4385  *    as an indicator of whether an attack is under way, so that appropriate
4386  *    actions can be taken. (It's incremented in tcp_timer() and decremented
4387  *    either when eager goes into ESTABLISHED, or gets freed up.)
4388  * 4. The current threshold is - # of timeout > q0len/4 => SYN alert on
4389  *    # of timeout drops back to <= q0len/32 => SYN alert off
4390  */
4391 static boolean_t
4392 tcp_drop_q0(tcp_t *tcp)
4393 {
4394 	tcp_t	*eager;
4395 	mblk_t	*mp;
4396 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4397 
4398 	ASSERT(MUTEX_HELD(&tcp->tcp_eager_lock));
4399 	ASSERT(tcp->tcp_eager_next_q0 != tcp->tcp_eager_prev_q0);
4400 
4401 	/* Pick oldest eager from the list of droppable eagers */
4402 	eager = tcp->tcp_eager_prev_drop_q0;
4403 
4404 	/* If list is empty. return B_FALSE */
4405 	if (eager == tcp) {
4406 		return (B_FALSE);
4407 	}
4408 
4409 	/* If allocated, the mp will be freed in tcp_clean_death_wrapper() */
4410 	if ((mp = allocb(0, BPRI_HI)) == NULL)
4411 		return (B_FALSE);
4412 
4413 	/*
4414 	 * Take this eager out from the list of droppable eagers since we are
4415 	 * going to drop it.
4416 	 */
4417 	MAKE_UNDROPPABLE(eager);
4418 
4419 	if (tcp->tcp_debug) {
4420 		(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
4421 		    "tcp_drop_q0: listen half-open queue (max=%d) overflow"
4422 		    " (%d pending) on %s, drop one", tcps->tcps_conn_req_max_q0,
4423 		    tcp->tcp_conn_req_cnt_q0,
4424 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
4425 	}
4426 
4427 	BUMP_MIB(&tcps->tcps_mib, tcpHalfOpenDrop);
4428 
4429 	/* Put a reference on the conn as we are enqueueing it in the sqeue */
4430 	CONN_INC_REF(eager->tcp_connp);
4431 
4432 	/* Mark the IRE created for this SYN request temporary */
4433 	tcp_ip_ire_mark_advice(eager);
4434 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
4435 	    tcp_clean_death_wrapper, eager->tcp_connp,
4436 	    SQ_FILL, SQTAG_TCP_DROP_Q0);
4437 
4438 	return (B_TRUE);
4439 }
4440 
4441 int
4442 tcp_conn_create_v6(conn_t *lconnp, conn_t *connp, mblk_t *mp,
4443     tcph_t *tcph, uint_t ipvers, mblk_t *idmp)
4444 {
4445 	tcp_t 		*ltcp = lconnp->conn_tcp;
4446 	tcp_t		*tcp = connp->conn_tcp;
4447 	mblk_t		*tpi_mp;
4448 	ipha_t		*ipha;
4449 	ip6_t		*ip6h;
4450 	sin6_t 		sin6;
4451 	in6_addr_t 	v6dst;
4452 	int		err;
4453 	int		ifindex = 0;
4454 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4455 
4456 	if (ipvers == IPV4_VERSION) {
4457 		ipha = (ipha_t *)mp->b_rptr;
4458 
4459 		connp->conn_send = ip_output;
4460 		connp->conn_recv = tcp_input;
4461 
4462 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4463 		    &connp->conn_bound_source_v6);
4464 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4465 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4466 
4467 		sin6 = sin6_null;
4468 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &sin6.sin6_addr);
4469 		IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &v6dst);
4470 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4471 		sin6.sin6_family = AF_INET6;
4472 		sin6.__sin6_src_id = ip_srcid_find_addr(&v6dst,
4473 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4474 		if (tcp->tcp_recvdstaddr) {
4475 			sin6_t	sin6d;
4476 
4477 			sin6d = sin6_null;
4478 			IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst,
4479 			    &sin6d.sin6_addr);
4480 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4481 			sin6d.sin6_family = AF_INET;
4482 			tpi_mp = mi_tpi_extconn_ind(NULL,
4483 			    (char *)&sin6d, sizeof (sin6_t),
4484 			    (char *)&tcp,
4485 			    (t_scalar_t)sizeof (intptr_t),
4486 			    (char *)&sin6d, sizeof (sin6_t),
4487 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4488 		} else {
4489 			tpi_mp = mi_tpi_conn_ind(NULL,
4490 			    (char *)&sin6, sizeof (sin6_t),
4491 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4492 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4493 		}
4494 	} else {
4495 		ip6h = (ip6_t *)mp->b_rptr;
4496 
4497 		connp->conn_send = ip_output_v6;
4498 		connp->conn_recv = tcp_input;
4499 
4500 		connp->conn_bound_source_v6 = ip6h->ip6_dst;
4501 		connp->conn_srcv6 = ip6h->ip6_dst;
4502 		connp->conn_remv6 = ip6h->ip6_src;
4503 
4504 		/* db_cksumstuff is set at ip_fanout_tcp_v6 */
4505 		ifindex = (int)DB_CKSUMSTUFF(mp);
4506 		DB_CKSUMSTUFF(mp) = 0;
4507 
4508 		sin6 = sin6_null;
4509 		sin6.sin6_addr = ip6h->ip6_src;
4510 		sin6.sin6_port = *(uint16_t *)tcph->th_lport;
4511 		sin6.sin6_family = AF_INET6;
4512 		sin6.sin6_flowinfo = ip6h->ip6_vcf & ~IPV6_VERS_AND_FLOW_MASK;
4513 		sin6.__sin6_src_id = ip_srcid_find_addr(&ip6h->ip6_dst,
4514 		    lconnp->conn_zoneid, tcps->tcps_netstack);
4515 
4516 		if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src)) {
4517 			/* Pass up the scope_id of remote addr */
4518 			sin6.sin6_scope_id = ifindex;
4519 		} else {
4520 			sin6.sin6_scope_id = 0;
4521 		}
4522 		if (tcp->tcp_recvdstaddr) {
4523 			sin6_t	sin6d;
4524 
4525 			sin6d = sin6_null;
4526 			sin6.sin6_addr = ip6h->ip6_dst;
4527 			sin6d.sin6_port = *(uint16_t *)tcph->th_fport;
4528 			sin6d.sin6_family = AF_INET;
4529 			tpi_mp = mi_tpi_extconn_ind(NULL,
4530 			    (char *)&sin6d, sizeof (sin6_t),
4531 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4532 			    (char *)&sin6d, sizeof (sin6_t),
4533 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4534 		} else {
4535 			tpi_mp = mi_tpi_conn_ind(NULL,
4536 			    (char *)&sin6, sizeof (sin6_t),
4537 			    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4538 			    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4539 		}
4540 	}
4541 
4542 	if (tpi_mp == NULL)
4543 		return (ENOMEM);
4544 
4545 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4546 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4547 	connp->conn_flags |= (IPCL_TCP6|IPCL_EAGER);
4548 	connp->conn_fully_bound = B_FALSE;
4549 
4550 	/* Inherit information from the "parent" */
4551 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4552 	tcp->tcp_family = ltcp->tcp_family;
4553 
4554 	tcp->tcp_wq = ltcp->tcp_wq;
4555 	tcp->tcp_rq = ltcp->tcp_rq;
4556 
4557 	tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
4558 	tcp->tcp_detached = B_TRUE;
4559 	SOCK_CONNID_INIT(tcp->tcp_connid);
4560 	if ((err = tcp_init_values(tcp)) != 0) {
4561 		freemsg(tpi_mp);
4562 		return (err);
4563 	}
4564 
4565 	if (ipvers == IPV4_VERSION) {
4566 		if ((err = tcp_header_init_ipv4(tcp)) != 0) {
4567 			freemsg(tpi_mp);
4568 			return (err);
4569 		}
4570 		ASSERT(tcp->tcp_ipha != NULL);
4571 	} else {
4572 		/* ifindex must be already set */
4573 		ASSERT(ifindex != 0);
4574 
4575 		if (ltcp->tcp_bound_if != 0)
4576 			tcp->tcp_bound_if = ltcp->tcp_bound_if;
4577 		else if (IN6_IS_ADDR_LINKSCOPE(&ip6h->ip6_src))
4578 			tcp->tcp_bound_if = ifindex;
4579 
4580 		tcp->tcp_ipv6_recvancillary = ltcp->tcp_ipv6_recvancillary;
4581 		tcp->tcp_recvifindex = 0;
4582 		tcp->tcp_recvhops = 0xffffffffU;
4583 		ASSERT(tcp->tcp_ip6h != NULL);
4584 	}
4585 
4586 	tcp->tcp_lport = ltcp->tcp_lport;
4587 
4588 	if (ltcp->tcp_ipversion == tcp->tcp_ipversion) {
4589 		if (tcp->tcp_iphc_len != ltcp->tcp_iphc_len) {
4590 			/*
4591 			 * Listener had options of some sort; eager inherits.
4592 			 * Free up the eager template and allocate one
4593 			 * of the right size.
4594 			 */
4595 			if (tcp->tcp_hdr_grown) {
4596 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
4597 			} else {
4598 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
4599 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
4600 			}
4601 			tcp->tcp_iphc = kmem_zalloc(ltcp->tcp_iphc_len,
4602 			    KM_NOSLEEP);
4603 			if (tcp->tcp_iphc == NULL) {
4604 				tcp->tcp_iphc_len = 0;
4605 				freemsg(tpi_mp);
4606 				return (ENOMEM);
4607 			}
4608 			tcp->tcp_iphc_len = ltcp->tcp_iphc_len;
4609 			tcp->tcp_hdr_grown = B_TRUE;
4610 		}
4611 		tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4612 		tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4613 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4614 		tcp->tcp_ip6_hops = ltcp->tcp_ip6_hops;
4615 		tcp->tcp_ip6_vcf = ltcp->tcp_ip6_vcf;
4616 
4617 		/*
4618 		 * Copy the IP+TCP header template from listener to eager
4619 		 */
4620 		bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4621 		if (tcp->tcp_ipversion == IPV6_VERSION) {
4622 			if (((ip6i_t *)(tcp->tcp_iphc))->ip6i_nxt ==
4623 			    IPPROTO_RAW) {
4624 				tcp->tcp_ip6h =
4625 				    (ip6_t *)(tcp->tcp_iphc +
4626 				    sizeof (ip6i_t));
4627 			} else {
4628 				tcp->tcp_ip6h =
4629 				    (ip6_t *)(tcp->tcp_iphc);
4630 			}
4631 			tcp->tcp_ipha = NULL;
4632 		} else {
4633 			tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4634 			tcp->tcp_ip6h = NULL;
4635 		}
4636 		tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4637 		    tcp->tcp_ip_hdr_len);
4638 	} else {
4639 		/*
4640 		 * only valid case when ipversion of listener and
4641 		 * eager differ is when listener is IPv6 and
4642 		 * eager is IPv4.
4643 		 * Eager header template has been initialized to the
4644 		 * maximum v4 header sizes, which includes space for
4645 		 * TCP and IP options.
4646 		 */
4647 		ASSERT((ltcp->tcp_ipversion == IPV6_VERSION) &&
4648 		    (tcp->tcp_ipversion == IPV4_VERSION));
4649 		ASSERT(tcp->tcp_iphc_len >=
4650 		    TCP_MAX_COMBINED_HEADER_LENGTH);
4651 		tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4652 		/* copy IP header fields individually */
4653 		tcp->tcp_ipha->ipha_ttl =
4654 		    ltcp->tcp_ip6h->ip6_hops;
4655 		bcopy(ltcp->tcp_tcph->th_lport,
4656 		    tcp->tcp_tcph->th_lport, sizeof (ushort_t));
4657 	}
4658 
4659 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4660 	bcopy(tcp->tcp_tcph->th_fport, &tcp->tcp_fport,
4661 	    sizeof (in_port_t));
4662 
4663 	if (ltcp->tcp_lport == 0) {
4664 		tcp->tcp_lport = *(in_port_t *)tcph->th_fport;
4665 		bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport,
4666 		    sizeof (in_port_t));
4667 	}
4668 
4669 	if (tcp->tcp_ipversion == IPV4_VERSION) {
4670 		ASSERT(ipha != NULL);
4671 		tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4672 		tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4673 
4674 		/* Source routing option copyover (reverse it) */
4675 		if (tcps->tcps_rev_src_routes)
4676 			tcp_opt_reverse(tcp, ipha);
4677 	} else {
4678 		ASSERT(ip6h != NULL);
4679 		tcp->tcp_ip6h->ip6_dst = ip6h->ip6_src;
4680 		tcp->tcp_ip6h->ip6_src = ip6h->ip6_dst;
4681 	}
4682 
4683 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4684 	ASSERT(!tcp->tcp_tconnind_started);
4685 	/*
4686 	 * If the SYN contains a credential, it's a loopback packet; attach
4687 	 * the credential to the TPI message.
4688 	 */
4689 	mblk_copycred(tpi_mp, idmp);
4690 
4691 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4692 
4693 	/* Inherit the listener's SSL protection state */
4694 
4695 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4696 		kssl_hold_ent(tcp->tcp_kssl_ent);
4697 		tcp->tcp_kssl_pending = B_TRUE;
4698 	}
4699 
4700 	/* Inherit the listener's non-STREAMS flag */
4701 	if (IPCL_IS_NONSTR(lconnp)) {
4702 		connp->conn_flags |= IPCL_NONSTR;
4703 	}
4704 
4705 	return (0);
4706 }
4707 
4708 
4709 int
4710 tcp_conn_create_v4(conn_t *lconnp, conn_t *connp, ipha_t *ipha,
4711     tcph_t *tcph, mblk_t *idmp)
4712 {
4713 	tcp_t 		*ltcp = lconnp->conn_tcp;
4714 	tcp_t		*tcp = connp->conn_tcp;
4715 	sin_t		sin;
4716 	mblk_t		*tpi_mp = NULL;
4717 	int		err;
4718 	tcp_stack_t	*tcps = tcp->tcp_tcps;
4719 
4720 	sin = sin_null;
4721 	sin.sin_addr.s_addr = ipha->ipha_src;
4722 	sin.sin_port = *(uint16_t *)tcph->th_lport;
4723 	sin.sin_family = AF_INET;
4724 	if (ltcp->tcp_recvdstaddr) {
4725 		sin_t	sind;
4726 
4727 		sind = sin_null;
4728 		sind.sin_addr.s_addr = ipha->ipha_dst;
4729 		sind.sin_port = *(uint16_t *)tcph->th_fport;
4730 		sind.sin_family = AF_INET;
4731 		tpi_mp = mi_tpi_extconn_ind(NULL,
4732 		    (char *)&sind, sizeof (sin_t), (char *)&tcp,
4733 		    (t_scalar_t)sizeof (intptr_t), (char *)&sind,
4734 		    sizeof (sin_t), (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4735 	} else {
4736 		tpi_mp = mi_tpi_conn_ind(NULL,
4737 		    (char *)&sin, sizeof (sin_t),
4738 		    (char *)&tcp, (t_scalar_t)sizeof (intptr_t),
4739 		    (t_scalar_t)ltcp->tcp_conn_req_seqnum);
4740 	}
4741 
4742 	if (tpi_mp == NULL) {
4743 		return (ENOMEM);
4744 	}
4745 
4746 	connp->conn_flags |= (IPCL_TCP4|IPCL_EAGER);
4747 	connp->conn_send = ip_output;
4748 	connp->conn_recv = tcp_input;
4749 	connp->conn_fully_bound = B_FALSE;
4750 
4751 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_bound_source_v6);
4752 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &connp->conn_srcv6);
4753 	IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &connp->conn_remv6);
4754 	connp->conn_fport = *(uint16_t *)tcph->th_lport;
4755 	connp->conn_lport = *(uint16_t *)tcph->th_fport;
4756 
4757 	/* Inherit information from the "parent" */
4758 	tcp->tcp_ipversion = ltcp->tcp_ipversion;
4759 	tcp->tcp_family = ltcp->tcp_family;
4760 	tcp->tcp_wq = ltcp->tcp_wq;
4761 	tcp->tcp_rq = ltcp->tcp_rq;
4762 	tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
4763 	tcp->tcp_detached = B_TRUE;
4764 	SOCK_CONNID_INIT(tcp->tcp_connid);
4765 	if ((err = tcp_init_values(tcp)) != 0) {
4766 		freemsg(tpi_mp);
4767 		return (err);
4768 	}
4769 
4770 	/*
4771 	 * Let's make sure that eager tcp template has enough space to
4772 	 * copy IPv4 listener's tcp template. Since the conn_t structure is
4773 	 * preserved and tcp_iphc_len is also preserved, an eager conn_t may
4774 	 * have a tcp_template of total len TCP_MAX_COMBINED_HEADER_LENGTH or
4775 	 * more (in case of re-allocation of conn_t with tcp-IPv6 template with
4776 	 * extension headers or with ip6i_t struct). Note that bcopy() below
4777 	 * copies listener tcp's hdr_len which cannot be greater than TCP_MAX_
4778 	 * COMBINED_HEADER_LENGTH as this listener must be a IPv4 listener.
4779 	 */
4780 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
4781 	ASSERT(ltcp->tcp_hdr_len <= TCP_MAX_COMBINED_HEADER_LENGTH);
4782 
4783 	tcp->tcp_hdr_len = ltcp->tcp_hdr_len;
4784 	tcp->tcp_ip_hdr_len = ltcp->tcp_ip_hdr_len;
4785 	tcp->tcp_tcp_hdr_len = ltcp->tcp_tcp_hdr_len;
4786 	tcp->tcp_ttl = ltcp->tcp_ttl;
4787 	tcp->tcp_tos = ltcp->tcp_tos;
4788 
4789 	/* Copy the IP+TCP header template from listener to eager */
4790 	bcopy(ltcp->tcp_iphc, tcp->tcp_iphc, ltcp->tcp_hdr_len);
4791 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
4792 	tcp->tcp_ip6h = NULL;
4793 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc +
4794 	    tcp->tcp_ip_hdr_len);
4795 
4796 	/* Initialize the IP addresses and Ports */
4797 	tcp->tcp_ipha->ipha_dst = ipha->ipha_src;
4798 	tcp->tcp_ipha->ipha_src = ipha->ipha_dst;
4799 	bcopy(tcph->th_lport, tcp->tcp_tcph->th_fport, sizeof (in_port_t));
4800 	bcopy(tcph->th_fport, tcp->tcp_tcph->th_lport, sizeof (in_port_t));
4801 
4802 	/* Source routing option copyover (reverse it) */
4803 	if (tcps->tcps_rev_src_routes)
4804 		tcp_opt_reverse(tcp, ipha);
4805 
4806 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
4807 	ASSERT(!tcp->tcp_tconnind_started);
4808 
4809 	/*
4810 	 * If the SYN contains a credential, it's a loopback packet; attach
4811 	 * the credential to the TPI message.
4812 	 */
4813 	mblk_copycred(tpi_mp, idmp);
4814 
4815 	tcp->tcp_conn.tcp_eager_conn_ind = tpi_mp;
4816 
4817 	/* Inherit the listener's SSL protection state */
4818 	if ((tcp->tcp_kssl_ent = ltcp->tcp_kssl_ent) != NULL) {
4819 		kssl_hold_ent(tcp->tcp_kssl_ent);
4820 		tcp->tcp_kssl_pending = B_TRUE;
4821 	}
4822 
4823 	/* Inherit the listener's non-STREAMS flag */
4824 	if (IPCL_IS_NONSTR(lconnp)) {
4825 		connp->conn_flags |= IPCL_NONSTR;
4826 	}
4827 
4828 	return (0);
4829 }
4830 
4831 /*
4832  * sets up conn for ipsec.
4833  * if the first mblk is M_CTL it is consumed and mpp is updated.
4834  * in case of error mpp is freed.
4835  */
4836 conn_t *
4837 tcp_get_ipsec_conn(tcp_t *tcp, squeue_t *sqp, mblk_t **mpp)
4838 {
4839 	conn_t 		*connp = tcp->tcp_connp;
4840 	conn_t 		*econnp;
4841 	squeue_t 	*new_sqp;
4842 	mblk_t 		*first_mp = *mpp;
4843 	mblk_t		*mp = *mpp;
4844 	boolean_t	mctl_present = B_FALSE;
4845 	uint_t		ipvers;
4846 
4847 	econnp = tcp_get_conn(sqp, tcp->tcp_tcps);
4848 	if (econnp == NULL) {
4849 		freemsg(first_mp);
4850 		return (NULL);
4851 	}
4852 	if (DB_TYPE(mp) == M_CTL) {
4853 		if (mp->b_cont == NULL ||
4854 		    mp->b_cont->b_datap->db_type != M_DATA) {
4855 			freemsg(first_mp);
4856 			return (NULL);
4857 		}
4858 		mp = mp->b_cont;
4859 		if ((mp->b_datap->db_struioflag & STRUIO_EAGER) == 0) {
4860 			freemsg(first_mp);
4861 			return (NULL);
4862 		}
4863 
4864 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
4865 		first_mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
4866 		mctl_present = B_TRUE;
4867 	} else {
4868 		ASSERT(mp->b_datap->db_struioflag & STRUIO_POLICY);
4869 		mp->b_datap->db_struioflag &= ~STRUIO_POLICY;
4870 	}
4871 
4872 	new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
4873 	DB_CKSUMSTART(mp) = 0;
4874 
4875 	ASSERT(OK_32PTR(mp->b_rptr));
4876 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
4877 	if (ipvers == IPV4_VERSION) {
4878 		uint16_t  	*up;
4879 		uint32_t	ports;
4880 		ipha_t		*ipha;
4881 
4882 		ipha = (ipha_t *)mp->b_rptr;
4883 		up = (uint16_t *)((uchar_t *)ipha +
4884 		    IPH_HDR_LENGTH(ipha) + TCP_PORTS_OFFSET);
4885 		ports = *(uint32_t *)up;
4886 		IPCL_TCP_EAGER_INIT(econnp, IPPROTO_TCP,
4887 		    ipha->ipha_dst, ipha->ipha_src, ports);
4888 	} else {
4889 		uint16_t  	*up;
4890 		uint32_t	ports;
4891 		uint16_t	ip_hdr_len;
4892 		uint8_t		*nexthdrp;
4893 		ip6_t 		*ip6h;
4894 		tcph_t		*tcph;
4895 
4896 		ip6h = (ip6_t *)mp->b_rptr;
4897 		if (ip6h->ip6_nxt == IPPROTO_TCP) {
4898 			ip_hdr_len = IPV6_HDR_LEN;
4899 		} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ip_hdr_len,
4900 		    &nexthdrp) || *nexthdrp != IPPROTO_TCP) {
4901 			CONN_DEC_REF(econnp);
4902 			freemsg(first_mp);
4903 			return (NULL);
4904 		}
4905 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
4906 		up = (uint16_t *)tcph->th_lport;
4907 		ports = *(uint32_t *)up;
4908 		IPCL_TCP_EAGER_INIT_V6(econnp, IPPROTO_TCP,
4909 		    ip6h->ip6_dst, ip6h->ip6_src, ports);
4910 	}
4911 
4912 	/*
4913 	 * The caller already ensured that there is a sqp present.
4914 	 */
4915 	econnp->conn_sqp = new_sqp;
4916 	econnp->conn_initial_sqp = new_sqp;
4917 
4918 	if (connp->conn_policy != NULL) {
4919 		ipsec_in_t *ii;
4920 		ii = (ipsec_in_t *)(first_mp->b_rptr);
4921 		ASSERT(ii->ipsec_in_policy == NULL);
4922 		IPPH_REFHOLD(connp->conn_policy);
4923 		ii->ipsec_in_policy = connp->conn_policy;
4924 
4925 		first_mp->b_datap->db_type = IPSEC_POLICY_SET;
4926 		if (!ip_bind_ipsec_policy_set(econnp, first_mp)) {
4927 			CONN_DEC_REF(econnp);
4928 			freemsg(first_mp);
4929 			return (NULL);
4930 		}
4931 	}
4932 
4933 	if (ipsec_conn_cache_policy(econnp, ipvers == IPV4_VERSION) != 0) {
4934 		CONN_DEC_REF(econnp);
4935 		freemsg(first_mp);
4936 		return (NULL);
4937 	}
4938 
4939 	/*
4940 	 * If we know we have some policy, pass the "IPSEC"
4941 	 * options size TCP uses this adjust the MSS.
4942 	 */
4943 	econnp->conn_tcp->tcp_ipsec_overhead = conn_ipsec_length(econnp);
4944 	if (mctl_present) {
4945 		freeb(first_mp);
4946 		*mpp = mp;
4947 	}
4948 
4949 	return (econnp);
4950 }
4951 
4952 /*
4953  * tcp_get_conn/tcp_free_conn
4954  *
4955  * tcp_get_conn is used to get a clean tcp connection structure.
4956  * It tries to reuse the connections put on the freelist by the
4957  * time_wait_collector failing which it goes to kmem_cache. This
4958  * way has two benefits compared to just allocating from and
4959  * freeing to kmem_cache.
4960  * 1) The time_wait_collector can free (which includes the cleanup)
4961  * outside the squeue. So when the interrupt comes, we have a clean
4962  * connection sitting in the freelist. Obviously, this buys us
4963  * performance.
4964  *
4965  * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_conn_request
4966  * has multiple disadvantages - tying up the squeue during alloc, and the
4967  * fact that IPSec policy initialization has to happen here which
4968  * requires us sending a M_CTL and checking for it i.e. real ugliness.
4969  * But allocating the conn/tcp in IP land is also not the best since
4970  * we can't check the 'q' and 'q0' which are protected by squeue and
4971  * blindly allocate memory which might have to be freed here if we are
4972  * not allowed to accept the connection. By using the freelist and
4973  * putting the conn/tcp back in freelist, we don't pay a penalty for
4974  * allocating memory without checking 'q/q0' and freeing it if we can't
4975  * accept the connection.
4976  *
4977  * Care should be taken to put the conn back in the same squeue's freelist
4978  * from which it was allocated. Best results are obtained if conn is
4979  * allocated from listener's squeue and freed to the same. Time wait
4980  * collector will free up the freelist is the connection ends up sitting
4981  * there for too long.
4982  */
4983 void *
4984 tcp_get_conn(void *arg, tcp_stack_t *tcps)
4985 {
4986 	tcp_t			*tcp = NULL;
4987 	conn_t			*connp = NULL;
4988 	squeue_t		*sqp = (squeue_t *)arg;
4989 	tcp_squeue_priv_t 	*tcp_time_wait;
4990 	netstack_t		*ns;
4991 	mblk_t			*tcp_rsrv_mp = NULL;
4992 
4993 	tcp_time_wait =
4994 	    *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP));
4995 
4996 	mutex_enter(&tcp_time_wait->tcp_time_wait_lock);
4997 	tcp = tcp_time_wait->tcp_free_list;
4998 	ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0));
4999 	if (tcp != NULL) {
5000 		tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next;
5001 		tcp_time_wait->tcp_free_list_cnt--;
5002 		mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5003 		tcp->tcp_time_wait_next = NULL;
5004 		connp = tcp->tcp_connp;
5005 		connp->conn_flags |= IPCL_REUSED;
5006 
5007 		ASSERT(tcp->tcp_tcps == NULL);
5008 		ASSERT(connp->conn_netstack == NULL);
5009 		ASSERT(tcp->tcp_rsrv_mp != NULL);
5010 		ns = tcps->tcps_netstack;
5011 		netstack_hold(ns);
5012 		connp->conn_netstack = ns;
5013 		tcp->tcp_tcps = tcps;
5014 		TCPS_REFHOLD(tcps);
5015 		ipcl_globalhash_insert(connp);
5016 		return ((void *)connp);
5017 	}
5018 	mutex_exit(&tcp_time_wait->tcp_time_wait_lock);
5019 	/*
5020 	 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until
5021 	 * this conn_t/tcp_t is freed at ipcl_conn_destroy().
5022 	 */
5023 	tcp_rsrv_mp = allocb(0, BPRI_HI);
5024 	if (tcp_rsrv_mp == NULL)
5025 		return (NULL);
5026 
5027 	if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP,
5028 	    tcps->tcps_netstack)) == NULL) {
5029 		freeb(tcp_rsrv_mp);
5030 		return (NULL);
5031 	}
5032 
5033 	tcp = connp->conn_tcp;
5034 	tcp->tcp_rsrv_mp = tcp_rsrv_mp;
5035 	mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL);
5036 
5037 	tcp->tcp_tcps = tcps;
5038 	TCPS_REFHOLD(tcps);
5039 
5040 	return ((void *)connp);
5041 }
5042 
5043 /*
5044  * Update the cached label for the given tcp_t.  This should be called once per
5045  * connection, and before any packets are sent or tcp_process_options is
5046  * invoked.  Returns B_FALSE if the correct label could not be constructed.
5047  */
5048 static boolean_t
5049 tcp_update_label(tcp_t *tcp, const cred_t *cr)
5050 {
5051 	conn_t *connp = tcp->tcp_connp;
5052 
5053 	if (tcp->tcp_ipversion == IPV4_VERSION) {
5054 		uchar_t optbuf[IP_MAX_OPT_LENGTH];
5055 		int added;
5056 
5057 		if (tsol_compute_label(cr, tcp->tcp_remote, optbuf,
5058 		    connp->conn_mac_exempt,
5059 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5060 			return (B_FALSE);
5061 
5062 		added = tsol_remove_secopt(tcp->tcp_ipha, tcp->tcp_hdr_len);
5063 		if (added == -1)
5064 			return (B_FALSE);
5065 		tcp->tcp_hdr_len += added;
5066 		tcp->tcp_tcph = (tcph_t *)((uchar_t *)tcp->tcp_tcph + added);
5067 		tcp->tcp_ip_hdr_len += added;
5068 		if ((tcp->tcp_label_len = optbuf[IPOPT_OLEN]) != 0) {
5069 			tcp->tcp_label_len = (tcp->tcp_label_len + 3) & ~3;
5070 			added = tsol_prepend_option(optbuf, tcp->tcp_ipha,
5071 			    tcp->tcp_hdr_len);
5072 			if (added == -1)
5073 				return (B_FALSE);
5074 			tcp->tcp_hdr_len += added;
5075 			tcp->tcp_tcph = (tcph_t *)
5076 			    ((uchar_t *)tcp->tcp_tcph + added);
5077 			tcp->tcp_ip_hdr_len += added;
5078 		}
5079 	} else {
5080 		uchar_t optbuf[TSOL_MAX_IPV6_OPTION];
5081 
5082 		if (tsol_compute_label_v6(cr, &tcp->tcp_remote_v6, optbuf,
5083 		    connp->conn_mac_exempt,
5084 		    tcp->tcp_tcps->tcps_netstack->netstack_ip) != 0)
5085 			return (B_FALSE);
5086 		if (tsol_update_sticky(&tcp->tcp_sticky_ipp,
5087 		    &tcp->tcp_label_len, optbuf) != 0)
5088 			return (B_FALSE);
5089 		if (tcp_build_hdrs(tcp) != 0)
5090 			return (B_FALSE);
5091 	}
5092 
5093 	connp->conn_ulp_labeled = 1;
5094 
5095 	return (B_TRUE);
5096 }
5097 
5098 /* BEGIN CSTYLED */
5099 /*
5100  *
5101  * The sockfs ACCEPT path:
5102  * =======================
5103  *
5104  * The eager is now established in its own perimeter as soon as SYN is
5105  * received in tcp_conn_request(). When sockfs receives conn_ind, it
5106  * completes the accept processing on the acceptor STREAM. The sending
5107  * of conn_ind part is common for both sockfs listener and a TLI/XTI
5108  * listener but a TLI/XTI listener completes the accept processing
5109  * on the listener perimeter.
5110  *
5111  * Common control flow for 3 way handshake:
5112  * ----------------------------------------
5113  *
5114  * incoming SYN (listener perimeter) 	-> tcp_rput_data()
5115  *					-> tcp_conn_request()
5116  *
5117  * incoming SYN-ACK-ACK (eager perim) 	-> tcp_rput_data()
5118  * send T_CONN_IND (listener perim)	-> tcp_send_conn_ind()
5119  *
5120  * Sockfs ACCEPT Path:
5121  * -------------------
5122  *
5123  * open acceptor stream (tcp_open allocates tcp_wput_accept()
5124  * as STREAM entry point)
5125  *
5126  * soaccept() sends T_CONN_RES on the acceptor STREAM to tcp_wput_accept()
5127  *
5128  * tcp_wput_accept() extracts the eager and makes the q->q_ptr <-> eager
5129  * association (we are not behind eager's squeue but sockfs is protecting us
5130  * and no one knows about this stream yet. The STREAMS entry point q->q_info
5131  * is changed to point at tcp_wput().
5132  *
5133  * tcp_wput_accept() sends any deferred eagers via tcp_send_pending() to
5134  * listener (done on listener's perimeter).
5135  *
5136  * tcp_wput_accept() calls tcp_accept_finish() on eagers perimeter to finish
5137  * accept.
5138  *
5139  * TLI/XTI client ACCEPT path:
5140  * ---------------------------
5141  *
5142  * soaccept() sends T_CONN_RES on the listener STREAM.
5143  *
5144  * tcp_accept() -> tcp_accept_swap() complete the processing and send
5145  * the bind_mp to eager perimeter to finish accept (tcp_rput_other()).
5146  *
5147  * Locks:
5148  * ======
5149  *
5150  * listener->tcp_eager_lock protects the listeners->tcp_eager_next_q0 and
5151  * and listeners->tcp_eager_next_q.
5152  *
5153  * Referencing:
5154  * ============
5155  *
5156  * 1) We start out in tcp_conn_request by eager placing a ref on
5157  * listener and listener adding eager to listeners->tcp_eager_next_q0.
5158  *
5159  * 2) When a SYN-ACK-ACK arrives, we send the conn_ind to listener. Before
5160  * doing so we place a ref on the eager. This ref is finally dropped at the
5161  * end of tcp_accept_finish() while unwinding from the squeue, i.e. the
5162  * reference is dropped by the squeue framework.
5163  *
5164  * 3) The ref on listener placed in 1 above is dropped in tcp_accept_finish
5165  *
5166  * The reference must be released by the same entity that added the reference
5167  * In the above scheme, the eager is the entity that adds and releases the
5168  * references. Note that tcp_accept_finish executes in the squeue of the eager
5169  * (albeit after it is attached to the acceptor stream). Though 1. executes
5170  * in the listener's squeue, the eager is nascent at this point and the
5171  * reference can be considered to have been added on behalf of the eager.
5172  *
5173  * Eager getting a Reset or listener closing:
5174  * ==========================================
5175  *
5176  * Once the listener and eager are linked, the listener never does the unlink.
5177  * If the listener needs to close, tcp_eager_cleanup() is called which queues
5178  * a message on all eager perimeter. The eager then does the unlink, clears
5179  * any pointers to the listener's queue and drops the reference to the
5180  * listener. The listener waits in tcp_close outside the squeue until its
5181  * refcount has dropped to 1. This ensures that the listener has waited for
5182  * all eagers to clear their association with the listener.
5183  *
5184  * Similarly, if eager decides to go away, it can unlink itself and close.
5185  * When the T_CONN_RES comes down, we check if eager has closed. Note that
5186  * the reference to eager is still valid because of the extra ref we put
5187  * in tcp_send_conn_ind.
5188  *
5189  * Listener can always locate the eager under the protection
5190  * of the listener->tcp_eager_lock, and then do a refhold
5191  * on the eager during the accept processing.
5192  *
5193  * The acceptor stream accesses the eager in the accept processing
5194  * based on the ref placed on eager before sending T_conn_ind.
5195  * The only entity that can negate this refhold is a listener close
5196  * which is mutually exclusive with an active acceptor stream.
5197  *
5198  * Eager's reference on the listener
5199  * ===================================
5200  *
5201  * If the accept happens (even on a closed eager) the eager drops its
5202  * reference on the listener at the start of tcp_accept_finish. If the
5203  * eager is killed due to an incoming RST before the T_conn_ind is sent up,
5204  * the reference is dropped in tcp_closei_local. If the listener closes,
5205  * the reference is dropped in tcp_eager_kill. In all cases the reference
5206  * is dropped while executing in the eager's context (squeue).
5207  */
5208 /* END CSTYLED */
5209 
5210 /* Process the SYN packet, mp, directed at the listener 'tcp' */
5211 
5212 /*
5213  * THIS FUNCTION IS DIRECTLY CALLED BY IP VIA SQUEUE FOR SYN.
5214  * tcp_rput_data will not see any SYN packets.
5215  */
5216 /* ARGSUSED */
5217 void
5218 tcp_conn_request(void *arg, mblk_t *mp, void *arg2)
5219 {
5220 	tcph_t		*tcph;
5221 	uint32_t	seg_seq;
5222 	tcp_t		*eager;
5223 	uint_t		ipvers;
5224 	ipha_t		*ipha;
5225 	ip6_t		*ip6h;
5226 	int		err;
5227 	conn_t		*econnp = NULL;
5228 	squeue_t	*new_sqp;
5229 	mblk_t		*mp1;
5230 	uint_t 		ip_hdr_len;
5231 	conn_t		*connp = (conn_t *)arg;
5232 	tcp_t		*tcp = connp->conn_tcp;
5233 	cred_t		*credp;
5234 	tcp_stack_t	*tcps = tcp->tcp_tcps;
5235 	ip_stack_t	*ipst;
5236 
5237 	if (tcp->tcp_state != TCPS_LISTEN)
5238 		goto error2;
5239 
5240 	ASSERT((tcp->tcp_connp->conn_flags & IPCL_BOUND) != 0);
5241 
5242 	mutex_enter(&tcp->tcp_eager_lock);
5243 	if (tcp->tcp_conn_req_cnt_q >= tcp->tcp_conn_req_max) {
5244 		mutex_exit(&tcp->tcp_eager_lock);
5245 		TCP_STAT(tcps, tcp_listendrop);
5246 		BUMP_MIB(&tcps->tcps_mib, tcpListenDrop);
5247 		if (tcp->tcp_debug) {
5248 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
5249 			    "tcp_conn_request: listen backlog (max=%d) "
5250 			    "overflow (%d pending) on %s",
5251 			    tcp->tcp_conn_req_max, tcp->tcp_conn_req_cnt_q,
5252 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
5253 		}
5254 		goto error2;
5255 	}
5256 
5257 	if (tcp->tcp_conn_req_cnt_q0 >=
5258 	    tcp->tcp_conn_req_max + tcps->tcps_conn_req_max_q0) {
5259 		/*
5260 		 * Q0 is full. Drop a pending half-open req from the queue
5261 		 * to make room for the new SYN req. Also mark the time we
5262 		 * drop a SYN.
5263 		 *
5264 		 * A more aggressive defense against SYN attack will
5265 		 * be to set the "tcp_syn_defense" flag now.
5266 		 */
5267 		TCP_STAT(tcps, tcp_listendropq0);
5268 		tcp->tcp_last_rcv_lbolt = lbolt64;
5269 		if (!tcp_drop_q0(tcp)) {
5270 			mutex_exit(&tcp->tcp_eager_lock);
5271 			BUMP_MIB(&tcps->tcps_mib, tcpListenDropQ0);
5272 			if (tcp->tcp_debug) {
5273 				(void) strlog(TCP_MOD_ID, 0, 3, SL_TRACE,
5274 				    "tcp_conn_request: listen half-open queue "
5275 				    "(max=%d) full (%d pending) on %s",
5276 				    tcps->tcps_conn_req_max_q0,
5277 				    tcp->tcp_conn_req_cnt_q0,
5278 				    tcp_display(tcp, NULL,
5279 				    DISP_PORT_ONLY));
5280 			}
5281 			goto error2;
5282 		}
5283 	}
5284 	mutex_exit(&tcp->tcp_eager_lock);
5285 
5286 	/*
5287 	 * IP adds STRUIO_EAGER and ensures that the received packet is
5288 	 * M_DATA even if conn_ipv6_recvpktinfo is enabled or for ip6
5289 	 * link local address.  If IPSec is enabled, db_struioflag has
5290 	 * STRUIO_POLICY set (mutually exclusive from STRUIO_EAGER);
5291 	 * otherwise an error case if neither of them is set.
5292 	 */
5293 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5294 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5295 		DB_CKSUMSTART(mp) = 0;
5296 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
5297 		econnp = (conn_t *)tcp_get_conn(arg2, tcps);
5298 		if (econnp == NULL)
5299 			goto error2;
5300 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5301 		econnp->conn_sqp = new_sqp;
5302 		econnp->conn_initial_sqp = new_sqp;
5303 	} else if ((mp->b_datap->db_struioflag & STRUIO_POLICY) != 0) {
5304 		/*
5305 		 * mp is updated in tcp_get_ipsec_conn().
5306 		 */
5307 		econnp = tcp_get_ipsec_conn(tcp, arg2, &mp);
5308 		if (econnp == NULL) {
5309 			/*
5310 			 * mp freed by tcp_get_ipsec_conn.
5311 			 */
5312 			return;
5313 		}
5314 		ASSERT(econnp->conn_netstack == connp->conn_netstack);
5315 	} else {
5316 		goto error2;
5317 	}
5318 
5319 	ASSERT(DB_TYPE(mp) == M_DATA);
5320 
5321 	ipvers = IPH_HDR_VERSION(mp->b_rptr);
5322 	ASSERT(ipvers == IPV6_VERSION || ipvers == IPV4_VERSION);
5323 	ASSERT(OK_32PTR(mp->b_rptr));
5324 	if (ipvers == IPV4_VERSION) {
5325 		ipha = (ipha_t *)mp->b_rptr;
5326 		ip_hdr_len = IPH_HDR_LENGTH(ipha);
5327 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5328 	} else {
5329 		ip6h = (ip6_t *)mp->b_rptr;
5330 		ip_hdr_len = ip_hdr_length_v6(mp, ip6h);
5331 		tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
5332 	}
5333 
5334 	if (tcp->tcp_family == AF_INET) {
5335 		ASSERT(ipvers == IPV4_VERSION);
5336 		err = tcp_conn_create_v4(connp, econnp, ipha, tcph, mp);
5337 	} else {
5338 		err = tcp_conn_create_v6(connp, econnp, mp, tcph, ipvers, mp);
5339 	}
5340 
5341 	if (err)
5342 		goto error3;
5343 
5344 	eager = econnp->conn_tcp;
5345 	ASSERT(eager->tcp_ordrel_mp == NULL);
5346 
5347 	if (!IPCL_IS_NONSTR(econnp)) {
5348 		/*
5349 		 * Pre-allocate the T_ordrel_ind mblk for TPI socket so that
5350 		 * at close time, we will always have that to send up.
5351 		 * Otherwise, we need to do special handling in case the
5352 		 * allocation fails at that time.
5353 		 */
5354 		if ((eager->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL)
5355 			goto error3;
5356 	}
5357 	/* Inherit various TCP parameters from the listener */
5358 	eager->tcp_naglim = tcp->tcp_naglim;
5359 	eager->tcp_first_timer_threshold = tcp->tcp_first_timer_threshold;
5360 	eager->tcp_second_timer_threshold = tcp->tcp_second_timer_threshold;
5361 
5362 	eager->tcp_first_ctimer_threshold = tcp->tcp_first_ctimer_threshold;
5363 	eager->tcp_second_ctimer_threshold = tcp->tcp_second_ctimer_threshold;
5364 
5365 	/*
5366 	 * tcp_adapt_ire() may change tcp_rwnd according to the ire metrics.
5367 	 * If it does not, the eager's receive window will be set to the
5368 	 * listener's receive window later in this function.
5369 	 */
5370 	eager->tcp_rwnd = 0;
5371 
5372 	/*
5373 	 * Inherit listener's tcp_init_cwnd.  Need to do this before
5374 	 * calling tcp_process_options() where tcp_mss_set() is called
5375 	 * to set the initial cwnd.
5376 	 */
5377 	eager->tcp_init_cwnd = tcp->tcp_init_cwnd;
5378 
5379 	/*
5380 	 * Zones: tcp_adapt_ire() and tcp_send_data() both need the
5381 	 * zone id before the accept is completed in tcp_wput_accept().
5382 	 */
5383 	econnp->conn_zoneid = connp->conn_zoneid;
5384 	econnp->conn_allzones = connp->conn_allzones;
5385 
5386 	/* Copy nexthop information from listener to eager */
5387 	if (connp->conn_nexthop_set) {
5388 		econnp->conn_nexthop_set = connp->conn_nexthop_set;
5389 		econnp->conn_nexthop_v4 = connp->conn_nexthop_v4;
5390 	}
5391 
5392 	/*
5393 	 * TSOL: tsol_input_proc() needs the eager's cred before the
5394 	 * eager is accepted
5395 	 */
5396 	econnp->conn_cred = eager->tcp_cred = credp = connp->conn_cred;
5397 	crhold(credp);
5398 
5399 	/*
5400 	 * If the caller has the process-wide flag set, then default to MAC
5401 	 * exempt mode.  This allows read-down to unlabeled hosts.
5402 	 */
5403 	if (getpflags(NET_MAC_AWARE, credp) != 0)
5404 		econnp->conn_mac_exempt = B_TRUE;
5405 
5406 	if (is_system_labeled()) {
5407 		cred_t *cr;
5408 
5409 		if (connp->conn_mlp_type != mlptSingle) {
5410 			cr = econnp->conn_peercred = msg_getcred(mp, NULL);
5411 			if (cr != NULL)
5412 				crhold(cr);
5413 			else
5414 				cr = econnp->conn_cred;
5415 			DTRACE_PROBE2(mlp_syn_accept, conn_t *,
5416 			    econnp, cred_t *, cr)
5417 		} else {
5418 			cr = econnp->conn_cred;
5419 			DTRACE_PROBE2(syn_accept, conn_t *,
5420 			    econnp, cred_t *, cr)
5421 		}
5422 
5423 		if (!tcp_update_label(eager, cr)) {
5424 			DTRACE_PROBE3(
5425 			    tx__ip__log__error__connrequest__tcp,
5426 			    char *, "eager connp(1) label on SYN mp(2) failed",
5427 			    conn_t *, econnp, mblk_t *, mp);
5428 			goto error3;
5429 		}
5430 	}
5431 
5432 	eager->tcp_hard_binding = B_TRUE;
5433 
5434 	tcp_bind_hash_insert(&tcps->tcps_bind_fanout[
5435 	    TCP_BIND_HASH(eager->tcp_lport)], eager, 0);
5436 
5437 	CL_INET_CONNECT(connp, eager, B_FALSE, err);
5438 	if (err != 0) {
5439 		tcp_bind_hash_remove(eager);
5440 		goto error3;
5441 	}
5442 
5443 	/*
5444 	 * No need to check for multicast destination since ip will only pass
5445 	 * up multicasts to those that have expressed interest
5446 	 * TODO: what about rejecting broadcasts?
5447 	 * Also check that source is not a multicast or broadcast address.
5448 	 */
5449 	eager->tcp_state = TCPS_SYN_RCVD;
5450 
5451 
5452 	/*
5453 	 * There should be no ire in the mp as we are being called after
5454 	 * receiving the SYN.
5455 	 */
5456 	ASSERT(tcp_ire_mp(&mp) == NULL);
5457 
5458 	/*
5459 	 * Adapt our mss, ttl, ... according to information provided in IRE.
5460 	 */
5461 
5462 	if (tcp_adapt_ire(eager, NULL) == 0) {
5463 		/* Undo the bind_hash_insert */
5464 		tcp_bind_hash_remove(eager);
5465 		goto error3;
5466 	}
5467 
5468 	/* Process all TCP options. */
5469 	tcp_process_options(eager, tcph);
5470 
5471 	/* Is the other end ECN capable? */
5472 	if (tcps->tcps_ecn_permitted >= 1 &&
5473 	    (tcph->th_flags[0] & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
5474 		eager->tcp_ecn_ok = B_TRUE;
5475 	}
5476 
5477 	/*
5478 	 * listener->tcp_rq->q_hiwat should be the default window size or a
5479 	 * window size changed via SO_RCVBUF option.  First round up the
5480 	 * eager's tcp_rwnd to the nearest MSS.  Then find out the window
5481 	 * scale option value if needed.  Call tcp_rwnd_set() to finish the
5482 	 * setting.
5483 	 *
5484 	 * Note if there is a rpipe metric associated with the remote host,
5485 	 * we should not inherit receive window size from listener.
5486 	 */
5487 	eager->tcp_rwnd = MSS_ROUNDUP(
5488 	    (eager->tcp_rwnd == 0 ? tcp->tcp_recv_hiwater:
5489 	    eager->tcp_rwnd), eager->tcp_mss);
5490 	if (eager->tcp_snd_ws_ok)
5491 		tcp_set_ws_value(eager);
5492 	/*
5493 	 * Note that this is the only place tcp_rwnd_set() is called for
5494 	 * accepting a connection.  We need to call it here instead of
5495 	 * after the 3-way handshake because we need to tell the other
5496 	 * side our rwnd in the SYN-ACK segment.
5497 	 */
5498 	(void) tcp_rwnd_set(eager, eager->tcp_rwnd);
5499 
5500 	/*
5501 	 * We eliminate the need for sockfs to send down a T_SVR4_OPTMGMT_REQ
5502 	 * via soaccept()->soinheritoptions() which essentially applies
5503 	 * all the listener options to the new STREAM. The options that we
5504 	 * need to take care of are:
5505 	 * SO_DEBUG, SO_REUSEADDR, SO_KEEPALIVE, SO_DONTROUTE, SO_BROADCAST,
5506 	 * SO_USELOOPBACK, SO_OOBINLINE, SO_DGRAM_ERRIND, SO_LINGER,
5507 	 * SO_SNDBUF, SO_RCVBUF.
5508 	 *
5509 	 * SO_RCVBUF:	tcp_rwnd_set() above takes care of it.
5510 	 * SO_SNDBUF:	Set the tcp_xmit_hiwater for the eager. When
5511 	 *		tcp_maxpsz_set() gets called later from
5512 	 *		tcp_accept_finish(), the option takes effect.
5513 	 *
5514 	 */
5515 	/* Set the TCP options */
5516 	eager->tcp_recv_hiwater = tcp->tcp_recv_hiwater;
5517 	eager->tcp_recv_lowater = tcp->tcp_recv_lowater;
5518 	eager->tcp_xmit_hiwater = tcp->tcp_xmit_hiwater;
5519 	eager->tcp_dgram_errind = tcp->tcp_dgram_errind;
5520 	eager->tcp_oobinline = tcp->tcp_oobinline;
5521 	eager->tcp_reuseaddr = tcp->tcp_reuseaddr;
5522 	eager->tcp_broadcast = tcp->tcp_broadcast;
5523 	eager->tcp_useloopback = tcp->tcp_useloopback;
5524 	eager->tcp_dontroute = tcp->tcp_dontroute;
5525 	eager->tcp_debug = tcp->tcp_debug;
5526 	eager->tcp_linger = tcp->tcp_linger;
5527 	eager->tcp_lingertime = tcp->tcp_lingertime;
5528 	if (tcp->tcp_ka_enabled)
5529 		eager->tcp_ka_enabled = 1;
5530 
5531 	/* Set the IP options */
5532 	econnp->conn_broadcast = connp->conn_broadcast;
5533 	econnp->conn_loopback = connp->conn_loopback;
5534 	econnp->conn_dontroute = connp->conn_dontroute;
5535 	econnp->conn_reuseaddr = connp->conn_reuseaddr;
5536 
5537 	/* Put a ref on the listener for the eager. */
5538 	CONN_INC_REF(connp);
5539 	mutex_enter(&tcp->tcp_eager_lock);
5540 	tcp->tcp_eager_next_q0->tcp_eager_prev_q0 = eager;
5541 	eager->tcp_eager_next_q0 = tcp->tcp_eager_next_q0;
5542 	tcp->tcp_eager_next_q0 = eager;
5543 	eager->tcp_eager_prev_q0 = tcp;
5544 
5545 	/* Set tcp_listener before adding it to tcp_conn_fanout */
5546 	eager->tcp_listener = tcp;
5547 	eager->tcp_saved_listener = tcp;
5548 
5549 	/*
5550 	 * Tag this detached tcp vector for later retrieval
5551 	 * by our listener client in tcp_accept().
5552 	 */
5553 	eager->tcp_conn_req_seqnum = tcp->tcp_conn_req_seqnum;
5554 	tcp->tcp_conn_req_cnt_q0++;
5555 	if (++tcp->tcp_conn_req_seqnum == -1) {
5556 		/*
5557 		 * -1 is "special" and defined in TPI as something
5558 		 * that should never be used in T_CONN_IND
5559 		 */
5560 		++tcp->tcp_conn_req_seqnum;
5561 	}
5562 	mutex_exit(&tcp->tcp_eager_lock);
5563 
5564 	if (tcp->tcp_syn_defense) {
5565 		/* Don't drop the SYN that comes from a good IP source */
5566 		ipaddr_t *addr_cache = (ipaddr_t *)(tcp->tcp_ip_addr_cache);
5567 		if (addr_cache != NULL && eager->tcp_remote ==
5568 		    addr_cache[IP_ADDR_CACHE_HASH(eager->tcp_remote)]) {
5569 			eager->tcp_dontdrop = B_TRUE;
5570 		}
5571 	}
5572 
5573 	/*
5574 	 * We need to insert the eager in its own perimeter but as soon
5575 	 * as we do that, we expose the eager to the classifier and
5576 	 * should not touch any field outside the eager's perimeter.
5577 	 * So do all the work necessary before inserting the eager
5578 	 * in its own perimeter. Be optimistic that ipcl_conn_insert()
5579 	 * will succeed but undo everything if it fails.
5580 	 */
5581 	seg_seq = ABE32_TO_U32(tcph->th_seq);
5582 	eager->tcp_irs = seg_seq;
5583 	eager->tcp_rack = seg_seq;
5584 	eager->tcp_rnxt = seg_seq + 1;
5585 	U32_TO_ABE32(eager->tcp_rnxt, eager->tcp_tcph->th_ack);
5586 	BUMP_MIB(&tcps->tcps_mib, tcpPassiveOpens);
5587 	eager->tcp_state = TCPS_SYN_RCVD;
5588 	mp1 = tcp_xmit_mp(eager, eager->tcp_xmit_head, eager->tcp_mss,
5589 	    NULL, NULL, eager->tcp_iss, B_FALSE, NULL, B_FALSE);
5590 	if (mp1 == NULL) {
5591 		/*
5592 		 * Increment the ref count as we are going to
5593 		 * enqueueing an mp in squeue
5594 		 */
5595 		CONN_INC_REF(econnp);
5596 		goto error;
5597 	}
5598 
5599 	/*
5600 	 * Note that in theory this should use the current pid
5601 	 * so that getpeerucred on the client returns the actual listener
5602 	 * that does accept. But accept() hasn't been called yet. We could use
5603 	 * the pid of the process that did bind/listen on the server.
5604 	 * However, with common usage like inetd() the bind/listen can be done
5605 	 * by a different process than the accept().
5606 	 * Hence we do the simple thing of using the open pid here.
5607 	 * Note that db_credp is set later in tcp_send_data().
5608 	 */
5609 	mblk_setcred(mp1, credp, tcp->tcp_cpid);
5610 	eager->tcp_cpid = tcp->tcp_cpid;
5611 	eager->tcp_open_time = lbolt64;
5612 
5613 	/*
5614 	 * We need to start the rto timer. In normal case, we start
5615 	 * the timer after sending the packet on the wire (or at
5616 	 * least believing that packet was sent by waiting for
5617 	 * CALL_IP_WPUT() to return). Since this is the first packet
5618 	 * being sent on the wire for the eager, our initial tcp_rto
5619 	 * is at least tcp_rexmit_interval_min which is a fairly
5620 	 * large value to allow the algorithm to adjust slowly to large
5621 	 * fluctuations of RTT during first few transmissions.
5622 	 *
5623 	 * Starting the timer first and then sending the packet in this
5624 	 * case shouldn't make much difference since tcp_rexmit_interval_min
5625 	 * is of the order of several 100ms and starting the timer
5626 	 * first and then sending the packet will result in difference
5627 	 * of few micro seconds.
5628 	 *
5629 	 * Without this optimization, we are forced to hold the fanout
5630 	 * lock across the ipcl_bind_insert() and sending the packet
5631 	 * so that we don't race against an incoming packet (maybe RST)
5632 	 * for this eager.
5633 	 *
5634 	 * It is necessary to acquire an extra reference on the eager
5635 	 * at this point and hold it until after tcp_send_data() to
5636 	 * ensure against an eager close race.
5637 	 */
5638 
5639 	CONN_INC_REF(eager->tcp_connp);
5640 
5641 	TCP_TIMER_RESTART(eager, eager->tcp_rto);
5642 
5643 	/*
5644 	 * Insert the eager in its own perimeter now. We are ready to deal
5645 	 * with any packets on eager.
5646 	 */
5647 	if (eager->tcp_ipversion == IPV4_VERSION) {
5648 		if (ipcl_conn_insert(econnp, IPPROTO_TCP, 0, 0, 0) != 0) {
5649 			goto error;
5650 		}
5651 	} else {
5652 		if (ipcl_conn_insert_v6(econnp, IPPROTO_TCP, 0, 0, 0, 0) != 0) {
5653 			goto error;
5654 		}
5655 	}
5656 
5657 	/* mark conn as fully-bound */
5658 	econnp->conn_fully_bound = B_TRUE;
5659 
5660 	/* Send the SYN-ACK */
5661 	tcp_send_data(eager, eager->tcp_wq, mp1);
5662 	CONN_DEC_REF(eager->tcp_connp);
5663 	freemsg(mp);
5664 
5665 	return;
5666 error:
5667 	freemsg(mp1);
5668 	eager->tcp_closemp_used = B_TRUE;
5669 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
5670 	mp1 = &eager->tcp_closemp;
5671 	SQUEUE_ENTER_ONE(econnp->conn_sqp, mp1, tcp_eager_kill,
5672 	    econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_2);
5673 
5674 	/*
5675 	 * If a connection already exists, send the mp to that connections so
5676 	 * that it can be appropriately dealt with.
5677 	 */
5678 	ipst = tcps->tcps_netstack->netstack_ip;
5679 
5680 	if ((econnp = ipcl_classify(mp, connp->conn_zoneid, ipst)) != NULL) {
5681 		if (!IPCL_IS_CONNECTED(econnp)) {
5682 			/*
5683 			 * Something bad happened. ipcl_conn_insert()
5684 			 * failed because a connection already existed
5685 			 * in connected hash but we can't find it
5686 			 * anymore (someone blew it away). Just
5687 			 * free this message and hopefully remote
5688 			 * will retransmit at which time the SYN can be
5689 			 * treated as a new connection or dealth with
5690 			 * a TH_RST if a connection already exists.
5691 			 */
5692 			CONN_DEC_REF(econnp);
5693 			freemsg(mp);
5694 		} else {
5695 			SQUEUE_ENTER_ONE(econnp->conn_sqp, mp,
5696 			    tcp_input, econnp, SQ_FILL, SQTAG_TCP_CONN_REQ_1);
5697 		}
5698 	} else {
5699 		/* Nobody wants this packet */
5700 		freemsg(mp);
5701 	}
5702 	return;
5703 error3:
5704 	CONN_DEC_REF(econnp);
5705 error2:
5706 	freemsg(mp);
5707 }
5708 
5709 /*
5710  * In an ideal case of vertical partition in NUMA architecture, its
5711  * beneficial to have the listener and all the incoming connections
5712  * tied to the same squeue. The other constraint is that incoming
5713  * connections should be tied to the squeue attached to interrupted
5714  * CPU for obvious locality reason so this leaves the listener to
5715  * be tied to the same squeue. Our only problem is that when listener
5716  * is binding, the CPU that will get interrupted by the NIC whose
5717  * IP address the listener is binding to is not even known. So
5718  * the code below allows us to change that binding at the time the
5719  * CPU is interrupted by virtue of incoming connection's squeue.
5720  *
5721  * This is usefull only in case of a listener bound to a specific IP
5722  * address. For other kind of listeners, they get bound the
5723  * very first time and there is no attempt to rebind them.
5724  */
5725 void
5726 tcp_conn_request_unbound(void *arg, mblk_t *mp, void *arg2)
5727 {
5728 	conn_t		*connp = (conn_t *)arg;
5729 	squeue_t	*sqp = (squeue_t *)arg2;
5730 	squeue_t	*new_sqp;
5731 	uint32_t	conn_flags;
5732 
5733 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
5734 		new_sqp = (squeue_t *)DB_CKSUMSTART(mp);
5735 	} else {
5736 		goto done;
5737 	}
5738 
5739 	if (connp->conn_fanout == NULL)
5740 		goto done;
5741 
5742 	if (!(connp->conn_flags & IPCL_FULLY_BOUND)) {
5743 		mutex_enter(&connp->conn_fanout->connf_lock);
5744 		mutex_enter(&connp->conn_lock);
5745 		/*
5746 		 * No one from read or write side can access us now
5747 		 * except for already queued packets on this squeue.
5748 		 * But since we haven't changed the squeue yet, they
5749 		 * can't execute. If they are processed after we have
5750 		 * changed the squeue, they are sent back to the
5751 		 * correct squeue down below.
5752 		 * But a listner close can race with processing of
5753 		 * incoming SYN. If incoming SYN processing changes
5754 		 * the squeue then the listener close which is waiting
5755 		 * to enter the squeue would operate on the wrong
5756 		 * squeue. Hence we don't change the squeue here unless
5757 		 * the refcount is exactly the minimum refcount. The
5758 		 * minimum refcount of 4 is counted as - 1 each for
5759 		 * TCP and IP, 1 for being in the classifier hash, and
5760 		 * 1 for the mblk being processed.
5761 		 */
5762 
5763 		if (connp->conn_ref != 4 ||
5764 		    connp->conn_tcp->tcp_state != TCPS_LISTEN) {
5765 			mutex_exit(&connp->conn_lock);
5766 			mutex_exit(&connp->conn_fanout->connf_lock);
5767 			goto done;
5768 		}
5769 		if (connp->conn_sqp != new_sqp) {
5770 			while (connp->conn_sqp != new_sqp)
5771 				(void) casptr(&connp->conn_sqp, sqp, new_sqp);
5772 		}
5773 
5774 		do {
5775 			conn_flags = connp->conn_flags;
5776 			conn_flags |= IPCL_FULLY_BOUND;
5777 			(void) cas32(&connp->conn_flags, connp->conn_flags,
5778 			    conn_flags);
5779 		} while (!(connp->conn_flags & IPCL_FULLY_BOUND));
5780 
5781 		mutex_exit(&connp->conn_fanout->connf_lock);
5782 		mutex_exit(&connp->conn_lock);
5783 	}
5784 
5785 done:
5786 	if (connp->conn_sqp != sqp) {
5787 		CONN_INC_REF(connp);
5788 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
5789 		    SQ_FILL, SQTAG_TCP_CONN_REQ_UNBOUND);
5790 	} else {
5791 		tcp_conn_request(connp, mp, sqp);
5792 	}
5793 }
5794 
5795 /*
5796  * Successful connect request processing begins when our client passes
5797  * a T_CONN_REQ message into tcp_wput() and ends when tcp_rput() passes
5798  * our T_OK_ACK reply message upstream.  The control flow looks like this:
5799  *   upstream -> tcp_wput() -> tcp_wput_proto() -> tcp_tpi_connect() -> IP
5800  *   upstream <- tcp_rput()		<- IP
5801  * After various error checks are completed, tcp_tpi_connect() lays
5802  * the target address and port into the composite header template,
5803  * preallocates the T_OK_ACK reply message, construct a full 12 byte bind
5804  * request followed by an IRE request, and passes the three mblk message
5805  * down to IP looking like this:
5806  *   O_T_BIND_REQ for IP  --> IRE req --> T_OK_ACK for our client
5807  * Processing continues in tcp_rput() when we receive the following message:
5808  *   T_BIND_ACK from IP --> IRE ack --> T_OK_ACK for our client
5809  * After consuming the first two mblks, tcp_rput() calls tcp_timer(),
5810  * to fire off the connection request, and then passes the T_OK_ACK mblk
5811  * upstream that we filled in below.  There are, of course, numerous
5812  * error conditions along the way which truncate the processing described
5813  * above.
5814  */
5815 static void
5816 tcp_tpi_connect(tcp_t *tcp, mblk_t *mp)
5817 {
5818 	sin_t		*sin;
5819 	queue_t		*q = tcp->tcp_wq;
5820 	struct T_conn_req	*tcr;
5821 	struct sockaddr	*sa;
5822 	socklen_t	len;
5823 	int		error;
5824 	cred_t		*cr;
5825 	pid_t		cpid;
5826 
5827 	/*
5828 	 * All Solaris components should pass a db_credp
5829 	 * for this TPI message, hence we ASSERT.
5830 	 * But in case there is some other M_PROTO that looks
5831 	 * like a TPI message sent by some other kernel
5832 	 * component, we check and return an error.
5833 	 */
5834 	cr = msg_getcred(mp, &cpid);
5835 	ASSERT(cr != NULL);
5836 	if (cr == NULL) {
5837 		tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
5838 		return;
5839 	}
5840 
5841 	tcr = (struct T_conn_req *)mp->b_rptr;
5842 
5843 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
5844 	if ((mp->b_wptr - mp->b_rptr) < sizeof (*tcr)) {
5845 		tcp_err_ack(tcp, mp, TPROTO, 0);
5846 		return;
5847 	}
5848 
5849 	/*
5850 	 * Pre-allocate the T_ordrel_ind mblk so that at close time, we
5851 	 * will always have that to send up.  Otherwise, we need to do
5852 	 * special handling in case the allocation fails at that time.
5853 	 * If the end point is TPI, the tcp_t can be reused and the
5854 	 * tcp_ordrel_mp may be allocated already.
5855 	 */
5856 	if (tcp->tcp_ordrel_mp == NULL) {
5857 		if ((tcp->tcp_ordrel_mp = mi_tpi_ordrel_ind()) == NULL) {
5858 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5859 			return;
5860 		}
5861 	}
5862 
5863 	/*
5864 	 * Determine packet type based on type of address passed in
5865 	 * the request should contain an IPv4 or IPv6 address.
5866 	 * Make sure that address family matches the type of
5867 	 * family of the the address passed down
5868 	 */
5869 	switch (tcr->DEST_length) {
5870 	default:
5871 		tcp_err_ack(tcp, mp, TBADADDR, 0);
5872 		return;
5873 
5874 	case (sizeof (sin_t) - sizeof (sin->sin_zero)): {
5875 		/*
5876 		 * XXX: The check for valid DEST_length was not there
5877 		 * in earlier releases and some buggy
5878 		 * TLI apps (e.g Sybase) got away with not feeding
5879 		 * in sin_zero part of address.
5880 		 * We allow that bug to keep those buggy apps humming.
5881 		 * Test suites require the check on DEST_length.
5882 		 * We construct a new mblk with valid DEST_length
5883 		 * free the original so the rest of the code does
5884 		 * not have to keep track of this special shorter
5885 		 * length address case.
5886 		 */
5887 		mblk_t *nmp;
5888 		struct T_conn_req *ntcr;
5889 		sin_t *nsin;
5890 
5891 		nmp = allocb(sizeof (struct T_conn_req) + sizeof (sin_t) +
5892 		    tcr->OPT_length, BPRI_HI);
5893 		if (nmp == NULL) {
5894 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
5895 			return;
5896 		}
5897 		ntcr = (struct T_conn_req *)nmp->b_rptr;
5898 		bzero(ntcr, sizeof (struct T_conn_req)); /* zero fill */
5899 		ntcr->PRIM_type = T_CONN_REQ;
5900 		ntcr->DEST_length = sizeof (sin_t);
5901 		ntcr->DEST_offset = sizeof (struct T_conn_req);
5902 
5903 		nsin = (sin_t *)((uchar_t *)ntcr + ntcr->DEST_offset);
5904 		*nsin = sin_null;
5905 		/* Get pointer to shorter address to copy from original mp */
5906 		sin = (sin_t *)mi_offset_param(mp, tcr->DEST_offset,
5907 		    tcr->DEST_length); /* extract DEST_length worth of sin_t */
5908 		if (sin == NULL || !OK_32PTR((char *)sin)) {
5909 			freemsg(nmp);
5910 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
5911 			return;
5912 		}
5913 		nsin->sin_family = sin->sin_family;
5914 		nsin->sin_port = sin->sin_port;
5915 		nsin->sin_addr = sin->sin_addr;
5916 		/* Note:nsin->sin_zero zero-fill with sin_null assign above */
5917 		nmp->b_wptr = (uchar_t *)&nsin[1];
5918 		if (tcr->OPT_length != 0) {
5919 			ntcr->OPT_length = tcr->OPT_length;
5920 			ntcr->OPT_offset = nmp->b_wptr - nmp->b_rptr;
5921 			bcopy((uchar_t *)tcr + tcr->OPT_offset,
5922 			    (uchar_t *)ntcr + ntcr->OPT_offset,
5923 			    tcr->OPT_length);
5924 			nmp->b_wptr += tcr->OPT_length;
5925 		}
5926 		freemsg(mp);	/* original mp freed */
5927 		mp = nmp;	/* re-initialize original variables */
5928 		tcr = ntcr;
5929 	}
5930 	/* FALLTHRU */
5931 
5932 	case sizeof (sin_t):
5933 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
5934 		    sizeof (sin_t));
5935 		len = sizeof (sin_t);
5936 		break;
5937 
5938 	case sizeof (sin6_t):
5939 		sa = (struct sockaddr *)mi_offset_param(mp, tcr->DEST_offset,
5940 		    sizeof (sin6_t));
5941 		len = sizeof (sin6_t);
5942 		break;
5943 	}
5944 
5945 	error = proto_verify_ip_addr(tcp->tcp_family, sa, len);
5946 	if (error != 0) {
5947 		tcp_err_ack(tcp, mp, TSYSERR, error);
5948 		return;
5949 	}
5950 
5951 	/*
5952 	 * TODO: If someone in TCPS_TIME_WAIT has this dst/port we
5953 	 * should key on their sequence number and cut them loose.
5954 	 */
5955 
5956 	/*
5957 	 * If options passed in, feed it for verification and handling
5958 	 */
5959 	if (tcr->OPT_length != 0) {
5960 		mblk_t	*ok_mp;
5961 		mblk_t	*discon_mp;
5962 		mblk_t  *conn_opts_mp;
5963 		int t_error, sys_error, do_disconnect;
5964 
5965 		conn_opts_mp = NULL;
5966 
5967 		if (tcp_conprim_opt_process(tcp, mp,
5968 		    &do_disconnect, &t_error, &sys_error) < 0) {
5969 			if (do_disconnect) {
5970 				ASSERT(t_error == 0 && sys_error == 0);
5971 				discon_mp = mi_tpi_discon_ind(NULL,
5972 				    ECONNREFUSED, 0);
5973 				if (!discon_mp) {
5974 					tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
5975 					    TSYSERR, ENOMEM);
5976 					return;
5977 				}
5978 				ok_mp = mi_tpi_ok_ack_alloc(mp);
5979 				if (!ok_mp) {
5980 					tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
5981 					    TSYSERR, ENOMEM);
5982 					return;
5983 				}
5984 				qreply(q, ok_mp);
5985 				qreply(q, discon_mp); /* no flush! */
5986 			} else {
5987 				ASSERT(t_error != 0);
5988 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ, t_error,
5989 				    sys_error);
5990 			}
5991 			return;
5992 		}
5993 		/*
5994 		 * Success in setting options, the mp option buffer represented
5995 		 * by OPT_length/offset has been potentially modified and
5996 		 * contains results of option processing. We copy it in
5997 		 * another mp to save it for potentially influencing returning
5998 		 * it in T_CONN_CONN.
5999 		 */
6000 		if (tcr->OPT_length != 0) { /* there are resulting options */
6001 			conn_opts_mp = copyb(mp);
6002 			if (!conn_opts_mp) {
6003 				tcp_err_ack_prim(tcp, mp, T_CONN_REQ,
6004 				    TSYSERR, ENOMEM);
6005 				return;
6006 			}
6007 			ASSERT(tcp->tcp_conn.tcp_opts_conn_req == NULL);
6008 			tcp->tcp_conn.tcp_opts_conn_req = conn_opts_mp;
6009 			/*
6010 			 * Note:
6011 			 * These resulting option negotiation can include any
6012 			 * end-to-end negotiation options but there no such
6013 			 * thing (yet?) in our TCP/IP.
6014 			 */
6015 		}
6016 	}
6017 
6018 	/* call the non-TPI version */
6019 	error = tcp_do_connect(tcp->tcp_connp, sa, len, cr, cpid);
6020 	if (error < 0) {
6021 		mp = mi_tpi_err_ack_alloc(mp, -error, 0);
6022 	} else if (error > 0) {
6023 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, error);
6024 	} else {
6025 		mp = mi_tpi_ok_ack_alloc(mp);
6026 	}
6027 
6028 	/*
6029 	 * Note: Code below is the "failure" case
6030 	 */
6031 	/* return error ack and blow away saved option results if any */
6032 connect_failed:
6033 	if (mp != NULL)
6034 		putnext(tcp->tcp_rq, mp);
6035 	else {
6036 		tcp_err_ack_prim(tcp, NULL, T_CONN_REQ,
6037 		    TSYSERR, ENOMEM);
6038 	}
6039 }
6040 
6041 /*
6042  * Handle connect to IPv4 destinations, including connections for AF_INET6
6043  * sockets connecting to IPv4 mapped IPv6 destinations.
6044  */
6045 static int
6046 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport,
6047     uint_t srcid, cred_t *cr, pid_t pid)
6048 {
6049 	tcph_t	*tcph;
6050 	mblk_t	*mp;
6051 	ipaddr_t dstaddr = *dstaddrp;
6052 	int32_t	oldstate;
6053 	uint16_t lport;
6054 	int	error = 0;
6055 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6056 
6057 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
6058 
6059 	/* Check for attempt to connect to INADDR_ANY */
6060 	if (dstaddr == INADDR_ANY)  {
6061 		/*
6062 		 * SunOS 4.x and 4.3 BSD allow an application
6063 		 * to connect a TCP socket to INADDR_ANY.
6064 		 * When they do this, the kernel picks the
6065 		 * address of one interface and uses it
6066 		 * instead.  The kernel usually ends up
6067 		 * picking the address of the loopback
6068 		 * interface.  This is an undocumented feature.
6069 		 * However, we provide the same thing here
6070 		 * in order to have source and binary
6071 		 * compatibility with SunOS 4.x.
6072 		 * Update the T_CONN_REQ (sin/sin6) since it is used to
6073 		 * generate the T_CONN_CON.
6074 		 */
6075 		dstaddr = htonl(INADDR_LOOPBACK);
6076 		*dstaddrp = dstaddr;
6077 	}
6078 
6079 	/* Handle __sin6_src_id if socket not bound to an IP address */
6080 	if (srcid != 0 && tcp->tcp_ipha->ipha_src == INADDR_ANY) {
6081 		ip_srcid_find_id(srcid, &tcp->tcp_ip_src_v6,
6082 		    tcp->tcp_connp->conn_zoneid, tcps->tcps_netstack);
6083 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_ip_src_v6,
6084 		    tcp->tcp_ipha->ipha_src);
6085 	}
6086 
6087 	/*
6088 	 * Don't let an endpoint connect to itself.  Note that
6089 	 * the test here does not catch the case where the
6090 	 * source IP addr was left unspecified by the user. In
6091 	 * this case, the source addr is set in tcp_adapt_ire()
6092 	 * using the reply to the T_BIND message that we send
6093 	 * down to IP here and the check is repeated in tcp_rput_other.
6094 	 */
6095 	if (dstaddr == tcp->tcp_ipha->ipha_src &&
6096 	    dstport == tcp->tcp_lport) {
6097 		error = -TBADADDR;
6098 		goto failed;
6099 	}
6100 
6101 	tcp->tcp_ipha->ipha_dst = dstaddr;
6102 	IN6_IPADDR_TO_V4MAPPED(dstaddr, &tcp->tcp_remote_v6);
6103 
6104 	/*
6105 	 * Massage a source route if any putting the first hop
6106 	 * in iph_dst. Compute a starting value for the checksum which
6107 	 * takes into account that the original iph_dst should be
6108 	 * included in the checksum but that ip will include the
6109 	 * first hop in the source route in the tcp checksum.
6110 	 */
6111 	tcp->tcp_sum = ip_massage_options(tcp->tcp_ipha, tcps->tcps_netstack);
6112 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6113 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
6114 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
6115 	if ((int)tcp->tcp_sum < 0)
6116 		tcp->tcp_sum--;
6117 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
6118 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6119 	    (tcp->tcp_sum >> 16));
6120 	tcph = tcp->tcp_tcph;
6121 	*(uint16_t *)tcph->th_fport = dstport;
6122 	tcp->tcp_fport = dstport;
6123 
6124 	oldstate = tcp->tcp_state;
6125 	/*
6126 	 * At this point the remote destination address and remote port fields
6127 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6128 	 * have to see which state tcp was in so we can take apropriate action.
6129 	 */
6130 	if (oldstate == TCPS_IDLE) {
6131 		/*
6132 		 * We support a quick connect capability here, allowing
6133 		 * clients to transition directly from IDLE to SYN_SENT
6134 		 * tcp_bindi will pick an unused port, insert the connection
6135 		 * in the bind hash and transition to BOUND state.
6136 		 */
6137 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6138 		    tcp, B_TRUE);
6139 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6140 		    B_FALSE, B_FALSE);
6141 		if (lport == 0) {
6142 			error = -TNOADDR;
6143 			goto failed;
6144 		}
6145 	}
6146 	tcp->tcp_state = TCPS_SYN_SENT;
6147 
6148 	mp = allocb(sizeof (ire_t), BPRI_HI);
6149 	if (mp == NULL) {
6150 		tcp->tcp_state = oldstate;
6151 		error = ENOMEM;
6152 		goto failed;
6153 	}
6154 
6155 	mp->b_wptr += sizeof (ire_t);
6156 	mp->b_datap->db_type = IRE_DB_REQ_TYPE;
6157 	tcp->tcp_hard_binding = 1;
6158 
6159 	/*
6160 	 * We need to make sure that the conn_recv is set to a non-null
6161 	 * value before we insert the conn_t into the classifier table.
6162 	 * This is to avoid a race with an incoming packet which does
6163 	 * an ipcl_classify().
6164 	 */
6165 	tcp->tcp_connp->conn_recv = tcp_input;
6166 
6167 	if (tcp->tcp_family == AF_INET) {
6168 		error = ip_proto_bind_connected_v4(tcp->tcp_connp, &mp,
6169 		    IPPROTO_TCP, &tcp->tcp_ipha->ipha_src, tcp->tcp_lport,
6170 		    tcp->tcp_remote, tcp->tcp_fport, B_TRUE, B_TRUE, cr);
6171 	} else {
6172 		in6_addr_t v6src;
6173 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6174 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src);
6175 		} else {
6176 			v6src = tcp->tcp_ip6h->ip6_src;
6177 		}
6178 		error = ip_proto_bind_connected_v6(tcp->tcp_connp, &mp,
6179 		    IPPROTO_TCP, &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6,
6180 		    &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr);
6181 	}
6182 	BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6183 	tcp->tcp_active_open = 1;
6184 
6185 
6186 	return (tcp_post_ip_bind(tcp, mp, error, cr, pid));
6187 failed:
6188 	/* return error ack and blow away saved option results if any */
6189 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6190 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6191 	return (error);
6192 }
6193 
6194 /*
6195  * Handle connect to IPv6 destinations.
6196  */
6197 static int
6198 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport,
6199     uint32_t flowinfo, uint_t srcid, uint32_t scope_id, cred_t *cr, pid_t pid)
6200 {
6201 	tcph_t	*tcph;
6202 	mblk_t	*mp;
6203 	ip6_rthdr_t *rth;
6204 	int32_t  oldstate;
6205 	uint16_t lport;
6206 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6207 	int	error = 0;
6208 	conn_t	*connp = tcp->tcp_connp;
6209 
6210 	ASSERT(tcp->tcp_family == AF_INET6);
6211 
6212 	/*
6213 	 * If we're here, it means that the destination address is a native
6214 	 * IPv6 address.  Return an error if tcp_ipversion is not IPv6.  A
6215 	 * reason why it might not be IPv6 is if the socket was bound to an
6216 	 * IPv4-mapped IPv6 address.
6217 	 */
6218 	if (tcp->tcp_ipversion != IPV6_VERSION) {
6219 		return (-TBADADDR);
6220 	}
6221 
6222 	/*
6223 	 * Interpret a zero destination to mean loopback.
6224 	 * Update the T_CONN_REQ (sin/sin6) since it is used to
6225 	 * generate the T_CONN_CON.
6226 	 */
6227 	if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) {
6228 		*dstaddrp = ipv6_loopback;
6229 	}
6230 
6231 	/* Handle __sin6_src_id if socket not bound to an IP address */
6232 	if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip6h->ip6_src)) {
6233 		ip_srcid_find_id(srcid, &tcp->tcp_ip6h->ip6_src,
6234 		    connp->conn_zoneid, tcps->tcps_netstack);
6235 		tcp->tcp_ip_src_v6 = tcp->tcp_ip6h->ip6_src;
6236 	}
6237 
6238 	/*
6239 	 * Take care of the scope_id now and add ip6i_t
6240 	 * if ip6i_t is not already allocated through TCP
6241 	 * sticky options. At this point tcp_ip6h does not
6242 	 * have dst info, thus use dstaddrp.
6243 	 */
6244 	if (scope_id != 0 &&
6245 	    IN6_IS_ADDR_LINKSCOPE(dstaddrp)) {
6246 		ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
6247 		ip6i_t  *ip6i;
6248 
6249 		ipp->ipp_ifindex = scope_id;
6250 		ip6i = (ip6i_t *)tcp->tcp_iphc;
6251 
6252 		if ((ipp->ipp_fields & IPPF_HAS_IP6I) &&
6253 		    ip6i != NULL && (ip6i->ip6i_nxt == IPPROTO_RAW)) {
6254 			/* Already allocated */
6255 			ip6i->ip6i_flags |= IP6I_IFINDEX;
6256 			ip6i->ip6i_ifindex = ipp->ipp_ifindex;
6257 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6258 		} else {
6259 			int reterr;
6260 
6261 			ipp->ipp_fields |= IPPF_SCOPE_ID;
6262 			if (ipp->ipp_fields & IPPF_HAS_IP6I)
6263 				ip2dbg(("tcp_connect_v6: SCOPE_ID set\n"));
6264 			reterr = tcp_build_hdrs(tcp);
6265 			if (reterr != 0)
6266 				goto failed;
6267 			ip1dbg(("tcp_connect_ipv6: tcp_bld_hdrs returned\n"));
6268 		}
6269 	}
6270 
6271 	/*
6272 	 * Don't let an endpoint connect to itself.  Note that
6273 	 * the test here does not catch the case where the
6274 	 * source IP addr was left unspecified by the user. In
6275 	 * this case, the source addr is set in tcp_adapt_ire()
6276 	 * using the reply to the T_BIND message that we send
6277 	 * down to IP here and the check is repeated in tcp_rput_other.
6278 	 */
6279 	if (IN6_ARE_ADDR_EQUAL(dstaddrp, &tcp->tcp_ip6h->ip6_src) &&
6280 	    (dstport == tcp->tcp_lport)) {
6281 		error = -TBADADDR;
6282 		goto failed;
6283 	}
6284 
6285 	tcp->tcp_ip6h->ip6_dst = *dstaddrp;
6286 	tcp->tcp_remote_v6 = *dstaddrp;
6287 	tcp->tcp_ip6h->ip6_vcf =
6288 	    (IPV6_DEFAULT_VERS_AND_FLOW & IPV6_VERS_AND_FLOW_MASK) |
6289 	    (flowinfo & ~IPV6_VERS_AND_FLOW_MASK);
6290 
6291 	/*
6292 	 * Massage a routing header (if present) putting the first hop
6293 	 * in ip6_dst. Compute a starting value for the checksum which
6294 	 * takes into account that the original ip6_dst should be
6295 	 * included in the checksum but that ip will include the
6296 	 * first hop in the source route in the tcp checksum.
6297 	 */
6298 	rth = ip_find_rthdr_v6(tcp->tcp_ip6h, (uint8_t *)tcp->tcp_tcph);
6299 	if (rth != NULL) {
6300 		tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h, rth,
6301 		    tcps->tcps_netstack);
6302 		tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
6303 		    (tcp->tcp_sum >> 16));
6304 	} else {
6305 		tcp->tcp_sum = 0;
6306 	}
6307 
6308 	tcph = tcp->tcp_tcph;
6309 	*(uint16_t *)tcph->th_fport = dstport;
6310 	tcp->tcp_fport = dstport;
6311 
6312 	oldstate = tcp->tcp_state;
6313 	/*
6314 	 * At this point the remote destination address and remote port fields
6315 	 * in the tcp-four-tuple have been filled in the tcp structure. Now we
6316 	 * have to see which state tcp was in so we can take apropriate action.
6317 	 */
6318 	if (oldstate == TCPS_IDLE) {
6319 		/*
6320 		 * We support a quick connect capability here, allowing
6321 		 * clients to transition directly from IDLE to SYN_SENT
6322 		 * tcp_bindi will pick an unused port, insert the connection
6323 		 * in the bind hash and transition to BOUND state.
6324 		 */
6325 		lport = tcp_update_next_port(tcps->tcps_next_port_to_try,
6326 		    tcp, B_TRUE);
6327 		lport = tcp_bindi(tcp, lport, &tcp->tcp_ip_src_v6, 0, B_TRUE,
6328 		    B_FALSE, B_FALSE);
6329 		if (lport == 0) {
6330 			error = -TNOADDR;
6331 			goto failed;
6332 		}
6333 	}
6334 	tcp->tcp_state = TCPS_SYN_SENT;
6335 
6336 	mp = allocb(sizeof (ire_t), BPRI_HI);
6337 	if (mp != NULL) {
6338 		in6_addr_t v6src;
6339 
6340 		mp->b_wptr += sizeof (ire_t);
6341 		mp->b_datap->db_type = IRE_DB_REQ_TYPE;
6342 
6343 		tcp->tcp_hard_binding = 1;
6344 
6345 		/*
6346 		 * We need to make sure that the conn_recv is set to a non-null
6347 		 * value before we insert the conn_t into the classifier table.
6348 		 * This is to avoid a race with an incoming packet which does
6349 		 * an ipcl_classify().
6350 		 */
6351 		tcp->tcp_connp->conn_recv = tcp_input;
6352 
6353 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6354 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src, &v6src);
6355 		} else {
6356 			v6src = tcp->tcp_ip6h->ip6_src;
6357 		}
6358 		error = ip_proto_bind_connected_v6(connp, &mp, IPPROTO_TCP,
6359 		    &v6src, tcp->tcp_lport, &tcp->tcp_remote_v6,
6360 		    &tcp->tcp_sticky_ipp, tcp->tcp_fport, B_TRUE, B_TRUE, cr);
6361 		BUMP_MIB(&tcps->tcps_mib, tcpActiveOpens);
6362 		tcp->tcp_active_open = 1;
6363 
6364 		return (tcp_post_ip_bind(tcp, mp, error, cr, pid));
6365 	}
6366 	/* Error case */
6367 	tcp->tcp_state = oldstate;
6368 	error = ENOMEM;
6369 
6370 failed:
6371 	/* return error ack and blow away saved option results if any */
6372 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
6373 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
6374 	return (error);
6375 }
6376 
6377 /*
6378  * We need a stream q for detached closing tcp connections
6379  * to use.  Our client hereby indicates that this q is the
6380  * one to use.
6381  */
6382 static void
6383 tcp_def_q_set(tcp_t *tcp, mblk_t *mp)
6384 {
6385 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
6386 	queue_t	*q = tcp->tcp_wq;
6387 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6388 
6389 #ifdef NS_DEBUG
6390 	(void) printf("TCP_IOC_DEFAULT_Q for stack %d\n",
6391 	    tcps->tcps_netstack->netstack_stackid);
6392 #endif
6393 	mp->b_datap->db_type = M_IOCACK;
6394 	iocp->ioc_count = 0;
6395 	mutex_enter(&tcps->tcps_g_q_lock);
6396 	if (tcps->tcps_g_q != NULL) {
6397 		mutex_exit(&tcps->tcps_g_q_lock);
6398 		iocp->ioc_error = EALREADY;
6399 	} else {
6400 		int error = 0;
6401 		conn_t *connp = tcp->tcp_connp;
6402 		ip_stack_t *ipst = connp->conn_netstack->netstack_ip;
6403 
6404 		tcps->tcps_g_q = tcp->tcp_rq;
6405 		mutex_exit(&tcps->tcps_g_q_lock);
6406 		iocp->ioc_error = 0;
6407 		iocp->ioc_rval = 0;
6408 		/*
6409 		 * We are passing tcp_sticky_ipp as NULL
6410 		 * as it is not useful for tcp_default queue
6411 		 *
6412 		 * Set conn_recv just in case.
6413 		 */
6414 		tcp->tcp_connp->conn_recv = tcp_conn_request;
6415 
6416 		ASSERT(connp->conn_af_isv6);
6417 		connp->conn_ulp = IPPROTO_TCP;
6418 
6419 		if (ipst->ips_ipcl_proto_fanout_v6[IPPROTO_TCP].connf_head !=
6420 		    NULL || connp->conn_mac_exempt) {
6421 			error = -TBADADDR;
6422 		} else {
6423 			connp->conn_srcv6 = ipv6_all_zeros;
6424 			ipcl_proto_insert_v6(connp, IPPROTO_TCP);
6425 		}
6426 
6427 		(void) tcp_post_ip_bind(tcp, NULL, error, NULL, 0);
6428 	}
6429 	qreply(q, mp);
6430 }
6431 
6432 static int
6433 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum)
6434 {
6435 	tcp_t	*ltcp = NULL;
6436 	conn_t	*connp;
6437 	tcp_stack_t	*tcps = tcp->tcp_tcps;
6438 
6439 	/*
6440 	 * Right now, upper modules pass down a T_DISCON_REQ to TCP,
6441 	 * when the stream is in BOUND state. Do not send a reset,
6442 	 * since the destination IP address is not valid, and it can
6443 	 * be the initialized value of all zeros (broadcast address).
6444 	 *
6445 	 * XXX There won't be any pending bind request to IP.
6446 	 */
6447 	if (tcp->tcp_state <= TCPS_BOUND) {
6448 		if (tcp->tcp_debug) {
6449 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
6450 			    "tcp_disconnect: bad state, %d", tcp->tcp_state);
6451 		}
6452 		return (TOUTSTATE);
6453 	}
6454 
6455 
6456 	if (seqnum == -1 || tcp->tcp_conn_req_max == 0) {
6457 
6458 		/*
6459 		 * According to TPI, for non-listeners, ignore seqnum
6460 		 * and disconnect.
6461 		 * Following interpretation of -1 seqnum is historical
6462 		 * and implied TPI ? (TPI only states that for T_CONN_IND,
6463 		 * a valid seqnum should not be -1).
6464 		 *
6465 		 *	-1 means disconnect everything
6466 		 *	regardless even on a listener.
6467 		 */
6468 
6469 		int old_state = tcp->tcp_state;
6470 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
6471 
6472 		/*
6473 		 * The connection can't be on the tcp_time_wait_head list
6474 		 * since it is not detached.
6475 		 */
6476 		ASSERT(tcp->tcp_time_wait_next == NULL);
6477 		ASSERT(tcp->tcp_time_wait_prev == NULL);
6478 		ASSERT(tcp->tcp_time_wait_expire == 0);
6479 		ltcp = NULL;
6480 		/*
6481 		 * If it used to be a listener, check to make sure no one else
6482 		 * has taken the port before switching back to LISTEN state.
6483 		 */
6484 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6485 			connp = ipcl_lookup_listener_v4(tcp->tcp_lport,
6486 			    tcp->tcp_ipha->ipha_src,
6487 			    tcp->tcp_connp->conn_zoneid, ipst);
6488 			if (connp != NULL)
6489 				ltcp = connp->conn_tcp;
6490 		} else {
6491 			/* Allow tcp_bound_if listeners? */
6492 			connp = ipcl_lookup_listener_v6(tcp->tcp_lport,
6493 			    &tcp->tcp_ip6h->ip6_src, 0,
6494 			    tcp->tcp_connp->conn_zoneid, ipst);
6495 			if (connp != NULL)
6496 				ltcp = connp->conn_tcp;
6497 		}
6498 		if (tcp->tcp_conn_req_max && ltcp == NULL) {
6499 			tcp->tcp_state = TCPS_LISTEN;
6500 		} else if (old_state > TCPS_BOUND) {
6501 			tcp->tcp_conn_req_max = 0;
6502 			tcp->tcp_state = TCPS_BOUND;
6503 		}
6504 		if (ltcp != NULL)
6505 			CONN_DEC_REF(ltcp->tcp_connp);
6506 		if (old_state == TCPS_SYN_SENT || old_state == TCPS_SYN_RCVD) {
6507 			BUMP_MIB(&tcps->tcps_mib, tcpAttemptFails);
6508 		} else if (old_state == TCPS_ESTABLISHED ||
6509 		    old_state == TCPS_CLOSE_WAIT) {
6510 			BUMP_MIB(&tcps->tcps_mib, tcpEstabResets);
6511 		}
6512 
6513 		if (tcp->tcp_fused)
6514 			tcp_unfuse(tcp);
6515 
6516 		mutex_enter(&tcp->tcp_eager_lock);
6517 		if ((tcp->tcp_conn_req_cnt_q0 != 0) ||
6518 		    (tcp->tcp_conn_req_cnt_q != 0)) {
6519 			tcp_eager_cleanup(tcp, 0);
6520 		}
6521 		mutex_exit(&tcp->tcp_eager_lock);
6522 
6523 		tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt,
6524 		    tcp->tcp_rnxt, TH_RST | TH_ACK);
6525 
6526 		tcp_reinit(tcp);
6527 
6528 		return (0);
6529 	} else if (!tcp_eager_blowoff(tcp, seqnum)) {
6530 		return (TBADSEQ);
6531 	}
6532 	return (0);
6533 }
6534 
6535 /*
6536  * Our client hereby directs us to reject the connection request
6537  * that tcp_conn_request() marked with 'seqnum'.  Rejection consists
6538  * of sending the appropriate RST, not an ICMP error.
6539  */
6540 static void
6541 tcp_disconnect(tcp_t *tcp, mblk_t *mp)
6542 {
6543 	t_scalar_t seqnum;
6544 	int	error;
6545 
6546 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
6547 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) {
6548 		tcp_err_ack(tcp, mp, TPROTO, 0);
6549 		return;
6550 	}
6551 	seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number;
6552 	error = tcp_disconnect_common(tcp, seqnum);
6553 	if (error != 0)
6554 		tcp_err_ack(tcp, mp, error, 0);
6555 	else {
6556 		if (tcp->tcp_state >= TCPS_ESTABLISHED) {
6557 			/* Send M_FLUSH according to TPI */
6558 			(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
6559 		}
6560 		mp = mi_tpi_ok_ack_alloc(mp);
6561 		if (mp)
6562 			putnext(tcp->tcp_rq, mp);
6563 	}
6564 }
6565 
6566 /*
6567  * Diagnostic routine used to return a string associated with the tcp state.
6568  * Note that if the caller does not supply a buffer, it will use an internal
6569  * static string.  This means that if multiple threads call this function at
6570  * the same time, output can be corrupted...  Note also that this function
6571  * does not check the size of the supplied buffer.  The caller has to make
6572  * sure that it is big enough.
6573  */
6574 static char *
6575 tcp_display(tcp_t *tcp, char *sup_buf, char format)
6576 {
6577 	char		buf1[30];
6578 	static char	priv_buf[INET6_ADDRSTRLEN * 2 + 80];
6579 	char		*buf;
6580 	char		*cp;
6581 	in6_addr_t	local, remote;
6582 	char		local_addrbuf[INET6_ADDRSTRLEN];
6583 	char		remote_addrbuf[INET6_ADDRSTRLEN];
6584 
6585 	if (sup_buf != NULL)
6586 		buf = sup_buf;
6587 	else
6588 		buf = priv_buf;
6589 
6590 	if (tcp == NULL)
6591 		return ("NULL_TCP");
6592 	switch (tcp->tcp_state) {
6593 	case TCPS_CLOSED:
6594 		cp = "TCP_CLOSED";
6595 		break;
6596 	case TCPS_IDLE:
6597 		cp = "TCP_IDLE";
6598 		break;
6599 	case TCPS_BOUND:
6600 		cp = "TCP_BOUND";
6601 		break;
6602 	case TCPS_LISTEN:
6603 		cp = "TCP_LISTEN";
6604 		break;
6605 	case TCPS_SYN_SENT:
6606 		cp = "TCP_SYN_SENT";
6607 		break;
6608 	case TCPS_SYN_RCVD:
6609 		cp = "TCP_SYN_RCVD";
6610 		break;
6611 	case TCPS_ESTABLISHED:
6612 		cp = "TCP_ESTABLISHED";
6613 		break;
6614 	case TCPS_CLOSE_WAIT:
6615 		cp = "TCP_CLOSE_WAIT";
6616 		break;
6617 	case TCPS_FIN_WAIT_1:
6618 		cp = "TCP_FIN_WAIT_1";
6619 		break;
6620 	case TCPS_CLOSING:
6621 		cp = "TCP_CLOSING";
6622 		break;
6623 	case TCPS_LAST_ACK:
6624 		cp = "TCP_LAST_ACK";
6625 		break;
6626 	case TCPS_FIN_WAIT_2:
6627 		cp = "TCP_FIN_WAIT_2";
6628 		break;
6629 	case TCPS_TIME_WAIT:
6630 		cp = "TCP_TIME_WAIT";
6631 		break;
6632 	default:
6633 		(void) mi_sprintf(buf1, "TCPUnkState(%d)", tcp->tcp_state);
6634 		cp = buf1;
6635 		break;
6636 	}
6637 	switch (format) {
6638 	case DISP_ADDR_AND_PORT:
6639 		if (tcp->tcp_ipversion == IPV4_VERSION) {
6640 			/*
6641 			 * Note that we use the remote address in the tcp_b
6642 			 * structure.  This means that it will print out
6643 			 * the real destination address, not the next hop's
6644 			 * address if source routing is used.
6645 			 */
6646 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ip_src, &local);
6647 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_remote, &remote);
6648 
6649 		} else {
6650 			local = tcp->tcp_ip_src_v6;
6651 			remote = tcp->tcp_remote_v6;
6652 		}
6653 		(void) inet_ntop(AF_INET6, &local, local_addrbuf,
6654 		    sizeof (local_addrbuf));
6655 		(void) inet_ntop(AF_INET6, &remote, remote_addrbuf,
6656 		    sizeof (remote_addrbuf));
6657 		(void) mi_sprintf(buf, "[%s.%u, %s.%u] %s",
6658 		    local_addrbuf, ntohs(tcp->tcp_lport), remote_addrbuf,
6659 		    ntohs(tcp->tcp_fport), cp);
6660 		break;
6661 	case DISP_PORT_ONLY:
6662 	default:
6663 		(void) mi_sprintf(buf, "[%u, %u] %s",
6664 		    ntohs(tcp->tcp_lport), ntohs(tcp->tcp_fport), cp);
6665 		break;
6666 	}
6667 
6668 	return (buf);
6669 }
6670 
6671 /*
6672  * Called via squeue to get on to eager's perimeter. It sends a
6673  * TH_RST if eager is in the fanout table. The listener wants the
6674  * eager to disappear either by means of tcp_eager_blowoff() or
6675  * tcp_eager_cleanup() being called. tcp_eager_kill() can also be
6676  * called (via squeue) if the eager cannot be inserted in the
6677  * fanout table in tcp_conn_request().
6678  */
6679 /* ARGSUSED */
6680 void
6681 tcp_eager_kill(void *arg, mblk_t *mp, void *arg2)
6682 {
6683 	conn_t	*econnp = (conn_t *)arg;
6684 	tcp_t	*eager = econnp->conn_tcp;
6685 	tcp_t	*listener = eager->tcp_listener;
6686 	tcp_stack_t	*tcps = eager->tcp_tcps;
6687 
6688 	/*
6689 	 * We could be called because listener is closing. Since
6690 	 * the eager is using listener's queue's, its not safe.
6691 	 * Better use the default queue just to send the TH_RST
6692 	 * out.
6693 	 */
6694 	ASSERT(tcps->tcps_g_q != NULL);
6695 	eager->tcp_rq = tcps->tcps_g_q;
6696 	eager->tcp_wq = WR(tcps->tcps_g_q);
6697 
6698 	/*
6699 	 * An eager's conn_fanout will be NULL if it's a duplicate
6700 	 * for an existing 4-tuples in the conn fanout table.
6701 	 * We don't want to send an RST out in such case.
6702 	 */
6703 	if (econnp->conn_fanout != NULL && eager->tcp_state > TCPS_LISTEN) {
6704 		tcp_xmit_ctl("tcp_eager_kill, can't wait",
6705 		    eager, eager->tcp_snxt, 0, TH_RST);
6706 	}
6707 
6708 	/* We are here because listener wants this eager gone */
6709 	if (listener != NULL) {
6710 		mutex_enter(&listener->tcp_eager_lock);
6711 		tcp_eager_unlink(eager);
6712 		if (eager->tcp_tconnind_started) {
6713 			/*
6714 			 * The eager has sent a conn_ind up to the
6715 			 * listener but listener decides to close
6716 			 * instead. We need to drop the extra ref
6717 			 * placed on eager in tcp_rput_data() before
6718 			 * sending the conn_ind to listener.
6719 			 */
6720 			CONN_DEC_REF(econnp);
6721 		}
6722 		mutex_exit(&listener->tcp_eager_lock);
6723 		CONN_DEC_REF(listener->tcp_connp);
6724 	}
6725 
6726 	if (eager->tcp_state > TCPS_BOUND)
6727 		tcp_close_detached(eager);
6728 }
6729 
6730 /*
6731  * Reset any eager connection hanging off this listener marked
6732  * with 'seqnum' and then reclaim it's resources.
6733  */
6734 static boolean_t
6735 tcp_eager_blowoff(tcp_t	*listener, t_scalar_t seqnum)
6736 {
6737 	tcp_t	*eager;
6738 	mblk_t 	*mp;
6739 	tcp_stack_t	*tcps = listener->tcp_tcps;
6740 
6741 	TCP_STAT(tcps, tcp_eager_blowoff_calls);
6742 	eager = listener;
6743 	mutex_enter(&listener->tcp_eager_lock);
6744 	do {
6745 		eager = eager->tcp_eager_next_q;
6746 		if (eager == NULL) {
6747 			mutex_exit(&listener->tcp_eager_lock);
6748 			return (B_FALSE);
6749 		}
6750 	} while (eager->tcp_conn_req_seqnum != seqnum);
6751 
6752 	if (eager->tcp_closemp_used) {
6753 		mutex_exit(&listener->tcp_eager_lock);
6754 		return (B_TRUE);
6755 	}
6756 	eager->tcp_closemp_used = B_TRUE;
6757 	TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6758 	CONN_INC_REF(eager->tcp_connp);
6759 	mutex_exit(&listener->tcp_eager_lock);
6760 	mp = &eager->tcp_closemp;
6761 	SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp, tcp_eager_kill,
6762 	    eager->tcp_connp, SQ_FILL, SQTAG_TCP_EAGER_BLOWOFF);
6763 	return (B_TRUE);
6764 }
6765 
6766 /*
6767  * Reset any eager connection hanging off this listener
6768  * and then reclaim it's resources.
6769  */
6770 static void
6771 tcp_eager_cleanup(tcp_t *listener, boolean_t q0_only)
6772 {
6773 	tcp_t	*eager;
6774 	mblk_t	*mp;
6775 	tcp_stack_t	*tcps = listener->tcp_tcps;
6776 
6777 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6778 
6779 	if (!q0_only) {
6780 		/* First cleanup q */
6781 		TCP_STAT(tcps, tcp_eager_blowoff_q);
6782 		eager = listener->tcp_eager_next_q;
6783 		while (eager != NULL) {
6784 			if (!eager->tcp_closemp_used) {
6785 				eager->tcp_closemp_used = B_TRUE;
6786 				TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6787 				CONN_INC_REF(eager->tcp_connp);
6788 				mp = &eager->tcp_closemp;
6789 				SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
6790 				    tcp_eager_kill, eager->tcp_connp,
6791 				    SQ_FILL, SQTAG_TCP_EAGER_CLEANUP);
6792 			}
6793 			eager = eager->tcp_eager_next_q;
6794 		}
6795 	}
6796 	/* Then cleanup q0 */
6797 	TCP_STAT(tcps, tcp_eager_blowoff_q0);
6798 	eager = listener->tcp_eager_next_q0;
6799 	while (eager != listener) {
6800 		if (!eager->tcp_closemp_used) {
6801 			eager->tcp_closemp_used = B_TRUE;
6802 			TCP_DEBUG_GETPCSTACK(eager->tcmp_stk, 15);
6803 			CONN_INC_REF(eager->tcp_connp);
6804 			mp = &eager->tcp_closemp;
6805 			SQUEUE_ENTER_ONE(eager->tcp_connp->conn_sqp, mp,
6806 			    tcp_eager_kill, eager->tcp_connp, SQ_FILL,
6807 			    SQTAG_TCP_EAGER_CLEANUP_Q0);
6808 		}
6809 		eager = eager->tcp_eager_next_q0;
6810 	}
6811 }
6812 
6813 /*
6814  * If we are an eager connection hanging off a listener that hasn't
6815  * formally accepted the connection yet, get off his list and blow off
6816  * any data that we have accumulated.
6817  */
6818 static void
6819 tcp_eager_unlink(tcp_t *tcp)
6820 {
6821 	tcp_t	*listener = tcp->tcp_listener;
6822 
6823 	ASSERT(MUTEX_HELD(&listener->tcp_eager_lock));
6824 	ASSERT(listener != NULL);
6825 	if (tcp->tcp_eager_next_q0 != NULL) {
6826 		ASSERT(tcp->tcp_eager_prev_q0 != NULL);
6827 
6828 		/* Remove the eager tcp from q0 */
6829 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
6830 		    tcp->tcp_eager_prev_q0;
6831 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
6832 		    tcp->tcp_eager_next_q0;
6833 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
6834 		listener->tcp_conn_req_cnt_q0--;
6835 
6836 		tcp->tcp_eager_next_q0 = NULL;
6837 		tcp->tcp_eager_prev_q0 = NULL;
6838 
6839 		/*
6840 		 * Take the eager out, if it is in the list of droppable
6841 		 * eagers.
6842 		 */
6843 		MAKE_UNDROPPABLE(tcp);
6844 
6845 		if (tcp->tcp_syn_rcvd_timeout != 0) {
6846 			/* we have timed out before */
6847 			ASSERT(listener->tcp_syn_rcvd_timeout > 0);
6848 			listener->tcp_syn_rcvd_timeout--;
6849 		}
6850 	} else {
6851 		tcp_t   **tcpp = &listener->tcp_eager_next_q;
6852 		tcp_t	*prev = NULL;
6853 
6854 		for (; tcpp[0]; tcpp = &tcpp[0]->tcp_eager_next_q) {
6855 			if (tcpp[0] == tcp) {
6856 				if (listener->tcp_eager_last_q == tcp) {
6857 					/*
6858 					 * If we are unlinking the last
6859 					 * element on the list, adjust
6860 					 * tail pointer. Set tail pointer
6861 					 * to nil when list is empty.
6862 					 */
6863 					ASSERT(tcp->tcp_eager_next_q == NULL);
6864 					if (listener->tcp_eager_last_q ==
6865 					    listener->tcp_eager_next_q) {
6866 						listener->tcp_eager_last_q =
6867 						    NULL;
6868 					} else {
6869 						/*
6870 						 * We won't get here if there
6871 						 * is only one eager in the
6872 						 * list.
6873 						 */
6874 						ASSERT(prev != NULL);
6875 						listener->tcp_eager_last_q =
6876 						    prev;
6877 					}
6878 				}
6879 				tcpp[0] = tcp->tcp_eager_next_q;
6880 				tcp->tcp_eager_next_q = NULL;
6881 				tcp->tcp_eager_last_q = NULL;
6882 				ASSERT(listener->tcp_conn_req_cnt_q > 0);
6883 				listener->tcp_conn_req_cnt_q--;
6884 				break;
6885 			}
6886 			prev = tcpp[0];
6887 		}
6888 	}
6889 	tcp->tcp_listener = NULL;
6890 }
6891 
6892 /* Shorthand to generate and send TPI error acks to our client */
6893 static void
6894 tcp_err_ack(tcp_t *tcp, mblk_t *mp, int t_error, int sys_error)
6895 {
6896 	if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL)
6897 		putnext(tcp->tcp_rq, mp);
6898 }
6899 
6900 /* Shorthand to generate and send TPI error acks to our client */
6901 static void
6902 tcp_err_ack_prim(tcp_t *tcp, mblk_t *mp, int primitive,
6903     int t_error, int sys_error)
6904 {
6905 	struct T_error_ack	*teackp;
6906 
6907 	if ((mp = tpi_ack_alloc(mp, sizeof (struct T_error_ack),
6908 	    M_PCPROTO, T_ERROR_ACK)) != NULL) {
6909 		teackp = (struct T_error_ack *)mp->b_rptr;
6910 		teackp->ERROR_prim = primitive;
6911 		teackp->TLI_error = t_error;
6912 		teackp->UNIX_error = sys_error;
6913 		putnext(tcp->tcp_rq, mp);
6914 	}
6915 }
6916 
6917 /*
6918  * Note: No locks are held when inspecting tcp_g_*epriv_ports
6919  * but instead the code relies on:
6920  * - the fact that the address of the array and its size never changes
6921  * - the atomic assignment of the elements of the array
6922  */
6923 /* ARGSUSED */
6924 static int
6925 tcp_extra_priv_ports_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
6926 {
6927 	int i;
6928 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
6929 
6930 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
6931 		if (tcps->tcps_g_epriv_ports[i] != 0)
6932 			(void) mi_mpprintf(mp, "%d ",
6933 			    tcps->tcps_g_epriv_ports[i]);
6934 	}
6935 	return (0);
6936 }
6937 
6938 /*
6939  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
6940  * threads from changing it at the same time.
6941  */
6942 /* ARGSUSED */
6943 static int
6944 tcp_extra_priv_ports_add(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
6945     cred_t *cr)
6946 {
6947 	long	new_value;
6948 	int	i;
6949 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
6950 
6951 	/*
6952 	 * Fail the request if the new value does not lie within the
6953 	 * port number limits.
6954 	 */
6955 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
6956 	    new_value <= 0 || new_value >= 65536) {
6957 		return (EINVAL);
6958 	}
6959 
6960 	mutex_enter(&tcps->tcps_epriv_port_lock);
6961 	/* Check if the value is already in the list */
6962 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
6963 		if (new_value == tcps->tcps_g_epriv_ports[i]) {
6964 			mutex_exit(&tcps->tcps_epriv_port_lock);
6965 			return (EEXIST);
6966 		}
6967 	}
6968 	/* Find an empty slot */
6969 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
6970 		if (tcps->tcps_g_epriv_ports[i] == 0)
6971 			break;
6972 	}
6973 	if (i == tcps->tcps_g_num_epriv_ports) {
6974 		mutex_exit(&tcps->tcps_epriv_port_lock);
6975 		return (EOVERFLOW);
6976 	}
6977 	/* Set the new value */
6978 	tcps->tcps_g_epriv_ports[i] = (uint16_t)new_value;
6979 	mutex_exit(&tcps->tcps_epriv_port_lock);
6980 	return (0);
6981 }
6982 
6983 /*
6984  * Hold a lock while changing tcp_g_epriv_ports to prevent multiple
6985  * threads from changing it at the same time.
6986  */
6987 /* ARGSUSED */
6988 static int
6989 tcp_extra_priv_ports_del(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
6990     cred_t *cr)
6991 {
6992 	long	new_value;
6993 	int	i;
6994 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
6995 
6996 	/*
6997 	 * Fail the request if the new value does not lie within the
6998 	 * port number limits.
6999 	 */
7000 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 || new_value <= 0 ||
7001 	    new_value >= 65536) {
7002 		return (EINVAL);
7003 	}
7004 
7005 	mutex_enter(&tcps->tcps_epriv_port_lock);
7006 	/* Check that the value is already in the list */
7007 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
7008 		if (tcps->tcps_g_epriv_ports[i] == new_value)
7009 			break;
7010 	}
7011 	if (i == tcps->tcps_g_num_epriv_ports) {
7012 		mutex_exit(&tcps->tcps_epriv_port_lock);
7013 		return (ESRCH);
7014 	}
7015 	/* Clear the value */
7016 	tcps->tcps_g_epriv_ports[i] = 0;
7017 	mutex_exit(&tcps->tcps_epriv_port_lock);
7018 	return (0);
7019 }
7020 
7021 /* Return the TPI/TLI equivalent of our current tcp_state */
7022 static int
7023 tcp_tpistate(tcp_t *tcp)
7024 {
7025 	switch (tcp->tcp_state) {
7026 	case TCPS_IDLE:
7027 		return (TS_UNBND);
7028 	case TCPS_LISTEN:
7029 		/*
7030 		 * Return whether there are outstanding T_CONN_IND waiting
7031 		 * for the matching T_CONN_RES. Therefore don't count q0.
7032 		 */
7033 		if (tcp->tcp_conn_req_cnt_q > 0)
7034 			return (TS_WRES_CIND);
7035 		else
7036 			return (TS_IDLE);
7037 	case TCPS_BOUND:
7038 		return (TS_IDLE);
7039 	case TCPS_SYN_SENT:
7040 		return (TS_WCON_CREQ);
7041 	case TCPS_SYN_RCVD:
7042 		/*
7043 		 * Note: assumption: this has to the active open SYN_RCVD.
7044 		 * The passive instance is detached in SYN_RCVD stage of
7045 		 * incoming connection processing so we cannot get request
7046 		 * for T_info_ack on it.
7047 		 */
7048 		return (TS_WACK_CRES);
7049 	case TCPS_ESTABLISHED:
7050 		return (TS_DATA_XFER);
7051 	case TCPS_CLOSE_WAIT:
7052 		return (TS_WREQ_ORDREL);
7053 	case TCPS_FIN_WAIT_1:
7054 		return (TS_WIND_ORDREL);
7055 	case TCPS_FIN_WAIT_2:
7056 		return (TS_WIND_ORDREL);
7057 
7058 	case TCPS_CLOSING:
7059 	case TCPS_LAST_ACK:
7060 	case TCPS_TIME_WAIT:
7061 	case TCPS_CLOSED:
7062 		/*
7063 		 * Following TS_WACK_DREQ7 is a rendition of "not
7064 		 * yet TS_IDLE" TPI state. There is no best match to any
7065 		 * TPI state for TCPS_{CLOSING, LAST_ACK, TIME_WAIT} but we
7066 		 * choose a value chosen that will map to TLI/XTI level
7067 		 * state of TSTATECHNG (state is process of changing) which
7068 		 * captures what this dummy state represents.
7069 		 */
7070 		return (TS_WACK_DREQ7);
7071 	default:
7072 		cmn_err(CE_WARN, "tcp_tpistate: strange state (%d) %s",
7073 		    tcp->tcp_state, tcp_display(tcp, NULL,
7074 		    DISP_PORT_ONLY));
7075 		return (TS_UNBND);
7076 	}
7077 }
7078 
7079 static void
7080 tcp_copy_info(struct T_info_ack *tia, tcp_t *tcp)
7081 {
7082 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7083 
7084 	if (tcp->tcp_family == AF_INET6)
7085 		*tia = tcp_g_t_info_ack_v6;
7086 	else
7087 		*tia = tcp_g_t_info_ack;
7088 	tia->CURRENT_state = tcp_tpistate(tcp);
7089 	tia->OPT_size = tcp_max_optsize;
7090 	if (tcp->tcp_mss == 0) {
7091 		/* Not yet set - tcp_open does not set mss */
7092 		if (tcp->tcp_ipversion == IPV4_VERSION)
7093 			tia->TIDU_size = tcps->tcps_mss_def_ipv4;
7094 		else
7095 			tia->TIDU_size = tcps->tcps_mss_def_ipv6;
7096 	} else {
7097 		tia->TIDU_size = tcp->tcp_mss;
7098 	}
7099 	/* TODO: Default ETSDU is 1.  Is that correct for tcp? */
7100 }
7101 
7102 static void
7103 tcp_do_capability_ack(tcp_t *tcp, struct T_capability_ack *tcap,
7104     t_uscalar_t cap_bits1)
7105 {
7106 	tcap->CAP_bits1 = 0;
7107 
7108 	if (cap_bits1 & TC1_INFO) {
7109 		tcp_copy_info(&tcap->INFO_ack, tcp);
7110 		tcap->CAP_bits1 |= TC1_INFO;
7111 	}
7112 
7113 	if (cap_bits1 & TC1_ACCEPTOR_ID) {
7114 		tcap->ACCEPTOR_id = tcp->tcp_acceptor_id;
7115 		tcap->CAP_bits1 |= TC1_ACCEPTOR_ID;
7116 	}
7117 
7118 }
7119 
7120 /*
7121  * This routine responds to T_CAPABILITY_REQ messages.  It is called by
7122  * tcp_wput.  Much of the T_CAPABILITY_ACK information is copied from
7123  * tcp_g_t_info_ack.  The current state of the stream is copied from
7124  * tcp_state.
7125  */
7126 static void
7127 tcp_capability_req(tcp_t *tcp, mblk_t *mp)
7128 {
7129 	t_uscalar_t		cap_bits1;
7130 	struct T_capability_ack	*tcap;
7131 
7132 	if (MBLKL(mp) < sizeof (struct T_capability_req)) {
7133 		freemsg(mp);
7134 		return;
7135 	}
7136 
7137 	cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1;
7138 
7139 	mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack),
7140 	    mp->b_datap->db_type, T_CAPABILITY_ACK);
7141 	if (mp == NULL)
7142 		return;
7143 
7144 	tcap = (struct T_capability_ack *)mp->b_rptr;
7145 	tcp_do_capability_ack(tcp, tcap, cap_bits1);
7146 
7147 	putnext(tcp->tcp_rq, mp);
7148 }
7149 
7150 /*
7151  * This routine responds to T_INFO_REQ messages.  It is called by tcp_wput.
7152  * Most of the T_INFO_ACK information is copied from tcp_g_t_info_ack.
7153  * The current state of the stream is copied from tcp_state.
7154  */
7155 static void
7156 tcp_info_req(tcp_t *tcp, mblk_t *mp)
7157 {
7158 	mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO,
7159 	    T_INFO_ACK);
7160 	if (!mp) {
7161 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7162 		return;
7163 	}
7164 	tcp_copy_info((struct T_info_ack *)mp->b_rptr, tcp);
7165 	putnext(tcp->tcp_rq, mp);
7166 }
7167 
7168 /* Respond to the TPI addr request */
7169 static void
7170 tcp_addr_req(tcp_t *tcp, mblk_t *mp)
7171 {
7172 	sin_t	*sin;
7173 	mblk_t	*ackmp;
7174 	struct T_addr_ack *taa;
7175 
7176 	/* Make it large enough for worst case */
7177 	ackmp = reallocb(mp, sizeof (struct T_addr_ack) +
7178 	    2 * sizeof (sin6_t), 1);
7179 	if (ackmp == NULL) {
7180 		tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
7181 		return;
7182 	}
7183 
7184 	if (tcp->tcp_ipversion == IPV6_VERSION) {
7185 		tcp_addr_req_ipv6(tcp, ackmp);
7186 		return;
7187 	}
7188 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7189 
7190 	bzero(taa, sizeof (struct T_addr_ack));
7191 	ackmp->b_wptr = (uchar_t *)&taa[1];
7192 
7193 	taa->PRIM_type = T_ADDR_ACK;
7194 	ackmp->b_datap->db_type = M_PCPROTO;
7195 
7196 	/*
7197 	 * Note: Following code assumes 32 bit alignment of basic
7198 	 * data structures like sin_t and struct T_addr_ack.
7199 	 */
7200 	if (tcp->tcp_state >= TCPS_BOUND) {
7201 		/*
7202 		 * Fill in local address
7203 		 */
7204 		taa->LOCADDR_length = sizeof (sin_t);
7205 		taa->LOCADDR_offset = sizeof (*taa);
7206 
7207 		sin = (sin_t *)&taa[1];
7208 
7209 		/* Fill zeroes and then intialize non-zero fields */
7210 		*sin = sin_null;
7211 
7212 		sin->sin_family = AF_INET;
7213 
7214 		sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
7215 		sin->sin_port = *(uint16_t *)tcp->tcp_tcph->th_lport;
7216 
7217 		ackmp->b_wptr = (uchar_t *)&sin[1];
7218 
7219 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7220 			/*
7221 			 * Fill in Remote address
7222 			 */
7223 			taa->REMADDR_length = sizeof (sin_t);
7224 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7225 			    taa->LOCADDR_length);
7226 
7227 			sin = (sin_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7228 			*sin = sin_null;
7229 			sin->sin_family = AF_INET;
7230 			sin->sin_addr.s_addr = tcp->tcp_remote;
7231 			sin->sin_port = tcp->tcp_fport;
7232 
7233 			ackmp->b_wptr = (uchar_t *)&sin[1];
7234 		}
7235 	}
7236 	putnext(tcp->tcp_rq, ackmp);
7237 }
7238 
7239 /* Assumes that tcp_addr_req gets enough space and alignment */
7240 static void
7241 tcp_addr_req_ipv6(tcp_t *tcp, mblk_t *ackmp)
7242 {
7243 	sin6_t	*sin6;
7244 	struct T_addr_ack *taa;
7245 
7246 	ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
7247 	ASSERT(OK_32PTR(ackmp->b_rptr));
7248 	ASSERT(ackmp->b_wptr - ackmp->b_rptr >= sizeof (struct T_addr_ack) +
7249 	    2 * sizeof (sin6_t));
7250 
7251 	taa = (struct T_addr_ack *)ackmp->b_rptr;
7252 
7253 	bzero(taa, sizeof (struct T_addr_ack));
7254 	ackmp->b_wptr = (uchar_t *)&taa[1];
7255 
7256 	taa->PRIM_type = T_ADDR_ACK;
7257 	ackmp->b_datap->db_type = M_PCPROTO;
7258 
7259 	/*
7260 	 * Note: Following code assumes 32 bit alignment of basic
7261 	 * data structures like sin6_t and struct T_addr_ack.
7262 	 */
7263 	if (tcp->tcp_state >= TCPS_BOUND) {
7264 		/*
7265 		 * Fill in local address
7266 		 */
7267 		taa->LOCADDR_length = sizeof (sin6_t);
7268 		taa->LOCADDR_offset = sizeof (*taa);
7269 
7270 		sin6 = (sin6_t *)&taa[1];
7271 		*sin6 = sin6_null;
7272 
7273 		sin6->sin6_family = AF_INET6;
7274 		sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
7275 		sin6->sin6_port = tcp->tcp_lport;
7276 
7277 		ackmp->b_wptr = (uchar_t *)&sin6[1];
7278 
7279 		if (tcp->tcp_state >= TCPS_SYN_RCVD) {
7280 			/*
7281 			 * Fill in Remote address
7282 			 */
7283 			taa->REMADDR_length = sizeof (sin6_t);
7284 			taa->REMADDR_offset = ROUNDUP32(taa->LOCADDR_offset +
7285 			    taa->LOCADDR_length);
7286 
7287 			sin6 = (sin6_t *)(ackmp->b_rptr + taa->REMADDR_offset);
7288 			*sin6 = sin6_null;
7289 			sin6->sin6_family = AF_INET6;
7290 			sin6->sin6_flowinfo =
7291 			    tcp->tcp_ip6h->ip6_vcf &
7292 			    ~IPV6_VERS_AND_FLOW_MASK;
7293 			sin6->sin6_addr = tcp->tcp_remote_v6;
7294 			sin6->sin6_port = tcp->tcp_fport;
7295 
7296 			ackmp->b_wptr = (uchar_t *)&sin6[1];
7297 		}
7298 	}
7299 	putnext(tcp->tcp_rq, ackmp);
7300 }
7301 
7302 /*
7303  * Handle reinitialization of a tcp structure.
7304  * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE.
7305  */
7306 static void
7307 tcp_reinit(tcp_t *tcp)
7308 {
7309 	mblk_t	*mp;
7310 	int 	err;
7311 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7312 
7313 	TCP_STAT(tcps, tcp_reinit_calls);
7314 
7315 	/* tcp_reinit should never be called for detached tcp_t's */
7316 	ASSERT(tcp->tcp_listener == NULL);
7317 	ASSERT((tcp->tcp_family == AF_INET &&
7318 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7319 	    (tcp->tcp_family == AF_INET6 &&
7320 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7321 	    tcp->tcp_ipversion == IPV6_VERSION)));
7322 
7323 	/* Cancel outstanding timers */
7324 	tcp_timers_stop(tcp);
7325 
7326 	/*
7327 	 * Reset everything in the state vector, after updating global
7328 	 * MIB data from instance counters.
7329 	 */
7330 	UPDATE_MIB(&tcps->tcps_mib, tcpHCInSegs, tcp->tcp_ibsegs);
7331 	tcp->tcp_ibsegs = 0;
7332 	UPDATE_MIB(&tcps->tcps_mib, tcpHCOutSegs, tcp->tcp_obsegs);
7333 	tcp->tcp_obsegs = 0;
7334 
7335 	tcp_close_mpp(&tcp->tcp_xmit_head);
7336 	if (tcp->tcp_snd_zcopy_aware)
7337 		tcp_zcopy_notify(tcp);
7338 	tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL;
7339 	tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0;
7340 	mutex_enter(&tcp->tcp_non_sq_lock);
7341 	if (tcp->tcp_flow_stopped &&
7342 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
7343 		tcp_clrqfull(tcp);
7344 	}
7345 	mutex_exit(&tcp->tcp_non_sq_lock);
7346 	tcp_close_mpp(&tcp->tcp_reass_head);
7347 	tcp->tcp_reass_tail = NULL;
7348 	if (tcp->tcp_rcv_list != NULL) {
7349 		/* Free b_next chain */
7350 		tcp_close_mpp(&tcp->tcp_rcv_list);
7351 		tcp->tcp_rcv_last_head = NULL;
7352 		tcp->tcp_rcv_last_tail = NULL;
7353 		tcp->tcp_rcv_cnt = 0;
7354 	}
7355 	tcp->tcp_rcv_last_tail = NULL;
7356 
7357 	if ((mp = tcp->tcp_urp_mp) != NULL) {
7358 		freemsg(mp);
7359 		tcp->tcp_urp_mp = NULL;
7360 	}
7361 	if ((mp = tcp->tcp_urp_mark_mp) != NULL) {
7362 		freemsg(mp);
7363 		tcp->tcp_urp_mark_mp = NULL;
7364 	}
7365 	if (tcp->tcp_fused_sigurg_mp != NULL) {
7366 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
7367 		freeb(tcp->tcp_fused_sigurg_mp);
7368 		tcp->tcp_fused_sigurg_mp = NULL;
7369 	}
7370 	if (tcp->tcp_ordrel_mp != NULL) {
7371 		ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
7372 		freeb(tcp->tcp_ordrel_mp);
7373 		tcp->tcp_ordrel_mp = NULL;
7374 	}
7375 
7376 	/*
7377 	 * Following is a union with two members which are
7378 	 * identical types and size so the following cleanup
7379 	 * is enough.
7380 	 */
7381 	tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind);
7382 
7383 	CL_INET_DISCONNECT(tcp->tcp_connp, tcp);
7384 
7385 	/*
7386 	 * The connection can't be on the tcp_time_wait_head list
7387 	 * since it is not detached.
7388 	 */
7389 	ASSERT(tcp->tcp_time_wait_next == NULL);
7390 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7391 	ASSERT(tcp->tcp_time_wait_expire == 0);
7392 
7393 	if (tcp->tcp_kssl_pending) {
7394 		tcp->tcp_kssl_pending = B_FALSE;
7395 
7396 		/* Don't reset if the initialized by bind. */
7397 		if (tcp->tcp_kssl_ent != NULL) {
7398 			kssl_release_ent(tcp->tcp_kssl_ent, NULL,
7399 			    KSSL_NO_PROXY);
7400 		}
7401 	}
7402 	if (tcp->tcp_kssl_ctx != NULL) {
7403 		kssl_release_ctx(tcp->tcp_kssl_ctx);
7404 		tcp->tcp_kssl_ctx = NULL;
7405 	}
7406 
7407 	/*
7408 	 * Reset/preserve other values
7409 	 */
7410 	tcp_reinit_values(tcp);
7411 	ipcl_hash_remove(tcp->tcp_connp);
7412 	conn_delete_ire(tcp->tcp_connp, NULL);
7413 	tcp_ipsec_cleanup(tcp);
7414 
7415 	if (tcp->tcp_conn_req_max != 0) {
7416 		/*
7417 		 * This is the case when a TLI program uses the same
7418 		 * transport end point to accept a connection.  This
7419 		 * makes the TCP both a listener and acceptor.  When
7420 		 * this connection is closed, we need to set the state
7421 		 * back to TCPS_LISTEN.  Make sure that the eager list
7422 		 * is reinitialized.
7423 		 *
7424 		 * Note that this stream is still bound to the four
7425 		 * tuples of the previous connection in IP.  If a new
7426 		 * SYN with different foreign address comes in, IP will
7427 		 * not find it and will send it to the global queue.  In
7428 		 * the global queue, TCP will do a tcp_lookup_listener()
7429 		 * to find this stream.  This works because this stream
7430 		 * is only removed from connected hash.
7431 		 *
7432 		 */
7433 		tcp->tcp_state = TCPS_LISTEN;
7434 		tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
7435 		tcp->tcp_eager_next_drop_q0 = tcp;
7436 		tcp->tcp_eager_prev_drop_q0 = tcp;
7437 		tcp->tcp_connp->conn_recv = tcp_conn_request;
7438 		if (tcp->tcp_family == AF_INET6) {
7439 			ASSERT(tcp->tcp_connp->conn_af_isv6);
7440 			(void) ipcl_bind_insert_v6(tcp->tcp_connp, IPPROTO_TCP,
7441 			    &tcp->tcp_ip6h->ip6_src, tcp->tcp_lport);
7442 		} else {
7443 			ASSERT(!tcp->tcp_connp->conn_af_isv6);
7444 			(void) ipcl_bind_insert(tcp->tcp_connp, IPPROTO_TCP,
7445 			    tcp->tcp_ipha->ipha_src, tcp->tcp_lport);
7446 		}
7447 	} else {
7448 		tcp->tcp_state = TCPS_BOUND;
7449 	}
7450 
7451 	/*
7452 	 * Initialize to default values
7453 	 * Can't fail since enough header template space already allocated
7454 	 * at open().
7455 	 */
7456 	err = tcp_init_values(tcp);
7457 	ASSERT(err == 0);
7458 	/* Restore state in tcp_tcph */
7459 	bcopy(&tcp->tcp_lport, tcp->tcp_tcph->th_lport, TCP_PORT_LEN);
7460 	if (tcp->tcp_ipversion == IPV4_VERSION)
7461 		tcp->tcp_ipha->ipha_src = tcp->tcp_bound_source;
7462 	else
7463 		tcp->tcp_ip6h->ip6_src = tcp->tcp_bound_source_v6;
7464 	/*
7465 	 * Copy of the src addr. in tcp_t is needed in tcp_t
7466 	 * since the lookup funcs can only lookup on tcp_t
7467 	 */
7468 	tcp->tcp_ip_src_v6 = tcp->tcp_bound_source_v6;
7469 
7470 	ASSERT(tcp->tcp_ptpbhn != NULL);
7471 	if (!IPCL_IS_NONSTR(tcp->tcp_connp))
7472 		tcp->tcp_rq->q_hiwat = tcps->tcps_recv_hiwat;
7473 	tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat;
7474 	tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat;
7475 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
7476 	tcp->tcp_mss = tcp->tcp_ipversion != IPV4_VERSION ?
7477 	    tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4;
7478 }
7479 
7480 /*
7481  * Force values to zero that need be zero.
7482  * Do not touch values asociated with the BOUND or LISTEN state
7483  * since the connection will end up in that state after the reinit.
7484  * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t
7485  * structure!
7486  */
7487 static void
7488 tcp_reinit_values(tcp)
7489 	tcp_t *tcp;
7490 {
7491 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7492 
7493 #ifndef	lint
7494 #define	DONTCARE(x)
7495 #define	PRESERVE(x)
7496 #else
7497 #define	DONTCARE(x)	((x) = (x))
7498 #define	PRESERVE(x)	((x) = (x))
7499 #endif	/* lint */
7500 
7501 	PRESERVE(tcp->tcp_bind_hash_port);
7502 	PRESERVE(tcp->tcp_bind_hash);
7503 	PRESERVE(tcp->tcp_ptpbhn);
7504 	PRESERVE(tcp->tcp_acceptor_hash);
7505 	PRESERVE(tcp->tcp_ptpahn);
7506 
7507 	/* Should be ASSERT NULL on these with new code! */
7508 	ASSERT(tcp->tcp_time_wait_next == NULL);
7509 	ASSERT(tcp->tcp_time_wait_prev == NULL);
7510 	ASSERT(tcp->tcp_time_wait_expire == 0);
7511 	PRESERVE(tcp->tcp_state);
7512 	PRESERVE(tcp->tcp_rq);
7513 	PRESERVE(tcp->tcp_wq);
7514 
7515 	ASSERT(tcp->tcp_xmit_head == NULL);
7516 	ASSERT(tcp->tcp_xmit_last == NULL);
7517 	ASSERT(tcp->tcp_unsent == 0);
7518 	ASSERT(tcp->tcp_xmit_tail == NULL);
7519 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
7520 
7521 	tcp->tcp_snxt = 0;			/* Displayed in mib */
7522 	tcp->tcp_suna = 0;			/* Displayed in mib */
7523 	tcp->tcp_swnd = 0;
7524 	DONTCARE(tcp->tcp_cwnd);		/* Init in tcp_mss_set */
7525 
7526 	ASSERT(tcp->tcp_ibsegs == 0);
7527 	ASSERT(tcp->tcp_obsegs == 0);
7528 
7529 	if (tcp->tcp_iphc != NULL) {
7530 		ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7531 		bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
7532 	}
7533 
7534 	DONTCARE(tcp->tcp_naglim);		/* Init in tcp_init_values */
7535 	DONTCARE(tcp->tcp_hdr_len);		/* Init in tcp_init_values */
7536 	DONTCARE(tcp->tcp_ipha);
7537 	DONTCARE(tcp->tcp_ip6h);
7538 	DONTCARE(tcp->tcp_ip_hdr_len);
7539 	DONTCARE(tcp->tcp_tcph);
7540 	DONTCARE(tcp->tcp_tcp_hdr_len);		/* Init in tcp_init_values */
7541 	tcp->tcp_valid_bits = 0;
7542 
7543 	DONTCARE(tcp->tcp_xmit_hiwater);	/* Init in tcp_init_values */
7544 	DONTCARE(tcp->tcp_timer_backoff);	/* Init in tcp_init_values */
7545 	DONTCARE(tcp->tcp_last_recv_time);	/* Init in tcp_init_values */
7546 	tcp->tcp_last_rcv_lbolt = 0;
7547 
7548 	tcp->tcp_init_cwnd = 0;
7549 
7550 	tcp->tcp_urp_last_valid = 0;
7551 	tcp->tcp_hard_binding = 0;
7552 	tcp->tcp_hard_bound = 0;
7553 	PRESERVE(tcp->tcp_cred);
7554 	PRESERVE(tcp->tcp_cpid);
7555 	PRESERVE(tcp->tcp_open_time);
7556 	PRESERVE(tcp->tcp_exclbind);
7557 
7558 	tcp->tcp_fin_acked = 0;
7559 	tcp->tcp_fin_rcvd = 0;
7560 	tcp->tcp_fin_sent = 0;
7561 	tcp->tcp_ordrel_done = 0;
7562 
7563 	tcp->tcp_debug = 0;
7564 	tcp->tcp_dontroute = 0;
7565 	tcp->tcp_broadcast = 0;
7566 
7567 	tcp->tcp_useloopback = 0;
7568 	tcp->tcp_reuseaddr = 0;
7569 	tcp->tcp_oobinline = 0;
7570 	tcp->tcp_dgram_errind = 0;
7571 
7572 	tcp->tcp_detached = 0;
7573 	tcp->tcp_bind_pending = 0;
7574 	tcp->tcp_unbind_pending = 0;
7575 
7576 	tcp->tcp_snd_ws_ok = B_FALSE;
7577 	tcp->tcp_snd_ts_ok = B_FALSE;
7578 	tcp->tcp_linger = 0;
7579 	tcp->tcp_ka_enabled = 0;
7580 	tcp->tcp_zero_win_probe = 0;
7581 
7582 	tcp->tcp_loopback = 0;
7583 	tcp->tcp_refuse = 0;
7584 	tcp->tcp_localnet = 0;
7585 	tcp->tcp_syn_defense = 0;
7586 	tcp->tcp_set_timer = 0;
7587 
7588 	tcp->tcp_active_open = 0;
7589 	tcp->tcp_rexmit = B_FALSE;
7590 	tcp->tcp_xmit_zc_clean = B_FALSE;
7591 
7592 	tcp->tcp_snd_sack_ok = B_FALSE;
7593 	PRESERVE(tcp->tcp_recvdstaddr);
7594 	tcp->tcp_hwcksum = B_FALSE;
7595 
7596 	tcp->tcp_ire_ill_check_done = B_FALSE;
7597 	DONTCARE(tcp->tcp_maxpsz);		/* Init in tcp_init_values */
7598 
7599 	tcp->tcp_mdt = B_FALSE;
7600 	tcp->tcp_mdt_hdr_head = 0;
7601 	tcp->tcp_mdt_hdr_tail = 0;
7602 
7603 	tcp->tcp_conn_def_q0 = 0;
7604 	tcp->tcp_ip_forward_progress = B_FALSE;
7605 	tcp->tcp_anon_priv_bind = 0;
7606 	tcp->tcp_ecn_ok = B_FALSE;
7607 
7608 	tcp->tcp_cwr = B_FALSE;
7609 	tcp->tcp_ecn_echo_on = B_FALSE;
7610 
7611 	if (tcp->tcp_sack_info != NULL) {
7612 		if (tcp->tcp_notsack_list != NULL) {
7613 			TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
7614 		}
7615 		kmem_cache_free(tcp_sack_info_cache, tcp->tcp_sack_info);
7616 		tcp->tcp_sack_info = NULL;
7617 	}
7618 
7619 	tcp->tcp_rcv_ws = 0;
7620 	tcp->tcp_snd_ws = 0;
7621 	tcp->tcp_ts_recent = 0;
7622 	tcp->tcp_rnxt = 0;			/* Displayed in mib */
7623 	DONTCARE(tcp->tcp_rwnd);		/* Set in tcp_reinit() */
7624 	tcp->tcp_if_mtu = 0;
7625 
7626 	ASSERT(tcp->tcp_reass_head == NULL);
7627 	ASSERT(tcp->tcp_reass_tail == NULL);
7628 
7629 	tcp->tcp_cwnd_cnt = 0;
7630 
7631 	ASSERT(tcp->tcp_rcv_list == NULL);
7632 	ASSERT(tcp->tcp_rcv_last_head == NULL);
7633 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
7634 	ASSERT(tcp->tcp_rcv_cnt == 0);
7635 
7636 	DONTCARE(tcp->tcp_cwnd_ssthresh);	/* Init in tcp_adapt_ire */
7637 	DONTCARE(tcp->tcp_cwnd_max);		/* Init in tcp_init_values */
7638 	tcp->tcp_csuna = 0;
7639 
7640 	tcp->tcp_rto = 0;			/* Displayed in MIB */
7641 	DONTCARE(tcp->tcp_rtt_sa);		/* Init in tcp_init_values */
7642 	DONTCARE(tcp->tcp_rtt_sd);		/* Init in tcp_init_values */
7643 	tcp->tcp_rtt_update = 0;
7644 
7645 	DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7646 	DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */
7647 
7648 	tcp->tcp_rack = 0;			/* Displayed in mib */
7649 	tcp->tcp_rack_cnt = 0;
7650 	tcp->tcp_rack_cur_max = 0;
7651 	tcp->tcp_rack_abs_max = 0;
7652 
7653 	tcp->tcp_max_swnd = 0;
7654 
7655 	ASSERT(tcp->tcp_listener == NULL);
7656 
7657 	DONTCARE(tcp->tcp_xmit_lowater);	/* Init in tcp_init_values */
7658 
7659 	DONTCARE(tcp->tcp_irs);			/* tcp_valid_bits cleared */
7660 	DONTCARE(tcp->tcp_iss);			/* tcp_valid_bits cleared */
7661 	DONTCARE(tcp->tcp_fss);			/* tcp_valid_bits cleared */
7662 	DONTCARE(tcp->tcp_urg);			/* tcp_valid_bits cleared */
7663 
7664 	ASSERT(tcp->tcp_conn_req_cnt_q == 0);
7665 	ASSERT(tcp->tcp_conn_req_cnt_q0 == 0);
7666 	PRESERVE(tcp->tcp_conn_req_max);
7667 	PRESERVE(tcp->tcp_conn_req_seqnum);
7668 
7669 	DONTCARE(tcp->tcp_ip_hdr_len);		/* Init in tcp_init_values */
7670 	DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */
7671 	DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */
7672 	DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */
7673 	DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */
7674 
7675 	tcp->tcp_lingertime = 0;
7676 
7677 	DONTCARE(tcp->tcp_urp_last);	/* tcp_urp_last_valid is cleared */
7678 	ASSERT(tcp->tcp_urp_mp == NULL);
7679 	ASSERT(tcp->tcp_urp_mark_mp == NULL);
7680 	ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
7681 
7682 	ASSERT(tcp->tcp_eager_next_q == NULL);
7683 	ASSERT(tcp->tcp_eager_last_q == NULL);
7684 	ASSERT((tcp->tcp_eager_next_q0 == NULL &&
7685 	    tcp->tcp_eager_prev_q0 == NULL) ||
7686 	    tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0);
7687 	ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL);
7688 
7689 	ASSERT((tcp->tcp_eager_next_drop_q0 == NULL &&
7690 	    tcp->tcp_eager_prev_drop_q0 == NULL) ||
7691 	    tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0);
7692 
7693 	tcp->tcp_client_errno = 0;
7694 
7695 	DONTCARE(tcp->tcp_sum);			/* Init in tcp_init_values */
7696 
7697 	tcp->tcp_remote_v6 = ipv6_all_zeros;	/* Displayed in MIB */
7698 
7699 	PRESERVE(tcp->tcp_bound_source_v6);
7700 	tcp->tcp_last_sent_len = 0;
7701 	tcp->tcp_dupack_cnt = 0;
7702 
7703 	tcp->tcp_fport = 0;			/* Displayed in MIB */
7704 	PRESERVE(tcp->tcp_lport);
7705 
7706 	PRESERVE(tcp->tcp_acceptor_lockp);
7707 
7708 	ASSERT(tcp->tcp_ordrel_mp == NULL);
7709 	PRESERVE(tcp->tcp_acceptor_id);
7710 	DONTCARE(tcp->tcp_ipsec_overhead);
7711 
7712 	PRESERVE(tcp->tcp_family);
7713 	if (tcp->tcp_family == AF_INET6) {
7714 		tcp->tcp_ipversion = IPV6_VERSION;
7715 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
7716 	} else {
7717 		tcp->tcp_ipversion = IPV4_VERSION;
7718 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
7719 	}
7720 
7721 	tcp->tcp_bound_if = 0;
7722 	tcp->tcp_ipv6_recvancillary = 0;
7723 	tcp->tcp_recvifindex = 0;
7724 	tcp->tcp_recvhops = 0;
7725 	tcp->tcp_closed = 0;
7726 	tcp->tcp_cleandeathtag = 0;
7727 	if (tcp->tcp_hopopts != NULL) {
7728 		mi_free(tcp->tcp_hopopts);
7729 		tcp->tcp_hopopts = NULL;
7730 		tcp->tcp_hopoptslen = 0;
7731 	}
7732 	ASSERT(tcp->tcp_hopoptslen == 0);
7733 	if (tcp->tcp_dstopts != NULL) {
7734 		mi_free(tcp->tcp_dstopts);
7735 		tcp->tcp_dstopts = NULL;
7736 		tcp->tcp_dstoptslen = 0;
7737 	}
7738 	ASSERT(tcp->tcp_dstoptslen == 0);
7739 	if (tcp->tcp_rtdstopts != NULL) {
7740 		mi_free(tcp->tcp_rtdstopts);
7741 		tcp->tcp_rtdstopts = NULL;
7742 		tcp->tcp_rtdstoptslen = 0;
7743 	}
7744 	ASSERT(tcp->tcp_rtdstoptslen == 0);
7745 	if (tcp->tcp_rthdr != NULL) {
7746 		mi_free(tcp->tcp_rthdr);
7747 		tcp->tcp_rthdr = NULL;
7748 		tcp->tcp_rthdrlen = 0;
7749 	}
7750 	ASSERT(tcp->tcp_rthdrlen == 0);
7751 	PRESERVE(tcp->tcp_drop_opt_ack_cnt);
7752 
7753 	/* Reset fusion-related fields */
7754 	tcp->tcp_fused = B_FALSE;
7755 	tcp->tcp_unfusable = B_FALSE;
7756 	tcp->tcp_fused_sigurg = B_FALSE;
7757 	tcp->tcp_direct_sockfs = B_FALSE;
7758 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7759 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
7760 	tcp->tcp_loopback_peer = NULL;
7761 	tcp->tcp_fuse_rcv_hiwater = 0;
7762 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7763 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7764 
7765 	tcp->tcp_lso = B_FALSE;
7766 
7767 	tcp->tcp_in_ack_unsent = 0;
7768 	tcp->tcp_cork = B_FALSE;
7769 	tcp->tcp_tconnind_started = B_FALSE;
7770 
7771 	PRESERVE(tcp->tcp_squeue_bytes);
7772 
7773 	ASSERT(tcp->tcp_kssl_ctx == NULL);
7774 	ASSERT(!tcp->tcp_kssl_pending);
7775 	PRESERVE(tcp->tcp_kssl_ent);
7776 
7777 	tcp->tcp_closemp_used = B_FALSE;
7778 
7779 	PRESERVE(tcp->tcp_rsrv_mp);
7780 	PRESERVE(tcp->tcp_rsrv_mp_lock);
7781 
7782 #ifdef DEBUG
7783 	DONTCARE(tcp->tcmp_stk[0]);
7784 #endif
7785 
7786 	PRESERVE(tcp->tcp_connid);
7787 
7788 
7789 #undef	DONTCARE
7790 #undef	PRESERVE
7791 }
7792 
7793 /*
7794  * Allocate necessary resources and initialize state vector.
7795  * Guaranteed not to fail so that when an error is returned,
7796  * the caller doesn't need to do any additional cleanup.
7797  */
7798 int
7799 tcp_init(tcp_t *tcp, queue_t *q)
7800 {
7801 	int	err;
7802 
7803 	tcp->tcp_rq = q;
7804 	tcp->tcp_wq = WR(q);
7805 	tcp->tcp_state = TCPS_IDLE;
7806 	if ((err = tcp_init_values(tcp)) != 0)
7807 		tcp_timers_stop(tcp);
7808 	return (err);
7809 }
7810 
7811 static int
7812 tcp_init_values(tcp_t *tcp)
7813 {
7814 	int	err;
7815 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7816 
7817 	ASSERT((tcp->tcp_family == AF_INET &&
7818 	    tcp->tcp_ipversion == IPV4_VERSION) ||
7819 	    (tcp->tcp_family == AF_INET6 &&
7820 	    (tcp->tcp_ipversion == IPV4_VERSION ||
7821 	    tcp->tcp_ipversion == IPV6_VERSION)));
7822 
7823 	/*
7824 	 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO
7825 	 * will be close to tcp_rexmit_interval_initial.  By doing this, we
7826 	 * allow the algorithm to adjust slowly to large fluctuations of RTT
7827 	 * during first few transmissions of a connection as seen in slow
7828 	 * links.
7829 	 */
7830 	tcp->tcp_rtt_sa = tcps->tcps_rexmit_interval_initial << 2;
7831 	tcp->tcp_rtt_sd = tcps->tcps_rexmit_interval_initial >> 1;
7832 	tcp->tcp_rto = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
7833 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5) +
7834 	    tcps->tcps_conn_grace_period;
7835 	if (tcp->tcp_rto < tcps->tcps_rexmit_interval_min)
7836 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
7837 	tcp->tcp_timer_backoff = 0;
7838 	tcp->tcp_ms_we_have_waited = 0;
7839 	tcp->tcp_last_recv_time = lbolt;
7840 	tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_;
7841 	tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN;
7842 	tcp->tcp_snd_burst = TCP_CWND_INFINITE;
7843 
7844 	tcp->tcp_maxpsz = tcps->tcps_maxpsz_multiplier;
7845 
7846 	tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval;
7847 	tcp->tcp_first_ctimer_threshold = tcps->tcps_ip_notify_cinterval;
7848 	tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval;
7849 	/*
7850 	 * Fix it to tcp_ip_abort_linterval later if it turns out to be a
7851 	 * passive open.
7852 	 */
7853 	tcp->tcp_second_ctimer_threshold = tcps->tcps_ip_abort_cinterval;
7854 
7855 	tcp->tcp_naglim = tcps->tcps_naglim_def;
7856 
7857 	/* NOTE:  ISS is now set in tcp_adapt_ire(). */
7858 
7859 	tcp->tcp_mdt_hdr_head = 0;
7860 	tcp->tcp_mdt_hdr_tail = 0;
7861 
7862 	/* Reset fusion-related fields */
7863 	tcp->tcp_fused = B_FALSE;
7864 	tcp->tcp_unfusable = B_FALSE;
7865 	tcp->tcp_fused_sigurg = B_FALSE;
7866 	tcp->tcp_direct_sockfs = B_FALSE;
7867 	tcp->tcp_fuse_syncstr_stopped = B_FALSE;
7868 	tcp->tcp_fuse_syncstr_plugged = B_FALSE;
7869 	tcp->tcp_loopback_peer = NULL;
7870 	tcp->tcp_fuse_rcv_hiwater = 0;
7871 	tcp->tcp_fuse_rcv_unread_hiwater = 0;
7872 	tcp->tcp_fuse_rcv_unread_cnt = 0;
7873 
7874 	/* Initialize the header template */
7875 	if (tcp->tcp_ipversion == IPV4_VERSION) {
7876 		err = tcp_header_init_ipv4(tcp);
7877 	} else {
7878 		err = tcp_header_init_ipv6(tcp);
7879 	}
7880 	if (err)
7881 		return (err);
7882 
7883 	/*
7884 	 * Init the window scale to the max so tcp_rwnd_set() won't pare
7885 	 * down tcp_rwnd. tcp_adapt_ire() will set the right value later.
7886 	 */
7887 	tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT;
7888 	tcp->tcp_xmit_lowater = tcps->tcps_xmit_lowat;
7889 	tcp->tcp_xmit_hiwater = tcps->tcps_xmit_hiwat;
7890 
7891 	tcp->tcp_cork = B_FALSE;
7892 	/*
7893 	 * Init the tcp_debug option.  This value determines whether TCP
7894 	 * calls strlog() to print out debug messages.  Doing this
7895 	 * initialization here means that this value is not inherited thru
7896 	 * tcp_reinit().
7897 	 */
7898 	tcp->tcp_debug = tcps->tcps_dbg;
7899 
7900 	tcp->tcp_ka_interval = tcps->tcps_keepalive_interval;
7901 	tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval;
7902 
7903 	return (0);
7904 }
7905 
7906 /*
7907  * Initialize the IPv4 header. Loses any record of any IP options.
7908  */
7909 static int
7910 tcp_header_init_ipv4(tcp_t *tcp)
7911 {
7912 	tcph_t		*tcph;
7913 	uint32_t	sum;
7914 	conn_t		*connp;
7915 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7916 
7917 	/*
7918 	 * This is a simple initialization. If there's
7919 	 * already a template, it should never be too small,
7920 	 * so reuse it.  Otherwise, allocate space for the new one.
7921 	 */
7922 	if (tcp->tcp_iphc == NULL) {
7923 		ASSERT(tcp->tcp_iphc_len == 0);
7924 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
7925 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
7926 		if (tcp->tcp_iphc == NULL) {
7927 			tcp->tcp_iphc_len = 0;
7928 			return (ENOMEM);
7929 		}
7930 	}
7931 
7932 	/* options are gone; may need a new label */
7933 	connp = tcp->tcp_connp;
7934 	connp->conn_mlp_type = mlptSingle;
7935 	connp->conn_ulp_labeled = !is_system_labeled();
7936 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
7937 	tcp->tcp_ipha = (ipha_t *)tcp->tcp_iphc;
7938 	tcp->tcp_ip6h = NULL;
7939 	tcp->tcp_ipversion = IPV4_VERSION;
7940 	tcp->tcp_hdr_len = sizeof (ipha_t) + sizeof (tcph_t);
7941 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
7942 	tcp->tcp_ip_hdr_len = sizeof (ipha_t);
7943 	tcp->tcp_ipha->ipha_length = htons(sizeof (ipha_t) + sizeof (tcph_t));
7944 	tcp->tcp_ipha->ipha_version_and_hdr_length
7945 	    = (IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS;
7946 	tcp->tcp_ipha->ipha_ident = 0;
7947 
7948 	tcp->tcp_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
7949 	tcp->tcp_tos = 0;
7950 	tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0;
7951 	tcp->tcp_ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
7952 	tcp->tcp_ipha->ipha_protocol = IPPROTO_TCP;
7953 
7954 	tcph = (tcph_t *)(tcp->tcp_iphc + sizeof (ipha_t));
7955 	tcp->tcp_tcph = tcph;
7956 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
7957 	/*
7958 	 * IP wants our header length in the checksum field to
7959 	 * allow it to perform a single pseudo-header+checksum
7960 	 * calculation on behalf of TCP.
7961 	 * Include the adjustment for a source route once IP_OPTIONS is set.
7962 	 */
7963 	sum = sizeof (tcph_t) + tcp->tcp_sum;
7964 	sum = (sum >> 16) + (sum & 0xFFFF);
7965 	U16_TO_ABE16(sum, tcph->th_sum);
7966 	return (0);
7967 }
7968 
7969 /*
7970  * Initialize the IPv6 header. Loses any record of any IPv6 extension headers.
7971  */
7972 static int
7973 tcp_header_init_ipv6(tcp_t *tcp)
7974 {
7975 	tcph_t	*tcph;
7976 	uint32_t	sum;
7977 	conn_t	*connp;
7978 	tcp_stack_t	*tcps = tcp->tcp_tcps;
7979 
7980 	/*
7981 	 * This is a simple initialization. If there's
7982 	 * already a template, it should never be too small,
7983 	 * so reuse it. Otherwise, allocate space for the new one.
7984 	 * Ensure that there is enough space to "downgrade" the tcp_t
7985 	 * to an IPv4 tcp_t. This requires having space for a full load
7986 	 * of IPv4 options, as well as a full load of TCP options
7987 	 * (TCP_MAX_COMBINED_HEADER_LENGTH, 120 bytes); this is more space
7988 	 * than a v6 header and a TCP header with a full load of TCP options
7989 	 * (IPV6_HDR_LEN is 40 bytes; TCP_MAX_HDR_LENGTH is 60 bytes).
7990 	 * We want to avoid reallocation in the "downgraded" case when
7991 	 * processing outbound IPv4 options.
7992 	 */
7993 	if (tcp->tcp_iphc == NULL) {
7994 		ASSERT(tcp->tcp_iphc_len == 0);
7995 		tcp->tcp_iphc_len = TCP_MAX_COMBINED_HEADER_LENGTH;
7996 		tcp->tcp_iphc = kmem_cache_alloc(tcp_iphc_cache, KM_NOSLEEP);
7997 		if (tcp->tcp_iphc == NULL) {
7998 			tcp->tcp_iphc_len = 0;
7999 			return (ENOMEM);
8000 		}
8001 	}
8002 
8003 	/* options are gone; may need a new label */
8004 	connp = tcp->tcp_connp;
8005 	connp->conn_mlp_type = mlptSingle;
8006 	connp->conn_ulp_labeled = !is_system_labeled();
8007 
8008 	ASSERT(tcp->tcp_iphc_len >= TCP_MAX_COMBINED_HEADER_LENGTH);
8009 	tcp->tcp_ipversion = IPV6_VERSION;
8010 	tcp->tcp_hdr_len = IPV6_HDR_LEN + sizeof (tcph_t);
8011 	tcp->tcp_tcp_hdr_len = sizeof (tcph_t);
8012 	tcp->tcp_ip_hdr_len = IPV6_HDR_LEN;
8013 	tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
8014 	tcp->tcp_ipha = NULL;
8015 
8016 	/* Initialize the header template */
8017 
8018 	tcp->tcp_ip6h->ip6_vcf = IPV6_DEFAULT_VERS_AND_FLOW;
8019 	tcp->tcp_ip6h->ip6_plen = ntohs(sizeof (tcph_t));
8020 	tcp->tcp_ip6h->ip6_nxt = IPPROTO_TCP;
8021 	tcp->tcp_ip6h->ip6_hops = (uint8_t)tcps->tcps_ipv6_hoplimit;
8022 
8023 	tcph = (tcph_t *)(tcp->tcp_iphc + IPV6_HDR_LEN);
8024 	tcp->tcp_tcph = tcph;
8025 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
8026 	/*
8027 	 * IP wants our header length in the checksum field to
8028 	 * allow it to perform a single psuedo-header+checksum
8029 	 * calculation on behalf of TCP.
8030 	 * Include the adjustment for a source route when IPV6_RTHDR is set.
8031 	 */
8032 	sum = sizeof (tcph_t) + tcp->tcp_sum;
8033 	sum = (sum >> 16) + (sum & 0xFFFF);
8034 	U16_TO_ABE16(sum, tcph->th_sum);
8035 	return (0);
8036 }
8037 
8038 /* At minimum we need 8 bytes in the TCP header for the lookup */
8039 #define	ICMP_MIN_TCP_HDR	8
8040 
8041 /*
8042  * tcp_icmp_error is called by tcp_rput_other to process ICMP error messages
8043  * passed up by IP. The message is always received on the correct tcp_t.
8044  * Assumes that IP has pulled up everything up to and including the ICMP header.
8045  */
8046 void
8047 tcp_icmp_error(tcp_t *tcp, mblk_t *mp)
8048 {
8049 	icmph_t *icmph;
8050 	ipha_t	*ipha;
8051 	int	iph_hdr_length;
8052 	tcph_t	*tcph;
8053 	boolean_t ipsec_mctl = B_FALSE;
8054 	boolean_t secure;
8055 	mblk_t *first_mp = mp;
8056 	int32_t new_mss;
8057 	uint32_t ratio;
8058 	size_t mp_size = MBLKL(mp);
8059 	uint32_t seg_seq;
8060 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8061 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
8062 
8063 	/* Assume IP provides aligned packets - otherwise toss */
8064 	if (!OK_32PTR(mp->b_rptr)) {
8065 		freemsg(mp);
8066 		return;
8067 	}
8068 
8069 	/*
8070 	 * Since ICMP errors are normal data marked with M_CTL when sent
8071 	 * to TCP or UDP, we have to look for a IPSEC_IN value to identify
8072 	 * packets starting with an ipsec_info_t, see ipsec_info.h.
8073 	 */
8074 	if ((mp_size == sizeof (ipsec_info_t)) &&
8075 	    (((ipsec_info_t *)mp->b_rptr)->ipsec_info_type == IPSEC_IN)) {
8076 		ASSERT(mp->b_cont != NULL);
8077 		mp = mp->b_cont;
8078 		/* IP should have done this */
8079 		ASSERT(OK_32PTR(mp->b_rptr));
8080 		mp_size = MBLKL(mp);
8081 		ipsec_mctl = B_TRUE;
8082 	}
8083 
8084 	/*
8085 	 * Verify that we have a complete outer IP header. If not, drop it.
8086 	 */
8087 	if (mp_size < sizeof (ipha_t)) {
8088 noticmpv4:
8089 		freemsg(first_mp);
8090 		return;
8091 	}
8092 
8093 	ipha = (ipha_t *)mp->b_rptr;
8094 	/*
8095 	 * Verify IP version. Anything other than IPv4 or IPv6 packet is sent
8096 	 * upstream. ICMPv6 is handled in tcp_icmp_error_ipv6.
8097 	 */
8098 	switch (IPH_HDR_VERSION(ipha)) {
8099 	case IPV6_VERSION:
8100 		tcp_icmp_error_ipv6(tcp, first_mp, ipsec_mctl);
8101 		return;
8102 	case IPV4_VERSION:
8103 		break;
8104 	default:
8105 		goto noticmpv4;
8106 	}
8107 
8108 	/* Skip past the outer IP and ICMP headers */
8109 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8110 	icmph = (icmph_t *)&mp->b_rptr[iph_hdr_length];
8111 	/*
8112 	 * If we don't have the correct outer IP header length or if the ULP
8113 	 * is not IPPROTO_ICMP or if we don't have a complete inner IP header
8114 	 * send it upstream.
8115 	 */
8116 	if (iph_hdr_length < sizeof (ipha_t) ||
8117 	    ipha->ipha_protocol != IPPROTO_ICMP ||
8118 	    (ipha_t *)&icmph[1] + 1 > (ipha_t *)mp->b_wptr) {
8119 		goto noticmpv4;
8120 	}
8121 	ipha = (ipha_t *)&icmph[1];
8122 
8123 	/* Skip past the inner IP and find the ULP header */
8124 	iph_hdr_length = IPH_HDR_LENGTH(ipha);
8125 	tcph = (tcph_t *)((char *)ipha + iph_hdr_length);
8126 	/*
8127 	 * If we don't have the correct inner IP header length or if the ULP
8128 	 * is not IPPROTO_TCP or if we don't have at least ICMP_MIN_TCP_HDR
8129 	 * bytes of TCP header, drop it.
8130 	 */
8131 	if (iph_hdr_length < sizeof (ipha_t) ||
8132 	    ipha->ipha_protocol != IPPROTO_TCP ||
8133 	    (uchar_t *)tcph + ICMP_MIN_TCP_HDR > mp->b_wptr) {
8134 		goto noticmpv4;
8135 	}
8136 
8137 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
8138 		if (ipsec_mctl) {
8139 			secure = ipsec_in_is_secure(first_mp);
8140 		} else {
8141 			secure = B_FALSE;
8142 		}
8143 		if (secure) {
8144 			/*
8145 			 * If we are willing to accept this in clear
8146 			 * we don't have to verify policy.
8147 			 */
8148 			if (!ipsec_inbound_accept_clear(mp, ipha, NULL)) {
8149 				if (!tcp_check_policy(tcp, first_mp,
8150 				    ipha, NULL, secure, ipsec_mctl)) {
8151 					/*
8152 					 * tcp_check_policy called
8153 					 * ip_drop_packet() on failure.
8154 					 */
8155 					return;
8156 				}
8157 			}
8158 		}
8159 	} else if (ipsec_mctl) {
8160 		/*
8161 		 * This is a hard_bound connection. IP has already
8162 		 * verified policy. We don't have to do it again.
8163 		 */
8164 		freeb(first_mp);
8165 		first_mp = mp;
8166 		ipsec_mctl = B_FALSE;
8167 	}
8168 
8169 	seg_seq = ABE32_TO_U32(tcph->th_seq);
8170 	/*
8171 	 * TCP SHOULD check that the TCP sequence number contained in
8172 	 * payload of the ICMP error message is within the range
8173 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8174 	 */
8175 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8176 		/*
8177 		 * The ICMP message is bogus, just drop it.  But if this is
8178 		 * an ICMP too big message, IP has already changed
8179 		 * the ire_max_frag to the bogus value.  We need to change
8180 		 * it back.
8181 		 */
8182 		if (icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
8183 		    icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
8184 			conn_t *connp = tcp->tcp_connp;
8185 			ire_t *ire;
8186 			int flag;
8187 
8188 			if (tcp->tcp_ipversion == IPV4_VERSION) {
8189 				flag = tcp->tcp_ipha->
8190 				    ipha_fragment_offset_and_flags;
8191 			} else {
8192 				flag = 0;
8193 			}
8194 			mutex_enter(&connp->conn_lock);
8195 			if ((ire = connp->conn_ire_cache) != NULL) {
8196 				mutex_enter(&ire->ire_lock);
8197 				mutex_exit(&connp->conn_lock);
8198 				ire->ire_max_frag = tcp->tcp_if_mtu;
8199 				ire->ire_frag_flag |= flag;
8200 				mutex_exit(&ire->ire_lock);
8201 			} else {
8202 				mutex_exit(&connp->conn_lock);
8203 			}
8204 		}
8205 		goto noticmpv4;
8206 	}
8207 
8208 	switch (icmph->icmph_type) {
8209 	case ICMP_DEST_UNREACHABLE:
8210 		switch (icmph->icmph_code) {
8211 		case ICMP_FRAGMENTATION_NEEDED:
8212 			/*
8213 			 * Reduce the MSS based on the new MTU.  This will
8214 			 * eliminate any fragmentation locally.
8215 			 * N.B.  There may well be some funny side-effects on
8216 			 * the local send policy and the remote receive policy.
8217 			 * Pending further research, we provide
8218 			 * tcp_ignore_path_mtu just in case this proves
8219 			 * disastrous somewhere.
8220 			 *
8221 			 * After updating the MSS, retransmit part of the
8222 			 * dropped segment using the new mss by calling
8223 			 * tcp_wput_data().  Need to adjust all those
8224 			 * params to make sure tcp_wput_data() work properly.
8225 			 */
8226 			if (tcps->tcps_ignore_path_mtu ||
8227 			    tcp->tcp_ipha->ipha_fragment_offset_and_flags == 0)
8228 				break;
8229 
8230 			/*
8231 			 * Decrease the MSS by time stamp options
8232 			 * IP options and IPSEC options. tcp_hdr_len
8233 			 * includes time stamp option and IP option
8234 			 * length.  Note that new_mss may be negative
8235 			 * if tcp_ipsec_overhead is large and the
8236 			 * icmph_du_mtu is the minimum value, which is 68.
8237 			 */
8238 			new_mss = ntohs(icmph->icmph_du_mtu) -
8239 			    tcp->tcp_hdr_len - tcp->tcp_ipsec_overhead;
8240 
8241 			DTRACE_PROBE2(tcp__pmtu__change, tcp_t *, tcp, int,
8242 			    new_mss);
8243 
8244 			/*
8245 			 * Only update the MSS if the new one is
8246 			 * smaller than the previous one.  This is
8247 			 * to avoid problems when getting multiple
8248 			 * ICMP errors for the same MTU.
8249 			 */
8250 			if (new_mss >= tcp->tcp_mss)
8251 				break;
8252 
8253 			/*
8254 			 * Note that we are using the template header's DF
8255 			 * bit in the fast path sending.  So we need to compare
8256 			 * the new mss with both tcps_mss_min and ip_pmtu_min.
8257 			 * And stop doing IPv4 PMTUd if new_mss is less than
8258 			 * MAX(tcps_mss_min, ip_pmtu_min).
8259 			 */
8260 			if (new_mss < tcps->tcps_mss_min ||
8261 			    new_mss < ipst->ips_ip_pmtu_min) {
8262 				tcp->tcp_ipha->ipha_fragment_offset_and_flags =
8263 				    0;
8264 			}
8265 
8266 			ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8267 			ASSERT(ratio >= 1);
8268 			tcp_mss_set(tcp, new_mss, B_TRUE);
8269 
8270 			/*
8271 			 * Make sure we have something to
8272 			 * send.
8273 			 */
8274 			if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8275 			    (tcp->tcp_xmit_head != NULL)) {
8276 				/*
8277 				 * Shrink tcp_cwnd in
8278 				 * proportion to the old MSS/new MSS.
8279 				 */
8280 				tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8281 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8282 				    (tcp->tcp_unsent == 0)) {
8283 					tcp->tcp_rexmit_max = tcp->tcp_fss;
8284 				} else {
8285 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
8286 				}
8287 				tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8288 				tcp->tcp_rexmit = B_TRUE;
8289 				tcp->tcp_dupack_cnt = 0;
8290 				tcp->tcp_snd_burst = TCP_CWND_SS;
8291 				tcp_ss_rexmit(tcp);
8292 			}
8293 			break;
8294 		case ICMP_PORT_UNREACHABLE:
8295 		case ICMP_PROTOCOL_UNREACHABLE:
8296 			switch (tcp->tcp_state) {
8297 			case TCPS_SYN_SENT:
8298 			case TCPS_SYN_RCVD:
8299 				/*
8300 				 * ICMP can snipe away incipient
8301 				 * TCP connections as long as
8302 				 * seq number is same as initial
8303 				 * send seq number.
8304 				 */
8305 				if (seg_seq == tcp->tcp_iss) {
8306 					(void) tcp_clean_death(tcp,
8307 					    ECONNREFUSED, 6);
8308 				}
8309 				break;
8310 			}
8311 			break;
8312 		case ICMP_HOST_UNREACHABLE:
8313 		case ICMP_NET_UNREACHABLE:
8314 			/* Record the error in case we finally time out. */
8315 			if (icmph->icmph_code == ICMP_HOST_UNREACHABLE)
8316 				tcp->tcp_client_errno = EHOSTUNREACH;
8317 			else
8318 				tcp->tcp_client_errno = ENETUNREACH;
8319 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
8320 				if (tcp->tcp_listener != NULL &&
8321 				    tcp->tcp_listener->tcp_syn_defense) {
8322 					/*
8323 					 * Ditch the half-open connection if we
8324 					 * suspect a SYN attack is under way.
8325 					 */
8326 					tcp_ip_ire_mark_advice(tcp);
8327 					(void) tcp_clean_death(tcp,
8328 					    tcp->tcp_client_errno, 7);
8329 				}
8330 			}
8331 			break;
8332 		default:
8333 			break;
8334 		}
8335 		break;
8336 	case ICMP_SOURCE_QUENCH: {
8337 		/*
8338 		 * use a global boolean to control
8339 		 * whether TCP should respond to ICMP_SOURCE_QUENCH.
8340 		 * The default is false.
8341 		 */
8342 		if (tcp_icmp_source_quench) {
8343 			/*
8344 			 * Reduce the sending rate as if we got a
8345 			 * retransmit timeout
8346 			 */
8347 			uint32_t npkt;
8348 
8349 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) /
8350 			    tcp->tcp_mss;
8351 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * tcp->tcp_mss;
8352 			tcp->tcp_cwnd = tcp->tcp_mss;
8353 			tcp->tcp_cwnd_cnt = 0;
8354 		}
8355 		break;
8356 	}
8357 	}
8358 	freemsg(first_mp);
8359 }
8360 
8361 /*
8362  * tcp_icmp_error_ipv6 is called by tcp_rput_other to process ICMPv6
8363  * error messages passed up by IP.
8364  * Assumes that IP has pulled up all the extension headers as well
8365  * as the ICMPv6 header.
8366  */
8367 static void
8368 tcp_icmp_error_ipv6(tcp_t *tcp, mblk_t *mp, boolean_t ipsec_mctl)
8369 {
8370 	icmp6_t *icmp6;
8371 	ip6_t	*ip6h;
8372 	uint16_t	iph_hdr_length;
8373 	tcpha_t	*tcpha;
8374 	uint8_t	*nexthdrp;
8375 	uint32_t new_mss;
8376 	uint32_t ratio;
8377 	boolean_t secure;
8378 	mblk_t *first_mp = mp;
8379 	size_t mp_size;
8380 	uint32_t seg_seq;
8381 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8382 
8383 	/*
8384 	 * The caller has determined if this is an IPSEC_IN packet and
8385 	 * set ipsec_mctl appropriately (see tcp_icmp_error).
8386 	 */
8387 	if (ipsec_mctl)
8388 		mp = mp->b_cont;
8389 
8390 	mp_size = MBLKL(mp);
8391 
8392 	/*
8393 	 * Verify that we have a complete IP header. If not, send it upstream.
8394 	 */
8395 	if (mp_size < sizeof (ip6_t)) {
8396 noticmpv6:
8397 		freemsg(first_mp);
8398 		return;
8399 	}
8400 
8401 	/*
8402 	 * Verify this is an ICMPV6 packet, else send it upstream.
8403 	 */
8404 	ip6h = (ip6_t *)mp->b_rptr;
8405 	if (ip6h->ip6_nxt == IPPROTO_ICMPV6) {
8406 		iph_hdr_length = IPV6_HDR_LEN;
8407 	} else if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length,
8408 	    &nexthdrp) ||
8409 	    *nexthdrp != IPPROTO_ICMPV6) {
8410 		goto noticmpv6;
8411 	}
8412 	icmp6 = (icmp6_t *)&mp->b_rptr[iph_hdr_length];
8413 	ip6h = (ip6_t *)&icmp6[1];
8414 	/*
8415 	 * Verify if we have a complete ICMP and inner IP header.
8416 	 */
8417 	if ((uchar_t *)&ip6h[1] > mp->b_wptr)
8418 		goto noticmpv6;
8419 
8420 	if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &iph_hdr_length, &nexthdrp))
8421 		goto noticmpv6;
8422 	tcpha = (tcpha_t *)((char *)ip6h + iph_hdr_length);
8423 	/*
8424 	 * Validate inner header. If the ULP is not IPPROTO_TCP or if we don't
8425 	 * have at least ICMP_MIN_TCP_HDR bytes of  TCP header drop the
8426 	 * packet.
8427 	 */
8428 	if ((*nexthdrp != IPPROTO_TCP) ||
8429 	    ((uchar_t *)tcpha + ICMP_MIN_TCP_HDR) > mp->b_wptr) {
8430 		goto noticmpv6;
8431 	}
8432 
8433 	/*
8434 	 * ICMP errors come on the right queue or come on
8435 	 * listener/global queue for detached connections and
8436 	 * get switched to the right queue. If it comes on the
8437 	 * right queue, policy check has already been done by IP
8438 	 * and thus free the first_mp without verifying the policy.
8439 	 * If it has come for a non-hard bound connection, we need
8440 	 * to verify policy as IP may not have done it.
8441 	 */
8442 	if (!tcp->tcp_hard_bound) {
8443 		if (ipsec_mctl) {
8444 			secure = ipsec_in_is_secure(first_mp);
8445 		} else {
8446 			secure = B_FALSE;
8447 		}
8448 		if (secure) {
8449 			/*
8450 			 * If we are willing to accept this in clear
8451 			 * we don't have to verify policy.
8452 			 */
8453 			if (!ipsec_inbound_accept_clear(mp, NULL, ip6h)) {
8454 				if (!tcp_check_policy(tcp, first_mp,
8455 				    NULL, ip6h, secure, ipsec_mctl)) {
8456 					/*
8457 					 * tcp_check_policy called
8458 					 * ip_drop_packet() on failure.
8459 					 */
8460 					return;
8461 				}
8462 			}
8463 		}
8464 	} else if (ipsec_mctl) {
8465 		/*
8466 		 * This is a hard_bound connection. IP has already
8467 		 * verified policy. We don't have to do it again.
8468 		 */
8469 		freeb(first_mp);
8470 		first_mp = mp;
8471 		ipsec_mctl = B_FALSE;
8472 	}
8473 
8474 	seg_seq = ntohl(tcpha->tha_seq);
8475 	/*
8476 	 * TCP SHOULD check that the TCP sequence number contained in
8477 	 * payload of the ICMP error message is within the range
8478 	 * SND.UNA <= SEG.SEQ < SND.NXT.
8479 	 */
8480 	if (SEQ_LT(seg_seq, tcp->tcp_suna) || SEQ_GEQ(seg_seq, tcp->tcp_snxt)) {
8481 		/*
8482 		 * If the ICMP message is bogus, should we kill the
8483 		 * connection, or should we just drop the bogus ICMP
8484 		 * message? It would probably make more sense to just
8485 		 * drop the message so that if this one managed to get
8486 		 * in, the real connection should not suffer.
8487 		 */
8488 		goto noticmpv6;
8489 	}
8490 
8491 	switch (icmp6->icmp6_type) {
8492 	case ICMP6_PACKET_TOO_BIG:
8493 		/*
8494 		 * Reduce the MSS based on the new MTU.  This will
8495 		 * eliminate any fragmentation locally.
8496 		 * N.B.  There may well be some funny side-effects on
8497 		 * the local send policy and the remote receive policy.
8498 		 * Pending further research, we provide
8499 		 * tcp_ignore_path_mtu just in case this proves
8500 		 * disastrous somewhere.
8501 		 *
8502 		 * After updating the MSS, retransmit part of the
8503 		 * dropped segment using the new mss by calling
8504 		 * tcp_wput_data().  Need to adjust all those
8505 		 * params to make sure tcp_wput_data() work properly.
8506 		 */
8507 		if (tcps->tcps_ignore_path_mtu)
8508 			break;
8509 
8510 		/*
8511 		 * Decrease the MSS by time stamp options
8512 		 * IP options and IPSEC options. tcp_hdr_len
8513 		 * includes time stamp option and IP option
8514 		 * length.
8515 		 */
8516 		new_mss = ntohs(icmp6->icmp6_mtu) - tcp->tcp_hdr_len -
8517 		    tcp->tcp_ipsec_overhead;
8518 
8519 		/*
8520 		 * Only update the MSS if the new one is
8521 		 * smaller than the previous one.  This is
8522 		 * to avoid problems when getting multiple
8523 		 * ICMP errors for the same MTU.
8524 		 */
8525 		if (new_mss >= tcp->tcp_mss)
8526 			break;
8527 
8528 		ratio = tcp->tcp_cwnd / tcp->tcp_mss;
8529 		ASSERT(ratio >= 1);
8530 		tcp_mss_set(tcp, new_mss, B_TRUE);
8531 
8532 		/*
8533 		 * Make sure we have something to
8534 		 * send.
8535 		 */
8536 		if (SEQ_LT(tcp->tcp_suna, tcp->tcp_snxt) &&
8537 		    (tcp->tcp_xmit_head != NULL)) {
8538 			/*
8539 			 * Shrink tcp_cwnd in
8540 			 * proportion to the old MSS/new MSS.
8541 			 */
8542 			tcp->tcp_cwnd = ratio * tcp->tcp_mss;
8543 			if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
8544 			    (tcp->tcp_unsent == 0)) {
8545 				tcp->tcp_rexmit_max = tcp->tcp_fss;
8546 			} else {
8547 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
8548 			}
8549 			tcp->tcp_rexmit_nxt = tcp->tcp_suna;
8550 			tcp->tcp_rexmit = B_TRUE;
8551 			tcp->tcp_dupack_cnt = 0;
8552 			tcp->tcp_snd_burst = TCP_CWND_SS;
8553 			tcp_ss_rexmit(tcp);
8554 		}
8555 		break;
8556 
8557 	case ICMP6_DST_UNREACH:
8558 		switch (icmp6->icmp6_code) {
8559 		case ICMP6_DST_UNREACH_NOPORT:
8560 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8561 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8562 			    (seg_seq == tcp->tcp_iss)) {
8563 				(void) tcp_clean_death(tcp,
8564 				    ECONNREFUSED, 8);
8565 			}
8566 			break;
8567 
8568 		case ICMP6_DST_UNREACH_ADMIN:
8569 		case ICMP6_DST_UNREACH_NOROUTE:
8570 		case ICMP6_DST_UNREACH_BEYONDSCOPE:
8571 		case ICMP6_DST_UNREACH_ADDR:
8572 			/* Record the error in case we finally time out. */
8573 			tcp->tcp_client_errno = EHOSTUNREACH;
8574 			if (((tcp->tcp_state == TCPS_SYN_SENT) ||
8575 			    (tcp->tcp_state == TCPS_SYN_RCVD)) &&
8576 			    (seg_seq == tcp->tcp_iss)) {
8577 				if (tcp->tcp_listener != NULL &&
8578 				    tcp->tcp_listener->tcp_syn_defense) {
8579 					/*
8580 					 * Ditch the half-open connection if we
8581 					 * suspect a SYN attack is under way.
8582 					 */
8583 					tcp_ip_ire_mark_advice(tcp);
8584 					(void) tcp_clean_death(tcp,
8585 					    tcp->tcp_client_errno, 9);
8586 				}
8587 			}
8588 
8589 
8590 			break;
8591 		default:
8592 			break;
8593 		}
8594 		break;
8595 
8596 	case ICMP6_PARAM_PROB:
8597 		/* If this corresponds to an ICMP_PROTOCOL_UNREACHABLE */
8598 		if (icmp6->icmp6_code == ICMP6_PARAMPROB_NEXTHEADER &&
8599 		    (uchar_t *)ip6h + icmp6->icmp6_pptr ==
8600 		    (uchar_t *)nexthdrp) {
8601 			if (tcp->tcp_state == TCPS_SYN_SENT ||
8602 			    tcp->tcp_state == TCPS_SYN_RCVD) {
8603 				(void) tcp_clean_death(tcp,
8604 				    ECONNREFUSED, 10);
8605 			}
8606 			break;
8607 		}
8608 		break;
8609 
8610 	case ICMP6_TIME_EXCEEDED:
8611 	default:
8612 		break;
8613 	}
8614 	freemsg(first_mp);
8615 }
8616 
8617 /*
8618  * Notify IP that we are having trouble with this connection.  IP should
8619  * blow the IRE away and start over.
8620  */
8621 static void
8622 tcp_ip_notify(tcp_t *tcp)
8623 {
8624 	struct iocblk	*iocp;
8625 	ipid_t	*ipid;
8626 	mblk_t	*mp;
8627 
8628 	/* IPv6 has NUD thus notification to delete the IRE is not needed */
8629 	if (tcp->tcp_ipversion == IPV6_VERSION)
8630 		return;
8631 
8632 	mp = mkiocb(IP_IOCTL);
8633 	if (mp == NULL)
8634 		return;
8635 
8636 	iocp = (struct iocblk *)mp->b_rptr;
8637 	iocp->ioc_count = sizeof (ipid_t) + sizeof (tcp->tcp_ipha->ipha_dst);
8638 
8639 	mp->b_cont = allocb(iocp->ioc_count, BPRI_HI);
8640 	if (!mp->b_cont) {
8641 		freeb(mp);
8642 		return;
8643 	}
8644 
8645 	ipid = (ipid_t *)mp->b_cont->b_rptr;
8646 	mp->b_cont->b_wptr += iocp->ioc_count;
8647 	bzero(ipid, sizeof (*ipid));
8648 	ipid->ipid_cmd = IP_IOC_IRE_DELETE_NO_REPLY;
8649 	ipid->ipid_ire_type = IRE_CACHE;
8650 	ipid->ipid_addr_offset = sizeof (ipid_t);
8651 	ipid->ipid_addr_length = sizeof (tcp->tcp_ipha->ipha_dst);
8652 	/*
8653 	 * Note: in the case of source routing we want to blow away the
8654 	 * route to the first source route hop.
8655 	 */
8656 	bcopy(&tcp->tcp_ipha->ipha_dst, &ipid[1],
8657 	    sizeof (tcp->tcp_ipha->ipha_dst));
8658 
8659 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
8660 }
8661 
8662 /* Unlink and return any mblk that looks like it contains an ire */
8663 static mblk_t *
8664 tcp_ire_mp(mblk_t **mpp)
8665 {
8666 	mblk_t 	*mp = *mpp;
8667 	mblk_t	*prev_mp = NULL;
8668 
8669 	for (;;) {
8670 		switch (DB_TYPE(mp)) {
8671 		case IRE_DB_TYPE:
8672 		case IRE_DB_REQ_TYPE:
8673 			if (mp == *mpp) {
8674 				*mpp = mp->b_cont;
8675 			} else {
8676 				prev_mp->b_cont = mp->b_cont;
8677 			}
8678 			mp->b_cont = NULL;
8679 			return (mp);
8680 		default:
8681 			break;
8682 		}
8683 		prev_mp = mp;
8684 		mp = mp->b_cont;
8685 		if (mp == NULL)
8686 			break;
8687 	}
8688 	return (mp);
8689 }
8690 
8691 /*
8692  * Timer callback routine for keepalive probe.  We do a fake resend of
8693  * last ACKed byte.  Then set a timer using RTO.  When the timer expires,
8694  * check to see if we have heard anything from the other end for the last
8695  * RTO period.  If we have, set the timer to expire for another
8696  * tcp_keepalive_intrvl and check again.  If we have not, set a timer using
8697  * RTO << 1 and check again when it expires.  Keep exponentially increasing
8698  * the timeout if we have not heard from the other side.  If for more than
8699  * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything,
8700  * kill the connection unless the keepalive abort threshold is 0.  In
8701  * that case, we will probe "forever."
8702  */
8703 static void
8704 tcp_keepalive_killer(void *arg)
8705 {
8706 	mblk_t	*mp;
8707 	conn_t	*connp = (conn_t *)arg;
8708 	tcp_t  	*tcp = connp->conn_tcp;
8709 	int32_t	firetime;
8710 	int32_t	idletime;
8711 	int32_t	ka_intrvl;
8712 	tcp_stack_t	*tcps = tcp->tcp_tcps;
8713 
8714 	tcp->tcp_ka_tid = 0;
8715 
8716 	if (tcp->tcp_fused)
8717 		return;
8718 
8719 	BUMP_MIB(&tcps->tcps_mib, tcpTimKeepalive);
8720 	ka_intrvl = tcp->tcp_ka_interval;
8721 
8722 	/*
8723 	 * Keepalive probe should only be sent if the application has not
8724 	 * done a close on the connection.
8725 	 */
8726 	if (tcp->tcp_state > TCPS_CLOSE_WAIT) {
8727 		return;
8728 	}
8729 	/* Timer fired too early, restart it. */
8730 	if (tcp->tcp_state < TCPS_ESTABLISHED) {
8731 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8732 		    MSEC_TO_TICK(ka_intrvl));
8733 		return;
8734 	}
8735 
8736 	idletime = TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time);
8737 	/*
8738 	 * If we have not heard from the other side for a long
8739 	 * time, kill the connection unless the keepalive abort
8740 	 * threshold is 0.  In that case, we will probe "forever."
8741 	 */
8742 	if (tcp->tcp_ka_abort_thres != 0 &&
8743 	    idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) {
8744 		BUMP_MIB(&tcps->tcps_mib, tcpTimKeepaliveDrop);
8745 		(void) tcp_clean_death(tcp, tcp->tcp_client_errno ?
8746 		    tcp->tcp_client_errno : ETIMEDOUT, 11);
8747 		return;
8748 	}
8749 
8750 	if (tcp->tcp_snxt == tcp->tcp_suna &&
8751 	    idletime >= ka_intrvl) {
8752 		/* Fake resend of last ACKed byte. */
8753 		mblk_t	*mp1 = allocb(1, BPRI_LO);
8754 
8755 		if (mp1 != NULL) {
8756 			*mp1->b_wptr++ = '\0';
8757 			mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL,
8758 			    tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE);
8759 			freeb(mp1);
8760 			/*
8761 			 * if allocation failed, fall through to start the
8762 			 * timer back.
8763 			 */
8764 			if (mp != NULL) {
8765 				tcp_send_data(tcp, tcp->tcp_wq, mp);
8766 				BUMP_MIB(&tcps->tcps_mib,
8767 				    tcpTimKeepaliveProbe);
8768 				if (tcp->tcp_ka_last_intrvl != 0) {
8769 					int max;
8770 					/*
8771 					 * We should probe again at least
8772 					 * in ka_intrvl, but not more than
8773 					 * tcp_rexmit_interval_max.
8774 					 */
8775 					max = tcps->tcps_rexmit_interval_max;
8776 					firetime = MIN(ka_intrvl - 1,
8777 					    tcp->tcp_ka_last_intrvl << 1);
8778 					if (firetime > max)
8779 						firetime = max;
8780 				} else {
8781 					firetime = tcp->tcp_rto;
8782 				}
8783 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
8784 				    tcp_keepalive_killer,
8785 				    MSEC_TO_TICK(firetime));
8786 				tcp->tcp_ka_last_intrvl = firetime;
8787 				return;
8788 			}
8789 		}
8790 	} else {
8791 		tcp->tcp_ka_last_intrvl = 0;
8792 	}
8793 
8794 	/* firetime can be negative if (mp1 == NULL || mp == NULL) */
8795 	if ((firetime = ka_intrvl - idletime) < 0) {
8796 		firetime = ka_intrvl;
8797 	}
8798 	tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
8799 	    MSEC_TO_TICK(firetime));
8800 }
8801 
8802 int
8803 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk)
8804 {
8805 	queue_t	*q = tcp->tcp_rq;
8806 	int32_t	mss = tcp->tcp_mss;
8807 	int	maxpsz;
8808 	conn_t	*connp = tcp->tcp_connp;
8809 
8810 	if (TCP_IS_DETACHED(tcp))
8811 		return (mss);
8812 	if (tcp->tcp_fused) {
8813 		maxpsz = tcp_fuse_maxpsz_set(tcp);
8814 		mss = INFPSZ;
8815 	} else if (tcp->tcp_mdt || tcp->tcp_lso || tcp->tcp_maxpsz == 0) {
8816 		/*
8817 		 * Set the sd_qn_maxpsz according to the socket send buffer
8818 		 * size, and sd_maxblk to INFPSZ (-1).  This will essentially
8819 		 * instruct the stream head to copyin user data into contiguous
8820 		 * kernel-allocated buffers without breaking it up into smaller
8821 		 * chunks.  We round up the buffer size to the nearest SMSS.
8822 		 */
8823 		maxpsz = MSS_ROUNDUP(tcp->tcp_xmit_hiwater, mss);
8824 		if (tcp->tcp_kssl_ctx == NULL)
8825 			mss = INFPSZ;
8826 		else
8827 			mss = SSL3_MAX_RECORD_LEN;
8828 	} else {
8829 		/*
8830 		 * Set sd_qn_maxpsz to approx half the (receivers) buffer
8831 		 * (and a multiple of the mss).  This instructs the stream
8832 		 * head to break down larger than SMSS writes into SMSS-
8833 		 * size mblks, up to tcp_maxpsz_multiplier mblks at a time.
8834 		 */
8835 		/* XXX tune this with ndd tcp_maxpsz_multiplier */
8836 		maxpsz = tcp->tcp_maxpsz * mss;
8837 		if (maxpsz > tcp->tcp_xmit_hiwater/2) {
8838 			maxpsz = tcp->tcp_xmit_hiwater/2;
8839 			/* Round up to nearest mss */
8840 			maxpsz = MSS_ROUNDUP(maxpsz, mss);
8841 		}
8842 	}
8843 
8844 	(void) proto_set_maxpsz(q, connp, maxpsz);
8845 	if (!(IPCL_IS_NONSTR(connp))) {
8846 		/* XXX do it in set_maxpsz()? */
8847 		tcp->tcp_wq->q_maxpsz = maxpsz;
8848 	}
8849 
8850 	if (set_maxblk)
8851 		(void) proto_set_tx_maxblk(q, connp, mss);
8852 	return (mss);
8853 }
8854 
8855 /*
8856  * Extract option values from a tcp header.  We put any found values into the
8857  * tcpopt struct and return a bitmask saying which options were found.
8858  */
8859 static int
8860 tcp_parse_options(tcph_t *tcph, tcp_opt_t *tcpopt)
8861 {
8862 	uchar_t		*endp;
8863 	int		len;
8864 	uint32_t	mss;
8865 	uchar_t		*up = (uchar_t *)tcph;
8866 	int		found = 0;
8867 	int32_t		sack_len;
8868 	tcp_seq		sack_begin, sack_end;
8869 	tcp_t		*tcp;
8870 
8871 	endp = up + TCP_HDR_LENGTH(tcph);
8872 	up += TCP_MIN_HEADER_LENGTH;
8873 	while (up < endp) {
8874 		len = endp - up;
8875 		switch (*up) {
8876 		case TCPOPT_EOL:
8877 			break;
8878 
8879 		case TCPOPT_NOP:
8880 			up++;
8881 			continue;
8882 
8883 		case TCPOPT_MAXSEG:
8884 			if (len < TCPOPT_MAXSEG_LEN ||
8885 			    up[1] != TCPOPT_MAXSEG_LEN)
8886 				break;
8887 
8888 			mss = BE16_TO_U16(up+2);
8889 			/* Caller must handle tcp_mss_min and tcp_mss_max_* */
8890 			tcpopt->tcp_opt_mss = mss;
8891 			found |= TCP_OPT_MSS_PRESENT;
8892 
8893 			up += TCPOPT_MAXSEG_LEN;
8894 			continue;
8895 
8896 		case TCPOPT_WSCALE:
8897 			if (len < TCPOPT_WS_LEN || up[1] != TCPOPT_WS_LEN)
8898 				break;
8899 
8900 			if (up[2] > TCP_MAX_WINSHIFT)
8901 				tcpopt->tcp_opt_wscale = TCP_MAX_WINSHIFT;
8902 			else
8903 				tcpopt->tcp_opt_wscale = up[2];
8904 			found |= TCP_OPT_WSCALE_PRESENT;
8905 
8906 			up += TCPOPT_WS_LEN;
8907 			continue;
8908 
8909 		case TCPOPT_SACK_PERMITTED:
8910 			if (len < TCPOPT_SACK_OK_LEN ||
8911 			    up[1] != TCPOPT_SACK_OK_LEN)
8912 				break;
8913 			found |= TCP_OPT_SACK_OK_PRESENT;
8914 			up += TCPOPT_SACK_OK_LEN;
8915 			continue;
8916 
8917 		case TCPOPT_SACK:
8918 			if (len <= 2 || up[1] <= 2 || len < up[1])
8919 				break;
8920 
8921 			/* If TCP is not interested in SACK blks... */
8922 			if ((tcp = tcpopt->tcp) == NULL) {
8923 				up += up[1];
8924 				continue;
8925 			}
8926 			sack_len = up[1] - TCPOPT_HEADER_LEN;
8927 			up += TCPOPT_HEADER_LEN;
8928 
8929 			/*
8930 			 * If the list is empty, allocate one and assume
8931 			 * nothing is sack'ed.
8932 			 */
8933 			ASSERT(tcp->tcp_sack_info != NULL);
8934 			if (tcp->tcp_notsack_list == NULL) {
8935 				tcp_notsack_update(&(tcp->tcp_notsack_list),
8936 				    tcp->tcp_suna, tcp->tcp_snxt,
8937 				    &(tcp->tcp_num_notsack_blk),
8938 				    &(tcp->tcp_cnt_notsack_list));
8939 
8940 				/*
8941 				 * Make sure tcp_notsack_list is not NULL.
8942 				 * This happens when kmem_alloc(KM_NOSLEEP)
8943 				 * returns NULL.
8944 				 */
8945 				if (tcp->tcp_notsack_list == NULL) {
8946 					up += sack_len;
8947 					continue;
8948 				}
8949 				tcp->tcp_fack = tcp->tcp_suna;
8950 			}
8951 
8952 			while (sack_len > 0) {
8953 				if (up + 8 > endp) {
8954 					up = endp;
8955 					break;
8956 				}
8957 				sack_begin = BE32_TO_U32(up);
8958 				up += 4;
8959 				sack_end = BE32_TO_U32(up);
8960 				up += 4;
8961 				sack_len -= 8;
8962 				/*
8963 				 * Bounds checking.  Make sure the SACK
8964 				 * info is within tcp_suna and tcp_snxt.
8965 				 * If this SACK blk is out of bound, ignore
8966 				 * it but continue to parse the following
8967 				 * blks.
8968 				 */
8969 				if (SEQ_LEQ(sack_end, sack_begin) ||
8970 				    SEQ_LT(sack_begin, tcp->tcp_suna) ||
8971 				    SEQ_GT(sack_end, tcp->tcp_snxt)) {
8972 					continue;
8973 				}
8974 				tcp_notsack_insert(&(tcp->tcp_notsack_list),
8975 				    sack_begin, sack_end,
8976 				    &(tcp->tcp_num_notsack_blk),
8977 				    &(tcp->tcp_cnt_notsack_list));
8978 				if (SEQ_GT(sack_end, tcp->tcp_fack)) {
8979 					tcp->tcp_fack = sack_end;
8980 				}
8981 			}
8982 			found |= TCP_OPT_SACK_PRESENT;
8983 			continue;
8984 
8985 		case TCPOPT_TSTAMP:
8986 			if (len < TCPOPT_TSTAMP_LEN ||
8987 			    up[1] != TCPOPT_TSTAMP_LEN)
8988 				break;
8989 
8990 			tcpopt->tcp_opt_ts_val = BE32_TO_U32(up+2);
8991 			tcpopt->tcp_opt_ts_ecr = BE32_TO_U32(up+6);
8992 
8993 			found |= TCP_OPT_TSTAMP_PRESENT;
8994 
8995 			up += TCPOPT_TSTAMP_LEN;
8996 			continue;
8997 
8998 		default:
8999 			if (len <= 1 || len < (int)up[1] || up[1] == 0)
9000 				break;
9001 			up += up[1];
9002 			continue;
9003 		}
9004 		break;
9005 	}
9006 	return (found);
9007 }
9008 
9009 /*
9010  * Set the mss associated with a particular tcp based on its current value,
9011  * and a new one passed in. Observe minimums and maximums, and reset
9012  * other state variables that we want to view as multiples of mss.
9013  *
9014  * This function is called mainly because values like tcp_mss, tcp_cwnd,
9015  * highwater marks etc. need to be initialized or adjusted.
9016  * 1) From tcp_process_options() when the other side's SYN/SYN-ACK
9017  *    packet arrives.
9018  * 2) We need to set a new MSS when ICMP_FRAGMENTATION_NEEDED or
9019  *    ICMP6_PACKET_TOO_BIG arrives.
9020  * 3) From tcp_paws_check() if the other side stops sending the timestamp,
9021  *    to increase the MSS to use the extra bytes available.
9022  *
9023  * Callers except tcp_paws_check() ensure that they only reduce mss.
9024  */
9025 static void
9026 tcp_mss_set(tcp_t *tcp, uint32_t mss, boolean_t do_ss)
9027 {
9028 	uint32_t	mss_max;
9029 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9030 
9031 	if (tcp->tcp_ipversion == IPV4_VERSION)
9032 		mss_max = tcps->tcps_mss_max_ipv4;
9033 	else
9034 		mss_max = tcps->tcps_mss_max_ipv6;
9035 
9036 	if (mss < tcps->tcps_mss_min)
9037 		mss = tcps->tcps_mss_min;
9038 	if (mss > mss_max)
9039 		mss = mss_max;
9040 	/*
9041 	 * Unless naglim has been set by our client to
9042 	 * a non-mss value, force naglim to track mss.
9043 	 * This can help to aggregate small writes.
9044 	 */
9045 	if (mss < tcp->tcp_naglim || tcp->tcp_mss == tcp->tcp_naglim)
9046 		tcp->tcp_naglim = mss;
9047 	/*
9048 	 * TCP should be able to buffer at least 4 MSS data for obvious
9049 	 * performance reason.
9050 	 */
9051 	if ((mss << 2) > tcp->tcp_xmit_hiwater)
9052 		tcp->tcp_xmit_hiwater = mss << 2;
9053 
9054 	/*
9055 	 * Set the xmit_lowater to at least twice of MSS.
9056 	 */
9057 	if ((mss << 1) > tcp->tcp_xmit_lowater)
9058 		tcp->tcp_xmit_lowater = mss << 1;
9059 
9060 	if (do_ss) {
9061 		/*
9062 		 * Either the tcp_cwnd is as yet uninitialized, or mss is
9063 		 * changing due to a reduction in MTU, presumably as a
9064 		 * result of a new path component, reset cwnd to its
9065 		 * "initial" value, as a multiple of the new mss.
9066 		 */
9067 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_initial);
9068 	} else {
9069 		/*
9070 		 * Called by tcp_paws_check(), the mss increased
9071 		 * marginally to allow use of space previously taken
9072 		 * by the timestamp option. It would be inappropriate
9073 		 * to apply slow start or tcp_init_cwnd values to
9074 		 * tcp_cwnd, simply adjust to a multiple of the new mss.
9075 		 */
9076 		tcp->tcp_cwnd = (tcp->tcp_cwnd / tcp->tcp_mss) * mss;
9077 		tcp->tcp_cwnd_cnt = 0;
9078 	}
9079 	tcp->tcp_mss = mss;
9080 	(void) tcp_maxpsz_set(tcp, B_TRUE);
9081 }
9082 
9083 /* For /dev/tcp aka AF_INET open */
9084 static int
9085 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9086 {
9087 	return (tcp_open(q, devp, flag, sflag, credp, B_FALSE));
9088 }
9089 
9090 /* For /dev/tcp6 aka AF_INET6 open */
9091 static int
9092 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
9093 {
9094 	return (tcp_open(q, devp, flag, sflag, credp, B_TRUE));
9095 }
9096 
9097 static conn_t *
9098 tcp_create_common(queue_t *q, cred_t *credp, boolean_t isv6,
9099     boolean_t issocket, int *errorp)
9100 {
9101 	tcp_t		*tcp = NULL;
9102 	conn_t		*connp;
9103 	int		err;
9104 	zoneid_t	zoneid;
9105 	tcp_stack_t	*tcps;
9106 	squeue_t	*sqp;
9107 
9108 	ASSERT(errorp != NULL);
9109 	/*
9110 	 * Find the proper zoneid and netstack.
9111 	 */
9112 	/*
9113 	 * Special case for install: miniroot needs to be able to
9114 	 * access files via NFS as though it were always in the
9115 	 * global zone.
9116 	 */
9117 	if (credp == kcred && nfs_global_client_only != 0) {
9118 		zoneid = GLOBAL_ZONEID;
9119 		tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)->
9120 		    netstack_tcp;
9121 		ASSERT(tcps != NULL);
9122 	} else {
9123 		netstack_t *ns;
9124 
9125 		ns = netstack_find_by_cred(credp);
9126 		ASSERT(ns != NULL);
9127 		tcps = ns->netstack_tcp;
9128 		ASSERT(tcps != NULL);
9129 
9130 		/*
9131 		 * For exclusive stacks we set the zoneid to zero
9132 		 * to make TCP operate as if in the global zone.
9133 		 */
9134 		if (tcps->tcps_netstack->netstack_stackid !=
9135 		    GLOBAL_NETSTACKID)
9136 			zoneid = GLOBAL_ZONEID;
9137 		else
9138 			zoneid = crgetzoneid(credp);
9139 	}
9140 	/*
9141 	 * For stackid zero this is done from strplumb.c, but
9142 	 * non-zero stackids are handled here.
9143 	 */
9144 	if (tcps->tcps_g_q == NULL &&
9145 	    tcps->tcps_netstack->netstack_stackid !=
9146 	    GLOBAL_NETSTACKID) {
9147 		tcp_g_q_setup(tcps);
9148 	}
9149 
9150 	sqp = IP_SQUEUE_GET((uint_t)gethrtime());
9151 	connp = (conn_t *)tcp_get_conn(sqp, tcps);
9152 	/*
9153 	 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt,
9154 	 * so we drop it by one.
9155 	 */
9156 	netstack_rele(tcps->tcps_netstack);
9157 	if (connp == NULL) {
9158 		*errorp = ENOSR;
9159 		return (NULL);
9160 	}
9161 	connp->conn_sqp = sqp;
9162 	connp->conn_initial_sqp = connp->conn_sqp;
9163 	tcp = connp->conn_tcp;
9164 
9165 	if (isv6) {
9166 		connp->conn_flags |= (IPCL_TCP6|IPCL_ISV6);
9167 		connp->conn_send = ip_output_v6;
9168 		connp->conn_af_isv6 = B_TRUE;
9169 		connp->conn_pkt_isv6 = B_TRUE;
9170 		connp->conn_src_preferences = IPV6_PREFER_SRC_DEFAULT;
9171 		tcp->tcp_ipversion = IPV6_VERSION;
9172 		tcp->tcp_family = AF_INET6;
9173 		tcp->tcp_mss = tcps->tcps_mss_def_ipv6;
9174 	} else {
9175 		connp->conn_flags |= IPCL_TCP4;
9176 		connp->conn_send = ip_output;
9177 		connp->conn_af_isv6 = B_FALSE;
9178 		connp->conn_pkt_isv6 = B_FALSE;
9179 		tcp->tcp_ipversion = IPV4_VERSION;
9180 		tcp->tcp_family = AF_INET;
9181 		tcp->tcp_mss = tcps->tcps_mss_def_ipv4;
9182 	}
9183 
9184 	/*
9185 	 * TCP keeps a copy of cred for cache locality reasons but
9186 	 * we put a reference only once. If connp->conn_cred
9187 	 * becomes invalid, tcp_cred should also be set to NULL.
9188 	 */
9189 	tcp->tcp_cred = connp->conn_cred = credp;
9190 	crhold(connp->conn_cred);
9191 	tcp->tcp_cpid = curproc->p_pid;
9192 	tcp->tcp_open_time = lbolt64;
9193 	connp->conn_zoneid = zoneid;
9194 	connp->conn_mlp_type = mlptSingle;
9195 	connp->conn_ulp_labeled = !is_system_labeled();
9196 	ASSERT(connp->conn_netstack == tcps->tcps_netstack);
9197 	ASSERT(tcp->tcp_tcps == tcps);
9198 
9199 	/*
9200 	 * If the caller has the process-wide flag set, then default to MAC
9201 	 * exempt mode.  This allows read-down to unlabeled hosts.
9202 	 */
9203 	if (getpflags(NET_MAC_AWARE, credp) != 0)
9204 		connp->conn_mac_exempt = B_TRUE;
9205 
9206 	connp->conn_dev = NULL;
9207 	if (issocket) {
9208 		connp->conn_flags |= IPCL_SOCKET;
9209 		tcp->tcp_issocket = 1;
9210 	}
9211 
9212 	tcp->tcp_recv_hiwater = tcps->tcps_recv_hiwat;
9213 	tcp->tcp_rwnd = tcps->tcps_recv_hiwat;
9214 	tcp->tcp_recv_lowater = tcp_rinfo.mi_lowat;
9215 
9216 	/* Non-zero default values */
9217 	connp->conn_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
9218 
9219 	if (q == NULL) {
9220 		/*
9221 		 * Create a helper stream for non-STREAMS socket.
9222 		 */
9223 		err = ip_create_helper_stream(connp, tcps->tcps_ldi_ident);
9224 		if (err != 0) {
9225 			ip1dbg(("tcp_create_common: create of IP helper stream "
9226 			    "failed\n"));
9227 			CONN_DEC_REF(connp);
9228 			*errorp = err;
9229 			return (NULL);
9230 		}
9231 		q = connp->conn_rq;
9232 	} else {
9233 		RD(q)->q_hiwat = tcps->tcps_recv_hiwat;
9234 	}
9235 
9236 	SOCK_CONNID_INIT(tcp->tcp_connid);
9237 	err = tcp_init(tcp, q);
9238 	if (err != 0) {
9239 		CONN_DEC_REF(connp);
9240 		*errorp = err;
9241 		return (NULL);
9242 	}
9243 
9244 	return (connp);
9245 }
9246 
9247 static int
9248 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
9249     boolean_t isv6)
9250 {
9251 	tcp_t		*tcp = NULL;
9252 	conn_t		*connp = NULL;
9253 	int		err;
9254 	vmem_t		*minor_arena = NULL;
9255 	dev_t		conn_dev;
9256 	boolean_t	issocket;
9257 
9258 	if (q->q_ptr != NULL)
9259 		return (0);
9260 
9261 	if (sflag == MODOPEN)
9262 		return (EINVAL);
9263 
9264 	if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
9265 	    ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
9266 		minor_arena = ip_minor_arena_la;
9267 	} else {
9268 		/*
9269 		 * Either minor numbers in the large arena were exhausted
9270 		 * or a non socket application is doing the open.
9271 		 * Try to allocate from the small arena.
9272 		 */
9273 		if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) {
9274 			return (EBUSY);
9275 		}
9276 		minor_arena = ip_minor_arena_sa;
9277 	}
9278 
9279 	ASSERT(minor_arena != NULL);
9280 
9281 	*devp = makedevice(getmajor(*devp), (minor_t)conn_dev);
9282 
9283 	if (flag & SO_FALLBACK) {
9284 		/*
9285 		 * Non streams socket needs a stream to fallback to
9286 		 */
9287 		RD(q)->q_ptr = (void *)conn_dev;
9288 		WR(q)->q_qinfo = &tcp_fallback_sock_winit;
9289 		WR(q)->q_ptr = (void *)minor_arena;
9290 		qprocson(q);
9291 		return (0);
9292 	} else if (flag & SO_ACCEPTOR) {
9293 		q->q_qinfo = &tcp_acceptor_rinit;
9294 		/*
9295 		 * the conn_dev and minor_arena will be subsequently used by
9296 		 * tcp_wput_accept() and tcp_tpi_close_accept() to figure out
9297 		 * the minor device number for this connection from the q_ptr.
9298 		 */
9299 		RD(q)->q_ptr = (void *)conn_dev;
9300 		WR(q)->q_qinfo = &tcp_acceptor_winit;
9301 		WR(q)->q_ptr = (void *)minor_arena;
9302 		qprocson(q);
9303 		return (0);
9304 	}
9305 
9306 	issocket = flag & SO_SOCKSTR;
9307 	connp = tcp_create_common(q, credp, isv6, issocket, &err);
9308 
9309 	if (connp == NULL) {
9310 		inet_minor_free(minor_arena, conn_dev);
9311 		q->q_ptr = WR(q)->q_ptr = NULL;
9312 		return (err);
9313 	}
9314 
9315 	q->q_ptr = WR(q)->q_ptr = connp;
9316 
9317 	connp->conn_dev = conn_dev;
9318 	connp->conn_minor_arena = minor_arena;
9319 
9320 	ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6);
9321 	ASSERT(WR(q)->q_qinfo == &tcp_winit);
9322 
9323 	tcp = connp->conn_tcp;
9324 
9325 	if (issocket) {
9326 		WR(q)->q_qinfo = &tcp_sock_winit;
9327 	} else {
9328 #ifdef  _ILP32
9329 		tcp->tcp_acceptor_id = (t_uscalar_t)RD(q);
9330 #else
9331 		tcp->tcp_acceptor_id = conn_dev;
9332 #endif  /* _ILP32 */
9333 		tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
9334 	}
9335 
9336 	/*
9337 	 * Put the ref for TCP. Ref for IP was already put
9338 	 * by ipcl_conn_create. Also Make the conn_t globally
9339 	 * visible to walkers
9340 	 */
9341 	mutex_enter(&connp->conn_lock);
9342 	CONN_INC_REF_LOCKED(connp);
9343 	ASSERT(connp->conn_ref == 2);
9344 	connp->conn_state_flags &= ~CONN_INCIPIENT;
9345 	mutex_exit(&connp->conn_lock);
9346 
9347 	qprocson(q);
9348 	return (0);
9349 }
9350 
9351 /*
9352  * Some TCP options can be "set" by requesting them in the option
9353  * buffer. This is needed for XTI feature test though we do not
9354  * allow it in general. We interpret that this mechanism is more
9355  * applicable to OSI protocols and need not be allowed in general.
9356  * This routine filters out options for which it is not allowed (most)
9357  * and lets through those (few) for which it is. [ The XTI interface
9358  * test suite specifics will imply that any XTI_GENERIC level XTI_* if
9359  * ever implemented will have to be allowed here ].
9360  */
9361 static boolean_t
9362 tcp_allow_connopt_set(int level, int name)
9363 {
9364 
9365 	switch (level) {
9366 	case IPPROTO_TCP:
9367 		switch (name) {
9368 		case TCP_NODELAY:
9369 			return (B_TRUE);
9370 		default:
9371 			return (B_FALSE);
9372 		}
9373 		/*NOTREACHED*/
9374 	default:
9375 		return (B_FALSE);
9376 	}
9377 	/*NOTREACHED*/
9378 }
9379 
9380 /*
9381  * this routine gets default values of certain options whose default
9382  * values are maintained by protocol specific code
9383  */
9384 /* ARGSUSED */
9385 int
9386 tcp_opt_default(queue_t *q, int level, int name, uchar_t *ptr)
9387 {
9388 	int32_t	*i1 = (int32_t *)ptr;
9389 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
9390 
9391 	switch (level) {
9392 	case IPPROTO_TCP:
9393 		switch (name) {
9394 		case TCP_NOTIFY_THRESHOLD:
9395 			*i1 = tcps->tcps_ip_notify_interval;
9396 			break;
9397 		case TCP_ABORT_THRESHOLD:
9398 			*i1 = tcps->tcps_ip_abort_interval;
9399 			break;
9400 		case TCP_CONN_NOTIFY_THRESHOLD:
9401 			*i1 = tcps->tcps_ip_notify_cinterval;
9402 			break;
9403 		case TCP_CONN_ABORT_THRESHOLD:
9404 			*i1 = tcps->tcps_ip_abort_cinterval;
9405 			break;
9406 		default:
9407 			return (-1);
9408 		}
9409 		break;
9410 	case IPPROTO_IP:
9411 		switch (name) {
9412 		case IP_TTL:
9413 			*i1 = tcps->tcps_ipv4_ttl;
9414 			break;
9415 		default:
9416 			return (-1);
9417 		}
9418 		break;
9419 	case IPPROTO_IPV6:
9420 		switch (name) {
9421 		case IPV6_UNICAST_HOPS:
9422 			*i1 = tcps->tcps_ipv6_hoplimit;
9423 			break;
9424 		default:
9425 			return (-1);
9426 		}
9427 		break;
9428 	default:
9429 		return (-1);
9430 	}
9431 	return (sizeof (int));
9432 }
9433 
9434 static int
9435 tcp_opt_get(conn_t *connp, int level, int name, uchar_t *ptr)
9436 {
9437 	int		*i1 = (int *)ptr;
9438 	tcp_t		*tcp = connp->conn_tcp;
9439 	ip6_pkt_t	*ipp = &tcp->tcp_sticky_ipp;
9440 
9441 	switch (level) {
9442 	case SOL_SOCKET:
9443 		switch (name) {
9444 		case SO_LINGER:	{
9445 			struct linger *lgr = (struct linger *)ptr;
9446 
9447 			lgr->l_onoff = tcp->tcp_linger ? SO_LINGER : 0;
9448 			lgr->l_linger = tcp->tcp_lingertime;
9449 			}
9450 			return (sizeof (struct linger));
9451 		case SO_DEBUG:
9452 			*i1 = tcp->tcp_debug ? SO_DEBUG : 0;
9453 			break;
9454 		case SO_KEEPALIVE:
9455 			*i1 = tcp->tcp_ka_enabled ? SO_KEEPALIVE : 0;
9456 			break;
9457 		case SO_DONTROUTE:
9458 			*i1 = tcp->tcp_dontroute ? SO_DONTROUTE : 0;
9459 			break;
9460 		case SO_USELOOPBACK:
9461 			*i1 = tcp->tcp_useloopback ? SO_USELOOPBACK : 0;
9462 			break;
9463 		case SO_BROADCAST:
9464 			*i1 = tcp->tcp_broadcast ? SO_BROADCAST : 0;
9465 			break;
9466 		case SO_REUSEADDR:
9467 			*i1 = tcp->tcp_reuseaddr ? SO_REUSEADDR : 0;
9468 			break;
9469 		case SO_OOBINLINE:
9470 			*i1 = tcp->tcp_oobinline ? SO_OOBINLINE : 0;
9471 			break;
9472 		case SO_DGRAM_ERRIND:
9473 			*i1 = tcp->tcp_dgram_errind ? SO_DGRAM_ERRIND : 0;
9474 			break;
9475 		case SO_TYPE:
9476 			*i1 = SOCK_STREAM;
9477 			break;
9478 		case SO_SNDBUF:
9479 			*i1 = tcp->tcp_xmit_hiwater;
9480 			break;
9481 		case SO_RCVBUF:
9482 			*i1 = tcp->tcp_recv_hiwater;
9483 			break;
9484 		case SO_SND_COPYAVOID:
9485 			*i1 = tcp->tcp_snd_zcopy_on ?
9486 			    SO_SND_COPYAVOID : 0;
9487 			break;
9488 		case SO_ALLZONES:
9489 			*i1 = connp->conn_allzones ? 1 : 0;
9490 			break;
9491 		case SO_ANON_MLP:
9492 			*i1 = connp->conn_anon_mlp;
9493 			break;
9494 		case SO_MAC_EXEMPT:
9495 			*i1 = connp->conn_mac_exempt;
9496 			break;
9497 		case SO_EXCLBIND:
9498 			*i1 = tcp->tcp_exclbind ? SO_EXCLBIND : 0;
9499 			break;
9500 		case SO_PROTOTYPE:
9501 			*i1 = IPPROTO_TCP;
9502 			break;
9503 		case SO_DOMAIN:
9504 			*i1 = tcp->tcp_family;
9505 			break;
9506 		case SO_ACCEPTCONN:
9507 			*i1 = (tcp->tcp_state == TCPS_LISTEN);
9508 		default:
9509 			return (-1);
9510 		}
9511 		break;
9512 	case IPPROTO_TCP:
9513 		switch (name) {
9514 		case TCP_NODELAY:
9515 			*i1 = (tcp->tcp_naglim == 1) ? TCP_NODELAY : 0;
9516 			break;
9517 		case TCP_MAXSEG:
9518 			*i1 = tcp->tcp_mss;
9519 			break;
9520 		case TCP_NOTIFY_THRESHOLD:
9521 			*i1 = (int)tcp->tcp_first_timer_threshold;
9522 			break;
9523 		case TCP_ABORT_THRESHOLD:
9524 			*i1 = tcp->tcp_second_timer_threshold;
9525 			break;
9526 		case TCP_CONN_NOTIFY_THRESHOLD:
9527 			*i1 = tcp->tcp_first_ctimer_threshold;
9528 			break;
9529 		case TCP_CONN_ABORT_THRESHOLD:
9530 			*i1 = tcp->tcp_second_ctimer_threshold;
9531 			break;
9532 		case TCP_RECVDSTADDR:
9533 			*i1 = tcp->tcp_recvdstaddr;
9534 			break;
9535 		case TCP_ANONPRIVBIND:
9536 			*i1 = tcp->tcp_anon_priv_bind;
9537 			break;
9538 		case TCP_EXCLBIND:
9539 			*i1 = tcp->tcp_exclbind ? TCP_EXCLBIND : 0;
9540 			break;
9541 		case TCP_INIT_CWND:
9542 			*i1 = tcp->tcp_init_cwnd;
9543 			break;
9544 		case TCP_KEEPALIVE_THRESHOLD:
9545 			*i1 = tcp->tcp_ka_interval;
9546 			break;
9547 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
9548 			*i1 = tcp->tcp_ka_abort_thres;
9549 			break;
9550 		case TCP_CORK:
9551 			*i1 = tcp->tcp_cork;
9552 			break;
9553 		default:
9554 			return (-1);
9555 		}
9556 		break;
9557 	case IPPROTO_IP:
9558 		if (tcp->tcp_family != AF_INET)
9559 			return (-1);
9560 		switch (name) {
9561 		case IP_OPTIONS:
9562 		case T_IP_OPTIONS: {
9563 			/*
9564 			 * This is compatible with BSD in that in only return
9565 			 * the reverse source route with the final destination
9566 			 * as the last entry. The first 4 bytes of the option
9567 			 * will contain the final destination.
9568 			 */
9569 			int	opt_len;
9570 
9571 			opt_len = (char *)tcp->tcp_tcph - (char *)tcp->tcp_ipha;
9572 			opt_len -= tcp->tcp_label_len + IP_SIMPLE_HDR_LENGTH;
9573 			ASSERT(opt_len >= 0);
9574 			/* Caller ensures enough space */
9575 			if (opt_len > 0) {
9576 				/*
9577 				 * TODO: Do we have to handle getsockopt on an
9578 				 * initiator as well?
9579 				 */
9580 				return (ip_opt_get_user(tcp->tcp_ipha, ptr));
9581 			}
9582 			return (0);
9583 			}
9584 		case IP_TOS:
9585 		case T_IP_TOS:
9586 			*i1 = (int)tcp->tcp_ipha->ipha_type_of_service;
9587 			break;
9588 		case IP_TTL:
9589 			*i1 = (int)tcp->tcp_ipha->ipha_ttl;
9590 			break;
9591 		case IP_NEXTHOP:
9592 			/* Handled at IP level */
9593 			return (-EINVAL);
9594 		default:
9595 			return (-1);
9596 		}
9597 		break;
9598 	case IPPROTO_IPV6:
9599 		/*
9600 		 * IPPROTO_IPV6 options are only supported for sockets
9601 		 * that are using IPv6 on the wire.
9602 		 */
9603 		if (tcp->tcp_ipversion != IPV6_VERSION) {
9604 			return (-1);
9605 		}
9606 		switch (name) {
9607 		case IPV6_UNICAST_HOPS:
9608 			*i1 = (unsigned int) tcp->tcp_ip6h->ip6_hops;
9609 			break;	/* goto sizeof (int) option return */
9610 		case IPV6_BOUND_IF:
9611 			/* Zero if not set */
9612 			*i1 = tcp->tcp_bound_if;
9613 			break;	/* goto sizeof (int) option return */
9614 		case IPV6_RECVPKTINFO:
9615 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)
9616 				*i1 = 1;
9617 			else
9618 				*i1 = 0;
9619 			break;	/* goto sizeof (int) option return */
9620 		case IPV6_RECVTCLASS:
9621 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)
9622 				*i1 = 1;
9623 			else
9624 				*i1 = 0;
9625 			break;	/* goto sizeof (int) option return */
9626 		case IPV6_RECVHOPLIMIT:
9627 			if (tcp->tcp_ipv6_recvancillary &
9628 			    TCP_IPV6_RECVHOPLIMIT)
9629 				*i1 = 1;
9630 			else
9631 				*i1 = 0;
9632 			break;	/* goto sizeof (int) option return */
9633 		case IPV6_RECVHOPOPTS:
9634 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS)
9635 				*i1 = 1;
9636 			else
9637 				*i1 = 0;
9638 			break;	/* goto sizeof (int) option return */
9639 		case IPV6_RECVDSTOPTS:
9640 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVDSTOPTS)
9641 				*i1 = 1;
9642 			else
9643 				*i1 = 0;
9644 			break;	/* goto sizeof (int) option return */
9645 		case _OLD_IPV6_RECVDSTOPTS:
9646 			if (tcp->tcp_ipv6_recvancillary &
9647 			    TCP_OLD_IPV6_RECVDSTOPTS)
9648 				*i1 = 1;
9649 			else
9650 				*i1 = 0;
9651 			break;	/* goto sizeof (int) option return */
9652 		case IPV6_RECVRTHDR:
9653 			if (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR)
9654 				*i1 = 1;
9655 			else
9656 				*i1 = 0;
9657 			break;	/* goto sizeof (int) option return */
9658 		case IPV6_RECVRTHDRDSTOPTS:
9659 			if (tcp->tcp_ipv6_recvancillary &
9660 			    TCP_IPV6_RECVRTDSTOPTS)
9661 				*i1 = 1;
9662 			else
9663 				*i1 = 0;
9664 			break;	/* goto sizeof (int) option return */
9665 		case IPV6_PKTINFO: {
9666 			/* XXX assumes that caller has room for max size! */
9667 			struct in6_pktinfo *pkti;
9668 
9669 			pkti = (struct in6_pktinfo *)ptr;
9670 			if (ipp->ipp_fields & IPPF_IFINDEX)
9671 				pkti->ipi6_ifindex = ipp->ipp_ifindex;
9672 			else
9673 				pkti->ipi6_ifindex = 0;
9674 			if (ipp->ipp_fields & IPPF_ADDR)
9675 				pkti->ipi6_addr = ipp->ipp_addr;
9676 			else
9677 				pkti->ipi6_addr = ipv6_all_zeros;
9678 			return (sizeof (struct in6_pktinfo));
9679 		}
9680 		case IPV6_TCLASS:
9681 			if (ipp->ipp_fields & IPPF_TCLASS)
9682 				*i1 = ipp->ipp_tclass;
9683 			else
9684 				*i1 = IPV6_FLOW_TCLASS(
9685 				    IPV6_DEFAULT_VERS_AND_FLOW);
9686 			break;	/* goto sizeof (int) option return */
9687 		case IPV6_NEXTHOP: {
9688 			sin6_t *sin6 = (sin6_t *)ptr;
9689 
9690 			if (!(ipp->ipp_fields & IPPF_NEXTHOP))
9691 				return (0);
9692 			*sin6 = sin6_null;
9693 			sin6->sin6_family = AF_INET6;
9694 			sin6->sin6_addr = ipp->ipp_nexthop;
9695 			return (sizeof (sin6_t));
9696 		}
9697 		case IPV6_HOPOPTS:
9698 			if (!(ipp->ipp_fields & IPPF_HOPOPTS))
9699 				return (0);
9700 			if (ipp->ipp_hopoptslen <= tcp->tcp_label_len)
9701 				return (0);
9702 			bcopy((char *)ipp->ipp_hopopts + tcp->tcp_label_len,
9703 			    ptr, ipp->ipp_hopoptslen - tcp->tcp_label_len);
9704 			if (tcp->tcp_label_len > 0) {
9705 				ptr[0] = ((char *)ipp->ipp_hopopts)[0];
9706 				ptr[1] = (ipp->ipp_hopoptslen -
9707 				    tcp->tcp_label_len + 7) / 8 - 1;
9708 			}
9709 			return (ipp->ipp_hopoptslen - tcp->tcp_label_len);
9710 		case IPV6_RTHDRDSTOPTS:
9711 			if (!(ipp->ipp_fields & IPPF_RTDSTOPTS))
9712 				return (0);
9713 			bcopy(ipp->ipp_rtdstopts, ptr, ipp->ipp_rtdstoptslen);
9714 			return (ipp->ipp_rtdstoptslen);
9715 		case IPV6_RTHDR:
9716 			if (!(ipp->ipp_fields & IPPF_RTHDR))
9717 				return (0);
9718 			bcopy(ipp->ipp_rthdr, ptr, ipp->ipp_rthdrlen);
9719 			return (ipp->ipp_rthdrlen);
9720 		case IPV6_DSTOPTS:
9721 			if (!(ipp->ipp_fields & IPPF_DSTOPTS))
9722 				return (0);
9723 			bcopy(ipp->ipp_dstopts, ptr, ipp->ipp_dstoptslen);
9724 			return (ipp->ipp_dstoptslen);
9725 		case IPV6_SRC_PREFERENCES:
9726 			return (ip6_get_src_preferences(connp,
9727 			    (uint32_t *)ptr));
9728 		case IPV6_PATHMTU: {
9729 			struct ip6_mtuinfo *mtuinfo = (struct ip6_mtuinfo *)ptr;
9730 
9731 			if (tcp->tcp_state < TCPS_ESTABLISHED)
9732 				return (-1);
9733 
9734 			return (ip_fill_mtuinfo(&connp->conn_remv6,
9735 			    connp->conn_fport, mtuinfo,
9736 			    connp->conn_netstack));
9737 		}
9738 		default:
9739 			return (-1);
9740 		}
9741 		break;
9742 	default:
9743 		return (-1);
9744 	}
9745 	return (sizeof (int));
9746 }
9747 
9748 /*
9749  * TCP routine to get the values of options.
9750  */
9751 int
9752 tcp_tpi_opt_get(queue_t *q, int level, int name, uchar_t *ptr)
9753 {
9754 	return (tcp_opt_get(Q_TO_CONN(q), level, name, ptr));
9755 }
9756 
9757 /* returns UNIX error, the optlen is a value-result arg */
9758 int
9759 tcp_getsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
9760     void *optvalp, socklen_t *optlen, cred_t *cr)
9761 {
9762 	conn_t		*connp = (conn_t *)proto_handle;
9763 	squeue_t	*sqp = connp->conn_sqp;
9764 	int		error;
9765 	t_uscalar_t	max_optbuf_len;
9766 	void		*optvalp_buf;
9767 	int		len;
9768 
9769 	ASSERT(connp->conn_upper_handle != NULL);
9770 
9771 	error = proto_opt_check(level, option_name, *optlen, &max_optbuf_len,
9772 	    tcp_opt_obj.odb_opt_des_arr,
9773 	    tcp_opt_obj.odb_opt_arr_cnt,
9774 	    tcp_opt_obj.odb_topmost_tpiprovider,
9775 	    B_FALSE, B_TRUE, cr);
9776 	if (error != 0) {
9777 		if (error < 0) {
9778 			error = proto_tlitosyserr(-error);
9779 		}
9780 		return (error);
9781 	}
9782 
9783 	optvalp_buf = kmem_alloc(max_optbuf_len, KM_SLEEP);
9784 
9785 	error = squeue_synch_enter(sqp, connp, NULL);
9786 	if (error == ENOMEM) {
9787 		return (ENOMEM);
9788 	}
9789 
9790 	len = tcp_opt_get(connp, level, option_name, optvalp_buf);
9791 	squeue_synch_exit(sqp, connp);
9792 
9793 	if (len < 0) {
9794 		/*
9795 		 * Pass on to IP
9796 		 */
9797 		kmem_free(optvalp_buf, max_optbuf_len);
9798 		return (ip_get_options(connp, level, option_name,
9799 		    optvalp, optlen, cr));
9800 	} else {
9801 		/*
9802 		 * update optlen and copy option value
9803 		 */
9804 		t_uscalar_t size = MIN(len, *optlen);
9805 		bcopy(optvalp_buf, optvalp, size);
9806 		bcopy(&size, optlen, sizeof (size));
9807 
9808 		kmem_free(optvalp_buf, max_optbuf_len);
9809 		return (0);
9810 	}
9811 }
9812 
9813 /*
9814  * We declare as 'int' rather than 'void' to satisfy pfi_t arg requirements.
9815  * Parameters are assumed to be verified by the caller.
9816  */
9817 /* ARGSUSED */
9818 int
9819 tcp_opt_set(conn_t *connp, uint_t optset_context, int level, int name,
9820     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
9821     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
9822 {
9823 	tcp_t	*tcp = connp->conn_tcp;
9824 	int	*i1 = (int *)invalp;
9825 	boolean_t onoff = (*i1 == 0) ? 0 : 1;
9826 	boolean_t checkonly;
9827 	int	reterr;
9828 	tcp_stack_t	*tcps = tcp->tcp_tcps;
9829 
9830 	switch (optset_context) {
9831 	case SETFN_OPTCOM_CHECKONLY:
9832 		checkonly = B_TRUE;
9833 		/*
9834 		 * Note: Implies T_CHECK semantics for T_OPTCOM_REQ
9835 		 * inlen != 0 implies value supplied and
9836 		 * 	we have to "pretend" to set it.
9837 		 * inlen == 0 implies that there is no
9838 		 * 	value part in T_CHECK request and just validation
9839 		 * done elsewhere should be enough, we just return here.
9840 		 */
9841 		if (inlen == 0) {
9842 			*outlenp = 0;
9843 			return (0);
9844 		}
9845 		break;
9846 	case SETFN_OPTCOM_NEGOTIATE:
9847 		checkonly = B_FALSE;
9848 		break;
9849 	case SETFN_UD_NEGOTIATE: /* error on conn-oriented transports ? */
9850 	case SETFN_CONN_NEGOTIATE:
9851 		checkonly = B_FALSE;
9852 		/*
9853 		 * Negotiating local and "association-related" options
9854 		 * from other (T_CONN_REQ, T_CONN_RES,T_UNITDATA_REQ)
9855 		 * primitives is allowed by XTI, but we choose
9856 		 * to not implement this style negotiation for Internet
9857 		 * protocols (We interpret it is a must for OSI world but
9858 		 * optional for Internet protocols) for all options.
9859 		 * [ Will do only for the few options that enable test
9860 		 * suites that our XTI implementation of this feature
9861 		 * works for transports that do allow it ]
9862 		 */
9863 		if (!tcp_allow_connopt_set(level, name)) {
9864 			*outlenp = 0;
9865 			return (EINVAL);
9866 		}
9867 		break;
9868 	default:
9869 		/*
9870 		 * We should never get here
9871 		 */
9872 		*outlenp = 0;
9873 		return (EINVAL);
9874 	}
9875 
9876 	ASSERT((optset_context != SETFN_OPTCOM_CHECKONLY) ||
9877 	    (optset_context == SETFN_OPTCOM_CHECKONLY && inlen != 0));
9878 
9879 	/*
9880 	 * For TCP, we should have no ancillary data sent down
9881 	 * (sendmsg isn't supported for SOCK_STREAM), so thisdg_attrs
9882 	 * has to be zero.
9883 	 */
9884 	ASSERT(thisdg_attrs == NULL);
9885 
9886 	/*
9887 	 * For fixed length options, no sanity check
9888 	 * of passed in length is done. It is assumed *_optcom_req()
9889 	 * routines do the right thing.
9890 	 */
9891 	switch (level) {
9892 	case SOL_SOCKET:
9893 		switch (name) {
9894 		case SO_LINGER: {
9895 			struct linger *lgr = (struct linger *)invalp;
9896 
9897 			if (!checkonly) {
9898 				if (lgr->l_onoff) {
9899 					tcp->tcp_linger = 1;
9900 					tcp->tcp_lingertime = lgr->l_linger;
9901 				} else {
9902 					tcp->tcp_linger = 0;
9903 					tcp->tcp_lingertime = 0;
9904 				}
9905 				/* struct copy */
9906 				*(struct linger *)outvalp = *lgr;
9907 			} else {
9908 				if (!lgr->l_onoff) {
9909 					((struct linger *)
9910 					    outvalp)->l_onoff = 0;
9911 					((struct linger *)
9912 					    outvalp)->l_linger = 0;
9913 				} else {
9914 					/* struct copy */
9915 					*(struct linger *)outvalp = *lgr;
9916 				}
9917 			}
9918 			*outlenp = sizeof (struct linger);
9919 			return (0);
9920 		}
9921 		case SO_DEBUG:
9922 			if (!checkonly)
9923 				tcp->tcp_debug = onoff;
9924 			break;
9925 		case SO_KEEPALIVE:
9926 			if (checkonly) {
9927 				/* check only case */
9928 				break;
9929 			}
9930 
9931 			if (!onoff) {
9932 				if (tcp->tcp_ka_enabled) {
9933 					if (tcp->tcp_ka_tid != 0) {
9934 						(void) TCP_TIMER_CANCEL(tcp,
9935 						    tcp->tcp_ka_tid);
9936 						tcp->tcp_ka_tid = 0;
9937 					}
9938 					tcp->tcp_ka_enabled = 0;
9939 				}
9940 				break;
9941 			}
9942 			if (!tcp->tcp_ka_enabled) {
9943 				/* Crank up the keepalive timer */
9944 				tcp->tcp_ka_last_intrvl = 0;
9945 				tcp->tcp_ka_tid = TCP_TIMER(tcp,
9946 				    tcp_keepalive_killer,
9947 				    MSEC_TO_TICK(tcp->tcp_ka_interval));
9948 				tcp->tcp_ka_enabled = 1;
9949 			}
9950 			break;
9951 		case SO_DONTROUTE:
9952 			/*
9953 			 * SO_DONTROUTE, SO_USELOOPBACK, and SO_BROADCAST are
9954 			 * only of interest to IP.  We track them here only so
9955 			 * that we can report their current value.
9956 			 */
9957 			if (!checkonly) {
9958 				tcp->tcp_dontroute = onoff;
9959 				tcp->tcp_connp->conn_dontroute = onoff;
9960 			}
9961 			break;
9962 		case SO_USELOOPBACK:
9963 			if (!checkonly) {
9964 				tcp->tcp_useloopback = onoff;
9965 				tcp->tcp_connp->conn_loopback = onoff;
9966 			}
9967 			break;
9968 		case SO_BROADCAST:
9969 			if (!checkonly) {
9970 				tcp->tcp_broadcast = onoff;
9971 				tcp->tcp_connp->conn_broadcast = onoff;
9972 			}
9973 			break;
9974 		case SO_REUSEADDR:
9975 			if (!checkonly) {
9976 				tcp->tcp_reuseaddr = onoff;
9977 				tcp->tcp_connp->conn_reuseaddr = onoff;
9978 			}
9979 			break;
9980 		case SO_OOBINLINE:
9981 			if (!checkonly) {
9982 				tcp->tcp_oobinline = onoff;
9983 				if (IPCL_IS_NONSTR(tcp->tcp_connp))
9984 					proto_set_rx_oob_opt(connp, onoff);
9985 			}
9986 			break;
9987 		case SO_DGRAM_ERRIND:
9988 			if (!checkonly)
9989 				tcp->tcp_dgram_errind = onoff;
9990 			break;
9991 		case SO_SNDBUF: {
9992 			if (*i1 > tcps->tcps_max_buf) {
9993 				*outlenp = 0;
9994 				return (ENOBUFS);
9995 			}
9996 			if (checkonly)
9997 				break;
9998 
9999 			tcp->tcp_xmit_hiwater = *i1;
10000 			if (tcps->tcps_snd_lowat_fraction != 0)
10001 				tcp->tcp_xmit_lowater =
10002 				    tcp->tcp_xmit_hiwater /
10003 				    tcps->tcps_snd_lowat_fraction;
10004 			(void) tcp_maxpsz_set(tcp, B_TRUE);
10005 			/*
10006 			 * If we are flow-controlled, recheck the condition.
10007 			 * There are apps that increase SO_SNDBUF size when
10008 			 * flow-controlled (EWOULDBLOCK), and expect the flow
10009 			 * control condition to be lifted right away.
10010 			 */
10011 			mutex_enter(&tcp->tcp_non_sq_lock);
10012 			if (tcp->tcp_flow_stopped &&
10013 			    TCP_UNSENT_BYTES(tcp) < tcp->tcp_xmit_hiwater) {
10014 				tcp_clrqfull(tcp);
10015 			}
10016 			mutex_exit(&tcp->tcp_non_sq_lock);
10017 			break;
10018 		}
10019 		case SO_RCVBUF:
10020 			if (*i1 > tcps->tcps_max_buf) {
10021 				*outlenp = 0;
10022 				return (ENOBUFS);
10023 			}
10024 			/* Silently ignore zero */
10025 			if (!checkonly && *i1 != 0) {
10026 				*i1 = MSS_ROUNDUP(*i1, tcp->tcp_mss);
10027 				(void) tcp_rwnd_set(tcp, *i1);
10028 			}
10029 			/*
10030 			 * XXX should we return the rwnd here
10031 			 * and tcp_opt_get ?
10032 			 */
10033 			break;
10034 		case SO_SND_COPYAVOID:
10035 			if (!checkonly) {
10036 				/* we only allow enable at most once for now */
10037 				if (tcp->tcp_loopback ||
10038 				    (tcp->tcp_kssl_ctx != NULL) ||
10039 				    (!tcp->tcp_snd_zcopy_aware &&
10040 				    (onoff != 1 || !tcp_zcopy_check(tcp)))) {
10041 					*outlenp = 0;
10042 					return (EOPNOTSUPP);
10043 				}
10044 				tcp->tcp_snd_zcopy_aware = 1;
10045 			}
10046 			break;
10047 		case SO_RCVTIMEO:
10048 		case SO_SNDTIMEO:
10049 			/*
10050 			 * Pass these two options in order for third part
10051 			 * protocol usage. Here just return directly.
10052 			 */
10053 			return (0);
10054 		case SO_ALLZONES:
10055 			/* Pass option along to IP level for handling */
10056 			return (-EINVAL);
10057 		case SO_ANON_MLP:
10058 			/* Pass option along to IP level for handling */
10059 			return (-EINVAL);
10060 		case SO_MAC_EXEMPT:
10061 			/* Pass option along to IP level for handling */
10062 			return (-EINVAL);
10063 		case SO_EXCLBIND:
10064 			if (!checkonly)
10065 				tcp->tcp_exclbind = onoff;
10066 			break;
10067 		default:
10068 			*outlenp = 0;
10069 			return (EINVAL);
10070 		}
10071 		break;
10072 	case IPPROTO_TCP:
10073 		switch (name) {
10074 		case TCP_NODELAY:
10075 			if (!checkonly)
10076 				tcp->tcp_naglim = *i1 ? 1 : tcp->tcp_mss;
10077 			break;
10078 		case TCP_NOTIFY_THRESHOLD:
10079 			if (!checkonly)
10080 				tcp->tcp_first_timer_threshold = *i1;
10081 			break;
10082 		case TCP_ABORT_THRESHOLD:
10083 			if (!checkonly)
10084 				tcp->tcp_second_timer_threshold = *i1;
10085 			break;
10086 		case TCP_CONN_NOTIFY_THRESHOLD:
10087 			if (!checkonly)
10088 				tcp->tcp_first_ctimer_threshold = *i1;
10089 			break;
10090 		case TCP_CONN_ABORT_THRESHOLD:
10091 			if (!checkonly)
10092 				tcp->tcp_second_ctimer_threshold = *i1;
10093 			break;
10094 		case TCP_RECVDSTADDR:
10095 			if (tcp->tcp_state > TCPS_LISTEN)
10096 				return (EOPNOTSUPP);
10097 			if (!checkonly)
10098 				tcp->tcp_recvdstaddr = onoff;
10099 			break;
10100 		case TCP_ANONPRIVBIND:
10101 			if ((reterr = secpolicy_net_privaddr(cr, 0,
10102 			    IPPROTO_TCP)) != 0) {
10103 				*outlenp = 0;
10104 				return (reterr);
10105 			}
10106 			if (!checkonly) {
10107 				tcp->tcp_anon_priv_bind = onoff;
10108 			}
10109 			break;
10110 		case TCP_EXCLBIND:
10111 			if (!checkonly)
10112 				tcp->tcp_exclbind = onoff;
10113 			break;	/* goto sizeof (int) option return */
10114 		case TCP_INIT_CWND: {
10115 			uint32_t init_cwnd = *((uint32_t *)invalp);
10116 
10117 			if (checkonly)
10118 				break;
10119 
10120 			/*
10121 			 * Only allow socket with network configuration
10122 			 * privilege to set the initial cwnd to be larger
10123 			 * than allowed by RFC 3390.
10124 			 */
10125 			if (init_cwnd <= MIN(4, MAX(2, 4380 / tcp->tcp_mss))) {
10126 				tcp->tcp_init_cwnd = init_cwnd;
10127 				break;
10128 			}
10129 			if ((reterr = secpolicy_ip_config(cr, B_TRUE)) != 0) {
10130 				*outlenp = 0;
10131 				return (reterr);
10132 			}
10133 			if (init_cwnd > TCP_MAX_INIT_CWND) {
10134 				*outlenp = 0;
10135 				return (EINVAL);
10136 			}
10137 			tcp->tcp_init_cwnd = init_cwnd;
10138 			break;
10139 		}
10140 		case TCP_KEEPALIVE_THRESHOLD:
10141 			if (checkonly)
10142 				break;
10143 
10144 			if (*i1 < tcps->tcps_keepalive_interval_low ||
10145 			    *i1 > tcps->tcps_keepalive_interval_high) {
10146 				*outlenp = 0;
10147 				return (EINVAL);
10148 			}
10149 			if (*i1 != tcp->tcp_ka_interval) {
10150 				tcp->tcp_ka_interval = *i1;
10151 				/*
10152 				 * Check if we need to restart the
10153 				 * keepalive timer.
10154 				 */
10155 				if (tcp->tcp_ka_tid != 0) {
10156 					ASSERT(tcp->tcp_ka_enabled);
10157 					(void) TCP_TIMER_CANCEL(tcp,
10158 					    tcp->tcp_ka_tid);
10159 					tcp->tcp_ka_last_intrvl = 0;
10160 					tcp->tcp_ka_tid = TCP_TIMER(tcp,
10161 					    tcp_keepalive_killer,
10162 					    MSEC_TO_TICK(tcp->tcp_ka_interval));
10163 				}
10164 			}
10165 			break;
10166 		case TCP_KEEPALIVE_ABORT_THRESHOLD:
10167 			if (!checkonly) {
10168 				if (*i1 <
10169 				    tcps->tcps_keepalive_abort_interval_low ||
10170 				    *i1 >
10171 				    tcps->tcps_keepalive_abort_interval_high) {
10172 					*outlenp = 0;
10173 					return (EINVAL);
10174 				}
10175 				tcp->tcp_ka_abort_thres = *i1;
10176 			}
10177 			break;
10178 		case TCP_CORK:
10179 			if (!checkonly) {
10180 				/*
10181 				 * if tcp->tcp_cork was set and is now
10182 				 * being unset, we have to make sure that
10183 				 * the remaining data gets sent out. Also
10184 				 * unset tcp->tcp_cork so that tcp_wput_data()
10185 				 * can send data even if it is less than mss
10186 				 */
10187 				if (tcp->tcp_cork && onoff == 0 &&
10188 				    tcp->tcp_unsent > 0) {
10189 					tcp->tcp_cork = B_FALSE;
10190 					tcp_wput_data(tcp, NULL, B_FALSE);
10191 				}
10192 				tcp->tcp_cork = onoff;
10193 			}
10194 			break;
10195 		default:
10196 			*outlenp = 0;
10197 			return (EINVAL);
10198 		}
10199 		break;
10200 	case IPPROTO_IP:
10201 		if (tcp->tcp_family != AF_INET) {
10202 			*outlenp = 0;
10203 			return (ENOPROTOOPT);
10204 		}
10205 		switch (name) {
10206 		case IP_OPTIONS:
10207 		case T_IP_OPTIONS:
10208 			reterr = tcp_opt_set_header(tcp, checkonly,
10209 			    invalp, inlen);
10210 			if (reterr) {
10211 				*outlenp = 0;
10212 				return (reterr);
10213 			}
10214 			/* OK return - copy input buffer into output buffer */
10215 			if (invalp != outvalp) {
10216 				/* don't trust bcopy for identical src/dst */
10217 				bcopy(invalp, outvalp, inlen);
10218 			}
10219 			*outlenp = inlen;
10220 			return (0);
10221 		case IP_TOS:
10222 		case T_IP_TOS:
10223 			if (!checkonly) {
10224 				tcp->tcp_ipha->ipha_type_of_service =
10225 				    (uchar_t)*i1;
10226 				tcp->tcp_tos = (uchar_t)*i1;
10227 			}
10228 			break;
10229 		case IP_TTL:
10230 			if (!checkonly) {
10231 				tcp->tcp_ipha->ipha_ttl = (uchar_t)*i1;
10232 				tcp->tcp_ttl = (uchar_t)*i1;
10233 			}
10234 			break;
10235 		case IP_BOUND_IF:
10236 		case IP_NEXTHOP:
10237 			/* Handled at the IP level */
10238 			return (-EINVAL);
10239 		case IP_SEC_OPT:
10240 			/*
10241 			 * We should not allow policy setting after
10242 			 * we start listening for connections.
10243 			 */
10244 			if (tcp->tcp_state == TCPS_LISTEN) {
10245 				return (EINVAL);
10246 			} else {
10247 				/* Handled at the IP level */
10248 				return (-EINVAL);
10249 			}
10250 		default:
10251 			*outlenp = 0;
10252 			return (EINVAL);
10253 		}
10254 		break;
10255 	case IPPROTO_IPV6: {
10256 		ip6_pkt_t		*ipp;
10257 
10258 		/*
10259 		 * IPPROTO_IPV6 options are only supported for sockets
10260 		 * that are using IPv6 on the wire.
10261 		 */
10262 		if (tcp->tcp_ipversion != IPV6_VERSION) {
10263 			*outlenp = 0;
10264 			return (ENOPROTOOPT);
10265 		}
10266 		/*
10267 		 * Only sticky options; no ancillary data
10268 		 */
10269 		ipp = &tcp->tcp_sticky_ipp;
10270 
10271 		switch (name) {
10272 		case IPV6_UNICAST_HOPS:
10273 			/* -1 means use default */
10274 			if (*i1 < -1 || *i1 > IPV6_MAX_HOPS) {
10275 				*outlenp = 0;
10276 				return (EINVAL);
10277 			}
10278 			if (!checkonly) {
10279 				if (*i1 == -1) {
10280 					tcp->tcp_ip6h->ip6_hops =
10281 					    ipp->ipp_unicast_hops =
10282 					    (uint8_t)tcps->tcps_ipv6_hoplimit;
10283 					ipp->ipp_fields &= ~IPPF_UNICAST_HOPS;
10284 					/* Pass modified value to IP. */
10285 					*i1 = tcp->tcp_ip6h->ip6_hops;
10286 				} else {
10287 					tcp->tcp_ip6h->ip6_hops =
10288 					    ipp->ipp_unicast_hops =
10289 					    (uint8_t)*i1;
10290 					ipp->ipp_fields |= IPPF_UNICAST_HOPS;
10291 				}
10292 				reterr = tcp_build_hdrs(tcp);
10293 				if (reterr != 0)
10294 					return (reterr);
10295 			}
10296 			break;
10297 		case IPV6_BOUND_IF:
10298 			if (!checkonly) {
10299 				tcp->tcp_bound_if = *i1;
10300 				PASS_OPT_TO_IP(connp);
10301 			}
10302 			break;
10303 		/*
10304 		 * Set boolean switches for ancillary data delivery
10305 		 */
10306 		case IPV6_RECVPKTINFO:
10307 			if (!checkonly) {
10308 				if (onoff)
10309 					tcp->tcp_ipv6_recvancillary |=
10310 					    TCP_IPV6_RECVPKTINFO;
10311 				else
10312 					tcp->tcp_ipv6_recvancillary &=
10313 					    ~TCP_IPV6_RECVPKTINFO;
10314 				/* Force it to be sent up with the next msg */
10315 				tcp->tcp_recvifindex = 0;
10316 				PASS_OPT_TO_IP(connp);
10317 			}
10318 			break;
10319 		case IPV6_RECVTCLASS:
10320 			if (!checkonly) {
10321 				if (onoff)
10322 					tcp->tcp_ipv6_recvancillary |=
10323 					    TCP_IPV6_RECVTCLASS;
10324 				else
10325 					tcp->tcp_ipv6_recvancillary &=
10326 					    ~TCP_IPV6_RECVTCLASS;
10327 				PASS_OPT_TO_IP(connp);
10328 			}
10329 			break;
10330 		case IPV6_RECVHOPLIMIT:
10331 			if (!checkonly) {
10332 				if (onoff)
10333 					tcp->tcp_ipv6_recvancillary |=
10334 					    TCP_IPV6_RECVHOPLIMIT;
10335 				else
10336 					tcp->tcp_ipv6_recvancillary &=
10337 					    ~TCP_IPV6_RECVHOPLIMIT;
10338 				/* Force it to be sent up with the next msg */
10339 				tcp->tcp_recvhops = 0xffffffffU;
10340 				PASS_OPT_TO_IP(connp);
10341 			}
10342 			break;
10343 		case IPV6_RECVHOPOPTS:
10344 			if (!checkonly) {
10345 				if (onoff)
10346 					tcp->tcp_ipv6_recvancillary |=
10347 					    TCP_IPV6_RECVHOPOPTS;
10348 				else
10349 					tcp->tcp_ipv6_recvancillary &=
10350 					    ~TCP_IPV6_RECVHOPOPTS;
10351 				PASS_OPT_TO_IP(connp);
10352 			}
10353 			break;
10354 		case IPV6_RECVDSTOPTS:
10355 			if (!checkonly) {
10356 				if (onoff)
10357 					tcp->tcp_ipv6_recvancillary |=
10358 					    TCP_IPV6_RECVDSTOPTS;
10359 				else
10360 					tcp->tcp_ipv6_recvancillary &=
10361 					    ~TCP_IPV6_RECVDSTOPTS;
10362 				PASS_OPT_TO_IP(connp);
10363 			}
10364 			break;
10365 		case _OLD_IPV6_RECVDSTOPTS:
10366 			if (!checkonly) {
10367 				if (onoff)
10368 					tcp->tcp_ipv6_recvancillary |=
10369 					    TCP_OLD_IPV6_RECVDSTOPTS;
10370 				else
10371 					tcp->tcp_ipv6_recvancillary &=
10372 					    ~TCP_OLD_IPV6_RECVDSTOPTS;
10373 			}
10374 			break;
10375 		case IPV6_RECVRTHDR:
10376 			if (!checkonly) {
10377 				if (onoff)
10378 					tcp->tcp_ipv6_recvancillary |=
10379 					    TCP_IPV6_RECVRTHDR;
10380 				else
10381 					tcp->tcp_ipv6_recvancillary &=
10382 					    ~TCP_IPV6_RECVRTHDR;
10383 				PASS_OPT_TO_IP(connp);
10384 			}
10385 			break;
10386 		case IPV6_RECVRTHDRDSTOPTS:
10387 			if (!checkonly) {
10388 				if (onoff)
10389 					tcp->tcp_ipv6_recvancillary |=
10390 					    TCP_IPV6_RECVRTDSTOPTS;
10391 				else
10392 					tcp->tcp_ipv6_recvancillary &=
10393 					    ~TCP_IPV6_RECVRTDSTOPTS;
10394 				PASS_OPT_TO_IP(connp);
10395 			}
10396 			break;
10397 		case IPV6_PKTINFO:
10398 			if (inlen != 0 && inlen != sizeof (struct in6_pktinfo))
10399 				return (EINVAL);
10400 			if (checkonly)
10401 				break;
10402 
10403 			if (inlen == 0) {
10404 				ipp->ipp_fields &= ~(IPPF_IFINDEX|IPPF_ADDR);
10405 			} else {
10406 				struct in6_pktinfo *pkti;
10407 
10408 				pkti = (struct in6_pktinfo *)invalp;
10409 				/*
10410 				 * RFC 3542 states that ipi6_addr must be
10411 				 * the unspecified address when setting the
10412 				 * IPV6_PKTINFO sticky socket option on a
10413 				 * TCP socket.
10414 				 */
10415 				if (!IN6_IS_ADDR_UNSPECIFIED(&pkti->ipi6_addr))
10416 					return (EINVAL);
10417 				/*
10418 				 * IP will validate the source address and
10419 				 * interface index.
10420 				 */
10421 				if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
10422 					reterr = ip_set_options(tcp->tcp_connp,
10423 					    level, name, invalp, inlen, cr);
10424 				} else {
10425 					reterr = ip6_set_pktinfo(cr,
10426 					    tcp->tcp_connp, pkti);
10427 				}
10428 				if (reterr != 0)
10429 					return (reterr);
10430 				ipp->ipp_ifindex = pkti->ipi6_ifindex;
10431 				ipp->ipp_addr = pkti->ipi6_addr;
10432 				if (ipp->ipp_ifindex != 0)
10433 					ipp->ipp_fields |= IPPF_IFINDEX;
10434 				else
10435 					ipp->ipp_fields &= ~IPPF_IFINDEX;
10436 				if (!IN6_IS_ADDR_UNSPECIFIED(&ipp->ipp_addr))
10437 					ipp->ipp_fields |= IPPF_ADDR;
10438 				else
10439 					ipp->ipp_fields &= ~IPPF_ADDR;
10440 			}
10441 			reterr = tcp_build_hdrs(tcp);
10442 			if (reterr != 0)
10443 				return (reterr);
10444 			break;
10445 		case IPV6_TCLASS:
10446 			if (inlen != 0 && inlen != sizeof (int))
10447 				return (EINVAL);
10448 			if (checkonly)
10449 				break;
10450 
10451 			if (inlen == 0) {
10452 				ipp->ipp_fields &= ~IPPF_TCLASS;
10453 			} else {
10454 				if (*i1 > 255 || *i1 < -1)
10455 					return (EINVAL);
10456 				if (*i1 == -1) {
10457 					ipp->ipp_tclass = 0;
10458 					*i1 = 0;
10459 				} else {
10460 					ipp->ipp_tclass = *i1;
10461 				}
10462 				ipp->ipp_fields |= IPPF_TCLASS;
10463 			}
10464 			reterr = tcp_build_hdrs(tcp);
10465 			if (reterr != 0)
10466 				return (reterr);
10467 			break;
10468 		case IPV6_NEXTHOP:
10469 			/*
10470 			 * IP will verify that the nexthop is reachable
10471 			 * and fail for sticky options.
10472 			 */
10473 			if (inlen != 0 && inlen != sizeof (sin6_t))
10474 				return (EINVAL);
10475 			if (checkonly)
10476 				break;
10477 
10478 			if (inlen == 0) {
10479 				ipp->ipp_fields &= ~IPPF_NEXTHOP;
10480 			} else {
10481 				sin6_t *sin6 = (sin6_t *)invalp;
10482 
10483 				if (sin6->sin6_family != AF_INET6)
10484 					return (EAFNOSUPPORT);
10485 				if (IN6_IS_ADDR_V4MAPPED(
10486 				    &sin6->sin6_addr))
10487 					return (EADDRNOTAVAIL);
10488 				ipp->ipp_nexthop = sin6->sin6_addr;
10489 				if (!IN6_IS_ADDR_UNSPECIFIED(
10490 				    &ipp->ipp_nexthop))
10491 					ipp->ipp_fields |= IPPF_NEXTHOP;
10492 				else
10493 					ipp->ipp_fields &= ~IPPF_NEXTHOP;
10494 			}
10495 			reterr = tcp_build_hdrs(tcp);
10496 			if (reterr != 0)
10497 				return (reterr);
10498 			PASS_OPT_TO_IP(connp);
10499 			break;
10500 		case IPV6_HOPOPTS: {
10501 			ip6_hbh_t *hopts = (ip6_hbh_t *)invalp;
10502 
10503 			/*
10504 			 * Sanity checks - minimum size, size a multiple of
10505 			 * eight bytes, and matching size passed in.
10506 			 */
10507 			if (inlen != 0 &&
10508 			    inlen != (8 * (hopts->ip6h_len + 1)))
10509 				return (EINVAL);
10510 
10511 			if (checkonly)
10512 				break;
10513 
10514 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10515 			    (uchar_t **)&ipp->ipp_hopopts,
10516 			    &ipp->ipp_hopoptslen, tcp->tcp_label_len);
10517 			if (reterr != 0)
10518 				return (reterr);
10519 			if (ipp->ipp_hopoptslen == 0)
10520 				ipp->ipp_fields &= ~IPPF_HOPOPTS;
10521 			else
10522 				ipp->ipp_fields |= IPPF_HOPOPTS;
10523 			reterr = tcp_build_hdrs(tcp);
10524 			if (reterr != 0)
10525 				return (reterr);
10526 			break;
10527 		}
10528 		case IPV6_RTHDRDSTOPTS: {
10529 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10530 
10531 			/*
10532 			 * Sanity checks - minimum size, size a multiple of
10533 			 * eight bytes, and matching size passed in.
10534 			 */
10535 			if (inlen != 0 &&
10536 			    inlen != (8 * (dopts->ip6d_len + 1)))
10537 				return (EINVAL);
10538 
10539 			if (checkonly)
10540 				break;
10541 
10542 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10543 			    (uchar_t **)&ipp->ipp_rtdstopts,
10544 			    &ipp->ipp_rtdstoptslen, 0);
10545 			if (reterr != 0)
10546 				return (reterr);
10547 			if (ipp->ipp_rtdstoptslen == 0)
10548 				ipp->ipp_fields &= ~IPPF_RTDSTOPTS;
10549 			else
10550 				ipp->ipp_fields |= IPPF_RTDSTOPTS;
10551 			reterr = tcp_build_hdrs(tcp);
10552 			if (reterr != 0)
10553 				return (reterr);
10554 			break;
10555 		}
10556 		case IPV6_DSTOPTS: {
10557 			ip6_dest_t *dopts = (ip6_dest_t *)invalp;
10558 
10559 			/*
10560 			 * Sanity checks - minimum size, size a multiple of
10561 			 * eight bytes, and matching size passed in.
10562 			 */
10563 			if (inlen != 0 &&
10564 			    inlen != (8 * (dopts->ip6d_len + 1)))
10565 				return (EINVAL);
10566 
10567 			if (checkonly)
10568 				break;
10569 
10570 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10571 			    (uchar_t **)&ipp->ipp_dstopts,
10572 			    &ipp->ipp_dstoptslen, 0);
10573 			if (reterr != 0)
10574 				return (reterr);
10575 			if (ipp->ipp_dstoptslen == 0)
10576 				ipp->ipp_fields &= ~IPPF_DSTOPTS;
10577 			else
10578 				ipp->ipp_fields |= IPPF_DSTOPTS;
10579 			reterr = tcp_build_hdrs(tcp);
10580 			if (reterr != 0)
10581 				return (reterr);
10582 			break;
10583 		}
10584 		case IPV6_RTHDR: {
10585 			ip6_rthdr_t *rt = (ip6_rthdr_t *)invalp;
10586 
10587 			/*
10588 			 * Sanity checks - minimum size, size a multiple of
10589 			 * eight bytes, and matching size passed in.
10590 			 */
10591 			if (inlen != 0 &&
10592 			    inlen != (8 * (rt->ip6r_len + 1)))
10593 				return (EINVAL);
10594 
10595 			if (checkonly)
10596 				break;
10597 
10598 			reterr = optcom_pkt_set(invalp, inlen, B_TRUE,
10599 			    (uchar_t **)&ipp->ipp_rthdr,
10600 			    &ipp->ipp_rthdrlen, 0);
10601 			if (reterr != 0)
10602 				return (reterr);
10603 			if (ipp->ipp_rthdrlen == 0)
10604 				ipp->ipp_fields &= ~IPPF_RTHDR;
10605 			else
10606 				ipp->ipp_fields |= IPPF_RTHDR;
10607 			reterr = tcp_build_hdrs(tcp);
10608 			if (reterr != 0)
10609 				return (reterr);
10610 			break;
10611 		}
10612 		case IPV6_V6ONLY:
10613 			if (!checkonly) {
10614 				tcp->tcp_connp->conn_ipv6_v6only = onoff;
10615 			}
10616 			break;
10617 		case IPV6_USE_MIN_MTU:
10618 			if (inlen != sizeof (int))
10619 				return (EINVAL);
10620 
10621 			if (*i1 < -1 || *i1 > 1)
10622 				return (EINVAL);
10623 
10624 			if (checkonly)
10625 				break;
10626 
10627 			ipp->ipp_fields |= IPPF_USE_MIN_MTU;
10628 			ipp->ipp_use_min_mtu = *i1;
10629 			break;
10630 		case IPV6_SEC_OPT:
10631 			/*
10632 			 * We should not allow policy setting after
10633 			 * we start listening for connections.
10634 			 */
10635 			if (tcp->tcp_state == TCPS_LISTEN) {
10636 				return (EINVAL);
10637 			} else {
10638 				/* Handled at the IP level */
10639 				return (-EINVAL);
10640 			}
10641 		case IPV6_SRC_PREFERENCES:
10642 			if (inlen != sizeof (uint32_t))
10643 				return (EINVAL);
10644 			reterr = ip6_set_src_preferences(tcp->tcp_connp,
10645 			    *(uint32_t *)invalp);
10646 			if (reterr != 0) {
10647 				*outlenp = 0;
10648 				return (reterr);
10649 			}
10650 			break;
10651 		default:
10652 			*outlenp = 0;
10653 			return (EINVAL);
10654 		}
10655 		break;
10656 	}		/* end IPPROTO_IPV6 */
10657 	default:
10658 		*outlenp = 0;
10659 		return (EINVAL);
10660 	}
10661 	/*
10662 	 * Common case of OK return with outval same as inval
10663 	 */
10664 	if (invalp != outvalp) {
10665 		/* don't trust bcopy for identical src/dst */
10666 		(void) bcopy(invalp, outvalp, inlen);
10667 	}
10668 	*outlenp = inlen;
10669 	return (0);
10670 }
10671 
10672 /* ARGSUSED */
10673 int
10674 tcp_tpi_opt_set(queue_t *q, uint_t optset_context, int level, int name,
10675     uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp,
10676     void *thisdg_attrs, cred_t *cr, mblk_t *mblk)
10677 {
10678 	conn_t	*connp =  Q_TO_CONN(q);
10679 
10680 	return (tcp_opt_set(connp, optset_context, level, name, inlen, invalp,
10681 	    outlenp, outvalp, thisdg_attrs, cr, mblk));
10682 }
10683 
10684 int
10685 tcp_setsockopt(sock_lower_handle_t proto_handle, int level, int option_name,
10686     const void *optvalp, socklen_t optlen, cred_t *cr)
10687 {
10688 	conn_t		*connp = (conn_t *)proto_handle;
10689 	squeue_t	*sqp = connp->conn_sqp;
10690 	int		error;
10691 
10692 	ASSERT(connp->conn_upper_handle != NULL);
10693 	/*
10694 	 * Entering the squeue synchronously can result in a context switch,
10695 	 * which can cause a rather sever performance degradation. So we try to
10696 	 * handle whatever options we can without entering the squeue.
10697 	 */
10698 	if (level == IPPROTO_TCP) {
10699 		switch (option_name) {
10700 		case TCP_NODELAY:
10701 			if (optlen != sizeof (int32_t))
10702 				return (EINVAL);
10703 			mutex_enter(&connp->conn_tcp->tcp_non_sq_lock);
10704 			connp->conn_tcp->tcp_naglim = *(int *)optvalp ? 1 :
10705 			    connp->conn_tcp->tcp_mss;
10706 			mutex_exit(&connp->conn_tcp->tcp_non_sq_lock);
10707 			return (0);
10708 		default:
10709 			break;
10710 		}
10711 	}
10712 
10713 	error = squeue_synch_enter(sqp, connp, NULL);
10714 	if (error == ENOMEM) {
10715 		return (ENOMEM);
10716 	}
10717 
10718 	error = proto_opt_check(level, option_name, optlen, NULL,
10719 	    tcp_opt_obj.odb_opt_des_arr,
10720 	    tcp_opt_obj.odb_opt_arr_cnt,
10721 	    tcp_opt_obj.odb_topmost_tpiprovider,
10722 	    B_TRUE, B_FALSE, cr);
10723 
10724 	if (error != 0) {
10725 		if (error < 0) {
10726 			error = proto_tlitosyserr(-error);
10727 		}
10728 		squeue_synch_exit(sqp, connp);
10729 		return (error);
10730 	}
10731 
10732 	error = tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, level, option_name,
10733 	    optlen, (uchar_t *)optvalp, (uint_t *)&optlen, (uchar_t *)optvalp,
10734 	    NULL, cr, NULL);
10735 	squeue_synch_exit(sqp, connp);
10736 
10737 	if (error < 0) {
10738 		/*
10739 		 * Pass on to ip
10740 		 */
10741 		error = ip_set_options(connp, level, option_name, optvalp,
10742 		    optlen, cr);
10743 	}
10744 	return (error);
10745 }
10746 
10747 /*
10748  * Update tcp_sticky_hdrs based on tcp_sticky_ipp.
10749  * The headers include ip6i_t (if needed), ip6_t, any sticky extension
10750  * headers, and the maximum size tcp header (to avoid reallocation
10751  * on the fly for additional tcp options).
10752  * Returns failure if can't allocate memory.
10753  */
10754 static int
10755 tcp_build_hdrs(tcp_t *tcp)
10756 {
10757 	char	*hdrs;
10758 	uint_t	hdrs_len;
10759 	ip6i_t	*ip6i;
10760 	char	buf[TCP_MAX_HDR_LENGTH];
10761 	ip6_pkt_t *ipp = &tcp->tcp_sticky_ipp;
10762 	in6_addr_t src, dst;
10763 	tcp_stack_t	*tcps = tcp->tcp_tcps;
10764 	conn_t *connp = tcp->tcp_connp;
10765 
10766 	/*
10767 	 * save the existing tcp header and source/dest IP addresses
10768 	 */
10769 	bcopy(tcp->tcp_tcph, buf, tcp->tcp_tcp_hdr_len);
10770 	src = tcp->tcp_ip6h->ip6_src;
10771 	dst = tcp->tcp_ip6h->ip6_dst;
10772 	hdrs_len = ip_total_hdrs_len_v6(ipp) + TCP_MAX_HDR_LENGTH;
10773 	ASSERT(hdrs_len != 0);
10774 	if (hdrs_len > tcp->tcp_iphc_len) {
10775 		/* Need to reallocate */
10776 		hdrs = kmem_zalloc(hdrs_len, KM_NOSLEEP);
10777 		if (hdrs == NULL)
10778 			return (ENOMEM);
10779 		if (tcp->tcp_iphc != NULL) {
10780 			if (tcp->tcp_hdr_grown) {
10781 				kmem_free(tcp->tcp_iphc, tcp->tcp_iphc_len);
10782 			} else {
10783 				bzero(tcp->tcp_iphc, tcp->tcp_iphc_len);
10784 				kmem_cache_free(tcp_iphc_cache, tcp->tcp_iphc);
10785 			}
10786 			tcp->tcp_iphc_len = 0;
10787 		}
10788 		ASSERT(tcp->tcp_iphc_len == 0);
10789 		tcp->tcp_iphc = hdrs;
10790 		tcp->tcp_iphc_len = hdrs_len;
10791 		tcp->tcp_hdr_grown = B_TRUE;
10792 	}
10793 	ip_build_hdrs_v6((uchar_t *)tcp->tcp_iphc,
10794 	    hdrs_len - TCP_MAX_HDR_LENGTH, ipp, IPPROTO_TCP);
10795 
10796 	/* Set header fields not in ipp */
10797 	if (ipp->ipp_fields & IPPF_HAS_IP6I) {
10798 		ip6i = (ip6i_t *)tcp->tcp_iphc;
10799 		tcp->tcp_ip6h = (ip6_t *)&ip6i[1];
10800 	} else {
10801 		tcp->tcp_ip6h = (ip6_t *)tcp->tcp_iphc;
10802 	}
10803 	/*
10804 	 * tcp->tcp_ip_hdr_len will include ip6i_t if there is one.
10805 	 *
10806 	 * tcp->tcp_tcp_hdr_len doesn't change here.
10807 	 */
10808 	tcp->tcp_ip_hdr_len = hdrs_len - TCP_MAX_HDR_LENGTH;
10809 	tcp->tcp_tcph = (tcph_t *)(tcp->tcp_iphc + tcp->tcp_ip_hdr_len);
10810 	tcp->tcp_hdr_len = tcp->tcp_ip_hdr_len + tcp->tcp_tcp_hdr_len;
10811 
10812 	bcopy(buf, tcp->tcp_tcph, tcp->tcp_tcp_hdr_len);
10813 
10814 	tcp->tcp_ip6h->ip6_src = src;
10815 	tcp->tcp_ip6h->ip6_dst = dst;
10816 
10817 	/*
10818 	 * If the hop limit was not set by ip_build_hdrs_v6(), set it to
10819 	 * the default value for TCP.
10820 	 */
10821 	if (!(ipp->ipp_fields & IPPF_UNICAST_HOPS))
10822 		tcp->tcp_ip6h->ip6_hops = tcps->tcps_ipv6_hoplimit;
10823 
10824 	/*
10825 	 * If we're setting extension headers after a connection
10826 	 * has been established, and if we have a routing header
10827 	 * among the extension headers, call ip_massage_options_v6 to
10828 	 * manipulate the routing header/ip6_dst set the checksum
10829 	 * difference in the tcp header template.
10830 	 * (This happens in tcp_connect_ipv6 if the routing header
10831 	 * is set prior to the connect.)
10832 	 * Set the tcp_sum to zero first in case we've cleared a
10833 	 * routing header or don't have one at all.
10834 	 */
10835 	tcp->tcp_sum = 0;
10836 	if ((tcp->tcp_state >= TCPS_SYN_SENT) &&
10837 	    (tcp->tcp_ipp_fields & IPPF_RTHDR)) {
10838 		ip6_rthdr_t *rth = ip_find_rthdr_v6(tcp->tcp_ip6h,
10839 		    (uint8_t *)tcp->tcp_tcph);
10840 		if (rth != NULL) {
10841 			tcp->tcp_sum = ip_massage_options_v6(tcp->tcp_ip6h,
10842 			    rth, tcps->tcps_netstack);
10843 			tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) +
10844 			    (tcp->tcp_sum >> 16));
10845 		}
10846 	}
10847 
10848 	/* Try to get everything in a single mblk */
10849 	(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
10850 	    hdrs_len + tcps->tcps_wroff_xtra);
10851 	return (0);
10852 }
10853 
10854 /*
10855  * Transfer any source route option from ipha to buf/dst in reversed form.
10856  */
10857 static int
10858 tcp_opt_rev_src_route(ipha_t *ipha, char *buf, uchar_t *dst)
10859 {
10860 	ipoptp_t	opts;
10861 	uchar_t		*opt;
10862 	uint8_t		optval;
10863 	uint8_t		optlen;
10864 	uint32_t	len = 0;
10865 
10866 	for (optval = ipoptp_first(&opts, ipha);
10867 	    optval != IPOPT_EOL;
10868 	    optval = ipoptp_next(&opts)) {
10869 		opt = opts.ipoptp_cur;
10870 		optlen = opts.ipoptp_len;
10871 		switch (optval) {
10872 			int	off1, off2;
10873 		case IPOPT_SSRR:
10874 		case IPOPT_LSRR:
10875 
10876 			/* Reverse source route */
10877 			/*
10878 			 * First entry should be the next to last one in the
10879 			 * current source route (the last entry is our
10880 			 * address.)
10881 			 * The last entry should be the final destination.
10882 			 */
10883 			buf[IPOPT_OPTVAL] = (uint8_t)optval;
10884 			buf[IPOPT_OLEN] = (uint8_t)optlen;
10885 			off1 = IPOPT_MINOFF_SR - 1;
10886 			off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
10887 			if (off2 < 0) {
10888 				/* No entries in source route */
10889 				break;
10890 			}
10891 			bcopy(opt + off2, dst, IP_ADDR_LEN);
10892 			/*
10893 			 * Note: use src since ipha has not had its src
10894 			 * and dst reversed (it is in the state it was
10895 			 * received.
10896 			 */
10897 			bcopy(&ipha->ipha_src, buf + off2,
10898 			    IP_ADDR_LEN);
10899 			off2 -= IP_ADDR_LEN;
10900 
10901 			while (off2 > 0) {
10902 				bcopy(opt + off2, buf + off1,
10903 				    IP_ADDR_LEN);
10904 				off1 += IP_ADDR_LEN;
10905 				off2 -= IP_ADDR_LEN;
10906 			}
10907 			buf[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
10908 			buf += optlen;
10909 			len += optlen;
10910 			break;
10911 		}
10912 	}
10913 done:
10914 	/* Pad the resulting options */
10915 	while (len & 0x3) {
10916 		*buf++ = IPOPT_EOL;
10917 		len++;
10918 	}
10919 	return (len);
10920 }
10921 
10922 
10923 /*
10924  * Extract and revert a source route from ipha (if any)
10925  * and then update the relevant fields in both tcp_t and the standard header.
10926  */
10927 static void
10928 tcp_opt_reverse(tcp_t *tcp, ipha_t *ipha)
10929 {
10930 	char	buf[TCP_MAX_HDR_LENGTH];
10931 	uint_t	tcph_len;
10932 	int	len;
10933 
10934 	ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
10935 	len = IPH_HDR_LENGTH(ipha);
10936 	if (len == IP_SIMPLE_HDR_LENGTH)
10937 		/* Nothing to do */
10938 		return;
10939 	if (len > IP_SIMPLE_HDR_LENGTH + TCP_MAX_IP_OPTIONS_LENGTH ||
10940 	    (len & 0x3))
10941 		return;
10942 
10943 	tcph_len = tcp->tcp_tcp_hdr_len;
10944 	bcopy(tcp->tcp_tcph, buf, tcph_len);
10945 	tcp->tcp_sum = (tcp->tcp_ipha->ipha_dst >> 16) +
10946 	    (tcp->tcp_ipha->ipha_dst & 0xffff);
10947 	len = tcp_opt_rev_src_route(ipha, (char *)tcp->tcp_ipha +
10948 	    IP_SIMPLE_HDR_LENGTH, (uchar_t *)&tcp->tcp_ipha->ipha_dst);
10949 	len += IP_SIMPLE_HDR_LENGTH;
10950 	tcp->tcp_sum -= ((tcp->tcp_ipha->ipha_dst >> 16) +
10951 	    (tcp->tcp_ipha->ipha_dst & 0xffff));
10952 	if ((int)tcp->tcp_sum < 0)
10953 		tcp->tcp_sum--;
10954 	tcp->tcp_sum = (tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16);
10955 	tcp->tcp_sum = ntohs((tcp->tcp_sum & 0xFFFF) + (tcp->tcp_sum >> 16));
10956 	tcp->tcp_tcph = (tcph_t *)((char *)tcp->tcp_ipha + len);
10957 	bcopy(buf, tcp->tcp_tcph, tcph_len);
10958 	tcp->tcp_ip_hdr_len = len;
10959 	tcp->tcp_ipha->ipha_version_and_hdr_length =
10960 	    (IP_VERSION << 4) | (len >> 2);
10961 	len += tcph_len;
10962 	tcp->tcp_hdr_len = len;
10963 }
10964 
10965 /*
10966  * Copy the standard header into its new location,
10967  * lay in the new options and then update the relevant
10968  * fields in both tcp_t and the standard header.
10969  */
10970 static int
10971 tcp_opt_set_header(tcp_t *tcp, boolean_t checkonly, uchar_t *ptr, uint_t len)
10972 {
10973 	uint_t	tcph_len;
10974 	uint8_t	*ip_optp;
10975 	tcph_t	*new_tcph;
10976 	tcp_stack_t	*tcps = tcp->tcp_tcps;
10977 	conn_t	*connp = tcp->tcp_connp;
10978 
10979 	if ((len > TCP_MAX_IP_OPTIONS_LENGTH) || (len & 0x3))
10980 		return (EINVAL);
10981 
10982 	if (len > IP_MAX_OPT_LENGTH - tcp->tcp_label_len)
10983 		return (EINVAL);
10984 
10985 	if (checkonly) {
10986 		/*
10987 		 * do not really set, just pretend to - T_CHECK
10988 		 */
10989 		return (0);
10990 	}
10991 
10992 	ip_optp = (uint8_t *)tcp->tcp_ipha + IP_SIMPLE_HDR_LENGTH;
10993 	if (tcp->tcp_label_len > 0) {
10994 		int padlen;
10995 		uint8_t opt;
10996 
10997 		/* convert list termination to no-ops */
10998 		padlen = tcp->tcp_label_len - ip_optp[IPOPT_OLEN];
10999 		ip_optp += ip_optp[IPOPT_OLEN];
11000 		opt = len > 0 ? IPOPT_NOP : IPOPT_EOL;
11001 		while (--padlen >= 0)
11002 			*ip_optp++ = opt;
11003 	}
11004 	tcph_len = tcp->tcp_tcp_hdr_len;
11005 	new_tcph = (tcph_t *)(ip_optp + len);
11006 	ovbcopy(tcp->tcp_tcph, new_tcph, tcph_len);
11007 	tcp->tcp_tcph = new_tcph;
11008 	bcopy(ptr, ip_optp, len);
11009 
11010 	len += IP_SIMPLE_HDR_LENGTH + tcp->tcp_label_len;
11011 
11012 	tcp->tcp_ip_hdr_len = len;
11013 	tcp->tcp_ipha->ipha_version_and_hdr_length =
11014 	    (IP_VERSION << 4) | (len >> 2);
11015 	tcp->tcp_hdr_len = len + tcph_len;
11016 	if (!TCP_IS_DETACHED(tcp)) {
11017 		/* Always allocate room for all options. */
11018 		(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
11019 		    TCP_MAX_COMBINED_HEADER_LENGTH + tcps->tcps_wroff_xtra);
11020 	}
11021 	return (0);
11022 }
11023 
11024 /* Get callback routine passed to nd_load by tcp_param_register */
11025 /* ARGSUSED */
11026 static int
11027 tcp_param_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *cr)
11028 {
11029 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11030 
11031 	(void) mi_mpprintf(mp, "%u", tcppa->tcp_param_val);
11032 	return (0);
11033 }
11034 
11035 /*
11036  * Walk through the param array specified registering each element with the
11037  * named dispatch handler.
11038  */
11039 static boolean_t
11040 tcp_param_register(IDP *ndp, tcpparam_t *tcppa, int cnt, tcp_stack_t *tcps)
11041 {
11042 	for (; cnt-- > 0; tcppa++) {
11043 		if (tcppa->tcp_param_name && tcppa->tcp_param_name[0]) {
11044 			if (!nd_load(ndp, tcppa->tcp_param_name,
11045 			    tcp_param_get, tcp_param_set,
11046 			    (caddr_t)tcppa)) {
11047 				nd_free(ndp);
11048 				return (B_FALSE);
11049 			}
11050 		}
11051 	}
11052 	tcps->tcps_wroff_xtra_param = kmem_zalloc(sizeof (tcpparam_t),
11053 	    KM_SLEEP);
11054 	bcopy(&lcl_tcp_wroff_xtra_param, tcps->tcps_wroff_xtra_param,
11055 	    sizeof (tcpparam_t));
11056 	if (!nd_load(ndp, tcps->tcps_wroff_xtra_param->tcp_param_name,
11057 	    tcp_param_get, tcp_param_set_aligned,
11058 	    (caddr_t)tcps->tcps_wroff_xtra_param)) {
11059 		nd_free(ndp);
11060 		return (B_FALSE);
11061 	}
11062 	tcps->tcps_mdt_head_param = kmem_zalloc(sizeof (tcpparam_t),
11063 	    KM_SLEEP);
11064 	bcopy(&lcl_tcp_mdt_head_param, tcps->tcps_mdt_head_param,
11065 	    sizeof (tcpparam_t));
11066 	if (!nd_load(ndp, tcps->tcps_mdt_head_param->tcp_param_name,
11067 	    tcp_param_get, tcp_param_set_aligned,
11068 	    (caddr_t)tcps->tcps_mdt_head_param)) {
11069 		nd_free(ndp);
11070 		return (B_FALSE);
11071 	}
11072 	tcps->tcps_mdt_tail_param = kmem_zalloc(sizeof (tcpparam_t),
11073 	    KM_SLEEP);
11074 	bcopy(&lcl_tcp_mdt_tail_param, tcps->tcps_mdt_tail_param,
11075 	    sizeof (tcpparam_t));
11076 	if (!nd_load(ndp, tcps->tcps_mdt_tail_param->tcp_param_name,
11077 	    tcp_param_get, tcp_param_set_aligned,
11078 	    (caddr_t)tcps->tcps_mdt_tail_param)) {
11079 		nd_free(ndp);
11080 		return (B_FALSE);
11081 	}
11082 	tcps->tcps_mdt_max_pbufs_param = kmem_zalloc(sizeof (tcpparam_t),
11083 	    KM_SLEEP);
11084 	bcopy(&lcl_tcp_mdt_max_pbufs_param, tcps->tcps_mdt_max_pbufs_param,
11085 	    sizeof (tcpparam_t));
11086 	if (!nd_load(ndp, tcps->tcps_mdt_max_pbufs_param->tcp_param_name,
11087 	    tcp_param_get, tcp_param_set_aligned,
11088 	    (caddr_t)tcps->tcps_mdt_max_pbufs_param)) {
11089 		nd_free(ndp);
11090 		return (B_FALSE);
11091 	}
11092 	if (!nd_load(ndp, "tcp_extra_priv_ports",
11093 	    tcp_extra_priv_ports_get, NULL, NULL)) {
11094 		nd_free(ndp);
11095 		return (B_FALSE);
11096 	}
11097 	if (!nd_load(ndp, "tcp_extra_priv_ports_add",
11098 	    NULL, tcp_extra_priv_ports_add, NULL)) {
11099 		nd_free(ndp);
11100 		return (B_FALSE);
11101 	}
11102 	if (!nd_load(ndp, "tcp_extra_priv_ports_del",
11103 	    NULL, tcp_extra_priv_ports_del, NULL)) {
11104 		nd_free(ndp);
11105 		return (B_FALSE);
11106 	}
11107 	if (!nd_load(ndp, "tcp_1948_phrase", NULL,
11108 	    tcp_1948_phrase_set, NULL)) {
11109 		nd_free(ndp);
11110 		return (B_FALSE);
11111 	}
11112 	/*
11113 	 * Dummy ndd variables - only to convey obsolescence information
11114 	 * through printing of their name (no get or set routines)
11115 	 * XXX Remove in future releases ?
11116 	 */
11117 	if (!nd_load(ndp,
11118 	    "tcp_close_wait_interval(obsoleted - "
11119 	    "use tcp_time_wait_interval)", NULL, NULL, NULL)) {
11120 		nd_free(ndp);
11121 		return (B_FALSE);
11122 	}
11123 	return (B_TRUE);
11124 }
11125 
11126 /* ndd set routine for tcp_wroff_xtra, tcp_mdt_hdr_{head,tail}_min. */
11127 /* ARGSUSED */
11128 static int
11129 tcp_param_set_aligned(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
11130     cred_t *cr)
11131 {
11132 	long new_value;
11133 	tcpparam_t *tcppa = (tcpparam_t *)cp;
11134 
11135 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11136 	    new_value < tcppa->tcp_param_min ||
11137 	    new_value > tcppa->tcp_param_max) {
11138 		return (EINVAL);
11139 	}
11140 	/*
11141 	 * Need to make sure new_value is a multiple of 4.  If it is not,
11142 	 * round it up.  For future 64 bit requirement, we actually make it
11143 	 * a multiple of 8.
11144 	 */
11145 	if (new_value & 0x7) {
11146 		new_value = (new_value & ~0x7) + 0x8;
11147 	}
11148 	tcppa->tcp_param_val = new_value;
11149 	return (0);
11150 }
11151 
11152 /* Set callback routine passed to nd_load by tcp_param_register */
11153 /* ARGSUSED */
11154 static int
11155 tcp_param_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp, cred_t *cr)
11156 {
11157 	long	new_value;
11158 	tcpparam_t	*tcppa = (tcpparam_t *)cp;
11159 
11160 	if (ddi_strtol(value, NULL, 10, &new_value) != 0 ||
11161 	    new_value < tcppa->tcp_param_min ||
11162 	    new_value > tcppa->tcp_param_max) {
11163 		return (EINVAL);
11164 	}
11165 	tcppa->tcp_param_val = new_value;
11166 	return (0);
11167 }
11168 
11169 /*
11170  * Add a new piece to the tcp reassembly queue.  If the gap at the beginning
11171  * is filled, return as much as we can.  The message passed in may be
11172  * multi-part, chained using b_cont.  "start" is the starting sequence
11173  * number for this piece.
11174  */
11175 static mblk_t *
11176 tcp_reass(tcp_t *tcp, mblk_t *mp, uint32_t start)
11177 {
11178 	uint32_t	end;
11179 	mblk_t		*mp1;
11180 	mblk_t		*mp2;
11181 	mblk_t		*next_mp;
11182 	uint32_t	u1;
11183 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11184 
11185 	/* Walk through all the new pieces. */
11186 	do {
11187 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
11188 		    (uintptr_t)INT_MAX);
11189 		end = start + (int)(mp->b_wptr - mp->b_rptr);
11190 		next_mp = mp->b_cont;
11191 		if (start == end) {
11192 			/* Empty.  Blast it. */
11193 			freeb(mp);
11194 			continue;
11195 		}
11196 		mp->b_cont = NULL;
11197 		TCP_REASS_SET_SEQ(mp, start);
11198 		TCP_REASS_SET_END(mp, end);
11199 		mp1 = tcp->tcp_reass_tail;
11200 		if (!mp1) {
11201 			tcp->tcp_reass_tail = mp;
11202 			tcp->tcp_reass_head = mp;
11203 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11204 			UPDATE_MIB(&tcps->tcps_mib,
11205 			    tcpInDataUnorderBytes, end - start);
11206 			continue;
11207 		}
11208 		/* New stuff completely beyond tail? */
11209 		if (SEQ_GEQ(start, TCP_REASS_END(mp1))) {
11210 			/* Link it on end. */
11211 			mp1->b_cont = mp;
11212 			tcp->tcp_reass_tail = mp;
11213 			BUMP_MIB(&tcps->tcps_mib, tcpInDataUnorderSegs);
11214 			UPDATE_MIB(&tcps->tcps_mib,
11215 			    tcpInDataUnorderBytes, end - start);
11216 			continue;
11217 		}
11218 		mp1 = tcp->tcp_reass_head;
11219 		u1 = TCP_REASS_SEQ(mp1);
11220 		/* New stuff at the front? */
11221 		if (SEQ_LT(start, u1)) {
11222 			/* Yes... Check for overlap. */
11223 			mp->b_cont = mp1;
11224 			tcp->tcp_reass_head = mp;
11225 			tcp_reass_elim_overlap(tcp, mp);
11226 			continue;
11227 		}
11228 		/*
11229 		 * The new piece fits somewhere between the head and tail.
11230 		 * We find our slot, where mp1 precedes us and mp2 trails.
11231 		 */
11232 		for (; (mp2 = mp1->b_cont) != NULL; mp1 = mp2) {
11233 			u1 = TCP_REASS_SEQ(mp2);
11234 			if (SEQ_LEQ(start, u1))
11235 				break;
11236 		}
11237 		/* Link ourselves in */
11238 		mp->b_cont = mp2;
11239 		mp1->b_cont = mp;
11240 
11241 		/* Trim overlap with following mblk(s) first */
11242 		tcp_reass_elim_overlap(tcp, mp);
11243 
11244 		/* Trim overlap with preceding mblk */
11245 		tcp_reass_elim_overlap(tcp, mp1);
11246 
11247 	} while (start = end, mp = next_mp);
11248 	mp1 = tcp->tcp_reass_head;
11249 	/* Anything ready to go? */
11250 	if (TCP_REASS_SEQ(mp1) != tcp->tcp_rnxt)
11251 		return (NULL);
11252 	/* Eat what we can off the queue */
11253 	for (;;) {
11254 		mp = mp1->b_cont;
11255 		end = TCP_REASS_END(mp1);
11256 		TCP_REASS_SET_SEQ(mp1, 0);
11257 		TCP_REASS_SET_END(mp1, 0);
11258 		if (!mp) {
11259 			tcp->tcp_reass_tail = NULL;
11260 			break;
11261 		}
11262 		if (end != TCP_REASS_SEQ(mp)) {
11263 			mp1->b_cont = NULL;
11264 			break;
11265 		}
11266 		mp1 = mp;
11267 	}
11268 	mp1 = tcp->tcp_reass_head;
11269 	tcp->tcp_reass_head = mp;
11270 	return (mp1);
11271 }
11272 
11273 /* Eliminate any overlap that mp may have over later mblks */
11274 static void
11275 tcp_reass_elim_overlap(tcp_t *tcp, mblk_t *mp)
11276 {
11277 	uint32_t	end;
11278 	mblk_t		*mp1;
11279 	uint32_t	u1;
11280 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11281 
11282 	end = TCP_REASS_END(mp);
11283 	while ((mp1 = mp->b_cont) != NULL) {
11284 		u1 = TCP_REASS_SEQ(mp1);
11285 		if (!SEQ_GT(end, u1))
11286 			break;
11287 		if (!SEQ_GEQ(end, TCP_REASS_END(mp1))) {
11288 			mp->b_wptr -= end - u1;
11289 			TCP_REASS_SET_END(mp, u1);
11290 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPartDupSegs);
11291 			UPDATE_MIB(&tcps->tcps_mib,
11292 			    tcpInDataPartDupBytes, end - u1);
11293 			break;
11294 		}
11295 		mp->b_cont = mp1->b_cont;
11296 		TCP_REASS_SET_SEQ(mp1, 0);
11297 		TCP_REASS_SET_END(mp1, 0);
11298 		freeb(mp1);
11299 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
11300 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes, end - u1);
11301 	}
11302 	if (!mp1)
11303 		tcp->tcp_reass_tail = mp;
11304 }
11305 
11306 static uint_t
11307 tcp_rwnd_reopen(tcp_t *tcp)
11308 {
11309 	uint_t ret = 0;
11310 	uint_t thwin;
11311 
11312 	/* Learn the latest rwnd information that we sent to the other side. */
11313 	thwin = ((uint_t)BE16_TO_U16(tcp->tcp_tcph->th_win))
11314 	    << tcp->tcp_rcv_ws;
11315 	/* This is peer's calculated send window (our receive window). */
11316 	thwin -= tcp->tcp_rnxt - tcp->tcp_rack;
11317 	/*
11318 	 * Increase the receive window to max.  But we need to do receiver
11319 	 * SWS avoidance.  This means that we need to check the increase of
11320 	 * of receive window is at least 1 MSS.
11321 	 */
11322 	if (tcp->tcp_recv_hiwater - thwin >= tcp->tcp_mss) {
11323 		/*
11324 		 * If the window that the other side knows is less than max
11325 		 * deferred acks segments, send an update immediately.
11326 		 */
11327 		if (thwin < tcp->tcp_rack_cur_max * tcp->tcp_mss) {
11328 			BUMP_MIB(&tcp->tcp_tcps->tcps_mib, tcpOutWinUpdate);
11329 			ret = TH_ACK_NEEDED;
11330 		}
11331 		tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
11332 	}
11333 	return (ret);
11334 }
11335 
11336 /*
11337  * Send up all messages queued on tcp_rcv_list.
11338  */
11339 static uint_t
11340 tcp_rcv_drain(tcp_t *tcp)
11341 {
11342 	mblk_t *mp;
11343 	uint_t ret = 0;
11344 #ifdef DEBUG
11345 	uint_t cnt = 0;
11346 #endif
11347 	queue_t	*q = tcp->tcp_rq;
11348 
11349 	/* Can't drain on an eager connection */
11350 	if (tcp->tcp_listener != NULL)
11351 		return (ret);
11352 
11353 	/* Can't be a non-STREAMS connection */
11354 	ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
11355 
11356 	/* No need for the push timer now. */
11357 	if (tcp->tcp_push_tid != 0) {
11358 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
11359 		tcp->tcp_push_tid = 0;
11360 	}
11361 
11362 	/*
11363 	 * Handle two cases here: we are currently fused or we were
11364 	 * previously fused and have some urgent data to be delivered
11365 	 * upstream.  The latter happens because we either ran out of
11366 	 * memory or were detached and therefore sending the SIGURG was
11367 	 * deferred until this point.  In either case we pass control
11368 	 * over to tcp_fuse_rcv_drain() since it may need to complete
11369 	 * some work.
11370 	 */
11371 	if ((tcp->tcp_fused || tcp->tcp_fused_sigurg)) {
11372 		ASSERT(IPCL_IS_NONSTR(tcp->tcp_connp) ||
11373 		    tcp->tcp_fused_sigurg_mp != NULL);
11374 		if (tcp_fuse_rcv_drain(q, tcp, tcp->tcp_fused ? NULL :
11375 		    &tcp->tcp_fused_sigurg_mp))
11376 			return (ret);
11377 	}
11378 
11379 	while ((mp = tcp->tcp_rcv_list) != NULL) {
11380 		tcp->tcp_rcv_list = mp->b_next;
11381 		mp->b_next = NULL;
11382 #ifdef DEBUG
11383 		cnt += msgdsize(mp);
11384 #endif
11385 		/* Does this need SSL processing first? */
11386 		if ((tcp->tcp_kssl_ctx != NULL) && (DB_TYPE(mp) == M_DATA)) {
11387 			DTRACE_PROBE1(kssl_mblk__ksslinput_rcvdrain,
11388 			    mblk_t *, mp);
11389 			tcp_kssl_input(tcp, mp);
11390 			continue;
11391 		}
11392 		putnext(q, mp);
11393 	}
11394 #ifdef DEBUG
11395 	ASSERT(cnt == tcp->tcp_rcv_cnt);
11396 #endif
11397 	tcp->tcp_rcv_last_head = NULL;
11398 	tcp->tcp_rcv_last_tail = NULL;
11399 	tcp->tcp_rcv_cnt = 0;
11400 
11401 	if (canputnext(q))
11402 		return (tcp_rwnd_reopen(tcp));
11403 
11404 	return (ret);
11405 }
11406 
11407 /*
11408  * Queue data on tcp_rcv_list which is a b_next chain.
11409  * tcp_rcv_last_head/tail is the last element of this chain.
11410  * Each element of the chain is a b_cont chain.
11411  *
11412  * M_DATA messages are added to the current element.
11413  * Other messages are added as new (b_next) elements.
11414  */
11415 void
11416 tcp_rcv_enqueue(tcp_t *tcp, mblk_t *mp, uint_t seg_len)
11417 {
11418 	ASSERT(seg_len == msgdsize(mp));
11419 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_rcv_last_head != NULL);
11420 
11421 	if (tcp->tcp_rcv_list == NULL) {
11422 		ASSERT(tcp->tcp_rcv_last_head == NULL);
11423 		tcp->tcp_rcv_list = mp;
11424 		tcp->tcp_rcv_last_head = mp;
11425 	} else if (DB_TYPE(mp) == DB_TYPE(tcp->tcp_rcv_last_head)) {
11426 		tcp->tcp_rcv_last_tail->b_cont = mp;
11427 	} else {
11428 		tcp->tcp_rcv_last_head->b_next = mp;
11429 		tcp->tcp_rcv_last_head = mp;
11430 	}
11431 
11432 	while (mp->b_cont)
11433 		mp = mp->b_cont;
11434 
11435 	tcp->tcp_rcv_last_tail = mp;
11436 	tcp->tcp_rcv_cnt += seg_len;
11437 	tcp->tcp_rwnd -= seg_len;
11438 }
11439 
11440 /*
11441  * DEFAULT TCP ENTRY POINT via squeue on READ side.
11442  *
11443  * This is the default entry function into TCP on the read side. TCP is
11444  * always entered via squeue i.e. using squeue's for mutual exclusion.
11445  * When classifier does a lookup to find the tcp, it also puts a reference
11446  * on the conn structure associated so the tcp is guaranteed to exist
11447  * when we come here. We still need to check the state because it might
11448  * as well has been closed. The squeue processing function i.e. squeue_enter,
11449  * is responsible for doing the CONN_DEC_REF.
11450  *
11451  * Apart from the default entry point, IP also sends packets directly to
11452  * tcp_rput_data for AF_INET fast path and tcp_conn_request for incoming
11453  * connections.
11454  */
11455 boolean_t tcp_outbound_squeue_switch = B_FALSE;
11456 void
11457 tcp_input(void *arg, mblk_t *mp, void *arg2)
11458 {
11459 	conn_t	*connp = (conn_t *)arg;
11460 	tcp_t	*tcp = (tcp_t *)connp->conn_tcp;
11461 
11462 	/* arg2 is the sqp */
11463 	ASSERT(arg2 != NULL);
11464 	ASSERT(mp != NULL);
11465 
11466 	/*
11467 	 * Don't accept any input on a closed tcp as this TCP logically does
11468 	 * not exist on the system. Don't proceed further with this TCP.
11469 	 * For eg. this packet could trigger another close of this tcp
11470 	 * which would be disastrous for tcp_refcnt. tcp_close_detached /
11471 	 * tcp_clean_death / tcp_closei_local must be called at most once
11472 	 * on a TCP. In this case we need to refeed the packet into the
11473 	 * classifier and figure out where the packet should go. Need to
11474 	 * preserve the recv_ill somehow. Until we figure that out, for
11475 	 * now just drop the packet if we can't classify the packet.
11476 	 */
11477 	if (tcp->tcp_state == TCPS_CLOSED ||
11478 	    tcp->tcp_state == TCPS_BOUND) {
11479 		conn_t	*new_connp;
11480 		ip_stack_t *ipst = tcp->tcp_tcps->tcps_netstack->netstack_ip;
11481 
11482 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
11483 		if (new_connp != NULL) {
11484 			tcp_reinput(new_connp, mp, arg2);
11485 			return;
11486 		}
11487 		/* We failed to classify. For now just drop the packet */
11488 		freemsg(mp);
11489 		return;
11490 	}
11491 
11492 	if (DB_TYPE(mp) != M_DATA) {
11493 		tcp_rput_common(tcp, mp);
11494 		return;
11495 	}
11496 
11497 	if (mp->b_datap->db_struioflag & STRUIO_CONNECT) {
11498 		squeue_t	*final_sqp;
11499 
11500 		mp->b_datap->db_struioflag &= ~STRUIO_CONNECT;
11501 		final_sqp = (squeue_t *)DB_CKSUMSTART(mp);
11502 		DB_CKSUMSTART(mp) = 0;
11503 		if (tcp->tcp_state == TCPS_SYN_SENT &&
11504 		    connp->conn_final_sqp == NULL &&
11505 		    tcp_outbound_squeue_switch) {
11506 			ASSERT(connp->conn_initial_sqp == connp->conn_sqp);
11507 			connp->conn_final_sqp = final_sqp;
11508 			if (connp->conn_final_sqp != connp->conn_sqp) {
11509 				CONN_INC_REF(connp);
11510 				SQUEUE_SWITCH(connp, connp->conn_final_sqp);
11511 				SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
11512 				    tcp_rput_data, connp, ip_squeue_flag,
11513 				    SQTAG_CONNECT_FINISH);
11514 				return;
11515 			}
11516 		}
11517 	}
11518 	tcp_rput_data(connp, mp, arg2);
11519 }
11520 
11521 /*
11522  * The read side put procedure.
11523  * The packets passed up by ip are assume to be aligned according to
11524  * OK_32PTR and the IP+TCP headers fitting in the first mblk.
11525  */
11526 static void
11527 tcp_rput_common(tcp_t *tcp, mblk_t *mp)
11528 {
11529 	/*
11530 	 * tcp_rput_data() does not expect M_CTL except for the case
11531 	 * where tcp_ipv6_recvancillary is set and we get a IN_PKTINFO
11532 	 * type. Need to make sure that any other M_CTLs don't make
11533 	 * it to tcp_rput_data since it is not expecting any and doesn't
11534 	 * check for it.
11535 	 */
11536 	if (DB_TYPE(mp) == M_CTL) {
11537 		switch (*(uint32_t *)(mp->b_rptr)) {
11538 		case TCP_IOC_ABORT_CONN:
11539 			/*
11540 			 * Handle connection abort request.
11541 			 */
11542 			tcp_ioctl_abort_handler(tcp, mp);
11543 			return;
11544 		case IPSEC_IN:
11545 			/*
11546 			 * Only secure icmp arrive in TCP and they
11547 			 * don't go through data path.
11548 			 */
11549 			tcp_icmp_error(tcp, mp);
11550 			return;
11551 		case IN_PKTINFO:
11552 			/*
11553 			 * Handle IPV6_RECVPKTINFO socket option on AF_INET6
11554 			 * sockets that are receiving IPv4 traffic. tcp
11555 			 */
11556 			ASSERT(tcp->tcp_family == AF_INET6);
11557 			ASSERT(tcp->tcp_ipv6_recvancillary &
11558 			    TCP_IPV6_RECVPKTINFO);
11559 			tcp_rput_data(tcp->tcp_connp, mp,
11560 			    tcp->tcp_connp->conn_sqp);
11561 			return;
11562 		case MDT_IOC_INFO_UPDATE:
11563 			/*
11564 			 * Handle Multidata information update; the
11565 			 * following routine will free the message.
11566 			 */
11567 			if (tcp->tcp_connp->conn_mdt_ok) {
11568 				tcp_mdt_update(tcp,
11569 				    &((ip_mdt_info_t *)mp->b_rptr)->mdt_capab,
11570 				    B_FALSE);
11571 			}
11572 			freemsg(mp);
11573 			return;
11574 		case LSO_IOC_INFO_UPDATE:
11575 			/*
11576 			 * Handle LSO information update; the following
11577 			 * routine will free the message.
11578 			 */
11579 			if (tcp->tcp_connp->conn_lso_ok) {
11580 				tcp_lso_update(tcp,
11581 				    &((ip_lso_info_t *)mp->b_rptr)->lso_capab);
11582 			}
11583 			freemsg(mp);
11584 			return;
11585 		default:
11586 			/*
11587 			 * tcp_icmp_err() will process the M_CTL packets.
11588 			 * Non-ICMP packets, if any, will be discarded in
11589 			 * tcp_icmp_err(). We will process the ICMP packet
11590 			 * even if we are TCP_IS_DETACHED_NONEAGER as the
11591 			 * incoming ICMP packet may result in changing
11592 			 * the tcp_mss, which we would need if we have
11593 			 * packets to retransmit.
11594 			 */
11595 			tcp_icmp_error(tcp, mp);
11596 			return;
11597 		}
11598 	}
11599 
11600 	/* No point processing the message if tcp is already closed */
11601 	if (TCP_IS_DETACHED_NONEAGER(tcp)) {
11602 		freemsg(mp);
11603 		return;
11604 	}
11605 
11606 	tcp_rput_other(tcp, mp);
11607 }
11608 
11609 
11610 /* The minimum of smoothed mean deviation in RTO calculation. */
11611 #define	TCP_SD_MIN	400
11612 
11613 /*
11614  * Set RTO for this connection.  The formula is from Jacobson and Karels'
11615  * "Congestion Avoidance and Control" in SIGCOMM '88.  The variable names
11616  * are the same as those in Appendix A.2 of that paper.
11617  *
11618  * m = new measurement
11619  * sa = smoothed RTT average (8 * average estimates).
11620  * sv = smoothed mean deviation (mdev) of RTT (4 * deviation estimates).
11621  */
11622 static void
11623 tcp_set_rto(tcp_t *tcp, clock_t rtt)
11624 {
11625 	long m = TICK_TO_MSEC(rtt);
11626 	clock_t sa = tcp->tcp_rtt_sa;
11627 	clock_t sv = tcp->tcp_rtt_sd;
11628 	clock_t rto;
11629 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11630 
11631 	BUMP_MIB(&tcps->tcps_mib, tcpRttUpdate);
11632 	tcp->tcp_rtt_update++;
11633 
11634 	/* tcp_rtt_sa is not 0 means this is a new sample. */
11635 	if (sa != 0) {
11636 		/*
11637 		 * Update average estimator:
11638 		 *	new rtt = 7/8 old rtt + 1/8 Error
11639 		 */
11640 
11641 		/* m is now Error in estimate. */
11642 		m -= sa >> 3;
11643 		if ((sa += m) <= 0) {
11644 			/*
11645 			 * Don't allow the smoothed average to be negative.
11646 			 * We use 0 to denote reinitialization of the
11647 			 * variables.
11648 			 */
11649 			sa = 1;
11650 		}
11651 
11652 		/*
11653 		 * Update deviation estimator:
11654 		 *	new mdev = 3/4 old mdev + 1/4 (abs(Error) - old mdev)
11655 		 */
11656 		if (m < 0)
11657 			m = -m;
11658 		m -= sv >> 2;
11659 		sv += m;
11660 	} else {
11661 		/*
11662 		 * This follows BSD's implementation.  So the reinitialized
11663 		 * RTO is 3 * m.  We cannot go less than 2 because if the
11664 		 * link is bandwidth dominated, doubling the window size
11665 		 * during slow start means doubling the RTT.  We want to be
11666 		 * more conservative when we reinitialize our estimates.  3
11667 		 * is just a convenient number.
11668 		 */
11669 		sa = m << 3;
11670 		sv = m << 1;
11671 	}
11672 	if (sv < TCP_SD_MIN) {
11673 		/*
11674 		 * We do not know that if sa captures the delay ACK
11675 		 * effect as in a long train of segments, a receiver
11676 		 * does not delay its ACKs.  So set the minimum of sv
11677 		 * to be TCP_SD_MIN, which is default to 400 ms, twice
11678 		 * of BSD DATO.  That means the minimum of mean
11679 		 * deviation is 100 ms.
11680 		 *
11681 		 */
11682 		sv = TCP_SD_MIN;
11683 	}
11684 	tcp->tcp_rtt_sa = sa;
11685 	tcp->tcp_rtt_sd = sv;
11686 	/*
11687 	 * RTO = average estimates (sa / 8) + 4 * deviation estimates (sv)
11688 	 *
11689 	 * Add tcp_rexmit_interval extra in case of extreme environment
11690 	 * where the algorithm fails to work.  The default value of
11691 	 * tcp_rexmit_interval_extra should be 0.
11692 	 *
11693 	 * As we use a finer grained clock than BSD and update
11694 	 * RTO for every ACKs, add in another .25 of RTT to the
11695 	 * deviation of RTO to accomodate burstiness of 1/4 of
11696 	 * window size.
11697 	 */
11698 	rto = (sa >> 3) + sv + tcps->tcps_rexmit_interval_extra + (sa >> 5);
11699 
11700 	if (rto > tcps->tcps_rexmit_interval_max) {
11701 		tcp->tcp_rto = tcps->tcps_rexmit_interval_max;
11702 	} else if (rto < tcps->tcps_rexmit_interval_min) {
11703 		tcp->tcp_rto = tcps->tcps_rexmit_interval_min;
11704 	} else {
11705 		tcp->tcp_rto = rto;
11706 	}
11707 
11708 	/* Now, we can reset tcp_timer_backoff to use the new RTO... */
11709 	tcp->tcp_timer_backoff = 0;
11710 }
11711 
11712 /*
11713  * tcp_get_seg_mp() is called to get the pointer to a segment in the
11714  * send queue which starts at the given seq. no.
11715  *
11716  * Parameters:
11717  *	tcp_t *tcp: the tcp instance pointer.
11718  *	uint32_t seq: the starting seq. no of the requested segment.
11719  *	int32_t *off: after the execution, *off will be the offset to
11720  *		the returned mblk which points to the requested seq no.
11721  *		It is the caller's responsibility to send in a non-null off.
11722  *
11723  * Return:
11724  *	A mblk_t pointer pointing to the requested segment in send queue.
11725  */
11726 static mblk_t *
11727 tcp_get_seg_mp(tcp_t *tcp, uint32_t seq, int32_t *off)
11728 {
11729 	int32_t	cnt;
11730 	mblk_t	*mp;
11731 
11732 	/* Defensive coding.  Make sure we don't send incorrect data. */
11733 	if (SEQ_LT(seq, tcp->tcp_suna) || SEQ_GEQ(seq, tcp->tcp_snxt))
11734 		return (NULL);
11735 
11736 	cnt = seq - tcp->tcp_suna;
11737 	mp = tcp->tcp_xmit_head;
11738 	while (cnt > 0 && mp != NULL) {
11739 		cnt -= mp->b_wptr - mp->b_rptr;
11740 		if (cnt < 0) {
11741 			cnt += mp->b_wptr - mp->b_rptr;
11742 			break;
11743 		}
11744 		mp = mp->b_cont;
11745 	}
11746 	ASSERT(mp != NULL);
11747 	*off = cnt;
11748 	return (mp);
11749 }
11750 
11751 /*
11752  * This function handles all retransmissions if SACK is enabled for this
11753  * connection.  First it calculates how many segments can be retransmitted
11754  * based on tcp_pipe.  Then it goes thru the notsack list to find eligible
11755  * segments.  A segment is eligible if sack_cnt for that segment is greater
11756  * than or equal tcp_dupack_fast_retransmit.  After it has retransmitted
11757  * all eligible segments, it checks to see if TCP can send some new segments
11758  * (fast recovery).  If it can, set the appropriate flag for tcp_rput_data().
11759  *
11760  * Parameters:
11761  *	tcp_t *tcp: the tcp structure of the connection.
11762  *	uint_t *flags: in return, appropriate value will be set for
11763  *	tcp_rput_data().
11764  */
11765 static void
11766 tcp_sack_rxmit(tcp_t *tcp, uint_t *flags)
11767 {
11768 	notsack_blk_t	*notsack_blk;
11769 	int32_t		usable_swnd;
11770 	int32_t		mss;
11771 	uint32_t	seg_len;
11772 	mblk_t		*xmit_mp;
11773 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11774 
11775 	ASSERT(tcp->tcp_sack_info != NULL);
11776 	ASSERT(tcp->tcp_notsack_list != NULL);
11777 	ASSERT(tcp->tcp_rexmit == B_FALSE);
11778 
11779 	/* Defensive coding in case there is a bug... */
11780 	if (tcp->tcp_notsack_list == NULL) {
11781 		return;
11782 	}
11783 	notsack_blk = tcp->tcp_notsack_list;
11784 	mss = tcp->tcp_mss;
11785 
11786 	/*
11787 	 * Limit the num of outstanding data in the network to be
11788 	 * tcp_cwnd_ssthresh, which is half of the original congestion wnd.
11789 	 */
11790 	usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11791 
11792 	/* At least retransmit 1 MSS of data. */
11793 	if (usable_swnd <= 0) {
11794 		usable_swnd = mss;
11795 	}
11796 
11797 	/* Make sure no new RTT samples will be taken. */
11798 	tcp->tcp_csuna = tcp->tcp_snxt;
11799 
11800 	notsack_blk = tcp->tcp_notsack_list;
11801 	while (usable_swnd > 0) {
11802 		mblk_t		*snxt_mp, *tmp_mp;
11803 		tcp_seq		begin = tcp->tcp_sack_snxt;
11804 		tcp_seq		end;
11805 		int32_t		off;
11806 
11807 		for (; notsack_blk != NULL; notsack_blk = notsack_blk->next) {
11808 			if (SEQ_GT(notsack_blk->end, begin) &&
11809 			    (notsack_blk->sack_cnt >=
11810 			    tcps->tcps_dupack_fast_retransmit)) {
11811 				end = notsack_blk->end;
11812 				if (SEQ_LT(begin, notsack_blk->begin)) {
11813 					begin = notsack_blk->begin;
11814 				}
11815 				break;
11816 			}
11817 		}
11818 		/*
11819 		 * All holes are filled.  Manipulate tcp_cwnd to send more
11820 		 * if we can.  Note that after the SACK recovery, tcp_cwnd is
11821 		 * set to tcp_cwnd_ssthresh.
11822 		 */
11823 		if (notsack_blk == NULL) {
11824 			usable_swnd = tcp->tcp_cwnd_ssthresh - tcp->tcp_pipe;
11825 			if (usable_swnd <= 0 || tcp->tcp_unsent == 0) {
11826 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna;
11827 				ASSERT(tcp->tcp_cwnd > 0);
11828 				return;
11829 			} else {
11830 				usable_swnd = usable_swnd / mss;
11831 				tcp->tcp_cwnd = tcp->tcp_snxt - tcp->tcp_suna +
11832 				    MAX(usable_swnd * mss, mss);
11833 				*flags |= TH_XMIT_NEEDED;
11834 				return;
11835 			}
11836 		}
11837 
11838 		/*
11839 		 * Note that we may send more than usable_swnd allows here
11840 		 * because of round off, but no more than 1 MSS of data.
11841 		 */
11842 		seg_len = end - begin;
11843 		if (seg_len > mss)
11844 			seg_len = mss;
11845 		snxt_mp = tcp_get_seg_mp(tcp, begin, &off);
11846 		ASSERT(snxt_mp != NULL);
11847 		/* This should not happen.  Defensive coding again... */
11848 		if (snxt_mp == NULL) {
11849 			return;
11850 		}
11851 
11852 		xmit_mp = tcp_xmit_mp(tcp, snxt_mp, seg_len, &off,
11853 		    &tmp_mp, begin, B_TRUE, &seg_len, B_TRUE);
11854 		if (xmit_mp == NULL)
11855 			return;
11856 
11857 		usable_swnd -= seg_len;
11858 		tcp->tcp_pipe += seg_len;
11859 		tcp->tcp_sack_snxt = begin + seg_len;
11860 
11861 		tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
11862 
11863 		/*
11864 		 * Update the send timestamp to avoid false retransmission.
11865 		 */
11866 		snxt_mp->b_prev = (mblk_t *)lbolt;
11867 
11868 		BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
11869 		UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, seg_len);
11870 		BUMP_MIB(&tcps->tcps_mib, tcpOutSackRetransSegs);
11871 		/*
11872 		 * Update tcp_rexmit_max to extend this SACK recovery phase.
11873 		 * This happens when new data sent during fast recovery is
11874 		 * also lost.  If TCP retransmits those new data, it needs
11875 		 * to extend SACK recover phase to avoid starting another
11876 		 * fast retransmit/recovery unnecessarily.
11877 		 */
11878 		if (SEQ_GT(tcp->tcp_sack_snxt, tcp->tcp_rexmit_max)) {
11879 			tcp->tcp_rexmit_max = tcp->tcp_sack_snxt;
11880 		}
11881 	}
11882 }
11883 
11884 /*
11885  * This function handles policy checking at TCP level for non-hard_bound/
11886  * detached connections.
11887  */
11888 static boolean_t
11889 tcp_check_policy(tcp_t *tcp, mblk_t *first_mp, ipha_t *ipha, ip6_t *ip6h,
11890     boolean_t secure, boolean_t mctl_present)
11891 {
11892 	ipsec_latch_t *ipl = NULL;
11893 	ipsec_action_t *act = NULL;
11894 	mblk_t *data_mp;
11895 	ipsec_in_t *ii;
11896 	const char *reason;
11897 	kstat_named_t *counter;
11898 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11899 	ipsec_stack_t	*ipss;
11900 	ip_stack_t	*ipst;
11901 
11902 	ASSERT(mctl_present || !secure);
11903 
11904 	ASSERT((ipha == NULL && ip6h != NULL) ||
11905 	    (ip6h == NULL && ipha != NULL));
11906 
11907 	/*
11908 	 * We don't necessarily have an ipsec_in_act action to verify
11909 	 * policy because of assymetrical policy where we have only
11910 	 * outbound policy and no inbound policy (possible with global
11911 	 * policy).
11912 	 */
11913 	if (!secure) {
11914 		if (act == NULL || act->ipa_act.ipa_type == IPSEC_ACT_BYPASS ||
11915 		    act->ipa_act.ipa_type == IPSEC_ACT_CLEAR)
11916 			return (B_TRUE);
11917 		ipsec_log_policy_failure(IPSEC_POLICY_MISMATCH,
11918 		    "tcp_check_policy", ipha, ip6h, secure,
11919 		    tcps->tcps_netstack);
11920 		ipss = tcps->tcps_netstack->netstack_ipsec;
11921 
11922 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
11923 		    DROPPER(ipss, ipds_tcp_clear),
11924 		    &tcps->tcps_dropper);
11925 		return (B_FALSE);
11926 	}
11927 
11928 	/*
11929 	 * We have a secure packet.
11930 	 */
11931 	if (act == NULL) {
11932 		ipsec_log_policy_failure(IPSEC_POLICY_NOT_NEEDED,
11933 		    "tcp_check_policy", ipha, ip6h, secure,
11934 		    tcps->tcps_netstack);
11935 		ipss = tcps->tcps_netstack->netstack_ipsec;
11936 
11937 		ip_drop_packet(first_mp, B_TRUE, NULL, NULL,
11938 		    DROPPER(ipss, ipds_tcp_secure),
11939 		    &tcps->tcps_dropper);
11940 		return (B_FALSE);
11941 	}
11942 
11943 	/*
11944 	 * XXX This whole routine is currently incorrect.  ipl should
11945 	 * be set to the latch pointer, but is currently not set, so
11946 	 * we initialize it to NULL to avoid picking up random garbage.
11947 	 */
11948 	if (ipl == NULL)
11949 		return (B_TRUE);
11950 
11951 	data_mp = first_mp->b_cont;
11952 
11953 	ii = (ipsec_in_t *)first_mp->b_rptr;
11954 
11955 	ipst = tcps->tcps_netstack->netstack_ip;
11956 
11957 	if (ipsec_check_ipsecin_latch(ii, data_mp, ipl, ipha, ip6h, &reason,
11958 	    &counter, tcp->tcp_connp)) {
11959 		BUMP_MIB(&ipst->ips_ip_mib, ipsecInSucceeded);
11960 		return (B_TRUE);
11961 	}
11962 	(void) strlog(TCP_MOD_ID, 0, 0, SL_ERROR|SL_WARN|SL_CONSOLE,
11963 	    "tcp inbound policy mismatch: %s, packet dropped\n",
11964 	    reason);
11965 	BUMP_MIB(&ipst->ips_ip_mib, ipsecInFailed);
11966 
11967 	ip_drop_packet(first_mp, B_TRUE, NULL, NULL, counter,
11968 	    &tcps->tcps_dropper);
11969 	return (B_FALSE);
11970 }
11971 
11972 /*
11973  * tcp_ss_rexmit() is called in tcp_rput_data() to do slow start
11974  * retransmission after a timeout.
11975  *
11976  * To limit the number of duplicate segments, we limit the number of segment
11977  * to be sent in one time to tcp_snd_burst, the burst variable.
11978  */
11979 static void
11980 tcp_ss_rexmit(tcp_t *tcp)
11981 {
11982 	uint32_t	snxt;
11983 	uint32_t	smax;
11984 	int32_t		win;
11985 	int32_t		mss;
11986 	int32_t		off;
11987 	int32_t		burst = tcp->tcp_snd_burst;
11988 	mblk_t		*snxt_mp;
11989 	tcp_stack_t	*tcps = tcp->tcp_tcps;
11990 
11991 	/*
11992 	 * Note that tcp_rexmit can be set even though TCP has retransmitted
11993 	 * all unack'ed segments.
11994 	 */
11995 	if (SEQ_LT(tcp->tcp_rexmit_nxt, tcp->tcp_rexmit_max)) {
11996 		smax = tcp->tcp_rexmit_max;
11997 		snxt = tcp->tcp_rexmit_nxt;
11998 		if (SEQ_LT(snxt, tcp->tcp_suna)) {
11999 			snxt = tcp->tcp_suna;
12000 		}
12001 		win = MIN(tcp->tcp_cwnd, tcp->tcp_swnd);
12002 		win -= snxt - tcp->tcp_suna;
12003 		mss = tcp->tcp_mss;
12004 		snxt_mp = tcp_get_seg_mp(tcp, snxt, &off);
12005 
12006 		while (SEQ_LT(snxt, smax) && (win > 0) &&
12007 		    (burst > 0) && (snxt_mp != NULL)) {
12008 			mblk_t	*xmit_mp;
12009 			mblk_t	*old_snxt_mp = snxt_mp;
12010 			uint32_t cnt = mss;
12011 
12012 			if (win < cnt) {
12013 				cnt = win;
12014 			}
12015 			if (SEQ_GT(snxt + cnt, smax)) {
12016 				cnt = smax - snxt;
12017 			}
12018 			xmit_mp = tcp_xmit_mp(tcp, snxt_mp, cnt, &off,
12019 			    &snxt_mp, snxt, B_TRUE, &cnt, B_TRUE);
12020 			if (xmit_mp == NULL)
12021 				return;
12022 
12023 			tcp_send_data(tcp, tcp->tcp_wq, xmit_mp);
12024 
12025 			snxt += cnt;
12026 			win -= cnt;
12027 			/*
12028 			 * Update the send timestamp to avoid false
12029 			 * retransmission.
12030 			 */
12031 			old_snxt_mp->b_prev = (mblk_t *)lbolt;
12032 			BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
12033 			UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, cnt);
12034 
12035 			tcp->tcp_rexmit_nxt = snxt;
12036 			burst--;
12037 		}
12038 		/*
12039 		 * If we have transmitted all we have at the time
12040 		 * we started the retranmission, we can leave
12041 		 * the rest of the job to tcp_wput_data().  But we
12042 		 * need to check the send window first.  If the
12043 		 * win is not 0, go on with tcp_wput_data().
12044 		 */
12045 		if (SEQ_LT(snxt, smax) || win == 0) {
12046 			return;
12047 		}
12048 	}
12049 	/* Only call tcp_wput_data() if there is data to be sent. */
12050 	if (tcp->tcp_unsent) {
12051 		tcp_wput_data(tcp, NULL, B_FALSE);
12052 	}
12053 }
12054 
12055 /*
12056  * Process all TCP option in SYN segment.  Note that this function should
12057  * be called after tcp_adapt_ire() is called so that the necessary info
12058  * from IRE is already set in the tcp structure.
12059  *
12060  * This function sets up the correct tcp_mss value according to the
12061  * MSS option value and our header size.  It also sets up the window scale
12062  * and timestamp values, and initialize SACK info blocks.  But it does not
12063  * change receive window size after setting the tcp_mss value.  The caller
12064  * should do the appropriate change.
12065  */
12066 void
12067 tcp_process_options(tcp_t *tcp, tcph_t *tcph)
12068 {
12069 	int options;
12070 	tcp_opt_t tcpopt;
12071 	uint32_t mss_max;
12072 	char *tmp_tcph;
12073 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12074 
12075 	tcpopt.tcp = NULL;
12076 	options = tcp_parse_options(tcph, &tcpopt);
12077 
12078 	/*
12079 	 * Process MSS option.  Note that MSS option value does not account
12080 	 * for IP or TCP options.  This means that it is equal to MTU - minimum
12081 	 * IP+TCP header size, which is 40 bytes for IPv4 and 60 bytes for
12082 	 * IPv6.
12083 	 */
12084 	if (!(options & TCP_OPT_MSS_PRESENT)) {
12085 		if (tcp->tcp_ipversion == IPV4_VERSION)
12086 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv4;
12087 		else
12088 			tcpopt.tcp_opt_mss = tcps->tcps_mss_def_ipv6;
12089 	} else {
12090 		if (tcp->tcp_ipversion == IPV4_VERSION)
12091 			mss_max = tcps->tcps_mss_max_ipv4;
12092 		else
12093 			mss_max = tcps->tcps_mss_max_ipv6;
12094 		if (tcpopt.tcp_opt_mss < tcps->tcps_mss_min)
12095 			tcpopt.tcp_opt_mss = tcps->tcps_mss_min;
12096 		else if (tcpopt.tcp_opt_mss > mss_max)
12097 			tcpopt.tcp_opt_mss = mss_max;
12098 	}
12099 
12100 	/* Process Window Scale option. */
12101 	if (options & TCP_OPT_WSCALE_PRESENT) {
12102 		tcp->tcp_snd_ws = tcpopt.tcp_opt_wscale;
12103 		tcp->tcp_snd_ws_ok = B_TRUE;
12104 	} else {
12105 		tcp->tcp_snd_ws = B_FALSE;
12106 		tcp->tcp_snd_ws_ok = B_FALSE;
12107 		tcp->tcp_rcv_ws = B_FALSE;
12108 	}
12109 
12110 	/* Process Timestamp option. */
12111 	if ((options & TCP_OPT_TSTAMP_PRESENT) &&
12112 	    (tcp->tcp_snd_ts_ok || TCP_IS_DETACHED(tcp))) {
12113 		tmp_tcph = (char *)tcp->tcp_tcph;
12114 
12115 		tcp->tcp_snd_ts_ok = B_TRUE;
12116 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
12117 		tcp->tcp_last_rcv_lbolt = lbolt64;
12118 		ASSERT(OK_32PTR(tmp_tcph));
12119 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
12120 
12121 		/* Fill in our template header with basic timestamp option. */
12122 		tmp_tcph += tcp->tcp_tcp_hdr_len;
12123 		tmp_tcph[0] = TCPOPT_NOP;
12124 		tmp_tcph[1] = TCPOPT_NOP;
12125 		tmp_tcph[2] = TCPOPT_TSTAMP;
12126 		tmp_tcph[3] = TCPOPT_TSTAMP_LEN;
12127 		tcp->tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12128 		tcp->tcp_tcp_hdr_len += TCPOPT_REAL_TS_LEN;
12129 		tcp->tcp_tcph->th_offset_and_rsrvd[0] += (3 << 4);
12130 	} else {
12131 		tcp->tcp_snd_ts_ok = B_FALSE;
12132 	}
12133 
12134 	/*
12135 	 * Process SACK options.  If SACK is enabled for this connection,
12136 	 * then allocate the SACK info structure.  Note the following ways
12137 	 * when tcp_snd_sack_ok is set to true.
12138 	 *
12139 	 * For active connection: in tcp_adapt_ire() called in
12140 	 * tcp_rput_other(), or in tcp_rput_other() when tcp_sack_permitted
12141 	 * is checked.
12142 	 *
12143 	 * For passive connection: in tcp_adapt_ire() called in
12144 	 * tcp_accept_comm().
12145 	 *
12146 	 * That's the reason why the extra TCP_IS_DETACHED() check is there.
12147 	 * That check makes sure that if we did not send a SACK OK option,
12148 	 * we will not enable SACK for this connection even though the other
12149 	 * side sends us SACK OK option.  For active connection, the SACK
12150 	 * info structure has already been allocated.  So we need to free
12151 	 * it if SACK is disabled.
12152 	 */
12153 	if ((options & TCP_OPT_SACK_OK_PRESENT) &&
12154 	    (tcp->tcp_snd_sack_ok ||
12155 	    (tcps->tcps_sack_permitted != 0 && TCP_IS_DETACHED(tcp)))) {
12156 		/* This should be true only in the passive case. */
12157 		if (tcp->tcp_sack_info == NULL) {
12158 			ASSERT(TCP_IS_DETACHED(tcp));
12159 			tcp->tcp_sack_info =
12160 			    kmem_cache_alloc(tcp_sack_info_cache, KM_NOSLEEP);
12161 		}
12162 		if (tcp->tcp_sack_info == NULL) {
12163 			tcp->tcp_snd_sack_ok = B_FALSE;
12164 		} else {
12165 			tcp->tcp_snd_sack_ok = B_TRUE;
12166 			if (tcp->tcp_snd_ts_ok) {
12167 				tcp->tcp_max_sack_blk = 3;
12168 			} else {
12169 				tcp->tcp_max_sack_blk = 4;
12170 			}
12171 		}
12172 	} else {
12173 		/*
12174 		 * Resetting tcp_snd_sack_ok to B_FALSE so that
12175 		 * no SACK info will be used for this
12176 		 * connection.  This assumes that SACK usage
12177 		 * permission is negotiated.  This may need
12178 		 * to be changed once this is clarified.
12179 		 */
12180 		if (tcp->tcp_sack_info != NULL) {
12181 			ASSERT(tcp->tcp_notsack_list == NULL);
12182 			kmem_cache_free(tcp_sack_info_cache,
12183 			    tcp->tcp_sack_info);
12184 			tcp->tcp_sack_info = NULL;
12185 		}
12186 		tcp->tcp_snd_sack_ok = B_FALSE;
12187 	}
12188 
12189 	/*
12190 	 * Now we know the exact TCP/IP header length, subtract
12191 	 * that from tcp_mss to get our side's MSS.
12192 	 */
12193 	tcp->tcp_mss -= tcp->tcp_hdr_len;
12194 	/*
12195 	 * Here we assume that the other side's header size will be equal to
12196 	 * our header size.  We calculate the real MSS accordingly.  Need to
12197 	 * take into additional stuffs IPsec puts in.
12198 	 *
12199 	 * Real MSS = Opt.MSS - (our TCP/IP header - min TCP/IP header)
12200 	 */
12201 	tcpopt.tcp_opt_mss -= tcp->tcp_hdr_len + tcp->tcp_ipsec_overhead -
12202 	    ((tcp->tcp_ipversion == IPV4_VERSION ?
12203 	    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) + TCP_MIN_HEADER_LENGTH);
12204 
12205 	/*
12206 	 * Set MSS to the smaller one of both ends of the connection.
12207 	 * We should not have called tcp_mss_set() before, but our
12208 	 * side of the MSS should have been set to a proper value
12209 	 * by tcp_adapt_ire().  tcp_mss_set() will also set up the
12210 	 * STREAM head parameters properly.
12211 	 *
12212 	 * If we have a larger-than-16-bit window but the other side
12213 	 * didn't want to do window scale, tcp_rwnd_set() will take
12214 	 * care of that.
12215 	 */
12216 	tcp_mss_set(tcp, MIN(tcpopt.tcp_opt_mss, tcp->tcp_mss), B_TRUE);
12217 }
12218 
12219 /*
12220  * Sends the T_CONN_IND to the listener. The caller calls this
12221  * functions via squeue to get inside the listener's perimeter
12222  * once the 3 way hand shake is done a T_CONN_IND needs to be
12223  * sent. As an optimization, the caller can call this directly
12224  * if listener's perimeter is same as eager's.
12225  */
12226 /* ARGSUSED */
12227 void
12228 tcp_send_conn_ind(void *arg, mblk_t *mp, void *arg2)
12229 {
12230 	conn_t			*lconnp = (conn_t *)arg;
12231 	tcp_t			*listener = lconnp->conn_tcp;
12232 	tcp_t			*tcp;
12233 	struct T_conn_ind	*conn_ind;
12234 	ipaddr_t 		*addr_cache;
12235 	boolean_t		need_send_conn_ind = B_FALSE;
12236 	tcp_stack_t		*tcps = listener->tcp_tcps;
12237 
12238 	/* retrieve the eager */
12239 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
12240 	ASSERT(conn_ind->OPT_offset != 0 &&
12241 	    conn_ind->OPT_length == sizeof (intptr_t));
12242 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
12243 	    conn_ind->OPT_length);
12244 
12245 	/*
12246 	 * TLI/XTI applications will get confused by
12247 	 * sending eager as an option since it violates
12248 	 * the option semantics. So remove the eager as
12249 	 * option since TLI/XTI app doesn't need it anyway.
12250 	 */
12251 	if (!TCP_IS_SOCKET(listener)) {
12252 		conn_ind->OPT_length = 0;
12253 		conn_ind->OPT_offset = 0;
12254 	}
12255 	if (listener->tcp_state == TCPS_CLOSED ||
12256 	    TCP_IS_DETACHED(listener)) {
12257 		/*
12258 		 * If listener has closed, it would have caused a
12259 		 * a cleanup/blowoff to happen for the eager. We
12260 		 * just need to return.
12261 		 */
12262 		freemsg(mp);
12263 		return;
12264 	}
12265 
12266 
12267 	/*
12268 	 * if the conn_req_q is full defer passing up the
12269 	 * T_CONN_IND until space is availabe after t_accept()
12270 	 * processing
12271 	 */
12272 	mutex_enter(&listener->tcp_eager_lock);
12273 
12274 	/*
12275 	 * Take the eager out, if it is in the list of droppable eagers
12276 	 * as we are here because the 3W handshake is over.
12277 	 */
12278 	MAKE_UNDROPPABLE(tcp);
12279 
12280 	if (listener->tcp_conn_req_cnt_q < listener->tcp_conn_req_max) {
12281 		tcp_t *tail;
12282 
12283 		/*
12284 		 * The eager already has an extra ref put in tcp_rput_data
12285 		 * so that it stays till accept comes back even though it
12286 		 * might get into TCPS_CLOSED as a result of a TH_RST etc.
12287 		 */
12288 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
12289 		listener->tcp_conn_req_cnt_q0--;
12290 		listener->tcp_conn_req_cnt_q++;
12291 
12292 		/* Move from SYN_RCVD to ESTABLISHED list  */
12293 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12294 		    tcp->tcp_eager_prev_q0;
12295 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12296 		    tcp->tcp_eager_next_q0;
12297 		tcp->tcp_eager_prev_q0 = NULL;
12298 		tcp->tcp_eager_next_q0 = NULL;
12299 
12300 		/*
12301 		 * Insert at end of the queue because sockfs
12302 		 * sends down T_CONN_RES in chronological
12303 		 * order. Leaving the older conn indications
12304 		 * at front of the queue helps reducing search
12305 		 * time.
12306 		 */
12307 		tail = listener->tcp_eager_last_q;
12308 		if (tail != NULL)
12309 			tail->tcp_eager_next_q = tcp;
12310 		else
12311 			listener->tcp_eager_next_q = tcp;
12312 		listener->tcp_eager_last_q = tcp;
12313 		tcp->tcp_eager_next_q = NULL;
12314 		/*
12315 		 * Delay sending up the T_conn_ind until we are
12316 		 * done with the eager. Once we have have sent up
12317 		 * the T_conn_ind, the accept can potentially complete
12318 		 * any time and release the refhold we have on the eager.
12319 		 */
12320 		need_send_conn_ind = B_TRUE;
12321 	} else {
12322 		/*
12323 		 * Defer connection on q0 and set deferred
12324 		 * connection bit true
12325 		 */
12326 		tcp->tcp_conn_def_q0 = B_TRUE;
12327 
12328 		/* take tcp out of q0 ... */
12329 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
12330 		    tcp->tcp_eager_next_q0;
12331 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
12332 		    tcp->tcp_eager_prev_q0;
12333 
12334 		/* ... and place it at the end of q0 */
12335 		tcp->tcp_eager_prev_q0 = listener->tcp_eager_prev_q0;
12336 		tcp->tcp_eager_next_q0 = listener;
12337 		listener->tcp_eager_prev_q0->tcp_eager_next_q0 = tcp;
12338 		listener->tcp_eager_prev_q0 = tcp;
12339 		tcp->tcp_conn.tcp_eager_conn_ind = mp;
12340 	}
12341 
12342 	/* we have timed out before */
12343 	if (tcp->tcp_syn_rcvd_timeout != 0) {
12344 		tcp->tcp_syn_rcvd_timeout = 0;
12345 		listener->tcp_syn_rcvd_timeout--;
12346 		if (listener->tcp_syn_defense &&
12347 		    listener->tcp_syn_rcvd_timeout <=
12348 		    (tcps->tcps_conn_req_max_q0 >> 5) &&
12349 		    10*MINUTES < TICK_TO_MSEC(lbolt64 -
12350 		    listener->tcp_last_rcv_lbolt)) {
12351 			/*
12352 			 * Turn off the defense mode if we
12353 			 * believe the SYN attack is over.
12354 			 */
12355 			listener->tcp_syn_defense = B_FALSE;
12356 			if (listener->tcp_ip_addr_cache) {
12357 				kmem_free((void *)listener->tcp_ip_addr_cache,
12358 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t));
12359 				listener->tcp_ip_addr_cache = NULL;
12360 			}
12361 		}
12362 	}
12363 	addr_cache = (ipaddr_t *)(listener->tcp_ip_addr_cache);
12364 	if (addr_cache != NULL) {
12365 		/*
12366 		 * We have finished a 3-way handshake with this
12367 		 * remote host. This proves the IP addr is good.
12368 		 * Cache it!
12369 		 */
12370 		addr_cache[IP_ADDR_CACHE_HASH(
12371 		    tcp->tcp_remote)] = tcp->tcp_remote;
12372 	}
12373 	mutex_exit(&listener->tcp_eager_lock);
12374 	if (need_send_conn_ind)
12375 		tcp_ulp_newconn(lconnp, tcp->tcp_connp, mp);
12376 }
12377 
12378 /*
12379  * Send the newconn notification to ulp. The eager is blown off if the
12380  * notification fails.
12381  */
12382 static void
12383 tcp_ulp_newconn(conn_t *lconnp, conn_t *econnp, mblk_t *mp)
12384 {
12385 	if (IPCL_IS_NONSTR(lconnp)) {
12386 		cred_t	*cr;
12387 		pid_t	cpid;
12388 
12389 		cr = msg_getcred(mp, &cpid);
12390 
12391 		ASSERT(econnp->conn_tcp->tcp_listener == lconnp->conn_tcp);
12392 		ASSERT(econnp->conn_tcp->tcp_saved_listener ==
12393 		    lconnp->conn_tcp);
12394 
12395 		/* Keep the message around in case of a fallback to TPI */
12396 		econnp->conn_tcp->tcp_conn.tcp_eager_conn_ind = mp;
12397 
12398 		/*
12399 		 * Notify the ULP about the newconn. It is guaranteed that no
12400 		 * tcp_accept() call will be made for the eager if the
12401 		 * notification fails, so it's safe to blow it off in that
12402 		 * case.
12403 		 *
12404 		 * The upper handle will be assigned when tcp_accept() is
12405 		 * called.
12406 		 */
12407 		if ((*lconnp->conn_upcalls->su_newconn)
12408 		    (lconnp->conn_upper_handle,
12409 		    (sock_lower_handle_t)econnp,
12410 		    &sock_tcp_downcalls, cr, cpid,
12411 		    &econnp->conn_upcalls) == NULL) {
12412 			/* Failed to allocate a socket */
12413 			BUMP_MIB(&lconnp->conn_tcp->tcp_tcps->tcps_mib,
12414 			    tcpEstabResets);
12415 			(void) tcp_eager_blowoff(lconnp->conn_tcp,
12416 			    econnp->conn_tcp->tcp_conn_req_seqnum);
12417 		}
12418 	} else {
12419 		putnext(lconnp->conn_tcp->tcp_rq, mp);
12420 	}
12421 }
12422 
12423 mblk_t *
12424 tcp_find_pktinfo(tcp_t *tcp, mblk_t *mp, uint_t *ipversp, uint_t *ip_hdr_lenp,
12425     uint_t *ifindexp, ip6_pkt_t *ippp)
12426 {
12427 	ip_pktinfo_t	*pinfo;
12428 	ip6_t		*ip6h;
12429 	uchar_t		*rptr;
12430 	mblk_t		*first_mp = mp;
12431 	boolean_t	mctl_present = B_FALSE;
12432 	uint_t 		ifindex = 0;
12433 	ip6_pkt_t	ipp;
12434 	uint_t		ipvers;
12435 	uint_t		ip_hdr_len;
12436 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12437 
12438 	rptr = mp->b_rptr;
12439 	ASSERT(OK_32PTR(rptr));
12440 	ASSERT(tcp != NULL);
12441 	ipp.ipp_fields = 0;
12442 
12443 	switch DB_TYPE(mp) {
12444 	case M_CTL:
12445 		mp = mp->b_cont;
12446 		if (mp == NULL) {
12447 			freemsg(first_mp);
12448 			return (NULL);
12449 		}
12450 		if (DB_TYPE(mp) != M_DATA) {
12451 			freemsg(first_mp);
12452 			return (NULL);
12453 		}
12454 		mctl_present = B_TRUE;
12455 		break;
12456 	case M_DATA:
12457 		break;
12458 	default:
12459 		cmn_err(CE_NOTE, "tcp_find_pktinfo: unknown db_type");
12460 		freemsg(mp);
12461 		return (NULL);
12462 	}
12463 	ipvers = IPH_HDR_VERSION(rptr);
12464 	if (ipvers == IPV4_VERSION) {
12465 		if (tcp == NULL) {
12466 			ip_hdr_len = IPH_HDR_LENGTH(rptr);
12467 			goto done;
12468 		}
12469 
12470 		ipp.ipp_fields |= IPPF_HOPLIMIT;
12471 		ipp.ipp_hoplimit = ((ipha_t *)rptr)->ipha_ttl;
12472 
12473 		/*
12474 		 * If we have IN_PKTINFO in an M_CTL and tcp_ipv6_recvancillary
12475 		 * has TCP_IPV6_RECVPKTINFO set, pass I/F index along in ipp.
12476 		 */
12477 		if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) &&
12478 		    mctl_present) {
12479 			pinfo = (ip_pktinfo_t *)first_mp->b_rptr;
12480 			if ((MBLKL(first_mp) == sizeof (ip_pktinfo_t)) &&
12481 			    (pinfo->ip_pkt_ulp_type == IN_PKTINFO) &&
12482 			    (pinfo->ip_pkt_flags & IPF_RECVIF)) {
12483 				ipp.ipp_fields |= IPPF_IFINDEX;
12484 				ipp.ipp_ifindex = pinfo->ip_pkt_ifindex;
12485 				ifindex = pinfo->ip_pkt_ifindex;
12486 			}
12487 			freeb(first_mp);
12488 			mctl_present = B_FALSE;
12489 		}
12490 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12491 	} else {
12492 		ip6h = (ip6_t *)rptr;
12493 
12494 		ASSERT(ipvers == IPV6_VERSION);
12495 		ipp.ipp_fields = IPPF_HOPLIMIT | IPPF_TCLASS;
12496 		ipp.ipp_tclass = (ip6h->ip6_flow & 0x0FF00000) >> 20;
12497 		ipp.ipp_hoplimit = ip6h->ip6_hops;
12498 
12499 		if (ip6h->ip6_nxt != IPPROTO_TCP) {
12500 			uint8_t	nexthdrp;
12501 			ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
12502 
12503 			/* Look for ifindex information */
12504 			if (ip6h->ip6_nxt == IPPROTO_RAW) {
12505 				ip6i_t *ip6i = (ip6i_t *)ip6h;
12506 				if ((uchar_t *)&ip6i[1] > mp->b_wptr) {
12507 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12508 					freemsg(first_mp);
12509 					return (NULL);
12510 				}
12511 
12512 				if (ip6i->ip6i_flags & IP6I_IFINDEX) {
12513 					ASSERT(ip6i->ip6i_ifindex != 0);
12514 					ipp.ipp_fields |= IPPF_IFINDEX;
12515 					ipp.ipp_ifindex = ip6i->ip6i_ifindex;
12516 					ifindex = ip6i->ip6i_ifindex;
12517 				}
12518 				rptr = (uchar_t *)&ip6i[1];
12519 				mp->b_rptr = rptr;
12520 				if (rptr == mp->b_wptr) {
12521 					mblk_t *mp1;
12522 					mp1 = mp->b_cont;
12523 					freeb(mp);
12524 					mp = mp1;
12525 					rptr = mp->b_rptr;
12526 				}
12527 				if (MBLKL(mp) < IPV6_HDR_LEN +
12528 				    sizeof (tcph_t)) {
12529 					BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12530 					freemsg(first_mp);
12531 					return (NULL);
12532 				}
12533 				ip6h = (ip6_t *)rptr;
12534 			}
12535 
12536 			/*
12537 			 * Find any potentially interesting extension headers
12538 			 * as well as the length of the IPv6 + extension
12539 			 * headers.
12540 			 */
12541 			ip_hdr_len = ip_find_hdr_v6(mp, ip6h, &ipp, &nexthdrp);
12542 			/* Verify if this is a TCP packet */
12543 			if (nexthdrp != IPPROTO_TCP) {
12544 				BUMP_MIB(&ipst->ips_ip_mib, tcpInErrs);
12545 				freemsg(first_mp);
12546 				return (NULL);
12547 			}
12548 		} else {
12549 			ip_hdr_len = IPV6_HDR_LEN;
12550 		}
12551 	}
12552 
12553 done:
12554 	if (ipversp != NULL)
12555 		*ipversp = ipvers;
12556 	if (ip_hdr_lenp != NULL)
12557 		*ip_hdr_lenp = ip_hdr_len;
12558 	if (ippp != NULL)
12559 		*ippp = ipp;
12560 	if (ifindexp != NULL)
12561 		*ifindexp = ifindex;
12562 	if (mctl_present) {
12563 		freeb(first_mp);
12564 	}
12565 	return (mp);
12566 }
12567 
12568 /*
12569  * Handle M_DATA messages from IP. Its called directly from IP via
12570  * squeue for AF_INET type sockets fast path. No M_CTL are expected
12571  * in this path.
12572  *
12573  * For everything else (including AF_INET6 sockets with 'tcp_ipversion'
12574  * v4 and v6), we are called through tcp_input() and a M_CTL can
12575  * be present for options but tcp_find_pktinfo() deals with it. We
12576  * only expect M_DATA packets after tcp_find_pktinfo() is done.
12577  *
12578  * The first argument is always the connp/tcp to which the mp belongs.
12579  * There are no exceptions to this rule. The caller has already put
12580  * a reference on this connp/tcp and once tcp_rput_data() returns,
12581  * the squeue will do the refrele.
12582  *
12583  * The TH_SYN for the listener directly go to tcp_conn_request via
12584  * squeue.
12585  *
12586  * sqp: NULL = recursive, sqp != NULL means called from squeue
12587  */
12588 void
12589 tcp_rput_data(void *arg, mblk_t *mp, void *arg2)
12590 {
12591 	int32_t		bytes_acked;
12592 	int32_t		gap;
12593 	mblk_t		*mp1;
12594 	uint_t		flags;
12595 	uint32_t	new_swnd = 0;
12596 	uchar_t		*iphdr;
12597 	uchar_t		*rptr;
12598 	int32_t		rgap;
12599 	uint32_t	seg_ack;
12600 	int		seg_len;
12601 	uint_t		ip_hdr_len;
12602 	uint32_t	seg_seq;
12603 	tcph_t		*tcph;
12604 	int		urp;
12605 	tcp_opt_t	tcpopt;
12606 	uint_t		ipvers;
12607 	ip6_pkt_t	ipp;
12608 	boolean_t	ofo_seg = B_FALSE; /* Out of order segment */
12609 	uint32_t	cwnd;
12610 	uint32_t	add;
12611 	int		npkt;
12612 	int		mss;
12613 	conn_t		*connp = (conn_t *)arg;
12614 	squeue_t	*sqp = (squeue_t *)arg2;
12615 	tcp_t		*tcp = connp->conn_tcp;
12616 	tcp_stack_t	*tcps = tcp->tcp_tcps;
12617 
12618 	/*
12619 	 * RST from fused tcp loopback peer should trigger an unfuse.
12620 	 */
12621 	if (tcp->tcp_fused) {
12622 		TCP_STAT(tcps, tcp_fusion_aborted);
12623 		tcp_unfuse(tcp);
12624 	}
12625 
12626 	iphdr = mp->b_rptr;
12627 	rptr = mp->b_rptr;
12628 	ASSERT(OK_32PTR(rptr));
12629 
12630 	/*
12631 	 * An AF_INET socket is not capable of receiving any pktinfo. Do inline
12632 	 * processing here. For rest call tcp_find_pktinfo to fill up the
12633 	 * necessary information.
12634 	 */
12635 	if (IPCL_IS_TCP4(connp)) {
12636 		ipvers = IPV4_VERSION;
12637 		ip_hdr_len = IPH_HDR_LENGTH(rptr);
12638 	} else {
12639 		mp = tcp_find_pktinfo(tcp, mp, &ipvers, &ip_hdr_len,
12640 		    NULL, &ipp);
12641 		if (mp == NULL) {
12642 			TCP_STAT(tcps, tcp_rput_v6_error);
12643 			return;
12644 		}
12645 		iphdr = mp->b_rptr;
12646 		rptr = mp->b_rptr;
12647 	}
12648 	ASSERT(DB_TYPE(mp) == M_DATA);
12649 	ASSERT(mp->b_next == NULL);
12650 
12651 	tcph = (tcph_t *)&rptr[ip_hdr_len];
12652 	seg_seq = ABE32_TO_U32(tcph->th_seq);
12653 	seg_ack = ABE32_TO_U32(tcph->th_ack);
12654 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
12655 	seg_len = (int)(mp->b_wptr - rptr) -
12656 	    (ip_hdr_len + TCP_HDR_LENGTH(tcph));
12657 	if ((mp1 = mp->b_cont) != NULL && mp1->b_datap->db_type == M_DATA) {
12658 		do {
12659 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
12660 			    (uintptr_t)INT_MAX);
12661 			seg_len += (int)(mp1->b_wptr - mp1->b_rptr);
12662 		} while ((mp1 = mp1->b_cont) != NULL &&
12663 		    mp1->b_datap->db_type == M_DATA);
12664 	}
12665 
12666 	if (tcp->tcp_state == TCPS_TIME_WAIT) {
12667 		tcp_time_wait_processing(tcp, mp, seg_seq, seg_ack,
12668 		    seg_len, tcph);
12669 		return;
12670 	}
12671 
12672 	if (sqp != NULL) {
12673 		/*
12674 		 * This is the correct place to update tcp_last_recv_time. Note
12675 		 * that it is also updated for tcp structure that belongs to
12676 		 * global and listener queues which do not really need updating.
12677 		 * But that should not cause any harm.  And it is updated for
12678 		 * all kinds of incoming segments, not only for data segments.
12679 		 */
12680 		tcp->tcp_last_recv_time = lbolt;
12681 	}
12682 
12683 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
12684 
12685 	BUMP_LOCAL(tcp->tcp_ibsegs);
12686 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
12687 
12688 	if ((flags & TH_URG) && sqp != NULL) {
12689 		/*
12690 		 * TCP can't handle urgent pointers that arrive before
12691 		 * the connection has been accept()ed since it can't
12692 		 * buffer OOB data.  Discard segment if this happens.
12693 		 *
12694 		 * We can't just rely on a non-null tcp_listener to indicate
12695 		 * that the accept() has completed since unlinking of the
12696 		 * eager and completion of the accept are not atomic.
12697 		 * tcp_detached, when it is not set (B_FALSE) indicates
12698 		 * that the accept() has completed.
12699 		 *
12700 		 * Nor can it reassemble urgent pointers, so discard
12701 		 * if it's not the next segment expected.
12702 		 *
12703 		 * Otherwise, collapse chain into one mblk (discard if
12704 		 * that fails).  This makes sure the headers, retransmitted
12705 		 * data, and new data all are in the same mblk.
12706 		 */
12707 		ASSERT(mp != NULL);
12708 		if (tcp->tcp_detached || !pullupmsg(mp, -1)) {
12709 			freemsg(mp);
12710 			return;
12711 		}
12712 		/* Update pointers into message */
12713 		iphdr = rptr = mp->b_rptr;
12714 		tcph = (tcph_t *)&rptr[ip_hdr_len];
12715 		if (SEQ_GT(seg_seq, tcp->tcp_rnxt)) {
12716 			/*
12717 			 * Since we can't handle any data with this urgent
12718 			 * pointer that is out of sequence, we expunge
12719 			 * the data.  This allows us to still register
12720 			 * the urgent mark and generate the M_PCSIG,
12721 			 * which we can do.
12722 			 */
12723 			mp->b_wptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
12724 			seg_len = 0;
12725 		}
12726 	}
12727 
12728 	switch (tcp->tcp_state) {
12729 	case TCPS_SYN_SENT:
12730 		if (flags & TH_ACK) {
12731 			/*
12732 			 * Note that our stack cannot send data before a
12733 			 * connection is established, therefore the
12734 			 * following check is valid.  Otherwise, it has
12735 			 * to be changed.
12736 			 */
12737 			if (SEQ_LEQ(seg_ack, tcp->tcp_iss) ||
12738 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12739 				freemsg(mp);
12740 				if (flags & TH_RST)
12741 					return;
12742 				tcp_xmit_ctl("TCPS_SYN_SENT-Bad_seq",
12743 				    tcp, seg_ack, 0, TH_RST);
12744 				return;
12745 			}
12746 			ASSERT(tcp->tcp_suna + 1 == seg_ack);
12747 		}
12748 		if (flags & TH_RST) {
12749 			freemsg(mp);
12750 			if (flags & TH_ACK)
12751 				(void) tcp_clean_death(tcp,
12752 				    ECONNREFUSED, 13);
12753 			return;
12754 		}
12755 		if (!(flags & TH_SYN)) {
12756 			freemsg(mp);
12757 			return;
12758 		}
12759 
12760 		/* Process all TCP options. */
12761 		tcp_process_options(tcp, tcph);
12762 		/*
12763 		 * The following changes our rwnd to be a multiple of the
12764 		 * MIN(peer MSS, our MSS) for performance reason.
12765 		 */
12766 		(void) tcp_rwnd_set(tcp,
12767 		    MSS_ROUNDUP(tcp->tcp_recv_hiwater, tcp->tcp_mss));
12768 
12769 		/* Is the other end ECN capable? */
12770 		if (tcp->tcp_ecn_ok) {
12771 			if ((flags & (TH_ECE|TH_CWR)) != TH_ECE) {
12772 				tcp->tcp_ecn_ok = B_FALSE;
12773 			}
12774 		}
12775 		/*
12776 		 * Clear ECN flags because it may interfere with later
12777 		 * processing.
12778 		 */
12779 		flags &= ~(TH_ECE|TH_CWR);
12780 
12781 		tcp->tcp_irs = seg_seq;
12782 		tcp->tcp_rack = seg_seq;
12783 		tcp->tcp_rnxt = seg_seq + 1;
12784 		U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
12785 		if (!TCP_IS_DETACHED(tcp)) {
12786 			/* Allocate room for SACK options if needed. */
12787 			if (tcp->tcp_snd_sack_ok) {
12788 				(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
12789 				    tcp->tcp_hdr_len +
12790 				    TCPOPT_MAX_SACK_LEN +
12791 				    (tcp->tcp_loopback ? 0 :
12792 				    tcps->tcps_wroff_xtra));
12793 			} else {
12794 				(void) proto_set_tx_wroff(tcp->tcp_rq, connp,
12795 				    tcp->tcp_hdr_len +
12796 				    (tcp->tcp_loopback ? 0 :
12797 				    tcps->tcps_wroff_xtra));
12798 			}
12799 		}
12800 		if (flags & TH_ACK) {
12801 			/*
12802 			 * If we can't get the confirmation upstream, pretend
12803 			 * we didn't even see this one.
12804 			 *
12805 			 * XXX: how can we pretend we didn't see it if we
12806 			 * have updated rnxt et. al.
12807 			 *
12808 			 * For loopback we defer sending up the T_CONN_CON
12809 			 * until after some checks below.
12810 			 */
12811 			mp1 = NULL;
12812 			/*
12813 			 * tcp_sendmsg() checks tcp_state without entering
12814 			 * the squeue so tcp_state should be updated before
12815 			 * sending up connection confirmation
12816 			 */
12817 			tcp->tcp_state = TCPS_ESTABLISHED;
12818 			if (!tcp_conn_con(tcp, iphdr, tcph, mp,
12819 			    tcp->tcp_loopback ? &mp1 : NULL)) {
12820 				tcp->tcp_state = TCPS_SYN_SENT;
12821 				freemsg(mp);
12822 				return;
12823 			}
12824 			/* SYN was acked - making progress */
12825 			if (tcp->tcp_ipversion == IPV6_VERSION)
12826 				tcp->tcp_ip_forward_progress = B_TRUE;
12827 
12828 			/* One for the SYN */
12829 			tcp->tcp_suna = tcp->tcp_iss + 1;
12830 			tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
12831 
12832 			/*
12833 			 * If SYN was retransmitted, need to reset all
12834 			 * retransmission info.  This is because this
12835 			 * segment will be treated as a dup ACK.
12836 			 */
12837 			if (tcp->tcp_rexmit) {
12838 				tcp->tcp_rexmit = B_FALSE;
12839 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
12840 				tcp->tcp_rexmit_max = tcp->tcp_snxt;
12841 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
12842 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
12843 				tcp->tcp_ms_we_have_waited = 0;
12844 
12845 				/*
12846 				 * Set tcp_cwnd back to 1 MSS, per
12847 				 * recommendation from
12848 				 * draft-floyd-incr-init-win-01.txt,
12849 				 * Increasing TCP's Initial Window.
12850 				 */
12851 				tcp->tcp_cwnd = tcp->tcp_mss;
12852 			}
12853 
12854 			tcp->tcp_swl1 = seg_seq;
12855 			tcp->tcp_swl2 = seg_ack;
12856 
12857 			new_swnd = BE16_TO_U16(tcph->th_win);
12858 			tcp->tcp_swnd = new_swnd;
12859 			if (new_swnd > tcp->tcp_max_swnd)
12860 				tcp->tcp_max_swnd = new_swnd;
12861 
12862 			/*
12863 			 * Always send the three-way handshake ack immediately
12864 			 * in order to make the connection complete as soon as
12865 			 * possible on the accepting host.
12866 			 */
12867 			flags |= TH_ACK_NEEDED;
12868 
12869 			/*
12870 			 * Special case for loopback.  At this point we have
12871 			 * received SYN-ACK from the remote endpoint.  In
12872 			 * order to ensure that both endpoints reach the
12873 			 * fused state prior to any data exchange, the final
12874 			 * ACK needs to be sent before we indicate T_CONN_CON
12875 			 * to the module upstream.
12876 			 */
12877 			if (tcp->tcp_loopback) {
12878 				mblk_t *ack_mp;
12879 
12880 				ASSERT(!tcp->tcp_unfusable);
12881 				ASSERT(mp1 != NULL);
12882 				/*
12883 				 * For loopback, we always get a pure SYN-ACK
12884 				 * and only need to send back the final ACK
12885 				 * with no data (this is because the other
12886 				 * tcp is ours and we don't do T/TCP).  This
12887 				 * final ACK triggers the passive side to
12888 				 * perform fusion in ESTABLISHED state.
12889 				 */
12890 				if ((ack_mp = tcp_ack_mp(tcp)) != NULL) {
12891 					if (tcp->tcp_ack_tid != 0) {
12892 						(void) TCP_TIMER_CANCEL(tcp,
12893 						    tcp->tcp_ack_tid);
12894 						tcp->tcp_ack_tid = 0;
12895 					}
12896 					tcp_send_data(tcp, tcp->tcp_wq, ack_mp);
12897 					BUMP_LOCAL(tcp->tcp_obsegs);
12898 					BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
12899 
12900 					if (!IPCL_IS_NONSTR(connp)) {
12901 						/* Send up T_CONN_CON */
12902 						putnext(tcp->tcp_rq, mp1);
12903 					} else {
12904 						cred_t	*cr;
12905 						pid_t	cpid;
12906 
12907 						cr = msg_getcred(mp1, &cpid);
12908 						(*connp->conn_upcalls->
12909 						    su_connected)
12910 						    (connp->conn_upper_handle,
12911 						    tcp->tcp_connid, cr, cpid);
12912 						freemsg(mp1);
12913 					}
12914 
12915 					freemsg(mp);
12916 					return;
12917 				}
12918 				/*
12919 				 * Forget fusion; we need to handle more
12920 				 * complex cases below.  Send the deferred
12921 				 * T_CONN_CON message upstream and proceed
12922 				 * as usual.  Mark this tcp as not capable
12923 				 * of fusion.
12924 				 */
12925 				TCP_STAT(tcps, tcp_fusion_unfusable);
12926 				tcp->tcp_unfusable = B_TRUE;
12927 				if (!IPCL_IS_NONSTR(connp)) {
12928 					putnext(tcp->tcp_rq, mp1);
12929 				} else {
12930 					cred_t	*cr;
12931 					pid_t	cpid;
12932 
12933 					cr = msg_getcred(mp1, &cpid);
12934 					(*connp->conn_upcalls->su_connected)
12935 					    (connp->conn_upper_handle,
12936 					    tcp->tcp_connid, cr, cpid);
12937 					freemsg(mp1);
12938 				}
12939 			}
12940 
12941 			/*
12942 			 * Check to see if there is data to be sent.  If
12943 			 * yes, set the transmit flag.  Then check to see
12944 			 * if received data processing needs to be done.
12945 			 * If not, go straight to xmit_check.  This short
12946 			 * cut is OK as we don't support T/TCP.
12947 			 */
12948 			if (tcp->tcp_unsent)
12949 				flags |= TH_XMIT_NEEDED;
12950 
12951 			if (seg_len == 0 && !(flags & TH_URG)) {
12952 				freemsg(mp);
12953 				goto xmit_check;
12954 			}
12955 
12956 			flags &= ~TH_SYN;
12957 			seg_seq++;
12958 			break;
12959 		}
12960 		tcp->tcp_state = TCPS_SYN_RCVD;
12961 		mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, tcp->tcp_mss,
12962 		    NULL, NULL, tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
12963 		if (mp1) {
12964 			/*
12965 			 * See comment in tcp_conn_request() for why we use
12966 			 * the open() time pid here.
12967 			 */
12968 			DB_CPID(mp1) = tcp->tcp_cpid;
12969 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
12970 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
12971 		}
12972 		freemsg(mp);
12973 		return;
12974 	case TCPS_SYN_RCVD:
12975 		if (flags & TH_ACK) {
12976 			/*
12977 			 * In this state, a SYN|ACK packet is either bogus
12978 			 * because the other side must be ACKing our SYN which
12979 			 * indicates it has seen the ACK for their SYN and
12980 			 * shouldn't retransmit it or we're crossing SYNs
12981 			 * on active open.
12982 			 */
12983 			if ((flags & TH_SYN) && !tcp->tcp_active_open) {
12984 				freemsg(mp);
12985 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_syn",
12986 				    tcp, seg_ack, 0, TH_RST);
12987 				return;
12988 			}
12989 			/*
12990 			 * NOTE: RFC 793 pg. 72 says this should be
12991 			 * tcp->tcp_suna <= seg_ack <= tcp->tcp_snxt
12992 			 * but that would mean we have an ack that ignored
12993 			 * our SYN.
12994 			 */
12995 			if (SEQ_LEQ(seg_ack, tcp->tcp_suna) ||
12996 			    SEQ_GT(seg_ack, tcp->tcp_snxt)) {
12997 				freemsg(mp);
12998 				tcp_xmit_ctl("TCPS_SYN_RCVD-bad_ack",
12999 				    tcp, seg_ack, 0, TH_RST);
13000 				return;
13001 			}
13002 		}
13003 		break;
13004 	case TCPS_LISTEN:
13005 		/*
13006 		 * Only a TLI listener can come through this path when a
13007 		 * acceptor is going back to be a listener and a packet
13008 		 * for the acceptor hits the classifier. For a socket
13009 		 * listener, this can never happen because a listener
13010 		 * can never accept connection on itself and hence a
13011 		 * socket acceptor can not go back to being a listener.
13012 		 */
13013 		ASSERT(!TCP_IS_SOCKET(tcp));
13014 		/*FALLTHRU*/
13015 	case TCPS_CLOSED:
13016 	case TCPS_BOUND: {
13017 		conn_t	*new_connp;
13018 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
13019 
13020 		new_connp = ipcl_classify(mp, connp->conn_zoneid, ipst);
13021 		if (new_connp != NULL) {
13022 			tcp_reinput(new_connp, mp, connp->conn_sqp);
13023 			return;
13024 		}
13025 		/* We failed to classify. For now just drop the packet */
13026 		freemsg(mp);
13027 		return;
13028 	}
13029 	case TCPS_IDLE:
13030 		/*
13031 		 * Handle the case where the tcp_clean_death() has happened
13032 		 * on a connection (application hasn't closed yet) but a packet
13033 		 * was already queued on squeue before tcp_clean_death()
13034 		 * was processed. Calling tcp_clean_death() twice on same
13035 		 * connection can result in weird behaviour.
13036 		 */
13037 		freemsg(mp);
13038 		return;
13039 	default:
13040 		break;
13041 	}
13042 
13043 	/*
13044 	 * Already on the correct queue/perimeter.
13045 	 * If this is a detached connection and not an eager
13046 	 * connection hanging off a listener then new data
13047 	 * (past the FIN) will cause a reset.
13048 	 * We do a special check here where it
13049 	 * is out of the main line, rather than check
13050 	 * if we are detached every time we see new
13051 	 * data down below.
13052 	 */
13053 	if (TCP_IS_DETACHED_NONEAGER(tcp) &&
13054 	    (seg_len > 0 && SEQ_GT(seg_seq + seg_len, tcp->tcp_rnxt))) {
13055 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
13056 		DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
13057 
13058 		freemsg(mp);
13059 		/*
13060 		 * This could be an SSL closure alert. We're detached so just
13061 		 * acknowledge it this last time.
13062 		 */
13063 		if (tcp->tcp_kssl_ctx != NULL) {
13064 			kssl_release_ctx(tcp->tcp_kssl_ctx);
13065 			tcp->tcp_kssl_ctx = NULL;
13066 
13067 			tcp->tcp_rnxt += seg_len;
13068 			U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
13069 			flags |= TH_ACK_NEEDED;
13070 			goto ack_check;
13071 		}
13072 
13073 		tcp_xmit_ctl("new data when detached", tcp,
13074 		    tcp->tcp_snxt, 0, TH_RST);
13075 		(void) tcp_clean_death(tcp, EPROTO, 12);
13076 		return;
13077 	}
13078 
13079 	mp->b_rptr = (uchar_t *)tcph + TCP_HDR_LENGTH(tcph);
13080 	urp = BE16_TO_U16(tcph->th_urp) - TCP_OLD_URP_INTERPRETATION;
13081 	new_swnd = BE16_TO_U16(tcph->th_win) <<
13082 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
13083 
13084 	if (tcp->tcp_snd_ts_ok) {
13085 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
13086 			/*
13087 			 * This segment is not acceptable.
13088 			 * Drop it and send back an ACK.
13089 			 */
13090 			freemsg(mp);
13091 			flags |= TH_ACK_NEEDED;
13092 			goto ack_check;
13093 		}
13094 	} else if (tcp->tcp_snd_sack_ok) {
13095 		ASSERT(tcp->tcp_sack_info != NULL);
13096 		tcpopt.tcp = tcp;
13097 		/*
13098 		 * SACK info in already updated in tcp_parse_options.  Ignore
13099 		 * all other TCP options...
13100 		 */
13101 		(void) tcp_parse_options(tcph, &tcpopt);
13102 	}
13103 try_again:;
13104 	mss = tcp->tcp_mss;
13105 	gap = seg_seq - tcp->tcp_rnxt;
13106 	rgap = tcp->tcp_rwnd - (gap + seg_len);
13107 	/*
13108 	 * gap is the amount of sequence space between what we expect to see
13109 	 * and what we got for seg_seq.  A positive value for gap means
13110 	 * something got lost.  A negative value means we got some old stuff.
13111 	 */
13112 	if (gap < 0) {
13113 		/* Old stuff present.  Is the SYN in there? */
13114 		if (seg_seq == tcp->tcp_irs && (flags & TH_SYN) &&
13115 		    (seg_len != 0)) {
13116 			flags &= ~TH_SYN;
13117 			seg_seq++;
13118 			urp--;
13119 			/* Recompute the gaps after noting the SYN. */
13120 			goto try_again;
13121 		}
13122 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
13123 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
13124 		    (seg_len > -gap ? -gap : seg_len));
13125 		/* Remove the old stuff from seg_len. */
13126 		seg_len += gap;
13127 		/*
13128 		 * Anything left?
13129 		 * Make sure to check for unack'd FIN when rest of data
13130 		 * has been previously ack'd.
13131 		 */
13132 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
13133 			/*
13134 			 * Resets are only valid if they lie within our offered
13135 			 * window.  If the RST bit is set, we just ignore this
13136 			 * segment.
13137 			 */
13138 			if (flags & TH_RST) {
13139 				freemsg(mp);
13140 				return;
13141 			}
13142 
13143 			/*
13144 			 * The arriving of dup data packets indicate that we
13145 			 * may have postponed an ack for too long, or the other
13146 			 * side's RTT estimate is out of shape. Start acking
13147 			 * more often.
13148 			 */
13149 			if (SEQ_GEQ(seg_seq + seg_len - gap, tcp->tcp_rack) &&
13150 			    tcp->tcp_rack_cnt >= 1 &&
13151 			    tcp->tcp_rack_abs_max > 2) {
13152 				tcp->tcp_rack_abs_max--;
13153 			}
13154 			tcp->tcp_rack_cur_max = 1;
13155 
13156 			/*
13157 			 * This segment is "unacceptable".  None of its
13158 			 * sequence space lies within our advertized window.
13159 			 *
13160 			 * Adjust seg_len to the original value for tracing.
13161 			 */
13162 			seg_len -= gap;
13163 			if (tcp->tcp_debug) {
13164 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13165 				    "tcp_rput: unacceptable, gap %d, rgap %d, "
13166 				    "flags 0x%x, seg_seq %u, seg_ack %u, "
13167 				    "seg_len %d, rnxt %u, snxt %u, %s",
13168 				    gap, rgap, flags, seg_seq, seg_ack,
13169 				    seg_len, tcp->tcp_rnxt, tcp->tcp_snxt,
13170 				    tcp_display(tcp, NULL,
13171 				    DISP_ADDR_AND_PORT));
13172 			}
13173 
13174 			/*
13175 			 * Arrange to send an ACK in response to the
13176 			 * unacceptable segment per RFC 793 page 69. There
13177 			 * is only one small difference between ours and the
13178 			 * acceptability test in the RFC - we accept ACK-only
13179 			 * packet with SEG.SEQ = RCV.NXT+RCV.WND and no ACK
13180 			 * will be generated.
13181 			 *
13182 			 * Note that we have to ACK an ACK-only packet at least
13183 			 * for stacks that send 0-length keep-alives with
13184 			 * SEG.SEQ = SND.NXT-1 as recommended by RFC1122,
13185 			 * section 4.2.3.6. As long as we don't ever generate
13186 			 * an unacceptable packet in response to an incoming
13187 			 * packet that is unacceptable, it should not cause
13188 			 * "ACK wars".
13189 			 */
13190 			flags |=  TH_ACK_NEEDED;
13191 
13192 			/*
13193 			 * Continue processing this segment in order to use the
13194 			 * ACK information it contains, but skip all other
13195 			 * sequence-number processing.	Processing the ACK
13196 			 * information is necessary in order to
13197 			 * re-synchronize connections that may have lost
13198 			 * synchronization.
13199 			 *
13200 			 * We clear seg_len and flag fields related to
13201 			 * sequence number processing as they are not
13202 			 * to be trusted for an unacceptable segment.
13203 			 */
13204 			seg_len = 0;
13205 			flags &= ~(TH_SYN | TH_FIN | TH_URG);
13206 			goto process_ack;
13207 		}
13208 
13209 		/* Fix seg_seq, and chew the gap off the front. */
13210 		seg_seq = tcp->tcp_rnxt;
13211 		urp += gap;
13212 		do {
13213 			mblk_t	*mp2;
13214 			ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13215 			    (uintptr_t)UINT_MAX);
13216 			gap += (uint_t)(mp->b_wptr - mp->b_rptr);
13217 			if (gap > 0) {
13218 				mp->b_rptr = mp->b_wptr - gap;
13219 				break;
13220 			}
13221 			mp2 = mp;
13222 			mp = mp->b_cont;
13223 			freeb(mp2);
13224 		} while (gap < 0);
13225 		/*
13226 		 * If the urgent data has already been acknowledged, we
13227 		 * should ignore TH_URG below
13228 		 */
13229 		if (urp < 0)
13230 			flags &= ~TH_URG;
13231 	}
13232 	/*
13233 	 * rgap is the amount of stuff received out of window.  A negative
13234 	 * value is the amount out of window.
13235 	 */
13236 	if (rgap < 0) {
13237 		mblk_t	*mp2;
13238 
13239 		if (tcp->tcp_rwnd == 0) {
13240 			BUMP_MIB(&tcps->tcps_mib, tcpInWinProbe);
13241 		} else {
13242 			BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
13243 			UPDATE_MIB(&tcps->tcps_mib,
13244 			    tcpInDataPastWinBytes, -rgap);
13245 		}
13246 
13247 		/*
13248 		 * seg_len does not include the FIN, so if more than
13249 		 * just the FIN is out of window, we act like we don't
13250 		 * see it.  (If just the FIN is out of window, rgap
13251 		 * will be zero and we will go ahead and acknowledge
13252 		 * the FIN.)
13253 		 */
13254 		flags &= ~TH_FIN;
13255 
13256 		/* Fix seg_len and make sure there is something left. */
13257 		seg_len += rgap;
13258 		if (seg_len <= 0) {
13259 			/*
13260 			 * Resets are only valid if they lie within our offered
13261 			 * window.  If the RST bit is set, we just ignore this
13262 			 * segment.
13263 			 */
13264 			if (flags & TH_RST) {
13265 				freemsg(mp);
13266 				return;
13267 			}
13268 
13269 			/* Per RFC 793, we need to send back an ACK. */
13270 			flags |= TH_ACK_NEEDED;
13271 
13272 			/*
13273 			 * Send SIGURG as soon as possible i.e. even
13274 			 * if the TH_URG was delivered in a window probe
13275 			 * packet (which will be unacceptable).
13276 			 *
13277 			 * We generate a signal if none has been generated
13278 			 * for this connection or if this is a new urgent
13279 			 * byte. Also send a zero-length "unmarked" message
13280 			 * to inform SIOCATMARK that this is not the mark.
13281 			 *
13282 			 * tcp_urp_last_valid is cleared when the T_exdata_ind
13283 			 * is sent up. This plus the check for old data
13284 			 * (gap >= 0) handles the wraparound of the sequence
13285 			 * number space without having to always track the
13286 			 * correct MAX(tcp_urp_last, tcp_rnxt). (BSD tracks
13287 			 * this max in its rcv_up variable).
13288 			 *
13289 			 * This prevents duplicate SIGURGS due to a "late"
13290 			 * zero-window probe when the T_EXDATA_IND has already
13291 			 * been sent up.
13292 			 */
13293 			if ((flags & TH_URG) &&
13294 			    (!tcp->tcp_urp_last_valid || SEQ_GT(urp + seg_seq,
13295 			    tcp->tcp_urp_last))) {
13296 				if (IPCL_IS_NONSTR(connp)) {
13297 					if (!TCP_IS_DETACHED(tcp)) {
13298 						(*connp->conn_upcalls->
13299 						    su_signal_oob)
13300 						    (connp->conn_upper_handle,
13301 						    urp);
13302 					}
13303 				} else {
13304 					mp1 = allocb(0, BPRI_MED);
13305 					if (mp1 == NULL) {
13306 						freemsg(mp);
13307 						return;
13308 					}
13309 					if (!TCP_IS_DETACHED(tcp) &&
13310 					    !putnextctl1(tcp->tcp_rq,
13311 					    M_PCSIG, SIGURG)) {
13312 						/* Try again on the rexmit. */
13313 						freemsg(mp1);
13314 						freemsg(mp);
13315 						return;
13316 					}
13317 					/*
13318 					 * If the next byte would be the mark
13319 					 * then mark with MARKNEXT else mark
13320 					 * with NOTMARKNEXT.
13321 					 */
13322 					if (gap == 0 && urp == 0)
13323 						mp1->b_flag |= MSGMARKNEXT;
13324 					else
13325 						mp1->b_flag |= MSGNOTMARKNEXT;
13326 					freemsg(tcp->tcp_urp_mark_mp);
13327 					tcp->tcp_urp_mark_mp = mp1;
13328 					flags |= TH_SEND_URP_MARK;
13329 				}
13330 				tcp->tcp_urp_last_valid = B_TRUE;
13331 				tcp->tcp_urp_last = urp + seg_seq;
13332 			}
13333 			/*
13334 			 * If this is a zero window probe, continue to
13335 			 * process the ACK part.  But we need to set seg_len
13336 			 * to 0 to avoid data processing.  Otherwise just
13337 			 * drop the segment and send back an ACK.
13338 			 */
13339 			if (tcp->tcp_rwnd == 0 && seg_seq == tcp->tcp_rnxt) {
13340 				flags &= ~(TH_SYN | TH_URG);
13341 				seg_len = 0;
13342 				goto process_ack;
13343 			} else {
13344 				freemsg(mp);
13345 				goto ack_check;
13346 			}
13347 		}
13348 		/* Pitch out of window stuff off the end. */
13349 		rgap = seg_len;
13350 		mp2 = mp;
13351 		do {
13352 			ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
13353 			    (uintptr_t)INT_MAX);
13354 			rgap -= (int)(mp2->b_wptr - mp2->b_rptr);
13355 			if (rgap < 0) {
13356 				mp2->b_wptr += rgap;
13357 				if ((mp1 = mp2->b_cont) != NULL) {
13358 					mp2->b_cont = NULL;
13359 					freemsg(mp1);
13360 				}
13361 				break;
13362 			}
13363 		} while ((mp2 = mp2->b_cont) != NULL);
13364 	}
13365 ok:;
13366 	/*
13367 	 * TCP should check ECN info for segments inside the window only.
13368 	 * Therefore the check should be done here.
13369 	 */
13370 	if (tcp->tcp_ecn_ok) {
13371 		if (flags & TH_CWR) {
13372 			tcp->tcp_ecn_echo_on = B_FALSE;
13373 		}
13374 		/*
13375 		 * Note that both ECN_CE and CWR can be set in the
13376 		 * same segment.  In this case, we once again turn
13377 		 * on ECN_ECHO.
13378 		 */
13379 		if (tcp->tcp_ipversion == IPV4_VERSION) {
13380 			uchar_t tos = ((ipha_t *)rptr)->ipha_type_of_service;
13381 
13382 			if ((tos & IPH_ECN_CE) == IPH_ECN_CE) {
13383 				tcp->tcp_ecn_echo_on = B_TRUE;
13384 			}
13385 		} else {
13386 			uint32_t vcf = ((ip6_t *)rptr)->ip6_vcf;
13387 
13388 			if ((vcf & htonl(IPH_ECN_CE << 20)) ==
13389 			    htonl(IPH_ECN_CE << 20)) {
13390 				tcp->tcp_ecn_echo_on = B_TRUE;
13391 			}
13392 		}
13393 	}
13394 
13395 	/*
13396 	 * Check whether we can update tcp_ts_recent.  This test is
13397 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
13398 	 * Extensions for High Performance: An Update", Internet Draft.
13399 	 */
13400 	if (tcp->tcp_snd_ts_ok &&
13401 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
13402 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
13403 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
13404 		tcp->tcp_last_rcv_lbolt = lbolt64;
13405 	}
13406 
13407 	if (seg_seq != tcp->tcp_rnxt || tcp->tcp_reass_head) {
13408 		/*
13409 		 * FIN in an out of order segment.  We record this in
13410 		 * tcp_valid_bits and the seq num of FIN in tcp_ofo_fin_seq.
13411 		 * Clear the FIN so that any check on FIN flag will fail.
13412 		 * Remember that FIN also counts in the sequence number
13413 		 * space.  So we need to ack out of order FIN only segments.
13414 		 */
13415 		if (flags & TH_FIN) {
13416 			tcp->tcp_valid_bits |= TCP_OFO_FIN_VALID;
13417 			tcp->tcp_ofo_fin_seq = seg_seq + seg_len;
13418 			flags &= ~TH_FIN;
13419 			flags |= TH_ACK_NEEDED;
13420 		}
13421 		if (seg_len > 0) {
13422 			/* Fill in the SACK blk list. */
13423 			if (tcp->tcp_snd_sack_ok) {
13424 				ASSERT(tcp->tcp_sack_info != NULL);
13425 				tcp_sack_insert(tcp->tcp_sack_list,
13426 				    seg_seq, seg_seq + seg_len,
13427 				    &(tcp->tcp_num_sack_blk));
13428 			}
13429 
13430 			/*
13431 			 * Attempt reassembly and see if we have something
13432 			 * ready to go.
13433 			 */
13434 			mp = tcp_reass(tcp, mp, seg_seq);
13435 			/* Always ack out of order packets */
13436 			flags |= TH_ACK_NEEDED | TH_PUSH;
13437 			if (mp) {
13438 				ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
13439 				    (uintptr_t)INT_MAX);
13440 				seg_len = mp->b_cont ? msgdsize(mp) :
13441 				    (int)(mp->b_wptr - mp->b_rptr);
13442 				seg_seq = tcp->tcp_rnxt;
13443 				/*
13444 				 * A gap is filled and the seq num and len
13445 				 * of the gap match that of a previously
13446 				 * received FIN, put the FIN flag back in.
13447 				 */
13448 				if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13449 				    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13450 					flags |= TH_FIN;
13451 					tcp->tcp_valid_bits &=
13452 					    ~TCP_OFO_FIN_VALID;
13453 				}
13454 			} else {
13455 				/*
13456 				 * Keep going even with NULL mp.
13457 				 * There may be a useful ACK or something else
13458 				 * we don't want to miss.
13459 				 *
13460 				 * But TCP should not perform fast retransmit
13461 				 * because of the ack number.  TCP uses
13462 				 * seg_len == 0 to determine if it is a pure
13463 				 * ACK.  And this is not a pure ACK.
13464 				 */
13465 				seg_len = 0;
13466 				ofo_seg = B_TRUE;
13467 			}
13468 		}
13469 	} else if (seg_len > 0) {
13470 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
13471 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
13472 		/*
13473 		 * If an out of order FIN was received before, and the seq
13474 		 * num and len of the new segment match that of the FIN,
13475 		 * put the FIN flag back in.
13476 		 */
13477 		if ((tcp->tcp_valid_bits & TCP_OFO_FIN_VALID) &&
13478 		    seg_seq + seg_len == tcp->tcp_ofo_fin_seq) {
13479 			flags |= TH_FIN;
13480 			tcp->tcp_valid_bits &= ~TCP_OFO_FIN_VALID;
13481 		}
13482 	}
13483 	if ((flags & (TH_RST | TH_SYN | TH_URG | TH_ACK)) != TH_ACK) {
13484 	if (flags & TH_RST) {
13485 		freemsg(mp);
13486 		switch (tcp->tcp_state) {
13487 		case TCPS_SYN_RCVD:
13488 			(void) tcp_clean_death(tcp, ECONNREFUSED, 14);
13489 			break;
13490 		case TCPS_ESTABLISHED:
13491 		case TCPS_FIN_WAIT_1:
13492 		case TCPS_FIN_WAIT_2:
13493 		case TCPS_CLOSE_WAIT:
13494 			(void) tcp_clean_death(tcp, ECONNRESET, 15);
13495 			break;
13496 		case TCPS_CLOSING:
13497 		case TCPS_LAST_ACK:
13498 			(void) tcp_clean_death(tcp, 0, 16);
13499 			break;
13500 		default:
13501 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13502 			(void) tcp_clean_death(tcp, ENXIO, 17);
13503 			break;
13504 		}
13505 		return;
13506 	}
13507 	if (flags & TH_SYN) {
13508 		/*
13509 		 * See RFC 793, Page 71
13510 		 *
13511 		 * The seq number must be in the window as it should
13512 		 * be "fixed" above.  If it is outside window, it should
13513 		 * be already rejected.  Note that we allow seg_seq to be
13514 		 * rnxt + rwnd because we want to accept 0 window probe.
13515 		 */
13516 		ASSERT(SEQ_GEQ(seg_seq, tcp->tcp_rnxt) &&
13517 		    SEQ_LEQ(seg_seq, tcp->tcp_rnxt + tcp->tcp_rwnd));
13518 		freemsg(mp);
13519 		/*
13520 		 * If the ACK flag is not set, just use our snxt as the
13521 		 * seq number of the RST segment.
13522 		 */
13523 		if (!(flags & TH_ACK)) {
13524 			seg_ack = tcp->tcp_snxt;
13525 		}
13526 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
13527 		    TH_RST|TH_ACK);
13528 		ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
13529 		(void) tcp_clean_death(tcp, ECONNRESET, 18);
13530 		return;
13531 	}
13532 	/*
13533 	 * urp could be -1 when the urp field in the packet is 0
13534 	 * and TCP_OLD_URP_INTERPRETATION is set. This implies that the urgent
13535 	 * byte was at seg_seq - 1, in which case we ignore the urgent flag.
13536 	 */
13537 	if (flags & TH_URG && urp >= 0) {
13538 		if (!tcp->tcp_urp_last_valid ||
13539 		    SEQ_GT(urp + seg_seq, tcp->tcp_urp_last)) {
13540 			if (IPCL_IS_NONSTR(connp)) {
13541 				if (!TCP_IS_DETACHED(tcp)) {
13542 					(*connp->conn_upcalls->su_signal_oob)
13543 					    (connp->conn_upper_handle, urp);
13544 				}
13545 			} else {
13546 				/*
13547 				 * If we haven't generated the signal yet for
13548 				 * this urgent pointer value, do it now.  Also,
13549 				 * send up a zero-length M_DATA indicating
13550 				 * whether or not this is the mark. The latter
13551 				 * is not needed when a T_EXDATA_IND is sent up.
13552 				 * However, if there are allocation failures
13553 				 * this code relies on the sender retransmitting
13554 				 * and the socket code for determining the mark
13555 				 * should not block waiting for the peer to
13556 				 * transmit. Thus, for simplicity we always
13557 				 * send up the mark indication.
13558 				 */
13559 				mp1 = allocb(0, BPRI_MED);
13560 				if (mp1 == NULL) {
13561 					freemsg(mp);
13562 					return;
13563 				}
13564 				if (!TCP_IS_DETACHED(tcp) &&
13565 				    !putnextctl1(tcp->tcp_rq, M_PCSIG,
13566 				    SIGURG)) {
13567 					/* Try again on the rexmit. */
13568 					freemsg(mp1);
13569 					freemsg(mp);
13570 					return;
13571 				}
13572 				/*
13573 				 * Mark with NOTMARKNEXT for now.
13574 				 * The code below will change this to MARKNEXT
13575 				 * if we are at the mark.
13576 				 *
13577 				 * If there are allocation failures (e.g. in
13578 				 * dupmsg below) the next time tcp_rput_data
13579 				 * sees the urgent segment it will send up the
13580 				 * MSGMARKNEXT message.
13581 				 */
13582 				mp1->b_flag |= MSGNOTMARKNEXT;
13583 				freemsg(tcp->tcp_urp_mark_mp);
13584 				tcp->tcp_urp_mark_mp = mp1;
13585 				flags |= TH_SEND_URP_MARK;
13586 #ifdef DEBUG
13587 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13588 				    "tcp_rput: sent M_PCSIG 2 seq %x urp %x "
13589 				    "last %x, %s",
13590 				    seg_seq, urp, tcp->tcp_urp_last,
13591 				    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13592 #endif /* DEBUG */
13593 			}
13594 			tcp->tcp_urp_last_valid = B_TRUE;
13595 			tcp->tcp_urp_last = urp + seg_seq;
13596 		} else if (tcp->tcp_urp_mark_mp != NULL) {
13597 			/*
13598 			 * An allocation failure prevented the previous
13599 			 * tcp_rput_data from sending up the allocated
13600 			 * MSG*MARKNEXT message - send it up this time
13601 			 * around.
13602 			 */
13603 			flags |= TH_SEND_URP_MARK;
13604 		}
13605 
13606 		/*
13607 		 * If the urgent byte is in this segment, make sure that it is
13608 		 * all by itself.  This makes it much easier to deal with the
13609 		 * possibility of an allocation failure on the T_exdata_ind.
13610 		 * Note that seg_len is the number of bytes in the segment, and
13611 		 * urp is the offset into the segment of the urgent byte.
13612 		 * urp < seg_len means that the urgent byte is in this segment.
13613 		 */
13614 		if (urp < seg_len) {
13615 			if (seg_len != 1) {
13616 				uint32_t  tmp_rnxt;
13617 				/*
13618 				 * Break it up and feed it back in.
13619 				 * Re-attach the IP header.
13620 				 */
13621 				mp->b_rptr = iphdr;
13622 				if (urp > 0) {
13623 					/*
13624 					 * There is stuff before the urgent
13625 					 * byte.
13626 					 */
13627 					mp1 = dupmsg(mp);
13628 					if (!mp1) {
13629 						/*
13630 						 * Trim from urgent byte on.
13631 						 * The rest will come back.
13632 						 */
13633 						(void) adjmsg(mp,
13634 						    urp - seg_len);
13635 						tcp_rput_data(connp,
13636 						    mp, NULL);
13637 						return;
13638 					}
13639 					(void) adjmsg(mp1, urp - seg_len);
13640 					/* Feed this piece back in. */
13641 					tmp_rnxt = tcp->tcp_rnxt;
13642 					tcp_rput_data(connp, mp1, NULL);
13643 					/*
13644 					 * If the data passed back in was not
13645 					 * processed (ie: bad ACK) sending
13646 					 * the remainder back in will cause a
13647 					 * loop. In this case, drop the
13648 					 * packet and let the sender try
13649 					 * sending a good packet.
13650 					 */
13651 					if (tmp_rnxt == tcp->tcp_rnxt) {
13652 						freemsg(mp);
13653 						return;
13654 					}
13655 				}
13656 				if (urp != seg_len - 1) {
13657 					uint32_t  tmp_rnxt;
13658 					/*
13659 					 * There is stuff after the urgent
13660 					 * byte.
13661 					 */
13662 					mp1 = dupmsg(mp);
13663 					if (!mp1) {
13664 						/*
13665 						 * Trim everything beyond the
13666 						 * urgent byte.  The rest will
13667 						 * come back.
13668 						 */
13669 						(void) adjmsg(mp,
13670 						    urp + 1 - seg_len);
13671 						tcp_rput_data(connp,
13672 						    mp, NULL);
13673 						return;
13674 					}
13675 					(void) adjmsg(mp1, urp + 1 - seg_len);
13676 					tmp_rnxt = tcp->tcp_rnxt;
13677 					tcp_rput_data(connp, mp1, NULL);
13678 					/*
13679 					 * If the data passed back in was not
13680 					 * processed (ie: bad ACK) sending
13681 					 * the remainder back in will cause a
13682 					 * loop. In this case, drop the
13683 					 * packet and let the sender try
13684 					 * sending a good packet.
13685 					 */
13686 					if (tmp_rnxt == tcp->tcp_rnxt) {
13687 						freemsg(mp);
13688 						return;
13689 					}
13690 				}
13691 				tcp_rput_data(connp, mp, NULL);
13692 				return;
13693 			}
13694 			/*
13695 			 * This segment contains only the urgent byte.  We
13696 			 * have to allocate the T_exdata_ind, if we can.
13697 			 */
13698 			if (IPCL_IS_NONSTR(connp)) {
13699 				int error;
13700 
13701 				(*connp->conn_upcalls->su_recv)
13702 				    (connp->conn_upper_handle, mp, seg_len,
13703 				    MSG_OOB, &error, NULL);
13704 				/*
13705 				 * We should never be in middle of a
13706 				 * fallback, the squeue guarantees that.
13707 				 */
13708 				ASSERT(error != EOPNOTSUPP);
13709 				mp = NULL;
13710 				goto update_ack;
13711 			} else if (!tcp->tcp_urp_mp) {
13712 				struct T_exdata_ind *tei;
13713 				mp1 = allocb(sizeof (struct T_exdata_ind),
13714 				    BPRI_MED);
13715 				if (!mp1) {
13716 					/*
13717 					 * Sigh... It'll be back.
13718 					 * Generate any MSG*MARK message now.
13719 					 */
13720 					freemsg(mp);
13721 					seg_len = 0;
13722 					if (flags & TH_SEND_URP_MARK) {
13723 
13724 
13725 						ASSERT(tcp->tcp_urp_mark_mp);
13726 						tcp->tcp_urp_mark_mp->b_flag &=
13727 						    ~MSGNOTMARKNEXT;
13728 						tcp->tcp_urp_mark_mp->b_flag |=
13729 						    MSGMARKNEXT;
13730 					}
13731 					goto ack_check;
13732 				}
13733 				mp1->b_datap->db_type = M_PROTO;
13734 				tei = (struct T_exdata_ind *)mp1->b_rptr;
13735 				tei->PRIM_type = T_EXDATA_IND;
13736 				tei->MORE_flag = 0;
13737 				mp1->b_wptr = (uchar_t *)&tei[1];
13738 				tcp->tcp_urp_mp = mp1;
13739 #ifdef DEBUG
13740 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13741 				    "tcp_rput: allocated exdata_ind %s",
13742 				    tcp_display(tcp, NULL,
13743 				    DISP_PORT_ONLY));
13744 #endif /* DEBUG */
13745 				/*
13746 				 * There is no need to send a separate MSG*MARK
13747 				 * message since the T_EXDATA_IND will be sent
13748 				 * now.
13749 				 */
13750 				flags &= ~TH_SEND_URP_MARK;
13751 				freemsg(tcp->tcp_urp_mark_mp);
13752 				tcp->tcp_urp_mark_mp = NULL;
13753 			}
13754 			/*
13755 			 * Now we are all set.  On the next putnext upstream,
13756 			 * tcp_urp_mp will be non-NULL and will get prepended
13757 			 * to what has to be this piece containing the urgent
13758 			 * byte.  If for any reason we abort this segment below,
13759 			 * if it comes back, we will have this ready, or it
13760 			 * will get blown off in close.
13761 			 */
13762 		} else if (urp == seg_len) {
13763 			/*
13764 			 * The urgent byte is the next byte after this sequence
13765 			 * number. If there is data it is marked with
13766 			 * MSGMARKNEXT and any tcp_urp_mark_mp is discarded
13767 			 * since it is not needed. Otherwise, if the code
13768 			 * above just allocated a zero-length tcp_urp_mark_mp
13769 			 * message, that message is tagged with MSGMARKNEXT.
13770 			 * Sending up these MSGMARKNEXT messages makes
13771 			 * SIOCATMARK work correctly even though
13772 			 * the T_EXDATA_IND will not be sent up until the
13773 			 * urgent byte arrives.
13774 			 */
13775 			if (seg_len != 0) {
13776 				flags |= TH_MARKNEXT_NEEDED;
13777 				freemsg(tcp->tcp_urp_mark_mp);
13778 				tcp->tcp_urp_mark_mp = NULL;
13779 				flags &= ~TH_SEND_URP_MARK;
13780 			} else if (tcp->tcp_urp_mark_mp != NULL) {
13781 				flags |= TH_SEND_URP_MARK;
13782 				tcp->tcp_urp_mark_mp->b_flag &=
13783 				    ~MSGNOTMARKNEXT;
13784 				tcp->tcp_urp_mark_mp->b_flag |= MSGMARKNEXT;
13785 			}
13786 #ifdef DEBUG
13787 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13788 			    "tcp_rput: AT MARK, len %d, flags 0x%x, %s",
13789 			    seg_len, flags,
13790 			    tcp_display(tcp, NULL, DISP_PORT_ONLY));
13791 #endif /* DEBUG */
13792 		}
13793 #ifdef DEBUG
13794 		else {
13795 			/* Data left until we hit mark */
13796 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
13797 			    "tcp_rput: URP %d bytes left, %s",
13798 			    urp - seg_len, tcp_display(tcp, NULL,
13799 			    DISP_PORT_ONLY));
13800 		}
13801 #endif /* DEBUG */
13802 	}
13803 
13804 process_ack:
13805 	if (!(flags & TH_ACK)) {
13806 		freemsg(mp);
13807 		goto xmit_check;
13808 	}
13809 	}
13810 	bytes_acked = (int)(seg_ack - tcp->tcp_suna);
13811 
13812 	if (tcp->tcp_ipversion == IPV6_VERSION && bytes_acked > 0)
13813 		tcp->tcp_ip_forward_progress = B_TRUE;
13814 	if (tcp->tcp_state == TCPS_SYN_RCVD) {
13815 		if ((tcp->tcp_conn.tcp_eager_conn_ind != NULL) &&
13816 		    ((tcp->tcp_kssl_ent == NULL) || !tcp->tcp_kssl_pending)) {
13817 			/* 3-way handshake complete - pass up the T_CONN_IND */
13818 			tcp_t	*listener = tcp->tcp_listener;
13819 			mblk_t	*mp = tcp->tcp_conn.tcp_eager_conn_ind;
13820 
13821 			tcp->tcp_tconnind_started = B_TRUE;
13822 			tcp->tcp_conn.tcp_eager_conn_ind = NULL;
13823 			/*
13824 			 * We are here means eager is fine but it can
13825 			 * get a TH_RST at any point between now and till
13826 			 * accept completes and disappear. We need to
13827 			 * ensure that reference to eager is valid after
13828 			 * we get out of eager's perimeter. So we do
13829 			 * an extra refhold.
13830 			 */
13831 			CONN_INC_REF(connp);
13832 
13833 			/*
13834 			 * The listener also exists because of the refhold
13835 			 * done in tcp_conn_request. Its possible that it
13836 			 * might have closed. We will check that once we
13837 			 * get inside listeners context.
13838 			 */
13839 			CONN_INC_REF(listener->tcp_connp);
13840 			if (listener->tcp_connp->conn_sqp ==
13841 			    connp->conn_sqp) {
13842 				/*
13843 				 * We optimize by not calling an SQUEUE_ENTER
13844 				 * on the listener since we know that the
13845 				 * listener and eager squeues are the same.
13846 				 * We are able to make this check safely only
13847 				 * because neither the eager nor the listener
13848 				 * can change its squeue. Only an active connect
13849 				 * can change its squeue
13850 				 */
13851 				tcp_send_conn_ind(listener->tcp_connp, mp,
13852 				    listener->tcp_connp->conn_sqp);
13853 				CONN_DEC_REF(listener->tcp_connp);
13854 			} else if (!tcp->tcp_loopback) {
13855 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
13856 				    mp, tcp_send_conn_ind,
13857 				    listener->tcp_connp, SQ_FILL,
13858 				    SQTAG_TCP_CONN_IND);
13859 			} else {
13860 				SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp,
13861 				    mp, tcp_send_conn_ind,
13862 				    listener->tcp_connp, SQ_PROCESS,
13863 				    SQTAG_TCP_CONN_IND);
13864 			}
13865 		}
13866 
13867 		/*
13868 		 * We are seeing the final ack in the three way
13869 		 * hand shake of a active open'ed connection
13870 		 * so we must send up a T_CONN_CON
13871 		 *
13872 		 * tcp_sendmsg() checks tcp_state without entering
13873 		 * the squeue so tcp_state should be updated before
13874 		 * sending up connection confirmation.
13875 		 */
13876 		tcp->tcp_state = TCPS_ESTABLISHED;
13877 		if (tcp->tcp_active_open) {
13878 			if (!tcp_conn_con(tcp, iphdr, tcph, mp, NULL)) {
13879 				freemsg(mp);
13880 				tcp->tcp_state = TCPS_SYN_RCVD;
13881 				return;
13882 			}
13883 			/*
13884 			 * Don't fuse the loopback endpoints for
13885 			 * simultaneous active opens.
13886 			 */
13887 			if (tcp->tcp_loopback) {
13888 				TCP_STAT(tcps, tcp_fusion_unfusable);
13889 				tcp->tcp_unfusable = B_TRUE;
13890 			}
13891 		}
13892 
13893 		tcp->tcp_suna = tcp->tcp_iss + 1;	/* One for the SYN */
13894 		bytes_acked--;
13895 		/* SYN was acked - making progress */
13896 		if (tcp->tcp_ipversion == IPV6_VERSION)
13897 			tcp->tcp_ip_forward_progress = B_TRUE;
13898 
13899 		/*
13900 		 * If SYN was retransmitted, need to reset all
13901 		 * retransmission info as this segment will be
13902 		 * treated as a dup ACK.
13903 		 */
13904 		if (tcp->tcp_rexmit) {
13905 			tcp->tcp_rexmit = B_FALSE;
13906 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
13907 			tcp->tcp_rexmit_max = tcp->tcp_snxt;
13908 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
13909 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
13910 			tcp->tcp_ms_we_have_waited = 0;
13911 			tcp->tcp_cwnd = mss;
13912 		}
13913 
13914 		/*
13915 		 * We set the send window to zero here.
13916 		 * This is needed if there is data to be
13917 		 * processed already on the queue.
13918 		 * Later (at swnd_update label), the
13919 		 * "new_swnd > tcp_swnd" condition is satisfied
13920 		 * the XMIT_NEEDED flag is set in the current
13921 		 * (SYN_RCVD) state. This ensures tcp_wput_data() is
13922 		 * called if there is already data on queue in
13923 		 * this state.
13924 		 */
13925 		tcp->tcp_swnd = 0;
13926 
13927 		if (new_swnd > tcp->tcp_max_swnd)
13928 			tcp->tcp_max_swnd = new_swnd;
13929 		tcp->tcp_swl1 = seg_seq;
13930 		tcp->tcp_swl2 = seg_ack;
13931 		tcp->tcp_valid_bits &= ~TCP_ISS_VALID;
13932 
13933 		/* Fuse when both sides are in ESTABLISHED state */
13934 		if (tcp->tcp_loopback && do_tcp_fusion)
13935 			tcp_fuse(tcp, iphdr, tcph);
13936 
13937 	}
13938 	/* This code follows 4.4BSD-Lite2 mostly. */
13939 	if (bytes_acked < 0)
13940 		goto est;
13941 
13942 	/*
13943 	 * If TCP is ECN capable and the congestion experience bit is
13944 	 * set, reduce tcp_cwnd and tcp_ssthresh.  But this should only be
13945 	 * done once per window (or more loosely, per RTT).
13946 	 */
13947 	if (tcp->tcp_cwr && SEQ_GT(seg_ack, tcp->tcp_cwr_snd_max))
13948 		tcp->tcp_cwr = B_FALSE;
13949 	if (tcp->tcp_ecn_ok && (flags & TH_ECE)) {
13950 		if (!tcp->tcp_cwr) {
13951 			npkt = ((tcp->tcp_snxt - tcp->tcp_suna) >> 1) / mss;
13952 			tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) * mss;
13953 			tcp->tcp_cwnd = npkt * mss;
13954 			/*
13955 			 * If the cwnd is 0, use the timer to clock out
13956 			 * new segments.  This is required by the ECN spec.
13957 			 */
13958 			if (npkt == 0) {
13959 				TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
13960 				/*
13961 				 * This makes sure that when the ACK comes
13962 				 * back, we will increase tcp_cwnd by 1 MSS.
13963 				 */
13964 				tcp->tcp_cwnd_cnt = 0;
13965 			}
13966 			tcp->tcp_cwr = B_TRUE;
13967 			/*
13968 			 * This marks the end of the current window of in
13969 			 * flight data.  That is why we don't use
13970 			 * tcp_suna + tcp_swnd.  Only data in flight can
13971 			 * provide ECN info.
13972 			 */
13973 			tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
13974 			tcp->tcp_ecn_cwr_sent = B_FALSE;
13975 		}
13976 	}
13977 
13978 	mp1 = tcp->tcp_xmit_head;
13979 	if (bytes_acked == 0) {
13980 		if (!ofo_seg && seg_len == 0 && new_swnd == tcp->tcp_swnd) {
13981 			int dupack_cnt;
13982 
13983 			BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
13984 			/*
13985 			 * Fast retransmit.  When we have seen exactly three
13986 			 * identical ACKs while we have unacked data
13987 			 * outstanding we take it as a hint that our peer
13988 			 * dropped something.
13989 			 *
13990 			 * If TCP is retransmitting, don't do fast retransmit.
13991 			 */
13992 			if (mp1 && tcp->tcp_suna != tcp->tcp_snxt &&
13993 			    ! tcp->tcp_rexmit) {
13994 				/* Do Limited Transmit */
13995 				if ((dupack_cnt = ++tcp->tcp_dupack_cnt) <
13996 				    tcps->tcps_dupack_fast_retransmit) {
13997 					/*
13998 					 * RFC 3042
13999 					 *
14000 					 * What we need to do is temporarily
14001 					 * increase tcp_cwnd so that new
14002 					 * data can be sent if it is allowed
14003 					 * by the receive window (tcp_rwnd).
14004 					 * tcp_wput_data() will take care of
14005 					 * the rest.
14006 					 *
14007 					 * If the connection is SACK capable,
14008 					 * only do limited xmit when there
14009 					 * is SACK info.
14010 					 *
14011 					 * Note how tcp_cwnd is incremented.
14012 					 * The first dup ACK will increase
14013 					 * it by 1 MSS.  The second dup ACK
14014 					 * will increase it by 2 MSS.  This
14015 					 * means that only 1 new segment will
14016 					 * be sent for each dup ACK.
14017 					 */
14018 					if (tcp->tcp_unsent > 0 &&
14019 					    (!tcp->tcp_snd_sack_ok ||
14020 					    (tcp->tcp_snd_sack_ok &&
14021 					    tcp->tcp_notsack_list != NULL))) {
14022 						tcp->tcp_cwnd += mss <<
14023 						    (tcp->tcp_dupack_cnt - 1);
14024 						flags |= TH_LIMIT_XMIT;
14025 					}
14026 				} else if (dupack_cnt ==
14027 				    tcps->tcps_dupack_fast_retransmit) {
14028 
14029 				/*
14030 				 * If we have reduced tcp_ssthresh
14031 				 * because of ECN, do not reduce it again
14032 				 * unless it is already one window of data
14033 				 * away.  After one window of data, tcp_cwr
14034 				 * should then be cleared.  Note that
14035 				 * for non ECN capable connection, tcp_cwr
14036 				 * should always be false.
14037 				 *
14038 				 * Adjust cwnd since the duplicate
14039 				 * ack indicates that a packet was
14040 				 * dropped (due to congestion.)
14041 				 */
14042 				if (!tcp->tcp_cwr) {
14043 					npkt = ((tcp->tcp_snxt -
14044 					    tcp->tcp_suna) >> 1) / mss;
14045 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
14046 					    mss;
14047 					tcp->tcp_cwnd = (npkt +
14048 					    tcp->tcp_dupack_cnt) * mss;
14049 				}
14050 				if (tcp->tcp_ecn_ok) {
14051 					tcp->tcp_cwr = B_TRUE;
14052 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
14053 					tcp->tcp_ecn_cwr_sent = B_FALSE;
14054 				}
14055 
14056 				/*
14057 				 * We do Hoe's algorithm.  Refer to her
14058 				 * paper "Improving the Start-up Behavior
14059 				 * of a Congestion Control Scheme for TCP,"
14060 				 * appeared in SIGCOMM'96.
14061 				 *
14062 				 * Save highest seq no we have sent so far.
14063 				 * Be careful about the invisible FIN byte.
14064 				 */
14065 				if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
14066 				    (tcp->tcp_unsent == 0)) {
14067 					tcp->tcp_rexmit_max = tcp->tcp_fss;
14068 				} else {
14069 					tcp->tcp_rexmit_max = tcp->tcp_snxt;
14070 				}
14071 
14072 				/*
14073 				 * Do not allow bursty traffic during.
14074 				 * fast recovery.  Refer to Fall and Floyd's
14075 				 * paper "Simulation-based Comparisons of
14076 				 * Tahoe, Reno and SACK TCP" (in CCR?)
14077 				 * This is a best current practise.
14078 				 */
14079 				tcp->tcp_snd_burst = TCP_CWND_SS;
14080 
14081 				/*
14082 				 * For SACK:
14083 				 * Calculate tcp_pipe, which is the
14084 				 * estimated number of bytes in
14085 				 * network.
14086 				 *
14087 				 * tcp_fack is the highest sack'ed seq num
14088 				 * TCP has received.
14089 				 *
14090 				 * tcp_pipe is explained in the above quoted
14091 				 * Fall and Floyd's paper.  tcp_fack is
14092 				 * explained in Mathis and Mahdavi's
14093 				 * "Forward Acknowledgment: Refining TCP
14094 				 * Congestion Control" in SIGCOMM '96.
14095 				 */
14096 				if (tcp->tcp_snd_sack_ok) {
14097 					ASSERT(tcp->tcp_sack_info != NULL);
14098 					if (tcp->tcp_notsack_list != NULL) {
14099 						tcp->tcp_pipe = tcp->tcp_snxt -
14100 						    tcp->tcp_fack;
14101 						tcp->tcp_sack_snxt = seg_ack;
14102 						flags |= TH_NEED_SACK_REXMIT;
14103 					} else {
14104 						/*
14105 						 * Always initialize tcp_pipe
14106 						 * even though we don't have
14107 						 * any SACK info.  If later
14108 						 * we get SACK info and
14109 						 * tcp_pipe is not initialized,
14110 						 * funny things will happen.
14111 						 */
14112 						tcp->tcp_pipe =
14113 						    tcp->tcp_cwnd_ssthresh;
14114 					}
14115 				} else {
14116 					flags |= TH_REXMIT_NEEDED;
14117 				} /* tcp_snd_sack_ok */
14118 
14119 				} else {
14120 					/*
14121 					 * Here we perform congestion
14122 					 * avoidance, but NOT slow start.
14123 					 * This is known as the Fast
14124 					 * Recovery Algorithm.
14125 					 */
14126 					if (tcp->tcp_snd_sack_ok &&
14127 					    tcp->tcp_notsack_list != NULL) {
14128 						flags |= TH_NEED_SACK_REXMIT;
14129 						tcp->tcp_pipe -= mss;
14130 						if (tcp->tcp_pipe < 0)
14131 							tcp->tcp_pipe = 0;
14132 					} else {
14133 					/*
14134 					 * We know that one more packet has
14135 					 * left the pipe thus we can update
14136 					 * cwnd.
14137 					 */
14138 					cwnd = tcp->tcp_cwnd + mss;
14139 					if (cwnd > tcp->tcp_cwnd_max)
14140 						cwnd = tcp->tcp_cwnd_max;
14141 					tcp->tcp_cwnd = cwnd;
14142 					if (tcp->tcp_unsent > 0)
14143 						flags |= TH_XMIT_NEEDED;
14144 					}
14145 				}
14146 			}
14147 		} else if (tcp->tcp_zero_win_probe) {
14148 			/*
14149 			 * If the window has opened, need to arrange
14150 			 * to send additional data.
14151 			 */
14152 			if (new_swnd != 0) {
14153 				/* tcp_suna != tcp_snxt */
14154 				/* Packet contains a window update */
14155 				BUMP_MIB(&tcps->tcps_mib, tcpInWinUpdate);
14156 				tcp->tcp_zero_win_probe = 0;
14157 				tcp->tcp_timer_backoff = 0;
14158 				tcp->tcp_ms_we_have_waited = 0;
14159 
14160 				/*
14161 				 * Transmit starting with tcp_suna since
14162 				 * the one byte probe is not ack'ed.
14163 				 * If TCP has sent more than one identical
14164 				 * probe, tcp_rexmit will be set.  That means
14165 				 * tcp_ss_rexmit() will send out the one
14166 				 * byte along with new data.  Otherwise,
14167 				 * fake the retransmission.
14168 				 */
14169 				flags |= TH_XMIT_NEEDED;
14170 				if (!tcp->tcp_rexmit) {
14171 					tcp->tcp_rexmit = B_TRUE;
14172 					tcp->tcp_dupack_cnt = 0;
14173 					tcp->tcp_rexmit_nxt = tcp->tcp_suna;
14174 					tcp->tcp_rexmit_max = tcp->tcp_suna + 1;
14175 				}
14176 			}
14177 		}
14178 		goto swnd_update;
14179 	}
14180 
14181 	/*
14182 	 * Check for "acceptability" of ACK value per RFC 793, pages 72 - 73.
14183 	 * If the ACK value acks something that we have not yet sent, it might
14184 	 * be an old duplicate segment.  Send an ACK to re-synchronize the
14185 	 * other side.
14186 	 * Note: reset in response to unacceptable ACK in SYN_RECEIVE
14187 	 * state is handled above, so we can always just drop the segment and
14188 	 * send an ACK here.
14189 	 *
14190 	 * Should we send ACKs in response to ACK only segments?
14191 	 */
14192 	if (SEQ_GT(seg_ack, tcp->tcp_snxt)) {
14193 		BUMP_MIB(&tcps->tcps_mib, tcpInAckUnsent);
14194 		/* drop the received segment */
14195 		freemsg(mp);
14196 
14197 		/*
14198 		 * Send back an ACK.  If tcp_drop_ack_unsent_cnt is
14199 		 * greater than 0, check if the number of such
14200 		 * bogus ACks is greater than that count.  If yes,
14201 		 * don't send back any ACK.  This prevents TCP from
14202 		 * getting into an ACK storm if somehow an attacker
14203 		 * successfully spoofs an acceptable segment to our
14204 		 * peer.
14205 		 */
14206 		if (tcp_drop_ack_unsent_cnt > 0 &&
14207 		    ++tcp->tcp_in_ack_unsent > tcp_drop_ack_unsent_cnt) {
14208 			TCP_STAT(tcps, tcp_in_ack_unsent_drop);
14209 			return;
14210 		}
14211 		mp = tcp_ack_mp(tcp);
14212 		if (mp != NULL) {
14213 			BUMP_LOCAL(tcp->tcp_obsegs);
14214 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
14215 			tcp_send_data(tcp, tcp->tcp_wq, mp);
14216 		}
14217 		return;
14218 	}
14219 
14220 	/*
14221 	 * TCP gets a new ACK, update the notsack'ed list to delete those
14222 	 * blocks that are covered by this ACK.
14223 	 */
14224 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
14225 		tcp_notsack_remove(&(tcp->tcp_notsack_list), seg_ack,
14226 		    &(tcp->tcp_num_notsack_blk), &(tcp->tcp_cnt_notsack_list));
14227 	}
14228 
14229 	/*
14230 	 * If we got an ACK after fast retransmit, check to see
14231 	 * if it is a partial ACK.  If it is not and the congestion
14232 	 * window was inflated to account for the other side's
14233 	 * cached packets, retract it.  If it is, do Hoe's algorithm.
14234 	 */
14235 	if (tcp->tcp_dupack_cnt >= tcps->tcps_dupack_fast_retransmit) {
14236 		ASSERT(tcp->tcp_rexmit == B_FALSE);
14237 		if (SEQ_GEQ(seg_ack, tcp->tcp_rexmit_max)) {
14238 			tcp->tcp_dupack_cnt = 0;
14239 			/*
14240 			 * Restore the orig tcp_cwnd_ssthresh after
14241 			 * fast retransmit phase.
14242 			 */
14243 			if (tcp->tcp_cwnd > tcp->tcp_cwnd_ssthresh) {
14244 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh;
14245 			}
14246 			tcp->tcp_rexmit_max = seg_ack;
14247 			tcp->tcp_cwnd_cnt = 0;
14248 			tcp->tcp_snd_burst = tcp->tcp_localnet ?
14249 			    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14250 
14251 			/*
14252 			 * Remove all notsack info to avoid confusion with
14253 			 * the next fast retrasnmit/recovery phase.
14254 			 */
14255 			if (tcp->tcp_snd_sack_ok &&
14256 			    tcp->tcp_notsack_list != NULL) {
14257 				TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
14258 			}
14259 		} else {
14260 			if (tcp->tcp_snd_sack_ok &&
14261 			    tcp->tcp_notsack_list != NULL) {
14262 				flags |= TH_NEED_SACK_REXMIT;
14263 				tcp->tcp_pipe -= mss;
14264 				if (tcp->tcp_pipe < 0)
14265 					tcp->tcp_pipe = 0;
14266 			} else {
14267 				/*
14268 				 * Hoe's algorithm:
14269 				 *
14270 				 * Retransmit the unack'ed segment and
14271 				 * restart fast recovery.  Note that we
14272 				 * need to scale back tcp_cwnd to the
14273 				 * original value when we started fast
14274 				 * recovery.  This is to prevent overly
14275 				 * aggressive behaviour in sending new
14276 				 * segments.
14277 				 */
14278 				tcp->tcp_cwnd = tcp->tcp_cwnd_ssthresh +
14279 				    tcps->tcps_dupack_fast_retransmit * mss;
14280 				tcp->tcp_cwnd_cnt = tcp->tcp_cwnd;
14281 				flags |= TH_REXMIT_NEEDED;
14282 			}
14283 		}
14284 	} else {
14285 		tcp->tcp_dupack_cnt = 0;
14286 		if (tcp->tcp_rexmit) {
14287 			/*
14288 			 * TCP is retranmitting.  If the ACK ack's all
14289 			 * outstanding data, update tcp_rexmit_max and
14290 			 * tcp_rexmit_nxt.  Otherwise, update tcp_rexmit_nxt
14291 			 * to the correct value.
14292 			 *
14293 			 * Note that SEQ_LEQ() is used.  This is to avoid
14294 			 * unnecessary fast retransmit caused by dup ACKs
14295 			 * received when TCP does slow start retransmission
14296 			 * after a time out.  During this phase, TCP may
14297 			 * send out segments which are already received.
14298 			 * This causes dup ACKs to be sent back.
14299 			 */
14300 			if (SEQ_LEQ(seg_ack, tcp->tcp_rexmit_max)) {
14301 				if (SEQ_GT(seg_ack, tcp->tcp_rexmit_nxt)) {
14302 					tcp->tcp_rexmit_nxt = seg_ack;
14303 				}
14304 				if (seg_ack != tcp->tcp_rexmit_max) {
14305 					flags |= TH_XMIT_NEEDED;
14306 				}
14307 			} else {
14308 				tcp->tcp_rexmit = B_FALSE;
14309 				tcp->tcp_xmit_zc_clean = B_FALSE;
14310 				tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
14311 				tcp->tcp_snd_burst = tcp->tcp_localnet ?
14312 				    TCP_CWND_INFINITE : TCP_CWND_NORMAL;
14313 			}
14314 			tcp->tcp_ms_we_have_waited = 0;
14315 		}
14316 	}
14317 
14318 	BUMP_MIB(&tcps->tcps_mib, tcpInAckSegs);
14319 	UPDATE_MIB(&tcps->tcps_mib, tcpInAckBytes, bytes_acked);
14320 	tcp->tcp_suna = seg_ack;
14321 	if (tcp->tcp_zero_win_probe != 0) {
14322 		tcp->tcp_zero_win_probe = 0;
14323 		tcp->tcp_timer_backoff = 0;
14324 	}
14325 
14326 	/*
14327 	 * If tcp_xmit_head is NULL, then it must be the FIN being ack'ed.
14328 	 * Note that it cannot be the SYN being ack'ed.  The code flow
14329 	 * will not reach here.
14330 	 */
14331 	if (mp1 == NULL) {
14332 		goto fin_acked;
14333 	}
14334 
14335 	/*
14336 	 * Update the congestion window.
14337 	 *
14338 	 * If TCP is not ECN capable or TCP is ECN capable but the
14339 	 * congestion experience bit is not set, increase the tcp_cwnd as
14340 	 * usual.
14341 	 */
14342 	if (!tcp->tcp_ecn_ok || !(flags & TH_ECE)) {
14343 		cwnd = tcp->tcp_cwnd;
14344 		add = mss;
14345 
14346 		if (cwnd >= tcp->tcp_cwnd_ssthresh) {
14347 			/*
14348 			 * This is to prevent an increase of less than 1 MSS of
14349 			 * tcp_cwnd.  With partial increase, tcp_wput_data()
14350 			 * may send out tinygrams in order to preserve mblk
14351 			 * boundaries.
14352 			 *
14353 			 * By initializing tcp_cwnd_cnt to new tcp_cwnd and
14354 			 * decrementing it by 1 MSS for every ACKs, tcp_cwnd is
14355 			 * increased by 1 MSS for every RTTs.
14356 			 */
14357 			if (tcp->tcp_cwnd_cnt <= 0) {
14358 				tcp->tcp_cwnd_cnt = cwnd + add;
14359 			} else {
14360 				tcp->tcp_cwnd_cnt -= add;
14361 				add = 0;
14362 			}
14363 		}
14364 		tcp->tcp_cwnd = MIN(cwnd + add, tcp->tcp_cwnd_max);
14365 	}
14366 
14367 	/* See if the latest urgent data has been acknowledged */
14368 	if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
14369 	    SEQ_GT(seg_ack, tcp->tcp_urg))
14370 		tcp->tcp_valid_bits &= ~TCP_URG_VALID;
14371 
14372 	/* Can we update the RTT estimates? */
14373 	if (tcp->tcp_snd_ts_ok) {
14374 		/* Ignore zero timestamp echo-reply. */
14375 		if (tcpopt.tcp_opt_ts_ecr != 0) {
14376 			tcp_set_rto(tcp, (int32_t)lbolt -
14377 			    (int32_t)tcpopt.tcp_opt_ts_ecr);
14378 		}
14379 
14380 		/* If needed, restart the timer. */
14381 		if (tcp->tcp_set_timer == 1) {
14382 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14383 			tcp->tcp_set_timer = 0;
14384 		}
14385 		/*
14386 		 * Update tcp_csuna in case the other side stops sending
14387 		 * us timestamps.
14388 		 */
14389 		tcp->tcp_csuna = tcp->tcp_snxt;
14390 	} else if (SEQ_GT(seg_ack, tcp->tcp_csuna)) {
14391 		/*
14392 		 * An ACK sequence we haven't seen before, so get the RTT
14393 		 * and update the RTO. But first check if the timestamp is
14394 		 * valid to use.
14395 		 */
14396 		if ((mp1->b_next != NULL) &&
14397 		    SEQ_GT(seg_ack, (uint32_t)(uintptr_t)(mp1->b_next)))
14398 			tcp_set_rto(tcp, (int32_t)lbolt -
14399 			    (int32_t)(intptr_t)mp1->b_prev);
14400 		else
14401 			BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14402 
14403 		/* Remeber the last sequence to be ACKed */
14404 		tcp->tcp_csuna = seg_ack;
14405 		if (tcp->tcp_set_timer == 1) {
14406 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
14407 			tcp->tcp_set_timer = 0;
14408 		}
14409 	} else {
14410 		BUMP_MIB(&tcps->tcps_mib, tcpRttNoUpdate);
14411 	}
14412 
14413 	/* Eat acknowledged bytes off the xmit queue. */
14414 	for (;;) {
14415 		mblk_t	*mp2;
14416 		uchar_t	*wptr;
14417 
14418 		wptr = mp1->b_wptr;
14419 		ASSERT((uintptr_t)(wptr - mp1->b_rptr) <= (uintptr_t)INT_MAX);
14420 		bytes_acked -= (int)(wptr - mp1->b_rptr);
14421 		if (bytes_acked < 0) {
14422 			mp1->b_rptr = wptr + bytes_acked;
14423 			/*
14424 			 * Set a new timestamp if all the bytes timed by the
14425 			 * old timestamp have been ack'ed.
14426 			 */
14427 			if (SEQ_GT(seg_ack,
14428 			    (uint32_t)(uintptr_t)(mp1->b_next))) {
14429 				mp1->b_prev = (mblk_t *)(uintptr_t)lbolt;
14430 				mp1->b_next = NULL;
14431 			}
14432 			break;
14433 		}
14434 		mp1->b_next = NULL;
14435 		mp1->b_prev = NULL;
14436 		mp2 = mp1;
14437 		mp1 = mp1->b_cont;
14438 
14439 		/*
14440 		 * This notification is required for some zero-copy
14441 		 * clients to maintain a copy semantic. After the data
14442 		 * is ack'ed, client is safe to modify or reuse the buffer.
14443 		 */
14444 		if (tcp->tcp_snd_zcopy_aware &&
14445 		    (mp2->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
14446 			tcp_zcopy_notify(tcp);
14447 		freeb(mp2);
14448 		if (bytes_acked == 0) {
14449 			if (mp1 == NULL) {
14450 				/* Everything is ack'ed, clear the tail. */
14451 				tcp->tcp_xmit_tail = NULL;
14452 				/*
14453 				 * Cancel the timer unless we are still
14454 				 * waiting for an ACK for the FIN packet.
14455 				 */
14456 				if (tcp->tcp_timer_tid != 0 &&
14457 				    tcp->tcp_snxt == tcp->tcp_suna) {
14458 					(void) TCP_TIMER_CANCEL(tcp,
14459 					    tcp->tcp_timer_tid);
14460 					tcp->tcp_timer_tid = 0;
14461 				}
14462 				goto pre_swnd_update;
14463 			}
14464 			if (mp2 != tcp->tcp_xmit_tail)
14465 				break;
14466 			tcp->tcp_xmit_tail = mp1;
14467 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
14468 			    (uintptr_t)INT_MAX);
14469 			tcp->tcp_xmit_tail_unsent = (int)(mp1->b_wptr -
14470 			    mp1->b_rptr);
14471 			break;
14472 		}
14473 		if (mp1 == NULL) {
14474 			/*
14475 			 * More was acked but there is nothing more
14476 			 * outstanding.  This means that the FIN was
14477 			 * just acked or that we're talking to a clown.
14478 			 */
14479 fin_acked:
14480 			ASSERT(tcp->tcp_fin_sent);
14481 			tcp->tcp_xmit_tail = NULL;
14482 			if (tcp->tcp_fin_sent) {
14483 				/* FIN was acked - making progress */
14484 				if (tcp->tcp_ipversion == IPV6_VERSION &&
14485 				    !tcp->tcp_fin_acked)
14486 					tcp->tcp_ip_forward_progress = B_TRUE;
14487 				tcp->tcp_fin_acked = B_TRUE;
14488 				if (tcp->tcp_linger_tid != 0 &&
14489 				    TCP_TIMER_CANCEL(tcp,
14490 				    tcp->tcp_linger_tid) >= 0) {
14491 					tcp_stop_lingering(tcp);
14492 					freemsg(mp);
14493 					mp = NULL;
14494 				}
14495 			} else {
14496 				/*
14497 				 * We should never get here because
14498 				 * we have already checked that the
14499 				 * number of bytes ack'ed should be
14500 				 * smaller than or equal to what we
14501 				 * have sent so far (it is the
14502 				 * acceptability check of the ACK).
14503 				 * We can only get here if the send
14504 				 * queue is corrupted.
14505 				 *
14506 				 * Terminate the connection and
14507 				 * panic the system.  It is better
14508 				 * for us to panic instead of
14509 				 * continuing to avoid other disaster.
14510 				 */
14511 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
14512 				    tcp->tcp_rnxt, TH_RST|TH_ACK);
14513 				panic("Memory corruption "
14514 				    "detected for connection %s.",
14515 				    tcp_display(tcp, NULL,
14516 				    DISP_ADDR_AND_PORT));
14517 				/*NOTREACHED*/
14518 			}
14519 			goto pre_swnd_update;
14520 		}
14521 		ASSERT(mp2 != tcp->tcp_xmit_tail);
14522 	}
14523 	if (tcp->tcp_unsent) {
14524 		flags |= TH_XMIT_NEEDED;
14525 	}
14526 pre_swnd_update:
14527 	tcp->tcp_xmit_head = mp1;
14528 swnd_update:
14529 	/*
14530 	 * The following check is different from most other implementations.
14531 	 * For bi-directional transfer, when segments are dropped, the
14532 	 * "normal" check will not accept a window update in those
14533 	 * retransmitted segemnts.  Failing to do that, TCP may send out
14534 	 * segments which are outside receiver's window.  As TCP accepts
14535 	 * the ack in those retransmitted segments, if the window update in
14536 	 * the same segment is not accepted, TCP will incorrectly calculates
14537 	 * that it can send more segments.  This can create a deadlock
14538 	 * with the receiver if its window becomes zero.
14539 	 */
14540 	if (SEQ_LT(tcp->tcp_swl2, seg_ack) ||
14541 	    SEQ_LT(tcp->tcp_swl1, seg_seq) ||
14542 	    (tcp->tcp_swl1 == seg_seq && new_swnd > tcp->tcp_swnd)) {
14543 		/*
14544 		 * The criteria for update is:
14545 		 *
14546 		 * 1. the segment acknowledges some data.  Or
14547 		 * 2. the segment is new, i.e. it has a higher seq num. Or
14548 		 * 3. the segment is not old and the advertised window is
14549 		 * larger than the previous advertised window.
14550 		 */
14551 		if (tcp->tcp_unsent && new_swnd > tcp->tcp_swnd)
14552 			flags |= TH_XMIT_NEEDED;
14553 		tcp->tcp_swnd = new_swnd;
14554 		if (new_swnd > tcp->tcp_max_swnd)
14555 			tcp->tcp_max_swnd = new_swnd;
14556 		tcp->tcp_swl1 = seg_seq;
14557 		tcp->tcp_swl2 = seg_ack;
14558 	}
14559 est:
14560 	if (tcp->tcp_state > TCPS_ESTABLISHED) {
14561 
14562 		switch (tcp->tcp_state) {
14563 		case TCPS_FIN_WAIT_1:
14564 			if (tcp->tcp_fin_acked) {
14565 				tcp->tcp_state = TCPS_FIN_WAIT_2;
14566 				/*
14567 				 * We implement the non-standard BSD/SunOS
14568 				 * FIN_WAIT_2 flushing algorithm.
14569 				 * If there is no user attached to this
14570 				 * TCP endpoint, then this TCP struct
14571 				 * could hang around forever in FIN_WAIT_2
14572 				 * state if the peer forgets to send us
14573 				 * a FIN.  To prevent this, we wait only
14574 				 * 2*MSL (a convenient time value) for
14575 				 * the FIN to arrive.  If it doesn't show up,
14576 				 * we flush the TCP endpoint.  This algorithm,
14577 				 * though a violation of RFC-793, has worked
14578 				 * for over 10 years in BSD systems.
14579 				 * Note: SunOS 4.x waits 675 seconds before
14580 				 * flushing the FIN_WAIT_2 connection.
14581 				 */
14582 				TCP_TIMER_RESTART(tcp,
14583 				    tcps->tcps_fin_wait_2_flush_interval);
14584 			}
14585 			break;
14586 		case TCPS_FIN_WAIT_2:
14587 			break;	/* Shutdown hook? */
14588 		case TCPS_LAST_ACK:
14589 			freemsg(mp);
14590 			if (tcp->tcp_fin_acked) {
14591 				(void) tcp_clean_death(tcp, 0, 19);
14592 				return;
14593 			}
14594 			goto xmit_check;
14595 		case TCPS_CLOSING:
14596 			if (tcp->tcp_fin_acked) {
14597 				tcp->tcp_state = TCPS_TIME_WAIT;
14598 				/*
14599 				 * Unconditionally clear the exclusive binding
14600 				 * bit so this TIME-WAIT connection won't
14601 				 * interfere with new ones.
14602 				 */
14603 				tcp->tcp_exclbind = 0;
14604 				if (!TCP_IS_DETACHED(tcp)) {
14605 					TCP_TIMER_RESTART(tcp,
14606 					    tcps->tcps_time_wait_interval);
14607 				} else {
14608 					tcp_time_wait_append(tcp);
14609 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14610 				}
14611 			}
14612 			/*FALLTHRU*/
14613 		case TCPS_CLOSE_WAIT:
14614 			freemsg(mp);
14615 			goto xmit_check;
14616 		default:
14617 			ASSERT(tcp->tcp_state != TCPS_TIME_WAIT);
14618 			break;
14619 		}
14620 	}
14621 	if (flags & TH_FIN) {
14622 		/* Make sure we ack the fin */
14623 		flags |= TH_ACK_NEEDED;
14624 		if (!tcp->tcp_fin_rcvd) {
14625 			tcp->tcp_fin_rcvd = B_TRUE;
14626 			tcp->tcp_rnxt++;
14627 			tcph = tcp->tcp_tcph;
14628 			U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14629 
14630 			/*
14631 			 * Generate the ordrel_ind at the end unless we
14632 			 * are an eager guy.
14633 			 * In the eager case tcp_rsrv will do this when run
14634 			 * after tcp_accept is done.
14635 			 */
14636 			if (tcp->tcp_listener == NULL &&
14637 			    !TCP_IS_DETACHED(tcp) && (!tcp->tcp_hard_binding))
14638 				flags |= TH_ORDREL_NEEDED;
14639 			switch (tcp->tcp_state) {
14640 			case TCPS_SYN_RCVD:
14641 			case TCPS_ESTABLISHED:
14642 				tcp->tcp_state = TCPS_CLOSE_WAIT;
14643 				/* Keepalive? */
14644 				break;
14645 			case TCPS_FIN_WAIT_1:
14646 				if (!tcp->tcp_fin_acked) {
14647 					tcp->tcp_state = TCPS_CLOSING;
14648 					break;
14649 				}
14650 				/* FALLTHRU */
14651 			case TCPS_FIN_WAIT_2:
14652 				tcp->tcp_state = TCPS_TIME_WAIT;
14653 				/*
14654 				 * Unconditionally clear the exclusive binding
14655 				 * bit so this TIME-WAIT connection won't
14656 				 * interfere with new ones.
14657 				 */
14658 				tcp->tcp_exclbind = 0;
14659 				if (!TCP_IS_DETACHED(tcp)) {
14660 					TCP_TIMER_RESTART(tcp,
14661 					    tcps->tcps_time_wait_interval);
14662 				} else {
14663 					tcp_time_wait_append(tcp);
14664 					TCP_DBGSTAT(tcps, tcp_rput_time_wait);
14665 				}
14666 				if (seg_len) {
14667 					/*
14668 					 * implies data piggybacked on FIN.
14669 					 * break to handle data.
14670 					 */
14671 					break;
14672 				}
14673 				freemsg(mp);
14674 				goto ack_check;
14675 			}
14676 		}
14677 	}
14678 	if (mp == NULL)
14679 		goto xmit_check;
14680 	if (seg_len == 0) {
14681 		freemsg(mp);
14682 		goto xmit_check;
14683 	}
14684 	if (mp->b_rptr == mp->b_wptr) {
14685 		/*
14686 		 * The header has been consumed, so we remove the
14687 		 * zero-length mblk here.
14688 		 */
14689 		mp1 = mp;
14690 		mp = mp->b_cont;
14691 		freeb(mp1);
14692 	}
14693 update_ack:
14694 	tcph = tcp->tcp_tcph;
14695 	tcp->tcp_rack_cnt++;
14696 	{
14697 		uint32_t cur_max;
14698 
14699 		cur_max = tcp->tcp_rack_cur_max;
14700 		if (tcp->tcp_rack_cnt >= cur_max) {
14701 			/*
14702 			 * We have more unacked data than we should - send
14703 			 * an ACK now.
14704 			 */
14705 			flags |= TH_ACK_NEEDED;
14706 			cur_max++;
14707 			if (cur_max > tcp->tcp_rack_abs_max)
14708 				tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
14709 			else
14710 				tcp->tcp_rack_cur_max = cur_max;
14711 		} else if (TCP_IS_DETACHED(tcp)) {
14712 			/* We don't have an ACK timer for detached TCP. */
14713 			flags |= TH_ACK_NEEDED;
14714 		} else if (seg_len < mss) {
14715 			/*
14716 			 * If we get a segment that is less than an mss, and we
14717 			 * already have unacknowledged data, and the amount
14718 			 * unacknowledged is not a multiple of mss, then we
14719 			 * better generate an ACK now.  Otherwise, this may be
14720 			 * the tail piece of a transaction, and we would rather
14721 			 * wait for the response.
14722 			 */
14723 			uint32_t udif;
14724 			ASSERT((uintptr_t)(tcp->tcp_rnxt - tcp->tcp_rack) <=
14725 			    (uintptr_t)INT_MAX);
14726 			udif = (int)(tcp->tcp_rnxt - tcp->tcp_rack);
14727 			if (udif && (udif % mss))
14728 				flags |= TH_ACK_NEEDED;
14729 			else
14730 				flags |= TH_ACK_TIMER_NEEDED;
14731 		} else {
14732 			/* Start delayed ack timer */
14733 			flags |= TH_ACK_TIMER_NEEDED;
14734 		}
14735 	}
14736 	tcp->tcp_rnxt += seg_len;
14737 	U32_TO_ABE32(tcp->tcp_rnxt, tcph->th_ack);
14738 
14739 	if (mp == NULL)
14740 		goto xmit_check;
14741 
14742 	/* Update SACK list */
14743 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
14744 		tcp_sack_remove(tcp->tcp_sack_list, tcp->tcp_rnxt,
14745 		    &(tcp->tcp_num_sack_blk));
14746 	}
14747 
14748 	if (tcp->tcp_urp_mp) {
14749 		tcp->tcp_urp_mp->b_cont = mp;
14750 		mp = tcp->tcp_urp_mp;
14751 		tcp->tcp_urp_mp = NULL;
14752 		/* Ready for a new signal. */
14753 		tcp->tcp_urp_last_valid = B_FALSE;
14754 #ifdef DEBUG
14755 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14756 		    "tcp_rput: sending exdata_ind %s",
14757 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14758 #endif /* DEBUG */
14759 	}
14760 
14761 	/*
14762 	 * Check for ancillary data changes compared to last segment.
14763 	 */
14764 	if (tcp->tcp_ipv6_recvancillary != 0) {
14765 		mp = tcp_rput_add_ancillary(tcp, mp, &ipp);
14766 		ASSERT(mp != NULL);
14767 	}
14768 
14769 	if (tcp->tcp_listener || tcp->tcp_hard_binding) {
14770 		/*
14771 		 * Side queue inbound data until the accept happens.
14772 		 * tcp_accept/tcp_rput drains this when the accept happens.
14773 		 * M_DATA is queued on b_cont. Otherwise (T_OPTDATA_IND or
14774 		 * T_EXDATA_IND) it is queued on b_next.
14775 		 * XXX Make urgent data use this. Requires:
14776 		 *	Removing tcp_listener check for TH_URG
14777 		 *	Making M_PCPROTO and MARK messages skip the eager case
14778 		 */
14779 
14780 		if (tcp->tcp_kssl_pending) {
14781 			DTRACE_PROBE1(kssl_mblk__ksslinput_pending,
14782 			    mblk_t *, mp);
14783 			tcp_kssl_input(tcp, mp);
14784 		} else {
14785 			tcp_rcv_enqueue(tcp, mp, seg_len);
14786 		}
14787 	} else {
14788 		if (mp->b_datap->db_type != M_DATA ||
14789 		    (flags & TH_MARKNEXT_NEEDED)) {
14790 			if (IPCL_IS_NONSTR(connp)) {
14791 				int error;
14792 
14793 				if ((*connp->conn_upcalls->su_recv)
14794 				    (connp->conn_upper_handle, mp,
14795 				    seg_len, 0, &error, NULL) <= 0) {
14796 					/*
14797 					 * We should never be in middle of a
14798 					 * fallback, the squeue guarantees that.
14799 					 */
14800 					ASSERT(error != EOPNOTSUPP);
14801 					if (error == ENOSPC)
14802 						tcp->tcp_rwnd -= seg_len;
14803 				}
14804 			} else if (tcp->tcp_rcv_list != NULL) {
14805 				flags |= tcp_rcv_drain(tcp);
14806 			}
14807 			ASSERT(tcp->tcp_rcv_list == NULL ||
14808 			    tcp->tcp_fused_sigurg);
14809 
14810 			if (flags & TH_MARKNEXT_NEEDED) {
14811 #ifdef DEBUG
14812 				(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14813 				    "tcp_rput: sending MSGMARKNEXT %s",
14814 				    tcp_display(tcp, NULL,
14815 				    DISP_PORT_ONLY));
14816 #endif /* DEBUG */
14817 				mp->b_flag |= MSGMARKNEXT;
14818 				flags &= ~TH_MARKNEXT_NEEDED;
14819 			}
14820 
14821 			/* Does this need SSL processing first? */
14822 			if ((tcp->tcp_kssl_ctx != NULL) &&
14823 			    (DB_TYPE(mp) == M_DATA)) {
14824 				DTRACE_PROBE1(kssl_mblk__ksslinput_data1,
14825 				    mblk_t *, mp);
14826 				tcp_kssl_input(tcp, mp);
14827 			} else if (!IPCL_IS_NONSTR(connp)) {
14828 				/* Already handled non-STREAMS case. */
14829 				putnext(tcp->tcp_rq, mp);
14830 				if (!canputnext(tcp->tcp_rq))
14831 					tcp->tcp_rwnd -= seg_len;
14832 			}
14833 		} else if ((tcp->tcp_kssl_ctx != NULL) &&
14834 		    (DB_TYPE(mp) == M_DATA)) {
14835 			/* Does this need SSL processing first? */
14836 			DTRACE_PROBE1(kssl_mblk__ksslinput_data2, mblk_t *, mp);
14837 			tcp_kssl_input(tcp, mp);
14838 		} else if (IPCL_IS_NONSTR(connp)) {
14839 			/* Non-STREAMS socket */
14840 			boolean_t push = flags & (TH_PUSH|TH_FIN);
14841 			int	error;
14842 
14843 			if ((*connp->conn_upcalls->su_recv)(
14844 			    connp->conn_upper_handle,
14845 			    mp, seg_len, 0, &error, &push) <= 0) {
14846 				/*
14847 				 * We should never be in middle of a
14848 				 * fallback, the squeue guarantees that.
14849 				 */
14850 				ASSERT(error != EOPNOTSUPP);
14851 				if (error == ENOSPC)
14852 					tcp->tcp_rwnd -= seg_len;
14853 			} else if (push) {
14854 				/*
14855 				 * PUSH bit set and sockfs is not
14856 				 * flow controlled
14857 				 */
14858 				flags |= tcp_rwnd_reopen(tcp);
14859 			}
14860 		} else if ((flags & (TH_PUSH|TH_FIN)) ||
14861 		    tcp->tcp_rcv_cnt + seg_len >= tcp->tcp_recv_hiwater >> 3) {
14862 			if (tcp->tcp_rcv_list != NULL) {
14863 				/*
14864 				 * Enqueue the new segment first and then
14865 				 * call tcp_rcv_drain() to send all data
14866 				 * up.  The other way to do this is to
14867 				 * send all queued data up and then call
14868 				 * putnext() to send the new segment up.
14869 				 * This way can remove the else part later
14870 				 * on.
14871 				 *
14872 				 * We don't do this to avoid one more call to
14873 				 * canputnext() as tcp_rcv_drain() needs to
14874 				 * call canputnext().
14875 				 */
14876 				tcp_rcv_enqueue(tcp, mp, seg_len);
14877 				flags |= tcp_rcv_drain(tcp);
14878 			} else {
14879 				putnext(tcp->tcp_rq, mp);
14880 				if (!canputnext(tcp->tcp_rq))
14881 					tcp->tcp_rwnd -= seg_len;
14882 			}
14883 		} else {
14884 			/*
14885 			 * Enqueue all packets when processing an mblk
14886 			 * from the co queue and also enqueue normal packets.
14887 			 */
14888 			tcp_rcv_enqueue(tcp, mp, seg_len);
14889 		}
14890 		/*
14891 		 * Make sure the timer is running if we have data waiting
14892 		 * for a push bit. This provides resiliency against
14893 		 * implementations that do not correctly generate push bits.
14894 		 */
14895 		if (!IPCL_IS_NONSTR(connp) && tcp->tcp_rcv_list != NULL &&
14896 		    tcp->tcp_push_tid == 0) {
14897 			/*
14898 			 * The connection may be closed at this point, so don't
14899 			 * do anything for a detached tcp.
14900 			 */
14901 			if (!TCP_IS_DETACHED(tcp))
14902 				tcp->tcp_push_tid = TCP_TIMER(tcp,
14903 				    tcp_push_timer,
14904 				    MSEC_TO_TICK(
14905 				    tcps->tcps_push_timer_interval));
14906 		}
14907 	}
14908 
14909 xmit_check:
14910 	/* Is there anything left to do? */
14911 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
14912 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_ACK_NEEDED|
14913 	    TH_NEED_SACK_REXMIT|TH_LIMIT_XMIT|TH_ACK_TIMER_NEEDED|
14914 	    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14915 		goto done;
14916 
14917 	/* Any transmit work to do and a non-zero window? */
14918 	if ((flags & (TH_REXMIT_NEEDED|TH_XMIT_NEEDED|TH_NEED_SACK_REXMIT|
14919 	    TH_LIMIT_XMIT)) && tcp->tcp_swnd != 0) {
14920 		if (flags & TH_REXMIT_NEEDED) {
14921 			uint32_t snd_size = tcp->tcp_snxt - tcp->tcp_suna;
14922 
14923 			BUMP_MIB(&tcps->tcps_mib, tcpOutFastRetrans);
14924 			if (snd_size > mss)
14925 				snd_size = mss;
14926 			if (snd_size > tcp->tcp_swnd)
14927 				snd_size = tcp->tcp_swnd;
14928 			mp1 = tcp_xmit_mp(tcp, tcp->tcp_xmit_head, snd_size,
14929 			    NULL, NULL, tcp->tcp_suna, B_TRUE, &snd_size,
14930 			    B_TRUE);
14931 
14932 			if (mp1 != NULL) {
14933 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14934 				tcp->tcp_csuna = tcp->tcp_snxt;
14935 				BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
14936 				UPDATE_MIB(&tcps->tcps_mib,
14937 				    tcpRetransBytes, snd_size);
14938 				tcp_send_data(tcp, tcp->tcp_wq, mp1);
14939 			}
14940 		}
14941 		if (flags & TH_NEED_SACK_REXMIT) {
14942 			tcp_sack_rxmit(tcp, &flags);
14943 		}
14944 		/*
14945 		 * For TH_LIMIT_XMIT, tcp_wput_data() is called to send
14946 		 * out new segment.  Note that tcp_rexmit should not be
14947 		 * set, otherwise TH_LIMIT_XMIT should not be set.
14948 		 */
14949 		if (flags & (TH_XMIT_NEEDED|TH_LIMIT_XMIT)) {
14950 			if (!tcp->tcp_rexmit) {
14951 				tcp_wput_data(tcp, NULL, B_FALSE);
14952 			} else {
14953 				tcp_ss_rexmit(tcp);
14954 			}
14955 		}
14956 		/*
14957 		 * Adjust tcp_cwnd back to normal value after sending
14958 		 * new data segments.
14959 		 */
14960 		if (flags & TH_LIMIT_XMIT) {
14961 			tcp->tcp_cwnd -= mss << (tcp->tcp_dupack_cnt - 1);
14962 			/*
14963 			 * This will restart the timer.  Restarting the
14964 			 * timer is used to avoid a timeout before the
14965 			 * limited transmitted segment's ACK gets back.
14966 			 */
14967 			if (tcp->tcp_xmit_head != NULL)
14968 				tcp->tcp_xmit_head->b_prev = (mblk_t *)lbolt;
14969 		}
14970 
14971 		/* Anything more to do? */
14972 		if ((flags & (TH_ACK_NEEDED|TH_ACK_TIMER_NEEDED|
14973 		    TH_ORDREL_NEEDED|TH_SEND_URP_MARK)) == 0)
14974 			goto done;
14975 	}
14976 ack_check:
14977 	if (flags & TH_SEND_URP_MARK) {
14978 		ASSERT(tcp->tcp_urp_mark_mp);
14979 		ASSERT(!IPCL_IS_NONSTR(connp));
14980 		/*
14981 		 * Send up any queued data and then send the mark message
14982 		 */
14983 		if (tcp->tcp_rcv_list != NULL) {
14984 			flags |= tcp_rcv_drain(tcp);
14985 
14986 		}
14987 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
14988 		mp1 = tcp->tcp_urp_mark_mp;
14989 		tcp->tcp_urp_mark_mp = NULL;
14990 		putnext(tcp->tcp_rq, mp1);
14991 #ifdef DEBUG
14992 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
14993 		    "tcp_rput: sending zero-length %s %s",
14994 		    ((mp1->b_flag & MSGMARKNEXT) ? "MSGMARKNEXT" :
14995 		    "MSGNOTMARKNEXT"),
14996 		    tcp_display(tcp, NULL, DISP_PORT_ONLY));
14997 #endif /* DEBUG */
14998 		flags &= ~TH_SEND_URP_MARK;
14999 	}
15000 	if (flags & TH_ACK_NEEDED) {
15001 		/*
15002 		 * Time to send an ack for some reason.
15003 		 */
15004 		mp1 = tcp_ack_mp(tcp);
15005 
15006 		if (mp1 != NULL) {
15007 			tcp_send_data(tcp, tcp->tcp_wq, mp1);
15008 			BUMP_LOCAL(tcp->tcp_obsegs);
15009 			BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
15010 		}
15011 		if (tcp->tcp_ack_tid != 0) {
15012 			(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid);
15013 			tcp->tcp_ack_tid = 0;
15014 		}
15015 	}
15016 	if (flags & TH_ACK_TIMER_NEEDED) {
15017 		/*
15018 		 * Arrange for deferred ACK or push wait timeout.
15019 		 * Start timer if it is not already running.
15020 		 */
15021 		if (tcp->tcp_ack_tid == 0) {
15022 			tcp->tcp_ack_tid = TCP_TIMER(tcp, tcp_ack_timer,
15023 			    MSEC_TO_TICK(tcp->tcp_localnet ?
15024 			    (clock_t)tcps->tcps_local_dack_interval :
15025 			    (clock_t)tcps->tcps_deferred_ack_interval));
15026 		}
15027 	}
15028 	if (flags & TH_ORDREL_NEEDED) {
15029 		/*
15030 		 * Send up the ordrel_ind unless we are an eager guy.
15031 		 * In the eager case tcp_rsrv will do this when run
15032 		 * after tcp_accept is done.
15033 		 */
15034 		ASSERT(tcp->tcp_listener == NULL);
15035 
15036 		if (IPCL_IS_NONSTR(connp)) {
15037 			ASSERT(tcp->tcp_ordrel_mp == NULL);
15038 			tcp->tcp_ordrel_done = B_TRUE;
15039 			(*connp->conn_upcalls->su_opctl)
15040 			    (connp->conn_upper_handle, SOCK_OPCTL_SHUT_RECV, 0);
15041 			goto done;
15042 		}
15043 
15044 		if (tcp->tcp_rcv_list != NULL) {
15045 			/*
15046 			 * Push any mblk(s) enqueued from co processing.
15047 			 */
15048 			flags |= tcp_rcv_drain(tcp);
15049 		}
15050 		ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
15051 
15052 		mp1 = tcp->tcp_ordrel_mp;
15053 		tcp->tcp_ordrel_mp = NULL;
15054 		tcp->tcp_ordrel_done = B_TRUE;
15055 		putnext(tcp->tcp_rq, mp1);
15056 	}
15057 done:
15058 	ASSERT(!(flags & TH_MARKNEXT_NEEDED));
15059 }
15060 
15061 /*
15062  * This function does PAWS protection check. Returns B_TRUE if the
15063  * segment passes the PAWS test, else returns B_FALSE.
15064  */
15065 boolean_t
15066 tcp_paws_check(tcp_t *tcp, tcph_t *tcph, tcp_opt_t *tcpoptp)
15067 {
15068 	uint8_t	flags;
15069 	int	options;
15070 	uint8_t *up;
15071 
15072 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
15073 	/*
15074 	 * If timestamp option is aligned nicely, get values inline,
15075 	 * otherwise call general routine to parse.  Only do that
15076 	 * if timestamp is the only option.
15077 	 */
15078 	if (TCP_HDR_LENGTH(tcph) == (uint32_t)TCP_MIN_HEADER_LENGTH +
15079 	    TCPOPT_REAL_TS_LEN &&
15080 	    OK_32PTR((up = ((uint8_t *)tcph) +
15081 	    TCP_MIN_HEADER_LENGTH)) &&
15082 	    *(uint32_t *)up == TCPOPT_NOP_NOP_TSTAMP) {
15083 		tcpoptp->tcp_opt_ts_val = ABE32_TO_U32((up+4));
15084 		tcpoptp->tcp_opt_ts_ecr = ABE32_TO_U32((up+8));
15085 
15086 		options = TCP_OPT_TSTAMP_PRESENT;
15087 	} else {
15088 		if (tcp->tcp_snd_sack_ok) {
15089 			tcpoptp->tcp = tcp;
15090 		} else {
15091 			tcpoptp->tcp = NULL;
15092 		}
15093 		options = tcp_parse_options(tcph, tcpoptp);
15094 	}
15095 
15096 	if (options & TCP_OPT_TSTAMP_PRESENT) {
15097 		/*
15098 		 * Do PAWS per RFC 1323 section 4.2.  Accept RST
15099 		 * regardless of the timestamp, page 18 RFC 1323.bis.
15100 		 */
15101 		if ((flags & TH_RST) == 0 &&
15102 		    TSTMP_LT(tcpoptp->tcp_opt_ts_val,
15103 		    tcp->tcp_ts_recent)) {
15104 			if (TSTMP_LT(lbolt64, tcp->tcp_last_rcv_lbolt +
15105 			    PAWS_TIMEOUT)) {
15106 				/* This segment is not acceptable. */
15107 				return (B_FALSE);
15108 			} else {
15109 				/*
15110 				 * Connection has been idle for
15111 				 * too long.  Reset the timestamp
15112 				 * and assume the segment is valid.
15113 				 */
15114 				tcp->tcp_ts_recent =
15115 				    tcpoptp->tcp_opt_ts_val;
15116 			}
15117 		}
15118 	} else {
15119 		/*
15120 		 * If we don't get a timestamp on every packet, we
15121 		 * figure we can't really trust 'em, so we stop sending
15122 		 * and parsing them.
15123 		 */
15124 		tcp->tcp_snd_ts_ok = B_FALSE;
15125 
15126 		tcp->tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15127 		tcp->tcp_tcp_hdr_len -= TCPOPT_REAL_TS_LEN;
15128 		tcp->tcp_tcph->th_offset_and_rsrvd[0] -= (3 << 4);
15129 		/*
15130 		 * Adjust the tcp_mss accordingly. We also need to
15131 		 * adjust tcp_cwnd here in accordance with the new mss.
15132 		 * But we avoid doing a slow start here so as to not
15133 		 * to lose on the transfer rate built up so far.
15134 		 */
15135 		tcp_mss_set(tcp, tcp->tcp_mss + TCPOPT_REAL_TS_LEN, B_FALSE);
15136 		if (tcp->tcp_snd_sack_ok) {
15137 			ASSERT(tcp->tcp_sack_info != NULL);
15138 			tcp->tcp_max_sack_blk = 4;
15139 		}
15140 	}
15141 	return (B_TRUE);
15142 }
15143 
15144 /*
15145  * Attach ancillary data to a received TCP segments for the
15146  * ancillary pieces requested by the application that are
15147  * different than they were in the previous data segment.
15148  *
15149  * Save the "current" values once memory allocation is ok so that
15150  * when memory allocation fails we can just wait for the next data segment.
15151  */
15152 static mblk_t *
15153 tcp_rput_add_ancillary(tcp_t *tcp, mblk_t *mp, ip6_pkt_t *ipp)
15154 {
15155 	struct T_optdata_ind *todi;
15156 	int optlen;
15157 	uchar_t *optptr;
15158 	struct T_opthdr *toh;
15159 	uint_t addflag;	/* Which pieces to add */
15160 	mblk_t *mp1;
15161 
15162 	optlen = 0;
15163 	addflag = 0;
15164 	/* If app asked for pktinfo and the index has changed ... */
15165 	if ((ipp->ipp_fields & IPPF_IFINDEX) &&
15166 	    ipp->ipp_ifindex != tcp->tcp_recvifindex &&
15167 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO)) {
15168 		optlen += sizeof (struct T_opthdr) +
15169 		    sizeof (struct in6_pktinfo);
15170 		addflag |= TCP_IPV6_RECVPKTINFO;
15171 	}
15172 	/* If app asked for hoplimit and it has changed ... */
15173 	if ((ipp->ipp_fields & IPPF_HOPLIMIT) &&
15174 	    ipp->ipp_hoplimit != tcp->tcp_recvhops &&
15175 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPLIMIT)) {
15176 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15177 		addflag |= TCP_IPV6_RECVHOPLIMIT;
15178 	}
15179 	/* If app asked for tclass and it has changed ... */
15180 	if ((ipp->ipp_fields & IPPF_TCLASS) &&
15181 	    ipp->ipp_tclass != tcp->tcp_recvtclass &&
15182 	    (tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVTCLASS)) {
15183 		optlen += sizeof (struct T_opthdr) + sizeof (uint_t);
15184 		addflag |= TCP_IPV6_RECVTCLASS;
15185 	}
15186 	/*
15187 	 * If app asked for hopbyhop headers and it has changed ...
15188 	 * For security labels, note that (1) security labels can't change on
15189 	 * a connected socket at all, (2) we're connected to at most one peer,
15190 	 * (3) if anything changes, then it must be some other extra option.
15191 	 */
15192 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVHOPOPTS) &&
15193 	    ip_cmpbuf(tcp->tcp_hopopts, tcp->tcp_hopoptslen,
15194 	    (ipp->ipp_fields & IPPF_HOPOPTS),
15195 	    ipp->ipp_hopopts, ipp->ipp_hopoptslen)) {
15196 		optlen += sizeof (struct T_opthdr) + ipp->ipp_hopoptslen -
15197 		    tcp->tcp_label_len;
15198 		addflag |= TCP_IPV6_RECVHOPOPTS;
15199 		if (!ip_allocbuf((void **)&tcp->tcp_hopopts,
15200 		    &tcp->tcp_hopoptslen, (ipp->ipp_fields & IPPF_HOPOPTS),
15201 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen))
15202 			return (mp);
15203 	}
15204 	/* If app asked for dst headers before routing headers ... */
15205 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTDSTOPTS) &&
15206 	    ip_cmpbuf(tcp->tcp_rtdstopts, tcp->tcp_rtdstoptslen,
15207 	    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15208 	    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen)) {
15209 		optlen += sizeof (struct T_opthdr) +
15210 		    ipp->ipp_rtdstoptslen;
15211 		addflag |= TCP_IPV6_RECVRTDSTOPTS;
15212 		if (!ip_allocbuf((void **)&tcp->tcp_rtdstopts,
15213 		    &tcp->tcp_rtdstoptslen, (ipp->ipp_fields & IPPF_RTDSTOPTS),
15214 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen))
15215 			return (mp);
15216 	}
15217 	/* If app asked for routing headers and it has changed ... */
15218 	if ((tcp->tcp_ipv6_recvancillary & TCP_IPV6_RECVRTHDR) &&
15219 	    ip_cmpbuf(tcp->tcp_rthdr, tcp->tcp_rthdrlen,
15220 	    (ipp->ipp_fields & IPPF_RTHDR),
15221 	    ipp->ipp_rthdr, ipp->ipp_rthdrlen)) {
15222 		optlen += sizeof (struct T_opthdr) + ipp->ipp_rthdrlen;
15223 		addflag |= TCP_IPV6_RECVRTHDR;
15224 		if (!ip_allocbuf((void **)&tcp->tcp_rthdr,
15225 		    &tcp->tcp_rthdrlen, (ipp->ipp_fields & IPPF_RTHDR),
15226 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen))
15227 			return (mp);
15228 	}
15229 	/* If app asked for dest headers and it has changed ... */
15230 	if ((tcp->tcp_ipv6_recvancillary &
15231 	    (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) &&
15232 	    ip_cmpbuf(tcp->tcp_dstopts, tcp->tcp_dstoptslen,
15233 	    (ipp->ipp_fields & IPPF_DSTOPTS),
15234 	    ipp->ipp_dstopts, ipp->ipp_dstoptslen)) {
15235 		optlen += sizeof (struct T_opthdr) + ipp->ipp_dstoptslen;
15236 		addflag |= TCP_IPV6_RECVDSTOPTS;
15237 		if (!ip_allocbuf((void **)&tcp->tcp_dstopts,
15238 		    &tcp->tcp_dstoptslen, (ipp->ipp_fields & IPPF_DSTOPTS),
15239 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen))
15240 			return (mp);
15241 	}
15242 
15243 	if (optlen == 0) {
15244 		/* Nothing to add */
15245 		return (mp);
15246 	}
15247 	mp1 = allocb(sizeof (struct T_optdata_ind) + optlen, BPRI_MED);
15248 	if (mp1 == NULL) {
15249 		/*
15250 		 * Defer sending ancillary data until the next TCP segment
15251 		 * arrives.
15252 		 */
15253 		return (mp);
15254 	}
15255 	mp1->b_cont = mp;
15256 	mp = mp1;
15257 	mp->b_wptr += sizeof (*todi) + optlen;
15258 	mp->b_datap->db_type = M_PROTO;
15259 	todi = (struct T_optdata_ind *)mp->b_rptr;
15260 	todi->PRIM_type = T_OPTDATA_IND;
15261 	todi->DATA_flag = 1;	/* MORE data */
15262 	todi->OPT_length = optlen;
15263 	todi->OPT_offset = sizeof (*todi);
15264 	optptr = (uchar_t *)&todi[1];
15265 	/*
15266 	 * If app asked for pktinfo and the index has changed ...
15267 	 * Note that the local address never changes for the connection.
15268 	 */
15269 	if (addflag & TCP_IPV6_RECVPKTINFO) {
15270 		struct in6_pktinfo *pkti;
15271 
15272 		toh = (struct T_opthdr *)optptr;
15273 		toh->level = IPPROTO_IPV6;
15274 		toh->name = IPV6_PKTINFO;
15275 		toh->len = sizeof (*toh) + sizeof (*pkti);
15276 		toh->status = 0;
15277 		optptr += sizeof (*toh);
15278 		pkti = (struct in6_pktinfo *)optptr;
15279 		if (tcp->tcp_ipversion == IPV6_VERSION)
15280 			pkti->ipi6_addr = tcp->tcp_ip6h->ip6_src;
15281 		else
15282 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
15283 			    &pkti->ipi6_addr);
15284 		pkti->ipi6_ifindex = ipp->ipp_ifindex;
15285 		optptr += sizeof (*pkti);
15286 		ASSERT(OK_32PTR(optptr));
15287 		/* Save as "last" value */
15288 		tcp->tcp_recvifindex = ipp->ipp_ifindex;
15289 	}
15290 	/* If app asked for hoplimit and it has changed ... */
15291 	if (addflag & TCP_IPV6_RECVHOPLIMIT) {
15292 		toh = (struct T_opthdr *)optptr;
15293 		toh->level = IPPROTO_IPV6;
15294 		toh->name = IPV6_HOPLIMIT;
15295 		toh->len = sizeof (*toh) + sizeof (uint_t);
15296 		toh->status = 0;
15297 		optptr += sizeof (*toh);
15298 		*(uint_t *)optptr = ipp->ipp_hoplimit;
15299 		optptr += sizeof (uint_t);
15300 		ASSERT(OK_32PTR(optptr));
15301 		/* Save as "last" value */
15302 		tcp->tcp_recvhops = ipp->ipp_hoplimit;
15303 	}
15304 	/* If app asked for tclass and it has changed ... */
15305 	if (addflag & TCP_IPV6_RECVTCLASS) {
15306 		toh = (struct T_opthdr *)optptr;
15307 		toh->level = IPPROTO_IPV6;
15308 		toh->name = IPV6_TCLASS;
15309 		toh->len = sizeof (*toh) + sizeof (uint_t);
15310 		toh->status = 0;
15311 		optptr += sizeof (*toh);
15312 		*(uint_t *)optptr = ipp->ipp_tclass;
15313 		optptr += sizeof (uint_t);
15314 		ASSERT(OK_32PTR(optptr));
15315 		/* Save as "last" value */
15316 		tcp->tcp_recvtclass = ipp->ipp_tclass;
15317 	}
15318 	if (addflag & TCP_IPV6_RECVHOPOPTS) {
15319 		toh = (struct T_opthdr *)optptr;
15320 		toh->level = IPPROTO_IPV6;
15321 		toh->name = IPV6_HOPOPTS;
15322 		toh->len = sizeof (*toh) + ipp->ipp_hopoptslen -
15323 		    tcp->tcp_label_len;
15324 		toh->status = 0;
15325 		optptr += sizeof (*toh);
15326 		bcopy((uchar_t *)ipp->ipp_hopopts + tcp->tcp_label_len, optptr,
15327 		    ipp->ipp_hopoptslen - tcp->tcp_label_len);
15328 		optptr += ipp->ipp_hopoptslen - tcp->tcp_label_len;
15329 		ASSERT(OK_32PTR(optptr));
15330 		/* Save as last value */
15331 		ip_savebuf((void **)&tcp->tcp_hopopts, &tcp->tcp_hopoptslen,
15332 		    (ipp->ipp_fields & IPPF_HOPOPTS),
15333 		    ipp->ipp_hopopts, ipp->ipp_hopoptslen);
15334 	}
15335 	if (addflag & TCP_IPV6_RECVRTDSTOPTS) {
15336 		toh = (struct T_opthdr *)optptr;
15337 		toh->level = IPPROTO_IPV6;
15338 		toh->name = IPV6_RTHDRDSTOPTS;
15339 		toh->len = sizeof (*toh) + ipp->ipp_rtdstoptslen;
15340 		toh->status = 0;
15341 		optptr += sizeof (*toh);
15342 		bcopy(ipp->ipp_rtdstopts, optptr, ipp->ipp_rtdstoptslen);
15343 		optptr += ipp->ipp_rtdstoptslen;
15344 		ASSERT(OK_32PTR(optptr));
15345 		/* Save as last value */
15346 		ip_savebuf((void **)&tcp->tcp_rtdstopts,
15347 		    &tcp->tcp_rtdstoptslen,
15348 		    (ipp->ipp_fields & IPPF_RTDSTOPTS),
15349 		    ipp->ipp_rtdstopts, ipp->ipp_rtdstoptslen);
15350 	}
15351 	if (addflag & TCP_IPV6_RECVRTHDR) {
15352 		toh = (struct T_opthdr *)optptr;
15353 		toh->level = IPPROTO_IPV6;
15354 		toh->name = IPV6_RTHDR;
15355 		toh->len = sizeof (*toh) + ipp->ipp_rthdrlen;
15356 		toh->status = 0;
15357 		optptr += sizeof (*toh);
15358 		bcopy(ipp->ipp_rthdr, optptr, ipp->ipp_rthdrlen);
15359 		optptr += ipp->ipp_rthdrlen;
15360 		ASSERT(OK_32PTR(optptr));
15361 		/* Save as last value */
15362 		ip_savebuf((void **)&tcp->tcp_rthdr, &tcp->tcp_rthdrlen,
15363 		    (ipp->ipp_fields & IPPF_RTHDR),
15364 		    ipp->ipp_rthdr, ipp->ipp_rthdrlen);
15365 	}
15366 	if (addflag & (TCP_IPV6_RECVDSTOPTS | TCP_OLD_IPV6_RECVDSTOPTS)) {
15367 		toh = (struct T_opthdr *)optptr;
15368 		toh->level = IPPROTO_IPV6;
15369 		toh->name = IPV6_DSTOPTS;
15370 		toh->len = sizeof (*toh) + ipp->ipp_dstoptslen;
15371 		toh->status = 0;
15372 		optptr += sizeof (*toh);
15373 		bcopy(ipp->ipp_dstopts, optptr, ipp->ipp_dstoptslen);
15374 		optptr += ipp->ipp_dstoptslen;
15375 		ASSERT(OK_32PTR(optptr));
15376 		/* Save as last value */
15377 		ip_savebuf((void **)&tcp->tcp_dstopts, &tcp->tcp_dstoptslen,
15378 		    (ipp->ipp_fields & IPPF_DSTOPTS),
15379 		    ipp->ipp_dstopts, ipp->ipp_dstoptslen);
15380 	}
15381 	ASSERT(optptr == mp->b_wptr);
15382 	return (mp);
15383 }
15384 
15385 /*
15386  * tcp_rput_other is called by tcp_rput to handle everything other than M_DATA
15387  * messages.
15388  */
15389 void
15390 tcp_rput_other(tcp_t *tcp, mblk_t *mp)
15391 {
15392 	uchar_t	*rptr = mp->b_rptr;
15393 	queue_t	*q = tcp->tcp_rq;
15394 	struct T_error_ack *tea;
15395 
15396 	switch (mp->b_datap->db_type) {
15397 	case M_PROTO:
15398 	case M_PCPROTO:
15399 		ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
15400 		if ((mp->b_wptr - rptr) < sizeof (t_scalar_t))
15401 			break;
15402 		tea = (struct T_error_ack *)rptr;
15403 		ASSERT(tea->PRIM_type != T_BIND_ACK);
15404 		ASSERT(tea->ERROR_prim != O_T_BIND_REQ &&
15405 		    tea->ERROR_prim != T_BIND_REQ);
15406 		switch (tea->PRIM_type) {
15407 		case T_ERROR_ACK:
15408 			if (tcp->tcp_debug) {
15409 				(void) strlog(TCP_MOD_ID, 0, 1,
15410 				    SL_TRACE|SL_ERROR,
15411 				    "tcp_rput_other: case T_ERROR_ACK, "
15412 				    "ERROR_prim == %d",
15413 				    tea->ERROR_prim);
15414 			}
15415 			switch (tea->ERROR_prim) {
15416 			case T_SVR4_OPTMGMT_REQ:
15417 				if (tcp->tcp_drop_opt_ack_cnt > 0) {
15418 					/* T_OPTMGMT_REQ generated by TCP */
15419 					printf("T_SVR4_OPTMGMT_REQ failed "
15420 					    "%d/%d - dropped (cnt %d)\n",
15421 					    tea->TLI_error, tea->UNIX_error,
15422 					    tcp->tcp_drop_opt_ack_cnt);
15423 					freemsg(mp);
15424 					tcp->tcp_drop_opt_ack_cnt--;
15425 					return;
15426 				}
15427 				break;
15428 			}
15429 			if (tea->ERROR_prim == T_SVR4_OPTMGMT_REQ &&
15430 			    tcp->tcp_drop_opt_ack_cnt > 0) {
15431 				printf("T_SVR4_OPTMGMT_REQ failed %d/%d "
15432 				    "- dropped (cnt %d)\n",
15433 				    tea->TLI_error, tea->UNIX_error,
15434 				    tcp->tcp_drop_opt_ack_cnt);
15435 				freemsg(mp);
15436 				tcp->tcp_drop_opt_ack_cnt--;
15437 				return;
15438 			}
15439 			break;
15440 		case T_OPTMGMT_ACK:
15441 			if (tcp->tcp_drop_opt_ack_cnt > 0) {
15442 				/* T_OPTMGMT_REQ generated by TCP */
15443 				freemsg(mp);
15444 				tcp->tcp_drop_opt_ack_cnt--;
15445 				return;
15446 			}
15447 			break;
15448 		default:
15449 			ASSERT(tea->ERROR_prim != T_UNBIND_REQ);
15450 			break;
15451 		}
15452 		break;
15453 	case M_FLUSH:
15454 		if (*rptr & FLUSHR)
15455 			flushq(q, FLUSHDATA);
15456 		break;
15457 	default:
15458 		/* M_CTL will be directly sent to tcp_icmp_error() */
15459 		ASSERT(DB_TYPE(mp) != M_CTL);
15460 		break;
15461 	}
15462 	/*
15463 	 * Make sure we set this bit before sending the ACK for
15464 	 * bind. Otherwise accept could possibly run and free
15465 	 * this tcp struct.
15466 	 */
15467 	ASSERT(q != NULL);
15468 	putnext(q, mp);
15469 }
15470 
15471 /* ARGSUSED */
15472 static void
15473 tcp_rsrv_input(void *arg, mblk_t *mp, void *arg2)
15474 {
15475 	conn_t	*connp = (conn_t *)arg;
15476 	tcp_t	*tcp = connp->conn_tcp;
15477 	queue_t	*q = tcp->tcp_rq;
15478 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15479 
15480 	ASSERT(!IPCL_IS_NONSTR(connp));
15481 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
15482 	tcp->tcp_rsrv_mp = mp;
15483 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
15484 
15485 	TCP_STAT(tcps, tcp_rsrv_calls);
15486 
15487 	if (TCP_IS_DETACHED(tcp) || q == NULL) {
15488 		return;
15489 	}
15490 
15491 	if (tcp->tcp_fused) {
15492 		tcp_fuse_backenable(tcp);
15493 		return;
15494 	}
15495 
15496 	if (canputnext(q)) {
15497 		/* Not flow-controlled, open rwnd */
15498 		tcp->tcp_rwnd = q->q_hiwat;
15499 
15500 		/*
15501 		 * Send back a window update immediately if TCP is above
15502 		 * ESTABLISHED state and the increase of the rcv window
15503 		 * that the other side knows is at least 1 MSS after flow
15504 		 * control is lifted.
15505 		 */
15506 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
15507 		    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
15508 			tcp_xmit_ctl(NULL, tcp,
15509 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
15510 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
15511 		}
15512 	}
15513 }
15514 
15515 /*
15516  * The read side service routine is called mostly when we get back-enabled as a
15517  * result of flow control relief.  Since we don't actually queue anything in
15518  * TCP, we have no data to send out of here.  What we do is clear the receive
15519  * window, and send out a window update.
15520  */
15521 static void
15522 tcp_rsrv(queue_t *q)
15523 {
15524 	conn_t		*connp = Q_TO_CONN(q);
15525 	tcp_t		*tcp = connp->conn_tcp;
15526 	mblk_t		*mp;
15527 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15528 
15529 	/* No code does a putq on the read side */
15530 	ASSERT(q->q_first == NULL);
15531 
15532 	/* Nothing to do for the default queue */
15533 	if (q == tcps->tcps_g_q) {
15534 		return;
15535 	}
15536 
15537 	/*
15538 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_rsrv() has already
15539 	 * been run.  So just return.
15540 	 */
15541 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
15542 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
15543 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
15544 		return;
15545 	}
15546 	tcp->tcp_rsrv_mp = NULL;
15547 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
15548 
15549 	CONN_INC_REF(connp);
15550 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_rsrv_input, connp,
15551 	    SQ_PROCESS, SQTAG_TCP_RSRV);
15552 }
15553 
15554 /*
15555  * tcp_rwnd_set() is called to adjust the receive window to a desired value.
15556  * We do not allow the receive window to shrink.  After setting rwnd,
15557  * set the flow control hiwat of the stream.
15558  *
15559  * This function is called in 2 cases:
15560  *
15561  * 1) Before data transfer begins, in tcp_accept_comm() for accepting a
15562  *    connection (passive open) and in tcp_rput_data() for active connect.
15563  *    This is called after tcp_mss_set() when the desired MSS value is known.
15564  *    This makes sure that our window size is a mutiple of the other side's
15565  *    MSS.
15566  * 2) Handling SO_RCVBUF option.
15567  *
15568  * It is ASSUMED that the requested size is a multiple of the current MSS.
15569  *
15570  * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the
15571  * user requests so.
15572  */
15573 static int
15574 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd)
15575 {
15576 	uint32_t	mss = tcp->tcp_mss;
15577 	uint32_t	old_max_rwnd;
15578 	uint32_t	max_transmittable_rwnd;
15579 	boolean_t	tcp_detached = TCP_IS_DETACHED(tcp);
15580 	tcp_stack_t	*tcps = tcp->tcp_tcps;
15581 
15582 	if (tcp->tcp_fused) {
15583 		size_t sth_hiwat;
15584 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
15585 
15586 		ASSERT(peer_tcp != NULL);
15587 		/*
15588 		 * Record the stream head's high water mark for
15589 		 * this endpoint; this is used for flow-control
15590 		 * purposes in tcp_fuse_output().
15591 		 */
15592 		sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd);
15593 		if (!tcp_detached) {
15594 			(void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp,
15595 			    sth_hiwat);
15596 			if (IPCL_IS_NONSTR(tcp->tcp_connp)) {
15597 				conn_t *connp = tcp->tcp_connp;
15598 				struct sock_proto_props sopp;
15599 
15600 				sopp.sopp_flags = SOCKOPT_RCVTHRESH;
15601 				sopp.sopp_rcvthresh = sth_hiwat >> 3;
15602 
15603 				(*connp->conn_upcalls->su_set_proto_props)
15604 				    (connp->conn_upper_handle, &sopp);
15605 			}
15606 		}
15607 
15608 		/*
15609 		 * In the fusion case, the maxpsz stream head value of
15610 		 * our peer is set according to its send buffer size
15611 		 * and our receive buffer size; since the latter may
15612 		 * have changed we need to update the peer's maxpsz.
15613 		 */
15614 		(void) tcp_maxpsz_set(peer_tcp, B_TRUE);
15615 		return (rwnd);
15616 	}
15617 
15618 	if (tcp_detached) {
15619 		old_max_rwnd = tcp->tcp_rwnd;
15620 	} else {
15621 		old_max_rwnd = tcp->tcp_recv_hiwater;
15622 	}
15623 
15624 	/*
15625 	 * Insist on a receive window that is at least
15626 	 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid
15627 	 * funny TCP interactions of Nagle algorithm, SWS avoidance
15628 	 * and delayed acknowledgement.
15629 	 */
15630 	rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss);
15631 
15632 	/*
15633 	 * If window size info has already been exchanged, TCP should not
15634 	 * shrink the window.  Shrinking window is doable if done carefully.
15635 	 * We may add that support later.  But so far there is not a real
15636 	 * need to do that.
15637 	 */
15638 	if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) {
15639 		/* MSS may have changed, do a round up again. */
15640 		rwnd = MSS_ROUNDUP(old_max_rwnd, mss);
15641 	}
15642 
15643 	/*
15644 	 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check
15645 	 * can be applied even before the window scale option is decided.
15646 	 */
15647 	max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws;
15648 	if (rwnd > max_transmittable_rwnd) {
15649 		rwnd = max_transmittable_rwnd -
15650 		    (max_transmittable_rwnd % mss);
15651 		if (rwnd < mss)
15652 			rwnd = max_transmittable_rwnd;
15653 		/*
15654 		 * If we're over the limit we may have to back down tcp_rwnd.
15655 		 * The increment below won't work for us. So we set all three
15656 		 * here and the increment below will have no effect.
15657 		 */
15658 		tcp->tcp_rwnd = old_max_rwnd = rwnd;
15659 	}
15660 	if (tcp->tcp_localnet) {
15661 		tcp->tcp_rack_abs_max =
15662 		    MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2);
15663 	} else {
15664 		/*
15665 		 * For a remote host on a different subnet (through a router),
15666 		 * we ack every other packet to be conforming to RFC1122.
15667 		 * tcp_deferred_acks_max is default to 2.
15668 		 */
15669 		tcp->tcp_rack_abs_max =
15670 		    MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2);
15671 	}
15672 	if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max)
15673 		tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max;
15674 	else
15675 		tcp->tcp_rack_cur_max = 0;
15676 	/*
15677 	 * Increment the current rwnd by the amount the maximum grew (we
15678 	 * can not overwrite it since we might be in the middle of a
15679 	 * connection.)
15680 	 */
15681 	tcp->tcp_rwnd += rwnd - old_max_rwnd;
15682 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws, tcp->tcp_tcph->th_win);
15683 	if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max)
15684 		tcp->tcp_cwnd_max = rwnd;
15685 
15686 	if (tcp_detached)
15687 		return (rwnd);
15688 	/*
15689 	 * We set the maximum receive window into rq->q_hiwat if it is
15690 	 * a STREAMS socket.
15691 	 * This is not actually used for flow control.
15692 	 */
15693 	if (!IPCL_IS_NONSTR(tcp->tcp_connp))
15694 		tcp->tcp_rq->q_hiwat = rwnd;
15695 	tcp->tcp_recv_hiwater = rwnd;
15696 	/*
15697 	 * Set the STREAM head high water mark. This doesn't have to be
15698 	 * here, since we are simply using default values, but we would
15699 	 * prefer to choose these values algorithmically, with a likely
15700 	 * relationship to rwnd.
15701 	 */
15702 	(void) proto_set_rx_hiwat(tcp->tcp_rq, tcp->tcp_connp,
15703 	    MAX(rwnd, tcps->tcps_sth_rcv_hiwat));
15704 	return (rwnd);
15705 }
15706 
15707 /*
15708  * Return SNMP stuff in buffer in mpdata.
15709  */
15710 mblk_t *
15711 tcp_snmp_get(queue_t *q, mblk_t *mpctl)
15712 {
15713 	mblk_t			*mpdata;
15714 	mblk_t			*mp_conn_ctl = NULL;
15715 	mblk_t			*mp_conn_tail;
15716 	mblk_t			*mp_attr_ctl = NULL;
15717 	mblk_t			*mp_attr_tail;
15718 	mblk_t			*mp6_conn_ctl = NULL;
15719 	mblk_t			*mp6_conn_tail;
15720 	mblk_t			*mp6_attr_ctl = NULL;
15721 	mblk_t			*mp6_attr_tail;
15722 	struct opthdr		*optp;
15723 	mib2_tcpConnEntry_t	tce;
15724 	mib2_tcp6ConnEntry_t	tce6;
15725 	mib2_transportMLPEntry_t mlp;
15726 	connf_t			*connfp;
15727 	int			i;
15728 	boolean_t 		ispriv;
15729 	zoneid_t 		zoneid;
15730 	int			v4_conn_idx;
15731 	int			v6_conn_idx;
15732 	conn_t			*connp = Q_TO_CONN(q);
15733 	tcp_stack_t		*tcps;
15734 	ip_stack_t		*ipst;
15735 	mblk_t			*mp2ctl;
15736 
15737 	/*
15738 	 * make a copy of the original message
15739 	 */
15740 	mp2ctl = copymsg(mpctl);
15741 
15742 	if (mpctl == NULL ||
15743 	    (mpdata = mpctl->b_cont) == NULL ||
15744 	    (mp_conn_ctl = copymsg(mpctl)) == NULL ||
15745 	    (mp_attr_ctl = copymsg(mpctl)) == NULL ||
15746 	    (mp6_conn_ctl = copymsg(mpctl)) == NULL ||
15747 	    (mp6_attr_ctl = copymsg(mpctl)) == NULL) {
15748 		freemsg(mp_conn_ctl);
15749 		freemsg(mp_attr_ctl);
15750 		freemsg(mp6_conn_ctl);
15751 		freemsg(mp6_attr_ctl);
15752 		freemsg(mpctl);
15753 		freemsg(mp2ctl);
15754 		return (NULL);
15755 	}
15756 
15757 	ipst = connp->conn_netstack->netstack_ip;
15758 	tcps = connp->conn_netstack->netstack_tcp;
15759 
15760 	/* build table of connections -- need count in fixed part */
15761 	SET_MIB(tcps->tcps_mib.tcpRtoAlgorithm, 4);   /* vanj */
15762 	SET_MIB(tcps->tcps_mib.tcpRtoMin, tcps->tcps_rexmit_interval_min);
15763 	SET_MIB(tcps->tcps_mib.tcpRtoMax, tcps->tcps_rexmit_interval_max);
15764 	SET_MIB(tcps->tcps_mib.tcpMaxConn, -1);
15765 	SET_MIB(tcps->tcps_mib.tcpCurrEstab, 0);
15766 
15767 	ispriv =
15768 	    secpolicy_ip_config((Q_TO_CONN(q))->conn_cred, B_TRUE) == 0;
15769 	zoneid = Q_TO_CONN(q)->conn_zoneid;
15770 
15771 	v4_conn_idx = v6_conn_idx = 0;
15772 	mp_conn_tail = mp_attr_tail = mp6_conn_tail = mp6_attr_tail = NULL;
15773 
15774 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
15775 		ipst = tcps->tcps_netstack->netstack_ip;
15776 
15777 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
15778 
15779 		connp = NULL;
15780 
15781 		while ((connp =
15782 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
15783 			tcp_t *tcp;
15784 			boolean_t needattr;
15785 
15786 			if (connp->conn_zoneid != zoneid)
15787 				continue;	/* not in this zone */
15788 
15789 			tcp = connp->conn_tcp;
15790 			UPDATE_MIB(&tcps->tcps_mib,
15791 			    tcpHCInSegs, tcp->tcp_ibsegs);
15792 			tcp->tcp_ibsegs = 0;
15793 			UPDATE_MIB(&tcps->tcps_mib,
15794 			    tcpHCOutSegs, tcp->tcp_obsegs);
15795 			tcp->tcp_obsegs = 0;
15796 
15797 			tce6.tcp6ConnState = tce.tcpConnState =
15798 			    tcp_snmp_state(tcp);
15799 			if (tce.tcpConnState == MIB2_TCP_established ||
15800 			    tce.tcpConnState == MIB2_TCP_closeWait)
15801 				BUMP_MIB(&tcps->tcps_mib, tcpCurrEstab);
15802 
15803 			needattr = B_FALSE;
15804 			bzero(&mlp, sizeof (mlp));
15805 			if (connp->conn_mlp_type != mlptSingle) {
15806 				if (connp->conn_mlp_type == mlptShared ||
15807 				    connp->conn_mlp_type == mlptBoth)
15808 					mlp.tme_flags |= MIB2_TMEF_SHARED;
15809 				if (connp->conn_mlp_type == mlptPrivate ||
15810 				    connp->conn_mlp_type == mlptBoth)
15811 					mlp.tme_flags |= MIB2_TMEF_PRIVATE;
15812 				needattr = B_TRUE;
15813 			}
15814 			if (connp->conn_peercred != NULL) {
15815 				ts_label_t *tsl;
15816 
15817 				tsl = crgetlabel(connp->conn_peercred);
15818 				mlp.tme_doi = label2doi(tsl);
15819 				mlp.tme_label = *label2bslabel(tsl);
15820 				needattr = B_TRUE;
15821 			}
15822 
15823 			/* Create a message to report on IPv6 entries */
15824 			if (tcp->tcp_ipversion == IPV6_VERSION) {
15825 			tce6.tcp6ConnLocalAddress = tcp->tcp_ip_src_v6;
15826 			tce6.tcp6ConnRemAddress = tcp->tcp_remote_v6;
15827 			tce6.tcp6ConnLocalPort = ntohs(tcp->tcp_lport);
15828 			tce6.tcp6ConnRemPort = ntohs(tcp->tcp_fport);
15829 			tce6.tcp6ConnIfIndex = tcp->tcp_bound_if;
15830 			/* Don't want just anybody seeing these... */
15831 			if (ispriv) {
15832 				tce6.tcp6ConnEntryInfo.ce_snxt =
15833 				    tcp->tcp_snxt;
15834 				tce6.tcp6ConnEntryInfo.ce_suna =
15835 				    tcp->tcp_suna;
15836 				tce6.tcp6ConnEntryInfo.ce_rnxt =
15837 				    tcp->tcp_rnxt;
15838 				tce6.tcp6ConnEntryInfo.ce_rack =
15839 				    tcp->tcp_rack;
15840 			} else {
15841 				/*
15842 				 * Netstat, unfortunately, uses this to
15843 				 * get send/receive queue sizes.  How to fix?
15844 				 * Why not compute the difference only?
15845 				 */
15846 				tce6.tcp6ConnEntryInfo.ce_snxt =
15847 				    tcp->tcp_snxt - tcp->tcp_suna;
15848 				tce6.tcp6ConnEntryInfo.ce_suna = 0;
15849 				tce6.tcp6ConnEntryInfo.ce_rnxt =
15850 				    tcp->tcp_rnxt - tcp->tcp_rack;
15851 				tce6.tcp6ConnEntryInfo.ce_rack = 0;
15852 			}
15853 
15854 			tce6.tcp6ConnEntryInfo.ce_swnd = tcp->tcp_swnd;
15855 			tce6.tcp6ConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
15856 			tce6.tcp6ConnEntryInfo.ce_rto =  tcp->tcp_rto;
15857 			tce6.tcp6ConnEntryInfo.ce_mss =  tcp->tcp_mss;
15858 			tce6.tcp6ConnEntryInfo.ce_state = tcp->tcp_state;
15859 
15860 			tce6.tcp6ConnCreationProcess =
15861 			    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
15862 			    tcp->tcp_cpid;
15863 			tce6.tcp6ConnCreationTime = tcp->tcp_open_time;
15864 
15865 			(void) snmp_append_data2(mp6_conn_ctl->b_cont,
15866 			    &mp6_conn_tail, (char *)&tce6, sizeof (tce6));
15867 
15868 			mlp.tme_connidx = v6_conn_idx++;
15869 			if (needattr)
15870 				(void) snmp_append_data2(mp6_attr_ctl->b_cont,
15871 				    &mp6_attr_tail, (char *)&mlp, sizeof (mlp));
15872 			}
15873 			/*
15874 			 * Create an IPv4 table entry for IPv4 entries and also
15875 			 * for IPv6 entries which are bound to in6addr_any
15876 			 * but don't have IPV6_V6ONLY set.
15877 			 * (i.e. anything an IPv4 peer could connect to)
15878 			 */
15879 			if (tcp->tcp_ipversion == IPV4_VERSION ||
15880 			    (tcp->tcp_state <= TCPS_LISTEN &&
15881 			    !tcp->tcp_connp->conn_ipv6_v6only &&
15882 			    IN6_IS_ADDR_UNSPECIFIED(&tcp->tcp_ip_src_v6))) {
15883 				if (tcp->tcp_ipversion == IPV6_VERSION) {
15884 					tce.tcpConnRemAddress = INADDR_ANY;
15885 					tce.tcpConnLocalAddress = INADDR_ANY;
15886 				} else {
15887 					tce.tcpConnRemAddress =
15888 					    tcp->tcp_remote;
15889 					tce.tcpConnLocalAddress =
15890 					    tcp->tcp_ip_src;
15891 				}
15892 				tce.tcpConnLocalPort = ntohs(tcp->tcp_lport);
15893 				tce.tcpConnRemPort = ntohs(tcp->tcp_fport);
15894 				/* Don't want just anybody seeing these... */
15895 				if (ispriv) {
15896 					tce.tcpConnEntryInfo.ce_snxt =
15897 					    tcp->tcp_snxt;
15898 					tce.tcpConnEntryInfo.ce_suna =
15899 					    tcp->tcp_suna;
15900 					tce.tcpConnEntryInfo.ce_rnxt =
15901 					    tcp->tcp_rnxt;
15902 					tce.tcpConnEntryInfo.ce_rack =
15903 					    tcp->tcp_rack;
15904 				} else {
15905 					/*
15906 					 * Netstat, unfortunately, uses this to
15907 					 * get send/receive queue sizes.  How
15908 					 * to fix?
15909 					 * Why not compute the difference only?
15910 					 */
15911 					tce.tcpConnEntryInfo.ce_snxt =
15912 					    tcp->tcp_snxt - tcp->tcp_suna;
15913 					tce.tcpConnEntryInfo.ce_suna = 0;
15914 					tce.tcpConnEntryInfo.ce_rnxt =
15915 					    tcp->tcp_rnxt - tcp->tcp_rack;
15916 					tce.tcpConnEntryInfo.ce_rack = 0;
15917 				}
15918 
15919 				tce.tcpConnEntryInfo.ce_swnd = tcp->tcp_swnd;
15920 				tce.tcpConnEntryInfo.ce_rwnd = tcp->tcp_rwnd;
15921 				tce.tcpConnEntryInfo.ce_rto =  tcp->tcp_rto;
15922 				tce.tcpConnEntryInfo.ce_mss =  tcp->tcp_mss;
15923 				tce.tcpConnEntryInfo.ce_state =
15924 				    tcp->tcp_state;
15925 
15926 				tce.tcpConnCreationProcess =
15927 				    (tcp->tcp_cpid < 0) ? MIB2_UNKNOWN_PROCESS :
15928 				    tcp->tcp_cpid;
15929 				tce.tcpConnCreationTime = tcp->tcp_open_time;
15930 
15931 				(void) snmp_append_data2(mp_conn_ctl->b_cont,
15932 				    &mp_conn_tail, (char *)&tce, sizeof (tce));
15933 
15934 				mlp.tme_connidx = v4_conn_idx++;
15935 				if (needattr)
15936 					(void) snmp_append_data2(
15937 					    mp_attr_ctl->b_cont,
15938 					    &mp_attr_tail, (char *)&mlp,
15939 					    sizeof (mlp));
15940 			}
15941 		}
15942 	}
15943 
15944 	/* fixed length structure for IPv4 and IPv6 counters */
15945 	SET_MIB(tcps->tcps_mib.tcpConnTableSize, sizeof (mib2_tcpConnEntry_t));
15946 	SET_MIB(tcps->tcps_mib.tcp6ConnTableSize,
15947 	    sizeof (mib2_tcp6ConnEntry_t));
15948 	/* synchronize 32- and 64-bit counters */
15949 	SYNC32_MIB(&tcps->tcps_mib, tcpInSegs, tcpHCInSegs);
15950 	SYNC32_MIB(&tcps->tcps_mib, tcpOutSegs, tcpHCOutSegs);
15951 	optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
15952 	optp->level = MIB2_TCP;
15953 	optp->name = 0;
15954 	(void) snmp_append_data(mpdata, (char *)&tcps->tcps_mib,
15955 	    sizeof (tcps->tcps_mib));
15956 	optp->len = msgdsize(mpdata);
15957 	qreply(q, mpctl);
15958 
15959 	/* table of connections... */
15960 	optp = (struct opthdr *)&mp_conn_ctl->b_rptr[
15961 	    sizeof (struct T_optmgmt_ack)];
15962 	optp->level = MIB2_TCP;
15963 	optp->name = MIB2_TCP_CONN;
15964 	optp->len = msgdsize(mp_conn_ctl->b_cont);
15965 	qreply(q, mp_conn_ctl);
15966 
15967 	/* table of MLP attributes... */
15968 	optp = (struct opthdr *)&mp_attr_ctl->b_rptr[
15969 	    sizeof (struct T_optmgmt_ack)];
15970 	optp->level = MIB2_TCP;
15971 	optp->name = EXPER_XPORT_MLP;
15972 	optp->len = msgdsize(mp_attr_ctl->b_cont);
15973 	if (optp->len == 0)
15974 		freemsg(mp_attr_ctl);
15975 	else
15976 		qreply(q, mp_attr_ctl);
15977 
15978 	/* table of IPv6 connections... */
15979 	optp = (struct opthdr *)&mp6_conn_ctl->b_rptr[
15980 	    sizeof (struct T_optmgmt_ack)];
15981 	optp->level = MIB2_TCP6;
15982 	optp->name = MIB2_TCP6_CONN;
15983 	optp->len = msgdsize(mp6_conn_ctl->b_cont);
15984 	qreply(q, mp6_conn_ctl);
15985 
15986 	/* table of IPv6 MLP attributes... */
15987 	optp = (struct opthdr *)&mp6_attr_ctl->b_rptr[
15988 	    sizeof (struct T_optmgmt_ack)];
15989 	optp->level = MIB2_TCP6;
15990 	optp->name = EXPER_XPORT_MLP;
15991 	optp->len = msgdsize(mp6_attr_ctl->b_cont);
15992 	if (optp->len == 0)
15993 		freemsg(mp6_attr_ctl);
15994 	else
15995 		qreply(q, mp6_attr_ctl);
15996 	return (mp2ctl);
15997 }
15998 
15999 /* Return 0 if invalid set request, 1 otherwise, including non-tcp requests  */
16000 /* ARGSUSED */
16001 int
16002 tcp_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
16003 {
16004 	mib2_tcpConnEntry_t	*tce = (mib2_tcpConnEntry_t *)ptr;
16005 
16006 	switch (level) {
16007 	case MIB2_TCP:
16008 		switch (name) {
16009 		case 13:
16010 			if (tce->tcpConnState != MIB2_TCP_deleteTCB)
16011 				return (0);
16012 			/* TODO: delete entry defined by tce */
16013 			return (1);
16014 		default:
16015 			return (0);
16016 		}
16017 	default:
16018 		return (1);
16019 	}
16020 }
16021 
16022 /* Translate TCP state to MIB2 TCP state. */
16023 static int
16024 tcp_snmp_state(tcp_t *tcp)
16025 {
16026 	if (tcp == NULL)
16027 		return (0);
16028 
16029 	switch (tcp->tcp_state) {
16030 	case TCPS_CLOSED:
16031 	case TCPS_IDLE:	/* RFC1213 doesn't have analogue for IDLE & BOUND */
16032 	case TCPS_BOUND:
16033 		return (MIB2_TCP_closed);
16034 	case TCPS_LISTEN:
16035 		return (MIB2_TCP_listen);
16036 	case TCPS_SYN_SENT:
16037 		return (MIB2_TCP_synSent);
16038 	case TCPS_SYN_RCVD:
16039 		return (MIB2_TCP_synReceived);
16040 	case TCPS_ESTABLISHED:
16041 		return (MIB2_TCP_established);
16042 	case TCPS_CLOSE_WAIT:
16043 		return (MIB2_TCP_closeWait);
16044 	case TCPS_FIN_WAIT_1:
16045 		return (MIB2_TCP_finWait1);
16046 	case TCPS_CLOSING:
16047 		return (MIB2_TCP_closing);
16048 	case TCPS_LAST_ACK:
16049 		return (MIB2_TCP_lastAck);
16050 	case TCPS_FIN_WAIT_2:
16051 		return (MIB2_TCP_finWait2);
16052 	case TCPS_TIME_WAIT:
16053 		return (MIB2_TCP_timeWait);
16054 	default:
16055 		return (0);
16056 	}
16057 }
16058 
16059 /*
16060  * tcp_timer is the timer service routine.  It handles the retransmission,
16061  * FIN_WAIT_2 flush, and zero window probe timeout events.  It figures out
16062  * from the state of the tcp instance what kind of action needs to be done
16063  * at the time it is called.
16064  */
16065 static void
16066 tcp_timer(void *arg)
16067 {
16068 	mblk_t		*mp;
16069 	clock_t		first_threshold;
16070 	clock_t		second_threshold;
16071 	clock_t		ms;
16072 	uint32_t	mss;
16073 	conn_t		*connp = (conn_t *)arg;
16074 	tcp_t		*tcp = connp->conn_tcp;
16075 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16076 
16077 	tcp->tcp_timer_tid = 0;
16078 
16079 	if (tcp->tcp_fused)
16080 		return;
16081 
16082 	first_threshold =  tcp->tcp_first_timer_threshold;
16083 	second_threshold = tcp->tcp_second_timer_threshold;
16084 	switch (tcp->tcp_state) {
16085 	case TCPS_IDLE:
16086 	case TCPS_BOUND:
16087 	case TCPS_LISTEN:
16088 		return;
16089 	case TCPS_SYN_RCVD: {
16090 		tcp_t	*listener = tcp->tcp_listener;
16091 
16092 		if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) {
16093 			ASSERT(tcp->tcp_rq == listener->tcp_rq);
16094 			/* it's our first timeout */
16095 			tcp->tcp_syn_rcvd_timeout = 1;
16096 			mutex_enter(&listener->tcp_eager_lock);
16097 			listener->tcp_syn_rcvd_timeout++;
16098 			if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) {
16099 				/*
16100 				 * Make this eager available for drop if we
16101 				 * need to drop one to accomodate a new
16102 				 * incoming SYN request.
16103 				 */
16104 				MAKE_DROPPABLE(listener, tcp);
16105 			}
16106 			if (!listener->tcp_syn_defense &&
16107 			    (listener->tcp_syn_rcvd_timeout >
16108 			    (tcps->tcps_conn_req_max_q0 >> 2)) &&
16109 			    (tcps->tcps_conn_req_max_q0 > 200)) {
16110 				/* We may be under attack. Put on a defense. */
16111 				listener->tcp_syn_defense = B_TRUE;
16112 				cmn_err(CE_WARN, "High TCP connect timeout "
16113 				    "rate! System (port %d) may be under a "
16114 				    "SYN flood attack!",
16115 				    BE16_TO_U16(listener->tcp_tcph->th_lport));
16116 
16117 				listener->tcp_ip_addr_cache = kmem_zalloc(
16118 				    IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t),
16119 				    KM_NOSLEEP);
16120 			}
16121 			mutex_exit(&listener->tcp_eager_lock);
16122 		} else if (listener != NULL) {
16123 			mutex_enter(&listener->tcp_eager_lock);
16124 			tcp->tcp_syn_rcvd_timeout++;
16125 			if (tcp->tcp_syn_rcvd_timeout > 1 &&
16126 			    !tcp->tcp_closemp_used) {
16127 				/*
16128 				 * This is our second timeout. Put the tcp in
16129 				 * the list of droppable eagers to allow it to
16130 				 * be dropped, if needed. We don't check
16131 				 * whether tcp_dontdrop is set or not to
16132 				 * protect ourselve from a SYN attack where a
16133 				 * remote host can spoof itself as one of the
16134 				 * good IP source and continue to hold
16135 				 * resources too long.
16136 				 */
16137 				MAKE_DROPPABLE(listener, tcp);
16138 			}
16139 			mutex_exit(&listener->tcp_eager_lock);
16140 		}
16141 	}
16142 		/* FALLTHRU */
16143 	case TCPS_SYN_SENT:
16144 		first_threshold =  tcp->tcp_first_ctimer_threshold;
16145 		second_threshold = tcp->tcp_second_ctimer_threshold;
16146 		break;
16147 	case TCPS_ESTABLISHED:
16148 	case TCPS_FIN_WAIT_1:
16149 	case TCPS_CLOSING:
16150 	case TCPS_CLOSE_WAIT:
16151 	case TCPS_LAST_ACK:
16152 		/* If we have data to rexmit */
16153 		if (tcp->tcp_suna != tcp->tcp_snxt) {
16154 			clock_t	time_to_wait;
16155 
16156 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetrans);
16157 			if (!tcp->tcp_xmit_head)
16158 				break;
16159 			time_to_wait = lbolt -
16160 			    (clock_t)tcp->tcp_xmit_head->b_prev;
16161 			time_to_wait = tcp->tcp_rto -
16162 			    TICK_TO_MSEC(time_to_wait);
16163 			/*
16164 			 * If the timer fires too early, 1 clock tick earlier,
16165 			 * restart the timer.
16166 			 */
16167 			if (time_to_wait > msec_per_tick) {
16168 				TCP_STAT(tcps, tcp_timer_fire_early);
16169 				TCP_TIMER_RESTART(tcp, time_to_wait);
16170 				return;
16171 			}
16172 			/*
16173 			 * When we probe zero windows, we force the swnd open.
16174 			 * If our peer acks with a closed window swnd will be
16175 			 * set to zero by tcp_rput(). As long as we are
16176 			 * receiving acks tcp_rput will
16177 			 * reset 'tcp_ms_we_have_waited' so as not to trip the
16178 			 * first and second interval actions.  NOTE: the timer
16179 			 * interval is allowed to continue its exponential
16180 			 * backoff.
16181 			 */
16182 			if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) {
16183 				if (tcp->tcp_debug) {
16184 					(void) strlog(TCP_MOD_ID, 0, 1,
16185 					    SL_TRACE, "tcp_timer: zero win");
16186 				}
16187 			} else {
16188 				/*
16189 				 * After retransmission, we need to do
16190 				 * slow start.  Set the ssthresh to one
16191 				 * half of current effective window and
16192 				 * cwnd to one MSS.  Also reset
16193 				 * tcp_cwnd_cnt.
16194 				 *
16195 				 * Note that if tcp_ssthresh is reduced because
16196 				 * of ECN, do not reduce it again unless it is
16197 				 * already one window of data away (tcp_cwr
16198 				 * should then be cleared) or this is a
16199 				 * timeout for a retransmitted segment.
16200 				 */
16201 				uint32_t npkt;
16202 
16203 				if (!tcp->tcp_cwr || tcp->tcp_rexmit) {
16204 					npkt = ((tcp->tcp_timer_backoff ?
16205 					    tcp->tcp_cwnd_ssthresh :
16206 					    tcp->tcp_snxt -
16207 					    tcp->tcp_suna) >> 1) / tcp->tcp_mss;
16208 					tcp->tcp_cwnd_ssthresh = MAX(npkt, 2) *
16209 					    tcp->tcp_mss;
16210 				}
16211 				tcp->tcp_cwnd = tcp->tcp_mss;
16212 				tcp->tcp_cwnd_cnt = 0;
16213 				if (tcp->tcp_ecn_ok) {
16214 					tcp->tcp_cwr = B_TRUE;
16215 					tcp->tcp_cwr_snd_max = tcp->tcp_snxt;
16216 					tcp->tcp_ecn_cwr_sent = B_FALSE;
16217 				}
16218 			}
16219 			break;
16220 		}
16221 		/*
16222 		 * We have something to send yet we cannot send.  The
16223 		 * reason can be:
16224 		 *
16225 		 * 1. Zero send window: we need to do zero window probe.
16226 		 * 2. Zero cwnd: because of ECN, we need to "clock out
16227 		 * segments.
16228 		 * 3. SWS avoidance: receiver may have shrunk window,
16229 		 * reset our knowledge.
16230 		 *
16231 		 * Note that condition 2 can happen with either 1 or
16232 		 * 3.  But 1 and 3 are exclusive.
16233 		 */
16234 		if (tcp->tcp_unsent != 0) {
16235 			if (tcp->tcp_cwnd == 0) {
16236 				/*
16237 				 * Set tcp_cwnd to 1 MSS so that a
16238 				 * new segment can be sent out.  We
16239 				 * are "clocking out" new data when
16240 				 * the network is really congested.
16241 				 */
16242 				ASSERT(tcp->tcp_ecn_ok);
16243 				tcp->tcp_cwnd = tcp->tcp_mss;
16244 			}
16245 			if (tcp->tcp_swnd == 0) {
16246 				/* Extend window for zero window probe */
16247 				tcp->tcp_swnd++;
16248 				tcp->tcp_zero_win_probe = B_TRUE;
16249 				BUMP_MIB(&tcps->tcps_mib, tcpOutWinProbe);
16250 			} else {
16251 				/*
16252 				 * Handle timeout from sender SWS avoidance.
16253 				 * Reset our knowledge of the max send window
16254 				 * since the receiver might have reduced its
16255 				 * receive buffer.  Avoid setting tcp_max_swnd
16256 				 * to one since that will essentially disable
16257 				 * the SWS checks.
16258 				 *
16259 				 * Note that since we don't have a SWS
16260 				 * state variable, if the timeout is set
16261 				 * for ECN but not for SWS, this
16262 				 * code will also be executed.  This is
16263 				 * fine as tcp_max_swnd is updated
16264 				 * constantly and it will not affect
16265 				 * anything.
16266 				 */
16267 				tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2);
16268 			}
16269 			tcp_wput_data(tcp, NULL, B_FALSE);
16270 			return;
16271 		}
16272 		/* Is there a FIN that needs to be to re retransmitted? */
16273 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16274 		    !tcp->tcp_fin_acked)
16275 			break;
16276 		/* Nothing to do, return without restarting timer. */
16277 		TCP_STAT(tcps, tcp_timer_fire_miss);
16278 		return;
16279 	case TCPS_FIN_WAIT_2:
16280 		/*
16281 		 * User closed the TCP endpoint and peer ACK'ed our FIN.
16282 		 * We waited some time for for peer's FIN, but it hasn't
16283 		 * arrived.  We flush the connection now to avoid
16284 		 * case where the peer has rebooted.
16285 		 */
16286 		if (TCP_IS_DETACHED(tcp)) {
16287 			(void) tcp_clean_death(tcp, 0, 23);
16288 		} else {
16289 			TCP_TIMER_RESTART(tcp,
16290 			    tcps->tcps_fin_wait_2_flush_interval);
16291 		}
16292 		return;
16293 	case TCPS_TIME_WAIT:
16294 		(void) tcp_clean_death(tcp, 0, 24);
16295 		return;
16296 	default:
16297 		if (tcp->tcp_debug) {
16298 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
16299 			    "tcp_timer: strange state (%d) %s",
16300 			    tcp->tcp_state, tcp_display(tcp, NULL,
16301 			    DISP_PORT_ONLY));
16302 		}
16303 		return;
16304 	}
16305 	if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) {
16306 		/*
16307 		 * For zero window probe, we need to send indefinitely,
16308 		 * unless we have not heard from the other side for some
16309 		 * time...
16310 		 */
16311 		if ((tcp->tcp_zero_win_probe == 0) ||
16312 		    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >
16313 		    second_threshold)) {
16314 			BUMP_MIB(&tcps->tcps_mib, tcpTimRetransDrop);
16315 			/*
16316 			 * If TCP is in SYN_RCVD state, send back a
16317 			 * RST|ACK as BSD does.  Note that tcp_zero_win_probe
16318 			 * should be zero in TCPS_SYN_RCVD state.
16319 			 */
16320 			if (tcp->tcp_state == TCPS_SYN_RCVD) {
16321 				tcp_xmit_ctl("tcp_timer: RST sent on timeout "
16322 				    "in SYN_RCVD",
16323 				    tcp, tcp->tcp_snxt,
16324 				    tcp->tcp_rnxt, TH_RST | TH_ACK);
16325 			}
16326 			(void) tcp_clean_death(tcp,
16327 			    tcp->tcp_client_errno ?
16328 			    tcp->tcp_client_errno : ETIMEDOUT, 25);
16329 			return;
16330 		} else {
16331 			/*
16332 			 * Set tcp_ms_we_have_waited to second_threshold
16333 			 * so that in next timeout, we will do the above
16334 			 * check (lbolt - tcp_last_recv_time).  This is
16335 			 * also to avoid overflow.
16336 			 *
16337 			 * We don't need to decrement tcp_timer_backoff
16338 			 * to avoid overflow because it will be decremented
16339 			 * later if new timeout value is greater than
16340 			 * tcp_rexmit_interval_max.  In the case when
16341 			 * tcp_rexmit_interval_max is greater than
16342 			 * second_threshold, it means that we will wait
16343 			 * longer than second_threshold to send the next
16344 			 * window probe.
16345 			 */
16346 			tcp->tcp_ms_we_have_waited = second_threshold;
16347 		}
16348 	} else if (ms > first_threshold) {
16349 		if (tcp->tcp_snd_zcopy_aware && (!tcp->tcp_xmit_zc_clean) &&
16350 		    tcp->tcp_xmit_head != NULL) {
16351 			tcp->tcp_xmit_head =
16352 			    tcp_zcopy_backoff(tcp, tcp->tcp_xmit_head, 1);
16353 		}
16354 		/*
16355 		 * We have been retransmitting for too long...  The RTT
16356 		 * we calculated is probably incorrect.  Reinitialize it.
16357 		 * Need to compensate for 0 tcp_rtt_sa.  Reset
16358 		 * tcp_rtt_update so that we won't accidentally cache a
16359 		 * bad value.  But only do this if this is not a zero
16360 		 * window probe.
16361 		 */
16362 		if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) {
16363 			tcp->tcp_rtt_sd += (tcp->tcp_rtt_sa >> 3) +
16364 			    (tcp->tcp_rtt_sa >> 5);
16365 			tcp->tcp_rtt_sa = 0;
16366 			tcp_ip_notify(tcp);
16367 			tcp->tcp_rtt_update = 0;
16368 		}
16369 	}
16370 	tcp->tcp_timer_backoff++;
16371 	if ((ms = (tcp->tcp_rtt_sa >> 3) + tcp->tcp_rtt_sd +
16372 	    tcps->tcps_rexmit_interval_extra + (tcp->tcp_rtt_sa >> 5)) <
16373 	    tcps->tcps_rexmit_interval_min) {
16374 		/*
16375 		 * This means the original RTO is tcp_rexmit_interval_min.
16376 		 * So we will use tcp_rexmit_interval_min as the RTO value
16377 		 * and do the backoff.
16378 		 */
16379 		ms = tcps->tcps_rexmit_interval_min << tcp->tcp_timer_backoff;
16380 	} else {
16381 		ms <<= tcp->tcp_timer_backoff;
16382 	}
16383 	if (ms > tcps->tcps_rexmit_interval_max) {
16384 		ms = tcps->tcps_rexmit_interval_max;
16385 		/*
16386 		 * ms is at max, decrement tcp_timer_backoff to avoid
16387 		 * overflow.
16388 		 */
16389 		tcp->tcp_timer_backoff--;
16390 	}
16391 	tcp->tcp_ms_we_have_waited += ms;
16392 	if (tcp->tcp_zero_win_probe == 0) {
16393 		tcp->tcp_rto = ms;
16394 	}
16395 	TCP_TIMER_RESTART(tcp, ms);
16396 	/*
16397 	 * This is after a timeout and tcp_rto is backed off.  Set
16398 	 * tcp_set_timer to 1 so that next time RTO is updated, we will
16399 	 * restart the timer with a correct value.
16400 	 */
16401 	tcp->tcp_set_timer = 1;
16402 	mss = tcp->tcp_snxt - tcp->tcp_suna;
16403 	if (mss > tcp->tcp_mss)
16404 		mss = tcp->tcp_mss;
16405 	if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0)
16406 		mss = tcp->tcp_swnd;
16407 
16408 	if ((mp = tcp->tcp_xmit_head) != NULL)
16409 		mp->b_prev = (mblk_t *)lbolt;
16410 	mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss,
16411 	    B_TRUE);
16412 
16413 	/*
16414 	 * When slow start after retransmission begins, start with
16415 	 * this seq no.  tcp_rexmit_max marks the end of special slow
16416 	 * start phase.  tcp_snd_burst controls how many segments
16417 	 * can be sent because of an ack.
16418 	 */
16419 	tcp->tcp_rexmit_nxt = tcp->tcp_suna;
16420 	tcp->tcp_snd_burst = TCP_CWND_SS;
16421 	if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
16422 	    (tcp->tcp_unsent == 0)) {
16423 		tcp->tcp_rexmit_max = tcp->tcp_fss;
16424 	} else {
16425 		tcp->tcp_rexmit_max = tcp->tcp_snxt;
16426 	}
16427 	tcp->tcp_rexmit = B_TRUE;
16428 	tcp->tcp_dupack_cnt = 0;
16429 
16430 	/*
16431 	 * Remove all rexmit SACK blk to start from fresh.
16432 	 */
16433 	if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
16434 		TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list);
16435 		tcp->tcp_num_notsack_blk = 0;
16436 		tcp->tcp_cnt_notsack_list = 0;
16437 	}
16438 	if (mp == NULL) {
16439 		return;
16440 	}
16441 	/*
16442 	 * Attach credentials to retransmitted initial SYNs.
16443 	 * In theory we should use the credentials from the connect()
16444 	 * call to ensure that getpeerucred() on the peer will be correct.
16445 	 * But we assume that SYN's are not dropped for loopback connections.
16446 	 */
16447 	if (tcp->tcp_state == TCPS_SYN_SENT) {
16448 		mblk_setcred(mp, tcp->tcp_cred, tcp->tcp_cpid);
16449 	}
16450 
16451 	tcp->tcp_csuna = tcp->tcp_snxt;
16452 	BUMP_MIB(&tcps->tcps_mib, tcpRetransSegs);
16453 	UPDATE_MIB(&tcps->tcps_mib, tcpRetransBytes, mss);
16454 	tcp_send_data(tcp, tcp->tcp_wq, mp);
16455 
16456 }
16457 
16458 static int
16459 tcp_do_unbind(conn_t *connp)
16460 {
16461 	tcp_t *tcp = connp->conn_tcp;
16462 	int error = 0;
16463 
16464 	switch (tcp->tcp_state) {
16465 	case TCPS_BOUND:
16466 	case TCPS_LISTEN:
16467 		break;
16468 	default:
16469 		return (-TOUTSTATE);
16470 	}
16471 
16472 	/*
16473 	 * Need to clean up all the eagers since after the unbind, segments
16474 	 * will no longer be delivered to this listener stream.
16475 	 */
16476 	mutex_enter(&tcp->tcp_eager_lock);
16477 	if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) {
16478 		tcp_eager_cleanup(tcp, 0);
16479 	}
16480 	mutex_exit(&tcp->tcp_eager_lock);
16481 
16482 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16483 		tcp->tcp_ipha->ipha_src = 0;
16484 	} else {
16485 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
16486 	}
16487 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
16488 	bzero(tcp->tcp_tcph->th_lport, sizeof (tcp->tcp_tcph->th_lport));
16489 	tcp_bind_hash_remove(tcp);
16490 	tcp->tcp_state = TCPS_IDLE;
16491 	tcp->tcp_mdt = B_FALSE;
16492 
16493 	connp = tcp->tcp_connp;
16494 	connp->conn_mdt_ok = B_FALSE;
16495 	ipcl_hash_remove(connp);
16496 	bzero(&connp->conn_ports, sizeof (connp->conn_ports));
16497 
16498 	return (error);
16499 }
16500 
16501 /* tcp_unbind is called by tcp_wput_proto to handle T_UNBIND_REQ messages. */
16502 static void
16503 tcp_tpi_unbind(tcp_t *tcp, mblk_t *mp)
16504 {
16505 	int error = tcp_do_unbind(tcp->tcp_connp);
16506 
16507 	if (error > 0) {
16508 		tcp_err_ack(tcp, mp, TSYSERR, error);
16509 	} else if (error < 0) {
16510 		tcp_err_ack(tcp, mp, -error, 0);
16511 	} else {
16512 		/* Send M_FLUSH according to TPI */
16513 		(void) putnextctl1(tcp->tcp_rq, M_FLUSH, FLUSHRW);
16514 
16515 		mp = mi_tpi_ok_ack_alloc(mp);
16516 		putnext(tcp->tcp_rq, mp);
16517 	}
16518 }
16519 
16520 /*
16521  * Don't let port fall into the privileged range.
16522  * Since the extra privileged ports can be arbitrary we also
16523  * ensure that we exclude those from consideration.
16524  * tcp_g_epriv_ports is not sorted thus we loop over it until
16525  * there are no changes.
16526  *
16527  * Note: No locks are held when inspecting tcp_g_*epriv_ports
16528  * but instead the code relies on:
16529  * - the fact that the address of the array and its size never changes
16530  * - the atomic assignment of the elements of the array
16531  *
16532  * Returns 0 if there are no more ports available.
16533  *
16534  * TS note: skip multilevel ports.
16535  */
16536 static in_port_t
16537 tcp_update_next_port(in_port_t port, const tcp_t *tcp, boolean_t random)
16538 {
16539 	int i;
16540 	boolean_t restart = B_FALSE;
16541 	tcp_stack_t *tcps = tcp->tcp_tcps;
16542 
16543 	if (random && tcp_random_anon_port != 0) {
16544 		(void) random_get_pseudo_bytes((uint8_t *)&port,
16545 		    sizeof (in_port_t));
16546 		/*
16547 		 * Unless changed by a sys admin, the smallest anon port
16548 		 * is 32768 and the largest anon port is 65535.  It is
16549 		 * very likely (50%) for the random port to be smaller
16550 		 * than the smallest anon port.  When that happens,
16551 		 * add port % (anon port range) to the smallest anon
16552 		 * port to get the random port.  It should fall into the
16553 		 * valid anon port range.
16554 		 */
16555 		if (port < tcps->tcps_smallest_anon_port) {
16556 			port = tcps->tcps_smallest_anon_port +
16557 			    port % (tcps->tcps_largest_anon_port -
16558 			    tcps->tcps_smallest_anon_port);
16559 		}
16560 	}
16561 
16562 retry:
16563 	if (port < tcps->tcps_smallest_anon_port)
16564 		port = (in_port_t)tcps->tcps_smallest_anon_port;
16565 
16566 	if (port > tcps->tcps_largest_anon_port) {
16567 		if (restart)
16568 			return (0);
16569 		restart = B_TRUE;
16570 		port = (in_port_t)tcps->tcps_smallest_anon_port;
16571 	}
16572 
16573 	if (port < tcps->tcps_smallest_nonpriv_port)
16574 		port = (in_port_t)tcps->tcps_smallest_nonpriv_port;
16575 
16576 	for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
16577 		if (port == tcps->tcps_g_epriv_ports[i]) {
16578 			port++;
16579 			/*
16580 			 * Make sure whether the port is in the
16581 			 * valid range.
16582 			 */
16583 			goto retry;
16584 		}
16585 	}
16586 	if (is_system_labeled() &&
16587 	    (i = tsol_next_port(crgetzone(tcp->tcp_cred), port,
16588 	    IPPROTO_TCP, B_TRUE)) != 0) {
16589 		port = i;
16590 		goto retry;
16591 	}
16592 	return (port);
16593 }
16594 
16595 /*
16596  * Return the next anonymous port in the privileged port range for
16597  * bind checking.  It starts at IPPORT_RESERVED - 1 and goes
16598  * downwards.  This is the same behavior as documented in the userland
16599  * library call rresvport(3N).
16600  *
16601  * TS note: skip multilevel ports.
16602  */
16603 static in_port_t
16604 tcp_get_next_priv_port(const tcp_t *tcp)
16605 {
16606 	static in_port_t next_priv_port = IPPORT_RESERVED - 1;
16607 	in_port_t nextport;
16608 	boolean_t restart = B_FALSE;
16609 	tcp_stack_t *tcps = tcp->tcp_tcps;
16610 retry:
16611 	if (next_priv_port < tcps->tcps_min_anonpriv_port ||
16612 	    next_priv_port >= IPPORT_RESERVED) {
16613 		next_priv_port = IPPORT_RESERVED - 1;
16614 		if (restart)
16615 			return (0);
16616 		restart = B_TRUE;
16617 	}
16618 	if (is_system_labeled() &&
16619 	    (nextport = tsol_next_port(crgetzone(tcp->tcp_cred),
16620 	    next_priv_port, IPPROTO_TCP, B_FALSE)) != 0) {
16621 		next_priv_port = nextport;
16622 		goto retry;
16623 	}
16624 	return (next_priv_port--);
16625 }
16626 
16627 /* The write side r/w procedure. */
16628 
16629 #if CCS_STATS
16630 struct {
16631 	struct {
16632 		int64_t count, bytes;
16633 	} tot, hit;
16634 } wrw_stats;
16635 #endif
16636 
16637 /*
16638  * Call by tcp_wput() to handle all non data, except M_PROTO and M_PCPROTO,
16639  * messages.
16640  */
16641 /* ARGSUSED */
16642 static void
16643 tcp_wput_nondata(void *arg, mblk_t *mp, void *arg2)
16644 {
16645 	conn_t	*connp = (conn_t *)arg;
16646 	tcp_t	*tcp = connp->conn_tcp;
16647 	queue_t	*q = tcp->tcp_wq;
16648 
16649 	ASSERT(DB_TYPE(mp) != M_IOCTL);
16650 	/*
16651 	 * TCP is D_MP and qprocsoff() is done towards the end of the tcp_close.
16652 	 * Once the close starts, streamhead and sockfs will not let any data
16653 	 * packets come down (close ensures that there are no threads using the
16654 	 * queue and no new threads will come down) but since qprocsoff()
16655 	 * hasn't happened yet, a M_FLUSH or some non data message might
16656 	 * get reflected back (in response to our own FLUSHRW) and get
16657 	 * processed after tcp_close() is done. The conn would still be valid
16658 	 * because a ref would have added but we need to check the state
16659 	 * before actually processing the packet.
16660 	 */
16661 	if (TCP_IS_DETACHED(tcp) || (tcp->tcp_state == TCPS_CLOSED)) {
16662 		freemsg(mp);
16663 		return;
16664 	}
16665 
16666 	switch (DB_TYPE(mp)) {
16667 	case M_IOCDATA:
16668 		tcp_wput_iocdata(tcp, mp);
16669 		break;
16670 	case M_FLUSH:
16671 		tcp_wput_flush(tcp, mp);
16672 		break;
16673 	default:
16674 		CALL_IP_WPUT(connp, q, mp);
16675 		break;
16676 	}
16677 }
16678 
16679 /*
16680  * The TCP fast path write put procedure.
16681  * NOTE: the logic of the fast path is duplicated from tcp_wput_data()
16682  */
16683 /* ARGSUSED */
16684 void
16685 tcp_output(void *arg, mblk_t *mp, void *arg2)
16686 {
16687 	int		len;
16688 	int		hdrlen;
16689 	int		plen;
16690 	mblk_t		*mp1;
16691 	uchar_t		*rptr;
16692 	uint32_t	snxt;
16693 	tcph_t		*tcph;
16694 	struct datab	*db;
16695 	uint32_t	suna;
16696 	uint32_t	mss;
16697 	ipaddr_t	*dst;
16698 	ipaddr_t	*src;
16699 	uint32_t	sum;
16700 	int		usable;
16701 	conn_t		*connp = (conn_t *)arg;
16702 	tcp_t		*tcp = connp->conn_tcp;
16703 	uint32_t	msize;
16704 	tcp_stack_t	*tcps = tcp->tcp_tcps;
16705 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
16706 
16707 	/*
16708 	 * Try and ASSERT the minimum possible references on the
16709 	 * conn early enough. Since we are executing on write side,
16710 	 * the connection is obviously not detached and that means
16711 	 * there is a ref each for TCP and IP. Since we are behind
16712 	 * the squeue, the minimum references needed are 3. If the
16713 	 * conn is in classifier hash list, there should be an
16714 	 * extra ref for that (we check both the possibilities).
16715 	 */
16716 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
16717 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
16718 
16719 	ASSERT(DB_TYPE(mp) == M_DATA);
16720 	msize = (mp->b_cont == NULL) ? MBLKL(mp) : msgdsize(mp);
16721 
16722 	mutex_enter(&tcp->tcp_non_sq_lock);
16723 	tcp->tcp_squeue_bytes -= msize;
16724 	mutex_exit(&tcp->tcp_non_sq_lock);
16725 
16726 	/* Check to see if this connection wants to be re-fused. */
16727 	if (tcp->tcp_refuse && !ipst->ips_ipobs_enabled) {
16728 		if (tcp->tcp_ipversion == IPV4_VERSION) {
16729 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ipha,
16730 			    &tcp->tcp_saved_tcph);
16731 		} else {
16732 			tcp_fuse(tcp, (uchar_t *)&tcp->tcp_saved_ip6h,
16733 			    &tcp->tcp_saved_tcph);
16734 		}
16735 	}
16736 	/* Bypass tcp protocol for fused tcp loopback */
16737 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
16738 		return;
16739 
16740 	mss = tcp->tcp_mss;
16741 	if (tcp->tcp_xmit_zc_clean)
16742 		mp = tcp_zcopy_backoff(tcp, mp, 0);
16743 
16744 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
16745 	len = (int)(mp->b_wptr - mp->b_rptr);
16746 
16747 	/*
16748 	 * Criteria for fast path:
16749 	 *
16750 	 *   1. no unsent data
16751 	 *   2. single mblk in request
16752 	 *   3. connection established
16753 	 *   4. data in mblk
16754 	 *   5. len <= mss
16755 	 *   6. no tcp_valid bits
16756 	 */
16757 	if ((tcp->tcp_unsent != 0) ||
16758 	    (tcp->tcp_cork) ||
16759 	    (mp->b_cont != NULL) ||
16760 	    (tcp->tcp_state != TCPS_ESTABLISHED) ||
16761 	    (len == 0) ||
16762 	    (len > mss) ||
16763 	    (tcp->tcp_valid_bits != 0)) {
16764 		tcp_wput_data(tcp, mp, B_FALSE);
16765 		return;
16766 	}
16767 
16768 	ASSERT(tcp->tcp_xmit_tail_unsent == 0);
16769 	ASSERT(tcp->tcp_fin_sent == 0);
16770 
16771 	/* queue new packet onto retransmission queue */
16772 	if (tcp->tcp_xmit_head == NULL) {
16773 		tcp->tcp_xmit_head = mp;
16774 	} else {
16775 		tcp->tcp_xmit_last->b_cont = mp;
16776 	}
16777 	tcp->tcp_xmit_last = mp;
16778 	tcp->tcp_xmit_tail = mp;
16779 
16780 	/* find out how much we can send */
16781 	/* BEGIN CSTYLED */
16782 	/*
16783 	 *    un-acked	   usable
16784 	 *  |--------------|-----------------|
16785 	 *  tcp_suna       tcp_snxt	  tcp_suna+tcp_swnd
16786 	 */
16787 	/* END CSTYLED */
16788 
16789 	/* start sending from tcp_snxt */
16790 	snxt = tcp->tcp_snxt;
16791 
16792 	/*
16793 	 * Check to see if this connection has been idled for some
16794 	 * time and no ACK is expected.  If it is, we need to slow
16795 	 * start again to get back the connection's "self-clock" as
16796 	 * described in VJ's paper.
16797 	 *
16798 	 * Refer to the comment in tcp_mss_set() for the calculation
16799 	 * of tcp_cwnd after idle.
16800 	 */
16801 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
16802 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
16803 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
16804 	}
16805 
16806 	usable = tcp->tcp_swnd;		/* tcp window size */
16807 	if (usable > tcp->tcp_cwnd)
16808 		usable = tcp->tcp_cwnd;	/* congestion window smaller */
16809 	usable -= snxt;		/* subtract stuff already sent */
16810 	suna = tcp->tcp_suna;
16811 	usable += suna;
16812 	/* usable can be < 0 if the congestion window is smaller */
16813 	if (len > usable) {
16814 		/* Can't send complete M_DATA in one shot */
16815 		goto slow;
16816 	}
16817 
16818 	mutex_enter(&tcp->tcp_non_sq_lock);
16819 	if (tcp->tcp_flow_stopped &&
16820 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
16821 		tcp_clrqfull(tcp);
16822 	}
16823 	mutex_exit(&tcp->tcp_non_sq_lock);
16824 
16825 	/*
16826 	 * determine if anything to send (Nagle).
16827 	 *
16828 	 *   1. len < tcp_mss (i.e. small)
16829 	 *   2. unacknowledged data present
16830 	 *   3. len < nagle limit
16831 	 *   4. last packet sent < nagle limit (previous packet sent)
16832 	 */
16833 	if ((len < mss) && (snxt != suna) &&
16834 	    (len < (int)tcp->tcp_naglim) &&
16835 	    (tcp->tcp_last_sent_len < tcp->tcp_naglim)) {
16836 		/*
16837 		 * This was the first unsent packet and normally
16838 		 * mss < xmit_hiwater so there is no need to worry
16839 		 * about flow control. The next packet will go
16840 		 * through the flow control check in tcp_wput_data().
16841 		 */
16842 		/* leftover work from above */
16843 		tcp->tcp_unsent = len;
16844 		tcp->tcp_xmit_tail_unsent = len;
16845 
16846 		return;
16847 	}
16848 
16849 	/* len <= tcp->tcp_mss && len == unsent so no silly window */
16850 
16851 	if (snxt == suna) {
16852 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
16853 	}
16854 
16855 	/* we have always sent something */
16856 	tcp->tcp_rack_cnt = 0;
16857 
16858 	tcp->tcp_snxt = snxt + len;
16859 	tcp->tcp_rack = tcp->tcp_rnxt;
16860 
16861 	if ((mp1 = dupb(mp)) == 0)
16862 		goto no_memory;
16863 	mp->b_prev = (mblk_t *)(uintptr_t)lbolt;
16864 	mp->b_next = (mblk_t *)(uintptr_t)snxt;
16865 
16866 	/* adjust tcp header information */
16867 	tcph = tcp->tcp_tcph;
16868 	tcph->th_flags[0] = (TH_ACK|TH_PUSH);
16869 
16870 	sum = len + tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
16871 	sum = (sum >> 16) + (sum & 0xFFFF);
16872 	U16_TO_ABE16(sum, tcph->th_sum);
16873 
16874 	U32_TO_ABE32(snxt, tcph->th_seq);
16875 
16876 	BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
16877 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
16878 	BUMP_LOCAL(tcp->tcp_obsegs);
16879 
16880 	/* Update the latest receive window size in TCP header. */
16881 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
16882 	    tcph->th_win);
16883 
16884 	tcp->tcp_last_sent_len = (ushort_t)len;
16885 
16886 	plen = len + tcp->tcp_hdr_len;
16887 
16888 	if (tcp->tcp_ipversion == IPV4_VERSION) {
16889 		tcp->tcp_ipha->ipha_length = htons(plen);
16890 	} else {
16891 		tcp->tcp_ip6h->ip6_plen = htons(plen -
16892 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
16893 	}
16894 
16895 	/* see if we need to allocate a mblk for the headers */
16896 	hdrlen = tcp->tcp_hdr_len;
16897 	rptr = mp1->b_rptr - hdrlen;
16898 	db = mp1->b_datap;
16899 	if ((db->db_ref != 2) || rptr < db->db_base ||
16900 	    (!OK_32PTR(rptr))) {
16901 		/* NOTE: we assume allocb returns an OK_32PTR */
16902 		mp = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
16903 		    tcps->tcps_wroff_xtra, BPRI_MED);
16904 		if (!mp) {
16905 			freemsg(mp1);
16906 			goto no_memory;
16907 		}
16908 		mp->b_cont = mp1;
16909 		mp1 = mp;
16910 		/* Leave room for Link Level header */
16911 		/* hdrlen = tcp->tcp_hdr_len; */
16912 		rptr = &mp1->b_rptr[tcps->tcps_wroff_xtra];
16913 		mp1->b_wptr = &rptr[hdrlen];
16914 	}
16915 	mp1->b_rptr = rptr;
16916 
16917 	/* Fill in the timestamp option. */
16918 	if (tcp->tcp_snd_ts_ok) {
16919 		U32_TO_BE32((uint32_t)lbolt,
16920 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
16921 		U32_TO_BE32(tcp->tcp_ts_recent,
16922 		    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
16923 	} else {
16924 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
16925 	}
16926 
16927 	/* copy header into outgoing packet */
16928 	dst = (ipaddr_t *)rptr;
16929 	src = (ipaddr_t *)tcp->tcp_iphc;
16930 	dst[0] = src[0];
16931 	dst[1] = src[1];
16932 	dst[2] = src[2];
16933 	dst[3] = src[3];
16934 	dst[4] = src[4];
16935 	dst[5] = src[5];
16936 	dst[6] = src[6];
16937 	dst[7] = src[7];
16938 	dst[8] = src[8];
16939 	dst[9] = src[9];
16940 	if (hdrlen -= 40) {
16941 		hdrlen >>= 2;
16942 		dst += 10;
16943 		src += 10;
16944 		do {
16945 			*dst++ = *src++;
16946 		} while (--hdrlen);
16947 	}
16948 
16949 	/*
16950 	 * Set the ECN info in the TCP header.  Note that this
16951 	 * is not the template header.
16952 	 */
16953 	if (tcp->tcp_ecn_ok) {
16954 		SET_ECT(tcp, rptr);
16955 
16956 		tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
16957 		if (tcp->tcp_ecn_echo_on)
16958 			tcph->th_flags[0] |= TH_ECE;
16959 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
16960 			tcph->th_flags[0] |= TH_CWR;
16961 			tcp->tcp_ecn_cwr_sent = B_TRUE;
16962 		}
16963 	}
16964 
16965 	if (tcp->tcp_ip_forward_progress) {
16966 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
16967 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
16968 		tcp->tcp_ip_forward_progress = B_FALSE;
16969 	}
16970 	tcp_send_data(tcp, tcp->tcp_wq, mp1);
16971 	return;
16972 
16973 	/*
16974 	 * If we ran out of memory, we pretend to have sent the packet
16975 	 * and that it was lost on the wire.
16976 	 */
16977 no_memory:
16978 	return;
16979 
16980 slow:
16981 	/* leftover work from above */
16982 	tcp->tcp_unsent = len;
16983 	tcp->tcp_xmit_tail_unsent = len;
16984 	tcp_wput_data(tcp, NULL, B_FALSE);
16985 }
16986 
16987 /* ARGSUSED */
16988 void
16989 tcp_accept_finish(void *arg, mblk_t *mp, void *arg2)
16990 {
16991 	conn_t			*connp = (conn_t *)arg;
16992 	tcp_t			*tcp = connp->conn_tcp;
16993 	queue_t			*q = tcp->tcp_rq;
16994 	struct tcp_options	*tcpopt;
16995 	tcp_stack_t		*tcps = tcp->tcp_tcps;
16996 
16997 	/* socket options */
16998 	uint_t 			sopp_flags;
16999 	ssize_t			sopp_rxhiwat;
17000 	ssize_t			sopp_maxblk;
17001 	ushort_t		sopp_wroff;
17002 	ushort_t		sopp_tail;
17003 	ushort_t		sopp_copyopt;
17004 
17005 	tcpopt = (struct tcp_options *)mp->b_rptr;
17006 
17007 	/*
17008 	 * Drop the eager's ref on the listener, that was placed when
17009 	 * this eager began life in tcp_conn_request.
17010 	 */
17011 	CONN_DEC_REF(tcp->tcp_saved_listener->tcp_connp);
17012 	if (IPCL_IS_NONSTR(connp)) {
17013 		/* Safe to free conn_ind message */
17014 		freemsg(tcp->tcp_conn.tcp_eager_conn_ind);
17015 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
17016 	}
17017 
17018 	tcp->tcp_detached = B_FALSE;
17019 
17020 	if (tcp->tcp_state <= TCPS_BOUND || tcp->tcp_accept_error) {
17021 		/*
17022 		 * Someone blewoff the eager before we could finish
17023 		 * the accept.
17024 		 *
17025 		 * The only reason eager exists it because we put in
17026 		 * a ref on it when conn ind went up. We need to send
17027 		 * a disconnect indication up while the last reference
17028 		 * on the eager will be dropped by the squeue when we
17029 		 * return.
17030 		 */
17031 		ASSERT(tcp->tcp_listener == NULL);
17032 		if (tcp->tcp_issocket || tcp->tcp_send_discon_ind) {
17033 			if (IPCL_IS_NONSTR(connp)) {
17034 				ASSERT(tcp->tcp_issocket);
17035 				(*connp->conn_upcalls->su_disconnected)(
17036 				    connp->conn_upper_handle, tcp->tcp_connid,
17037 				    ECONNREFUSED);
17038 				freemsg(mp);
17039 			} else {
17040 				struct	T_discon_ind	*tdi;
17041 
17042 				(void) putnextctl1(q, M_FLUSH, FLUSHRW);
17043 				/*
17044 				 * Let us reuse the incoming mblk to avoid
17045 				 * memory allocation failure problems. We know
17046 				 * that the size of the incoming mblk i.e.
17047 				 * stroptions is greater than sizeof
17048 				 * T_discon_ind. So the reallocb below can't
17049 				 * fail.
17050 				 */
17051 				freemsg(mp->b_cont);
17052 				mp->b_cont = NULL;
17053 				ASSERT(DB_REF(mp) == 1);
17054 				mp = reallocb(mp, sizeof (struct T_discon_ind),
17055 				    B_FALSE);
17056 				ASSERT(mp != NULL);
17057 				DB_TYPE(mp) = M_PROTO;
17058 				((union T_primitives *)mp->b_rptr)->type =
17059 				    T_DISCON_IND;
17060 				tdi = (struct T_discon_ind *)mp->b_rptr;
17061 				if (tcp->tcp_issocket) {
17062 					tdi->DISCON_reason = ECONNREFUSED;
17063 					tdi->SEQ_number = 0;
17064 				} else {
17065 					tdi->DISCON_reason = ENOPROTOOPT;
17066 					tdi->SEQ_number =
17067 					    tcp->tcp_conn_req_seqnum;
17068 				}
17069 				mp->b_wptr = mp->b_rptr +
17070 				    sizeof (struct T_discon_ind);
17071 				putnext(q, mp);
17072 				return;
17073 			}
17074 		}
17075 		if (tcp->tcp_hard_binding) {
17076 			tcp->tcp_hard_binding = B_FALSE;
17077 			tcp->tcp_hard_bound = B_TRUE;
17078 		}
17079 		return;
17080 	}
17081 
17082 	if (tcpopt->to_flags & TCPOPT_BOUNDIF) {
17083 		int boundif = tcpopt->to_boundif;
17084 		uint_t len = sizeof (int);
17085 
17086 		(void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6,
17087 		    IPV6_BOUND_IF, len, (uchar_t *)&boundif, &len,
17088 		    (uchar_t *)&boundif, NULL, tcp->tcp_cred, NULL);
17089 	}
17090 	if (tcpopt->to_flags & TCPOPT_RECVPKTINFO) {
17091 		uint_t on = 1;
17092 		uint_t len = sizeof (uint_t);
17093 		(void) tcp_opt_set(connp, SETFN_OPTCOM_NEGOTIATE, IPPROTO_IPV6,
17094 		    IPV6_RECVPKTINFO, len, (uchar_t *)&on, &len,
17095 		    (uchar_t *)&on, NULL, tcp->tcp_cred, NULL);
17096 	}
17097 
17098 	/*
17099 	 * For a loopback connection with tcp_direct_sockfs on, note that
17100 	 * we don't have to protect tcp_rcv_list yet because synchronous
17101 	 * streams has not yet been enabled and tcp_fuse_rrw() cannot
17102 	 * possibly race with us.
17103 	 */
17104 
17105 	/*
17106 	 * Set the max window size (tcp_rq->q_hiwat) of the acceptor
17107 	 * properly.  This is the first time we know of the acceptor'
17108 	 * queue.  So we do it here.
17109 	 *
17110 	 * XXX
17111 	 */
17112 	if (tcp->tcp_rcv_list == NULL) {
17113 		/*
17114 		 * Recv queue is empty, tcp_rwnd should not have changed.
17115 		 * That means it should be equal to the listener's tcp_rwnd.
17116 		 */
17117 		if (!IPCL_IS_NONSTR(connp))
17118 			tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd;
17119 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd;
17120 	} else {
17121 #ifdef DEBUG
17122 		mblk_t *tmp;
17123 		mblk_t	*mp1;
17124 		uint_t	cnt = 0;
17125 
17126 		mp1 = tcp->tcp_rcv_list;
17127 		while ((tmp = mp1) != NULL) {
17128 			mp1 = tmp->b_next;
17129 			cnt += msgdsize(tmp);
17130 		}
17131 		ASSERT(cnt != 0 && tcp->tcp_rcv_cnt == cnt);
17132 #endif
17133 		/* There is some data, add them back to get the max. */
17134 		if (!IPCL_IS_NONSTR(connp))
17135 			tcp->tcp_rq->q_hiwat = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17136 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd + tcp->tcp_rcv_cnt;
17137 	}
17138 	/*
17139 	 * This is the first time we run on the correct
17140 	 * queue after tcp_accept. So fix all the q parameters
17141 	 * here.
17142 	 */
17143 	sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF;
17144 	sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
17145 
17146 	/*
17147 	 * Record the stream head's high water mark for this endpoint;
17148 	 * this is used for flow-control purposes.
17149 	 */
17150 	sopp_rxhiwat = tcp->tcp_fused ?
17151 	    tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) :
17152 	    MAX(tcp->tcp_recv_hiwater, tcps->tcps_sth_rcv_hiwat);
17153 
17154 	/*
17155 	 * Determine what write offset value to use depending on SACK and
17156 	 * whether the endpoint is fused or not.
17157 	 */
17158 	if (tcp->tcp_fused) {
17159 		ASSERT(tcp->tcp_loopback);
17160 		ASSERT(tcp->tcp_loopback_peer != NULL);
17161 		/*
17162 		 * For fused tcp loopback, set the stream head's write
17163 		 * offset value to zero since we won't be needing any room
17164 		 * for TCP/IP headers.  This would also improve performance
17165 		 * since it would reduce the amount of work done by kmem.
17166 		 * Non-fused tcp loopback case is handled separately below.
17167 		 */
17168 		sopp_wroff = 0;
17169 		/*
17170 		 * Update the peer's transmit parameters according to
17171 		 * our recently calculated high water mark value.
17172 		 */
17173 		(void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE);
17174 	} else if (tcp->tcp_snd_sack_ok) {
17175 		sopp_wroff = tcp->tcp_hdr_len + TCPOPT_MAX_SACK_LEN +
17176 		    (tcp->tcp_loopback ? 0 : tcps->tcps_wroff_xtra);
17177 	} else {
17178 		sopp_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
17179 		    tcps->tcps_wroff_xtra);
17180 	}
17181 
17182 	/*
17183 	 * If this is endpoint is handling SSL, then reserve extra
17184 	 * offset and space at the end.
17185 	 * Also have the stream head allocate SSL3_MAX_RECORD_LEN packets,
17186 	 * overriding the previous setting. The extra cost of signing and
17187 	 * encrypting multiple MSS-size records (12 of them with Ethernet),
17188 	 * instead of a single contiguous one by the stream head
17189 	 * largely outweighs the statistical reduction of ACKs, when
17190 	 * applicable. The peer will also save on decryption and verification
17191 	 * costs.
17192 	 */
17193 	if (tcp->tcp_kssl_ctx != NULL) {
17194 		sopp_wroff += SSL3_WROFFSET;
17195 
17196 		sopp_flags |= SOCKOPT_TAIL;
17197 		sopp_tail = SSL3_MAX_TAIL_LEN;
17198 
17199 		sopp_flags |= SOCKOPT_ZCOPY;
17200 		sopp_copyopt = ZCVMUNSAFE;
17201 
17202 		sopp_maxblk = SSL3_MAX_RECORD_LEN;
17203 	}
17204 
17205 	/* Send the options up */
17206 	if (IPCL_IS_NONSTR(connp)) {
17207 		struct sock_proto_props sopp;
17208 
17209 		sopp.sopp_flags = sopp_flags;
17210 		sopp.sopp_wroff = sopp_wroff;
17211 		sopp.sopp_maxblk = sopp_maxblk;
17212 		sopp.sopp_rxhiwat = sopp_rxhiwat;
17213 		if (sopp_flags & SOCKOPT_TAIL) {
17214 			ASSERT(tcp->tcp_kssl_ctx != NULL);
17215 			ASSERT(sopp_flags & SOCKOPT_ZCOPY);
17216 			sopp.sopp_tail = sopp_tail;
17217 			sopp.sopp_zcopyflag = sopp_copyopt;
17218 		}
17219 		(*connp->conn_upcalls->su_set_proto_props)
17220 		    (connp->conn_upper_handle, &sopp);
17221 	} else {
17222 		struct stroptions *stropt;
17223 		mblk_t *stropt_mp = allocb(sizeof (struct stroptions), BPRI_HI);
17224 		if (stropt_mp == NULL) {
17225 			tcp_err_ack(tcp, mp, TSYSERR, ENOMEM);
17226 			return;
17227 		}
17228 		DB_TYPE(stropt_mp) = M_SETOPTS;
17229 		stropt = (struct stroptions *)stropt_mp->b_rptr;
17230 		stropt_mp->b_wptr += sizeof (struct stroptions);
17231 		stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK;
17232 		stropt->so_hiwat = sopp_rxhiwat;
17233 		stropt->so_wroff = sopp_wroff;
17234 		stropt->so_maxblk = sopp_maxblk;
17235 
17236 		if (sopp_flags & SOCKOPT_TAIL) {
17237 			ASSERT(tcp->tcp_kssl_ctx != NULL);
17238 
17239 			stropt->so_flags |= SO_TAIL | SO_COPYOPT;
17240 			stropt->so_tail = sopp_tail;
17241 			stropt->so_copyopt = sopp_copyopt;
17242 		}
17243 
17244 		/* Send the options up */
17245 		putnext(q, stropt_mp);
17246 	}
17247 
17248 	freemsg(mp);
17249 	/*
17250 	 * Pass up any data and/or a fin that has been received.
17251 	 *
17252 	 * Adjust receive window in case it had decreased
17253 	 * (because there is data <=> tcp_rcv_list != NULL)
17254 	 * while the connection was detached. Note that
17255 	 * in case the eager was flow-controlled, w/o this
17256 	 * code, the rwnd may never open up again!
17257 	 */
17258 	if (tcp->tcp_rcv_list != NULL) {
17259 		if (IPCL_IS_NONSTR(connp)) {
17260 			mblk_t *mp;
17261 			int space_left;
17262 			int error;
17263 			boolean_t push = B_TRUE;
17264 
17265 			if (!tcp->tcp_fused && (*connp->conn_upcalls->su_recv)
17266 			    (connp->conn_upper_handle, NULL, 0, 0, &error,
17267 			    &push) >= 0) {
17268 				tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
17269 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17270 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
17271 					tcp_xmit_ctl(NULL,
17272 					    tcp, (tcp->tcp_swnd == 0) ?
17273 					    tcp->tcp_suna : tcp->tcp_snxt,
17274 					    tcp->tcp_rnxt, TH_ACK);
17275 				}
17276 			}
17277 			while ((mp = tcp->tcp_rcv_list) != NULL) {
17278 				push = B_TRUE;
17279 				tcp->tcp_rcv_list = mp->b_next;
17280 				mp->b_next = NULL;
17281 				space_left = (*connp->conn_upcalls->su_recv)
17282 				    (connp->conn_upper_handle, mp, msgdsize(mp),
17283 				    0, &error, &push);
17284 				if (space_left < 0) {
17285 					/*
17286 					 * We should never be in middle of a
17287 					 * fallback, the squeue guarantees that.
17288 					 */
17289 					ASSERT(error != EOPNOTSUPP);
17290 				}
17291 			}
17292 			tcp->tcp_rcv_last_head = NULL;
17293 			tcp->tcp_rcv_last_tail = NULL;
17294 			tcp->tcp_rcv_cnt = 0;
17295 		} else {
17296 			/* We drain directly in case of fused tcp loopback */
17297 
17298 			if (!tcp->tcp_fused && canputnext(q)) {
17299 				tcp->tcp_rwnd = q->q_hiwat;
17300 				if (tcp->tcp_state >= TCPS_ESTABLISHED &&
17301 				    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
17302 					tcp_xmit_ctl(NULL,
17303 					    tcp, (tcp->tcp_swnd == 0) ?
17304 					    tcp->tcp_suna : tcp->tcp_snxt,
17305 					    tcp->tcp_rnxt, TH_ACK);
17306 				}
17307 			}
17308 
17309 			(void) tcp_rcv_drain(tcp);
17310 		}
17311 
17312 		/*
17313 		 * For fused tcp loopback, back-enable peer endpoint
17314 		 * if it's currently flow-controlled.
17315 		 */
17316 		if (tcp->tcp_fused) {
17317 			tcp_t *peer_tcp = tcp->tcp_loopback_peer;
17318 
17319 			ASSERT(peer_tcp != NULL);
17320 			ASSERT(peer_tcp->tcp_fused);
17321 			/*
17322 			 * In order to change the peer's tcp_flow_stopped,
17323 			 * we need to take locks for both end points. The
17324 			 * highest address is taken first.
17325 			 */
17326 			if (peer_tcp > tcp) {
17327 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
17328 				mutex_enter(&tcp->tcp_non_sq_lock);
17329 			} else {
17330 				mutex_enter(&tcp->tcp_non_sq_lock);
17331 				mutex_enter(&peer_tcp->tcp_non_sq_lock);
17332 			}
17333 			if (peer_tcp->tcp_flow_stopped) {
17334 				tcp_clrqfull(peer_tcp);
17335 				TCP_STAT(tcps, tcp_fusion_backenabled);
17336 			}
17337 			mutex_exit(&peer_tcp->tcp_non_sq_lock);
17338 			mutex_exit(&tcp->tcp_non_sq_lock);
17339 		}
17340 	}
17341 	ASSERT(tcp->tcp_rcv_list == NULL || tcp->tcp_fused_sigurg);
17342 	if (tcp->tcp_fin_rcvd && !tcp->tcp_ordrel_done) {
17343 		tcp->tcp_ordrel_done = B_TRUE;
17344 		if (IPCL_IS_NONSTR(connp)) {
17345 			ASSERT(tcp->tcp_ordrel_mp == NULL);
17346 			(*connp->conn_upcalls->su_opctl)(
17347 			    connp->conn_upper_handle,
17348 			    SOCK_OPCTL_SHUT_RECV, 0);
17349 		} else {
17350 			mp = tcp->tcp_ordrel_mp;
17351 			tcp->tcp_ordrel_mp = NULL;
17352 			putnext(q, mp);
17353 		}
17354 	}
17355 	if (tcp->tcp_hard_binding) {
17356 		tcp->tcp_hard_binding = B_FALSE;
17357 		tcp->tcp_hard_bound = B_TRUE;
17358 	}
17359 
17360 	/* We can enable synchronous streams for STREAMS tcp endpoint now */
17361 	if (tcp->tcp_fused && !IPCL_IS_NONSTR(connp) &&
17362 	    tcp->tcp_loopback_peer != NULL &&
17363 	    !IPCL_IS_NONSTR(tcp->tcp_loopback_peer->tcp_connp)) {
17364 		tcp_fuse_syncstr_enable_pair(tcp);
17365 	}
17366 
17367 	if (tcp->tcp_ka_enabled) {
17368 		tcp->tcp_ka_last_intrvl = 0;
17369 		tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_killer,
17370 		    MSEC_TO_TICK(tcp->tcp_ka_interval));
17371 	}
17372 
17373 	/*
17374 	 * At this point, eager is fully established and will
17375 	 * have the following references -
17376 	 *
17377 	 * 2 references for connection to exist (1 for TCP and 1 for IP).
17378 	 * 1 reference for the squeue which will be dropped by the squeue as
17379 	 *	soon as this function returns.
17380 	 * There will be 1 additonal reference for being in classifier
17381 	 *	hash list provided something bad hasn't happened.
17382 	 */
17383 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
17384 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
17385 }
17386 
17387 /*
17388  * The function called through squeue to get behind listener's perimeter to
17389  * send a deffered conn_ind.
17390  */
17391 /* ARGSUSED */
17392 void
17393 tcp_send_pending(void *arg, mblk_t *mp, void *arg2)
17394 {
17395 	conn_t	*connp = (conn_t *)arg;
17396 	tcp_t *listener = connp->conn_tcp;
17397 	struct T_conn_ind *conn_ind;
17398 	tcp_t *tcp;
17399 
17400 	conn_ind = (struct T_conn_ind *)mp->b_rptr;
17401 	bcopy(mp->b_rptr + conn_ind->OPT_offset, &tcp,
17402 	    conn_ind->OPT_length);
17403 
17404 	if (listener->tcp_state == TCPS_CLOSED ||
17405 	    TCP_IS_DETACHED(listener)) {
17406 		/*
17407 		 * If listener has closed, it would have caused a
17408 		 * a cleanup/blowoff to happen for the eager.
17409 		 *
17410 		 * We need to drop the ref on eager that was put
17411 		 * tcp_rput_data() before trying to send the conn_ind
17412 		 * to listener. The conn_ind was deferred in tcp_send_conn_ind
17413 		 * and tcp_wput_accept() is sending this deferred conn_ind but
17414 		 * listener is closed so we drop the ref.
17415 		 */
17416 		CONN_DEC_REF(tcp->tcp_connp);
17417 		freemsg(mp);
17418 		return;
17419 	}
17420 
17421 	tcp_ulp_newconn(connp, tcp->tcp_connp, mp);
17422 }
17423 
17424 /* ARGSUSED */
17425 static int
17426 tcp_accept_common(conn_t *lconnp, conn_t *econnp, cred_t *cr)
17427 {
17428 	tcp_t *listener, *eager;
17429 	mblk_t *opt_mp;
17430 	struct tcp_options *tcpopt;
17431 
17432 	listener = lconnp->conn_tcp;
17433 	ASSERT(listener->tcp_state == TCPS_LISTEN);
17434 	eager = econnp->conn_tcp;
17435 	ASSERT(eager->tcp_listener != NULL);
17436 
17437 	ASSERT(eager->tcp_rq != NULL);
17438 
17439 	opt_mp = allocb(sizeof (struct tcp_options), BPRI_HI);
17440 	if (opt_mp == NULL) {
17441 		return (-TPROTO);
17442 	}
17443 	bzero((char *)opt_mp->b_rptr, sizeof (struct tcp_options));
17444 	eager->tcp_issocket = B_TRUE;
17445 
17446 	econnp->conn_zoneid = listener->tcp_connp->conn_zoneid;
17447 	econnp->conn_allzones = listener->tcp_connp->conn_allzones;
17448 	ASSERT(econnp->conn_netstack ==
17449 	    listener->tcp_connp->conn_netstack);
17450 	ASSERT(eager->tcp_tcps == listener->tcp_tcps);
17451 
17452 	/* Put the ref for IP */
17453 	CONN_INC_REF(econnp);
17454 
17455 	/*
17456 	 * We should have minimum of 3 references on the conn
17457 	 * at this point. One each for TCP and IP and one for
17458 	 * the T_conn_ind that was sent up when the 3-way handshake
17459 	 * completed. In the normal case we would also have another
17460 	 * reference (making a total of 4) for the conn being in the
17461 	 * classifier hash list. However the eager could have received
17462 	 * an RST subsequently and tcp_closei_local could have removed
17463 	 * the eager from the classifier hash list, hence we can't
17464 	 * assert that reference.
17465 	 */
17466 	ASSERT(econnp->conn_ref >= 3);
17467 
17468 	opt_mp->b_datap->db_type = M_SETOPTS;
17469 	opt_mp->b_wptr += sizeof (struct tcp_options);
17470 
17471 	/*
17472 	 * Prepare for inheriting IPV6_BOUND_IF and IPV6_RECVPKTINFO
17473 	 * from listener to acceptor.
17474 	 */
17475 	tcpopt = (struct tcp_options *)opt_mp->b_rptr;
17476 	tcpopt->to_flags = 0;
17477 
17478 	if (listener->tcp_bound_if != 0) {
17479 		tcpopt->to_flags |= TCPOPT_BOUNDIF;
17480 		tcpopt->to_boundif = listener->tcp_bound_if;
17481 	}
17482 	if (listener->tcp_ipv6_recvancillary & TCP_IPV6_RECVPKTINFO) {
17483 		tcpopt->to_flags |= TCPOPT_RECVPKTINFO;
17484 	}
17485 
17486 	mutex_enter(&listener->tcp_eager_lock);
17487 	if (listener->tcp_eager_prev_q0->tcp_conn_def_q0) {
17488 
17489 		tcp_t *tail;
17490 		tcp_t *tcp;
17491 		mblk_t *mp1;
17492 
17493 		tcp = listener->tcp_eager_prev_q0;
17494 		/*
17495 		 * listener->tcp_eager_prev_q0 points to the TAIL of the
17496 		 * deferred T_conn_ind queue. We need to get to the head
17497 		 * of the queue in order to send up T_conn_ind the same
17498 		 * order as how the 3WHS is completed.
17499 		 */
17500 		while (tcp != listener) {
17501 			if (!tcp->tcp_eager_prev_q0->tcp_conn_def_q0 &&
17502 			    !tcp->tcp_kssl_pending)
17503 				break;
17504 			else
17505 				tcp = tcp->tcp_eager_prev_q0;
17506 		}
17507 		/* None of the pending eagers can be sent up now */
17508 		if (tcp == listener)
17509 			goto no_more_eagers;
17510 
17511 		mp1 = tcp->tcp_conn.tcp_eager_conn_ind;
17512 		tcp->tcp_conn.tcp_eager_conn_ind = NULL;
17513 		/* Move from q0 to q */
17514 		ASSERT(listener->tcp_conn_req_cnt_q0 > 0);
17515 		listener->tcp_conn_req_cnt_q0--;
17516 		listener->tcp_conn_req_cnt_q++;
17517 		tcp->tcp_eager_next_q0->tcp_eager_prev_q0 =
17518 		    tcp->tcp_eager_prev_q0;
17519 		tcp->tcp_eager_prev_q0->tcp_eager_next_q0 =
17520 		    tcp->tcp_eager_next_q0;
17521 		tcp->tcp_eager_prev_q0 = NULL;
17522 		tcp->tcp_eager_next_q0 = NULL;
17523 		tcp->tcp_conn_def_q0 = B_FALSE;
17524 
17525 		/* Make sure the tcp isn't in the list of droppables */
17526 		ASSERT(tcp->tcp_eager_next_drop_q0 == NULL &&
17527 		    tcp->tcp_eager_prev_drop_q0 == NULL);
17528 
17529 		/*
17530 		 * Insert at end of the queue because sockfs sends
17531 		 * down T_CONN_RES in chronological order. Leaving
17532 		 * the older conn indications at front of the queue
17533 		 * helps reducing search time.
17534 		 */
17535 		tail = listener->tcp_eager_last_q;
17536 		if (tail != NULL) {
17537 			tail->tcp_eager_next_q = tcp;
17538 		} else {
17539 			listener->tcp_eager_next_q = tcp;
17540 		}
17541 		listener->tcp_eager_last_q = tcp;
17542 		tcp->tcp_eager_next_q = NULL;
17543 
17544 		/* Need to get inside the listener perimeter */
17545 		CONN_INC_REF(listener->tcp_connp);
17546 		SQUEUE_ENTER_ONE(listener->tcp_connp->conn_sqp, mp1,
17547 		    tcp_send_pending, listener->tcp_connp, SQ_FILL,
17548 		    SQTAG_TCP_SEND_PENDING);
17549 	}
17550 no_more_eagers:
17551 	tcp_eager_unlink(eager);
17552 	mutex_exit(&listener->tcp_eager_lock);
17553 
17554 	/*
17555 	 * At this point, the eager is detached from the listener
17556 	 * but we still have an extra refs on eager (apart from the
17557 	 * usual tcp references). The ref was placed in tcp_rput_data
17558 	 * before sending the conn_ind in tcp_send_conn_ind.
17559 	 * The ref will be dropped in tcp_accept_finish().
17560 	 */
17561 	SQUEUE_ENTER_ONE(econnp->conn_sqp, opt_mp, tcp_accept_finish,
17562 	    econnp, SQ_NODRAIN, SQTAG_TCP_ACCEPT_FINISH_Q0);
17563 	return (0);
17564 }
17565 
17566 int
17567 tcp_accept(sock_lower_handle_t lproto_handle,
17568     sock_lower_handle_t eproto_handle, sock_upper_handle_t sock_handle,
17569     cred_t *cr)
17570 {
17571 	conn_t *lconnp, *econnp;
17572 	tcp_t *listener, *eager;
17573 	tcp_stack_t	*tcps;
17574 
17575 	lconnp = (conn_t *)lproto_handle;
17576 	listener = lconnp->conn_tcp;
17577 	ASSERT(listener->tcp_state == TCPS_LISTEN);
17578 	econnp = (conn_t *)eproto_handle;
17579 	eager = econnp->conn_tcp;
17580 	ASSERT(eager->tcp_listener != NULL);
17581 	tcps = eager->tcp_tcps;
17582 
17583 	/*
17584 	 * It is OK to manipulate these fields outside the eager's squeue
17585 	 * because they will not start being used until tcp_accept_finish
17586 	 * has been called.
17587 	 */
17588 	ASSERT(lconnp->conn_upper_handle != NULL);
17589 	ASSERT(econnp->conn_upper_handle == NULL);
17590 	econnp->conn_upper_handle = sock_handle;
17591 	econnp->conn_upcalls = lconnp->conn_upcalls;
17592 	ASSERT(IPCL_IS_NONSTR(econnp));
17593 	/*
17594 	 * Create helper stream if it is a non-TPI TCP connection.
17595 	 */
17596 	if (ip_create_helper_stream(econnp, tcps->tcps_ldi_ident)) {
17597 		ip1dbg(("tcp_accept: create of IP helper stream"
17598 		    " failed\n"));
17599 		return (EPROTO);
17600 	}
17601 	eager->tcp_rq = econnp->conn_rq;
17602 	eager->tcp_wq = econnp->conn_wq;
17603 
17604 	ASSERT(eager->tcp_rq != NULL);
17605 
17606 	return (tcp_accept_common(lconnp, econnp, cr));
17607 }
17608 
17609 
17610 /*
17611  * This is the STREAMS entry point for T_CONN_RES coming down on
17612  * Acceptor STREAM when  sockfs listener does accept processing.
17613  * Read the block comment on top of tcp_conn_request().
17614  */
17615 void
17616 tcp_tpi_accept(queue_t *q, mblk_t *mp)
17617 {
17618 	queue_t *rq = RD(q);
17619 	struct T_conn_res *conn_res;
17620 	tcp_t *eager;
17621 	tcp_t *listener;
17622 	struct T_ok_ack *ok;
17623 	t_scalar_t PRIM_type;
17624 	conn_t *econnp;
17625 	cred_t *cr;
17626 
17627 	ASSERT(DB_TYPE(mp) == M_PROTO);
17628 
17629 	/*
17630 	 * All Solaris components should pass a db_credp
17631 	 * for this TPI message, hence we ASSERT.
17632 	 * But in case there is some other M_PROTO that looks
17633 	 * like a TPI message sent by some other kernel
17634 	 * component, we check and return an error.
17635 	 */
17636 	cr = msg_getcred(mp, NULL);
17637 	ASSERT(cr != NULL);
17638 	if (cr == NULL) {
17639 		mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
17640 		if (mp != NULL)
17641 			putnext(rq, mp);
17642 		return;
17643 	}
17644 	conn_res = (struct T_conn_res *)mp->b_rptr;
17645 	ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX);
17646 	if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_conn_res)) {
17647 		mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17648 		if (mp != NULL)
17649 			putnext(rq, mp);
17650 		return;
17651 	}
17652 	switch (conn_res->PRIM_type) {
17653 	case O_T_CONN_RES:
17654 	case T_CONN_RES:
17655 		/*
17656 		 * We pass up an err ack if allocb fails. This will
17657 		 * cause sockfs to issue a T_DISCON_REQ which will cause
17658 		 * tcp_eager_blowoff to be called. sockfs will then call
17659 		 * rq->q_qinfo->qi_qclose to cleanup the acceptor stream.
17660 		 * we need to do the allocb up here because we have to
17661 		 * make sure rq->q_qinfo->qi_qclose still points to the
17662 		 * correct function (tcp_tpi_close_accept) in case allocb
17663 		 * fails.
17664 		 */
17665 		bcopy(mp->b_rptr + conn_res->OPT_offset,
17666 		    &eager, conn_res->OPT_length);
17667 		PRIM_type = conn_res->PRIM_type;
17668 		mp->b_datap->db_type = M_PCPROTO;
17669 		mp->b_wptr = mp->b_rptr + sizeof (struct T_ok_ack);
17670 		ok = (struct T_ok_ack *)mp->b_rptr;
17671 		ok->PRIM_type = T_OK_ACK;
17672 		ok->CORRECT_prim = PRIM_type;
17673 		econnp = eager->tcp_connp;
17674 		econnp->conn_dev = (dev_t)RD(q)->q_ptr;
17675 		econnp->conn_minor_arena = (vmem_t *)(WR(q)->q_ptr);
17676 		eager->tcp_rq = rq;
17677 		eager->tcp_wq = q;
17678 		rq->q_ptr = econnp;
17679 		rq->q_qinfo = &tcp_rinitv4;	/* No open - same as rinitv6 */
17680 		q->q_ptr = econnp;
17681 		q->q_qinfo = &tcp_winit;
17682 		listener = eager->tcp_listener;
17683 
17684 		if (tcp_accept_common(listener->tcp_connp,
17685 		    econnp, cr) < 0) {
17686 			mp = mi_tpi_err_ack_alloc(mp, TPROTO, 0);
17687 			if (mp != NULL)
17688 				putnext(rq, mp);
17689 			return;
17690 		}
17691 
17692 		/*
17693 		 * Send the new local address also up to sockfs. There
17694 		 * should already be enough space in the mp that came
17695 		 * down from soaccept().
17696 		 */
17697 		if (eager->tcp_family == AF_INET) {
17698 			sin_t *sin;
17699 
17700 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
17701 			    (sizeof (struct T_ok_ack) + sizeof (sin_t)));
17702 			sin = (sin_t *)mp->b_wptr;
17703 			mp->b_wptr += sizeof (sin_t);
17704 			sin->sin_family = AF_INET;
17705 			sin->sin_port = eager->tcp_lport;
17706 			sin->sin_addr.s_addr = eager->tcp_ipha->ipha_src;
17707 		} else {
17708 			sin6_t *sin6;
17709 
17710 			ASSERT((mp->b_datap->db_lim - mp->b_datap->db_base) >=
17711 			    sizeof (struct T_ok_ack) + sizeof (sin6_t));
17712 			sin6 = (sin6_t *)mp->b_wptr;
17713 			mp->b_wptr += sizeof (sin6_t);
17714 			sin6->sin6_family = AF_INET6;
17715 			sin6->sin6_port = eager->tcp_lport;
17716 			if (eager->tcp_ipversion == IPV4_VERSION) {
17717 				sin6->sin6_flowinfo = 0;
17718 				IN6_IPADDR_TO_V4MAPPED(
17719 				    eager->tcp_ipha->ipha_src,
17720 				    &sin6->sin6_addr);
17721 			} else {
17722 				ASSERT(eager->tcp_ip6h != NULL);
17723 				sin6->sin6_flowinfo =
17724 				    eager->tcp_ip6h->ip6_vcf &
17725 				    ~IPV6_VERS_AND_FLOW_MASK;
17726 				sin6->sin6_addr = eager->tcp_ip6h->ip6_src;
17727 			}
17728 			sin6->sin6_scope_id = 0;
17729 			sin6->__sin6_src_id = 0;
17730 		}
17731 
17732 		putnext(rq, mp);
17733 		return;
17734 	default:
17735 		mp = mi_tpi_err_ack_alloc(mp, TNOTSUPPORT, 0);
17736 		if (mp != NULL)
17737 			putnext(rq, mp);
17738 		return;
17739 	}
17740 }
17741 
17742 static int
17743 tcp_do_getsockname(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
17744 {
17745 	sin_t *sin = (sin_t *)sa;
17746 	sin6_t *sin6 = (sin6_t *)sa;
17747 
17748 	switch (tcp->tcp_family) {
17749 	case AF_INET:
17750 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
17751 
17752 		if (*salenp < sizeof (sin_t))
17753 			return (EINVAL);
17754 
17755 		*sin = sin_null;
17756 		sin->sin_family = AF_INET;
17757 		if (tcp->tcp_state >= TCPS_BOUND) {
17758 			sin->sin_port = tcp->tcp_lport;
17759 			sin->sin_addr.s_addr = tcp->tcp_ipha->ipha_src;
17760 		}
17761 		*salenp = sizeof (sin_t);
17762 		break;
17763 
17764 	case AF_INET6:
17765 		if (*salenp < sizeof (sin6_t))
17766 			return (EINVAL);
17767 
17768 		*sin6 = sin6_null;
17769 		sin6->sin6_family = AF_INET6;
17770 		if (tcp->tcp_state >= TCPS_BOUND) {
17771 			sin6->sin6_port = tcp->tcp_lport;
17772 			if (tcp->tcp_ipversion == IPV4_VERSION) {
17773 				IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
17774 				    &sin6->sin6_addr);
17775 			} else {
17776 				sin6->sin6_addr = tcp->tcp_ip6h->ip6_src;
17777 			}
17778 		}
17779 		*salenp = sizeof (sin6_t);
17780 		break;
17781 	}
17782 
17783 	return (0);
17784 }
17785 
17786 static int
17787 tcp_do_getpeername(tcp_t *tcp, struct sockaddr *sa, uint_t *salenp)
17788 {
17789 	sin_t *sin = (sin_t *)sa;
17790 	sin6_t *sin6 = (sin6_t *)sa;
17791 
17792 	if (tcp->tcp_state < TCPS_SYN_RCVD)
17793 		return (ENOTCONN);
17794 
17795 	switch (tcp->tcp_family) {
17796 	case AF_INET:
17797 		ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
17798 
17799 		if (*salenp < sizeof (sin_t))
17800 			return (EINVAL);
17801 
17802 		*sin = sin_null;
17803 		sin->sin_family = AF_INET;
17804 		sin->sin_port = tcp->tcp_fport;
17805 		IN6_V4MAPPED_TO_IPADDR(&tcp->tcp_remote_v6,
17806 		    sin->sin_addr.s_addr);
17807 		*salenp = sizeof (sin_t);
17808 		break;
17809 
17810 	case AF_INET6:
17811 		if (*salenp < sizeof (sin6_t))
17812 			return (EINVAL);
17813 
17814 		*sin6 = sin6_null;
17815 		sin6->sin6_family = AF_INET6;
17816 		sin6->sin6_port = tcp->tcp_fport;
17817 		sin6->sin6_addr = tcp->tcp_remote_v6;
17818 		if (tcp->tcp_ipversion == IPV6_VERSION) {
17819 			sin6->sin6_flowinfo = tcp->tcp_ip6h->ip6_vcf &
17820 			    ~IPV6_VERS_AND_FLOW_MASK;
17821 		}
17822 		*salenp = sizeof (sin6_t);
17823 		break;
17824 	}
17825 
17826 	return (0);
17827 }
17828 
17829 /*
17830  * Handle special out-of-band ioctl requests (see PSARC/2008/265).
17831  */
17832 static void
17833 tcp_wput_cmdblk(queue_t *q, mblk_t *mp)
17834 {
17835 	void	*data;
17836 	mblk_t	*datamp = mp->b_cont;
17837 	tcp_t	*tcp = Q_TO_TCP(q);
17838 	cmdblk_t *cmdp = (cmdblk_t *)mp->b_rptr;
17839 
17840 	if (datamp == NULL || MBLKL(datamp) < cmdp->cb_len) {
17841 		cmdp->cb_error = EPROTO;
17842 		qreply(q, mp);
17843 		return;
17844 	}
17845 
17846 	data = datamp->b_rptr;
17847 
17848 	switch (cmdp->cb_cmd) {
17849 	case TI_GETPEERNAME:
17850 		cmdp->cb_error = tcp_do_getpeername(tcp, data, &cmdp->cb_len);
17851 		break;
17852 	case TI_GETMYNAME:
17853 		cmdp->cb_error = tcp_do_getsockname(tcp, data, &cmdp->cb_len);
17854 		break;
17855 	default:
17856 		cmdp->cb_error = EINVAL;
17857 		break;
17858 	}
17859 
17860 	qreply(q, mp);
17861 }
17862 
17863 void
17864 tcp_wput(queue_t *q, mblk_t *mp)
17865 {
17866 	conn_t	*connp = Q_TO_CONN(q);
17867 	tcp_t	*tcp;
17868 	void (*output_proc)();
17869 	t_scalar_t type;
17870 	uchar_t *rptr;
17871 	struct iocblk	*iocp;
17872 	size_t size;
17873 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
17874 
17875 	ASSERT(connp->conn_ref >= 2);
17876 
17877 	switch (DB_TYPE(mp)) {
17878 	case M_DATA:
17879 		tcp = connp->conn_tcp;
17880 		ASSERT(tcp != NULL);
17881 
17882 		size = msgdsize(mp);
17883 
17884 		mutex_enter(&tcp->tcp_non_sq_lock);
17885 		tcp->tcp_squeue_bytes += size;
17886 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
17887 			tcp_setqfull(tcp);
17888 		}
17889 		mutex_exit(&tcp->tcp_non_sq_lock);
17890 
17891 		CONN_INC_REF(connp);
17892 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output, connp,
17893 		    tcp_squeue_flag, SQTAG_TCP_OUTPUT);
17894 		return;
17895 
17896 	case M_CMD:
17897 		tcp_wput_cmdblk(q, mp);
17898 		return;
17899 
17900 	case M_PROTO:
17901 	case M_PCPROTO:
17902 		/*
17903 		 * if it is a snmp message, don't get behind the squeue
17904 		 */
17905 		tcp = connp->conn_tcp;
17906 		rptr = mp->b_rptr;
17907 		if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
17908 			type = ((union T_primitives *)rptr)->type;
17909 		} else {
17910 			if (tcp->tcp_debug) {
17911 				(void) strlog(TCP_MOD_ID, 0, 1,
17912 				    SL_ERROR|SL_TRACE,
17913 				    "tcp_wput_proto, dropping one...");
17914 			}
17915 			freemsg(mp);
17916 			return;
17917 		}
17918 		if (type == T_SVR4_OPTMGMT_REQ) {
17919 			/*
17920 			 * All Solaris components should pass a db_credp
17921 			 * for this TPI message, hence we ASSERT.
17922 			 * But in case there is some other M_PROTO that looks
17923 			 * like a TPI message sent by some other kernel
17924 			 * component, we check and return an error.
17925 			 */
17926 			cred_t	*cr = msg_getcred(mp, NULL);
17927 
17928 			ASSERT(cr != NULL);
17929 			if (cr == NULL) {
17930 				tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
17931 				return;
17932 			}
17933 			if (snmpcom_req(q, mp, tcp_snmp_set, ip_snmp_get,
17934 			    cr)) {
17935 				/*
17936 				 * This was a SNMP request
17937 				 */
17938 				return;
17939 			} else {
17940 				output_proc = tcp_wput_proto;
17941 			}
17942 		} else {
17943 			output_proc = tcp_wput_proto;
17944 		}
17945 		break;
17946 	case M_IOCTL:
17947 		/*
17948 		 * Most ioctls can be processed right away without going via
17949 		 * squeues - process them right here. Those that do require
17950 		 * squeue (currently TCP_IOC_DEFAULT_Q and _SIOCSOCKFALLBACK)
17951 		 * are processed by tcp_wput_ioctl().
17952 		 */
17953 		iocp = (struct iocblk *)mp->b_rptr;
17954 		tcp = connp->conn_tcp;
17955 
17956 		switch (iocp->ioc_cmd) {
17957 		case TCP_IOC_ABORT_CONN:
17958 			tcp_ioctl_abort_conn(q, mp);
17959 			return;
17960 		case TI_GETPEERNAME:
17961 		case TI_GETMYNAME:
17962 			mi_copyin(q, mp, NULL,
17963 			    SIZEOF_STRUCT(strbuf, iocp->ioc_flag));
17964 			return;
17965 		case ND_SET:
17966 			/* nd_getset does the necessary checks */
17967 		case ND_GET:
17968 			if (!nd_getset(q, tcps->tcps_g_nd, mp)) {
17969 				CALL_IP_WPUT(connp, q, mp);
17970 				return;
17971 			}
17972 			qreply(q, mp);
17973 			return;
17974 		case TCP_IOC_DEFAULT_Q:
17975 			/*
17976 			 * Wants to be the default wq. Check the credentials
17977 			 * first, the rest is executed via squeue.
17978 			 */
17979 			if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
17980 				iocp->ioc_error = EPERM;
17981 				iocp->ioc_count = 0;
17982 				mp->b_datap->db_type = M_IOCACK;
17983 				qreply(q, mp);
17984 				return;
17985 			}
17986 			output_proc = tcp_wput_ioctl;
17987 			break;
17988 		default:
17989 			output_proc = tcp_wput_ioctl;
17990 			break;
17991 		}
17992 		break;
17993 	default:
17994 		output_proc = tcp_wput_nondata;
17995 		break;
17996 	}
17997 
17998 	CONN_INC_REF(connp);
17999 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, output_proc, connp,
18000 	    tcp_squeue_flag, SQTAG_TCP_WPUT_OTHER);
18001 }
18002 
18003 /*
18004  * Initial STREAMS write side put() procedure for sockets. It tries to
18005  * handle the T_CAPABILITY_REQ which sockfs sends down while setting
18006  * up the socket without using the squeue. Non T_CAPABILITY_REQ messages
18007  * are handled by tcp_wput() as usual.
18008  *
18009  * All further messages will also be handled by tcp_wput() because we cannot
18010  * be sure that the above short cut is safe later.
18011  */
18012 static void
18013 tcp_wput_sock(queue_t *wq, mblk_t *mp)
18014 {
18015 	conn_t			*connp = Q_TO_CONN(wq);
18016 	tcp_t			*tcp = connp->conn_tcp;
18017 	struct T_capability_req	*car = (struct T_capability_req *)mp->b_rptr;
18018 
18019 	ASSERT(wq->q_qinfo == &tcp_sock_winit);
18020 	wq->q_qinfo = &tcp_winit;
18021 
18022 	ASSERT(IPCL_IS_TCP(connp));
18023 	ASSERT(TCP_IS_SOCKET(tcp));
18024 
18025 	if (DB_TYPE(mp) == M_PCPROTO &&
18026 	    MBLKL(mp) == sizeof (struct T_capability_req) &&
18027 	    car->PRIM_type == T_CAPABILITY_REQ) {
18028 		tcp_capability_req(tcp, mp);
18029 		return;
18030 	}
18031 
18032 	tcp_wput(wq, mp);
18033 }
18034 
18035 /* ARGSUSED */
18036 static void
18037 tcp_wput_fallback(queue_t *wq, mblk_t *mp)
18038 {
18039 #ifdef DEBUG
18040 	cmn_err(CE_CONT, "tcp_wput_fallback: Message during fallback \n");
18041 #endif
18042 	freemsg(mp);
18043 }
18044 
18045 static boolean_t
18046 tcp_zcopy_check(tcp_t *tcp)
18047 {
18048 	conn_t	*connp = tcp->tcp_connp;
18049 	ire_t	*ire;
18050 	boolean_t	zc_enabled = B_FALSE;
18051 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18052 
18053 	if (do_tcpzcopy == 2)
18054 		zc_enabled = B_TRUE;
18055 	else if (tcp->tcp_ipversion == IPV4_VERSION &&
18056 	    IPCL_IS_CONNECTED(connp) &&
18057 	    (connp->conn_flags & IPCL_CHECK_POLICY) == 0 &&
18058 	    connp->conn_dontroute == 0 &&
18059 	    !connp->conn_nexthop_set &&
18060 	    connp->conn_outgoing_ill == NULL &&
18061 	    do_tcpzcopy == 1) {
18062 		/*
18063 		 * the checks above  closely resemble the fast path checks
18064 		 * in tcp_send_data().
18065 		 */
18066 		mutex_enter(&connp->conn_lock);
18067 		ire = connp->conn_ire_cache;
18068 		ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18069 		if (ire != NULL && !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18070 			IRE_REFHOLD(ire);
18071 			if (ire->ire_stq != NULL) {
18072 				ill_t	*ill = (ill_t *)ire->ire_stq->q_ptr;
18073 
18074 				zc_enabled = ill && (ill->ill_capabilities &
18075 				    ILL_CAPAB_ZEROCOPY) &&
18076 				    (ill->ill_zerocopy_capab->
18077 				    ill_zerocopy_flags != 0);
18078 			}
18079 			IRE_REFRELE(ire);
18080 		}
18081 		mutex_exit(&connp->conn_lock);
18082 	}
18083 	tcp->tcp_snd_zcopy_on = zc_enabled;
18084 	if (!TCP_IS_DETACHED(tcp)) {
18085 		if (zc_enabled) {
18086 			(void) proto_set_tx_copyopt(tcp->tcp_rq, connp,
18087 			    ZCVMSAFE);
18088 			TCP_STAT(tcps, tcp_zcopy_on);
18089 		} else {
18090 			(void) proto_set_tx_copyopt(tcp->tcp_rq, connp,
18091 			    ZCVMUNSAFE);
18092 			TCP_STAT(tcps, tcp_zcopy_off);
18093 		}
18094 	}
18095 	return (zc_enabled);
18096 }
18097 
18098 static mblk_t *
18099 tcp_zcopy_disable(tcp_t *tcp, mblk_t *bp)
18100 {
18101 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18102 
18103 	if (do_tcpzcopy == 2)
18104 		return (bp);
18105 	else if (tcp->tcp_snd_zcopy_on) {
18106 		tcp->tcp_snd_zcopy_on = B_FALSE;
18107 		if (!TCP_IS_DETACHED(tcp)) {
18108 			(void) proto_set_tx_copyopt(tcp->tcp_rq, tcp->tcp_connp,
18109 			    ZCVMUNSAFE);
18110 			TCP_STAT(tcps, tcp_zcopy_disable);
18111 		}
18112 	}
18113 	return (tcp_zcopy_backoff(tcp, bp, 0));
18114 }
18115 
18116 /*
18117  * Backoff from a zero-copy mblk by copying data to a new mblk and freeing
18118  * the original desballoca'ed segmapped mblk.
18119  */
18120 static mblk_t *
18121 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, int fix_xmitlist)
18122 {
18123 	mblk_t *head, *tail, *nbp;
18124 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18125 
18126 	if (IS_VMLOANED_MBLK(bp)) {
18127 		TCP_STAT(tcps, tcp_zcopy_backoff);
18128 		if ((head = copyb(bp)) == NULL) {
18129 			/* fail to backoff; leave it for the next backoff */
18130 			tcp->tcp_xmit_zc_clean = B_FALSE;
18131 			return (bp);
18132 		}
18133 		if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18134 			if (fix_xmitlist)
18135 				tcp_zcopy_notify(tcp);
18136 			else
18137 				head->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18138 		}
18139 		nbp = bp->b_cont;
18140 		if (fix_xmitlist) {
18141 			head->b_prev = bp->b_prev;
18142 			head->b_next = bp->b_next;
18143 			if (tcp->tcp_xmit_tail == bp)
18144 				tcp->tcp_xmit_tail = head;
18145 		}
18146 		bp->b_next = NULL;
18147 		bp->b_prev = NULL;
18148 		freeb(bp);
18149 	} else {
18150 		head = bp;
18151 		nbp = bp->b_cont;
18152 	}
18153 	tail = head;
18154 	while (nbp) {
18155 		if (IS_VMLOANED_MBLK(nbp)) {
18156 			TCP_STAT(tcps, tcp_zcopy_backoff);
18157 			if ((tail->b_cont = copyb(nbp)) == NULL) {
18158 				tcp->tcp_xmit_zc_clean = B_FALSE;
18159 				tail->b_cont = nbp;
18160 				return (head);
18161 			}
18162 			tail = tail->b_cont;
18163 			if (nbp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) {
18164 				if (fix_xmitlist)
18165 					tcp_zcopy_notify(tcp);
18166 				else
18167 					tail->b_datap->db_struioflag |=
18168 					    STRUIO_ZCNOTIFY;
18169 			}
18170 			bp = nbp;
18171 			nbp = nbp->b_cont;
18172 			if (fix_xmitlist) {
18173 				tail->b_prev = bp->b_prev;
18174 				tail->b_next = bp->b_next;
18175 				if (tcp->tcp_xmit_tail == bp)
18176 					tcp->tcp_xmit_tail = tail;
18177 			}
18178 			bp->b_next = NULL;
18179 			bp->b_prev = NULL;
18180 			freeb(bp);
18181 		} else {
18182 			tail->b_cont = nbp;
18183 			tail = nbp;
18184 			nbp = nbp->b_cont;
18185 		}
18186 	}
18187 	if (fix_xmitlist) {
18188 		tcp->tcp_xmit_last = tail;
18189 		tcp->tcp_xmit_zc_clean = B_TRUE;
18190 	}
18191 	return (head);
18192 }
18193 
18194 static void
18195 tcp_zcopy_notify(tcp_t *tcp)
18196 {
18197 	struct stdata	*stp;
18198 	conn_t *connp;
18199 
18200 	if (tcp->tcp_detached)
18201 		return;
18202 	connp = tcp->tcp_connp;
18203 	if (IPCL_IS_NONSTR(connp)) {
18204 		(*connp->conn_upcalls->su_zcopy_notify)
18205 		    (connp->conn_upper_handle);
18206 		return;
18207 	}
18208 	stp = STREAM(tcp->tcp_rq);
18209 	mutex_enter(&stp->sd_lock);
18210 	stp->sd_flag |= STZCNOTIFY;
18211 	cv_broadcast(&stp->sd_zcopy_wait);
18212 	mutex_exit(&stp->sd_lock);
18213 }
18214 
18215 static boolean_t
18216 tcp_send_find_ire(tcp_t *tcp, ipaddr_t *dst, ire_t **irep)
18217 {
18218 	ire_t	*ire;
18219 	conn_t	*connp = tcp->tcp_connp;
18220 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18221 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18222 
18223 	mutex_enter(&connp->conn_lock);
18224 	ire = connp->conn_ire_cache;
18225 	ASSERT(!(connp->conn_state_flags & CONN_INCIPIENT));
18226 
18227 	if ((ire != NULL) &&
18228 	    (((dst != NULL) && (ire->ire_addr == *dst)) || ((dst == NULL) &&
18229 	    IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, &tcp->tcp_ip6h->ip6_dst))) &&
18230 	    !(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18231 		IRE_REFHOLD(ire);
18232 		mutex_exit(&connp->conn_lock);
18233 	} else {
18234 		boolean_t cached = B_FALSE;
18235 		ts_label_t *tsl;
18236 
18237 		/* force a recheck later on */
18238 		tcp->tcp_ire_ill_check_done = B_FALSE;
18239 
18240 		TCP_DBGSTAT(tcps, tcp_ire_null1);
18241 		connp->conn_ire_cache = NULL;
18242 		mutex_exit(&connp->conn_lock);
18243 
18244 		if (ire != NULL)
18245 			IRE_REFRELE_NOTR(ire);
18246 
18247 		tsl = crgetlabel(CONN_CRED(connp));
18248 		ire = (dst ?
18249 		    ire_cache_lookup(*dst, connp->conn_zoneid, tsl, ipst) :
18250 		    ire_cache_lookup_v6(&tcp->tcp_ip6h->ip6_dst,
18251 		    connp->conn_zoneid, tsl, ipst));
18252 
18253 		if (ire == NULL) {
18254 			TCP_STAT(tcps, tcp_ire_null);
18255 			return (B_FALSE);
18256 		}
18257 
18258 		IRE_REFHOLD_NOTR(ire);
18259 
18260 		mutex_enter(&connp->conn_lock);
18261 		if (CONN_CACHE_IRE(connp)) {
18262 			rw_enter(&ire->ire_bucket->irb_lock, RW_READER);
18263 			if (!(ire->ire_marks & IRE_MARK_CONDEMNED)) {
18264 				TCP_CHECK_IREINFO(tcp, ire);
18265 				connp->conn_ire_cache = ire;
18266 				cached = B_TRUE;
18267 			}
18268 			rw_exit(&ire->ire_bucket->irb_lock);
18269 		}
18270 		mutex_exit(&connp->conn_lock);
18271 
18272 		/*
18273 		 * We can continue to use the ire but since it was
18274 		 * not cached, we should drop the extra reference.
18275 		 */
18276 		if (!cached)
18277 			IRE_REFRELE_NOTR(ire);
18278 
18279 		/*
18280 		 * Rampart note: no need to select a new label here, since
18281 		 * labels are not allowed to change during the life of a TCP
18282 		 * connection.
18283 		 */
18284 	}
18285 
18286 	*irep = ire;
18287 
18288 	return (B_TRUE);
18289 }
18290 
18291 /*
18292  * Called from tcp_send() or tcp_send_data() to find workable IRE.
18293  *
18294  * 0 = success;
18295  * 1 = failed to find ire and ill.
18296  */
18297 static boolean_t
18298 tcp_send_find_ire_ill(tcp_t *tcp, mblk_t *mp, ire_t **irep, ill_t **illp)
18299 {
18300 	ipha_t		*ipha;
18301 	ipaddr_t	dst;
18302 	ire_t		*ire;
18303 	ill_t		*ill;
18304 	mblk_t		*ire_fp_mp;
18305 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18306 
18307 	if (mp != NULL)
18308 		ipha = (ipha_t *)mp->b_rptr;
18309 	else
18310 		ipha = tcp->tcp_ipha;
18311 	dst = ipha->ipha_dst;
18312 
18313 	if (!tcp_send_find_ire(tcp, &dst, &ire))
18314 		return (B_FALSE);
18315 
18316 	if ((ire->ire_flags & RTF_MULTIRT) ||
18317 	    (ire->ire_stq == NULL) ||
18318 	    (ire->ire_nce == NULL) ||
18319 	    ((ire_fp_mp = ire->ire_nce->nce_fp_mp) == NULL) ||
18320 	    ((mp != NULL) && (ire->ire_max_frag < ntohs(ipha->ipha_length) ||
18321 	    MBLKL(ire_fp_mp) > MBLKHEAD(mp)))) {
18322 		TCP_STAT(tcps, tcp_ip_ire_send);
18323 		IRE_REFRELE(ire);
18324 		return (B_FALSE);
18325 	}
18326 
18327 	ill = ire_to_ill(ire);
18328 	ASSERT(ill != NULL);
18329 
18330 	if (!tcp->tcp_ire_ill_check_done) {
18331 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
18332 		tcp->tcp_ire_ill_check_done = B_TRUE;
18333 	}
18334 
18335 	*irep = ire;
18336 	*illp = ill;
18337 
18338 	return (B_TRUE);
18339 }
18340 
18341 static void
18342 tcp_send_data(tcp_t *tcp, queue_t *q, mblk_t *mp)
18343 {
18344 	ipha_t		*ipha;
18345 	ipaddr_t	src;
18346 	ipaddr_t	dst;
18347 	uint32_t	cksum;
18348 	ire_t		*ire;
18349 	uint16_t	*up;
18350 	ill_t		*ill;
18351 	conn_t		*connp = tcp->tcp_connp;
18352 	uint32_t	hcksum_txflags = 0;
18353 	mblk_t		*ire_fp_mp;
18354 	uint_t		ire_fp_mp_len;
18355 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18356 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
18357 	cred_t		*cr;
18358 	pid_t		cpid;
18359 
18360 	ASSERT(DB_TYPE(mp) == M_DATA);
18361 
18362 	/*
18363 	 * Here we need to handle the overloading of the cred_t for
18364 	 * both getpeerucred and TX.
18365 	 * If this is a SYN then the caller already set db_credp so
18366 	 * that getpeerucred will work. But if TX is in use we might have
18367 	 * a conn_peercred which is different, and we need to use that cred
18368 	 * to make TX use the correct label and label dependent route.
18369 	 */
18370 	if (is_system_labeled()) {
18371 		cr = msg_getcred(mp, &cpid);
18372 		if (cr == NULL || connp->conn_peercred != NULL)
18373 			mblk_setcred(mp, CONN_CRED(connp), cpid);
18374 	}
18375 
18376 	ipha = (ipha_t *)mp->b_rptr;
18377 	src = ipha->ipha_src;
18378 	dst = ipha->ipha_dst;
18379 
18380 	ASSERT(q != NULL);
18381 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
18382 
18383 	/*
18384 	 * Drop off fast path for IPv6 and also if options are present or
18385 	 * we need to resolve a TS label.
18386 	 */
18387 	if (tcp->tcp_ipversion != IPV4_VERSION ||
18388 	    !IPCL_IS_CONNECTED(connp) ||
18389 	    !CONN_IS_LSO_MD_FASTPATH(connp) ||
18390 	    (connp->conn_flags & IPCL_CHECK_POLICY) != 0 ||
18391 	    !connp->conn_ulp_labeled ||
18392 	    ipha->ipha_ident == IP_HDR_INCLUDED ||
18393 	    ipha->ipha_version_and_hdr_length != IP_SIMPLE_HDR_VERSION ||
18394 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst)) {
18395 		if (tcp->tcp_snd_zcopy_aware)
18396 			mp = tcp_zcopy_disable(tcp, mp);
18397 		TCP_STAT(tcps, tcp_ip_send);
18398 		CALL_IP_WPUT(connp, q, mp);
18399 		return;
18400 	}
18401 
18402 	if (!tcp_send_find_ire_ill(tcp, mp, &ire, &ill)) {
18403 		if (tcp->tcp_snd_zcopy_aware)
18404 			mp = tcp_zcopy_backoff(tcp, mp, 0);
18405 		CALL_IP_WPUT(connp, q, mp);
18406 		return;
18407 	}
18408 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
18409 	ire_fp_mp_len = MBLKL(ire_fp_mp);
18410 
18411 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
18412 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident, 1);
18413 #ifndef _BIG_ENDIAN
18414 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
18415 #endif
18416 
18417 	/*
18418 	 * Check to see if we need to re-enable LSO/MDT for this connection
18419 	 * because it was previously disabled due to changes in the ill;
18420 	 * note that by doing it here, this re-enabling only applies when
18421 	 * the packet is not dispatched through CALL_IP_WPUT().
18422 	 *
18423 	 * That means for IPv4, it is worth re-enabling LSO/MDT for the fastpath
18424 	 * case, since that's how we ended up here.  For IPv6, we do the
18425 	 * re-enabling work in ip_xmit_v6(), albeit indirectly via squeue.
18426 	 */
18427 	if (connp->conn_lso_ok && !tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
18428 		/*
18429 		 * Restore LSO for this connection, so that next time around
18430 		 * it is eligible to go through tcp_lsosend() path again.
18431 		 */
18432 		TCP_STAT(tcps, tcp_lso_enabled);
18433 		tcp->tcp_lso = B_TRUE;
18434 		ip1dbg(("tcp_send_data: reenabling LSO for connp %p on "
18435 		    "interface %s\n", (void *)connp, ill->ill_name));
18436 	} else if (connp->conn_mdt_ok && !tcp->tcp_mdt && ILL_MDT_USABLE(ill)) {
18437 		/*
18438 		 * Restore MDT for this connection, so that next time around
18439 		 * it is eligible to go through tcp_multisend() path again.
18440 		 */
18441 		TCP_STAT(tcps, tcp_mdt_conn_resumed1);
18442 		tcp->tcp_mdt = B_TRUE;
18443 		ip1dbg(("tcp_send_data: reenabling MDT for connp %p on "
18444 		    "interface %s\n", (void *)connp, ill->ill_name));
18445 	}
18446 
18447 	if (tcp->tcp_snd_zcopy_aware) {
18448 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
18449 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
18450 			mp = tcp_zcopy_disable(tcp, mp);
18451 		/*
18452 		 * we shouldn't need to reset ipha as the mp containing
18453 		 * ipha should never be a zero-copy mp.
18454 		 */
18455 	}
18456 
18457 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
18458 		ASSERT(ill->ill_hcksum_capab != NULL);
18459 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
18460 	}
18461 
18462 	/* pseudo-header checksum (do it in parts for IP header checksum) */
18463 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
18464 
18465 	ASSERT(ipha->ipha_version_and_hdr_length == IP_SIMPLE_HDR_VERSION);
18466 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
18467 
18468 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
18469 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
18470 
18471 	/* Software checksum? */
18472 	if (DB_CKSUMFLAGS(mp) == 0) {
18473 		TCP_STAT(tcps, tcp_out_sw_cksum);
18474 		TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
18475 		    ntohs(ipha->ipha_length) - IP_SIMPLE_HDR_LENGTH);
18476 	}
18477 
18478 	/* Calculate IP header checksum if hardware isn't capable */
18479 	if (!(DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM)) {
18480 		IP_HDR_CKSUM(ipha, cksum, ((uint32_t *)ipha)[0],
18481 		    ((uint16_t *)ipha)[4]);
18482 	}
18483 
18484 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
18485 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
18486 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
18487 
18488 	UPDATE_OB_PKT_COUNT(ire);
18489 	ire->ire_last_used_time = lbolt;
18490 
18491 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
18492 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
18493 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
18494 	    ntohs(ipha->ipha_length));
18495 
18496 	DTRACE_PROBE4(ip4__physical__out__start,
18497 	    ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp);
18498 	FW_HOOKS(ipst->ips_ip4_physical_out_event,
18499 	    ipst->ips_ipv4firewall_physical_out,
18500 	    NULL, ill, ipha, mp, mp, 0, ipst);
18501 	DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
18502 	DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL);
18503 
18504 	if (mp != NULL) {
18505 		if (ipst->ips_ipobs_enabled) {
18506 			zoneid_t szone;
18507 
18508 			szone = ip_get_zoneid_v4(ipha->ipha_src, mp,
18509 			    ipst, ALL_ZONES);
18510 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone,
18511 			    ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst);
18512 		}
18513 
18514 		ILL_SEND_TX(ill, ire, connp, mp, 0, NULL);
18515 	}
18516 
18517 	IRE_REFRELE(ire);
18518 }
18519 
18520 /*
18521  * This handles the case when the receiver has shrunk its win. Per RFC 1122
18522  * if the receiver shrinks the window, i.e. moves the right window to the
18523  * left, the we should not send new data, but should retransmit normally the
18524  * old unacked data between suna and suna + swnd. We might has sent data
18525  * that is now outside the new window, pretend that we didn't send  it.
18526  */
18527 static void
18528 tcp_process_shrunk_swnd(tcp_t *tcp, uint32_t shrunk_count)
18529 {
18530 	uint32_t	snxt = tcp->tcp_snxt;
18531 	mblk_t		*xmit_tail;
18532 	int32_t		offset;
18533 
18534 	ASSERT(shrunk_count > 0);
18535 
18536 	/* Pretend we didn't send the data outside the window */
18537 	snxt -= shrunk_count;
18538 
18539 	/* Get the mblk and the offset in it per the shrunk window */
18540 	xmit_tail = tcp_get_seg_mp(tcp, snxt, &offset);
18541 
18542 	ASSERT(xmit_tail != NULL);
18543 
18544 	/* Reset all the values per the now shrunk window */
18545 	tcp->tcp_snxt = snxt;
18546 	tcp->tcp_xmit_tail = xmit_tail;
18547 	tcp->tcp_xmit_tail_unsent = xmit_tail->b_wptr - xmit_tail->b_rptr -
18548 	    offset;
18549 	tcp->tcp_unsent += shrunk_count;
18550 
18551 	if (tcp->tcp_suna == tcp->tcp_snxt && tcp->tcp_swnd == 0)
18552 		/*
18553 		 * Make sure the timer is running so that we will probe a zero
18554 		 * window.
18555 		 */
18556 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18557 }
18558 
18559 
18560 /*
18561  * The TCP normal data output path.
18562  * NOTE: the logic of the fast path is duplicated from this function.
18563  */
18564 static void
18565 tcp_wput_data(tcp_t *tcp, mblk_t *mp, boolean_t urgent)
18566 {
18567 	int		len;
18568 	mblk_t		*local_time;
18569 	mblk_t		*mp1;
18570 	uint32_t	snxt;
18571 	int		tail_unsent;
18572 	int		tcpstate;
18573 	int		usable = 0;
18574 	mblk_t		*xmit_tail;
18575 	queue_t		*q = tcp->tcp_wq;
18576 	int32_t		mss;
18577 	int32_t		num_sack_blk = 0;
18578 	int32_t		tcp_hdr_len;
18579 	int32_t		tcp_tcp_hdr_len;
18580 	int		mdt_thres;
18581 	int		rc;
18582 	tcp_stack_t	*tcps = tcp->tcp_tcps;
18583 	ip_stack_t	*ipst;
18584 
18585 	tcpstate = tcp->tcp_state;
18586 	if (mp == NULL) {
18587 		/*
18588 		 * tcp_wput_data() with NULL mp should only be called when
18589 		 * there is unsent data.
18590 		 */
18591 		ASSERT(tcp->tcp_unsent > 0);
18592 		/* Really tacky... but we need this for detached closes. */
18593 		len = tcp->tcp_unsent;
18594 		goto data_null;
18595 	}
18596 
18597 #if CCS_STATS
18598 	wrw_stats.tot.count++;
18599 	wrw_stats.tot.bytes += msgdsize(mp);
18600 #endif
18601 	ASSERT(mp->b_datap->db_type == M_DATA);
18602 	/*
18603 	 * Don't allow data after T_ORDREL_REQ or T_DISCON_REQ,
18604 	 * or before a connection attempt has begun.
18605 	 */
18606 	if (tcpstate < TCPS_SYN_SENT || tcpstate > TCPS_CLOSE_WAIT ||
18607 	    (tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18608 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) != 0) {
18609 #ifdef DEBUG
18610 			cmn_err(CE_WARN,
18611 			    "tcp_wput_data: data after ordrel, %s",
18612 			    tcp_display(tcp, NULL,
18613 			    DISP_ADDR_AND_PORT));
18614 #else
18615 			if (tcp->tcp_debug) {
18616 				(void) strlog(TCP_MOD_ID, 0, 1,
18617 				    SL_TRACE|SL_ERROR,
18618 				    "tcp_wput_data: data after ordrel, %s\n",
18619 				    tcp_display(tcp, NULL,
18620 				    DISP_ADDR_AND_PORT));
18621 			}
18622 #endif /* DEBUG */
18623 		}
18624 		if (tcp->tcp_snd_zcopy_aware &&
18625 		    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) != 0)
18626 			tcp_zcopy_notify(tcp);
18627 		freemsg(mp);
18628 		mutex_enter(&tcp->tcp_non_sq_lock);
18629 		if (tcp->tcp_flow_stopped &&
18630 		    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18631 			tcp_clrqfull(tcp);
18632 		}
18633 		mutex_exit(&tcp->tcp_non_sq_lock);
18634 		return;
18635 	}
18636 
18637 	/* Strip empties */
18638 	for (;;) {
18639 		ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <=
18640 		    (uintptr_t)INT_MAX);
18641 		len = (int)(mp->b_wptr - mp->b_rptr);
18642 		if (len > 0)
18643 			break;
18644 		mp1 = mp;
18645 		mp = mp->b_cont;
18646 		freeb(mp1);
18647 		if (!mp) {
18648 			return;
18649 		}
18650 	}
18651 
18652 	/* If we are the first on the list ... */
18653 	if (tcp->tcp_xmit_head == NULL) {
18654 		tcp->tcp_xmit_head = mp;
18655 		tcp->tcp_xmit_tail = mp;
18656 		tcp->tcp_xmit_tail_unsent = len;
18657 	} else {
18658 		/* If tiny tx and room in txq tail, pullup to save mblks. */
18659 		struct datab *dp;
18660 
18661 		mp1 = tcp->tcp_xmit_last;
18662 		if (len < tcp_tx_pull_len &&
18663 		    (dp = mp1->b_datap)->db_ref == 1 &&
18664 		    dp->db_lim - mp1->b_wptr >= len) {
18665 			ASSERT(len > 0);
18666 			ASSERT(!mp1->b_cont);
18667 			if (len == 1) {
18668 				*mp1->b_wptr++ = *mp->b_rptr;
18669 			} else {
18670 				bcopy(mp->b_rptr, mp1->b_wptr, len);
18671 				mp1->b_wptr += len;
18672 			}
18673 			if (mp1 == tcp->tcp_xmit_tail)
18674 				tcp->tcp_xmit_tail_unsent += len;
18675 			mp1->b_cont = mp->b_cont;
18676 			if (tcp->tcp_snd_zcopy_aware &&
18677 			    (mp->b_datap->db_struioflag & STRUIO_ZCNOTIFY))
18678 				mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY;
18679 			freeb(mp);
18680 			mp = mp1;
18681 		} else {
18682 			tcp->tcp_xmit_last->b_cont = mp;
18683 		}
18684 		len += tcp->tcp_unsent;
18685 	}
18686 
18687 	/* Tack on however many more positive length mblks we have */
18688 	if ((mp1 = mp->b_cont) != NULL) {
18689 		do {
18690 			int tlen;
18691 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
18692 			    (uintptr_t)INT_MAX);
18693 			tlen = (int)(mp1->b_wptr - mp1->b_rptr);
18694 			if (tlen <= 0) {
18695 				mp->b_cont = mp1->b_cont;
18696 				freeb(mp1);
18697 			} else {
18698 				len += tlen;
18699 				mp = mp1;
18700 			}
18701 		} while ((mp1 = mp->b_cont) != NULL);
18702 	}
18703 	tcp->tcp_xmit_last = mp;
18704 	tcp->tcp_unsent = len;
18705 
18706 	if (urgent)
18707 		usable = 1;
18708 
18709 data_null:
18710 	snxt = tcp->tcp_snxt;
18711 	xmit_tail = tcp->tcp_xmit_tail;
18712 	tail_unsent = tcp->tcp_xmit_tail_unsent;
18713 
18714 	/*
18715 	 * Note that tcp_mss has been adjusted to take into account the
18716 	 * timestamp option if applicable.  Because SACK options do not
18717 	 * appear in every TCP segments and they are of variable lengths,
18718 	 * they cannot be included in tcp_mss.  Thus we need to calculate
18719 	 * the actual segment length when we need to send a segment which
18720 	 * includes SACK options.
18721 	 */
18722 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
18723 		int32_t	opt_len;
18724 
18725 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
18726 		    tcp->tcp_num_sack_blk);
18727 		opt_len = num_sack_blk * sizeof (sack_blk_t) + TCPOPT_NOP_LEN *
18728 		    2 + TCPOPT_HEADER_LEN;
18729 		mss = tcp->tcp_mss - opt_len;
18730 		tcp_hdr_len = tcp->tcp_hdr_len + opt_len;
18731 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + opt_len;
18732 	} else {
18733 		mss = tcp->tcp_mss;
18734 		tcp_hdr_len = tcp->tcp_hdr_len;
18735 		tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
18736 	}
18737 
18738 	if ((tcp->tcp_suna == snxt) && !tcp->tcp_localnet &&
18739 	    (TICK_TO_MSEC(lbolt - tcp->tcp_last_recv_time) >= tcp->tcp_rto)) {
18740 		SET_TCP_INIT_CWND(tcp, mss, tcps->tcps_slow_start_after_idle);
18741 	}
18742 	if (tcpstate == TCPS_SYN_RCVD) {
18743 		/*
18744 		 * The three-way connection establishment handshake is not
18745 		 * complete yet. We want to queue the data for transmission
18746 		 * after entering ESTABLISHED state (RFC793). A jump to
18747 		 * "done" label effectively leaves data on the queue.
18748 		 */
18749 		goto done;
18750 	} else {
18751 		int usable_r;
18752 
18753 		/*
18754 		 * In the special case when cwnd is zero, which can only
18755 		 * happen if the connection is ECN capable, return now.
18756 		 * New segments is sent using tcp_timer().  The timer
18757 		 * is set in tcp_rput_data().
18758 		 */
18759 		if (tcp->tcp_cwnd == 0) {
18760 			/*
18761 			 * Note that tcp_cwnd is 0 before 3-way handshake is
18762 			 * finished.
18763 			 */
18764 			ASSERT(tcp->tcp_ecn_ok ||
18765 			    tcp->tcp_state < TCPS_ESTABLISHED);
18766 			return;
18767 		}
18768 
18769 		/* NOTE: trouble if xmitting while SYN not acked? */
18770 		usable_r = snxt - tcp->tcp_suna;
18771 		usable_r = tcp->tcp_swnd - usable_r;
18772 
18773 		/*
18774 		 * Check if the receiver has shrunk the window.  If
18775 		 * tcp_wput_data() with NULL mp is called, tcp_fin_sent
18776 		 * cannot be set as there is unsent data, so FIN cannot
18777 		 * be sent out.  Otherwise, we need to take into account
18778 		 * of FIN as it consumes an "invisible" sequence number.
18779 		 */
18780 		ASSERT(tcp->tcp_fin_sent == 0);
18781 		if (usable_r < 0) {
18782 			/*
18783 			 * The receiver has shrunk the window and we have sent
18784 			 * -usable_r date beyond the window, re-adjust.
18785 			 *
18786 			 * If TCP window scaling is enabled, there can be
18787 			 * round down error as the advertised receive window
18788 			 * is actually right shifted n bits.  This means that
18789 			 * the lower n bits info is wiped out.  It will look
18790 			 * like the window is shrunk.  Do a check here to
18791 			 * see if the shrunk amount is actually within the
18792 			 * error in window calculation.  If it is, just
18793 			 * return.  Note that this check is inside the
18794 			 * shrunk window check.  This makes sure that even
18795 			 * though tcp_process_shrunk_swnd() is not called,
18796 			 * we will stop further processing.
18797 			 */
18798 			if ((-usable_r >> tcp->tcp_snd_ws) > 0) {
18799 				tcp_process_shrunk_swnd(tcp, -usable_r);
18800 			}
18801 			return;
18802 		}
18803 
18804 		/* usable = MIN(swnd, cwnd) - unacked_bytes */
18805 		if (tcp->tcp_swnd > tcp->tcp_cwnd)
18806 			usable_r -= tcp->tcp_swnd - tcp->tcp_cwnd;
18807 
18808 		/* usable = MIN(usable, unsent) */
18809 		if (usable_r > len)
18810 			usable_r = len;
18811 
18812 		/* usable = MAX(usable, {1 for urgent, 0 for data}) */
18813 		if (usable_r > 0) {
18814 			usable = usable_r;
18815 		} else {
18816 			/* Bypass all other unnecessary processing. */
18817 			goto done;
18818 		}
18819 	}
18820 
18821 	local_time = (mblk_t *)lbolt;
18822 
18823 	/*
18824 	 * "Our" Nagle Algorithm.  This is not the same as in the old
18825 	 * BSD.  This is more in line with the true intent of Nagle.
18826 	 *
18827 	 * The conditions are:
18828 	 * 1. The amount of unsent data (or amount of data which can be
18829 	 *    sent, whichever is smaller) is less than Nagle limit.
18830 	 * 2. The last sent size is also less than Nagle limit.
18831 	 * 3. There is unack'ed data.
18832 	 * 4. Urgent pointer is not set.  Send urgent data ignoring the
18833 	 *    Nagle algorithm.  This reduces the probability that urgent
18834 	 *    bytes get "merged" together.
18835 	 * 5. The app has not closed the connection.  This eliminates the
18836 	 *    wait time of the receiving side waiting for the last piece of
18837 	 *    (small) data.
18838 	 *
18839 	 * If all are satisified, exit without sending anything.  Note
18840 	 * that Nagle limit can be smaller than 1 MSS.  Nagle limit is
18841 	 * the smaller of 1 MSS and global tcp_naglim_def (default to be
18842 	 * 4095).
18843 	 */
18844 	if (usable < (int)tcp->tcp_naglim &&
18845 	    tcp->tcp_naglim > tcp->tcp_last_sent_len &&
18846 	    snxt != tcp->tcp_suna &&
18847 	    !(tcp->tcp_valid_bits & TCP_URG_VALID) &&
18848 	    !(tcp->tcp_valid_bits & TCP_FSS_VALID)) {
18849 		goto done;
18850 	}
18851 
18852 	/*
18853 	 * If tcp_zero_win_probe is not set and the tcp->tcp_cork option
18854 	 * is set, then we have to force TCP not to send partial segment
18855 	 * (smaller than MSS bytes). We are calculating the usable now
18856 	 * based on full mss and will save the rest of remaining data for
18857 	 * later. When tcp_zero_win_probe is set, TCP needs to send out
18858 	 * something to do zero window probe.
18859 	 */
18860 	if (tcp->tcp_cork && !tcp->tcp_zero_win_probe) {
18861 		if (usable < mss)
18862 			goto done;
18863 		usable = (usable / mss) * mss;
18864 	}
18865 
18866 	/* Update the latest receive window size in TCP header. */
18867 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
18868 	    tcp->tcp_tcph->th_win);
18869 
18870 	/*
18871 	 * Determine if it's worthwhile to attempt LSO or MDT, based on:
18872 	 *
18873 	 * 1. Simple TCP/IP{v4,v6} (no options).
18874 	 * 2. IPSEC/IPQoS processing is not needed for the TCP connection.
18875 	 * 3. If the TCP connection is in ESTABLISHED state.
18876 	 * 4. The TCP is not detached.
18877 	 *
18878 	 * If any of the above conditions have changed during the
18879 	 * connection, stop using LSO/MDT and restore the stream head
18880 	 * parameters accordingly.
18881 	 */
18882 	ipst = tcps->tcps_netstack->netstack_ip;
18883 
18884 	if ((tcp->tcp_lso || tcp->tcp_mdt) &&
18885 	    ((tcp->tcp_ipversion == IPV4_VERSION &&
18886 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
18887 	    (tcp->tcp_ipversion == IPV6_VERSION &&
18888 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN) ||
18889 	    tcp->tcp_state != TCPS_ESTABLISHED ||
18890 	    TCP_IS_DETACHED(tcp) || !CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp) ||
18891 	    CONN_IPSEC_OUT_ENCAPSULATED(tcp->tcp_connp) ||
18892 	    IPP_ENABLED(IPP_LOCAL_OUT, ipst))) {
18893 		if (tcp->tcp_lso) {
18894 			tcp->tcp_connp->conn_lso_ok = B_FALSE;
18895 			tcp->tcp_lso = B_FALSE;
18896 		} else {
18897 			tcp->tcp_connp->conn_mdt_ok = B_FALSE;
18898 			tcp->tcp_mdt = B_FALSE;
18899 		}
18900 
18901 		/* Anything other than detached is considered pathological */
18902 		if (!TCP_IS_DETACHED(tcp)) {
18903 			if (tcp->tcp_lso)
18904 				TCP_STAT(tcps, tcp_lso_disabled);
18905 			else
18906 				TCP_STAT(tcps, tcp_mdt_conn_halted1);
18907 			(void) tcp_maxpsz_set(tcp, B_TRUE);
18908 		}
18909 	}
18910 
18911 	/* Use MDT if sendable amount is greater than the threshold */
18912 	if (tcp->tcp_mdt &&
18913 	    (mdt_thres = mss << tcp_mdt_smss_threshold, usable > mdt_thres) &&
18914 	    (tail_unsent > mdt_thres || (xmit_tail->b_cont != NULL &&
18915 	    MBLKL(xmit_tail->b_cont) > mdt_thres)) &&
18916 	    (tcp->tcp_valid_bits == 0 ||
18917 	    tcp->tcp_valid_bits == TCP_FSS_VALID)) {
18918 		ASSERT(tcp->tcp_connp->conn_mdt_ok);
18919 		rc = tcp_multisend(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
18920 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
18921 		    local_time, mdt_thres);
18922 	} else {
18923 		rc = tcp_send(q, tcp, mss, tcp_hdr_len, tcp_tcp_hdr_len,
18924 		    num_sack_blk, &usable, &snxt, &tail_unsent, &xmit_tail,
18925 		    local_time, INT_MAX);
18926 	}
18927 
18928 	/* Pretend that all we were trying to send really got sent */
18929 	if (rc < 0 && tail_unsent < 0) {
18930 		do {
18931 			xmit_tail = xmit_tail->b_cont;
18932 			xmit_tail->b_prev = local_time;
18933 			ASSERT((uintptr_t)(xmit_tail->b_wptr -
18934 			    xmit_tail->b_rptr) <= (uintptr_t)INT_MAX);
18935 			tail_unsent += (int)(xmit_tail->b_wptr -
18936 			    xmit_tail->b_rptr);
18937 		} while (tail_unsent < 0);
18938 	}
18939 done:;
18940 	tcp->tcp_xmit_tail = xmit_tail;
18941 	tcp->tcp_xmit_tail_unsent = tail_unsent;
18942 	len = tcp->tcp_snxt - snxt;
18943 	if (len) {
18944 		/*
18945 		 * If new data was sent, need to update the notsack
18946 		 * list, which is, afterall, data blocks that have
18947 		 * not been sack'ed by the receiver.  New data is
18948 		 * not sack'ed.
18949 		 */
18950 		if (tcp->tcp_snd_sack_ok && tcp->tcp_notsack_list != NULL) {
18951 			/* len is a negative value. */
18952 			tcp->tcp_pipe -= len;
18953 			tcp_notsack_update(&(tcp->tcp_notsack_list),
18954 			    tcp->tcp_snxt, snxt,
18955 			    &(tcp->tcp_num_notsack_blk),
18956 			    &(tcp->tcp_cnt_notsack_list));
18957 		}
18958 		tcp->tcp_snxt = snxt + tcp->tcp_fin_sent;
18959 		tcp->tcp_rack = tcp->tcp_rnxt;
18960 		tcp->tcp_rack_cnt = 0;
18961 		if ((snxt + len) == tcp->tcp_suna) {
18962 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18963 		}
18964 	} else if (snxt == tcp->tcp_suna && tcp->tcp_swnd == 0) {
18965 		/*
18966 		 * Didn't send anything. Make sure the timer is running
18967 		 * so that we will probe a zero window.
18968 		 */
18969 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
18970 	}
18971 	/* Note that len is the amount we just sent but with a negative sign */
18972 	tcp->tcp_unsent += len;
18973 	mutex_enter(&tcp->tcp_non_sq_lock);
18974 	if (tcp->tcp_flow_stopped) {
18975 		if (TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
18976 			tcp_clrqfull(tcp);
18977 		}
18978 	} else if (TCP_UNSENT_BYTES(tcp) >= tcp->tcp_xmit_hiwater) {
18979 		tcp_setqfull(tcp);
18980 	}
18981 	mutex_exit(&tcp->tcp_non_sq_lock);
18982 }
18983 
18984 /*
18985  * tcp_fill_header is called by tcp_send() and tcp_multisend() to fill the
18986  * outgoing TCP header with the template header, as well as other
18987  * options such as time-stamp, ECN and/or SACK.
18988  */
18989 static void
18990 tcp_fill_header(tcp_t *tcp, uchar_t *rptr, clock_t now, int num_sack_blk)
18991 {
18992 	tcph_t *tcp_tmpl, *tcp_h;
18993 	uint32_t *dst, *src;
18994 	int hdrlen;
18995 
18996 	ASSERT(OK_32PTR(rptr));
18997 
18998 	/* Template header */
18999 	tcp_tmpl = tcp->tcp_tcph;
19000 
19001 	/* Header of outgoing packet */
19002 	tcp_h = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
19003 
19004 	/* dst and src are opaque 32-bit fields, used for copying */
19005 	dst = (uint32_t *)rptr;
19006 	src = (uint32_t *)tcp->tcp_iphc;
19007 	hdrlen = tcp->tcp_hdr_len;
19008 
19009 	/* Fill time-stamp option if needed */
19010 	if (tcp->tcp_snd_ts_ok) {
19011 		U32_TO_BE32((uint32_t)now,
19012 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 4);
19013 		U32_TO_BE32(tcp->tcp_ts_recent,
19014 		    (char *)tcp_tmpl + TCP_MIN_HEADER_LENGTH + 8);
19015 	} else {
19016 		ASSERT(tcp->tcp_tcp_hdr_len == TCP_MIN_HEADER_LENGTH);
19017 	}
19018 
19019 	/*
19020 	 * Copy the template header; is this really more efficient than
19021 	 * calling bcopy()?  For simple IPv4/TCP, it may be the case,
19022 	 * but perhaps not for other scenarios.
19023 	 */
19024 	dst[0] = src[0];
19025 	dst[1] = src[1];
19026 	dst[2] = src[2];
19027 	dst[3] = src[3];
19028 	dst[4] = src[4];
19029 	dst[5] = src[5];
19030 	dst[6] = src[6];
19031 	dst[7] = src[7];
19032 	dst[8] = src[8];
19033 	dst[9] = src[9];
19034 	if (hdrlen -= 40) {
19035 		hdrlen >>= 2;
19036 		dst += 10;
19037 		src += 10;
19038 		do {
19039 			*dst++ = *src++;
19040 		} while (--hdrlen);
19041 	}
19042 
19043 	/*
19044 	 * Set the ECN info in the TCP header if it is not a zero
19045 	 * window probe.  Zero window probe is only sent in
19046 	 * tcp_wput_data() and tcp_timer().
19047 	 */
19048 	if (tcp->tcp_ecn_ok && !tcp->tcp_zero_win_probe) {
19049 		SET_ECT(tcp, rptr);
19050 
19051 		if (tcp->tcp_ecn_echo_on)
19052 			tcp_h->th_flags[0] |= TH_ECE;
19053 		if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
19054 			tcp_h->th_flags[0] |= TH_CWR;
19055 			tcp->tcp_ecn_cwr_sent = B_TRUE;
19056 		}
19057 	}
19058 
19059 	/* Fill in SACK options */
19060 	if (num_sack_blk > 0) {
19061 		uchar_t *wptr = rptr + tcp->tcp_hdr_len;
19062 		sack_blk_t *tmp;
19063 		int32_t	i;
19064 
19065 		wptr[0] = TCPOPT_NOP;
19066 		wptr[1] = TCPOPT_NOP;
19067 		wptr[2] = TCPOPT_SACK;
19068 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
19069 		    sizeof (sack_blk_t);
19070 		wptr += TCPOPT_REAL_SACK_LEN;
19071 
19072 		tmp = tcp->tcp_sack_list;
19073 		for (i = 0; i < num_sack_blk; i++) {
19074 			U32_TO_BE32(tmp[i].begin, wptr);
19075 			wptr += sizeof (tcp_seq);
19076 			U32_TO_BE32(tmp[i].end, wptr);
19077 			wptr += sizeof (tcp_seq);
19078 		}
19079 		tcp_h->th_offset_and_rsrvd[0] +=
19080 		    ((num_sack_blk * 2 + 1) << 4);
19081 	}
19082 }
19083 
19084 /*
19085  * tcp_mdt_add_attrs() is called by tcp_multisend() in order to attach
19086  * the destination address and SAP attribute, and if necessary, the
19087  * hardware checksum offload attribute to a Multidata message.
19088  */
19089 static int
19090 tcp_mdt_add_attrs(multidata_t *mmd, const mblk_t *dlmp, const boolean_t hwcksum,
19091     const uint32_t start, const uint32_t stuff, const uint32_t end,
19092     const uint32_t flags, tcp_stack_t *tcps)
19093 {
19094 	/* Add global destination address & SAP attribute */
19095 	if (dlmp == NULL || !ip_md_addr_attr(mmd, NULL, dlmp)) {
19096 		ip1dbg(("tcp_mdt_add_attrs: can't add global physical "
19097 		    "destination address+SAP\n"));
19098 
19099 		if (dlmp != NULL)
19100 			TCP_STAT(tcps, tcp_mdt_allocfail);
19101 		return (-1);
19102 	}
19103 
19104 	/* Add global hwcksum attribute */
19105 	if (hwcksum &&
19106 	    !ip_md_hcksum_attr(mmd, NULL, start, stuff, end, flags)) {
19107 		ip1dbg(("tcp_mdt_add_attrs: can't add global hardware "
19108 		    "checksum attribute\n"));
19109 
19110 		TCP_STAT(tcps, tcp_mdt_allocfail);
19111 		return (-1);
19112 	}
19113 
19114 	return (0);
19115 }
19116 
19117 /*
19118  * Smaller and private version of pdescinfo_t used specifically for TCP,
19119  * which allows for only two payload spans per packet.
19120  */
19121 typedef struct tcp_pdescinfo_s PDESCINFO_STRUCT(2) tcp_pdescinfo_t;
19122 
19123 /*
19124  * tcp_multisend() is called by tcp_wput_data() for Multidata Transmit
19125  * scheme, and returns one the following:
19126  *
19127  * -1 = failed allocation.
19128  *  0 = success; burst count reached, or usable send window is too small,
19129  *      and that we'd rather wait until later before sending again.
19130  */
19131 static int
19132 tcp_multisend(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
19133     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
19134     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
19135     const int mdt_thres)
19136 {
19137 	mblk_t		*md_mp_head, *md_mp, *md_pbuf, *md_pbuf_nxt, *md_hbuf;
19138 	multidata_t	*mmd;
19139 	uint_t		obsegs, obbytes, hdr_frag_sz;
19140 	uint_t		cur_hdr_off, cur_pld_off, base_pld_off, first_snxt;
19141 	int		num_burst_seg, max_pld;
19142 	pdesc_t		*pkt;
19143 	tcp_pdescinfo_t	tcp_pkt_info;
19144 	pdescinfo_t	*pkt_info;
19145 	int		pbuf_idx, pbuf_idx_nxt;
19146 	int		seg_len, len, spill, af;
19147 	boolean_t	add_buffer, zcopy, clusterwide;
19148 	boolean_t	rconfirm = B_FALSE;
19149 	boolean_t	done = B_FALSE;
19150 	uint32_t	cksum;
19151 	uint32_t	hwcksum_flags;
19152 	ire_t		*ire = NULL;
19153 	ill_t		*ill;
19154 	ipha_t		*ipha;
19155 	ip6_t		*ip6h;
19156 	ipaddr_t	src, dst;
19157 	ill_zerocopy_capab_t *zc_cap = NULL;
19158 	uint16_t	*up;
19159 	int		err;
19160 	conn_t		*connp;
19161 	tcp_stack_t	*tcps = tcp->tcp_tcps;
19162 	ip_stack_t 	*ipst = tcps->tcps_netstack->netstack_ip;
19163 	int		usable_mmd, tail_unsent_mmd;
19164 	uint_t		snxt_mmd, obsegs_mmd, obbytes_mmd;
19165 	mblk_t		*xmit_tail_mmd;
19166 	netstackid_t	stack_id;
19167 
19168 #ifdef	_BIG_ENDIAN
19169 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 28) & 0x7)
19170 #else
19171 #define	IPVER(ip6h)	((((uint32_t *)ip6h)[0] >> 4) & 0x7)
19172 #endif
19173 
19174 #define	PREP_NEW_MULTIDATA() {			\
19175 	mmd = NULL;				\
19176 	md_mp = md_hbuf = NULL;			\
19177 	cur_hdr_off = 0;			\
19178 	max_pld = tcp->tcp_mdt_max_pld;		\
19179 	pbuf_idx = pbuf_idx_nxt = -1;		\
19180 	add_buffer = B_TRUE;			\
19181 	zcopy = B_FALSE;			\
19182 }
19183 
19184 #define	PREP_NEW_PBUF() {			\
19185 	md_pbuf = md_pbuf_nxt = NULL;		\
19186 	pbuf_idx = pbuf_idx_nxt = -1;		\
19187 	cur_pld_off = 0;			\
19188 	first_snxt = *snxt;			\
19189 	ASSERT(*tail_unsent > 0);		\
19190 	base_pld_off = MBLKL(*xmit_tail) - *tail_unsent; \
19191 }
19192 
19193 	ASSERT(mdt_thres >= mss);
19194 	ASSERT(*usable > 0 && *usable > mdt_thres);
19195 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
19196 	ASSERT(!TCP_IS_DETACHED(tcp));
19197 	ASSERT(tcp->tcp_valid_bits == 0 ||
19198 	    tcp->tcp_valid_bits == TCP_FSS_VALID);
19199 	ASSERT((tcp->tcp_ipversion == IPV4_VERSION &&
19200 	    tcp->tcp_ip_hdr_len == IP_SIMPLE_HDR_LENGTH) ||
19201 	    (tcp->tcp_ipversion == IPV6_VERSION &&
19202 	    tcp->tcp_ip_hdr_len == IPV6_HDR_LEN));
19203 
19204 	connp = tcp->tcp_connp;
19205 	ASSERT(connp != NULL);
19206 	ASSERT(CONN_IS_LSO_MD_FASTPATH(connp));
19207 	ASSERT(!CONN_IPSEC_OUT_ENCAPSULATED(connp));
19208 
19209 	stack_id = connp->conn_netstack->netstack_stackid;
19210 
19211 	usable_mmd = tail_unsent_mmd = 0;
19212 	snxt_mmd = obsegs_mmd = obbytes_mmd = 0;
19213 	xmit_tail_mmd = NULL;
19214 	/*
19215 	 * Note that tcp will only declare at most 2 payload spans per
19216 	 * packet, which is much lower than the maximum allowable number
19217 	 * of packet spans per Multidata.  For this reason, we use the
19218 	 * privately declared and smaller descriptor info structure, in
19219 	 * order to save some stack space.
19220 	 */
19221 	pkt_info = (pdescinfo_t *)&tcp_pkt_info;
19222 
19223 	af = (tcp->tcp_ipversion == IPV4_VERSION) ? AF_INET : AF_INET6;
19224 	if (af == AF_INET) {
19225 		dst = tcp->tcp_ipha->ipha_dst;
19226 		src = tcp->tcp_ipha->ipha_src;
19227 		ASSERT(!CLASSD(dst));
19228 	}
19229 	ASSERT(af == AF_INET ||
19230 	    !IN6_IS_ADDR_MULTICAST(&tcp->tcp_ip6h->ip6_dst));
19231 
19232 	obsegs = obbytes = 0;
19233 	num_burst_seg = tcp->tcp_snd_burst;
19234 	md_mp_head = NULL;
19235 	PREP_NEW_MULTIDATA();
19236 
19237 	/*
19238 	 * Before we go on further, make sure there is an IRE that we can
19239 	 * use, and that the ILL supports MDT.  Otherwise, there's no point
19240 	 * in proceeding any further, and we should just hand everything
19241 	 * off to the legacy path.
19242 	 */
19243 	if (!tcp_send_find_ire(tcp, (af == AF_INET) ? &dst : NULL, &ire))
19244 		goto legacy_send_no_md;
19245 
19246 	ASSERT(ire != NULL);
19247 	ASSERT(af != AF_INET || ire->ire_ipversion == IPV4_VERSION);
19248 	ASSERT(af == AF_INET || !IN6_IS_ADDR_V4MAPPED(&(ire->ire_addr_v6)));
19249 	ASSERT(af == AF_INET || ire->ire_nce != NULL);
19250 	ASSERT(!(ire->ire_type & IRE_BROADCAST));
19251 	/*
19252 	 * If we do support loopback for MDT (which requires modifications
19253 	 * to the receiving paths), the following assertions should go away,
19254 	 * and we would be sending the Multidata to loopback conn later on.
19255 	 */
19256 	ASSERT(!IRE_IS_LOCAL(ire));
19257 	ASSERT(ire->ire_stq != NULL);
19258 
19259 	ill = ire_to_ill(ire);
19260 	ASSERT(ill != NULL);
19261 	ASSERT(!ILL_MDT_CAPABLE(ill) || ill->ill_mdt_capab != NULL);
19262 
19263 	if (!tcp->tcp_ire_ill_check_done) {
19264 		tcp_ire_ill_check(tcp, ire, ill, B_TRUE);
19265 		tcp->tcp_ire_ill_check_done = B_TRUE;
19266 	}
19267 
19268 	/*
19269 	 * If the underlying interface conditions have changed, or if the
19270 	 * new interface does not support MDT, go back to legacy path.
19271 	 */
19272 	if (!ILL_MDT_USABLE(ill) || (ire->ire_flags & RTF_MULTIRT) != 0) {
19273 		/* don't go through this path anymore for this connection */
19274 		TCP_STAT(tcps, tcp_mdt_conn_halted2);
19275 		tcp->tcp_mdt = B_FALSE;
19276 		ip1dbg(("tcp_multisend: disabling MDT for connp %p on "
19277 		    "interface %s\n", (void *)connp, ill->ill_name));
19278 		/* IRE will be released prior to returning */
19279 		goto legacy_send_no_md;
19280 	}
19281 
19282 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)
19283 		zc_cap = ill->ill_zerocopy_capab;
19284 
19285 	/*
19286 	 * Check if we can take tcp fast-path. Note that "incomplete"
19287 	 * ire's (where the link-layer for next hop is not resolved
19288 	 * or where the fast-path header in nce_fp_mp is not available
19289 	 * yet) are sent down the legacy (slow) path.
19290 	 * NOTE: We should fix ip_xmit_v4 to handle M_MULTIDATA
19291 	 */
19292 	if (ire->ire_nce && ire->ire_nce->nce_state != ND_REACHABLE) {
19293 		/* IRE will be released prior to returning */
19294 		goto legacy_send_no_md;
19295 	}
19296 
19297 	/* go to legacy path if interface doesn't support zerocopy */
19298 	if (tcp->tcp_snd_zcopy_aware && do_tcpzcopy != 2 &&
19299 	    (zc_cap == NULL || zc_cap->ill_zerocopy_flags == 0)) {
19300 		/* IRE will be released prior to returning */
19301 		goto legacy_send_no_md;
19302 	}
19303 
19304 	/* does the interface support hardware checksum offload? */
19305 	hwcksum_flags = 0;
19306 	if (ILL_HCKSUM_CAPABLE(ill) &&
19307 	    (ill->ill_hcksum_capab->ill_hcksum_txflags &
19308 	    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6 | HCKSUM_INET_PARTIAL |
19309 	    HCKSUM_IPHDRCKSUM)) && dohwcksum) {
19310 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19311 		    HCKSUM_IPHDRCKSUM)
19312 			hwcksum_flags = HCK_IPV4_HDRCKSUM;
19313 
19314 		if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19315 		    (HCKSUM_INET_FULL_V4 | HCKSUM_INET_FULL_V6))
19316 			hwcksum_flags |= HCK_FULLCKSUM;
19317 		else if (ill->ill_hcksum_capab->ill_hcksum_txflags &
19318 		    HCKSUM_INET_PARTIAL)
19319 			hwcksum_flags |= HCK_PARTIALCKSUM;
19320 	}
19321 
19322 	/*
19323 	 * Each header fragment consists of the leading extra space,
19324 	 * followed by the TCP/IP header, and the trailing extra space.
19325 	 * We make sure that each header fragment begins on a 32-bit
19326 	 * aligned memory address (tcp_mdt_hdr_head is already 32-bit
19327 	 * aligned in tcp_mdt_update).
19328 	 */
19329 	hdr_frag_sz = roundup((tcp->tcp_mdt_hdr_head + tcp_hdr_len +
19330 	    tcp->tcp_mdt_hdr_tail), 4);
19331 
19332 	/* are we starting from the beginning of data block? */
19333 	if (*tail_unsent == 0) {
19334 		*xmit_tail = (*xmit_tail)->b_cont;
19335 		ASSERT((uintptr_t)MBLKL(*xmit_tail) <= (uintptr_t)INT_MAX);
19336 		*tail_unsent = (int)MBLKL(*xmit_tail);
19337 	}
19338 
19339 	/*
19340 	 * Here we create one or more Multidata messages, each made up of
19341 	 * one header buffer and up to N payload buffers.  This entire
19342 	 * operation is done within two loops:
19343 	 *
19344 	 * The outer loop mostly deals with creating the Multidata message,
19345 	 * as well as the header buffer that gets added to it.  It also
19346 	 * links the Multidata messages together such that all of them can
19347 	 * be sent down to the lower layer in a single putnext call; this
19348 	 * linking behavior depends on the tcp_mdt_chain tunable.
19349 	 *
19350 	 * The inner loop takes an existing Multidata message, and adds
19351 	 * one or more (up to tcp_mdt_max_pld) payload buffers to it.  It
19352 	 * packetizes those buffers by filling up the corresponding header
19353 	 * buffer fragments with the proper IP and TCP headers, and by
19354 	 * describing the layout of each packet in the packet descriptors
19355 	 * that get added to the Multidata.
19356 	 */
19357 	do {
19358 		/*
19359 		 * If usable send window is too small, or data blocks in
19360 		 * transmit list are smaller than our threshold (i.e. app
19361 		 * performs large writes followed by small ones), we hand
19362 		 * off the control over to the legacy path.  Note that we'll
19363 		 * get back the control once it encounters a large block.
19364 		 */
19365 		if (*usable < mss || (*tail_unsent <= mdt_thres &&
19366 		    (*xmit_tail)->b_cont != NULL &&
19367 		    MBLKL((*xmit_tail)->b_cont) <= mdt_thres)) {
19368 			/* send down what we've got so far */
19369 			if (md_mp_head != NULL) {
19370 				tcp_multisend_data(tcp, ire, ill, md_mp_head,
19371 				    obsegs, obbytes, &rconfirm);
19372 			}
19373 			/*
19374 			 * Pass control over to tcp_send(), but tell it to
19375 			 * return to us once a large-size transmission is
19376 			 * possible.
19377 			 */
19378 			TCP_STAT(tcps, tcp_mdt_legacy_small);
19379 			if ((err = tcp_send(q, tcp, mss, tcp_hdr_len,
19380 			    tcp_tcp_hdr_len, num_sack_blk, usable, snxt,
19381 			    tail_unsent, xmit_tail, local_time,
19382 			    mdt_thres)) <= 0) {
19383 				/* burst count reached, or alloc failed */
19384 				IRE_REFRELE(ire);
19385 				return (err);
19386 			}
19387 
19388 			/* tcp_send() may have sent everything, so check */
19389 			if (*usable <= 0) {
19390 				IRE_REFRELE(ire);
19391 				return (0);
19392 			}
19393 
19394 			TCP_STAT(tcps, tcp_mdt_legacy_ret);
19395 			/*
19396 			 * We may have delivered the Multidata, so make sure
19397 			 * to re-initialize before the next round.
19398 			 */
19399 			md_mp_head = NULL;
19400 			obsegs = obbytes = 0;
19401 			num_burst_seg = tcp->tcp_snd_burst;
19402 			PREP_NEW_MULTIDATA();
19403 
19404 			/* are we starting from the beginning of data block? */
19405 			if (*tail_unsent == 0) {
19406 				*xmit_tail = (*xmit_tail)->b_cont;
19407 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19408 				    (uintptr_t)INT_MAX);
19409 				*tail_unsent = (int)MBLKL(*xmit_tail);
19410 			}
19411 		}
19412 		/*
19413 		 * Record current values for parameters we may need to pass
19414 		 * to tcp_send() or tcp_multisend_data(). We checkpoint at
19415 		 * each iteration of the outer loop (each multidata message
19416 		 * creation). If we have a failure in the inner loop, we send
19417 		 * any complete multidata messages we have before reverting
19418 		 * to using the traditional non-md path.
19419 		 */
19420 		snxt_mmd = *snxt;
19421 		usable_mmd = *usable;
19422 		xmit_tail_mmd = *xmit_tail;
19423 		tail_unsent_mmd = *tail_unsent;
19424 		obsegs_mmd = obsegs;
19425 		obbytes_mmd = obbytes;
19426 
19427 		/*
19428 		 * max_pld limits the number of mblks in tcp's transmit
19429 		 * queue that can be added to a Multidata message.  Once
19430 		 * this counter reaches zero, no more additional mblks
19431 		 * can be added to it.  What happens afterwards depends
19432 		 * on whether or not we are set to chain the Multidata
19433 		 * messages.  If we are to link them together, reset
19434 		 * max_pld to its original value (tcp_mdt_max_pld) and
19435 		 * prepare to create a new Multidata message which will
19436 		 * get linked to md_mp_head.  Else, leave it alone and
19437 		 * let the inner loop break on its own.
19438 		 */
19439 		if (tcp_mdt_chain && max_pld == 0)
19440 			PREP_NEW_MULTIDATA();
19441 
19442 		/* adding a payload buffer; re-initialize values */
19443 		if (add_buffer)
19444 			PREP_NEW_PBUF();
19445 
19446 		/*
19447 		 * If we don't have a Multidata, either because we just
19448 		 * (re)entered this outer loop, or after we branched off
19449 		 * to tcp_send above, setup the Multidata and header
19450 		 * buffer to be used.
19451 		 */
19452 		if (md_mp == NULL) {
19453 			int md_hbuflen;
19454 			uint32_t start, stuff;
19455 
19456 			/*
19457 			 * Calculate Multidata header buffer size large enough
19458 			 * to hold all of the headers that can possibly be
19459 			 * sent at this moment.  We'd rather over-estimate
19460 			 * the size than running out of space; this is okay
19461 			 * since this buffer is small anyway.
19462 			 */
19463 			md_hbuflen = (howmany(*usable, mss) + 1) * hdr_frag_sz;
19464 
19465 			/*
19466 			 * Start and stuff offset for partial hardware
19467 			 * checksum offload; these are currently for IPv4.
19468 			 * For full checksum offload, they are set to zero.
19469 			 */
19470 			if ((hwcksum_flags & HCK_PARTIALCKSUM)) {
19471 				if (af == AF_INET) {
19472 					start = IP_SIMPLE_HDR_LENGTH;
19473 					stuff = IP_SIMPLE_HDR_LENGTH +
19474 					    TCP_CHECKSUM_OFFSET;
19475 				} else {
19476 					start = IPV6_HDR_LEN;
19477 					stuff = IPV6_HDR_LEN +
19478 					    TCP_CHECKSUM_OFFSET;
19479 				}
19480 			} else {
19481 				start = stuff = 0;
19482 			}
19483 
19484 			/*
19485 			 * Create the header buffer, Multidata, as well as
19486 			 * any necessary attributes (destination address,
19487 			 * SAP and hardware checksum offload) that should
19488 			 * be associated with the Multidata message.
19489 			 */
19490 			ASSERT(cur_hdr_off == 0);
19491 			if ((md_hbuf = allocb(md_hbuflen, BPRI_HI)) == NULL ||
19492 			    ((md_hbuf->b_wptr += md_hbuflen),
19493 			    (mmd = mmd_alloc(md_hbuf, &md_mp,
19494 			    KM_NOSLEEP)) == NULL) || (tcp_mdt_add_attrs(mmd,
19495 			    /* fastpath mblk */
19496 			    ire->ire_nce->nce_res_mp,
19497 			    /* hardware checksum enabled */
19498 			    (hwcksum_flags & (HCK_FULLCKSUM|HCK_PARTIALCKSUM)),
19499 			    /* hardware checksum offsets */
19500 			    start, stuff, 0,
19501 			    /* hardware checksum flag */
19502 			    hwcksum_flags, tcps) != 0)) {
19503 legacy_send:
19504 				/*
19505 				 * We arrive here from a failure within the
19506 				 * inner (packetizer) loop or we fail one of
19507 				 * the conditionals above. We restore the
19508 				 * previously checkpointed values for:
19509 				 *    xmit_tail
19510 				 *    usable
19511 				 *    tail_unsent
19512 				 *    snxt
19513 				 *    obbytes
19514 				 *    obsegs
19515 				 * We should then be able to dispatch any
19516 				 * complete multidata before reverting to the
19517 				 * traditional path with consistent parameters
19518 				 * (the inner loop updates these as it
19519 				 * iterates).
19520 				 */
19521 				*xmit_tail = xmit_tail_mmd;
19522 				*usable = usable_mmd;
19523 				*tail_unsent = tail_unsent_mmd;
19524 				*snxt = snxt_mmd;
19525 				obbytes = obbytes_mmd;
19526 				obsegs = obsegs_mmd;
19527 				if (md_mp != NULL) {
19528 					/* Unlink message from the chain */
19529 					if (md_mp_head != NULL) {
19530 						err = (intptr_t)rmvb(md_mp_head,
19531 						    md_mp);
19532 						/*
19533 						 * We can't assert that rmvb
19534 						 * did not return -1, since we
19535 						 * may get here before linkb
19536 						 * happens.  We do, however,
19537 						 * check if we just removed the
19538 						 * only element in the list.
19539 						 */
19540 						if (err == 0)
19541 							md_mp_head = NULL;
19542 					}
19543 					/* md_hbuf gets freed automatically */
19544 					TCP_STAT(tcps, tcp_mdt_discarded);
19545 					freeb(md_mp);
19546 				} else {
19547 					/* Either allocb or mmd_alloc failed */
19548 					TCP_STAT(tcps, tcp_mdt_allocfail);
19549 					if (md_hbuf != NULL)
19550 						freeb(md_hbuf);
19551 				}
19552 
19553 				/* send down what we've got so far */
19554 				if (md_mp_head != NULL) {
19555 					tcp_multisend_data(tcp, ire, ill,
19556 					    md_mp_head, obsegs, obbytes,
19557 					    &rconfirm);
19558 				}
19559 legacy_send_no_md:
19560 				if (ire != NULL)
19561 					IRE_REFRELE(ire);
19562 				/*
19563 				 * Too bad; let the legacy path handle this.
19564 				 * We specify INT_MAX for the threshold, since
19565 				 * we gave up with the Multidata processings
19566 				 * and let the old path have it all.
19567 				 */
19568 				TCP_STAT(tcps, tcp_mdt_legacy_all);
19569 				return (tcp_send(q, tcp, mss, tcp_hdr_len,
19570 				    tcp_tcp_hdr_len, num_sack_blk, usable,
19571 				    snxt, tail_unsent, xmit_tail, local_time,
19572 				    INT_MAX));
19573 			}
19574 
19575 			/* link to any existing ones, if applicable */
19576 			TCP_STAT(tcps, tcp_mdt_allocd);
19577 			if (md_mp_head == NULL) {
19578 				md_mp_head = md_mp;
19579 			} else if (tcp_mdt_chain) {
19580 				TCP_STAT(tcps, tcp_mdt_linked);
19581 				linkb(md_mp_head, md_mp);
19582 			}
19583 		}
19584 
19585 		ASSERT(md_mp_head != NULL);
19586 		ASSERT(tcp_mdt_chain || md_mp_head->b_cont == NULL);
19587 		ASSERT(md_mp != NULL && mmd != NULL);
19588 		ASSERT(md_hbuf != NULL);
19589 
19590 		/*
19591 		 * Packetize the transmittable portion of the data block;
19592 		 * each data block is essentially added to the Multidata
19593 		 * as a payload buffer.  We also deal with adding more
19594 		 * than one payload buffers, which happens when the remaining
19595 		 * packetized portion of the current payload buffer is less
19596 		 * than MSS, while the next data block in transmit queue
19597 		 * has enough data to make up for one.  This "spillover"
19598 		 * case essentially creates a split-packet, where portions
19599 		 * of the packet's payload fragments may span across two
19600 		 * virtually discontiguous address blocks.
19601 		 */
19602 		seg_len = mss;
19603 		do {
19604 			len = seg_len;
19605 
19606 			/* one must remain NULL for DTRACE_IP_FASTPATH */
19607 			ipha = NULL;
19608 			ip6h = NULL;
19609 
19610 			ASSERT(len > 0);
19611 			ASSERT(max_pld >= 0);
19612 			ASSERT(!add_buffer || cur_pld_off == 0);
19613 
19614 			/*
19615 			 * First time around for this payload buffer; note
19616 			 * in the case of a spillover, the following has
19617 			 * been done prior to adding the split-packet
19618 			 * descriptor to Multidata, and we don't want to
19619 			 * repeat the process.
19620 			 */
19621 			if (add_buffer) {
19622 				ASSERT(mmd != NULL);
19623 				ASSERT(md_pbuf == NULL);
19624 				ASSERT(md_pbuf_nxt == NULL);
19625 				ASSERT(pbuf_idx == -1 && pbuf_idx_nxt == -1);
19626 
19627 				/*
19628 				 * Have we reached the limit?  We'd get to
19629 				 * this case when we're not chaining the
19630 				 * Multidata messages together, and since
19631 				 * we're done, terminate this loop.
19632 				 */
19633 				if (max_pld == 0)
19634 					break; /* done */
19635 
19636 				if ((md_pbuf = dupb(*xmit_tail)) == NULL) {
19637 					TCP_STAT(tcps, tcp_mdt_allocfail);
19638 					goto legacy_send; /* out_of_mem */
19639 				}
19640 
19641 				if (IS_VMLOANED_MBLK(md_pbuf) && !zcopy &&
19642 				    zc_cap != NULL) {
19643 					if (!ip_md_zcopy_attr(mmd, NULL,
19644 					    zc_cap->ill_zerocopy_flags)) {
19645 						freeb(md_pbuf);
19646 						TCP_STAT(tcps,
19647 						    tcp_mdt_allocfail);
19648 						/* out_of_mem */
19649 						goto legacy_send;
19650 					}
19651 					zcopy = B_TRUE;
19652 				}
19653 
19654 				md_pbuf->b_rptr += base_pld_off;
19655 
19656 				/*
19657 				 * Add a payload buffer to the Multidata; this
19658 				 * operation must not fail, or otherwise our
19659 				 * logic in this routine is broken.  There
19660 				 * is no memory allocation done by the
19661 				 * routine, so any returned failure simply
19662 				 * tells us that we've done something wrong.
19663 				 *
19664 				 * A failure tells us that either we're adding
19665 				 * the same payload buffer more than once, or
19666 				 * we're trying to add more buffers than
19667 				 * allowed (max_pld calculation is wrong).
19668 				 * None of the above cases should happen, and
19669 				 * we panic because either there's horrible
19670 				 * heap corruption, and/or programming mistake.
19671 				 */
19672 				pbuf_idx = mmd_addpldbuf(mmd, md_pbuf);
19673 				if (pbuf_idx < 0) {
19674 					cmn_err(CE_PANIC, "tcp_multisend: "
19675 					    "payload buffer logic error "
19676 					    "detected for tcp %p mmd %p "
19677 					    "pbuf %p (%d)\n",
19678 					    (void *)tcp, (void *)mmd,
19679 					    (void *)md_pbuf, pbuf_idx);
19680 				}
19681 
19682 				ASSERT(max_pld > 0);
19683 				--max_pld;
19684 				add_buffer = B_FALSE;
19685 			}
19686 
19687 			ASSERT(md_mp_head != NULL);
19688 			ASSERT(md_pbuf != NULL);
19689 			ASSERT(md_pbuf_nxt == NULL);
19690 			ASSERT(pbuf_idx != -1);
19691 			ASSERT(pbuf_idx_nxt == -1);
19692 			ASSERT(*usable > 0);
19693 
19694 			/*
19695 			 * We spillover to the next payload buffer only
19696 			 * if all of the following is true:
19697 			 *
19698 			 *   1. There is not enough data on the current
19699 			 *	payload buffer to make up `len',
19700 			 *   2. We are allowed to send `len',
19701 			 *   3. The next payload buffer length is large
19702 			 *	enough to accomodate `spill'.
19703 			 */
19704 			if ((spill = len - *tail_unsent) > 0 &&
19705 			    *usable >= len &&
19706 			    MBLKL((*xmit_tail)->b_cont) >= spill &&
19707 			    max_pld > 0) {
19708 				md_pbuf_nxt = dupb((*xmit_tail)->b_cont);
19709 				if (md_pbuf_nxt == NULL) {
19710 					TCP_STAT(tcps, tcp_mdt_allocfail);
19711 					goto legacy_send; /* out_of_mem */
19712 				}
19713 
19714 				if (IS_VMLOANED_MBLK(md_pbuf_nxt) && !zcopy &&
19715 				    zc_cap != NULL) {
19716 					if (!ip_md_zcopy_attr(mmd, NULL,
19717 					    zc_cap->ill_zerocopy_flags)) {
19718 						freeb(md_pbuf_nxt);
19719 						TCP_STAT(tcps,
19720 						    tcp_mdt_allocfail);
19721 						/* out_of_mem */
19722 						goto legacy_send;
19723 					}
19724 					zcopy = B_TRUE;
19725 				}
19726 
19727 				/*
19728 				 * See comments above on the first call to
19729 				 * mmd_addpldbuf for explanation on the panic.
19730 				 */
19731 				pbuf_idx_nxt = mmd_addpldbuf(mmd, md_pbuf_nxt);
19732 				if (pbuf_idx_nxt < 0) {
19733 					panic("tcp_multisend: "
19734 					    "next payload buffer logic error "
19735 					    "detected for tcp %p mmd %p "
19736 					    "pbuf %p (%d)\n",
19737 					    (void *)tcp, (void *)mmd,
19738 					    (void *)md_pbuf_nxt, pbuf_idx_nxt);
19739 				}
19740 
19741 				ASSERT(max_pld > 0);
19742 				--max_pld;
19743 			} else if (spill > 0) {
19744 				/*
19745 				 * If there's a spillover, but the following
19746 				 * xmit_tail couldn't give us enough octets
19747 				 * to reach "len", then stop the current
19748 				 * Multidata creation and let the legacy
19749 				 * tcp_send() path take over.  We don't want
19750 				 * to send the tiny segment as part of this
19751 				 * Multidata for performance reasons; instead,
19752 				 * we let the legacy path deal with grouping
19753 				 * it with the subsequent small mblks.
19754 				 */
19755 				if (*usable >= len &&
19756 				    MBLKL((*xmit_tail)->b_cont) < spill) {
19757 					max_pld = 0;
19758 					break;	/* done */
19759 				}
19760 
19761 				/*
19762 				 * We can't spillover, and we are near
19763 				 * the end of the current payload buffer,
19764 				 * so send what's left.
19765 				 */
19766 				ASSERT(*tail_unsent > 0);
19767 				len = *tail_unsent;
19768 			}
19769 
19770 			/* tail_unsent is negated if there is a spillover */
19771 			*tail_unsent -= len;
19772 			*usable -= len;
19773 			ASSERT(*usable >= 0);
19774 
19775 			if (*usable < mss)
19776 				seg_len = *usable;
19777 			/*
19778 			 * Sender SWS avoidance; see comments in tcp_send();
19779 			 * everything else is the same, except that we only
19780 			 * do this here if there is no more data to be sent
19781 			 * following the current xmit_tail.  We don't check
19782 			 * for 1-byte urgent data because we shouldn't get
19783 			 * here if TCP_URG_VALID is set.
19784 			 */
19785 			if (*usable > 0 && *usable < mss &&
19786 			    ((md_pbuf_nxt == NULL &&
19787 			    (*xmit_tail)->b_cont == NULL) ||
19788 			    (md_pbuf_nxt != NULL &&
19789 			    (*xmit_tail)->b_cont->b_cont == NULL)) &&
19790 			    seg_len < (tcp->tcp_max_swnd >> 1) &&
19791 			    (tcp->tcp_unsent -
19792 			    ((*snxt + len) - tcp->tcp_snxt)) > seg_len &&
19793 			    !tcp->tcp_zero_win_probe) {
19794 				if ((*snxt + len) == tcp->tcp_snxt &&
19795 				    (*snxt + len) == tcp->tcp_suna) {
19796 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
19797 				}
19798 				done = B_TRUE;
19799 			}
19800 
19801 			/*
19802 			 * Prime pump for IP's checksumming on our behalf;
19803 			 * include the adjustment for a source route if any.
19804 			 * Do this only for software/partial hardware checksum
19805 			 * offload, as this field gets zeroed out later for
19806 			 * the full hardware checksum offload case.
19807 			 */
19808 			if (!(hwcksum_flags & HCK_FULLCKSUM)) {
19809 				cksum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
19810 				cksum = (cksum >> 16) + (cksum & 0xFFFF);
19811 				U16_TO_ABE16(cksum, tcp->tcp_tcph->th_sum);
19812 			}
19813 
19814 			U32_TO_ABE32(*snxt, tcp->tcp_tcph->th_seq);
19815 			*snxt += len;
19816 
19817 			tcp->tcp_tcph->th_flags[0] = TH_ACK;
19818 			/*
19819 			 * We set the PUSH bit only if TCP has no more buffered
19820 			 * data to be transmitted (or if sender SWS avoidance
19821 			 * takes place), as opposed to setting it for every
19822 			 * last packet in the burst.
19823 			 */
19824 			if (done ||
19825 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) == 0)
19826 				tcp->tcp_tcph->th_flags[0] |= TH_PUSH;
19827 
19828 			/*
19829 			 * Set FIN bit if this is our last segment; snxt
19830 			 * already includes its length, and it will not
19831 			 * be adjusted after this point.
19832 			 */
19833 			if (tcp->tcp_valid_bits == TCP_FSS_VALID &&
19834 			    *snxt == tcp->tcp_fss) {
19835 				if (!tcp->tcp_fin_acked) {
19836 					tcp->tcp_tcph->th_flags[0] |= TH_FIN;
19837 					BUMP_MIB(&tcps->tcps_mib,
19838 					    tcpOutControl);
19839 				}
19840 				if (!tcp->tcp_fin_sent) {
19841 					tcp->tcp_fin_sent = B_TRUE;
19842 					/*
19843 					 * tcp state must be ESTABLISHED
19844 					 * in order for us to get here in
19845 					 * the first place.
19846 					 */
19847 					tcp->tcp_state = TCPS_FIN_WAIT_1;
19848 
19849 					/*
19850 					 * Upon returning from this routine,
19851 					 * tcp_wput_data() will set tcp_snxt
19852 					 * to be equal to snxt + tcp_fin_sent.
19853 					 * This is essentially the same as
19854 					 * setting it to tcp_fss + 1.
19855 					 */
19856 				}
19857 			}
19858 
19859 			tcp->tcp_last_sent_len = (ushort_t)len;
19860 
19861 			len += tcp_hdr_len;
19862 			if (tcp->tcp_ipversion == IPV4_VERSION)
19863 				tcp->tcp_ipha->ipha_length = htons(len);
19864 			else
19865 				tcp->tcp_ip6h->ip6_plen = htons(len -
19866 				    ((char *)&tcp->tcp_ip6h[1] -
19867 				    tcp->tcp_iphc));
19868 
19869 			pkt_info->flags = (PDESC_HBUF_REF | PDESC_PBUF_REF);
19870 
19871 			/* setup header fragment */
19872 			PDESC_HDR_ADD(pkt_info,
19873 			    md_hbuf->b_rptr + cur_hdr_off,	/* base */
19874 			    tcp->tcp_mdt_hdr_head,		/* head room */
19875 			    tcp_hdr_len,			/* len */
19876 			    tcp->tcp_mdt_hdr_tail);		/* tail room */
19877 
19878 			ASSERT(pkt_info->hdr_lim - pkt_info->hdr_base ==
19879 			    hdr_frag_sz);
19880 			ASSERT(MBLKIN(md_hbuf,
19881 			    (pkt_info->hdr_base - md_hbuf->b_rptr),
19882 			    PDESC_HDRSIZE(pkt_info)));
19883 
19884 			/* setup first payload fragment */
19885 			PDESC_PLD_INIT(pkt_info);
19886 			PDESC_PLD_SPAN_ADD(pkt_info,
19887 			    pbuf_idx,				/* index */
19888 			    md_pbuf->b_rptr + cur_pld_off,	/* start */
19889 			    tcp->tcp_last_sent_len);		/* len */
19890 
19891 			/* create a split-packet in case of a spillover */
19892 			if (md_pbuf_nxt != NULL) {
19893 				ASSERT(spill > 0);
19894 				ASSERT(pbuf_idx_nxt > pbuf_idx);
19895 				ASSERT(!add_buffer);
19896 
19897 				md_pbuf = md_pbuf_nxt;
19898 				md_pbuf_nxt = NULL;
19899 				pbuf_idx = pbuf_idx_nxt;
19900 				pbuf_idx_nxt = -1;
19901 				cur_pld_off = spill;
19902 
19903 				/* trim out first payload fragment */
19904 				PDESC_PLD_SPAN_TRIM(pkt_info, 0, spill);
19905 
19906 				/* setup second payload fragment */
19907 				PDESC_PLD_SPAN_ADD(pkt_info,
19908 				    pbuf_idx,			/* index */
19909 				    md_pbuf->b_rptr,		/* start */
19910 				    spill);			/* len */
19911 
19912 				if ((*xmit_tail)->b_next == NULL) {
19913 					/*
19914 					 * Store the lbolt used for RTT
19915 					 * estimation. We can only record one
19916 					 * timestamp per mblk so we do it when
19917 					 * we reach the end of the payload
19918 					 * buffer.  Also we only take a new
19919 					 * timestamp sample when the previous
19920 					 * timed data from the same mblk has
19921 					 * been ack'ed.
19922 					 */
19923 					(*xmit_tail)->b_prev = local_time;
19924 					(*xmit_tail)->b_next =
19925 					    (mblk_t *)(uintptr_t)first_snxt;
19926 				}
19927 
19928 				first_snxt = *snxt - spill;
19929 
19930 				/*
19931 				 * Advance xmit_tail; usable could be 0 by
19932 				 * the time we got here, but we made sure
19933 				 * above that we would only spillover to
19934 				 * the next data block if usable includes
19935 				 * the spilled-over amount prior to the
19936 				 * subtraction.  Therefore, we are sure
19937 				 * that xmit_tail->b_cont can't be NULL.
19938 				 */
19939 				ASSERT((*xmit_tail)->b_cont != NULL);
19940 				*xmit_tail = (*xmit_tail)->b_cont;
19941 				ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
19942 				    (uintptr_t)INT_MAX);
19943 				*tail_unsent = (int)MBLKL(*xmit_tail) - spill;
19944 			} else {
19945 				cur_pld_off += tcp->tcp_last_sent_len;
19946 			}
19947 
19948 			/*
19949 			 * Fill in the header using the template header, and
19950 			 * add options such as time-stamp, ECN and/or SACK,
19951 			 * as needed.
19952 			 */
19953 			tcp_fill_header(tcp, pkt_info->hdr_rptr,
19954 			    (clock_t)local_time, num_sack_blk);
19955 
19956 			/* take care of some IP header businesses */
19957 			if (af == AF_INET) {
19958 				ipha = (ipha_t *)pkt_info->hdr_rptr;
19959 
19960 				ASSERT(OK_32PTR((uchar_t *)ipha));
19961 				ASSERT(PDESC_HDRL(pkt_info) >=
19962 				    IP_SIMPLE_HDR_LENGTH);
19963 				ASSERT(ipha->ipha_version_and_hdr_length ==
19964 				    IP_SIMPLE_HDR_VERSION);
19965 
19966 				/*
19967 				 * Assign ident value for current packet; see
19968 				 * related comments in ip_wput_ire() about the
19969 				 * contract private interface with clustering
19970 				 * group.
19971 				 */
19972 				clusterwide = B_FALSE;
19973 				if (cl_inet_ipident != NULL) {
19974 					ASSERT(cl_inet_isclusterwide != NULL);
19975 					if ((*cl_inet_isclusterwide)(stack_id,
19976 					    IPPROTO_IP, AF_INET,
19977 					    (uint8_t *)(uintptr_t)src, NULL)) {
19978 						ipha->ipha_ident =
19979 						    (*cl_inet_ipident)(stack_id,
19980 						    IPPROTO_IP, AF_INET,
19981 						    (uint8_t *)(uintptr_t)src,
19982 						    (uint8_t *)(uintptr_t)dst,
19983 						    NULL);
19984 						clusterwide = B_TRUE;
19985 					}
19986 				}
19987 
19988 				if (!clusterwide) {
19989 					ipha->ipha_ident = (uint16_t)
19990 					    atomic_add_32_nv(
19991 						&ire->ire_ident, 1);
19992 				}
19993 #ifndef _BIG_ENDIAN
19994 				ipha->ipha_ident = (ipha->ipha_ident << 8) |
19995 				    (ipha->ipha_ident >> 8);
19996 #endif
19997 			} else {
19998 				ip6h = (ip6_t *)pkt_info->hdr_rptr;
19999 
20000 				ASSERT(OK_32PTR((uchar_t *)ip6h));
20001 				ASSERT(IPVER(ip6h) == IPV6_VERSION);
20002 				ASSERT(ip6h->ip6_nxt == IPPROTO_TCP);
20003 				ASSERT(PDESC_HDRL(pkt_info) >=
20004 				    (IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET +
20005 				    TCP_CHECKSUM_SIZE));
20006 				ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20007 
20008 				if (tcp->tcp_ip_forward_progress) {
20009 					rconfirm = B_TRUE;
20010 					tcp->tcp_ip_forward_progress = B_FALSE;
20011 				}
20012 			}
20013 
20014 			/* at least one payload span, and at most two */
20015 			ASSERT(pkt_info->pld_cnt > 0 && pkt_info->pld_cnt < 3);
20016 
20017 			/* add the packet descriptor to Multidata */
20018 			if ((pkt = mmd_addpdesc(mmd, pkt_info, &err,
20019 			    KM_NOSLEEP)) == NULL) {
20020 				/*
20021 				 * Any failure other than ENOMEM indicates
20022 				 * that we have passed in invalid pkt_info
20023 				 * or parameters to mmd_addpdesc, which must
20024 				 * not happen.
20025 				 *
20026 				 * EINVAL is a result of failure on boundary
20027 				 * checks against the pkt_info contents.  It
20028 				 * should not happen, and we panic because
20029 				 * either there's horrible heap corruption,
20030 				 * and/or programming mistake.
20031 				 */
20032 				if (err != ENOMEM) {
20033 					cmn_err(CE_PANIC, "tcp_multisend: "
20034 					    "pdesc logic error detected for "
20035 					    "tcp %p mmd %p pinfo %p (%d)\n",
20036 					    (void *)tcp, (void *)mmd,
20037 					    (void *)pkt_info, err);
20038 				}
20039 				TCP_STAT(tcps, tcp_mdt_addpdescfail);
20040 				goto legacy_send; /* out_of_mem */
20041 			}
20042 			ASSERT(pkt != NULL);
20043 
20044 			/* calculate IP header and TCP checksums */
20045 			if (af == AF_INET) {
20046 				/* calculate pseudo-header checksum */
20047 				cksum = (dst >> 16) + (dst & 0xFFFF) +
20048 				    (src >> 16) + (src & 0xFFFF);
20049 
20050 				/* offset for TCP header checksum */
20051 				up = IPH_TCPH_CHECKSUMP(ipha,
20052 				    IP_SIMPLE_HDR_LENGTH);
20053 			} else {
20054 				up = (uint16_t *)&ip6h->ip6_src;
20055 
20056 				/* calculate pseudo-header checksum */
20057 				cksum = up[0] + up[1] + up[2] + up[3] +
20058 				    up[4] + up[5] + up[6] + up[7] +
20059 				    up[8] + up[9] + up[10] + up[11] +
20060 				    up[12] + up[13] + up[14] + up[15];
20061 
20062 				/* Fold the initial sum */
20063 				cksum = (cksum & 0xffff) + (cksum >> 16);
20064 
20065 				up = (uint16_t *)(((uchar_t *)ip6h) +
20066 				    IPV6_HDR_LEN + TCP_CHECKSUM_OFFSET);
20067 			}
20068 
20069 			if (hwcksum_flags & HCK_FULLCKSUM) {
20070 				/* clear checksum field for hardware */
20071 				*up = 0;
20072 			} else if (hwcksum_flags & HCK_PARTIALCKSUM) {
20073 				uint32_t sum;
20074 
20075 				/* pseudo-header checksumming */
20076 				sum = *up + cksum + IP_TCP_CSUM_COMP;
20077 				sum = (sum & 0xFFFF) + (sum >> 16);
20078 				*up = (sum & 0xFFFF) + (sum >> 16);
20079 			} else {
20080 				/* software checksumming */
20081 				TCP_STAT(tcps, tcp_out_sw_cksum);
20082 				TCP_STAT_UPDATE(tcps, tcp_out_sw_cksum_bytes,
20083 				    tcp->tcp_hdr_len + tcp->tcp_last_sent_len);
20084 				*up = IP_MD_CSUM(pkt, tcp->tcp_ip_hdr_len,
20085 				    cksum + IP_TCP_CSUM_COMP);
20086 				if (*up == 0)
20087 					*up = 0xFFFF;
20088 			}
20089 
20090 			/* IPv4 header checksum */
20091 			if (af == AF_INET) {
20092 				if (hwcksum_flags & HCK_IPV4_HDRCKSUM) {
20093 					ipha->ipha_hdr_checksum = 0;
20094 				} else {
20095 					IP_HDR_CKSUM(ipha, cksum,
20096 					    ((uint32_t *)ipha)[0],
20097 					    ((uint16_t *)ipha)[4]);
20098 				}
20099 			}
20100 
20101 			if (af == AF_INET &&
20102 			    HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) ||
20103 			    af == AF_INET6 &&
20104 			    HOOKS6_INTERESTED_PHYSICAL_OUT(ipst)) {
20105 				mblk_t	*mp, *mp1;
20106 				uchar_t	*hdr_rptr, *hdr_wptr;
20107 				uchar_t	*pld_rptr, *pld_wptr;
20108 
20109 				/*
20110 				 * We reconstruct a pseudo packet for the hooks
20111 				 * framework using mmd_transform_link().
20112 				 * If it is a split packet we pullup the
20113 				 * payload. FW_HOOKS expects a pkt comprising
20114 				 * of two mblks: a header and the payload.
20115 				 */
20116 				if ((mp = mmd_transform_link(pkt)) == NULL) {
20117 					TCP_STAT(tcps, tcp_mdt_allocfail);
20118 					goto legacy_send;
20119 				}
20120 
20121 				if (pkt_info->pld_cnt > 1) {
20122 					/* split payload, more than one pld */
20123 					if ((mp1 = msgpullup(mp->b_cont, -1)) ==
20124 					    NULL) {
20125 						freemsg(mp);
20126 						TCP_STAT(tcps,
20127 						    tcp_mdt_allocfail);
20128 						goto legacy_send;
20129 					}
20130 					freemsg(mp->b_cont);
20131 					mp->b_cont = mp1;
20132 				} else {
20133 					mp1 = mp->b_cont;
20134 				}
20135 				ASSERT(mp1 != NULL && mp1->b_cont == NULL);
20136 
20137 				/*
20138 				 * Remember the message offsets. This is so we
20139 				 * can detect changes when we return from the
20140 				 * FW_HOOKS callbacks.
20141 				 */
20142 				hdr_rptr = mp->b_rptr;
20143 				hdr_wptr = mp->b_wptr;
20144 				pld_rptr = mp->b_cont->b_rptr;
20145 				pld_wptr = mp->b_cont->b_wptr;
20146 
20147 				if (af == AF_INET) {
20148 					DTRACE_PROBE4(
20149 					    ip4__physical__out__start,
20150 					    ill_t *, NULL,
20151 					    ill_t *, ill,
20152 					    ipha_t *, ipha,
20153 					    mblk_t *, mp);
20154 					FW_HOOKS(
20155 					    ipst->ips_ip4_physical_out_event,
20156 					    ipst->ips_ipv4firewall_physical_out,
20157 					    NULL, ill, ipha, mp, mp, 0, ipst);
20158 					DTRACE_PROBE1(
20159 					    ip4__physical__out__end,
20160 					    mblk_t *, mp);
20161 				} else {
20162 					DTRACE_PROBE4(
20163 					    ip6__physical__out_start,
20164 					    ill_t *, NULL,
20165 					    ill_t *, ill,
20166 					    ip6_t *, ip6h,
20167 					    mblk_t *, mp);
20168 					FW_HOOKS6(
20169 					    ipst->ips_ip6_physical_out_event,
20170 					    ipst->ips_ipv6firewall_physical_out,
20171 					    NULL, ill, ip6h, mp, mp, 0, ipst);
20172 					DTRACE_PROBE1(
20173 					    ip6__physical__out__end,
20174 					    mblk_t *, mp);
20175 				}
20176 
20177 				if (mp == NULL ||
20178 				    (mp1 = mp->b_cont) == NULL ||
20179 				    mp->b_rptr != hdr_rptr ||
20180 				    mp->b_wptr != hdr_wptr ||
20181 				    mp1->b_rptr != pld_rptr ||
20182 				    mp1->b_wptr != pld_wptr ||
20183 				    mp1->b_cont != NULL) {
20184 					/*
20185 					 * We abandon multidata processing and
20186 					 * return to the normal path, either
20187 					 * when a packet is blocked, or when
20188 					 * the boundaries of header buffer or
20189 					 * payload buffer have been changed by
20190 					 * FW_HOOKS[6].
20191 					 */
20192 					if (mp != NULL)
20193 						freemsg(mp);
20194 					goto legacy_send;
20195 				}
20196 				/* Finished with the pseudo packet */
20197 				freemsg(mp);
20198 			}
20199 			DTRACE_IP_FASTPATH(md_hbuf, pkt_info->hdr_rptr,
20200 			    ill, ipha, ip6h);
20201 			/* advance header offset */
20202 			cur_hdr_off += hdr_frag_sz;
20203 
20204 			obbytes += tcp->tcp_last_sent_len;
20205 			++obsegs;
20206 		} while (!done && *usable > 0 && --num_burst_seg > 0 &&
20207 		    *tail_unsent > 0);
20208 
20209 		if ((*xmit_tail)->b_next == NULL) {
20210 			/*
20211 			 * Store the lbolt used for RTT estimation. We can only
20212 			 * record one timestamp per mblk so we do it when we
20213 			 * reach the end of the payload buffer. Also we only
20214 			 * take a new timestamp sample when the previous timed
20215 			 * data from the same mblk has been ack'ed.
20216 			 */
20217 			(*xmit_tail)->b_prev = local_time;
20218 			(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)first_snxt;
20219 		}
20220 
20221 		ASSERT(*tail_unsent >= 0);
20222 		if (*tail_unsent > 0) {
20223 			/*
20224 			 * We got here because we broke out of the above
20225 			 * loop due to of one of the following cases:
20226 			 *
20227 			 *   1. len < adjusted MSS (i.e. small),
20228 			 *   2. Sender SWS avoidance,
20229 			 *   3. max_pld is zero.
20230 			 *
20231 			 * We are done for this Multidata, so trim our
20232 			 * last payload buffer (if any) accordingly.
20233 			 */
20234 			if (md_pbuf != NULL)
20235 				md_pbuf->b_wptr -= *tail_unsent;
20236 		} else if (*usable > 0) {
20237 			*xmit_tail = (*xmit_tail)->b_cont;
20238 			ASSERT((uintptr_t)MBLKL(*xmit_tail) <=
20239 			    (uintptr_t)INT_MAX);
20240 			*tail_unsent = (int)MBLKL(*xmit_tail);
20241 			add_buffer = B_TRUE;
20242 		}
20243 	} while (!done && *usable > 0 && num_burst_seg > 0 &&
20244 	    (tcp_mdt_chain || max_pld > 0));
20245 
20246 	if (md_mp_head != NULL) {
20247 		/* send everything down */
20248 		tcp_multisend_data(tcp, ire, ill, md_mp_head, obsegs, obbytes,
20249 		    &rconfirm);
20250 	}
20251 
20252 #undef PREP_NEW_MULTIDATA
20253 #undef PREP_NEW_PBUF
20254 #undef IPVER
20255 
20256 	IRE_REFRELE(ire);
20257 	return (0);
20258 }
20259 
20260 /*
20261  * A wrapper function for sending one or more Multidata messages down to
20262  * the module below ip; this routine does not release the reference of the
20263  * IRE (caller does that).  This routine is analogous to tcp_send_data().
20264  */
20265 static void
20266 tcp_multisend_data(tcp_t *tcp, ire_t *ire, const ill_t *ill, mblk_t *md_mp_head,
20267     const uint_t obsegs, const uint_t obbytes, boolean_t *rconfirm)
20268 {
20269 	uint64_t delta;
20270 	nce_t *nce;
20271 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20272 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20273 
20274 	ASSERT(ire != NULL && ill != NULL);
20275 	ASSERT(ire->ire_stq != NULL);
20276 	ASSERT(md_mp_head != NULL);
20277 	ASSERT(rconfirm != NULL);
20278 
20279 	/* adjust MIBs and IRE timestamp */
20280 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, md_mp_head, tcp_t *, tcp);
20281 	tcp->tcp_obsegs += obsegs;
20282 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataSegs, obsegs);
20283 	UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, obbytes);
20284 	TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out, obsegs);
20285 
20286 	if (tcp->tcp_ipversion == IPV4_VERSION) {
20287 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v4, obsegs);
20288 	} else {
20289 		TCP_STAT_UPDATE(tcps, tcp_mdt_pkt_out_v6, obsegs);
20290 	}
20291 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests, obsegs);
20292 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits, obsegs);
20293 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets, obbytes);
20294 
20295 	ire->ire_ob_pkt_count += obsegs;
20296 	if (ire->ire_ipif != NULL)
20297 		atomic_add_32(&ire->ire_ipif->ipif_ob_pkt_count, obsegs);
20298 	ire->ire_last_used_time = lbolt;
20299 
20300 	if (ipst->ips_ipobs_enabled) {
20301 		multidata_t *dlmdp = mmd_getmultidata(md_mp_head);
20302 		pdesc_t *dl_pkt;
20303 		pdescinfo_t pinfo;
20304 		mblk_t *nmp;
20305 		zoneid_t szone = tcp->tcp_connp->conn_zoneid;
20306 
20307 		for (dl_pkt = mmd_getfirstpdesc(dlmdp, &pinfo);
20308 		    (dl_pkt != NULL);
20309 		    dl_pkt = mmd_getnextpdesc(dl_pkt, &pinfo)) {
20310 			if ((nmp = mmd_transform_link(dl_pkt)) == NULL)
20311 				continue;
20312 			ipobs_hook(nmp, IPOBS_HOOK_OUTBOUND, szone,
20313 			    ALL_ZONES, ill, tcp->tcp_ipversion, 0, ipst);
20314 			freemsg(nmp);
20315 		}
20316 	}
20317 
20318 	/* send it down */
20319 	putnext(ire->ire_stq, md_mp_head);
20320 
20321 	/* we're done for TCP/IPv4 */
20322 	if (tcp->tcp_ipversion == IPV4_VERSION)
20323 		return;
20324 
20325 	nce = ire->ire_nce;
20326 
20327 	ASSERT(nce != NULL);
20328 	ASSERT(!(nce->nce_flags & (NCE_F_NONUD|NCE_F_PERMANENT)));
20329 	ASSERT(nce->nce_state != ND_INCOMPLETE);
20330 
20331 	/* reachability confirmation? */
20332 	if (*rconfirm) {
20333 		nce->nce_last = TICK_TO_MSEC(lbolt64);
20334 		if (nce->nce_state != ND_REACHABLE) {
20335 			mutex_enter(&nce->nce_lock);
20336 			nce->nce_state = ND_REACHABLE;
20337 			nce->nce_pcnt = ND_MAX_UNICAST_SOLICIT;
20338 			mutex_exit(&nce->nce_lock);
20339 			(void) untimeout(nce->nce_timeout_id);
20340 			if (ip_debug > 2) {
20341 				/* ip1dbg */
20342 				pr_addr_dbg("tcp_multisend_data: state "
20343 				    "for %s changed to REACHABLE\n",
20344 				    AF_INET6, &ire->ire_addr_v6);
20345 			}
20346 		}
20347 		/* reset transport reachability confirmation */
20348 		*rconfirm = B_FALSE;
20349 	}
20350 
20351 	delta =  TICK_TO_MSEC(lbolt64) - nce->nce_last;
20352 	ip1dbg(("tcp_multisend_data: delta = %" PRId64
20353 	    " ill_reachable_time = %d \n", delta, ill->ill_reachable_time));
20354 
20355 	if (delta > (uint64_t)ill->ill_reachable_time) {
20356 		mutex_enter(&nce->nce_lock);
20357 		switch (nce->nce_state) {
20358 		case ND_REACHABLE:
20359 		case ND_STALE:
20360 			/*
20361 			 * ND_REACHABLE is identical to ND_STALE in this
20362 			 * specific case. If reachable time has expired for
20363 			 * this neighbor (delta is greater than reachable
20364 			 * time), conceptually, the neighbor cache is no
20365 			 * longer in REACHABLE state, but already in STALE
20366 			 * state.  So the correct transition here is to
20367 			 * ND_DELAY.
20368 			 */
20369 			nce->nce_state = ND_DELAY;
20370 			mutex_exit(&nce->nce_lock);
20371 			NDP_RESTART_TIMER(nce,
20372 			    ipst->ips_delay_first_probe_time);
20373 			if (ip_debug > 3) {
20374 				/* ip2dbg */
20375 				pr_addr_dbg("tcp_multisend_data: state "
20376 				    "for %s changed to DELAY\n",
20377 				    AF_INET6, &ire->ire_addr_v6);
20378 			}
20379 			break;
20380 		case ND_DELAY:
20381 		case ND_PROBE:
20382 			mutex_exit(&nce->nce_lock);
20383 			/* Timers have already started */
20384 			break;
20385 		case ND_UNREACHABLE:
20386 			/*
20387 			 * ndp timer has detected that this nce is
20388 			 * unreachable and initiated deleting this nce
20389 			 * and all its associated IREs. This is a race
20390 			 * where we found the ire before it was deleted
20391 			 * and have just sent out a packet using this
20392 			 * unreachable nce.
20393 			 */
20394 			mutex_exit(&nce->nce_lock);
20395 			break;
20396 		default:
20397 			ASSERT(0);
20398 		}
20399 	}
20400 }
20401 
20402 /*
20403  * Derived from tcp_send_data().
20404  */
20405 static void
20406 tcp_lsosend_data(tcp_t *tcp, mblk_t *mp, ire_t *ire, ill_t *ill, const int mss,
20407     int num_lso_seg)
20408 {
20409 	ipha_t		*ipha;
20410 	mblk_t		*ire_fp_mp;
20411 	uint_t		ire_fp_mp_len;
20412 	uint32_t	hcksum_txflags = 0;
20413 	ipaddr_t	src;
20414 	ipaddr_t	dst;
20415 	uint32_t	cksum;
20416 	uint16_t	*up;
20417 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20418 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
20419 
20420 	ASSERT(DB_TYPE(mp) == M_DATA);
20421 	ASSERT(tcp->tcp_state == TCPS_ESTABLISHED);
20422 	ASSERT(tcp->tcp_ipversion == IPV4_VERSION);
20423 	ASSERT(tcp->tcp_connp != NULL);
20424 	ASSERT(CONN_IS_LSO_MD_FASTPATH(tcp->tcp_connp));
20425 
20426 	ipha = (ipha_t *)mp->b_rptr;
20427 	src = ipha->ipha_src;
20428 	dst = ipha->ipha_dst;
20429 
20430 	DTRACE_PROBE2(tcp__trace__send, mblk_t *, mp, tcp_t *, tcp);
20431 
20432 	ASSERT(ipha->ipha_ident == 0 || ipha->ipha_ident == IP_HDR_INCLUDED);
20433 	ipha->ipha_ident = (uint16_t)atomic_add_32_nv(&ire->ire_ident,
20434 	    num_lso_seg);
20435 #ifndef _BIG_ENDIAN
20436 	ipha->ipha_ident = (ipha->ipha_ident << 8) | (ipha->ipha_ident >> 8);
20437 #endif
20438 	if (tcp->tcp_snd_zcopy_aware) {
20439 		if ((ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) == 0 ||
20440 		    (ill->ill_zerocopy_capab->ill_zerocopy_flags == 0))
20441 			mp = tcp_zcopy_disable(tcp, mp);
20442 	}
20443 
20444 	if (ILL_HCKSUM_CAPABLE(ill) && dohwcksum) {
20445 		ASSERT(ill->ill_hcksum_capab != NULL);
20446 		hcksum_txflags = ill->ill_hcksum_capab->ill_hcksum_txflags;
20447 	}
20448 
20449 	/*
20450 	 * Since the TCP checksum should be recalculated by h/w, we can just
20451 	 * zero the checksum field for HCK_FULLCKSUM, or calculate partial
20452 	 * pseudo-header checksum for HCK_PARTIALCKSUM.
20453 	 * The partial pseudo-header excludes TCP length, that was calculated
20454 	 * in tcp_send(), so to zero *up before further processing.
20455 	 */
20456 	cksum = (dst >> 16) + (dst & 0xFFFF) + (src >> 16) + (src & 0xFFFF);
20457 
20458 	up = IPH_TCPH_CHECKSUMP(ipha, IP_SIMPLE_HDR_LENGTH);
20459 	*up = 0;
20460 
20461 	IP_CKSUM_XMIT_FAST(ire->ire_ipversion, hcksum_txflags, mp, ipha, up,
20462 	    IPPROTO_TCP, IP_SIMPLE_HDR_LENGTH, ntohs(ipha->ipha_length), cksum);
20463 
20464 	/*
20465 	 * Append LSO flags and mss to the mp.
20466 	 */
20467 	lso_info_set(mp, mss, HW_LSO);
20468 
20469 	ipha->ipha_fragment_offset_and_flags |=
20470 	    (uint32_t)htons(ire->ire_frag_flag);
20471 
20472 	ire_fp_mp = ire->ire_nce->nce_fp_mp;
20473 	ire_fp_mp_len = MBLKL(ire_fp_mp);
20474 	ASSERT(DB_TYPE(ire_fp_mp) == M_DATA);
20475 	mp->b_rptr = (uchar_t *)ipha - ire_fp_mp_len;
20476 	bcopy(ire_fp_mp->b_rptr, mp->b_rptr, ire_fp_mp_len);
20477 
20478 	UPDATE_OB_PKT_COUNT(ire);
20479 	ire->ire_last_used_time = lbolt;
20480 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutRequests);
20481 	BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
20482 	UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
20483 	    ntohs(ipha->ipha_length));
20484 
20485 	DTRACE_PROBE4(ip4__physical__out__start,
20486 	    ill_t *, NULL, ill_t *, ill, ipha_t *, ipha, mblk_t *, mp);
20487 	FW_HOOKS(ipst->ips_ip4_physical_out_event,
20488 	    ipst->ips_ipv4firewall_physical_out, NULL,
20489 	    ill, ipha, mp, mp, 0, ipst);
20490 	DTRACE_PROBE1(ip4__physical__out__end, mblk_t *, mp);
20491 	DTRACE_IP_FASTPATH(mp, ipha, ill, ipha, NULL);
20492 
20493 	if (mp != NULL) {
20494 		if (ipst->ips_ipobs_enabled) {
20495 			zoneid_t szone;
20496 
20497 			szone = ip_get_zoneid_v4(ipha->ipha_src, mp,
20498 			    ipst, ALL_ZONES);
20499 			ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone,
20500 			    ALL_ZONES, ill, IPV4_VERSION, ire_fp_mp_len, ipst);
20501 		}
20502 
20503 		ILL_SEND_TX(ill, ire, tcp->tcp_connp, mp, 0, NULL);
20504 	}
20505 }
20506 
20507 /*
20508  * tcp_send() is called by tcp_wput_data() for non-Multidata transmission
20509  * scheme, and returns one of the following:
20510  *
20511  * -1 = failed allocation.
20512  *  0 = success; burst count reached, or usable send window is too small,
20513  *      and that we'd rather wait until later before sending again.
20514  *  1 = success; we are called from tcp_multisend(), and both usable send
20515  *      window and tail_unsent are greater than the MDT threshold, and thus
20516  *      Multidata Transmit should be used instead.
20517  */
20518 static int
20519 tcp_send(queue_t *q, tcp_t *tcp, const int mss, const int tcp_hdr_len,
20520     const int tcp_tcp_hdr_len, const int num_sack_blk, int *usable,
20521     uint_t *snxt, int *tail_unsent, mblk_t **xmit_tail, mblk_t *local_time,
20522     const int mdt_thres)
20523 {
20524 	int num_burst_seg = tcp->tcp_snd_burst;
20525 	ire_t		*ire = NULL;
20526 	ill_t		*ill = NULL;
20527 	mblk_t		*ire_fp_mp = NULL;
20528 	uint_t		ire_fp_mp_len = 0;
20529 	int		num_lso_seg = 1;
20530 	uint_t		lso_usable;
20531 	boolean_t	do_lso_send = B_FALSE;
20532 	tcp_stack_t	*tcps = tcp->tcp_tcps;
20533 
20534 	/*
20535 	 * Check LSO capability before any further work. And the similar check
20536 	 * need to be done in for(;;) loop.
20537 	 * LSO will be deployed when therer is more than one mss of available
20538 	 * data and a burst transmission is allowed.
20539 	 */
20540 	if (tcp->tcp_lso &&
20541 	    (tcp->tcp_valid_bits == 0 ||
20542 	    tcp->tcp_valid_bits == TCP_FSS_VALID) &&
20543 	    num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
20544 		/*
20545 		 * Try to find usable IRE/ILL and do basic check to the ILL.
20546 		 * Double check LSO usability before going further, since the
20547 		 * underlying interface could have been changed. In case of any
20548 		 * change of LSO capability, set tcp_ire_ill_check_done to
20549 		 * B_FALSE to force to check the ILL with the next send.
20550 		 */
20551 		if (tcp_send_find_ire_ill(tcp, NULL, &ire, &ill) &&
20552 		    tcp->tcp_lso && ILL_LSO_TCP_USABLE(ill)) {
20553 			/*
20554 			 * Enable LSO with this transmission.
20555 			 * Since IRE has been hold in tcp_send_find_ire_ill(),
20556 			 * IRE_REFRELE(ire) should be called before return.
20557 			 */
20558 			do_lso_send = B_TRUE;
20559 			ire_fp_mp = ire->ire_nce->nce_fp_mp;
20560 			ire_fp_mp_len = MBLKL(ire_fp_mp);
20561 			/* Round up to multiple of 4 */
20562 			ire_fp_mp_len = ((ire_fp_mp_len + 3) / 4) * 4;
20563 		} else {
20564 			tcp->tcp_lso = B_FALSE;
20565 			tcp->tcp_ire_ill_check_done = B_FALSE;
20566 			do_lso_send = B_FALSE;
20567 			ill = NULL;
20568 		}
20569 	}
20570 
20571 	for (;;) {
20572 		struct datab	*db;
20573 		tcph_t		*tcph;
20574 		uint32_t	sum;
20575 		mblk_t		*mp, *mp1;
20576 		uchar_t		*rptr;
20577 		int		len;
20578 
20579 		/*
20580 		 * If we're called by tcp_multisend(), and the amount of
20581 		 * sendable data as well as the size of current xmit_tail
20582 		 * is beyond the MDT threshold, return to the caller and
20583 		 * let the large data transmit be done using MDT.
20584 		 */
20585 		if (*usable > 0 && *usable > mdt_thres &&
20586 		    (*tail_unsent > mdt_thres || (*tail_unsent == 0 &&
20587 		    MBLKL((*xmit_tail)->b_cont) > mdt_thres))) {
20588 			ASSERT(tcp->tcp_mdt);
20589 			return (1);	/* success; do large send */
20590 		}
20591 
20592 		if (num_burst_seg == 0)
20593 			break;		/* success; burst count reached */
20594 
20595 		/*
20596 		 * Calculate the maximum payload length we can send in *one*
20597 		 * time.
20598 		 */
20599 		if (do_lso_send) {
20600 			/*
20601 			 * Check whether need to do LSO any more.
20602 			 */
20603 			if (num_burst_seg >= 2 && (*usable - 1) / mss >= 1) {
20604 				lso_usable = MIN(tcp->tcp_lso_max, *usable);
20605 				lso_usable = MIN(lso_usable,
20606 				    num_burst_seg * mss);
20607 
20608 				num_lso_seg = lso_usable / mss;
20609 				if (lso_usable % mss) {
20610 					num_lso_seg++;
20611 					tcp->tcp_last_sent_len = (ushort_t)
20612 					    (lso_usable % mss);
20613 				} else {
20614 					tcp->tcp_last_sent_len = (ushort_t)mss;
20615 				}
20616 			} else {
20617 				do_lso_send = B_FALSE;
20618 				num_lso_seg = 1;
20619 				lso_usable = mss;
20620 			}
20621 		}
20622 
20623 		ASSERT(num_lso_seg <= IP_MAXPACKET / mss + 1);
20624 
20625 		/*
20626 		 * Adjust num_burst_seg here.
20627 		 */
20628 		num_burst_seg -= num_lso_seg;
20629 
20630 		len = mss;
20631 		if (len > *usable) {
20632 			ASSERT(do_lso_send == B_FALSE);
20633 
20634 			len = *usable;
20635 			if (len <= 0) {
20636 				/* Terminate the loop */
20637 				break;	/* success; too small */
20638 			}
20639 			/*
20640 			 * Sender silly-window avoidance.
20641 			 * Ignore this if we are going to send a
20642 			 * zero window probe out.
20643 			 *
20644 			 * TODO: force data into microscopic window?
20645 			 *	==> (!pushed || (unsent > usable))
20646 			 */
20647 			if (len < (tcp->tcp_max_swnd >> 1) &&
20648 			    (tcp->tcp_unsent - (*snxt - tcp->tcp_snxt)) > len &&
20649 			    !((tcp->tcp_valid_bits & TCP_URG_VALID) &&
20650 			    len == 1) && (! tcp->tcp_zero_win_probe)) {
20651 				/*
20652 				 * If the retransmit timer is not running
20653 				 * we start it so that we will retransmit
20654 				 * in the case when the the receiver has
20655 				 * decremented the window.
20656 				 */
20657 				if (*snxt == tcp->tcp_snxt &&
20658 				    *snxt == tcp->tcp_suna) {
20659 					/*
20660 					 * We are not supposed to send
20661 					 * anything.  So let's wait a little
20662 					 * bit longer before breaking SWS
20663 					 * avoidance.
20664 					 *
20665 					 * What should the value be?
20666 					 * Suggestion: MAX(init rexmit time,
20667 					 * tcp->tcp_rto)
20668 					 */
20669 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
20670 				}
20671 				break;	/* success; too small */
20672 			}
20673 		}
20674 
20675 		tcph = tcp->tcp_tcph;
20676 
20677 		/*
20678 		 * The reason to adjust len here is that we need to set flags
20679 		 * and calculate checksum.
20680 		 */
20681 		if (do_lso_send)
20682 			len = lso_usable;
20683 
20684 		*usable -= len; /* Approximate - can be adjusted later */
20685 		if (*usable > 0)
20686 			tcph->th_flags[0] = TH_ACK;
20687 		else
20688 			tcph->th_flags[0] = (TH_ACK | TH_PUSH);
20689 
20690 		/*
20691 		 * Prime pump for IP's checksumming on our behalf
20692 		 * Include the adjustment for a source route if any.
20693 		 */
20694 		sum = len + tcp_tcp_hdr_len + tcp->tcp_sum;
20695 		sum = (sum >> 16) + (sum & 0xFFFF);
20696 		U16_TO_ABE16(sum, tcph->th_sum);
20697 
20698 		U32_TO_ABE32(*snxt, tcph->th_seq);
20699 
20700 		/*
20701 		 * Branch off to tcp_xmit_mp() if any of the VALID bits is
20702 		 * set.  For the case when TCP_FSS_VALID is the only valid
20703 		 * bit (normal active close), branch off only when we think
20704 		 * that the FIN flag needs to be set.  Note for this case,
20705 		 * that (snxt + len) may not reflect the actual seg_len,
20706 		 * as len may be further reduced in tcp_xmit_mp().  If len
20707 		 * gets modified, we will end up here again.
20708 		 */
20709 		if (tcp->tcp_valid_bits != 0 &&
20710 		    (tcp->tcp_valid_bits != TCP_FSS_VALID ||
20711 		    ((*snxt + len) == tcp->tcp_fss))) {
20712 			uchar_t		*prev_rptr;
20713 			uint32_t	prev_snxt = tcp->tcp_snxt;
20714 
20715 			if (*tail_unsent == 0) {
20716 				ASSERT((*xmit_tail)->b_cont != NULL);
20717 				*xmit_tail = (*xmit_tail)->b_cont;
20718 				prev_rptr = (*xmit_tail)->b_rptr;
20719 				*tail_unsent = (int)((*xmit_tail)->b_wptr -
20720 				    (*xmit_tail)->b_rptr);
20721 			} else {
20722 				prev_rptr = (*xmit_tail)->b_rptr;
20723 				(*xmit_tail)->b_rptr = (*xmit_tail)->b_wptr -
20724 				    *tail_unsent;
20725 			}
20726 			mp = tcp_xmit_mp(tcp, *xmit_tail, len, NULL, NULL,
20727 			    *snxt, B_FALSE, (uint32_t *)&len, B_FALSE);
20728 			/* Restore tcp_snxt so we get amount sent right. */
20729 			tcp->tcp_snxt = prev_snxt;
20730 			if (prev_rptr == (*xmit_tail)->b_rptr) {
20731 				/*
20732 				 * If the previous timestamp is still in use,
20733 				 * don't stomp on it.
20734 				 */
20735 				if ((*xmit_tail)->b_next == NULL) {
20736 					(*xmit_tail)->b_prev = local_time;
20737 					(*xmit_tail)->b_next =
20738 					    (mblk_t *)(uintptr_t)(*snxt);
20739 				}
20740 			} else
20741 				(*xmit_tail)->b_rptr = prev_rptr;
20742 
20743 			if (mp == NULL) {
20744 				if (ire != NULL)
20745 					IRE_REFRELE(ire);
20746 				return (-1);
20747 			}
20748 			mp1 = mp->b_cont;
20749 
20750 			if (len <= mss) /* LSO is unusable (!do_lso_send) */
20751 				tcp->tcp_last_sent_len = (ushort_t)len;
20752 			while (mp1->b_cont) {
20753 				*xmit_tail = (*xmit_tail)->b_cont;
20754 				(*xmit_tail)->b_prev = local_time;
20755 				(*xmit_tail)->b_next =
20756 				    (mblk_t *)(uintptr_t)(*snxt);
20757 				mp1 = mp1->b_cont;
20758 			}
20759 			*snxt += len;
20760 			*tail_unsent = (*xmit_tail)->b_wptr - mp1->b_wptr;
20761 			BUMP_LOCAL(tcp->tcp_obsegs);
20762 			BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
20763 			UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
20764 			tcp_send_data(tcp, q, mp);
20765 			continue;
20766 		}
20767 
20768 		*snxt += len;	/* Adjust later if we don't send all of len */
20769 		BUMP_MIB(&tcps->tcps_mib, tcpOutDataSegs);
20770 		UPDATE_MIB(&tcps->tcps_mib, tcpOutDataBytes, len);
20771 
20772 		if (*tail_unsent) {
20773 			/* Are the bytes above us in flight? */
20774 			rptr = (*xmit_tail)->b_wptr - *tail_unsent;
20775 			if (rptr != (*xmit_tail)->b_rptr) {
20776 				*tail_unsent -= len;
20777 				if (len <= mss) /* LSO is unusable */
20778 					tcp->tcp_last_sent_len = (ushort_t)len;
20779 				len += tcp_hdr_len;
20780 				if (tcp->tcp_ipversion == IPV4_VERSION)
20781 					tcp->tcp_ipha->ipha_length = htons(len);
20782 				else
20783 					tcp->tcp_ip6h->ip6_plen =
20784 					    htons(len -
20785 					    ((char *)&tcp->tcp_ip6h[1] -
20786 					    tcp->tcp_iphc));
20787 				mp = dupb(*xmit_tail);
20788 				if (mp == NULL) {
20789 					if (ire != NULL)
20790 						IRE_REFRELE(ire);
20791 					return (-1);	/* out_of_mem */
20792 				}
20793 				mp->b_rptr = rptr;
20794 				/*
20795 				 * If the old timestamp is no longer in use,
20796 				 * sample a new timestamp now.
20797 				 */
20798 				if ((*xmit_tail)->b_next == NULL) {
20799 					(*xmit_tail)->b_prev = local_time;
20800 					(*xmit_tail)->b_next =
20801 					    (mblk_t *)(uintptr_t)(*snxt-len);
20802 				}
20803 				goto must_alloc;
20804 			}
20805 		} else {
20806 			*xmit_tail = (*xmit_tail)->b_cont;
20807 			ASSERT((uintptr_t)((*xmit_tail)->b_wptr -
20808 			    (*xmit_tail)->b_rptr) <= (uintptr_t)INT_MAX);
20809 			*tail_unsent = (int)((*xmit_tail)->b_wptr -
20810 			    (*xmit_tail)->b_rptr);
20811 		}
20812 
20813 		(*xmit_tail)->b_prev = local_time;
20814 		(*xmit_tail)->b_next = (mblk_t *)(uintptr_t)(*snxt - len);
20815 
20816 		*tail_unsent -= len;
20817 		if (len <= mss) /* LSO is unusable (!do_lso_send) */
20818 			tcp->tcp_last_sent_len = (ushort_t)len;
20819 
20820 		len += tcp_hdr_len;
20821 		if (tcp->tcp_ipversion == IPV4_VERSION)
20822 			tcp->tcp_ipha->ipha_length = htons(len);
20823 		else
20824 			tcp->tcp_ip6h->ip6_plen = htons(len -
20825 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
20826 
20827 		mp = dupb(*xmit_tail);
20828 		if (mp == NULL) {
20829 			if (ire != NULL)
20830 				IRE_REFRELE(ire);
20831 			return (-1);	/* out_of_mem */
20832 		}
20833 
20834 		len = tcp_hdr_len;
20835 		/*
20836 		 * There are four reasons to allocate a new hdr mblk:
20837 		 *  1) The bytes above us are in use by another packet
20838 		 *  2) We don't have good alignment
20839 		 *  3) The mblk is being shared
20840 		 *  4) We don't have enough room for a header
20841 		 */
20842 		rptr = mp->b_rptr - len;
20843 		if (!OK_32PTR(rptr) ||
20844 		    ((db = mp->b_datap), db->db_ref != 2) ||
20845 		    rptr < db->db_base + ire_fp_mp_len) {
20846 			/* NOTE: we assume allocb returns an OK_32PTR */
20847 
20848 		must_alloc:;
20849 			mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
20850 			    tcps->tcps_wroff_xtra + ire_fp_mp_len, BPRI_MED);
20851 			if (mp1 == NULL) {
20852 				freemsg(mp);
20853 				if (ire != NULL)
20854 					IRE_REFRELE(ire);
20855 				return (-1);	/* out_of_mem */
20856 			}
20857 			mp1->b_cont = mp;
20858 			mp = mp1;
20859 			/* Leave room for Link Level header */
20860 			len = tcp_hdr_len;
20861 			rptr =
20862 			    &mp->b_rptr[tcps->tcps_wroff_xtra + ire_fp_mp_len];
20863 			mp->b_wptr = &rptr[len];
20864 		}
20865 
20866 		/*
20867 		 * Fill in the header using the template header, and add
20868 		 * options such as time-stamp, ECN and/or SACK, as needed.
20869 		 */
20870 		tcp_fill_header(tcp, rptr, (clock_t)local_time, num_sack_blk);
20871 
20872 		mp->b_rptr = rptr;
20873 
20874 		if (*tail_unsent) {
20875 			int spill = *tail_unsent;
20876 
20877 			mp1 = mp->b_cont;
20878 			if (mp1 == NULL)
20879 				mp1 = mp;
20880 
20881 			/*
20882 			 * If we're a little short, tack on more mblks until
20883 			 * there is no more spillover.
20884 			 */
20885 			while (spill < 0) {
20886 				mblk_t *nmp;
20887 				int nmpsz;
20888 
20889 				nmp = (*xmit_tail)->b_cont;
20890 				nmpsz = MBLKL(nmp);
20891 
20892 				/*
20893 				 * Excess data in mblk; can we split it?
20894 				 * If MDT is enabled for the connection,
20895 				 * keep on splitting as this is a transient
20896 				 * send path.
20897 				 */
20898 				if (!do_lso_send && !tcp->tcp_mdt &&
20899 				    (spill + nmpsz > 0)) {
20900 					/*
20901 					 * Don't split if stream head was
20902 					 * told to break up larger writes
20903 					 * into smaller ones.
20904 					 */
20905 					if (tcp->tcp_maxpsz > 0)
20906 						break;
20907 
20908 					/*
20909 					 * Next mblk is less than SMSS/2
20910 					 * rounded up to nearest 64-byte;
20911 					 * let it get sent as part of the
20912 					 * next segment.
20913 					 */
20914 					if (tcp->tcp_localnet &&
20915 					    !tcp->tcp_cork &&
20916 					    (nmpsz < roundup((mss >> 1), 64)))
20917 						break;
20918 				}
20919 
20920 				*xmit_tail = nmp;
20921 				ASSERT((uintptr_t)nmpsz <= (uintptr_t)INT_MAX);
20922 				/* Stash for rtt use later */
20923 				(*xmit_tail)->b_prev = local_time;
20924 				(*xmit_tail)->b_next =
20925 				    (mblk_t *)(uintptr_t)(*snxt - len);
20926 				mp1->b_cont = dupb(*xmit_tail);
20927 				mp1 = mp1->b_cont;
20928 
20929 				spill += nmpsz;
20930 				if (mp1 == NULL) {
20931 					*tail_unsent = spill;
20932 					freemsg(mp);
20933 					if (ire != NULL)
20934 						IRE_REFRELE(ire);
20935 					return (-1);	/* out_of_mem */
20936 				}
20937 			}
20938 
20939 			/* Trim back any surplus on the last mblk */
20940 			if (spill >= 0) {
20941 				mp1->b_wptr -= spill;
20942 				*tail_unsent = spill;
20943 			} else {
20944 				/*
20945 				 * We did not send everything we could in
20946 				 * order to remain within the b_cont limit.
20947 				 */
20948 				*usable -= spill;
20949 				*snxt += spill;
20950 				tcp->tcp_last_sent_len += spill;
20951 				UPDATE_MIB(&tcps->tcps_mib,
20952 				    tcpOutDataBytes, spill);
20953 				/*
20954 				 * Adjust the checksum
20955 				 */
20956 				tcph = (tcph_t *)(rptr + tcp->tcp_ip_hdr_len);
20957 				sum += spill;
20958 				sum = (sum >> 16) + (sum & 0xFFFF);
20959 				U16_TO_ABE16(sum, tcph->th_sum);
20960 				if (tcp->tcp_ipversion == IPV4_VERSION) {
20961 					sum = ntohs(
20962 					    ((ipha_t *)rptr)->ipha_length) +
20963 					    spill;
20964 					((ipha_t *)rptr)->ipha_length =
20965 					    htons(sum);
20966 				} else {
20967 					sum = ntohs(
20968 					    ((ip6_t *)rptr)->ip6_plen) +
20969 					    spill;
20970 					((ip6_t *)rptr)->ip6_plen =
20971 					    htons(sum);
20972 				}
20973 				*tail_unsent = 0;
20974 			}
20975 		}
20976 		if (tcp->tcp_ip_forward_progress) {
20977 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
20978 			*(uint32_t *)mp->b_rptr  |= IP_FORWARD_PROG;
20979 			tcp->tcp_ip_forward_progress = B_FALSE;
20980 		}
20981 
20982 		if (do_lso_send) {
20983 			tcp_lsosend_data(tcp, mp, ire, ill, mss,
20984 			    num_lso_seg);
20985 			tcp->tcp_obsegs += num_lso_seg;
20986 
20987 			TCP_STAT(tcps, tcp_lso_times);
20988 			TCP_STAT_UPDATE(tcps, tcp_lso_pkt_out, num_lso_seg);
20989 		} else {
20990 			tcp_send_data(tcp, q, mp);
20991 			BUMP_LOCAL(tcp->tcp_obsegs);
20992 		}
20993 	}
20994 
20995 	if (ire != NULL)
20996 		IRE_REFRELE(ire);
20997 	return (0);
20998 }
20999 
21000 /* Unlink and return any mblk that looks like it contains a MDT info */
21001 static mblk_t *
21002 tcp_mdt_info_mp(mblk_t *mp)
21003 {
21004 	mblk_t	*prev_mp;
21005 
21006 	for (;;) {
21007 		prev_mp = mp;
21008 		/* no more to process? */
21009 		if ((mp = mp->b_cont) == NULL)
21010 			break;
21011 
21012 		switch (DB_TYPE(mp)) {
21013 		case M_CTL:
21014 			if (*(uint32_t *)mp->b_rptr != MDT_IOC_INFO_UPDATE)
21015 				continue;
21016 			ASSERT(prev_mp != NULL);
21017 			prev_mp->b_cont = mp->b_cont;
21018 			mp->b_cont = NULL;
21019 			return (mp);
21020 		default:
21021 			break;
21022 		}
21023 	}
21024 	return (mp);
21025 }
21026 
21027 /* MDT info update routine, called when IP notifies us about MDT */
21028 static void
21029 tcp_mdt_update(tcp_t *tcp, ill_mdt_capab_t *mdt_capab, boolean_t first)
21030 {
21031 	boolean_t prev_state;
21032 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21033 
21034 	/*
21035 	 * IP is telling us to abort MDT on this connection?  We know
21036 	 * this because the capability is only turned off when IP
21037 	 * encounters some pathological cases, e.g. link-layer change
21038 	 * where the new driver doesn't support MDT, or in situation
21039 	 * where MDT usage on the link-layer has been switched off.
21040 	 * IP would not have sent us the initial MDT_IOC_INFO_UPDATE
21041 	 * if the link-layer doesn't support MDT, and if it does, it
21042 	 * will indicate that the feature is to be turned on.
21043 	 */
21044 	prev_state = tcp->tcp_mdt;
21045 	tcp->tcp_mdt = (mdt_capab->ill_mdt_on != 0);
21046 	if (!tcp->tcp_mdt && !first) {
21047 		TCP_STAT(tcps, tcp_mdt_conn_halted3);
21048 		ip1dbg(("tcp_mdt_update: disabling MDT for connp %p\n",
21049 		    (void *)tcp->tcp_connp));
21050 	}
21051 
21052 	/*
21053 	 * We currently only support MDT on simple TCP/{IPv4,IPv6},
21054 	 * so disable MDT otherwise.  The checks are done here
21055 	 * and in tcp_wput_data().
21056 	 */
21057 	if (tcp->tcp_mdt &&
21058 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21059 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21060 	    (tcp->tcp_ipversion == IPV6_VERSION &&
21061 	    tcp->tcp_ip_hdr_len != IPV6_HDR_LEN))
21062 		tcp->tcp_mdt = B_FALSE;
21063 
21064 	if (tcp->tcp_mdt) {
21065 		if (mdt_capab->ill_mdt_version != MDT_VERSION_2) {
21066 			cmn_err(CE_NOTE, "tcp_mdt_update: unknown MDT "
21067 			    "version (%d), expected version is %d",
21068 			    mdt_capab->ill_mdt_version, MDT_VERSION_2);
21069 			tcp->tcp_mdt = B_FALSE;
21070 			return;
21071 		}
21072 
21073 		/*
21074 		 * We need the driver to be able to handle at least three
21075 		 * spans per packet in order for tcp MDT to be utilized.
21076 		 * The first is for the header portion, while the rest are
21077 		 * needed to handle a packet that straddles across two
21078 		 * virtually non-contiguous buffers; a typical tcp packet
21079 		 * therefore consists of only two spans.  Note that we take
21080 		 * a zero as "don't care".
21081 		 */
21082 		if (mdt_capab->ill_mdt_span_limit > 0 &&
21083 		    mdt_capab->ill_mdt_span_limit < 3) {
21084 			tcp->tcp_mdt = B_FALSE;
21085 			return;
21086 		}
21087 
21088 		/* a zero means driver wants default value */
21089 		tcp->tcp_mdt_max_pld = MIN(mdt_capab->ill_mdt_max_pld,
21090 		    tcps->tcps_mdt_max_pbufs);
21091 		if (tcp->tcp_mdt_max_pld == 0)
21092 			tcp->tcp_mdt_max_pld = tcps->tcps_mdt_max_pbufs;
21093 
21094 		/* ensure 32-bit alignment */
21095 		tcp->tcp_mdt_hdr_head = roundup(MAX(tcps->tcps_mdt_hdr_head_min,
21096 		    mdt_capab->ill_mdt_hdr_head), 4);
21097 		tcp->tcp_mdt_hdr_tail = roundup(MAX(tcps->tcps_mdt_hdr_tail_min,
21098 		    mdt_capab->ill_mdt_hdr_tail), 4);
21099 
21100 		if (!first && !prev_state) {
21101 			TCP_STAT(tcps, tcp_mdt_conn_resumed2);
21102 			ip1dbg(("tcp_mdt_update: reenabling MDT for connp %p\n",
21103 			    (void *)tcp->tcp_connp));
21104 		}
21105 	}
21106 }
21107 
21108 /* Unlink and return any mblk that looks like it contains a LSO info */
21109 static mblk_t *
21110 tcp_lso_info_mp(mblk_t *mp)
21111 {
21112 	mblk_t	*prev_mp;
21113 
21114 	for (;;) {
21115 		prev_mp = mp;
21116 		/* no more to process? */
21117 		if ((mp = mp->b_cont) == NULL)
21118 			break;
21119 
21120 		switch (DB_TYPE(mp)) {
21121 		case M_CTL:
21122 			if (*(uint32_t *)mp->b_rptr != LSO_IOC_INFO_UPDATE)
21123 				continue;
21124 			ASSERT(prev_mp != NULL);
21125 			prev_mp->b_cont = mp->b_cont;
21126 			mp->b_cont = NULL;
21127 			return (mp);
21128 		default:
21129 			break;
21130 		}
21131 	}
21132 
21133 	return (mp);
21134 }
21135 
21136 /* LSO info update routine, called when IP notifies us about LSO */
21137 static void
21138 tcp_lso_update(tcp_t *tcp, ill_lso_capab_t *lso_capab)
21139 {
21140 	tcp_stack_t *tcps = tcp->tcp_tcps;
21141 
21142 	/*
21143 	 * IP is telling us to abort LSO on this connection?  We know
21144 	 * this because the capability is only turned off when IP
21145 	 * encounters some pathological cases, e.g. link-layer change
21146 	 * where the new NIC/driver doesn't support LSO, or in situation
21147 	 * where LSO usage on the link-layer has been switched off.
21148 	 * IP would not have sent us the initial LSO_IOC_INFO_UPDATE
21149 	 * if the link-layer doesn't support LSO, and if it does, it
21150 	 * will indicate that the feature is to be turned on.
21151 	 */
21152 	tcp->tcp_lso = (lso_capab->ill_lso_on != 0);
21153 	TCP_STAT(tcps, tcp_lso_enabled);
21154 
21155 	/*
21156 	 * We currently only support LSO on simple TCP/IPv4,
21157 	 * so disable LSO otherwise.  The checks are done here
21158 	 * and in tcp_wput_data().
21159 	 */
21160 	if (tcp->tcp_lso &&
21161 	    (tcp->tcp_ipversion == IPV4_VERSION &&
21162 	    tcp->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH) ||
21163 	    (tcp->tcp_ipversion == IPV6_VERSION)) {
21164 		tcp->tcp_lso = B_FALSE;
21165 		TCP_STAT(tcps, tcp_lso_disabled);
21166 	} else {
21167 		tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH,
21168 		    lso_capab->ill_lso_max);
21169 	}
21170 }
21171 
21172 static void
21173 tcp_ire_ill_check(tcp_t *tcp, ire_t *ire, ill_t *ill, boolean_t check_lso_mdt)
21174 {
21175 	conn_t *connp = tcp->tcp_connp;
21176 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21177 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21178 
21179 	ASSERT(ire != NULL);
21180 
21181 	/*
21182 	 * We may be in the fastpath here, and although we essentially do
21183 	 * similar checks as in ip_bind_connected{_v6}/ip_xxinfo_return,
21184 	 * we try to keep things as brief as possible.  After all, these
21185 	 * are only best-effort checks, and we do more thorough ones prior
21186 	 * to calling tcp_send()/tcp_multisend().
21187 	 */
21188 	if ((ipst->ips_ip_lso_outbound || ipst->ips_ip_multidata_outbound) &&
21189 	    check_lso_mdt && !(ire->ire_type & (IRE_LOCAL | IRE_LOOPBACK)) &&
21190 	    ill != NULL && !CONN_IPSEC_OUT_ENCAPSULATED(connp) &&
21191 	    !(ire->ire_flags & RTF_MULTIRT) &&
21192 	    !IPP_ENABLED(IPP_LOCAL_OUT, ipst) &&
21193 	    CONN_IS_LSO_MD_FASTPATH(connp)) {
21194 		if (ipst->ips_ip_lso_outbound && ILL_LSO_CAPABLE(ill)) {
21195 			/* Cache the result */
21196 			connp->conn_lso_ok = B_TRUE;
21197 
21198 			ASSERT(ill->ill_lso_capab != NULL);
21199 			if (!ill->ill_lso_capab->ill_lso_on) {
21200 				ill->ill_lso_capab->ill_lso_on = 1;
21201 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21202 				    "LSO for interface %s\n", (void *)connp,
21203 				    ill->ill_name));
21204 			}
21205 			tcp_lso_update(tcp, ill->ill_lso_capab);
21206 		} else if (ipst->ips_ip_multidata_outbound &&
21207 		    ILL_MDT_CAPABLE(ill)) {
21208 			/* Cache the result */
21209 			connp->conn_mdt_ok = B_TRUE;
21210 
21211 			ASSERT(ill->ill_mdt_capab != NULL);
21212 			if (!ill->ill_mdt_capab->ill_mdt_on) {
21213 				ill->ill_mdt_capab->ill_mdt_on = 1;
21214 				ip1dbg(("tcp_ire_ill_check: connp %p enables "
21215 				    "MDT for interface %s\n", (void *)connp,
21216 				    ill->ill_name));
21217 			}
21218 			tcp_mdt_update(tcp, ill->ill_mdt_capab, B_TRUE);
21219 		}
21220 	}
21221 
21222 	/*
21223 	 * The goal is to reduce the number of generated tcp segments by
21224 	 * setting the maxpsz multiplier to 0; this will have an affect on
21225 	 * tcp_maxpsz_set().  With this behavior, tcp will pack more data
21226 	 * into each packet, up to SMSS bytes.  Doing this reduces the number
21227 	 * of outbound segments and incoming ACKs, thus allowing for better
21228 	 * network and system performance.  In contrast the legacy behavior
21229 	 * may result in sending less than SMSS size, because the last mblk
21230 	 * for some packets may have more data than needed to make up SMSS,
21231 	 * and the legacy code refused to "split" it.
21232 	 *
21233 	 * We apply the new behavior on following situations:
21234 	 *
21235 	 *   1) Loopback connections,
21236 	 *   2) Connections in which the remote peer is not on local subnet,
21237 	 *   3) Local subnet connections over the bge interface (see below).
21238 	 *
21239 	 * Ideally, we would like this behavior to apply for interfaces other
21240 	 * than bge.  However, doing so would negatively impact drivers which
21241 	 * perform dynamic mapping and unmapping of DMA resources, which are
21242 	 * increased by setting the maxpsz multiplier to 0 (more mblks per
21243 	 * packet will be generated by tcp).  The bge driver does not suffer
21244 	 * from this, as it copies the mblks into pre-mapped buffers, and
21245 	 * therefore does not require more I/O resources than before.
21246 	 *
21247 	 * Otherwise, this behavior is present on all network interfaces when
21248 	 * the destination endpoint is non-local, since reducing the number
21249 	 * of packets in general is good for the network.
21250 	 *
21251 	 * TODO We need to remove this hard-coded conditional for bge once
21252 	 *	a better "self-tuning" mechanism, or a way to comprehend
21253 	 *	the driver transmit strategy is devised.  Until the solution
21254 	 *	is found and well understood, we live with this hack.
21255 	 */
21256 	if (!tcp_static_maxpsz &&
21257 	    (tcp->tcp_loopback || !tcp->tcp_localnet ||
21258 	    (ill->ill_name_length > 3 && bcmp(ill->ill_name, "bge", 3) == 0))) {
21259 		/* override the default value */
21260 		tcp->tcp_maxpsz = 0;
21261 
21262 		ip3dbg(("tcp_ire_ill_check: connp %p tcp_maxpsz %d on "
21263 		    "interface %s\n", (void *)connp, tcp->tcp_maxpsz,
21264 		    ill != NULL ? ill->ill_name : ipif_loopback_name));
21265 	}
21266 
21267 	/* set the stream head parameters accordingly */
21268 	(void) tcp_maxpsz_set(tcp, B_TRUE);
21269 }
21270 
21271 /* tcp_wput_flush is called by tcp_wput_nondata to handle M_FLUSH messages. */
21272 static void
21273 tcp_wput_flush(tcp_t *tcp, mblk_t *mp)
21274 {
21275 	uchar_t	fval = *mp->b_rptr;
21276 	mblk_t	*tail;
21277 	queue_t	*q = tcp->tcp_wq;
21278 
21279 	/* TODO: How should flush interact with urgent data? */
21280 	if ((fval & FLUSHW) && tcp->tcp_xmit_head &&
21281 	    !(tcp->tcp_valid_bits & TCP_URG_VALID)) {
21282 		/*
21283 		 * Flush only data that has not yet been put on the wire.  If
21284 		 * we flush data that we have already transmitted, life, as we
21285 		 * know it, may come to an end.
21286 		 */
21287 		tail = tcp->tcp_xmit_tail;
21288 		tail->b_wptr -= tcp->tcp_xmit_tail_unsent;
21289 		tcp->tcp_xmit_tail_unsent = 0;
21290 		tcp->tcp_unsent = 0;
21291 		if (tail->b_wptr != tail->b_rptr)
21292 			tail = tail->b_cont;
21293 		if (tail) {
21294 			mblk_t **excess = &tcp->tcp_xmit_head;
21295 			for (;;) {
21296 				mblk_t *mp1 = *excess;
21297 				if (mp1 == tail)
21298 					break;
21299 				tcp->tcp_xmit_tail = mp1;
21300 				tcp->tcp_xmit_last = mp1;
21301 				excess = &mp1->b_cont;
21302 			}
21303 			*excess = NULL;
21304 			tcp_close_mpp(&tail);
21305 			if (tcp->tcp_snd_zcopy_aware)
21306 				tcp_zcopy_notify(tcp);
21307 		}
21308 		/*
21309 		 * We have no unsent data, so unsent must be less than
21310 		 * tcp_xmit_lowater, so re-enable flow.
21311 		 */
21312 		mutex_enter(&tcp->tcp_non_sq_lock);
21313 		if (tcp->tcp_flow_stopped) {
21314 			tcp_clrqfull(tcp);
21315 		}
21316 		mutex_exit(&tcp->tcp_non_sq_lock);
21317 	}
21318 	/*
21319 	 * TODO: you can't just flush these, you have to increase rwnd for one
21320 	 * thing.  For another, how should urgent data interact?
21321 	 */
21322 	if (fval & FLUSHR) {
21323 		*mp->b_rptr = fval & ~FLUSHW;
21324 		/* XXX */
21325 		qreply(q, mp);
21326 		return;
21327 	}
21328 	freemsg(mp);
21329 }
21330 
21331 /*
21332  * tcp_wput_iocdata is called by tcp_wput_nondata to handle all M_IOCDATA
21333  * messages.
21334  */
21335 static void
21336 tcp_wput_iocdata(tcp_t *tcp, mblk_t *mp)
21337 {
21338 	mblk_t	*mp1;
21339 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
21340 	STRUCT_HANDLE(strbuf, sb);
21341 	queue_t *q = tcp->tcp_wq;
21342 	int	error;
21343 	uint_t	addrlen;
21344 
21345 	/* Make sure it is one of ours. */
21346 	switch (iocp->ioc_cmd) {
21347 	case TI_GETMYNAME:
21348 	case TI_GETPEERNAME:
21349 		break;
21350 	default:
21351 		CALL_IP_WPUT(tcp->tcp_connp, q, mp);
21352 		return;
21353 	}
21354 	switch (mi_copy_state(q, mp, &mp1)) {
21355 	case -1:
21356 		return;
21357 	case MI_COPY_CASE(MI_COPY_IN, 1):
21358 		break;
21359 	case MI_COPY_CASE(MI_COPY_OUT, 1):
21360 		/* Copy out the strbuf. */
21361 		mi_copyout(q, mp);
21362 		return;
21363 	case MI_COPY_CASE(MI_COPY_OUT, 2):
21364 		/* All done. */
21365 		mi_copy_done(q, mp, 0);
21366 		return;
21367 	default:
21368 		mi_copy_done(q, mp, EPROTO);
21369 		return;
21370 	}
21371 	/* Check alignment of the strbuf */
21372 	if (!OK_32PTR(mp1->b_rptr)) {
21373 		mi_copy_done(q, mp, EINVAL);
21374 		return;
21375 	}
21376 
21377 	STRUCT_SET_HANDLE(sb, iocp->ioc_flag, (void *)mp1->b_rptr);
21378 	addrlen = tcp->tcp_family == AF_INET ? sizeof (sin_t) : sizeof (sin6_t);
21379 	if (STRUCT_FGET(sb, maxlen) < addrlen) {
21380 		mi_copy_done(q, mp, EINVAL);
21381 		return;
21382 	}
21383 
21384 	mp1 = mi_copyout_alloc(q, mp, STRUCT_FGETP(sb, buf), addrlen, B_TRUE);
21385 	if (mp1 == NULL)
21386 		return;
21387 
21388 	switch (iocp->ioc_cmd) {
21389 	case TI_GETMYNAME:
21390 		error = tcp_do_getsockname(tcp, (void *)mp1->b_rptr, &addrlen);
21391 		break;
21392 	case TI_GETPEERNAME:
21393 		error = tcp_do_getpeername(tcp, (void *)mp1->b_rptr, &addrlen);
21394 		break;
21395 	}
21396 
21397 	if (error != 0) {
21398 		mi_copy_done(q, mp, error);
21399 	} else {
21400 		mp1->b_wptr += addrlen;
21401 		STRUCT_FSET(sb, len, addrlen);
21402 
21403 		/* Copy out the address */
21404 		mi_copyout(q, mp);
21405 	}
21406 }
21407 
21408 static void
21409 tcp_disable_direct_sockfs(tcp_t *tcp)
21410 {
21411 #ifdef	_ILP32
21412 	tcp->tcp_acceptor_id = (t_uscalar_t)tcp->tcp_rq;
21413 #else
21414 	tcp->tcp_acceptor_id = tcp->tcp_connp->conn_dev;
21415 #endif
21416 	/*
21417 	 * Insert this socket into the acceptor hash.
21418 	 * We might need it for T_CONN_RES message
21419 	 */
21420 	tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp);
21421 
21422 	if (tcp->tcp_fused) {
21423 		/*
21424 		 * This is a fused loopback tcp; disable
21425 		 * read-side synchronous streams interface
21426 		 * and drain any queued data.  It is okay
21427 		 * to do this for non-synchronous streams
21428 		 * fused tcp as well.
21429 		 */
21430 		tcp_fuse_disable_pair(tcp, B_FALSE);
21431 	}
21432 	tcp->tcp_issocket = B_FALSE;
21433 	TCP_STAT(tcp->tcp_tcps, tcp_sock_fallback);
21434 }
21435 
21436 /*
21437  * tcp_wput_ioctl is called by tcp_wput_nondata() to handle all M_IOCTL
21438  * messages.
21439  */
21440 /* ARGSUSED */
21441 static void
21442 tcp_wput_ioctl(void *arg, mblk_t *mp, void *arg2)
21443 {
21444 	conn_t 	*connp = (conn_t *)arg;
21445 	tcp_t	*tcp = connp->conn_tcp;
21446 	queue_t	*q = tcp->tcp_wq;
21447 	struct iocblk	*iocp;
21448 
21449 	ASSERT(DB_TYPE(mp) == M_IOCTL);
21450 	/*
21451 	 * Try and ASSERT the minimum possible references on the
21452 	 * conn early enough. Since we are executing on write side,
21453 	 * the connection is obviously not detached and that means
21454 	 * there is a ref each for TCP and IP. Since we are behind
21455 	 * the squeue, the minimum references needed are 3. If the
21456 	 * conn is in classifier hash list, there should be an
21457 	 * extra ref for that (we check both the possibilities).
21458 	 */
21459 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21460 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21461 
21462 	iocp = (struct iocblk *)mp->b_rptr;
21463 	switch (iocp->ioc_cmd) {
21464 	case TCP_IOC_DEFAULT_Q:
21465 		/* Wants to be the default wq. */
21466 		if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
21467 			iocp->ioc_error = EPERM;
21468 			iocp->ioc_count = 0;
21469 			mp->b_datap->db_type = M_IOCACK;
21470 			qreply(q, mp);
21471 			return;
21472 		}
21473 		tcp_def_q_set(tcp, mp);
21474 		return;
21475 	case _SIOCSOCKFALLBACK:
21476 		/*
21477 		 * Either sockmod is about to be popped and the socket
21478 		 * would now be treated as a plain stream, or a module
21479 		 * is about to be pushed so we could no longer use read-
21480 		 * side synchronous streams for fused loopback tcp.
21481 		 * Drain any queued data and disable direct sockfs
21482 		 * interface from now on.
21483 		 */
21484 		if (!tcp->tcp_issocket) {
21485 			DB_TYPE(mp) = M_IOCNAK;
21486 			iocp->ioc_error = EINVAL;
21487 		} else {
21488 			tcp_disable_direct_sockfs(tcp);
21489 			DB_TYPE(mp) = M_IOCACK;
21490 			iocp->ioc_error = 0;
21491 		}
21492 		iocp->ioc_count = 0;
21493 		iocp->ioc_rval = 0;
21494 		qreply(q, mp);
21495 		return;
21496 	}
21497 	CALL_IP_WPUT(connp, q, mp);
21498 }
21499 
21500 /*
21501  * This routine is called by tcp_wput() to handle all TPI requests.
21502  */
21503 /* ARGSUSED */
21504 static void
21505 tcp_wput_proto(void *arg, mblk_t *mp, void *arg2)
21506 {
21507 	conn_t 	*connp = (conn_t *)arg;
21508 	tcp_t	*tcp = connp->conn_tcp;
21509 	union T_primitives *tprim = (union T_primitives *)mp->b_rptr;
21510 	uchar_t *rptr;
21511 	t_scalar_t type;
21512 	cred_t *cr;
21513 
21514 	/*
21515 	 * Try and ASSERT the minimum possible references on the
21516 	 * conn early enough. Since we are executing on write side,
21517 	 * the connection is obviously not detached and that means
21518 	 * there is a ref each for TCP and IP. Since we are behind
21519 	 * the squeue, the minimum references needed are 3. If the
21520 	 * conn is in classifier hash list, there should be an
21521 	 * extra ref for that (we check both the possibilities).
21522 	 */
21523 	ASSERT((connp->conn_fanout != NULL && connp->conn_ref >= 4) ||
21524 	    (connp->conn_fanout == NULL && connp->conn_ref >= 3));
21525 
21526 	rptr = mp->b_rptr;
21527 	ASSERT((uintptr_t)(mp->b_wptr - rptr) <= (uintptr_t)INT_MAX);
21528 	if ((mp->b_wptr - rptr) >= sizeof (t_scalar_t)) {
21529 		type = ((union T_primitives *)rptr)->type;
21530 		if (type == T_EXDATA_REQ) {
21531 			tcp_output_urgent(connp, mp->b_cont, arg2);
21532 			freeb(mp);
21533 		} else if (type != T_DATA_REQ) {
21534 			goto non_urgent_data;
21535 		} else {
21536 			/* TODO: options, flags, ... from user */
21537 			/* Set length to zero for reclamation below */
21538 			tcp_wput_data(tcp, mp->b_cont, B_TRUE);
21539 			freeb(mp);
21540 		}
21541 		return;
21542 	} else {
21543 		if (tcp->tcp_debug) {
21544 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21545 			    "tcp_wput_proto, dropping one...");
21546 		}
21547 		freemsg(mp);
21548 		return;
21549 	}
21550 
21551 non_urgent_data:
21552 
21553 	switch ((int)tprim->type) {
21554 	case T_SSL_PROXY_BIND_REQ:	/* an SSL proxy endpoint bind request */
21555 		/*
21556 		 * save the kssl_ent_t from the next block, and convert this
21557 		 * back to a normal bind_req.
21558 		 */
21559 		if (mp->b_cont != NULL) {
21560 			ASSERT(MBLKL(mp->b_cont) >= sizeof (kssl_ent_t));
21561 
21562 			if (tcp->tcp_kssl_ent != NULL) {
21563 				kssl_release_ent(tcp->tcp_kssl_ent, NULL,
21564 				    KSSL_NO_PROXY);
21565 				tcp->tcp_kssl_ent = NULL;
21566 			}
21567 			bcopy(mp->b_cont->b_rptr, &tcp->tcp_kssl_ent,
21568 			    sizeof (kssl_ent_t));
21569 			kssl_hold_ent(tcp->tcp_kssl_ent);
21570 			freemsg(mp->b_cont);
21571 			mp->b_cont = NULL;
21572 		}
21573 		tprim->type = T_BIND_REQ;
21574 
21575 	/* FALLTHROUGH */
21576 	case O_T_BIND_REQ:	/* bind request */
21577 	case T_BIND_REQ:	/* new semantics bind request */
21578 		tcp_tpi_bind(tcp, mp);
21579 		break;
21580 	case T_UNBIND_REQ:	/* unbind request */
21581 		tcp_tpi_unbind(tcp, mp);
21582 		break;
21583 	case O_T_CONN_RES:	/* old connection response XXX */
21584 	case T_CONN_RES:	/* connection response */
21585 		tcp_tli_accept(tcp, mp);
21586 		break;
21587 	case T_CONN_REQ:	/* connection request */
21588 		tcp_tpi_connect(tcp, mp);
21589 		break;
21590 	case T_DISCON_REQ:	/* disconnect request */
21591 		tcp_disconnect(tcp, mp);
21592 		break;
21593 	case T_CAPABILITY_REQ:
21594 		tcp_capability_req(tcp, mp);	/* capability request */
21595 		break;
21596 	case T_INFO_REQ:	/* information request */
21597 		tcp_info_req(tcp, mp);
21598 		break;
21599 	case T_SVR4_OPTMGMT_REQ:	/* manage options req */
21600 	case T_OPTMGMT_REQ:
21601 		/*
21602 		 * Note:  no support for snmpcom_req() through new
21603 		 * T_OPTMGMT_REQ. See comments in ip.c
21604 		 */
21605 
21606 		/*
21607 		 * All Solaris components should pass a db_credp
21608 		 * for this TPI message, hence we ASSERT.
21609 		 * But in case there is some other M_PROTO that looks
21610 		 * like a TPI message sent by some other kernel
21611 		 * component, we check and return an error.
21612 		 */
21613 		cr = msg_getcred(mp, NULL);
21614 		ASSERT(cr != NULL);
21615 		if (cr == NULL) {
21616 			tcp_err_ack(tcp, mp, TSYSERR, EINVAL);
21617 			return;
21618 		}
21619 		/*
21620 		 * If EINPROGRESS is returned, the request has been queued
21621 		 * for subsequent processing by ip_restart_optmgmt(), which
21622 		 * will do the CONN_DEC_REF().
21623 		 */
21624 		CONN_INC_REF(connp);
21625 		if ((int)tprim->type == T_SVR4_OPTMGMT_REQ) {
21626 			if (svr4_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
21627 			    B_TRUE) != EINPROGRESS) {
21628 				CONN_DEC_REF(connp);
21629 			}
21630 		} else {
21631 			if (tpi_optcom_req(tcp->tcp_wq, mp, cr, &tcp_opt_obj,
21632 			    B_TRUE) != EINPROGRESS) {
21633 				CONN_DEC_REF(connp);
21634 			}
21635 		}
21636 		break;
21637 
21638 	case T_UNITDATA_REQ:	/* unitdata request */
21639 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21640 		break;
21641 	case T_ORDREL_REQ:	/* orderly release req */
21642 		freemsg(mp);
21643 
21644 		if (tcp->tcp_fused)
21645 			tcp_unfuse(tcp);
21646 
21647 		if (tcp_xmit_end(tcp) != 0) {
21648 			/*
21649 			 * We were crossing FINs and got a reset from
21650 			 * the other side. Just ignore it.
21651 			 */
21652 			if (tcp->tcp_debug) {
21653 				(void) strlog(TCP_MOD_ID, 0, 1,
21654 				    SL_ERROR|SL_TRACE,
21655 				    "tcp_wput_proto, T_ORDREL_REQ out of "
21656 				    "state %s",
21657 				    tcp_display(tcp, NULL,
21658 				    DISP_ADDR_AND_PORT));
21659 			}
21660 		}
21661 		break;
21662 	case T_ADDR_REQ:
21663 		tcp_addr_req(tcp, mp);
21664 		break;
21665 	default:
21666 		if (tcp->tcp_debug) {
21667 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
21668 			    "tcp_wput_proto, bogus TPI msg, type %d",
21669 			    tprim->type);
21670 		}
21671 		/*
21672 		 * We used to M_ERROR.  Sending TNOTSUPPORT gives the user
21673 		 * to recover.
21674 		 */
21675 		tcp_err_ack(tcp, mp, TNOTSUPPORT, 0);
21676 		break;
21677 	}
21678 }
21679 
21680 /*
21681  * The TCP write service routine should never be called...
21682  */
21683 /* ARGSUSED */
21684 static void
21685 tcp_wsrv(queue_t *q)
21686 {
21687 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
21688 
21689 	TCP_STAT(tcps, tcp_wsrv_called);
21690 }
21691 
21692 /* Non overlapping byte exchanger */
21693 static void
21694 tcp_xchg(uchar_t *a, uchar_t *b, int len)
21695 {
21696 	uchar_t	uch;
21697 
21698 	while (len-- > 0) {
21699 		uch = a[len];
21700 		a[len] = b[len];
21701 		b[len] = uch;
21702 	}
21703 }
21704 
21705 /*
21706  * Send out a control packet on the tcp connection specified.  This routine
21707  * is typically called where we need a simple ACK or RST generated.
21708  */
21709 static void
21710 tcp_xmit_ctl(char *str, tcp_t *tcp, uint32_t seq, uint32_t ack, int ctl)
21711 {
21712 	uchar_t		*rptr;
21713 	tcph_t		*tcph;
21714 	ipha_t		*ipha = NULL;
21715 	ip6_t		*ip6h = NULL;
21716 	uint32_t	sum;
21717 	int		tcp_hdr_len;
21718 	int		tcp_ip_hdr_len;
21719 	mblk_t		*mp;
21720 	tcp_stack_t	*tcps = tcp->tcp_tcps;
21721 
21722 	/*
21723 	 * Save sum for use in source route later.
21724 	 */
21725 	ASSERT(tcp != NULL);
21726 	sum = tcp->tcp_tcp_hdr_len + tcp->tcp_sum;
21727 	tcp_hdr_len = tcp->tcp_hdr_len;
21728 	tcp_ip_hdr_len = tcp->tcp_ip_hdr_len;
21729 
21730 	/* If a text string is passed in with the request, pass it to strlog. */
21731 	if (str != NULL && tcp->tcp_debug) {
21732 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21733 		    "tcp_xmit_ctl: '%s', seq 0x%x, ack 0x%x, ctl 0x%x",
21734 		    str, seq, ack, ctl);
21735 	}
21736 	mp = allocb(tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH + tcps->tcps_wroff_xtra,
21737 	    BPRI_MED);
21738 	if (mp == NULL) {
21739 		return;
21740 	}
21741 	rptr = &mp->b_rptr[tcps->tcps_wroff_xtra];
21742 	mp->b_rptr = rptr;
21743 	mp->b_wptr = &rptr[tcp_hdr_len];
21744 	bcopy(tcp->tcp_iphc, rptr, tcp_hdr_len);
21745 
21746 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21747 		ipha = (ipha_t *)rptr;
21748 		ipha->ipha_length = htons(tcp_hdr_len);
21749 	} else {
21750 		ip6h = (ip6_t *)rptr;
21751 		ASSERT(tcp != NULL);
21752 		ip6h->ip6_plen = htons(tcp->tcp_hdr_len -
21753 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
21754 	}
21755 	tcph = (tcph_t *)&rptr[tcp_ip_hdr_len];
21756 	tcph->th_flags[0] = (uint8_t)ctl;
21757 	if (ctl & TH_RST) {
21758 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
21759 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
21760 		/*
21761 		 * Don't send TSopt w/ TH_RST packets per RFC 1323.
21762 		 */
21763 		if (tcp->tcp_snd_ts_ok &&
21764 		    tcp->tcp_state > TCPS_SYN_SENT) {
21765 			mp->b_wptr = &rptr[tcp_hdr_len - TCPOPT_REAL_TS_LEN];
21766 			*(mp->b_wptr) = TCPOPT_EOL;
21767 			if (tcp->tcp_ipversion == IPV4_VERSION) {
21768 				ipha->ipha_length = htons(tcp_hdr_len -
21769 				    TCPOPT_REAL_TS_LEN);
21770 			} else {
21771 				ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) -
21772 				    TCPOPT_REAL_TS_LEN);
21773 			}
21774 			tcph->th_offset_and_rsrvd[0] -= (3 << 4);
21775 			sum -= TCPOPT_REAL_TS_LEN;
21776 		}
21777 	}
21778 	if (ctl & TH_ACK) {
21779 		if (tcp->tcp_snd_ts_ok) {
21780 			U32_TO_BE32(lbolt,
21781 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
21782 			U32_TO_BE32(tcp->tcp_ts_recent,
21783 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
21784 		}
21785 
21786 		/* Update the latest receive window size in TCP header. */
21787 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
21788 		    tcph->th_win);
21789 		tcp->tcp_rack = ack;
21790 		tcp->tcp_rack_cnt = 0;
21791 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
21792 	}
21793 	BUMP_LOCAL(tcp->tcp_obsegs);
21794 	U32_TO_BE32(seq, tcph->th_seq);
21795 	U32_TO_BE32(ack, tcph->th_ack);
21796 	/*
21797 	 * Include the adjustment for a source route if any.
21798 	 */
21799 	sum = (sum >> 16) + (sum & 0xFFFF);
21800 	U16_TO_BE16(sum, tcph->th_sum);
21801 	tcp_send_data(tcp, tcp->tcp_wq, mp);
21802 }
21803 
21804 /*
21805  * If this routine returns B_TRUE, TCP can generate a RST in response
21806  * to a segment.  If it returns B_FALSE, TCP should not respond.
21807  */
21808 static boolean_t
21809 tcp_send_rst_chk(tcp_stack_t *tcps)
21810 {
21811 	clock_t	now;
21812 
21813 	/*
21814 	 * TCP needs to protect itself from generating too many RSTs.
21815 	 * This can be a DoS attack by sending us random segments
21816 	 * soliciting RSTs.
21817 	 *
21818 	 * What we do here is to have a limit of tcp_rst_sent_rate RSTs
21819 	 * in each 1 second interval.  In this way, TCP still generate
21820 	 * RSTs in normal cases but when under attack, the impact is
21821 	 * limited.
21822 	 */
21823 	if (tcps->tcps_rst_sent_rate_enabled != 0) {
21824 		now = lbolt;
21825 		/* lbolt can wrap around. */
21826 		if ((tcps->tcps_last_rst_intrvl > now) ||
21827 		    (TICK_TO_MSEC(now - tcps->tcps_last_rst_intrvl) >
21828 		    1*SECONDS)) {
21829 			tcps->tcps_last_rst_intrvl = now;
21830 			tcps->tcps_rst_cnt = 1;
21831 		} else if (++tcps->tcps_rst_cnt > tcps->tcps_rst_sent_rate) {
21832 			return (B_FALSE);
21833 		}
21834 	}
21835 	return (B_TRUE);
21836 }
21837 
21838 /*
21839  * Send down the advice IP ioctl to tell IP to mark an IRE temporary.
21840  */
21841 static void
21842 tcp_ip_ire_mark_advice(tcp_t *tcp)
21843 {
21844 	mblk_t *mp;
21845 	ipic_t *ipic;
21846 
21847 	if (tcp->tcp_ipversion == IPV4_VERSION) {
21848 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
21849 		    &ipic);
21850 	} else {
21851 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
21852 		    &ipic);
21853 	}
21854 	if (mp == NULL)
21855 		return;
21856 	ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
21857 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
21858 }
21859 
21860 /*
21861  * Return an IP advice ioctl mblk and set ipic to be the pointer
21862  * to the advice structure.
21863  */
21864 static mblk_t *
21865 tcp_ip_advise_mblk(void *addr, int addr_len, ipic_t **ipic)
21866 {
21867 	struct iocblk *ioc;
21868 	mblk_t *mp, *mp1;
21869 
21870 	mp = allocb(sizeof (ipic_t) + addr_len, BPRI_HI);
21871 	if (mp == NULL)
21872 		return (NULL);
21873 	bzero(mp->b_rptr, sizeof (ipic_t) + addr_len);
21874 	*ipic = (ipic_t *)mp->b_rptr;
21875 	(*ipic)->ipic_cmd = IP_IOC_IRE_ADVISE_NO_REPLY;
21876 	(*ipic)->ipic_addr_offset = sizeof (ipic_t);
21877 
21878 	bcopy(addr, *ipic + 1, addr_len);
21879 
21880 	(*ipic)->ipic_addr_length = addr_len;
21881 	mp->b_wptr = &mp->b_rptr[sizeof (ipic_t) + addr_len];
21882 
21883 	mp1 = mkiocb(IP_IOCTL);
21884 	if (mp1 == NULL) {
21885 		freemsg(mp);
21886 		return (NULL);
21887 	}
21888 	mp1->b_cont = mp;
21889 	ioc = (struct iocblk *)mp1->b_rptr;
21890 	ioc->ioc_count = sizeof (ipic_t) + addr_len;
21891 
21892 	return (mp1);
21893 }
21894 
21895 /*
21896  * Generate a reset based on an inbound packet, connp is set by caller
21897  * when RST is in response to an unexpected inbound packet for which
21898  * there is active tcp state in the system.
21899  *
21900  * IPSEC NOTE : Try to send the reply with the same protection as it came
21901  * in.  We still have the ipsec_mp that the packet was attached to. Thus
21902  * the packet will go out at the same level of protection as it came in by
21903  * converting the IPSEC_IN to IPSEC_OUT.
21904  */
21905 static void
21906 tcp_xmit_early_reset(char *str, mblk_t *mp, uint32_t seq,
21907     uint32_t ack, int ctl, uint_t ip_hdr_len, zoneid_t zoneid,
21908     tcp_stack_t *tcps, conn_t *connp)
21909 {
21910 	ipha_t		*ipha = NULL;
21911 	ip6_t		*ip6h = NULL;
21912 	ushort_t	len;
21913 	tcph_t		*tcph;
21914 	int		i;
21915 	mblk_t		*ipsec_mp;
21916 	boolean_t	mctl_present;
21917 	ipic_t		*ipic;
21918 	ipaddr_t	v4addr;
21919 	in6_addr_t	v6addr;
21920 	int		addr_len;
21921 	void		*addr;
21922 	queue_t		*q = tcps->tcps_g_q;
21923 	tcp_t		*tcp;
21924 	cred_t		*cr;
21925 	mblk_t		*nmp;
21926 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
21927 
21928 	if (tcps->tcps_g_q == NULL) {
21929 		/*
21930 		 * For non-zero stackids the default queue isn't created
21931 		 * until the first open, thus there can be a need to send
21932 		 * a reset before then. But we can't do that, hence we just
21933 		 * drop the packet. Later during boot, when the default queue
21934 		 * has been setup, a retransmitted packet from the peer
21935 		 * will result in a reset.
21936 		 */
21937 		ASSERT(tcps->tcps_netstack->netstack_stackid !=
21938 		    GLOBAL_NETSTACKID);
21939 		freemsg(mp);
21940 		return;
21941 	}
21942 
21943 	if (connp != NULL)
21944 		tcp = connp->conn_tcp;
21945 	else
21946 		tcp = Q_TO_TCP(q);
21947 
21948 	if (!tcp_send_rst_chk(tcps)) {
21949 		tcps->tcps_rst_unsent++;
21950 		freemsg(mp);
21951 		return;
21952 	}
21953 
21954 	if (mp->b_datap->db_type == M_CTL) {
21955 		ipsec_mp = mp;
21956 		mp = mp->b_cont;
21957 		mctl_present = B_TRUE;
21958 	} else {
21959 		ipsec_mp = mp;
21960 		mctl_present = B_FALSE;
21961 	}
21962 
21963 	if (str && q && tcps->tcps_dbg) {
21964 		(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE,
21965 		    "tcp_xmit_early_reset: '%s', seq 0x%x, ack 0x%x, "
21966 		    "flags 0x%x",
21967 		    str, seq, ack, ctl);
21968 	}
21969 	if (mp->b_datap->db_ref != 1) {
21970 		mblk_t *mp1 = copyb(mp);
21971 		freemsg(mp);
21972 		mp = mp1;
21973 		if (!mp) {
21974 			if (mctl_present)
21975 				freeb(ipsec_mp);
21976 			return;
21977 		} else {
21978 			if (mctl_present) {
21979 				ipsec_mp->b_cont = mp;
21980 			} else {
21981 				ipsec_mp = mp;
21982 			}
21983 		}
21984 	} else if (mp->b_cont) {
21985 		freemsg(mp->b_cont);
21986 		mp->b_cont = NULL;
21987 	}
21988 	/*
21989 	 * We skip reversing source route here.
21990 	 * (for now we replace all IP options with EOL)
21991 	 */
21992 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
21993 		ipha = (ipha_t *)mp->b_rptr;
21994 		for (i = IP_SIMPLE_HDR_LENGTH; i < (int)ip_hdr_len; i++)
21995 			mp->b_rptr[i] = IPOPT_EOL;
21996 		/*
21997 		 * Make sure that src address isn't flagrantly invalid.
21998 		 * Not all broadcast address checking for the src address
21999 		 * is possible, since we don't know the netmask of the src
22000 		 * addr.  No check for destination address is done, since
22001 		 * IP will not pass up a packet with a broadcast dest
22002 		 * address to TCP.  Similar checks are done below for IPv6.
22003 		 */
22004 		if (ipha->ipha_src == 0 || ipha->ipha_src == INADDR_BROADCAST ||
22005 		    CLASSD(ipha->ipha_src)) {
22006 			freemsg(ipsec_mp);
22007 			BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInDiscards);
22008 			return;
22009 		}
22010 	} else {
22011 		ip6h = (ip6_t *)mp->b_rptr;
22012 
22013 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6h->ip6_src) ||
22014 		    IN6_IS_ADDR_MULTICAST(&ip6h->ip6_src)) {
22015 			freemsg(ipsec_mp);
22016 			BUMP_MIB(&ipst->ips_ip6_mib, ipIfStatsInDiscards);
22017 			return;
22018 		}
22019 
22020 		/* Remove any extension headers assuming partial overlay */
22021 		if (ip_hdr_len > IPV6_HDR_LEN) {
22022 			uint8_t *to;
22023 
22024 			to = mp->b_rptr + ip_hdr_len - IPV6_HDR_LEN;
22025 			ovbcopy(ip6h, to, IPV6_HDR_LEN);
22026 			mp->b_rptr += ip_hdr_len - IPV6_HDR_LEN;
22027 			ip_hdr_len = IPV6_HDR_LEN;
22028 			ip6h = (ip6_t *)mp->b_rptr;
22029 			ip6h->ip6_nxt = IPPROTO_TCP;
22030 		}
22031 	}
22032 	tcph = (tcph_t *)&mp->b_rptr[ip_hdr_len];
22033 	if (tcph->th_flags[0] & TH_RST) {
22034 		freemsg(ipsec_mp);
22035 		return;
22036 	}
22037 	tcph->th_offset_and_rsrvd[0] = (5 << 4);
22038 	len = ip_hdr_len + sizeof (tcph_t);
22039 	mp->b_wptr = &mp->b_rptr[len];
22040 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22041 		ipha->ipha_length = htons(len);
22042 		/* Swap addresses */
22043 		v4addr = ipha->ipha_src;
22044 		ipha->ipha_src = ipha->ipha_dst;
22045 		ipha->ipha_dst = v4addr;
22046 		ipha->ipha_ident = 0;
22047 		ipha->ipha_ttl = (uchar_t)tcps->tcps_ipv4_ttl;
22048 		addr_len = IP_ADDR_LEN;
22049 		addr = &v4addr;
22050 	} else {
22051 		/* No ip6i_t in this case */
22052 		ip6h->ip6_plen = htons(len - IPV6_HDR_LEN);
22053 		/* Swap addresses */
22054 		v6addr = ip6h->ip6_src;
22055 		ip6h->ip6_src = ip6h->ip6_dst;
22056 		ip6h->ip6_dst = v6addr;
22057 		ip6h->ip6_hops = (uchar_t)tcps->tcps_ipv6_hoplimit;
22058 		addr_len = IPV6_ADDR_LEN;
22059 		addr = &v6addr;
22060 	}
22061 	tcp_xchg(tcph->th_fport, tcph->th_lport, 2);
22062 	U32_TO_BE32(ack, tcph->th_ack);
22063 	U32_TO_BE32(seq, tcph->th_seq);
22064 	U16_TO_BE16(0, tcph->th_win);
22065 	U16_TO_BE16(sizeof (tcph_t), tcph->th_sum);
22066 	tcph->th_flags[0] = (uint8_t)ctl;
22067 	if (ctl & TH_RST) {
22068 		BUMP_MIB(&tcps->tcps_mib, tcpOutRsts);
22069 		BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22070 	}
22071 
22072 	/* IP trusts us to set up labels when required. */
22073 	if (is_system_labeled() && (cr = msg_getcred(mp, NULL)) != NULL &&
22074 	    crgetlabel(cr) != NULL) {
22075 		int err;
22076 
22077 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION)
22078 			err = tsol_check_label(cr, &mp,
22079 			    tcp->tcp_connp->conn_mac_exempt,
22080 			    tcps->tcps_netstack->netstack_ip);
22081 		else
22082 			err = tsol_check_label_v6(cr, &mp,
22083 			    tcp->tcp_connp->conn_mac_exempt,
22084 			    tcps->tcps_netstack->netstack_ip);
22085 		if (mctl_present)
22086 			ipsec_mp->b_cont = mp;
22087 		else
22088 			ipsec_mp = mp;
22089 		if (err != 0) {
22090 			freemsg(ipsec_mp);
22091 			return;
22092 		}
22093 		if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22094 			ipha = (ipha_t *)mp->b_rptr;
22095 		} else {
22096 			ip6h = (ip6_t *)mp->b_rptr;
22097 		}
22098 	}
22099 
22100 	if (mctl_present) {
22101 		ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22102 
22103 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22104 		if (!ipsec_in_to_out(ipsec_mp, ipha, ip6h)) {
22105 			return;
22106 		}
22107 	}
22108 	if (zoneid == ALL_ZONES)
22109 		zoneid = GLOBAL_ZONEID;
22110 
22111 	/* Add the zoneid so ip_output routes it properly */
22112 	if ((nmp = ip_prepend_zoneid(ipsec_mp, zoneid, ipst)) == NULL) {
22113 		freemsg(ipsec_mp);
22114 		return;
22115 	}
22116 	ipsec_mp = nmp;
22117 
22118 	/*
22119 	 * NOTE:  one might consider tracing a TCP packet here, but
22120 	 * this function has no active TCP state and no tcp structure
22121 	 * that has a trace buffer.  If we traced here, we would have
22122 	 * to keep a local trace buffer in tcp_record_trace().
22123 	 *
22124 	 * TSol note: The mblk that contains the incoming packet was
22125 	 * reused by tcp_xmit_listener_reset, so it already contains
22126 	 * the right credentials and we don't need to call mblk_setcred.
22127 	 * Also the conn's cred is not right since it is associated
22128 	 * with tcps_g_q.
22129 	 */
22130 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, ipsec_mp);
22131 
22132 	/*
22133 	 * Tell IP to mark the IRE used for this destination temporary.
22134 	 * This way, we can limit our exposure to DoS attack because IP
22135 	 * creates an IRE for each destination.  If there are too many,
22136 	 * the time to do any routing lookup will be extremely long.  And
22137 	 * the lookup can be in interrupt context.
22138 	 *
22139 	 * Note that in normal circumstances, this marking should not
22140 	 * affect anything.  It would be nice if only 1 message is
22141 	 * needed to inform IP that the IRE created for this RST should
22142 	 * not be added to the cache table.  But there is currently
22143 	 * not such communication mechanism between TCP and IP.  So
22144 	 * the best we can do now is to send the advice ioctl to IP
22145 	 * to mark the IRE temporary.
22146 	 */
22147 	if ((mp = tcp_ip_advise_mblk(addr, addr_len, &ipic)) != NULL) {
22148 		ipic->ipic_ire_marks |= IRE_MARK_TEMPORARY;
22149 		CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22150 	}
22151 }
22152 
22153 /*
22154  * Initiate closedown sequence on an active connection.  (May be called as
22155  * writer.)  Return value zero for OK return, non-zero for error return.
22156  */
22157 static int
22158 tcp_xmit_end(tcp_t *tcp)
22159 {
22160 	ipic_t	*ipic;
22161 	mblk_t	*mp;
22162 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22163 
22164 	if (tcp->tcp_state < TCPS_SYN_RCVD ||
22165 	    tcp->tcp_state > TCPS_CLOSE_WAIT) {
22166 		/*
22167 		 * Invalid state, only states TCPS_SYN_RCVD,
22168 		 * TCPS_ESTABLISHED and TCPS_CLOSE_WAIT are valid
22169 		 */
22170 		return (-1);
22171 	}
22172 
22173 	tcp->tcp_fss = tcp->tcp_snxt + tcp->tcp_unsent;
22174 	tcp->tcp_valid_bits |= TCP_FSS_VALID;
22175 	/*
22176 	 * If there is nothing more unsent, send the FIN now.
22177 	 * Otherwise, it will go out with the last segment.
22178 	 */
22179 	if (tcp->tcp_unsent == 0) {
22180 		mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
22181 		    tcp->tcp_fss, B_FALSE, NULL, B_FALSE);
22182 
22183 		if (mp) {
22184 			tcp_send_data(tcp, tcp->tcp_wq, mp);
22185 		} else {
22186 			/*
22187 			 * Couldn't allocate msg.  Pretend we got it out.
22188 			 * Wait for rexmit timeout.
22189 			 */
22190 			tcp->tcp_snxt = tcp->tcp_fss + 1;
22191 			TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22192 		}
22193 
22194 		/*
22195 		 * If needed, update tcp_rexmit_snxt as tcp_snxt is
22196 		 * changed.
22197 		 */
22198 		if (tcp->tcp_rexmit && tcp->tcp_rexmit_nxt == tcp->tcp_fss) {
22199 			tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
22200 		}
22201 	} else {
22202 		/*
22203 		 * If tcp->tcp_cork is set, then the data will not get sent,
22204 		 * so we have to check that and unset it first.
22205 		 */
22206 		if (tcp->tcp_cork)
22207 			tcp->tcp_cork = B_FALSE;
22208 		tcp_wput_data(tcp, NULL, B_FALSE);
22209 	}
22210 
22211 	/*
22212 	 * If TCP does not get enough samples of RTT or tcp_rtt_updates
22213 	 * is 0, don't update the cache.
22214 	 */
22215 	if (tcps->tcps_rtt_updates == 0 ||
22216 	    tcp->tcp_rtt_update < tcps->tcps_rtt_updates)
22217 		return (0);
22218 
22219 	/*
22220 	 * NOTE: should not update if source routes i.e. if tcp_remote if
22221 	 * different from the destination.
22222 	 */
22223 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22224 		if (tcp->tcp_remote !=  tcp->tcp_ipha->ipha_dst) {
22225 			return (0);
22226 		}
22227 		mp = tcp_ip_advise_mblk(&tcp->tcp_ipha->ipha_dst, IP_ADDR_LEN,
22228 		    &ipic);
22229 	} else {
22230 		if (!(IN6_ARE_ADDR_EQUAL(&tcp->tcp_remote_v6,
22231 		    &tcp->tcp_ip6h->ip6_dst))) {
22232 			return (0);
22233 		}
22234 		mp = tcp_ip_advise_mblk(&tcp->tcp_ip6h->ip6_dst, IPV6_ADDR_LEN,
22235 		    &ipic);
22236 	}
22237 
22238 	/* Record route attributes in the IRE for use by future connections. */
22239 	if (mp == NULL)
22240 		return (0);
22241 
22242 	/*
22243 	 * We do not have a good algorithm to update ssthresh at this time.
22244 	 * So don't do any update.
22245 	 */
22246 	ipic->ipic_rtt = tcp->tcp_rtt_sa;
22247 	ipic->ipic_rtt_sd = tcp->tcp_rtt_sd;
22248 
22249 	CALL_IP_WPUT(tcp->tcp_connp, tcp->tcp_wq, mp);
22250 
22251 	return (0);
22252 }
22253 
22254 /* ARGSUSED */
22255 void
22256 tcp_xmit_reset(void *arg, mblk_t *mp, void *arg2)
22257 {
22258 	conn_t *connp = (conn_t *)arg;
22259 	mblk_t *mp1;
22260 	tcp_t *tcp = connp->conn_tcp;
22261 	tcp_xmit_reset_event_t *eventp;
22262 
22263 	ASSERT(mp->b_datap->db_type == M_PROTO &&
22264 	    MBLKL(mp) == sizeof (tcp_xmit_reset_event_t));
22265 
22266 	if (tcp->tcp_state != TCPS_LISTEN) {
22267 		freemsg(mp);
22268 		return;
22269 	}
22270 
22271 	mp1 = mp->b_cont;
22272 	mp->b_cont = NULL;
22273 	eventp = (tcp_xmit_reset_event_t *)mp->b_rptr;
22274 	ASSERT(eventp->tcp_xre_tcps->tcps_netstack ==
22275 	    connp->conn_netstack);
22276 
22277 	tcp_xmit_listeners_reset(mp1, eventp->tcp_xre_iphdrlen,
22278 	    eventp->tcp_xre_zoneid, eventp->tcp_xre_tcps, connp);
22279 	freemsg(mp);
22280 }
22281 
22282 /*
22283  * Generate a "no listener here" RST in response to an "unknown" segment.
22284  * connp is set by caller when RST is in response to an unexpected
22285  * inbound packet for which there is active tcp state in the system.
22286  * Note that we are reusing the incoming mp to construct the outgoing RST.
22287  */
22288 void
22289 tcp_xmit_listeners_reset(mblk_t *mp, uint_t ip_hdr_len, zoneid_t zoneid,
22290     tcp_stack_t *tcps, conn_t *connp)
22291 {
22292 	uchar_t		*rptr;
22293 	uint32_t	seg_len;
22294 	tcph_t		*tcph;
22295 	uint32_t	seg_seq;
22296 	uint32_t	seg_ack;
22297 	uint_t		flags;
22298 	mblk_t		*ipsec_mp;
22299 	ipha_t 		*ipha;
22300 	ip6_t 		*ip6h;
22301 	boolean_t	mctl_present = B_FALSE;
22302 	boolean_t	check = B_TRUE;
22303 	boolean_t	policy_present;
22304 	ipsec_stack_t	*ipss = tcps->tcps_netstack->netstack_ipsec;
22305 
22306 	TCP_STAT(tcps, tcp_no_listener);
22307 
22308 	ipsec_mp = mp;
22309 
22310 	if (mp->b_datap->db_type == M_CTL) {
22311 		ipsec_in_t *ii;
22312 
22313 		mctl_present = B_TRUE;
22314 		mp = mp->b_cont;
22315 
22316 		ii = (ipsec_in_t *)ipsec_mp->b_rptr;
22317 		ASSERT(ii->ipsec_in_type == IPSEC_IN);
22318 		if (ii->ipsec_in_dont_check) {
22319 			check = B_FALSE;
22320 			if (!ii->ipsec_in_secure) {
22321 				freeb(ipsec_mp);
22322 				mctl_present = B_FALSE;
22323 				ipsec_mp = mp;
22324 			}
22325 		}
22326 	}
22327 
22328 	if (IPH_HDR_VERSION(mp->b_rptr) == IPV4_VERSION) {
22329 		policy_present = ipss->ipsec_inbound_v4_policy_present;
22330 		ipha = (ipha_t *)mp->b_rptr;
22331 		ip6h = NULL;
22332 	} else {
22333 		policy_present = ipss->ipsec_inbound_v6_policy_present;
22334 		ipha = NULL;
22335 		ip6h = (ip6_t *)mp->b_rptr;
22336 	}
22337 
22338 	if (check && policy_present) {
22339 		/*
22340 		 * The conn_t parameter is NULL because we already know
22341 		 * nobody's home.
22342 		 */
22343 		ipsec_mp = ipsec_check_global_policy(
22344 		    ipsec_mp, (conn_t *)NULL, ipha, ip6h, mctl_present,
22345 		    tcps->tcps_netstack);
22346 		if (ipsec_mp == NULL)
22347 			return;
22348 	}
22349 	if (is_system_labeled() && !tsol_can_reply_error(mp)) {
22350 		DTRACE_PROBE2(
22351 		    tx__ip__log__error__nolistener__tcp,
22352 		    char *, "Could not reply with RST to mp(1)",
22353 		    mblk_t *, mp);
22354 		ip2dbg(("tcp_xmit_listeners_reset: not permitted to reply\n"));
22355 		freemsg(ipsec_mp);
22356 		return;
22357 	}
22358 
22359 	rptr = mp->b_rptr;
22360 
22361 	tcph = (tcph_t *)&rptr[ip_hdr_len];
22362 	seg_seq = BE32_TO_U32(tcph->th_seq);
22363 	seg_ack = BE32_TO_U32(tcph->th_ack);
22364 	flags = tcph->th_flags[0];
22365 
22366 	seg_len = msgdsize(mp) - (TCP_HDR_LENGTH(tcph) + ip_hdr_len);
22367 	if (flags & TH_RST) {
22368 		freemsg(ipsec_mp);
22369 	} else if (flags & TH_ACK) {
22370 		tcp_xmit_early_reset("no tcp, reset",
22371 		    ipsec_mp, seg_ack, 0, TH_RST, ip_hdr_len, zoneid, tcps,
22372 		    connp);
22373 	} else {
22374 		if (flags & TH_SYN) {
22375 			seg_len++;
22376 		} else {
22377 			/*
22378 			 * Here we violate the RFC.  Note that a normal
22379 			 * TCP will never send a segment without the ACK
22380 			 * flag, except for RST or SYN segment.  This
22381 			 * segment is neither.  Just drop it on the
22382 			 * floor.
22383 			 */
22384 			freemsg(ipsec_mp);
22385 			tcps->tcps_rst_unsent++;
22386 			return;
22387 		}
22388 
22389 		tcp_xmit_early_reset("no tcp, reset/ack",
22390 		    ipsec_mp, 0, seg_seq + seg_len,
22391 		    TH_RST | TH_ACK, ip_hdr_len, zoneid, tcps, connp);
22392 	}
22393 }
22394 
22395 /*
22396  * tcp_xmit_mp is called to return a pointer to an mblk chain complete with
22397  * ip and tcp header ready to pass down to IP.  If the mp passed in is
22398  * non-NULL, then up to max_to_send bytes of data will be dup'ed off that
22399  * mblk. (If sendall is not set the dup'ing will stop at an mblk boundary
22400  * otherwise it will dup partial mblks.)
22401  * Otherwise, an appropriate ACK packet will be generated.  This
22402  * routine is not usually called to send new data for the first time.  It
22403  * is mostly called out of the timer for retransmits, and to generate ACKs.
22404  *
22405  * If offset is not NULL, the returned mblk chain's first mblk's b_rptr will
22406  * be adjusted by *offset.  And after dupb(), the offset and the ending mblk
22407  * of the original mblk chain will be returned in *offset and *end_mp.
22408  */
22409 mblk_t *
22410 tcp_xmit_mp(tcp_t *tcp, mblk_t *mp, int32_t max_to_send, int32_t *offset,
22411     mblk_t **end_mp, uint32_t seq, boolean_t sendall, uint32_t *seg_len,
22412     boolean_t rexmit)
22413 {
22414 	int	data_length;
22415 	int32_t	off = 0;
22416 	uint_t	flags;
22417 	mblk_t	*mp1;
22418 	mblk_t	*mp2;
22419 	uchar_t	*rptr;
22420 	tcph_t	*tcph;
22421 	int32_t	num_sack_blk = 0;
22422 	int32_t	sack_opt_len = 0;
22423 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22424 
22425 	/* Allocate for our maximum TCP header + link-level */
22426 	mp1 = allocb(tcp->tcp_ip_hdr_len + TCP_MAX_HDR_LENGTH +
22427 	    tcps->tcps_wroff_xtra, BPRI_MED);
22428 	if (!mp1)
22429 		return (NULL);
22430 	data_length = 0;
22431 
22432 	/*
22433 	 * Note that tcp_mss has been adjusted to take into account the
22434 	 * timestamp option if applicable.  Because SACK options do not
22435 	 * appear in every TCP segments and they are of variable lengths,
22436 	 * they cannot be included in tcp_mss.  Thus we need to calculate
22437 	 * the actual segment length when we need to send a segment which
22438 	 * includes SACK options.
22439 	 */
22440 	if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22441 		num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22442 		    tcp->tcp_num_sack_blk);
22443 		sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22444 		    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22445 		if (max_to_send + sack_opt_len > tcp->tcp_mss)
22446 			max_to_send -= sack_opt_len;
22447 	}
22448 
22449 	if (offset != NULL) {
22450 		off = *offset;
22451 		/* We use offset as an indicator that end_mp is not NULL. */
22452 		*end_mp = NULL;
22453 	}
22454 	for (mp2 = mp1; mp && data_length != max_to_send; mp = mp->b_cont) {
22455 		/* This could be faster with cooperation from downstream */
22456 		if (mp2 != mp1 && !sendall &&
22457 		    data_length + (int)(mp->b_wptr - mp->b_rptr) >
22458 		    max_to_send)
22459 			/*
22460 			 * Don't send the next mblk since the whole mblk
22461 			 * does not fit.
22462 			 */
22463 			break;
22464 		mp2->b_cont = dupb(mp);
22465 		mp2 = mp2->b_cont;
22466 		if (!mp2) {
22467 			freemsg(mp1);
22468 			return (NULL);
22469 		}
22470 		mp2->b_rptr += off;
22471 		ASSERT((uintptr_t)(mp2->b_wptr - mp2->b_rptr) <=
22472 		    (uintptr_t)INT_MAX);
22473 
22474 		data_length += (int)(mp2->b_wptr - mp2->b_rptr);
22475 		if (data_length > max_to_send) {
22476 			mp2->b_wptr -= data_length - max_to_send;
22477 			data_length = max_to_send;
22478 			off = mp2->b_wptr - mp->b_rptr;
22479 			break;
22480 		} else {
22481 			off = 0;
22482 		}
22483 	}
22484 	if (offset != NULL) {
22485 		*offset = off;
22486 		*end_mp = mp;
22487 	}
22488 	if (seg_len != NULL) {
22489 		*seg_len = data_length;
22490 	}
22491 
22492 	/* Update the latest receive window size in TCP header. */
22493 	U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22494 	    tcp->tcp_tcph->th_win);
22495 
22496 	rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
22497 	mp1->b_rptr = rptr;
22498 	mp1->b_wptr = rptr + tcp->tcp_hdr_len + sack_opt_len;
22499 	bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22500 	tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22501 	U32_TO_ABE32(seq, tcph->th_seq);
22502 
22503 	/*
22504 	 * Use tcp_unsent to determine if the PUSH bit should be used assumes
22505 	 * that this function was called from tcp_wput_data. Thus, when called
22506 	 * to retransmit data the setting of the PUSH bit may appear some
22507 	 * what random in that it might get set when it should not. This
22508 	 * should not pose any performance issues.
22509 	 */
22510 	if (data_length != 0 && (tcp->tcp_unsent == 0 ||
22511 	    tcp->tcp_unsent == data_length)) {
22512 		flags = TH_ACK | TH_PUSH;
22513 	} else {
22514 		flags = TH_ACK;
22515 	}
22516 
22517 	if (tcp->tcp_ecn_ok) {
22518 		if (tcp->tcp_ecn_echo_on)
22519 			flags |= TH_ECE;
22520 
22521 		/*
22522 		 * Only set ECT bit and ECN_CWR if a segment contains new data.
22523 		 * There is no TCP flow control for non-data segments, and
22524 		 * only data segment is transmitted reliably.
22525 		 */
22526 		if (data_length > 0 && !rexmit) {
22527 			SET_ECT(tcp, rptr);
22528 			if (tcp->tcp_cwr && !tcp->tcp_ecn_cwr_sent) {
22529 				flags |= TH_CWR;
22530 				tcp->tcp_ecn_cwr_sent = B_TRUE;
22531 			}
22532 		}
22533 	}
22534 
22535 	if (tcp->tcp_valid_bits) {
22536 		uint32_t u1;
22537 
22538 		if ((tcp->tcp_valid_bits & TCP_ISS_VALID) &&
22539 		    seq == tcp->tcp_iss) {
22540 			uchar_t	*wptr;
22541 
22542 			/*
22543 			 * If TCP_ISS_VALID and the seq number is tcp_iss,
22544 			 * TCP can only be in SYN-SENT, SYN-RCVD or
22545 			 * FIN-WAIT-1 state.  It can be FIN-WAIT-1 if
22546 			 * our SYN is not ack'ed but the app closes this
22547 			 * TCP connection.
22548 			 */
22549 			ASSERT(tcp->tcp_state == TCPS_SYN_SENT ||
22550 			    tcp->tcp_state == TCPS_SYN_RCVD ||
22551 			    tcp->tcp_state == TCPS_FIN_WAIT_1);
22552 
22553 			/*
22554 			 * Tack on the MSS option.  It is always needed
22555 			 * for both active and passive open.
22556 			 *
22557 			 * MSS option value should be interface MTU - MIN
22558 			 * TCP/IP header according to RFC 793 as it means
22559 			 * the maximum segment size TCP can receive.  But
22560 			 * to get around some broken middle boxes/end hosts
22561 			 * out there, we allow the option value to be the
22562 			 * same as the MSS option size on the peer side.
22563 			 * In this way, the other side will not send
22564 			 * anything larger than they can receive.
22565 			 *
22566 			 * Note that for SYN_SENT state, the ndd param
22567 			 * tcp_use_smss_as_mss_opt has no effect as we
22568 			 * don't know the peer's MSS option value. So
22569 			 * the only case we need to take care of is in
22570 			 * SYN_RCVD state, which is done later.
22571 			 */
22572 			wptr = mp1->b_wptr;
22573 			wptr[0] = TCPOPT_MAXSEG;
22574 			wptr[1] = TCPOPT_MAXSEG_LEN;
22575 			wptr += 2;
22576 			u1 = tcp->tcp_if_mtu -
22577 			    (tcp->tcp_ipversion == IPV4_VERSION ?
22578 			    IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN) -
22579 			    TCP_MIN_HEADER_LENGTH;
22580 			U16_TO_BE16(u1, wptr);
22581 			mp1->b_wptr = wptr + 2;
22582 			/* Update the offset to cover the additional word */
22583 			tcph->th_offset_and_rsrvd[0] += (1 << 4);
22584 
22585 			/*
22586 			 * Note that the following way of filling in
22587 			 * TCP options are not optimal.  Some NOPs can
22588 			 * be saved.  But there is no need at this time
22589 			 * to optimize it.  When it is needed, we will
22590 			 * do it.
22591 			 */
22592 			switch (tcp->tcp_state) {
22593 			case TCPS_SYN_SENT:
22594 				flags = TH_SYN;
22595 
22596 				if (tcp->tcp_snd_ts_ok) {
22597 					uint32_t llbolt = (uint32_t)lbolt;
22598 
22599 					wptr = mp1->b_wptr;
22600 					wptr[0] = TCPOPT_NOP;
22601 					wptr[1] = TCPOPT_NOP;
22602 					wptr[2] = TCPOPT_TSTAMP;
22603 					wptr[3] = TCPOPT_TSTAMP_LEN;
22604 					wptr += 4;
22605 					U32_TO_BE32(llbolt, wptr);
22606 					wptr += 4;
22607 					ASSERT(tcp->tcp_ts_recent == 0);
22608 					U32_TO_BE32(0L, wptr);
22609 					mp1->b_wptr += TCPOPT_REAL_TS_LEN;
22610 					tcph->th_offset_and_rsrvd[0] +=
22611 					    (3 << 4);
22612 				}
22613 
22614 				/*
22615 				 * Set up all the bits to tell other side
22616 				 * we are ECN capable.
22617 				 */
22618 				if (tcp->tcp_ecn_ok) {
22619 					flags |= (TH_ECE | TH_CWR);
22620 				}
22621 				break;
22622 			case TCPS_SYN_RCVD:
22623 				flags |= TH_SYN;
22624 
22625 				/*
22626 				 * Reset the MSS option value to be SMSS
22627 				 * We should probably add back the bytes
22628 				 * for timestamp option and IPsec.  We
22629 				 * don't do that as this is a workaround
22630 				 * for broken middle boxes/end hosts, it
22631 				 * is better for us to be more cautious.
22632 				 * They may not take these things into
22633 				 * account in their SMSS calculation.  Thus
22634 				 * the peer's calculated SMSS may be smaller
22635 				 * than what it can be.  This should be OK.
22636 				 */
22637 				if (tcps->tcps_use_smss_as_mss_opt) {
22638 					u1 = tcp->tcp_mss;
22639 					U16_TO_BE16(u1, wptr);
22640 				}
22641 
22642 				/*
22643 				 * If the other side is ECN capable, reply
22644 				 * that we are also ECN capable.
22645 				 */
22646 				if (tcp->tcp_ecn_ok)
22647 					flags |= TH_ECE;
22648 				break;
22649 			default:
22650 				/*
22651 				 * The above ASSERT() makes sure that this
22652 				 * must be FIN-WAIT-1 state.  Our SYN has
22653 				 * not been ack'ed so retransmit it.
22654 				 */
22655 				flags |= TH_SYN;
22656 				break;
22657 			}
22658 
22659 			if (tcp->tcp_snd_ws_ok) {
22660 				wptr = mp1->b_wptr;
22661 				wptr[0] =  TCPOPT_NOP;
22662 				wptr[1] =  TCPOPT_WSCALE;
22663 				wptr[2] =  TCPOPT_WS_LEN;
22664 				wptr[3] = (uchar_t)tcp->tcp_rcv_ws;
22665 				mp1->b_wptr += TCPOPT_REAL_WS_LEN;
22666 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22667 			}
22668 
22669 			if (tcp->tcp_snd_sack_ok) {
22670 				wptr = mp1->b_wptr;
22671 				wptr[0] = TCPOPT_NOP;
22672 				wptr[1] = TCPOPT_NOP;
22673 				wptr[2] = TCPOPT_SACK_PERMITTED;
22674 				wptr[3] = TCPOPT_SACK_OK_LEN;
22675 				mp1->b_wptr += TCPOPT_REAL_SACK_OK_LEN;
22676 				tcph->th_offset_and_rsrvd[0] += (1 << 4);
22677 			}
22678 
22679 			/* allocb() of adequate mblk assures space */
22680 			ASSERT((uintptr_t)(mp1->b_wptr - mp1->b_rptr) <=
22681 			    (uintptr_t)INT_MAX);
22682 			u1 = (int)(mp1->b_wptr - mp1->b_rptr);
22683 			/*
22684 			 * Get IP set to checksum on our behalf
22685 			 * Include the adjustment for a source route if any.
22686 			 */
22687 			u1 += tcp->tcp_sum;
22688 			u1 = (u1 >> 16) + (u1 & 0xFFFF);
22689 			U16_TO_BE16(u1, tcph->th_sum);
22690 			BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22691 		}
22692 		if ((tcp->tcp_valid_bits & TCP_FSS_VALID) &&
22693 		    (seq + data_length) == tcp->tcp_fss) {
22694 			if (!tcp->tcp_fin_acked) {
22695 				flags |= TH_FIN;
22696 				BUMP_MIB(&tcps->tcps_mib, tcpOutControl);
22697 			}
22698 			if (!tcp->tcp_fin_sent) {
22699 				tcp->tcp_fin_sent = B_TRUE;
22700 				switch (tcp->tcp_state) {
22701 				case TCPS_SYN_RCVD:
22702 				case TCPS_ESTABLISHED:
22703 					tcp->tcp_state = TCPS_FIN_WAIT_1;
22704 					break;
22705 				case TCPS_CLOSE_WAIT:
22706 					tcp->tcp_state = TCPS_LAST_ACK;
22707 					break;
22708 				}
22709 				if (tcp->tcp_suna == tcp->tcp_snxt)
22710 					TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
22711 				tcp->tcp_snxt = tcp->tcp_fss + 1;
22712 			}
22713 		}
22714 		/*
22715 		 * Note the trick here.  u1 is unsigned.  When tcp_urg
22716 		 * is smaller than seq, u1 will become a very huge value.
22717 		 * So the comparison will fail.  Also note that tcp_urp
22718 		 * should be positive, see RFC 793 page 17.
22719 		 */
22720 		u1 = tcp->tcp_urg - seq + TCP_OLD_URP_INTERPRETATION;
22721 		if ((tcp->tcp_valid_bits & TCP_URG_VALID) && u1 != 0 &&
22722 		    u1 < (uint32_t)(64 * 1024)) {
22723 			flags |= TH_URG;
22724 			BUMP_MIB(&tcps->tcps_mib, tcpOutUrg);
22725 			U32_TO_ABE16(u1, tcph->th_urp);
22726 		}
22727 	}
22728 	tcph->th_flags[0] = (uchar_t)flags;
22729 	tcp->tcp_rack = tcp->tcp_rnxt;
22730 	tcp->tcp_rack_cnt = 0;
22731 
22732 	if (tcp->tcp_snd_ts_ok) {
22733 		if (tcp->tcp_state != TCPS_SYN_SENT) {
22734 			uint32_t llbolt = (uint32_t)lbolt;
22735 
22736 			U32_TO_BE32(llbolt,
22737 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22738 			U32_TO_BE32(tcp->tcp_ts_recent,
22739 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22740 		}
22741 	}
22742 
22743 	if (num_sack_blk > 0) {
22744 		uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22745 		sack_blk_t *tmp;
22746 		int32_t	i;
22747 
22748 		wptr[0] = TCPOPT_NOP;
22749 		wptr[1] = TCPOPT_NOP;
22750 		wptr[2] = TCPOPT_SACK;
22751 		wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22752 		    sizeof (sack_blk_t);
22753 		wptr += TCPOPT_REAL_SACK_LEN;
22754 
22755 		tmp = tcp->tcp_sack_list;
22756 		for (i = 0; i < num_sack_blk; i++) {
22757 			U32_TO_BE32(tmp[i].begin, wptr);
22758 			wptr += sizeof (tcp_seq);
22759 			U32_TO_BE32(tmp[i].end, wptr);
22760 			wptr += sizeof (tcp_seq);
22761 		}
22762 		tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1) << 4);
22763 	}
22764 	ASSERT((uintptr_t)(mp1->b_wptr - rptr) <= (uintptr_t)INT_MAX);
22765 	data_length += (int)(mp1->b_wptr - rptr);
22766 	if (tcp->tcp_ipversion == IPV4_VERSION) {
22767 		((ipha_t *)rptr)->ipha_length = htons(data_length);
22768 	} else {
22769 		ip6_t *ip6 = (ip6_t *)(rptr +
22770 		    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
22771 		    sizeof (ip6i_t) : 0));
22772 
22773 		ip6->ip6_plen = htons(data_length -
22774 		    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
22775 	}
22776 
22777 	/*
22778 	 * Prime pump for IP
22779 	 * Include the adjustment for a source route if any.
22780 	 */
22781 	data_length -= tcp->tcp_ip_hdr_len;
22782 	data_length += tcp->tcp_sum;
22783 	data_length = (data_length >> 16) + (data_length & 0xFFFF);
22784 	U16_TO_ABE16(data_length, tcph->th_sum);
22785 	if (tcp->tcp_ip_forward_progress) {
22786 		ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
22787 		*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
22788 		tcp->tcp_ip_forward_progress = B_FALSE;
22789 	}
22790 	return (mp1);
22791 }
22792 
22793 /* This function handles the push timeout. */
22794 void
22795 tcp_push_timer(void *arg)
22796 {
22797 	conn_t	*connp = (conn_t *)arg;
22798 	tcp_t *tcp = connp->conn_tcp;
22799 
22800 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt);
22801 
22802 	ASSERT(tcp->tcp_listener == NULL);
22803 
22804 	ASSERT(!IPCL_IS_NONSTR(connp));
22805 
22806 	/*
22807 	 * We need to plug synchronous streams during our drain to prevent
22808 	 * a race with tcp_fuse_rrw() or tcp_fusion_rinfop().
22809 	 */
22810 	TCP_FUSE_SYNCSTR_PLUG_DRAIN(tcp);
22811 	tcp->tcp_push_tid = 0;
22812 
22813 	if (tcp->tcp_rcv_list != NULL &&
22814 	    tcp_rcv_drain(tcp) == TH_ACK_NEEDED)
22815 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
22816 
22817 	TCP_FUSE_SYNCSTR_UNPLUG_DRAIN(tcp);
22818 }
22819 
22820 /*
22821  * This function handles delayed ACK timeout.
22822  */
22823 static void
22824 tcp_ack_timer(void *arg)
22825 {
22826 	conn_t	*connp = (conn_t *)arg;
22827 	tcp_t *tcp = connp->conn_tcp;
22828 	mblk_t *mp;
22829 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22830 
22831 	TCP_DBGSTAT(tcps, tcp_ack_timer_cnt);
22832 
22833 	tcp->tcp_ack_tid = 0;
22834 
22835 	if (tcp->tcp_fused)
22836 		return;
22837 
22838 	/*
22839 	 * Do not send ACK if there is no outstanding unack'ed data.
22840 	 */
22841 	if (tcp->tcp_rnxt == tcp->tcp_rack) {
22842 		return;
22843 	}
22844 
22845 	if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) {
22846 		/*
22847 		 * Make sure we don't allow deferred ACKs to result in
22848 		 * timer-based ACKing.  If we have held off an ACK
22849 		 * when there was more than an mss here, and the timer
22850 		 * goes off, we have to worry about the possibility
22851 		 * that the sender isn't doing slow-start, or is out
22852 		 * of step with us for some other reason.  We fall
22853 		 * permanently back in the direction of
22854 		 * ACK-every-other-packet as suggested in RFC 1122.
22855 		 */
22856 		if (tcp->tcp_rack_abs_max > 2)
22857 			tcp->tcp_rack_abs_max--;
22858 		tcp->tcp_rack_cur_max = 2;
22859 	}
22860 	mp = tcp_ack_mp(tcp);
22861 
22862 	if (mp != NULL) {
22863 		BUMP_LOCAL(tcp->tcp_obsegs);
22864 		BUMP_MIB(&tcps->tcps_mib, tcpOutAck);
22865 		BUMP_MIB(&tcps->tcps_mib, tcpOutAckDelayed);
22866 		tcp_send_data(tcp, tcp->tcp_wq, mp);
22867 	}
22868 }
22869 
22870 
22871 /* Generate an ACK-only (no data) segment for a TCP endpoint */
22872 static mblk_t *
22873 tcp_ack_mp(tcp_t *tcp)
22874 {
22875 	uint32_t	seq_no;
22876 	tcp_stack_t	*tcps = tcp->tcp_tcps;
22877 
22878 	/*
22879 	 * There are a few cases to be considered while setting the sequence no.
22880 	 * Essentially, we can come here while processing an unacceptable pkt
22881 	 * in the TCPS_SYN_RCVD state, in which case we set the sequence number
22882 	 * to snxt (per RFC 793), note the swnd wouldn't have been set yet.
22883 	 * If we are here for a zero window probe, stick with suna. In all
22884 	 * other cases, we check if suna + swnd encompasses snxt and set
22885 	 * the sequence number to snxt, if so. If snxt falls outside the
22886 	 * window (the receiver probably shrunk its window), we will go with
22887 	 * suna + swnd, otherwise the sequence no will be unacceptable to the
22888 	 * receiver.
22889 	 */
22890 	if (tcp->tcp_zero_win_probe) {
22891 		seq_no = tcp->tcp_suna;
22892 	} else if (tcp->tcp_state == TCPS_SYN_RCVD) {
22893 		ASSERT(tcp->tcp_swnd == 0);
22894 		seq_no = tcp->tcp_snxt;
22895 	} else {
22896 		seq_no = SEQ_GT(tcp->tcp_snxt,
22897 		    (tcp->tcp_suna + tcp->tcp_swnd)) ?
22898 		    (tcp->tcp_suna + tcp->tcp_swnd) : tcp->tcp_snxt;
22899 	}
22900 
22901 	if (tcp->tcp_valid_bits) {
22902 		/*
22903 		 * For the complex case where we have to send some
22904 		 * controls (FIN or SYN), let tcp_xmit_mp do it.
22905 		 */
22906 		return (tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, seq_no, B_FALSE,
22907 		    NULL, B_FALSE));
22908 	} else {
22909 		/* Generate a simple ACK */
22910 		int	data_length;
22911 		uchar_t	*rptr;
22912 		tcph_t	*tcph;
22913 		mblk_t	*mp1;
22914 		int32_t	tcp_hdr_len;
22915 		int32_t	tcp_tcp_hdr_len;
22916 		int32_t	num_sack_blk = 0;
22917 		int32_t sack_opt_len;
22918 
22919 		/*
22920 		 * Allocate space for TCP + IP headers
22921 		 * and link-level header
22922 		 */
22923 		if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) {
22924 			num_sack_blk = MIN(tcp->tcp_max_sack_blk,
22925 			    tcp->tcp_num_sack_blk);
22926 			sack_opt_len = num_sack_blk * sizeof (sack_blk_t) +
22927 			    TCPOPT_NOP_LEN * 2 + TCPOPT_HEADER_LEN;
22928 			tcp_hdr_len = tcp->tcp_hdr_len + sack_opt_len;
22929 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len + sack_opt_len;
22930 		} else {
22931 			tcp_hdr_len = tcp->tcp_hdr_len;
22932 			tcp_tcp_hdr_len = tcp->tcp_tcp_hdr_len;
22933 		}
22934 		mp1 = allocb(tcp_hdr_len + tcps->tcps_wroff_xtra, BPRI_MED);
22935 		if (!mp1)
22936 			return (NULL);
22937 
22938 		/* Update the latest receive window size in TCP header. */
22939 		U32_TO_ABE16(tcp->tcp_rwnd >> tcp->tcp_rcv_ws,
22940 		    tcp->tcp_tcph->th_win);
22941 		/* copy in prototype TCP + IP header */
22942 		rptr = mp1->b_rptr + tcps->tcps_wroff_xtra;
22943 		mp1->b_rptr = rptr;
22944 		mp1->b_wptr = rptr + tcp_hdr_len;
22945 		bcopy(tcp->tcp_iphc, rptr, tcp->tcp_hdr_len);
22946 
22947 		tcph = (tcph_t *)&rptr[tcp->tcp_ip_hdr_len];
22948 
22949 		/* Set the TCP sequence number. */
22950 		U32_TO_ABE32(seq_no, tcph->th_seq);
22951 
22952 		/* Set up the TCP flag field. */
22953 		tcph->th_flags[0] = (uchar_t)TH_ACK;
22954 		if (tcp->tcp_ecn_echo_on)
22955 			tcph->th_flags[0] |= TH_ECE;
22956 
22957 		tcp->tcp_rack = tcp->tcp_rnxt;
22958 		tcp->tcp_rack_cnt = 0;
22959 
22960 		/* fill in timestamp option if in use */
22961 		if (tcp->tcp_snd_ts_ok) {
22962 			uint32_t llbolt = (uint32_t)lbolt;
22963 
22964 			U32_TO_BE32(llbolt,
22965 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+4);
22966 			U32_TO_BE32(tcp->tcp_ts_recent,
22967 			    (char *)tcph+TCP_MIN_HEADER_LENGTH+8);
22968 		}
22969 
22970 		/* Fill in SACK options */
22971 		if (num_sack_blk > 0) {
22972 			uchar_t *wptr = (uchar_t *)tcph + tcp->tcp_tcp_hdr_len;
22973 			sack_blk_t *tmp;
22974 			int32_t	i;
22975 
22976 			wptr[0] = TCPOPT_NOP;
22977 			wptr[1] = TCPOPT_NOP;
22978 			wptr[2] = TCPOPT_SACK;
22979 			wptr[3] = TCPOPT_HEADER_LEN + num_sack_blk *
22980 			    sizeof (sack_blk_t);
22981 			wptr += TCPOPT_REAL_SACK_LEN;
22982 
22983 			tmp = tcp->tcp_sack_list;
22984 			for (i = 0; i < num_sack_blk; i++) {
22985 				U32_TO_BE32(tmp[i].begin, wptr);
22986 				wptr += sizeof (tcp_seq);
22987 				U32_TO_BE32(tmp[i].end, wptr);
22988 				wptr += sizeof (tcp_seq);
22989 			}
22990 			tcph->th_offset_and_rsrvd[0] += ((num_sack_blk * 2 + 1)
22991 			    << 4);
22992 		}
22993 
22994 		if (tcp->tcp_ipversion == IPV4_VERSION) {
22995 			((ipha_t *)rptr)->ipha_length = htons(tcp_hdr_len);
22996 		} else {
22997 			/* Check for ip6i_t header in sticky hdrs */
22998 			ip6_t *ip6 = (ip6_t *)(rptr +
22999 			    (((ip6_t *)rptr)->ip6_nxt == IPPROTO_RAW ?
23000 			    sizeof (ip6i_t) : 0));
23001 
23002 			ip6->ip6_plen = htons(tcp_hdr_len -
23003 			    ((char *)&tcp->tcp_ip6h[1] - tcp->tcp_iphc));
23004 		}
23005 
23006 		/*
23007 		 * Prime pump for checksum calculation in IP.  Include the
23008 		 * adjustment for a source route if any.
23009 		 */
23010 		data_length = tcp_tcp_hdr_len + tcp->tcp_sum;
23011 		data_length = (data_length >> 16) + (data_length & 0xFFFF);
23012 		U16_TO_ABE16(data_length, tcph->th_sum);
23013 
23014 		if (tcp->tcp_ip_forward_progress) {
23015 			ASSERT(tcp->tcp_ipversion == IPV6_VERSION);
23016 			*(uint32_t *)mp1->b_rptr  |= IP_FORWARD_PROG;
23017 			tcp->tcp_ip_forward_progress = B_FALSE;
23018 		}
23019 		return (mp1);
23020 	}
23021 }
23022 
23023 /*
23024  * Hash list insertion routine for tcp_t structures. Each hash bucket
23025  * contains a list of tcp_t entries, and each entry is bound to a unique
23026  * port. If there are multiple tcp_t's that are bound to the same port, then
23027  * one of them will be linked into the hash bucket list, and the rest will
23028  * hang off of that one entry. For each port, entries bound to a specific IP
23029  * address will be inserted before those those bound to INADDR_ANY.
23030  */
23031 static void
23032 tcp_bind_hash_insert(tf_t *tbf, tcp_t *tcp, int caller_holds_lock)
23033 {
23034 	tcp_t	**tcpp;
23035 	tcp_t	*tcpnext;
23036 	tcp_t	*tcphash;
23037 
23038 	if (tcp->tcp_ptpbhn != NULL) {
23039 		ASSERT(!caller_holds_lock);
23040 		tcp_bind_hash_remove(tcp);
23041 	}
23042 	tcpp = &tbf->tf_tcp;
23043 	if (!caller_holds_lock) {
23044 		mutex_enter(&tbf->tf_lock);
23045 	} else {
23046 		ASSERT(MUTEX_HELD(&tbf->tf_lock));
23047 	}
23048 	tcphash = tcpp[0];
23049 	tcpnext = NULL;
23050 	if (tcphash != NULL) {
23051 		/* Look for an entry using the same port */
23052 		while ((tcphash = tcpp[0]) != NULL &&
23053 		    tcp->tcp_lport != tcphash->tcp_lport)
23054 			tcpp = &(tcphash->tcp_bind_hash);
23055 
23056 		/* The port was not found, just add to the end */
23057 		if (tcphash == NULL)
23058 			goto insert;
23059 
23060 		/*
23061 		 * OK, there already exists an entry bound to the
23062 		 * same port.
23063 		 *
23064 		 * If the new tcp bound to the INADDR_ANY address
23065 		 * and the first one in the list is not bound to
23066 		 * INADDR_ANY we skip all entries until we find the
23067 		 * first one bound to INADDR_ANY.
23068 		 * This makes sure that applications binding to a
23069 		 * specific address get preference over those binding to
23070 		 * INADDR_ANY.
23071 		 */
23072 		tcpnext = tcphash;
23073 		tcphash = NULL;
23074 		if (V6_OR_V4_INADDR_ANY(tcp->tcp_bound_source_v6) &&
23075 		    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6)) {
23076 			while ((tcpnext = tcpp[0]) != NULL &&
23077 			    !V6_OR_V4_INADDR_ANY(tcpnext->tcp_bound_source_v6))
23078 				tcpp = &(tcpnext->tcp_bind_hash_port);
23079 
23080 			if (tcpnext) {
23081 				tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
23082 				tcphash = tcpnext->tcp_bind_hash;
23083 				if (tcphash != NULL) {
23084 					tcphash->tcp_ptpbhn =
23085 					    &(tcp->tcp_bind_hash);
23086 					tcpnext->tcp_bind_hash = NULL;
23087 				}
23088 			}
23089 		} else {
23090 			tcpnext->tcp_ptpbhn = &tcp->tcp_bind_hash_port;
23091 			tcphash = tcpnext->tcp_bind_hash;
23092 			if (tcphash != NULL) {
23093 				tcphash->tcp_ptpbhn =
23094 				    &(tcp->tcp_bind_hash);
23095 				tcpnext->tcp_bind_hash = NULL;
23096 			}
23097 		}
23098 	}
23099 insert:
23100 	tcp->tcp_bind_hash_port = tcpnext;
23101 	tcp->tcp_bind_hash = tcphash;
23102 	tcp->tcp_ptpbhn = tcpp;
23103 	tcpp[0] = tcp;
23104 	if (!caller_holds_lock)
23105 		mutex_exit(&tbf->tf_lock);
23106 }
23107 
23108 /*
23109  * Hash list removal routine for tcp_t structures.
23110  */
23111 static void
23112 tcp_bind_hash_remove(tcp_t *tcp)
23113 {
23114 	tcp_t	*tcpnext;
23115 	kmutex_t *lockp;
23116 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23117 
23118 	if (tcp->tcp_ptpbhn == NULL)
23119 		return;
23120 
23121 	/*
23122 	 * Extract the lock pointer in case there are concurrent
23123 	 * hash_remove's for this instance.
23124 	 */
23125 	ASSERT(tcp->tcp_lport != 0);
23126 	lockp = &tcps->tcps_bind_fanout[TCP_BIND_HASH(tcp->tcp_lport)].tf_lock;
23127 
23128 	ASSERT(lockp != NULL);
23129 	mutex_enter(lockp);
23130 	if (tcp->tcp_ptpbhn) {
23131 		tcpnext = tcp->tcp_bind_hash_port;
23132 		if (tcpnext != NULL) {
23133 			tcp->tcp_bind_hash_port = NULL;
23134 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23135 			tcpnext->tcp_bind_hash = tcp->tcp_bind_hash;
23136 			if (tcpnext->tcp_bind_hash != NULL) {
23137 				tcpnext->tcp_bind_hash->tcp_ptpbhn =
23138 				    &(tcpnext->tcp_bind_hash);
23139 				tcp->tcp_bind_hash = NULL;
23140 			}
23141 		} else if ((tcpnext = tcp->tcp_bind_hash) != NULL) {
23142 			tcpnext->tcp_ptpbhn = tcp->tcp_ptpbhn;
23143 			tcp->tcp_bind_hash = NULL;
23144 		}
23145 		*tcp->tcp_ptpbhn = tcpnext;
23146 		tcp->tcp_ptpbhn = NULL;
23147 	}
23148 	mutex_exit(lockp);
23149 }
23150 
23151 
23152 /*
23153  * Hash list lookup routine for tcp_t structures.
23154  * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF.
23155  */
23156 static tcp_t *
23157 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps)
23158 {
23159 	tf_t	*tf;
23160 	tcp_t	*tcp;
23161 
23162 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23163 	mutex_enter(&tf->tf_lock);
23164 	for (tcp = tf->tf_tcp; tcp != NULL;
23165 	    tcp = tcp->tcp_acceptor_hash) {
23166 		if (tcp->tcp_acceptor_id == id) {
23167 			CONN_INC_REF(tcp->tcp_connp);
23168 			mutex_exit(&tf->tf_lock);
23169 			return (tcp);
23170 		}
23171 	}
23172 	mutex_exit(&tf->tf_lock);
23173 	return (NULL);
23174 }
23175 
23176 
23177 /*
23178  * Hash list insertion routine for tcp_t structures.
23179  */
23180 void
23181 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp)
23182 {
23183 	tf_t	*tf;
23184 	tcp_t	**tcpp;
23185 	tcp_t	*tcpnext;
23186 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23187 
23188 	tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)];
23189 
23190 	if (tcp->tcp_ptpahn != NULL)
23191 		tcp_acceptor_hash_remove(tcp);
23192 	tcpp = &tf->tf_tcp;
23193 	mutex_enter(&tf->tf_lock);
23194 	tcpnext = tcpp[0];
23195 	if (tcpnext)
23196 		tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash;
23197 	tcp->tcp_acceptor_hash = tcpnext;
23198 	tcp->tcp_ptpahn = tcpp;
23199 	tcpp[0] = tcp;
23200 	tcp->tcp_acceptor_lockp = &tf->tf_lock;	/* For tcp_*_hash_remove */
23201 	mutex_exit(&tf->tf_lock);
23202 }
23203 
23204 /*
23205  * Hash list removal routine for tcp_t structures.
23206  */
23207 static void
23208 tcp_acceptor_hash_remove(tcp_t *tcp)
23209 {
23210 	tcp_t	*tcpnext;
23211 	kmutex_t *lockp;
23212 
23213 	/*
23214 	 * Extract the lock pointer in case there are concurrent
23215 	 * hash_remove's for this instance.
23216 	 */
23217 	lockp = tcp->tcp_acceptor_lockp;
23218 
23219 	if (tcp->tcp_ptpahn == NULL)
23220 		return;
23221 
23222 	ASSERT(lockp != NULL);
23223 	mutex_enter(lockp);
23224 	if (tcp->tcp_ptpahn) {
23225 		tcpnext = tcp->tcp_acceptor_hash;
23226 		if (tcpnext) {
23227 			tcpnext->tcp_ptpahn = tcp->tcp_ptpahn;
23228 			tcp->tcp_acceptor_hash = NULL;
23229 		}
23230 		*tcp->tcp_ptpahn = tcpnext;
23231 		tcp->tcp_ptpahn = NULL;
23232 	}
23233 	mutex_exit(lockp);
23234 	tcp->tcp_acceptor_lockp = NULL;
23235 }
23236 
23237 /*
23238  * Type three generator adapted from the random() function in 4.4 BSD:
23239  */
23240 
23241 /*
23242  * Copyright (c) 1983, 1993
23243  *	The Regents of the University of California.  All rights reserved.
23244  *
23245  * Redistribution and use in source and binary forms, with or without
23246  * modification, are permitted provided that the following conditions
23247  * are met:
23248  * 1. Redistributions of source code must retain the above copyright
23249  *    notice, this list of conditions and the following disclaimer.
23250  * 2. Redistributions in binary form must reproduce the above copyright
23251  *    notice, this list of conditions and the following disclaimer in the
23252  *    documentation and/or other materials provided with the distribution.
23253  * 3. All advertising materials mentioning features or use of this software
23254  *    must display the following acknowledgement:
23255  *	This product includes software developed by the University of
23256  *	California, Berkeley and its contributors.
23257  * 4. Neither the name of the University nor the names of its contributors
23258  *    may be used to endorse or promote products derived from this software
23259  *    without specific prior written permission.
23260  *
23261  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23262  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23263  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23264  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23265  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23266  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23267  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23268  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23269  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23270  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23271  * SUCH DAMAGE.
23272  */
23273 
23274 /* Type 3 -- x**31 + x**3 + 1 */
23275 #define	DEG_3		31
23276 #define	SEP_3		3
23277 
23278 
23279 /* Protected by tcp_random_lock */
23280 static int tcp_randtbl[DEG_3 + 1];
23281 
23282 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1];
23283 static int *tcp_random_rptr = &tcp_randtbl[1];
23284 
23285 static int *tcp_random_state = &tcp_randtbl[1];
23286 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1];
23287 
23288 kmutex_t tcp_random_lock;
23289 
23290 void
23291 tcp_random_init(void)
23292 {
23293 	int i;
23294 	hrtime_t hrt;
23295 	time_t wallclock;
23296 	uint64_t result;
23297 
23298 	/*
23299 	 * Use high-res timer and current time for seed.  Gethrtime() returns
23300 	 * a longlong, which may contain resolution down to nanoseconds.
23301 	 * The current time will either be a 32-bit or a 64-bit quantity.
23302 	 * XOR the two together in a 64-bit result variable.
23303 	 * Convert the result to a 32-bit value by multiplying the high-order
23304 	 * 32-bits by the low-order 32-bits.
23305 	 */
23306 
23307 	hrt = gethrtime();
23308 	(void) drv_getparm(TIME, &wallclock);
23309 	result = (uint64_t)wallclock ^ (uint64_t)hrt;
23310 	mutex_enter(&tcp_random_lock);
23311 	tcp_random_state[0] = ((result >> 32) & 0xffffffff) *
23312 	    (result & 0xffffffff);
23313 
23314 	for (i = 1; i < DEG_3; i++)
23315 		tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1]
23316 		    + 12345;
23317 	tcp_random_fptr = &tcp_random_state[SEP_3];
23318 	tcp_random_rptr = &tcp_random_state[0];
23319 	mutex_exit(&tcp_random_lock);
23320 	for (i = 0; i < 10 * DEG_3; i++)
23321 		(void) tcp_random();
23322 }
23323 
23324 /*
23325  * tcp_random: Return a random number in the range [1 - (128K + 1)].
23326  * This range is selected to be approximately centered on TCP_ISS / 2,
23327  * and easy to compute. We get this value by generating a 32-bit random
23328  * number, selecting out the high-order 17 bits, and then adding one so
23329  * that we never return zero.
23330  */
23331 int
23332 tcp_random(void)
23333 {
23334 	int i;
23335 
23336 	mutex_enter(&tcp_random_lock);
23337 	*tcp_random_fptr += *tcp_random_rptr;
23338 
23339 	/*
23340 	 * The high-order bits are more random than the low-order bits,
23341 	 * so we select out the high-order 17 bits and add one so that
23342 	 * we never return zero.
23343 	 */
23344 	i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1;
23345 	if (++tcp_random_fptr >= tcp_random_end_ptr) {
23346 		tcp_random_fptr = tcp_random_state;
23347 		++tcp_random_rptr;
23348 	} else if (++tcp_random_rptr >= tcp_random_end_ptr)
23349 		tcp_random_rptr = tcp_random_state;
23350 
23351 	mutex_exit(&tcp_random_lock);
23352 	return (i);
23353 }
23354 
23355 static int
23356 tcp_conprim_opt_process(tcp_t *tcp, mblk_t *mp, int *do_disconnectp,
23357     int *t_errorp, int *sys_errorp)
23358 {
23359 	int error;
23360 	int is_absreq_failure;
23361 	t_scalar_t *opt_lenp;
23362 	t_scalar_t opt_offset;
23363 	int prim_type;
23364 	struct T_conn_req *tcreqp;
23365 	struct T_conn_res *tcresp;
23366 	cred_t *cr;
23367 
23368 	/*
23369 	 * All Solaris components should pass a db_credp
23370 	 * for this TPI message, hence we ASSERT.
23371 	 * But in case there is some other M_PROTO that looks
23372 	 * like a TPI message sent by some other kernel
23373 	 * component, we check and return an error.
23374 	 */
23375 	cr = msg_getcred(mp, NULL);
23376 	ASSERT(cr != NULL);
23377 	if (cr == NULL)
23378 		return (-1);
23379 
23380 	prim_type = ((union T_primitives *)mp->b_rptr)->type;
23381 	ASSERT(prim_type == T_CONN_REQ || prim_type == O_T_CONN_RES ||
23382 	    prim_type == T_CONN_RES);
23383 
23384 	switch (prim_type) {
23385 	case T_CONN_REQ:
23386 		tcreqp = (struct T_conn_req *)mp->b_rptr;
23387 		opt_offset = tcreqp->OPT_offset;
23388 		opt_lenp = (t_scalar_t *)&tcreqp->OPT_length;
23389 		break;
23390 	case O_T_CONN_RES:
23391 	case T_CONN_RES:
23392 		tcresp = (struct T_conn_res *)mp->b_rptr;
23393 		opt_offset = tcresp->OPT_offset;
23394 		opt_lenp = (t_scalar_t *)&tcresp->OPT_length;
23395 		break;
23396 	}
23397 
23398 	*t_errorp = 0;
23399 	*sys_errorp = 0;
23400 	*do_disconnectp = 0;
23401 
23402 	error = tpi_optcom_buf(tcp->tcp_wq, mp, opt_lenp,
23403 	    opt_offset, cr, &tcp_opt_obj,
23404 	    NULL, &is_absreq_failure);
23405 
23406 	switch (error) {
23407 	case  0:		/* no error */
23408 		ASSERT(is_absreq_failure == 0);
23409 		return (0);
23410 	case ENOPROTOOPT:
23411 		*t_errorp = TBADOPT;
23412 		break;
23413 	case EACCES:
23414 		*t_errorp = TACCES;
23415 		break;
23416 	default:
23417 		*t_errorp = TSYSERR; *sys_errorp = error;
23418 		break;
23419 	}
23420 	if (is_absreq_failure != 0) {
23421 		/*
23422 		 * The connection request should get the local ack
23423 		 * T_OK_ACK and then a T_DISCON_IND.
23424 		 */
23425 		*do_disconnectp = 1;
23426 	}
23427 	return (-1);
23428 }
23429 
23430 /*
23431  * Split this function out so that if the secret changes, I'm okay.
23432  *
23433  * Initialize the tcp_iss_cookie and tcp_iss_key.
23434  */
23435 
23436 #define	PASSWD_SIZE 16  /* MUST be multiple of 4 */
23437 
23438 static void
23439 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps)
23440 {
23441 	struct {
23442 		int32_t current_time;
23443 		uint32_t randnum;
23444 		uint16_t pad;
23445 		uint8_t ether[6];
23446 		uint8_t passwd[PASSWD_SIZE];
23447 	} tcp_iss_cookie;
23448 	time_t t;
23449 
23450 	/*
23451 	 * Start with the current absolute time.
23452 	 */
23453 	(void) drv_getparm(TIME, &t);
23454 	tcp_iss_cookie.current_time = t;
23455 
23456 	/*
23457 	 * XXX - Need a more random number per RFC 1750, not this crap.
23458 	 * OTOH, if what follows is pretty random, then I'm in better shape.
23459 	 */
23460 	tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random());
23461 	tcp_iss_cookie.pad = 0x365c;  /* Picked from HMAC pad values. */
23462 
23463 	/*
23464 	 * The cpu_type_info is pretty non-random.  Ugggh.  It does serve
23465 	 * as a good template.
23466 	 */
23467 	bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd,
23468 	    min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info)));
23469 
23470 	/*
23471 	 * The pass-phrase.  Normally this is supplied by user-called NDD.
23472 	 */
23473 	bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len));
23474 
23475 	/*
23476 	 * See 4010593 if this section becomes a problem again,
23477 	 * but the local ethernet address is useful here.
23478 	 */
23479 	(void) localetheraddr(NULL,
23480 	    (struct ether_addr *)&tcp_iss_cookie.ether);
23481 
23482 	/*
23483 	 * Hash 'em all together.  The MD5Final is called per-connection.
23484 	 */
23485 	mutex_enter(&tcps->tcps_iss_key_lock);
23486 	MD5Init(&tcps->tcps_iss_key);
23487 	MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie,
23488 	    sizeof (tcp_iss_cookie));
23489 	mutex_exit(&tcps->tcps_iss_key_lock);
23490 }
23491 
23492 /*
23493  * Set the RFC 1948 pass phrase
23494  */
23495 /* ARGSUSED */
23496 static int
23497 tcp_1948_phrase_set(queue_t *q, mblk_t *mp, char *value, caddr_t cp,
23498     cred_t *cr)
23499 {
23500 	tcp_stack_t	*tcps = Q_TO_TCP(q)->tcp_tcps;
23501 
23502 	/*
23503 	 * Basically, value contains a new pass phrase.  Pass it along!
23504 	 */
23505 	tcp_iss_key_init((uint8_t *)value, strlen(value), tcps);
23506 	return (0);
23507 }
23508 
23509 /* ARGSUSED */
23510 static int
23511 tcp_sack_info_constructor(void *buf, void *cdrarg, int kmflags)
23512 {
23513 	bzero(buf, sizeof (tcp_sack_info_t));
23514 	return (0);
23515 }
23516 
23517 /* ARGSUSED */
23518 static int
23519 tcp_iphc_constructor(void *buf, void *cdrarg, int kmflags)
23520 {
23521 	bzero(buf, TCP_MAX_COMBINED_HEADER_LENGTH);
23522 	return (0);
23523 }
23524 
23525 /*
23526  * Make sure we wait until the default queue is setup, yet allow
23527  * tcp_g_q_create() to open a TCP stream.
23528  * We need to allow tcp_g_q_create() do do an open
23529  * of tcp, hence we compare curhread.
23530  * All others have to wait until the tcps_g_q has been
23531  * setup.
23532  */
23533 void
23534 tcp_g_q_setup(tcp_stack_t *tcps)
23535 {
23536 	mutex_enter(&tcps->tcps_g_q_lock);
23537 	if (tcps->tcps_g_q != NULL) {
23538 		mutex_exit(&tcps->tcps_g_q_lock);
23539 		return;
23540 	}
23541 	if (tcps->tcps_g_q_creator == NULL) {
23542 		/* This thread will set it up */
23543 		tcps->tcps_g_q_creator = curthread;
23544 		mutex_exit(&tcps->tcps_g_q_lock);
23545 		tcp_g_q_create(tcps);
23546 		mutex_enter(&tcps->tcps_g_q_lock);
23547 		ASSERT(tcps->tcps_g_q_creator == curthread);
23548 		tcps->tcps_g_q_creator = NULL;
23549 		cv_signal(&tcps->tcps_g_q_cv);
23550 		ASSERT(tcps->tcps_g_q != NULL);
23551 		mutex_exit(&tcps->tcps_g_q_lock);
23552 		return;
23553 	}
23554 	/* Everybody but the creator has to wait */
23555 	if (tcps->tcps_g_q_creator != curthread) {
23556 		while (tcps->tcps_g_q == NULL)
23557 			cv_wait(&tcps->tcps_g_q_cv, &tcps->tcps_g_q_lock);
23558 	}
23559 	mutex_exit(&tcps->tcps_g_q_lock);
23560 }
23561 
23562 #define	IP	"ip"
23563 
23564 #define	TCP6DEV		"/devices/pseudo/tcp6@0:tcp6"
23565 
23566 /*
23567  * Create a default tcp queue here instead of in strplumb
23568  */
23569 void
23570 tcp_g_q_create(tcp_stack_t *tcps)
23571 {
23572 	int error;
23573 	ldi_handle_t	lh = NULL;
23574 	ldi_ident_t	li = NULL;
23575 	int		rval;
23576 	cred_t		*cr;
23577 	major_t IP_MAJ;
23578 
23579 #ifdef NS_DEBUG
23580 	(void) printf("tcp_g_q_create()\n");
23581 #endif
23582 
23583 	IP_MAJ = ddi_name_to_major(IP);
23584 
23585 	ASSERT(tcps->tcps_g_q_creator == curthread);
23586 
23587 	error = ldi_ident_from_major(IP_MAJ, &li);
23588 	if (error) {
23589 #ifdef DEBUG
23590 		printf("tcp_g_q_create: lyr ident get failed error %d\n",
23591 		    error);
23592 #endif
23593 		return;
23594 	}
23595 
23596 	cr = zone_get_kcred(netstackid_to_zoneid(
23597 	    tcps->tcps_netstack->netstack_stackid));
23598 	ASSERT(cr != NULL);
23599 	/*
23600 	 * We set the tcp default queue to IPv6 because IPv4 falls
23601 	 * back to IPv6 when it can't find a client, but
23602 	 * IPv6 does not fall back to IPv4.
23603 	 */
23604 	error = ldi_open_by_name(TCP6DEV, FREAD|FWRITE, cr, &lh, li);
23605 	if (error) {
23606 #ifdef DEBUG
23607 		printf("tcp_g_q_create: open of TCP6DEV failed error %d\n",
23608 		    error);
23609 #endif
23610 		goto out;
23611 	}
23612 
23613 	/*
23614 	 * This ioctl causes the tcp framework to cache a pointer to
23615 	 * this stream, so we don't want to close the stream after
23616 	 * this operation.
23617 	 * Use the kernel credentials that are for the zone we're in.
23618 	 */
23619 	error = ldi_ioctl(lh, TCP_IOC_DEFAULT_Q,
23620 	    (intptr_t)0, FKIOCTL, cr, &rval);
23621 	if (error) {
23622 #ifdef DEBUG
23623 		printf("tcp_g_q_create: ioctl TCP_IOC_DEFAULT_Q failed "
23624 		    "error %d\n", error);
23625 #endif
23626 		goto out;
23627 	}
23628 	tcps->tcps_g_q_lh = lh;	/* For tcp_g_q_close */
23629 	lh = NULL;
23630 out:
23631 	/* Close layered handles */
23632 	if (li)
23633 		ldi_ident_release(li);
23634 	/* Keep cred around until _inactive needs it */
23635 	tcps->tcps_g_q_cr = cr;
23636 }
23637 
23638 /*
23639  * We keep tcp_g_q set until all other tcp_t's in the zone
23640  * has gone away, and then when tcp_g_q_inactive() is called
23641  * we clear it.
23642  */
23643 void
23644 tcp_g_q_destroy(tcp_stack_t *tcps)
23645 {
23646 #ifdef NS_DEBUG
23647 	(void) printf("tcp_g_q_destroy()for stack %d\n",
23648 	    tcps->tcps_netstack->netstack_stackid);
23649 #endif
23650 
23651 	if (tcps->tcps_g_q == NULL) {
23652 		return;	/* Nothing to cleanup */
23653 	}
23654 	/*
23655 	 * Drop reference corresponding to the default queue.
23656 	 * This reference was added from tcp_open when the default queue
23657 	 * was created, hence we compensate for this extra drop in
23658 	 * tcp_g_q_close. If the refcnt drops to zero here it means
23659 	 * the default queue was the last one to be open, in which
23660 	 * case, then tcp_g_q_inactive will be
23661 	 * called as a result of the refrele.
23662 	 */
23663 	TCPS_REFRELE(tcps);
23664 }
23665 
23666 /*
23667  * Called when last tcp_t drops reference count using TCPS_REFRELE.
23668  * Run by tcp_q_q_inactive using a taskq.
23669  */
23670 static void
23671 tcp_g_q_close(void *arg)
23672 {
23673 	tcp_stack_t *tcps = arg;
23674 	int error;
23675 	ldi_handle_t	lh = NULL;
23676 	ldi_ident_t	li = NULL;
23677 	cred_t		*cr;
23678 	major_t IP_MAJ;
23679 
23680 	IP_MAJ = ddi_name_to_major(IP);
23681 
23682 #ifdef NS_DEBUG
23683 	(void) printf("tcp_g_q_inactive() for stack %d refcnt %d\n",
23684 	    tcps->tcps_netstack->netstack_stackid,
23685 	    tcps->tcps_netstack->netstack_refcnt);
23686 #endif
23687 	lh = tcps->tcps_g_q_lh;
23688 	if (lh == NULL)
23689 		return;	/* Nothing to cleanup */
23690 
23691 	ASSERT(tcps->tcps_refcnt == 1);
23692 	ASSERT(tcps->tcps_g_q != NULL);
23693 
23694 	error = ldi_ident_from_major(IP_MAJ, &li);
23695 	if (error) {
23696 #ifdef DEBUG
23697 		printf("tcp_g_q_inactive: lyr ident get failed error %d\n",
23698 		    error);
23699 #endif
23700 		return;
23701 	}
23702 
23703 	cr = tcps->tcps_g_q_cr;
23704 	tcps->tcps_g_q_cr = NULL;
23705 	ASSERT(cr != NULL);
23706 
23707 	/*
23708 	 * Make sure we can break the recursion when tcp_close decrements
23709 	 * the reference count causing g_q_inactive to be called again.
23710 	 */
23711 	tcps->tcps_g_q_lh = NULL;
23712 
23713 	/* close the default queue */
23714 	(void) ldi_close(lh, FREAD|FWRITE, cr);
23715 	/*
23716 	 * At this point in time tcps and the rest of netstack_t might
23717 	 * have been deleted.
23718 	 */
23719 	tcps = NULL;
23720 
23721 	/* Close layered handles */
23722 	ldi_ident_release(li);
23723 	crfree(cr);
23724 }
23725 
23726 /*
23727  * Called when last tcp_t drops reference count using TCPS_REFRELE.
23728  *
23729  * Have to ensure that the ldi routines are not used by an
23730  * interrupt thread by using a taskq.
23731  */
23732 void
23733 tcp_g_q_inactive(tcp_stack_t *tcps)
23734 {
23735 	if (tcps->tcps_g_q_lh == NULL)
23736 		return;	/* Nothing to cleanup */
23737 
23738 	ASSERT(tcps->tcps_refcnt == 0);
23739 	TCPS_REFHOLD(tcps); /* Compensate for what g_q_destroy did */
23740 
23741 	if (servicing_interrupt()) {
23742 		(void) taskq_dispatch(tcp_taskq, tcp_g_q_close,
23743 		    (void *) tcps, TQ_SLEEP);
23744 	} else {
23745 		tcp_g_q_close(tcps);
23746 	}
23747 }
23748 
23749 /*
23750  * Called by IP when IP is loaded into the kernel
23751  */
23752 void
23753 tcp_ddi_g_init(void)
23754 {
23755 	tcp_timercache = kmem_cache_create("tcp_timercache",
23756 	    sizeof (tcp_timer_t) + sizeof (mblk_t), 0,
23757 	    NULL, NULL, NULL, NULL, NULL, 0);
23758 
23759 	tcp_sack_info_cache = kmem_cache_create("tcp_sack_info_cache",
23760 	    sizeof (tcp_sack_info_t), 0,
23761 	    tcp_sack_info_constructor, NULL, NULL, NULL, NULL, 0);
23762 
23763 	tcp_iphc_cache = kmem_cache_create("tcp_iphc_cache",
23764 	    TCP_MAX_COMBINED_HEADER_LENGTH, 0,
23765 	    tcp_iphc_constructor, NULL, NULL, NULL, NULL, 0);
23766 
23767 	mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL);
23768 
23769 	/* Initialize the random number generator */
23770 	tcp_random_init();
23771 
23772 	/* A single callback independently of how many netstacks we have */
23773 	ip_squeue_init(tcp_squeue_add);
23774 
23775 	tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics);
23776 
23777 	tcp_taskq = taskq_create("tcp_taskq", 1, minclsyspri, 1, 1,
23778 	    TASKQ_PREPOPULATE);
23779 
23780 	tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput);
23781 
23782 	/*
23783 	 * We want to be informed each time a stack is created or
23784 	 * destroyed in the kernel, so we can maintain the
23785 	 * set of tcp_stack_t's.
23786 	 */
23787 	netstack_register(NS_TCP, tcp_stack_init, tcp_stack_shutdown,
23788 	    tcp_stack_fini);
23789 }
23790 
23791 
23792 #define	INET_NAME	"ip"
23793 
23794 /*
23795  * Initialize the TCP stack instance.
23796  */
23797 static void *
23798 tcp_stack_init(netstackid_t stackid, netstack_t *ns)
23799 {
23800 	tcp_stack_t	*tcps;
23801 	tcpparam_t	*pa;
23802 	int		i;
23803 	int		error = 0;
23804 	major_t		major;
23805 
23806 	tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP);
23807 	tcps->tcps_netstack = ns;
23808 
23809 	/* Initialize locks */
23810 	mutex_init(&tcps->tcps_g_q_lock, NULL, MUTEX_DEFAULT, NULL);
23811 	cv_init(&tcps->tcps_g_q_cv, NULL, CV_DEFAULT, NULL);
23812 	mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL);
23813 	mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL);
23814 
23815 	tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS;
23816 	tcps->tcps_g_epriv_ports[0] = 2049;
23817 	tcps->tcps_g_epriv_ports[1] = 4045;
23818 	tcps->tcps_min_anonpriv_port = 512;
23819 
23820 	tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) *
23821 	    TCP_BIND_FANOUT_SIZE, KM_SLEEP);
23822 	tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) *
23823 	    TCP_FANOUT_SIZE, KM_SLEEP);
23824 
23825 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
23826 		mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL,
23827 		    MUTEX_DEFAULT, NULL);
23828 	}
23829 
23830 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
23831 		mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL,
23832 		    MUTEX_DEFAULT, NULL);
23833 	}
23834 
23835 	/* TCP's IPsec code calls the packet dropper. */
23836 	ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement");
23837 
23838 	pa = (tcpparam_t *)kmem_alloc(sizeof (lcl_tcp_param_arr), KM_SLEEP);
23839 	tcps->tcps_params = pa;
23840 	bcopy(lcl_tcp_param_arr, tcps->tcps_params, sizeof (lcl_tcp_param_arr));
23841 
23842 	(void) tcp_param_register(&tcps->tcps_g_nd, tcps->tcps_params,
23843 	    A_CNT(lcl_tcp_param_arr), tcps);
23844 
23845 	/*
23846 	 * Note: To really walk the device tree you need the devinfo
23847 	 * pointer to your device which is only available after probe/attach.
23848 	 * The following is safe only because it uses ddi_root_node()
23849 	 */
23850 	tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr,
23851 	    tcp_opt_obj.odb_opt_arr_cnt);
23852 
23853 	/*
23854 	 * Initialize RFC 1948 secret values.  This will probably be reset once
23855 	 * by the boot scripts.
23856 	 *
23857 	 * Use NULL name, as the name is caught by the new lockstats.
23858 	 *
23859 	 * Initialize with some random, non-guessable string, like the global
23860 	 * T_INFO_ACK.
23861 	 */
23862 
23863 	tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack,
23864 	    sizeof (tcp_g_t_info_ack), tcps);
23865 
23866 	tcps->tcps_kstat = tcp_kstat2_init(stackid, &tcps->tcps_statistics);
23867 	tcps->tcps_mibkp = tcp_kstat_init(stackid, tcps);
23868 
23869 	major = mod_name_to_major(INET_NAME);
23870 	error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident);
23871 	ASSERT(error == 0);
23872 	return (tcps);
23873 }
23874 
23875 /*
23876  * Called when the IP module is about to be unloaded.
23877  */
23878 void
23879 tcp_ddi_g_destroy(void)
23880 {
23881 	tcp_g_kstat_fini(tcp_g_kstat);
23882 	tcp_g_kstat = NULL;
23883 	bzero(&tcp_g_statistics, sizeof (tcp_g_statistics));
23884 
23885 	mutex_destroy(&tcp_random_lock);
23886 
23887 	kmem_cache_destroy(tcp_timercache);
23888 	kmem_cache_destroy(tcp_sack_info_cache);
23889 	kmem_cache_destroy(tcp_iphc_cache);
23890 
23891 	netstack_unregister(NS_TCP);
23892 	taskq_destroy(tcp_taskq);
23893 }
23894 
23895 /*
23896  * Shut down the TCP stack instance.
23897  */
23898 /* ARGSUSED */
23899 static void
23900 tcp_stack_shutdown(netstackid_t stackid, void *arg)
23901 {
23902 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
23903 
23904 	tcp_g_q_destroy(tcps);
23905 }
23906 
23907 /*
23908  * Free the TCP stack instance.
23909  */
23910 static void
23911 tcp_stack_fini(netstackid_t stackid, void *arg)
23912 {
23913 	tcp_stack_t *tcps = (tcp_stack_t *)arg;
23914 	int i;
23915 
23916 	nd_free(&tcps->tcps_g_nd);
23917 	kmem_free(tcps->tcps_params, sizeof (lcl_tcp_param_arr));
23918 	tcps->tcps_params = NULL;
23919 	kmem_free(tcps->tcps_wroff_xtra_param, sizeof (tcpparam_t));
23920 	tcps->tcps_wroff_xtra_param = NULL;
23921 	kmem_free(tcps->tcps_mdt_head_param, sizeof (tcpparam_t));
23922 	tcps->tcps_mdt_head_param = NULL;
23923 	kmem_free(tcps->tcps_mdt_tail_param, sizeof (tcpparam_t));
23924 	tcps->tcps_mdt_tail_param = NULL;
23925 	kmem_free(tcps->tcps_mdt_max_pbufs_param, sizeof (tcpparam_t));
23926 	tcps->tcps_mdt_max_pbufs_param = NULL;
23927 
23928 	for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) {
23929 		ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL);
23930 		mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock);
23931 	}
23932 
23933 	for (i = 0; i < TCP_FANOUT_SIZE; i++) {
23934 		ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL);
23935 		mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock);
23936 	}
23937 
23938 	kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE);
23939 	tcps->tcps_bind_fanout = NULL;
23940 
23941 	kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * TCP_FANOUT_SIZE);
23942 	tcps->tcps_acceptor_fanout = NULL;
23943 
23944 	mutex_destroy(&tcps->tcps_iss_key_lock);
23945 	mutex_destroy(&tcps->tcps_g_q_lock);
23946 	cv_destroy(&tcps->tcps_g_q_cv);
23947 	mutex_destroy(&tcps->tcps_epriv_port_lock);
23948 
23949 	ip_drop_unregister(&tcps->tcps_dropper);
23950 
23951 	tcp_kstat2_fini(stackid, tcps->tcps_kstat);
23952 	tcps->tcps_kstat = NULL;
23953 	bzero(&tcps->tcps_statistics, sizeof (tcps->tcps_statistics));
23954 
23955 	tcp_kstat_fini(stackid, tcps->tcps_mibkp);
23956 	tcps->tcps_mibkp = NULL;
23957 
23958 	ldi_ident_release(tcps->tcps_ldi_ident);
23959 	kmem_free(tcps, sizeof (*tcps));
23960 }
23961 
23962 /*
23963  * Generate ISS, taking into account NDD changes may happen halfway through.
23964  * (If the iss is not zero, set it.)
23965  */
23966 
23967 static void
23968 tcp_iss_init(tcp_t *tcp)
23969 {
23970 	MD5_CTX context;
23971 	struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg;
23972 	uint32_t answer[4];
23973 	tcp_stack_t	*tcps = tcp->tcp_tcps;
23974 
23975 	tcps->tcps_iss_incr_extra += (ISS_INCR >> 1);
23976 	tcp->tcp_iss = tcps->tcps_iss_incr_extra;
23977 	switch (tcps->tcps_strong_iss) {
23978 	case 2:
23979 		mutex_enter(&tcps->tcps_iss_key_lock);
23980 		context = tcps->tcps_iss_key;
23981 		mutex_exit(&tcps->tcps_iss_key_lock);
23982 		arg.ports = tcp->tcp_ports;
23983 		if (tcp->tcp_ipversion == IPV4_VERSION) {
23984 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_src,
23985 			    &arg.src);
23986 			IN6_IPADDR_TO_V4MAPPED(tcp->tcp_ipha->ipha_dst,
23987 			    &arg.dst);
23988 		} else {
23989 			arg.src = tcp->tcp_ip6h->ip6_src;
23990 			arg.dst = tcp->tcp_ip6h->ip6_dst;
23991 		}
23992 		MD5Update(&context, (uchar_t *)&arg, sizeof (arg));
23993 		MD5Final((uchar_t *)answer, &context);
23994 		tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3];
23995 		/*
23996 		 * Now that we've hashed into a unique per-connection sequence
23997 		 * space, add a random increment per strong_iss == 1.  So I
23998 		 * guess we'll have to...
23999 		 */
24000 		/* FALLTHRU */
24001 	case 1:
24002 		tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random();
24003 		break;
24004 	default:
24005 		tcp->tcp_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24006 		break;
24007 	}
24008 	tcp->tcp_valid_bits = TCP_ISS_VALID;
24009 	tcp->tcp_fss = tcp->tcp_iss - 1;
24010 	tcp->tcp_suna = tcp->tcp_iss;
24011 	tcp->tcp_snxt = tcp->tcp_iss + 1;
24012 	tcp->tcp_rexmit_nxt = tcp->tcp_snxt;
24013 	tcp->tcp_csuna = tcp->tcp_snxt;
24014 }
24015 
24016 /*
24017  * Exported routine for extracting active tcp connection status.
24018  *
24019  * This is used by the Solaris Cluster Networking software to
24020  * gather a list of connections that need to be forwarded to
24021  * specific nodes in the cluster when configuration changes occur.
24022  *
24023  * The callback is invoked for each tcp_t structure from all netstacks,
24024  * if 'stack_id' is less than 0. Otherwise, only for tcp_t structures
24025  * from the netstack with the specified stack_id. Returning
24026  * non-zero from the callback routine terminates the search.
24027  */
24028 int
24029 cl_tcp_walk_list(netstackid_t stack_id,
24030     int (*cl_callback)(cl_tcp_info_t *, void *), void *arg)
24031 {
24032 	netstack_handle_t nh;
24033 	netstack_t *ns;
24034 	int ret = 0;
24035 
24036 	if (stack_id >= 0) {
24037 		if ((ns = netstack_find_by_stackid(stack_id)) == NULL)
24038 			return (EINVAL);
24039 
24040 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
24041 		    ns->netstack_tcp);
24042 		netstack_rele(ns);
24043 		return (ret);
24044 	}
24045 
24046 	netstack_next_init(&nh);
24047 	while ((ns = netstack_next(&nh)) != NULL) {
24048 		ret = cl_tcp_walk_list_stack(cl_callback, arg,
24049 		    ns->netstack_tcp);
24050 		netstack_rele(ns);
24051 	}
24052 	netstack_next_fini(&nh);
24053 	return (ret);
24054 }
24055 
24056 static int
24057 cl_tcp_walk_list_stack(int (*callback)(cl_tcp_info_t *, void *), void *arg,
24058     tcp_stack_t *tcps)
24059 {
24060 	tcp_t *tcp;
24061 	cl_tcp_info_t	cl_tcpi;
24062 	connf_t	*connfp;
24063 	conn_t	*connp;
24064 	int	i;
24065 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
24066 
24067 	ASSERT(callback != NULL);
24068 
24069 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
24070 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
24071 		connp = NULL;
24072 
24073 		while ((connp =
24074 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
24075 
24076 			tcp = connp->conn_tcp;
24077 			cl_tcpi.cl_tcpi_version = CL_TCPI_V1;
24078 			cl_tcpi.cl_tcpi_ipversion = tcp->tcp_ipversion;
24079 			cl_tcpi.cl_tcpi_state = tcp->tcp_state;
24080 			cl_tcpi.cl_tcpi_lport = tcp->tcp_lport;
24081 			cl_tcpi.cl_tcpi_fport = tcp->tcp_fport;
24082 			/*
24083 			 * The macros tcp_laddr and tcp_faddr give the IPv4
24084 			 * addresses. They are copied implicitly below as
24085 			 * mapped addresses.
24086 			 */
24087 			cl_tcpi.cl_tcpi_laddr_v6 = tcp->tcp_ip_src_v6;
24088 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24089 				cl_tcpi.cl_tcpi_faddr =
24090 				    tcp->tcp_ipha->ipha_dst;
24091 			} else {
24092 				cl_tcpi.cl_tcpi_faddr_v6 =
24093 				    tcp->tcp_ip6h->ip6_dst;
24094 			}
24095 
24096 			/*
24097 			 * If the callback returns non-zero
24098 			 * we terminate the traversal.
24099 			 */
24100 			if ((*callback)(&cl_tcpi, arg) != 0) {
24101 				CONN_DEC_REF(tcp->tcp_connp);
24102 				return (1);
24103 			}
24104 		}
24105 	}
24106 
24107 	return (0);
24108 }
24109 
24110 /*
24111  * Macros used for accessing the different types of sockaddr
24112  * structures inside a tcp_ioc_abort_conn_t.
24113  */
24114 #define	TCP_AC_V4LADDR(acp) ((sin_t *)&(acp)->ac_local)
24115 #define	TCP_AC_V4RADDR(acp) ((sin_t *)&(acp)->ac_remote)
24116 #define	TCP_AC_V4LOCAL(acp) (TCP_AC_V4LADDR(acp)->sin_addr.s_addr)
24117 #define	TCP_AC_V4REMOTE(acp) (TCP_AC_V4RADDR(acp)->sin_addr.s_addr)
24118 #define	TCP_AC_V4LPORT(acp) (TCP_AC_V4LADDR(acp)->sin_port)
24119 #define	TCP_AC_V4RPORT(acp) (TCP_AC_V4RADDR(acp)->sin_port)
24120 #define	TCP_AC_V6LADDR(acp) ((sin6_t *)&(acp)->ac_local)
24121 #define	TCP_AC_V6RADDR(acp) ((sin6_t *)&(acp)->ac_remote)
24122 #define	TCP_AC_V6LOCAL(acp) (TCP_AC_V6LADDR(acp)->sin6_addr)
24123 #define	TCP_AC_V6REMOTE(acp) (TCP_AC_V6RADDR(acp)->sin6_addr)
24124 #define	TCP_AC_V6LPORT(acp) (TCP_AC_V6LADDR(acp)->sin6_port)
24125 #define	TCP_AC_V6RPORT(acp) (TCP_AC_V6RADDR(acp)->sin6_port)
24126 
24127 /*
24128  * Return the correct error code to mimic the behavior
24129  * of a connection reset.
24130  */
24131 #define	TCP_AC_GET_ERRCODE(state, err) {	\
24132 		switch ((state)) {		\
24133 		case TCPS_SYN_SENT:		\
24134 		case TCPS_SYN_RCVD:		\
24135 			(err) = ECONNREFUSED;	\
24136 			break;			\
24137 		case TCPS_ESTABLISHED:		\
24138 		case TCPS_FIN_WAIT_1:		\
24139 		case TCPS_FIN_WAIT_2:		\
24140 		case TCPS_CLOSE_WAIT:		\
24141 			(err) = ECONNRESET;	\
24142 			break;			\
24143 		case TCPS_CLOSING:		\
24144 		case TCPS_LAST_ACK:		\
24145 		case TCPS_TIME_WAIT:		\
24146 			(err) = 0;		\
24147 			break;			\
24148 		default:			\
24149 			(err) = ENXIO;		\
24150 		}				\
24151 	}
24152 
24153 /*
24154  * Check if a tcp structure matches the info in acp.
24155  */
24156 #define	TCP_AC_ADDR_MATCH(acp, tcp)					\
24157 	(((acp)->ac_local.ss_family == AF_INET) ?		\
24158 	((TCP_AC_V4LOCAL((acp)) == INADDR_ANY ||		\
24159 	TCP_AC_V4LOCAL((acp)) == (tcp)->tcp_ip_src) &&	\
24160 	(TCP_AC_V4REMOTE((acp)) == INADDR_ANY ||		\
24161 	TCP_AC_V4REMOTE((acp)) == (tcp)->tcp_remote) &&	\
24162 	(TCP_AC_V4LPORT((acp)) == 0 ||				\
24163 	TCP_AC_V4LPORT((acp)) == (tcp)->tcp_lport) &&		\
24164 	(TCP_AC_V4RPORT((acp)) == 0 ||				\
24165 	TCP_AC_V4RPORT((acp)) == (tcp)->tcp_fport) &&		\
24166 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24167 	(acp)->ac_end >= (tcp)->tcp_state) :		\
24168 	((IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL((acp))) ||	\
24169 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6LOCAL((acp)),		\
24170 	&(tcp)->tcp_ip_src_v6)) &&				\
24171 	(IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE((acp))) ||	\
24172 	IN6_ARE_ADDR_EQUAL(&TCP_AC_V6REMOTE((acp)),		\
24173 	&(tcp)->tcp_remote_v6)) &&				\
24174 	(TCP_AC_V6LPORT((acp)) == 0 ||				\
24175 	TCP_AC_V6LPORT((acp)) == (tcp)->tcp_lport) &&		\
24176 	(TCP_AC_V6RPORT((acp)) == 0 ||				\
24177 	TCP_AC_V6RPORT((acp)) == (tcp)->tcp_fport) &&		\
24178 	(acp)->ac_start <= (tcp)->tcp_state &&	\
24179 	(acp)->ac_end >= (tcp)->tcp_state))
24180 
24181 #define	TCP_AC_MATCH(acp, tcp)					\
24182 	(((acp)->ac_zoneid == ALL_ZONES ||			\
24183 	(acp)->ac_zoneid == tcp->tcp_connp->conn_zoneid) ?	\
24184 	TCP_AC_ADDR_MATCH(acp, tcp) : 0)
24185 
24186 /*
24187  * Build a message containing a tcp_ioc_abort_conn_t structure
24188  * which is filled in with information from acp and tp.
24189  */
24190 static mblk_t *
24191 tcp_ioctl_abort_build_msg(tcp_ioc_abort_conn_t *acp, tcp_t *tp)
24192 {
24193 	mblk_t *mp;
24194 	tcp_ioc_abort_conn_t *tacp;
24195 
24196 	mp = allocb(sizeof (uint32_t) + sizeof (*acp), BPRI_LO);
24197 	if (mp == NULL)
24198 		return (NULL);
24199 
24200 	mp->b_datap->db_type = M_CTL;
24201 
24202 	*((uint32_t *)mp->b_rptr) = TCP_IOC_ABORT_CONN;
24203 	tacp = (tcp_ioc_abort_conn_t *)((uchar_t *)mp->b_rptr +
24204 	    sizeof (uint32_t));
24205 
24206 	tacp->ac_start = acp->ac_start;
24207 	tacp->ac_end = acp->ac_end;
24208 	tacp->ac_zoneid = acp->ac_zoneid;
24209 
24210 	if (acp->ac_local.ss_family == AF_INET) {
24211 		tacp->ac_local.ss_family = AF_INET;
24212 		tacp->ac_remote.ss_family = AF_INET;
24213 		TCP_AC_V4LOCAL(tacp) = tp->tcp_ip_src;
24214 		TCP_AC_V4REMOTE(tacp) = tp->tcp_remote;
24215 		TCP_AC_V4LPORT(tacp) = tp->tcp_lport;
24216 		TCP_AC_V4RPORT(tacp) = tp->tcp_fport;
24217 	} else {
24218 		tacp->ac_local.ss_family = AF_INET6;
24219 		tacp->ac_remote.ss_family = AF_INET6;
24220 		TCP_AC_V6LOCAL(tacp) = tp->tcp_ip_src_v6;
24221 		TCP_AC_V6REMOTE(tacp) = tp->tcp_remote_v6;
24222 		TCP_AC_V6LPORT(tacp) = tp->tcp_lport;
24223 		TCP_AC_V6RPORT(tacp) = tp->tcp_fport;
24224 	}
24225 	mp->b_wptr = (uchar_t *)mp->b_rptr + sizeof (uint32_t) + sizeof (*acp);
24226 	return (mp);
24227 }
24228 
24229 /*
24230  * Print a tcp_ioc_abort_conn_t structure.
24231  */
24232 static void
24233 tcp_ioctl_abort_dump(tcp_ioc_abort_conn_t *acp)
24234 {
24235 	char lbuf[128];
24236 	char rbuf[128];
24237 	sa_family_t af;
24238 	in_port_t lport, rport;
24239 	ushort_t logflags;
24240 
24241 	af = acp->ac_local.ss_family;
24242 
24243 	if (af == AF_INET) {
24244 		(void) inet_ntop(af, (const void *)&TCP_AC_V4LOCAL(acp),
24245 		    lbuf, 128);
24246 		(void) inet_ntop(af, (const void *)&TCP_AC_V4REMOTE(acp),
24247 		    rbuf, 128);
24248 		lport = ntohs(TCP_AC_V4LPORT(acp));
24249 		rport = ntohs(TCP_AC_V4RPORT(acp));
24250 	} else {
24251 		(void) inet_ntop(af, (const void *)&TCP_AC_V6LOCAL(acp),
24252 		    lbuf, 128);
24253 		(void) inet_ntop(af, (const void *)&TCP_AC_V6REMOTE(acp),
24254 		    rbuf, 128);
24255 		lport = ntohs(TCP_AC_V6LPORT(acp));
24256 		rport = ntohs(TCP_AC_V6RPORT(acp));
24257 	}
24258 
24259 	logflags = SL_TRACE | SL_NOTE;
24260 	/*
24261 	 * Don't print this message to the console if the operation was done
24262 	 * to a non-global zone.
24263 	 */
24264 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24265 		logflags |= SL_CONSOLE;
24266 	(void) strlog(TCP_MOD_ID, 0, 1, logflags,
24267 	    "TCP_IOC_ABORT_CONN: local = %s:%d, remote = %s:%d, "
24268 	    "start = %d, end = %d\n", lbuf, lport, rbuf, rport,
24269 	    acp->ac_start, acp->ac_end);
24270 }
24271 
24272 /*
24273  * Called inside tcp_rput when a message built using
24274  * tcp_ioctl_abort_build_msg is put into a queue.
24275  * Note that when we get here there is no wildcard in acp any more.
24276  */
24277 static void
24278 tcp_ioctl_abort_handler(tcp_t *tcp, mblk_t *mp)
24279 {
24280 	tcp_ioc_abort_conn_t *acp;
24281 
24282 	acp = (tcp_ioc_abort_conn_t *)(mp->b_rptr + sizeof (uint32_t));
24283 	if (tcp->tcp_state <= acp->ac_end) {
24284 		/*
24285 		 * If we get here, we are already on the correct
24286 		 * squeue. This ioctl follows the following path
24287 		 * tcp_wput -> tcp_wput_ioctl -> tcp_ioctl_abort_conn
24288 		 * ->tcp_ioctl_abort->squeue_enter (if on a
24289 		 * different squeue)
24290 		 */
24291 		int errcode;
24292 
24293 		TCP_AC_GET_ERRCODE(tcp->tcp_state, errcode);
24294 		(void) tcp_clean_death(tcp, errcode, 26);
24295 	}
24296 	freemsg(mp);
24297 }
24298 
24299 /*
24300  * Abort all matching connections on a hash chain.
24301  */
24302 static int
24303 tcp_ioctl_abort_bucket(tcp_ioc_abort_conn_t *acp, int index, int *count,
24304     boolean_t exact, tcp_stack_t *tcps)
24305 {
24306 	int nmatch, err = 0;
24307 	tcp_t *tcp;
24308 	MBLKP mp, last, listhead = NULL;
24309 	conn_t	*tconnp;
24310 	connf_t	*connfp;
24311 	ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
24312 
24313 	connfp = &ipst->ips_ipcl_conn_fanout[index];
24314 
24315 startover:
24316 	nmatch = 0;
24317 
24318 	mutex_enter(&connfp->connf_lock);
24319 	for (tconnp = connfp->connf_head; tconnp != NULL;
24320 	    tconnp = tconnp->conn_next) {
24321 		tcp = tconnp->conn_tcp;
24322 		if (TCP_AC_MATCH(acp, tcp)) {
24323 			CONN_INC_REF(tcp->tcp_connp);
24324 			mp = tcp_ioctl_abort_build_msg(acp, tcp);
24325 			if (mp == NULL) {
24326 				err = ENOMEM;
24327 				CONN_DEC_REF(tcp->tcp_connp);
24328 				break;
24329 			}
24330 			mp->b_prev = (mblk_t *)tcp;
24331 
24332 			if (listhead == NULL) {
24333 				listhead = mp;
24334 				last = mp;
24335 			} else {
24336 				last->b_next = mp;
24337 				last = mp;
24338 			}
24339 			nmatch++;
24340 			if (exact)
24341 				break;
24342 		}
24343 
24344 		/* Avoid holding lock for too long. */
24345 		if (nmatch >= 500)
24346 			break;
24347 	}
24348 	mutex_exit(&connfp->connf_lock);
24349 
24350 	/* Pass mp into the correct tcp */
24351 	while ((mp = listhead) != NULL) {
24352 		listhead = listhead->b_next;
24353 		tcp = (tcp_t *)mp->b_prev;
24354 		mp->b_next = mp->b_prev = NULL;
24355 		SQUEUE_ENTER_ONE(tcp->tcp_connp->conn_sqp, mp, tcp_input,
24356 		    tcp->tcp_connp, SQ_FILL, SQTAG_TCP_ABORT_BUCKET);
24357 	}
24358 
24359 	*count += nmatch;
24360 	if (nmatch >= 500 && err == 0)
24361 		goto startover;
24362 	return (err);
24363 }
24364 
24365 /*
24366  * Abort all connections that matches the attributes specified in acp.
24367  */
24368 static int
24369 tcp_ioctl_abort(tcp_ioc_abort_conn_t *acp, tcp_stack_t *tcps)
24370 {
24371 	sa_family_t af;
24372 	uint32_t  ports;
24373 	uint16_t *pports;
24374 	int err = 0, count = 0;
24375 	boolean_t exact = B_FALSE; /* set when there is no wildcard */
24376 	int index = -1;
24377 	ushort_t logflags;
24378 	ip_stack_t	*ipst = tcps->tcps_netstack->netstack_ip;
24379 
24380 	af = acp->ac_local.ss_family;
24381 
24382 	if (af == AF_INET) {
24383 		if (TCP_AC_V4REMOTE(acp) != INADDR_ANY &&
24384 		    TCP_AC_V4LPORT(acp) != 0 && TCP_AC_V4RPORT(acp) != 0) {
24385 			pports = (uint16_t *)&ports;
24386 			pports[1] = TCP_AC_V4LPORT(acp);
24387 			pports[0] = TCP_AC_V4RPORT(acp);
24388 			exact = (TCP_AC_V4LOCAL(acp) != INADDR_ANY);
24389 		}
24390 	} else {
24391 		if (!IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6REMOTE(acp)) &&
24392 		    TCP_AC_V6LPORT(acp) != 0 && TCP_AC_V6RPORT(acp) != 0) {
24393 			pports = (uint16_t *)&ports;
24394 			pports[1] = TCP_AC_V6LPORT(acp);
24395 			pports[0] = TCP_AC_V6RPORT(acp);
24396 			exact = !IN6_IS_ADDR_UNSPECIFIED(&TCP_AC_V6LOCAL(acp));
24397 		}
24398 	}
24399 
24400 	/*
24401 	 * For cases where remote addr, local port, and remote port are non-
24402 	 * wildcards, tcp_ioctl_abort_bucket will only be called once.
24403 	 */
24404 	if (index != -1) {
24405 		err = tcp_ioctl_abort_bucket(acp, index,
24406 		    &count, exact, tcps);
24407 	} else {
24408 		/*
24409 		 * loop through all entries for wildcard case
24410 		 */
24411 		for (index = 0;
24412 		    index < ipst->ips_ipcl_conn_fanout_size;
24413 		    index++) {
24414 			err = tcp_ioctl_abort_bucket(acp, index,
24415 			    &count, exact, tcps);
24416 			if (err != 0)
24417 				break;
24418 		}
24419 	}
24420 
24421 	logflags = SL_TRACE | SL_NOTE;
24422 	/*
24423 	 * Don't print this message to the console if the operation was done
24424 	 * to a non-global zone.
24425 	 */
24426 	if (acp->ac_zoneid == GLOBAL_ZONEID || acp->ac_zoneid == ALL_ZONES)
24427 		logflags |= SL_CONSOLE;
24428 	(void) strlog(TCP_MOD_ID, 0, 1, logflags, "TCP_IOC_ABORT_CONN: "
24429 	    "aborted %d connection%c\n", count, ((count > 1) ? 's' : ' '));
24430 	if (err == 0 && count == 0)
24431 		err = ENOENT;
24432 	return (err);
24433 }
24434 
24435 /*
24436  * Process the TCP_IOC_ABORT_CONN ioctl request.
24437  */
24438 static void
24439 tcp_ioctl_abort_conn(queue_t *q, mblk_t *mp)
24440 {
24441 	int	err;
24442 	IOCP    iocp;
24443 	MBLKP   mp1;
24444 	sa_family_t laf, raf;
24445 	tcp_ioc_abort_conn_t *acp;
24446 	zone_t		*zptr;
24447 	conn_t		*connp = Q_TO_CONN(q);
24448 	zoneid_t	zoneid = connp->conn_zoneid;
24449 	tcp_t		*tcp = connp->conn_tcp;
24450 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24451 
24452 	iocp = (IOCP)mp->b_rptr;
24453 
24454 	if ((mp1 = mp->b_cont) == NULL ||
24455 	    iocp->ioc_count != sizeof (tcp_ioc_abort_conn_t)) {
24456 		err = EINVAL;
24457 		goto out;
24458 	}
24459 
24460 	/* check permissions */
24461 	if (secpolicy_ip_config(iocp->ioc_cr, B_FALSE) != 0) {
24462 		err = EPERM;
24463 		goto out;
24464 	}
24465 
24466 	if (mp1->b_cont != NULL) {
24467 		freemsg(mp1->b_cont);
24468 		mp1->b_cont = NULL;
24469 	}
24470 
24471 	acp = (tcp_ioc_abort_conn_t *)mp1->b_rptr;
24472 	laf = acp->ac_local.ss_family;
24473 	raf = acp->ac_remote.ss_family;
24474 
24475 	/* check that a zone with the supplied zoneid exists */
24476 	if (acp->ac_zoneid != GLOBAL_ZONEID && acp->ac_zoneid != ALL_ZONES) {
24477 		zptr = zone_find_by_id(zoneid);
24478 		if (zptr != NULL) {
24479 			zone_rele(zptr);
24480 		} else {
24481 			err = EINVAL;
24482 			goto out;
24483 		}
24484 	}
24485 
24486 	/*
24487 	 * For exclusive stacks we set the zoneid to zero
24488 	 * to make TCP operate as if in the global zone.
24489 	 */
24490 	if (tcps->tcps_netstack->netstack_stackid != GLOBAL_NETSTACKID)
24491 		acp->ac_zoneid = GLOBAL_ZONEID;
24492 
24493 	if (acp->ac_start < TCPS_SYN_SENT || acp->ac_end > TCPS_TIME_WAIT ||
24494 	    acp->ac_start > acp->ac_end || laf != raf ||
24495 	    (laf != AF_INET && laf != AF_INET6)) {
24496 		err = EINVAL;
24497 		goto out;
24498 	}
24499 
24500 	tcp_ioctl_abort_dump(acp);
24501 	err = tcp_ioctl_abort(acp, tcps);
24502 
24503 out:
24504 	if (mp1 != NULL) {
24505 		freemsg(mp1);
24506 		mp->b_cont = NULL;
24507 	}
24508 
24509 	if (err != 0)
24510 		miocnak(q, mp, 0, err);
24511 	else
24512 		miocack(q, mp, 0, 0);
24513 }
24514 
24515 /*
24516  * tcp_time_wait_processing() handles processing of incoming packets when
24517  * the tcp is in the TIME_WAIT state.
24518  * A TIME_WAIT tcp that has an associated open TCP stream is never put
24519  * on the time wait list.
24520  */
24521 void
24522 tcp_time_wait_processing(tcp_t *tcp, mblk_t *mp, uint32_t seg_seq,
24523     uint32_t seg_ack, int seg_len, tcph_t *tcph)
24524 {
24525 	int32_t		bytes_acked;
24526 	int32_t		gap;
24527 	int32_t		rgap;
24528 	tcp_opt_t	tcpopt;
24529 	uint_t		flags;
24530 	uint32_t	new_swnd = 0;
24531 	conn_t		*connp;
24532 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24533 
24534 	BUMP_LOCAL(tcp->tcp_ibsegs);
24535 	DTRACE_PROBE2(tcp__trace__recv, mblk_t *, mp, tcp_t *, tcp);
24536 
24537 	flags = (unsigned int)tcph->th_flags[0] & 0xFF;
24538 	new_swnd = BE16_TO_U16(tcph->th_win) <<
24539 	    ((tcph->th_flags[0] & TH_SYN) ? 0 : tcp->tcp_snd_ws);
24540 	if (tcp->tcp_snd_ts_ok) {
24541 		if (!tcp_paws_check(tcp, tcph, &tcpopt)) {
24542 			tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24543 			    tcp->tcp_rnxt, TH_ACK);
24544 			goto done;
24545 		}
24546 	}
24547 	gap = seg_seq - tcp->tcp_rnxt;
24548 	rgap = tcp->tcp_rwnd - (gap + seg_len);
24549 	if (gap < 0) {
24550 		BUMP_MIB(&tcps->tcps_mib, tcpInDataDupSegs);
24551 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataDupBytes,
24552 		    (seg_len > -gap ? -gap : seg_len));
24553 		seg_len += gap;
24554 		if (seg_len < 0 || (seg_len == 0 && !(flags & TH_FIN))) {
24555 			if (flags & TH_RST) {
24556 				goto done;
24557 			}
24558 			if ((flags & TH_FIN) && seg_len == -1) {
24559 				/*
24560 				 * When TCP receives a duplicate FIN in
24561 				 * TIME_WAIT state, restart the 2 MSL timer.
24562 				 * See page 73 in RFC 793. Make sure this TCP
24563 				 * is already on the TIME_WAIT list. If not,
24564 				 * just restart the timer.
24565 				 */
24566 				if (TCP_IS_DETACHED(tcp)) {
24567 					if (tcp_time_wait_remove(tcp, NULL) ==
24568 					    B_TRUE) {
24569 						tcp_time_wait_append(tcp);
24570 						TCP_DBGSTAT(tcps,
24571 						    tcp_rput_time_wait);
24572 					}
24573 				} else {
24574 					ASSERT(tcp != NULL);
24575 					TCP_TIMER_RESTART(tcp,
24576 					    tcps->tcps_time_wait_interval);
24577 				}
24578 				tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24579 				    tcp->tcp_rnxt, TH_ACK);
24580 				goto done;
24581 			}
24582 			flags |=  TH_ACK_NEEDED;
24583 			seg_len = 0;
24584 			goto process_ack;
24585 		}
24586 
24587 		/* Fix seg_seq, and chew the gap off the front. */
24588 		seg_seq = tcp->tcp_rnxt;
24589 	}
24590 
24591 	if ((flags & TH_SYN) && gap > 0 && rgap < 0) {
24592 		/*
24593 		 * Make sure that when we accept the connection, pick
24594 		 * an ISS greater than (tcp_snxt + ISS_INCR/2) for the
24595 		 * old connection.
24596 		 *
24597 		 * The next ISS generated is equal to tcp_iss_incr_extra
24598 		 * + ISS_INCR/2 + other components depending on the
24599 		 * value of tcp_strong_iss.  We pre-calculate the new
24600 		 * ISS here and compare with tcp_snxt to determine if
24601 		 * we need to make adjustment to tcp_iss_incr_extra.
24602 		 *
24603 		 * The above calculation is ugly and is a
24604 		 * waste of CPU cycles...
24605 		 */
24606 		uint32_t new_iss = tcps->tcps_iss_incr_extra;
24607 		int32_t adj;
24608 		ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip;
24609 
24610 		switch (tcps->tcps_strong_iss) {
24611 		case 2: {
24612 			/* Add time and MD5 components. */
24613 			uint32_t answer[4];
24614 			struct {
24615 				uint32_t ports;
24616 				in6_addr_t src;
24617 				in6_addr_t dst;
24618 			} arg;
24619 			MD5_CTX context;
24620 
24621 			mutex_enter(&tcps->tcps_iss_key_lock);
24622 			context = tcps->tcps_iss_key;
24623 			mutex_exit(&tcps->tcps_iss_key_lock);
24624 			arg.ports = tcp->tcp_ports;
24625 			/* We use MAPPED addresses in tcp_iss_init */
24626 			arg.src = tcp->tcp_ip_src_v6;
24627 			if (tcp->tcp_ipversion == IPV4_VERSION) {
24628 				IN6_IPADDR_TO_V4MAPPED(
24629 				    tcp->tcp_ipha->ipha_dst,
24630 				    &arg.dst);
24631 			} else {
24632 				arg.dst =
24633 				    tcp->tcp_ip6h->ip6_dst;
24634 			}
24635 			MD5Update(&context, (uchar_t *)&arg,
24636 			    sizeof (arg));
24637 			MD5Final((uchar_t *)answer, &context);
24638 			answer[0] ^= answer[1] ^ answer[2] ^ answer[3];
24639 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + answer[0];
24640 			break;
24641 		}
24642 		case 1:
24643 			/* Add time component and min random (i.e. 1). */
24644 			new_iss += (gethrtime() >> ISS_NSEC_SHT) + 1;
24645 			break;
24646 		default:
24647 			/* Add only time component. */
24648 			new_iss += (uint32_t)gethrestime_sec() * ISS_INCR;
24649 			break;
24650 		}
24651 		if ((adj = (int32_t)(tcp->tcp_snxt - new_iss)) > 0) {
24652 			/*
24653 			 * New ISS not guaranteed to be ISS_INCR/2
24654 			 * ahead of the current tcp_snxt, so add the
24655 			 * difference to tcp_iss_incr_extra.
24656 			 */
24657 			tcps->tcps_iss_incr_extra += adj;
24658 		}
24659 		/*
24660 		 * If tcp_clean_death() can not perform the task now,
24661 		 * drop the SYN packet and let the other side re-xmit.
24662 		 * Otherwise pass the SYN packet back in, since the
24663 		 * old tcp state has been cleaned up or freed.
24664 		 */
24665 		if (tcp_clean_death(tcp, 0, 27) == -1)
24666 			goto done;
24667 		/*
24668 		 * We will come back to tcp_rput_data
24669 		 * on the global queue. Packets destined
24670 		 * for the global queue will be checked
24671 		 * with global policy. But the policy for
24672 		 * this packet has already been checked as
24673 		 * this was destined for the detached
24674 		 * connection. We need to bypass policy
24675 		 * check this time by attaching a dummy
24676 		 * ipsec_in with ipsec_in_dont_check set.
24677 		 */
24678 		connp = ipcl_classify(mp, tcp->tcp_connp->conn_zoneid, ipst);
24679 		if (connp != NULL) {
24680 			TCP_STAT(tcps, tcp_time_wait_syn_success);
24681 			tcp_reinput(connp, mp, tcp->tcp_connp->conn_sqp);
24682 			return;
24683 		}
24684 		goto done;
24685 	}
24686 
24687 	/*
24688 	 * rgap is the amount of stuff received out of window.  A negative
24689 	 * value is the amount out of window.
24690 	 */
24691 	if (rgap < 0) {
24692 		BUMP_MIB(&tcps->tcps_mib, tcpInDataPastWinSegs);
24693 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataPastWinBytes, -rgap);
24694 		/* Fix seg_len and make sure there is something left. */
24695 		seg_len += rgap;
24696 		if (seg_len <= 0) {
24697 			if (flags & TH_RST) {
24698 				goto done;
24699 			}
24700 			flags |=  TH_ACK_NEEDED;
24701 			seg_len = 0;
24702 			goto process_ack;
24703 		}
24704 	}
24705 	/*
24706 	 * Check whether we can update tcp_ts_recent.  This test is
24707 	 * NOT the one in RFC 1323 3.4.  It is from Braden, 1993, "TCP
24708 	 * Extensions for High Performance: An Update", Internet Draft.
24709 	 */
24710 	if (tcp->tcp_snd_ts_ok &&
24711 	    TSTMP_GEQ(tcpopt.tcp_opt_ts_val, tcp->tcp_ts_recent) &&
24712 	    SEQ_LEQ(seg_seq, tcp->tcp_rack)) {
24713 		tcp->tcp_ts_recent = tcpopt.tcp_opt_ts_val;
24714 		tcp->tcp_last_rcv_lbolt = lbolt64;
24715 	}
24716 
24717 	if (seg_seq != tcp->tcp_rnxt && seg_len > 0) {
24718 		/* Always ack out of order packets */
24719 		flags |= TH_ACK_NEEDED;
24720 		seg_len = 0;
24721 	} else if (seg_len > 0) {
24722 		BUMP_MIB(&tcps->tcps_mib, tcpInClosed);
24723 		BUMP_MIB(&tcps->tcps_mib, tcpInDataInorderSegs);
24724 		UPDATE_MIB(&tcps->tcps_mib, tcpInDataInorderBytes, seg_len);
24725 	}
24726 	if (flags & TH_RST) {
24727 		(void) tcp_clean_death(tcp, 0, 28);
24728 		goto done;
24729 	}
24730 	if (flags & TH_SYN) {
24731 		tcp_xmit_ctl("TH_SYN", tcp, seg_ack, seg_seq + 1,
24732 		    TH_RST|TH_ACK);
24733 		/*
24734 		 * Do not delete the TCP structure if it is in
24735 		 * TIME_WAIT state.  Refer to RFC 1122, 4.2.2.13.
24736 		 */
24737 		goto done;
24738 	}
24739 process_ack:
24740 	if (flags & TH_ACK) {
24741 		bytes_acked = (int)(seg_ack - tcp->tcp_suna);
24742 		if (bytes_acked <= 0) {
24743 			if (bytes_acked == 0 && seg_len == 0 &&
24744 			    new_swnd == tcp->tcp_swnd)
24745 				BUMP_MIB(&tcps->tcps_mib, tcpInDupAck);
24746 		} else {
24747 			/* Acks something not sent */
24748 			flags |= TH_ACK_NEEDED;
24749 		}
24750 	}
24751 	if (flags & TH_ACK_NEEDED) {
24752 		/*
24753 		 * Time to send an ack for some reason.
24754 		 */
24755 		tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt,
24756 		    tcp->tcp_rnxt, TH_ACK);
24757 	}
24758 done:
24759 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
24760 		DB_CKSUMSTART(mp) = 0;
24761 		mp->b_datap->db_struioflag &= ~STRUIO_EAGER;
24762 		TCP_STAT(tcps, tcp_time_wait_syn_fail);
24763 	}
24764 	freemsg(mp);
24765 }
24766 
24767 /*
24768  * TCP Timers Implementation.
24769  */
24770 timeout_id_t
24771 tcp_timeout(conn_t *connp, void (*f)(void *), clock_t tim)
24772 {
24773 	mblk_t *mp;
24774 	tcp_timer_t *tcpt;
24775 	tcp_t *tcp = connp->conn_tcp;
24776 
24777 	ASSERT(connp->conn_sqp != NULL);
24778 
24779 	TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls);
24780 
24781 	if (tcp->tcp_timercache == NULL) {
24782 		mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC);
24783 	} else {
24784 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc);
24785 		mp = tcp->tcp_timercache;
24786 		tcp->tcp_timercache = mp->b_next;
24787 		mp->b_next = NULL;
24788 		ASSERT(mp->b_wptr == NULL);
24789 	}
24790 
24791 	CONN_INC_REF(connp);
24792 	tcpt = (tcp_timer_t *)mp->b_rptr;
24793 	tcpt->connp = connp;
24794 	tcpt->tcpt_proc = f;
24795 	/*
24796 	 * TCP timers are normal timeouts. Plus, they do not require more than
24797 	 * a 10 millisecond resolution. By choosing a coarser resolution and by
24798 	 * rounding up the expiration to the next resolution boundary, we can
24799 	 * batch timers in the callout subsystem to make TCP timers more
24800 	 * efficient. The roundup also protects short timers from expiring too
24801 	 * early before they have a chance to be cancelled.
24802 	 */
24803 	tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp,
24804 	    TICK_TO_NSEC(tim), CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP);
24805 
24806 	return ((timeout_id_t)mp);
24807 }
24808 
24809 static void
24810 tcp_timer_callback(void *arg)
24811 {
24812 	mblk_t *mp = (mblk_t *)arg;
24813 	tcp_timer_t *tcpt;
24814 	conn_t	*connp;
24815 
24816 	tcpt = (tcp_timer_t *)mp->b_rptr;
24817 	connp = tcpt->connp;
24818 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp,
24819 	    SQ_FILL, SQTAG_TCP_TIMER);
24820 }
24821 
24822 static void
24823 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2)
24824 {
24825 	tcp_timer_t *tcpt;
24826 	conn_t *connp = (conn_t *)arg;
24827 	tcp_t *tcp = connp->conn_tcp;
24828 
24829 	tcpt = (tcp_timer_t *)mp->b_rptr;
24830 	ASSERT(connp == tcpt->connp);
24831 	ASSERT((squeue_t *)arg2 == connp->conn_sqp);
24832 
24833 	/*
24834 	 * If the TCP has reached the closed state, don't proceed any
24835 	 * further. This TCP logically does not exist on the system.
24836 	 * tcpt_proc could for example access queues, that have already
24837 	 * been qprocoff'ed off. Also see comments at the start of tcp_input
24838 	 */
24839 	if (tcp->tcp_state != TCPS_CLOSED) {
24840 		(*tcpt->tcpt_proc)(connp);
24841 	} else {
24842 		tcp->tcp_timer_tid = 0;
24843 	}
24844 	tcp_timer_free(connp->conn_tcp, mp);
24845 }
24846 
24847 /*
24848  * There is potential race with untimeout and the handler firing at the same
24849  * time. The mblock may be freed by the handler while we are trying to use
24850  * it. But since both should execute on the same squeue, this race should not
24851  * occur.
24852  */
24853 clock_t
24854 tcp_timeout_cancel(conn_t *connp, timeout_id_t id)
24855 {
24856 	mblk_t	*mp = (mblk_t *)id;
24857 	tcp_timer_t *tcpt;
24858 	clock_t delta;
24859 
24860 	TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs);
24861 
24862 	if (mp == NULL)
24863 		return (-1);
24864 
24865 	tcpt = (tcp_timer_t *)mp->b_rptr;
24866 	ASSERT(tcpt->connp == connp);
24867 
24868 	delta = untimeout_default(tcpt->tcpt_tid, 0);
24869 
24870 	if (delta >= 0) {
24871 		TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled);
24872 		tcp_timer_free(connp->conn_tcp, mp);
24873 		CONN_DEC_REF(connp);
24874 	}
24875 
24876 	return (delta);
24877 }
24878 
24879 /*
24880  * Allocate space for the timer event. The allocation looks like mblk, but it is
24881  * not a proper mblk. To avoid confusion we set b_wptr to NULL.
24882  *
24883  * Dealing with failures: If we can't allocate from the timer cache we try
24884  * allocating from dblock caches using allocb_tryhard(). In this case b_wptr
24885  * points to b_rptr.
24886  * If we can't allocate anything using allocb_tryhard(), we perform a last
24887  * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and
24888  * save the actual allocation size in b_datap.
24889  */
24890 mblk_t *
24891 tcp_timermp_alloc(int kmflags)
24892 {
24893 	mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache,
24894 	    kmflags & ~KM_PANIC);
24895 
24896 	if (mp != NULL) {
24897 		mp->b_next = mp->b_prev = NULL;
24898 		mp->b_rptr = (uchar_t *)(&mp[1]);
24899 		mp->b_wptr = NULL;
24900 		mp->b_datap = NULL;
24901 		mp->b_queue = NULL;
24902 		mp->b_cont = NULL;
24903 	} else if (kmflags & KM_PANIC) {
24904 		/*
24905 		 * Failed to allocate memory for the timer. Try allocating from
24906 		 * dblock caches.
24907 		 */
24908 		/* ipclassifier calls this from a constructor - hence no tcps */
24909 		TCP_G_STAT(tcp_timermp_allocfail);
24910 		mp = allocb_tryhard(sizeof (tcp_timer_t));
24911 		if (mp == NULL) {
24912 			size_t size = 0;
24913 			/*
24914 			 * Memory is really low. Try tryhard allocation.
24915 			 *
24916 			 * ipclassifier calls this from a constructor -
24917 			 * hence no tcps
24918 			 */
24919 			TCP_G_STAT(tcp_timermp_allocdblfail);
24920 			mp = kmem_alloc_tryhard(sizeof (mblk_t) +
24921 			    sizeof (tcp_timer_t), &size, kmflags);
24922 			mp->b_rptr = (uchar_t *)(&mp[1]);
24923 			mp->b_next = mp->b_prev = NULL;
24924 			mp->b_wptr = (uchar_t *)-1;
24925 			mp->b_datap = (dblk_t *)size;
24926 			mp->b_queue = NULL;
24927 			mp->b_cont = NULL;
24928 		}
24929 		ASSERT(mp->b_wptr != NULL);
24930 	}
24931 	/* ipclassifier calls this from a constructor - hence no tcps */
24932 	TCP_G_DBGSTAT(tcp_timermp_alloced);
24933 
24934 	return (mp);
24935 }
24936 
24937 /*
24938  * Free per-tcp timer cache.
24939  * It can only contain entries from tcp_timercache.
24940  */
24941 void
24942 tcp_timermp_free(tcp_t *tcp)
24943 {
24944 	mblk_t *mp;
24945 
24946 	while ((mp = tcp->tcp_timercache) != NULL) {
24947 		ASSERT(mp->b_wptr == NULL);
24948 		tcp->tcp_timercache = tcp->tcp_timercache->b_next;
24949 		kmem_cache_free(tcp_timercache, mp);
24950 	}
24951 }
24952 
24953 /*
24954  * Free timer event. Put it on the per-tcp timer cache if there is not too many
24955  * events there already (currently at most two events are cached).
24956  * If the event is not allocated from the timer cache, free it right away.
24957  */
24958 static void
24959 tcp_timer_free(tcp_t *tcp, mblk_t *mp)
24960 {
24961 	mblk_t *mp1 = tcp->tcp_timercache;
24962 
24963 	if (mp->b_wptr != NULL) {
24964 		/*
24965 		 * This allocation is not from a timer cache, free it right
24966 		 * away.
24967 		 */
24968 		if (mp->b_wptr != (uchar_t *)-1)
24969 			freeb(mp);
24970 		else
24971 			kmem_free(mp, (size_t)mp->b_datap);
24972 	} else if (mp1 == NULL || mp1->b_next == NULL) {
24973 		/* Cache this timer block for future allocations */
24974 		mp->b_rptr = (uchar_t *)(&mp[1]);
24975 		mp->b_next = mp1;
24976 		tcp->tcp_timercache = mp;
24977 	} else {
24978 		kmem_cache_free(tcp_timercache, mp);
24979 		TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed);
24980 	}
24981 }
24982 
24983 /*
24984  * End of TCP Timers implementation.
24985  */
24986 
24987 /*
24988  * tcp_{set,clr}qfull() functions are used to either set or clear QFULL
24989  * on the specified backing STREAMS q. Note, the caller may make the
24990  * decision to call based on the tcp_t.tcp_flow_stopped value which
24991  * when check outside the q's lock is only an advisory check ...
24992  */
24993 void
24994 tcp_setqfull(tcp_t *tcp)
24995 {
24996 	tcp_stack_t	*tcps = tcp->tcp_tcps;
24997 	conn_t	*connp = tcp->tcp_connp;
24998 
24999 	if (tcp->tcp_closed)
25000 		return;
25001 
25002 	if (IPCL_IS_NONSTR(connp)) {
25003 		(*connp->conn_upcalls->su_txq_full)
25004 		    (tcp->tcp_connp->conn_upper_handle, B_TRUE);
25005 		tcp->tcp_flow_stopped = B_TRUE;
25006 	} else {
25007 		queue_t *q = tcp->tcp_wq;
25008 
25009 		if (!(q->q_flag & QFULL)) {
25010 			mutex_enter(QLOCK(q));
25011 			if (!(q->q_flag & QFULL)) {
25012 				/* still need to set QFULL */
25013 				q->q_flag |= QFULL;
25014 				tcp->tcp_flow_stopped = B_TRUE;
25015 				mutex_exit(QLOCK(q));
25016 				TCP_STAT(tcps, tcp_flwctl_on);
25017 			} else {
25018 				mutex_exit(QLOCK(q));
25019 			}
25020 		}
25021 	}
25022 }
25023 
25024 void
25025 tcp_clrqfull(tcp_t *tcp)
25026 {
25027 	conn_t  *connp = tcp->tcp_connp;
25028 
25029 	if (tcp->tcp_closed)
25030 		return;
25031 
25032 	if (IPCL_IS_NONSTR(connp)) {
25033 		(*connp->conn_upcalls->su_txq_full)
25034 		    (tcp->tcp_connp->conn_upper_handle, B_FALSE);
25035 		tcp->tcp_flow_stopped = B_FALSE;
25036 	} else {
25037 		queue_t *q = tcp->tcp_wq;
25038 
25039 		if (q->q_flag & QFULL) {
25040 			mutex_enter(QLOCK(q));
25041 			if (q->q_flag & QFULL) {
25042 				q->q_flag &= ~QFULL;
25043 				tcp->tcp_flow_stopped = B_FALSE;
25044 				mutex_exit(QLOCK(q));
25045 				if (q->q_flag & QWANTW)
25046 					qbackenable(q, 0);
25047 			} else {
25048 				mutex_exit(QLOCK(q));
25049 			}
25050 		}
25051 	}
25052 }
25053 
25054 /*
25055  * kstats related to squeues i.e. not per IP instance
25056  */
25057 static void *
25058 tcp_g_kstat_init(tcp_g_stat_t *tcp_g_statp)
25059 {
25060 	kstat_t *ksp;
25061 
25062 	tcp_g_stat_t template = {
25063 		{ "tcp_timermp_alloced",	KSTAT_DATA_UINT64 },
25064 		{ "tcp_timermp_allocfail",	KSTAT_DATA_UINT64 },
25065 		{ "tcp_timermp_allocdblfail",	KSTAT_DATA_UINT64 },
25066 		{ "tcp_freelist_cleanup",	KSTAT_DATA_UINT64 },
25067 	};
25068 
25069 	ksp = kstat_create(TCP_MOD_NAME, 0, "tcpstat_g", "net",
25070 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
25071 	    KSTAT_FLAG_VIRTUAL);
25072 
25073 	if (ksp == NULL)
25074 		return (NULL);
25075 
25076 	bcopy(&template, tcp_g_statp, sizeof (template));
25077 	ksp->ks_data = (void *)tcp_g_statp;
25078 
25079 	kstat_install(ksp);
25080 	return (ksp);
25081 }
25082 
25083 static void
25084 tcp_g_kstat_fini(kstat_t *ksp)
25085 {
25086 	if (ksp != NULL) {
25087 		kstat_delete(ksp);
25088 	}
25089 }
25090 
25091 
25092 static void *
25093 tcp_kstat2_init(netstackid_t stackid, tcp_stat_t *tcps_statisticsp)
25094 {
25095 	kstat_t *ksp;
25096 
25097 	tcp_stat_t template = {
25098 		{ "tcp_time_wait",		KSTAT_DATA_UINT64 },
25099 		{ "tcp_time_wait_syn",		KSTAT_DATA_UINT64 },
25100 		{ "tcp_time_wait_success",	KSTAT_DATA_UINT64 },
25101 		{ "tcp_time_wait_fail",		KSTAT_DATA_UINT64 },
25102 		{ "tcp_reinput_syn",		KSTAT_DATA_UINT64 },
25103 		{ "tcp_ip_output",		KSTAT_DATA_UINT64 },
25104 		{ "tcp_detach_non_time_wait",	KSTAT_DATA_UINT64 },
25105 		{ "tcp_detach_time_wait",	KSTAT_DATA_UINT64 },
25106 		{ "tcp_time_wait_reap",		KSTAT_DATA_UINT64 },
25107 		{ "tcp_clean_death_nondetached",	KSTAT_DATA_UINT64 },
25108 		{ "tcp_reinit_calls",		KSTAT_DATA_UINT64 },
25109 		{ "tcp_eager_err1",		KSTAT_DATA_UINT64 },
25110 		{ "tcp_eager_err2",		KSTAT_DATA_UINT64 },
25111 		{ "tcp_eager_blowoff_calls",	KSTAT_DATA_UINT64 },
25112 		{ "tcp_eager_blowoff_q",	KSTAT_DATA_UINT64 },
25113 		{ "tcp_eager_blowoff_q0",	KSTAT_DATA_UINT64 },
25114 		{ "tcp_not_hard_bound",		KSTAT_DATA_UINT64 },
25115 		{ "tcp_no_listener",		KSTAT_DATA_UINT64 },
25116 		{ "tcp_found_eager",		KSTAT_DATA_UINT64 },
25117 		{ "tcp_wrong_queue",		KSTAT_DATA_UINT64 },
25118 		{ "tcp_found_eager_binding1",	KSTAT_DATA_UINT64 },
25119 		{ "tcp_found_eager_bound1",	KSTAT_DATA_UINT64 },
25120 		{ "tcp_eager_has_listener1",	KSTAT_DATA_UINT64 },
25121 		{ "tcp_open_alloc",		KSTAT_DATA_UINT64 },
25122 		{ "tcp_open_detached_alloc",	KSTAT_DATA_UINT64 },
25123 		{ "tcp_rput_time_wait",		KSTAT_DATA_UINT64 },
25124 		{ "tcp_listendrop",		KSTAT_DATA_UINT64 },
25125 		{ "tcp_listendropq0",		KSTAT_DATA_UINT64 },
25126 		{ "tcp_wrong_rq",		KSTAT_DATA_UINT64 },
25127 		{ "tcp_rsrv_calls",		KSTAT_DATA_UINT64 },
25128 		{ "tcp_eagerfree2",		KSTAT_DATA_UINT64 },
25129 		{ "tcp_eagerfree3",		KSTAT_DATA_UINT64 },
25130 		{ "tcp_eagerfree4",		KSTAT_DATA_UINT64 },
25131 		{ "tcp_eagerfree5",		KSTAT_DATA_UINT64 },
25132 		{ "tcp_timewait_syn_fail",	KSTAT_DATA_UINT64 },
25133 		{ "tcp_listen_badflags",	KSTAT_DATA_UINT64 },
25134 		{ "tcp_timeout_calls",		KSTAT_DATA_UINT64 },
25135 		{ "tcp_timeout_cached_alloc",	KSTAT_DATA_UINT64 },
25136 		{ "tcp_timeout_cancel_reqs",	KSTAT_DATA_UINT64 },
25137 		{ "tcp_timeout_canceled",	KSTAT_DATA_UINT64 },
25138 		{ "tcp_timermp_freed",		KSTAT_DATA_UINT64 },
25139 		{ "tcp_push_timer_cnt",		KSTAT_DATA_UINT64 },
25140 		{ "tcp_ack_timer_cnt",		KSTAT_DATA_UINT64 },
25141 		{ "tcp_ire_null1",		KSTAT_DATA_UINT64 },
25142 		{ "tcp_ire_null",		KSTAT_DATA_UINT64 },
25143 		{ "tcp_ip_send",		KSTAT_DATA_UINT64 },
25144 		{ "tcp_ip_ire_send",		KSTAT_DATA_UINT64 },
25145 		{ "tcp_wsrv_called",		KSTAT_DATA_UINT64 },
25146 		{ "tcp_flwctl_on",		KSTAT_DATA_UINT64 },
25147 		{ "tcp_timer_fire_early",	KSTAT_DATA_UINT64 },
25148 		{ "tcp_timer_fire_miss",	KSTAT_DATA_UINT64 },
25149 		{ "tcp_rput_v6_error",		KSTAT_DATA_UINT64 },
25150 		{ "tcp_out_sw_cksum",		KSTAT_DATA_UINT64 },
25151 		{ "tcp_out_sw_cksum_bytes",	KSTAT_DATA_UINT64 },
25152 		{ "tcp_zcopy_on",		KSTAT_DATA_UINT64 },
25153 		{ "tcp_zcopy_off",		KSTAT_DATA_UINT64 },
25154 		{ "tcp_zcopy_backoff",		KSTAT_DATA_UINT64 },
25155 		{ "tcp_zcopy_disable",		KSTAT_DATA_UINT64 },
25156 		{ "tcp_mdt_pkt_out",		KSTAT_DATA_UINT64 },
25157 		{ "tcp_mdt_pkt_out_v4",		KSTAT_DATA_UINT64 },
25158 		{ "tcp_mdt_pkt_out_v6",		KSTAT_DATA_UINT64 },
25159 		{ "tcp_mdt_discarded",		KSTAT_DATA_UINT64 },
25160 		{ "tcp_mdt_conn_halted1",	KSTAT_DATA_UINT64 },
25161 		{ "tcp_mdt_conn_halted2",	KSTAT_DATA_UINT64 },
25162 		{ "tcp_mdt_conn_halted3",	KSTAT_DATA_UINT64 },
25163 		{ "tcp_mdt_conn_resumed1",	KSTAT_DATA_UINT64 },
25164 		{ "tcp_mdt_conn_resumed2",	KSTAT_DATA_UINT64 },
25165 		{ "tcp_mdt_legacy_small",	KSTAT_DATA_UINT64 },
25166 		{ "tcp_mdt_legacy_all",		KSTAT_DATA_UINT64 },
25167 		{ "tcp_mdt_legacy_ret",		KSTAT_DATA_UINT64 },
25168 		{ "tcp_mdt_allocfail",		KSTAT_DATA_UINT64 },
25169 		{ "tcp_mdt_addpdescfail",	KSTAT_DATA_UINT64 },
25170 		{ "tcp_mdt_allocd",		KSTAT_DATA_UINT64 },
25171 		{ "tcp_mdt_linked",		KSTAT_DATA_UINT64 },
25172 		{ "tcp_fusion_flowctl",		KSTAT_DATA_UINT64 },
25173 		{ "tcp_fusion_backenabled",	KSTAT_DATA_UINT64 },
25174 		{ "tcp_fusion_urg",		KSTAT_DATA_UINT64 },
25175 		{ "tcp_fusion_putnext",		KSTAT_DATA_UINT64 },
25176 		{ "tcp_fusion_unfusable",	KSTAT_DATA_UINT64 },
25177 		{ "tcp_fusion_aborted",		KSTAT_DATA_UINT64 },
25178 		{ "tcp_fusion_unqualified",	KSTAT_DATA_UINT64 },
25179 		{ "tcp_fusion_rrw_busy",	KSTAT_DATA_UINT64 },
25180 		{ "tcp_fusion_rrw_msgcnt",	KSTAT_DATA_UINT64 },
25181 		{ "tcp_fusion_rrw_plugged",	KSTAT_DATA_UINT64 },
25182 		{ "tcp_in_ack_unsent_drop",	KSTAT_DATA_UINT64 },
25183 		{ "tcp_sock_fallback",		KSTAT_DATA_UINT64 },
25184 		{ "tcp_lso_enabled",		KSTAT_DATA_UINT64 },
25185 		{ "tcp_lso_disabled",		KSTAT_DATA_UINT64 },
25186 		{ "tcp_lso_times",		KSTAT_DATA_UINT64 },
25187 		{ "tcp_lso_pkt_out",		KSTAT_DATA_UINT64 },
25188 	};
25189 
25190 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, "tcpstat", "net",
25191 	    KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
25192 	    KSTAT_FLAG_VIRTUAL, stackid);
25193 
25194 	if (ksp == NULL)
25195 		return (NULL);
25196 
25197 	bcopy(&template, tcps_statisticsp, sizeof (template));
25198 	ksp->ks_data = (void *)tcps_statisticsp;
25199 	ksp->ks_private = (void *)(uintptr_t)stackid;
25200 
25201 	kstat_install(ksp);
25202 	return (ksp);
25203 }
25204 
25205 static void
25206 tcp_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
25207 {
25208 	if (ksp != NULL) {
25209 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
25210 		kstat_delete_netstack(ksp, stackid);
25211 	}
25212 }
25213 
25214 /*
25215  * TCP Kstats implementation
25216  */
25217 static void *
25218 tcp_kstat_init(netstackid_t stackid, tcp_stack_t *tcps)
25219 {
25220 	kstat_t	*ksp;
25221 
25222 	tcp_named_kstat_t template = {
25223 		{ "rtoAlgorithm",	KSTAT_DATA_INT32, 0 },
25224 		{ "rtoMin",		KSTAT_DATA_INT32, 0 },
25225 		{ "rtoMax",		KSTAT_DATA_INT32, 0 },
25226 		{ "maxConn",		KSTAT_DATA_INT32, 0 },
25227 		{ "activeOpens",	KSTAT_DATA_UINT32, 0 },
25228 		{ "passiveOpens",	KSTAT_DATA_UINT32, 0 },
25229 		{ "attemptFails",	KSTAT_DATA_UINT32, 0 },
25230 		{ "estabResets",	KSTAT_DATA_UINT32, 0 },
25231 		{ "currEstab",		KSTAT_DATA_UINT32, 0 },
25232 		{ "inSegs",		KSTAT_DATA_UINT64, 0 },
25233 		{ "outSegs",		KSTAT_DATA_UINT64, 0 },
25234 		{ "retransSegs",	KSTAT_DATA_UINT32, 0 },
25235 		{ "connTableSize",	KSTAT_DATA_INT32, 0 },
25236 		{ "outRsts",		KSTAT_DATA_UINT32, 0 },
25237 		{ "outDataSegs",	KSTAT_DATA_UINT32, 0 },
25238 		{ "outDataBytes",	KSTAT_DATA_UINT32, 0 },
25239 		{ "retransBytes",	KSTAT_DATA_UINT32, 0 },
25240 		{ "outAck",		KSTAT_DATA_UINT32, 0 },
25241 		{ "outAckDelayed",	KSTAT_DATA_UINT32, 0 },
25242 		{ "outUrg",		KSTAT_DATA_UINT32, 0 },
25243 		{ "outWinUpdate",	KSTAT_DATA_UINT32, 0 },
25244 		{ "outWinProbe",	KSTAT_DATA_UINT32, 0 },
25245 		{ "outControl",		KSTAT_DATA_UINT32, 0 },
25246 		{ "outFastRetrans",	KSTAT_DATA_UINT32, 0 },
25247 		{ "inAckSegs",		KSTAT_DATA_UINT32, 0 },
25248 		{ "inAckBytes",		KSTAT_DATA_UINT32, 0 },
25249 		{ "inDupAck",		KSTAT_DATA_UINT32, 0 },
25250 		{ "inAckUnsent",	KSTAT_DATA_UINT32, 0 },
25251 		{ "inDataInorderSegs",	KSTAT_DATA_UINT32, 0 },
25252 		{ "inDataInorderBytes",	KSTAT_DATA_UINT32, 0 },
25253 		{ "inDataUnorderSegs",	KSTAT_DATA_UINT32, 0 },
25254 		{ "inDataUnorderBytes",	KSTAT_DATA_UINT32, 0 },
25255 		{ "inDataDupSegs",	KSTAT_DATA_UINT32, 0 },
25256 		{ "inDataDupBytes",	KSTAT_DATA_UINT32, 0 },
25257 		{ "inDataPartDupSegs",	KSTAT_DATA_UINT32, 0 },
25258 		{ "inDataPartDupBytes",	KSTAT_DATA_UINT32, 0 },
25259 		{ "inDataPastWinSegs",	KSTAT_DATA_UINT32, 0 },
25260 		{ "inDataPastWinBytes",	KSTAT_DATA_UINT32, 0 },
25261 		{ "inWinProbe",		KSTAT_DATA_UINT32, 0 },
25262 		{ "inWinUpdate",	KSTAT_DATA_UINT32, 0 },
25263 		{ "inClosed",		KSTAT_DATA_UINT32, 0 },
25264 		{ "rttUpdate",		KSTAT_DATA_UINT32, 0 },
25265 		{ "rttNoUpdate",	KSTAT_DATA_UINT32, 0 },
25266 		{ "timRetrans",		KSTAT_DATA_UINT32, 0 },
25267 		{ "timRetransDrop",	KSTAT_DATA_UINT32, 0 },
25268 		{ "timKeepalive",	KSTAT_DATA_UINT32, 0 },
25269 		{ "timKeepaliveProbe",	KSTAT_DATA_UINT32, 0 },
25270 		{ "timKeepaliveDrop",	KSTAT_DATA_UINT32, 0 },
25271 		{ "listenDrop",		KSTAT_DATA_UINT32, 0 },
25272 		{ "listenDropQ0",	KSTAT_DATA_UINT32, 0 },
25273 		{ "halfOpenDrop",	KSTAT_DATA_UINT32, 0 },
25274 		{ "outSackRetransSegs",	KSTAT_DATA_UINT32, 0 },
25275 		{ "connTableSize6",	KSTAT_DATA_INT32, 0 }
25276 	};
25277 
25278 	ksp = kstat_create_netstack(TCP_MOD_NAME, 0, TCP_MOD_NAME, "mib2",
25279 	    KSTAT_TYPE_NAMED, NUM_OF_FIELDS(tcp_named_kstat_t), 0, stackid);
25280 
25281 	if (ksp == NULL)
25282 		return (NULL);
25283 
25284 	template.rtoAlgorithm.value.ui32 = 4;
25285 	template.rtoMin.value.ui32 = tcps->tcps_rexmit_interval_min;
25286 	template.rtoMax.value.ui32 = tcps->tcps_rexmit_interval_max;
25287 	template.maxConn.value.i32 = -1;
25288 
25289 	bcopy(&template, ksp->ks_data, sizeof (template));
25290 	ksp->ks_update = tcp_kstat_update;
25291 	ksp->ks_private = (void *)(uintptr_t)stackid;
25292 
25293 	kstat_install(ksp);
25294 	return (ksp);
25295 }
25296 
25297 static void
25298 tcp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
25299 {
25300 	if (ksp != NULL) {
25301 		ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
25302 		kstat_delete_netstack(ksp, stackid);
25303 	}
25304 }
25305 
25306 static int
25307 tcp_kstat_update(kstat_t *kp, int rw)
25308 {
25309 	tcp_named_kstat_t *tcpkp;
25310 	tcp_t		*tcp;
25311 	connf_t		*connfp;
25312 	conn_t		*connp;
25313 	int 		i;
25314 	netstackid_t	stackid = (netstackid_t)(uintptr_t)kp->ks_private;
25315 	netstack_t	*ns;
25316 	tcp_stack_t	*tcps;
25317 	ip_stack_t	*ipst;
25318 
25319 	if ((kp == NULL) || (kp->ks_data == NULL))
25320 		return (EIO);
25321 
25322 	if (rw == KSTAT_WRITE)
25323 		return (EACCES);
25324 
25325 	ns = netstack_find_by_stackid(stackid);
25326 	if (ns == NULL)
25327 		return (-1);
25328 	tcps = ns->netstack_tcp;
25329 	if (tcps == NULL) {
25330 		netstack_rele(ns);
25331 		return (-1);
25332 	}
25333 
25334 	tcpkp = (tcp_named_kstat_t *)kp->ks_data;
25335 
25336 	tcpkp->currEstab.value.ui32 = 0;
25337 
25338 	ipst = ns->netstack_ip;
25339 
25340 	for (i = 0; i < CONN_G_HASH_SIZE; i++) {
25341 		connfp = &ipst->ips_ipcl_globalhash_fanout[i];
25342 		connp = NULL;
25343 		while ((connp =
25344 		    ipcl_get_next_conn(connfp, connp, IPCL_TCP)) != NULL) {
25345 			tcp = connp->conn_tcp;
25346 			switch (tcp_snmp_state(tcp)) {
25347 			case MIB2_TCP_established:
25348 			case MIB2_TCP_closeWait:
25349 				tcpkp->currEstab.value.ui32++;
25350 				break;
25351 			}
25352 		}
25353 	}
25354 
25355 	tcpkp->activeOpens.value.ui32 = tcps->tcps_mib.tcpActiveOpens;
25356 	tcpkp->passiveOpens.value.ui32 = tcps->tcps_mib.tcpPassiveOpens;
25357 	tcpkp->attemptFails.value.ui32 = tcps->tcps_mib.tcpAttemptFails;
25358 	tcpkp->estabResets.value.ui32 = tcps->tcps_mib.tcpEstabResets;
25359 	tcpkp->inSegs.value.ui64 = tcps->tcps_mib.tcpHCInSegs;
25360 	tcpkp->outSegs.value.ui64 = tcps->tcps_mib.tcpHCOutSegs;
25361 	tcpkp->retransSegs.value.ui32 =	tcps->tcps_mib.tcpRetransSegs;
25362 	tcpkp->connTableSize.value.i32 = tcps->tcps_mib.tcpConnTableSize;
25363 	tcpkp->outRsts.value.ui32 = tcps->tcps_mib.tcpOutRsts;
25364 	tcpkp->outDataSegs.value.ui32 = tcps->tcps_mib.tcpOutDataSegs;
25365 	tcpkp->outDataBytes.value.ui32 = tcps->tcps_mib.tcpOutDataBytes;
25366 	tcpkp->retransBytes.value.ui32 = tcps->tcps_mib.tcpRetransBytes;
25367 	tcpkp->outAck.value.ui32 = tcps->tcps_mib.tcpOutAck;
25368 	tcpkp->outAckDelayed.value.ui32 = tcps->tcps_mib.tcpOutAckDelayed;
25369 	tcpkp->outUrg.value.ui32 = tcps->tcps_mib.tcpOutUrg;
25370 	tcpkp->outWinUpdate.value.ui32 = tcps->tcps_mib.tcpOutWinUpdate;
25371 	tcpkp->outWinProbe.value.ui32 = tcps->tcps_mib.tcpOutWinProbe;
25372 	tcpkp->outControl.value.ui32 = tcps->tcps_mib.tcpOutControl;
25373 	tcpkp->outFastRetrans.value.ui32 = tcps->tcps_mib.tcpOutFastRetrans;
25374 	tcpkp->inAckSegs.value.ui32 = tcps->tcps_mib.tcpInAckSegs;
25375 	tcpkp->inAckBytes.value.ui32 = tcps->tcps_mib.tcpInAckBytes;
25376 	tcpkp->inDupAck.value.ui32 = tcps->tcps_mib.tcpInDupAck;
25377 	tcpkp->inAckUnsent.value.ui32 = tcps->tcps_mib.tcpInAckUnsent;
25378 	tcpkp->inDataInorderSegs.value.ui32 =
25379 	    tcps->tcps_mib.tcpInDataInorderSegs;
25380 	tcpkp->inDataInorderBytes.value.ui32 =
25381 	    tcps->tcps_mib.tcpInDataInorderBytes;
25382 	tcpkp->inDataUnorderSegs.value.ui32 =
25383 	    tcps->tcps_mib.tcpInDataUnorderSegs;
25384 	tcpkp->inDataUnorderBytes.value.ui32 =
25385 	    tcps->tcps_mib.tcpInDataUnorderBytes;
25386 	tcpkp->inDataDupSegs.value.ui32 = tcps->tcps_mib.tcpInDataDupSegs;
25387 	tcpkp->inDataDupBytes.value.ui32 = tcps->tcps_mib.tcpInDataDupBytes;
25388 	tcpkp->inDataPartDupSegs.value.ui32 =
25389 	    tcps->tcps_mib.tcpInDataPartDupSegs;
25390 	tcpkp->inDataPartDupBytes.value.ui32 =
25391 	    tcps->tcps_mib.tcpInDataPartDupBytes;
25392 	tcpkp->inDataPastWinSegs.value.ui32 =
25393 	    tcps->tcps_mib.tcpInDataPastWinSegs;
25394 	tcpkp->inDataPastWinBytes.value.ui32 =
25395 	    tcps->tcps_mib.tcpInDataPastWinBytes;
25396 	tcpkp->inWinProbe.value.ui32 = tcps->tcps_mib.tcpInWinProbe;
25397 	tcpkp->inWinUpdate.value.ui32 = tcps->tcps_mib.tcpInWinUpdate;
25398 	tcpkp->inClosed.value.ui32 = tcps->tcps_mib.tcpInClosed;
25399 	tcpkp->rttNoUpdate.value.ui32 = tcps->tcps_mib.tcpRttNoUpdate;
25400 	tcpkp->rttUpdate.value.ui32 = tcps->tcps_mib.tcpRttUpdate;
25401 	tcpkp->timRetrans.value.ui32 = tcps->tcps_mib.tcpTimRetrans;
25402 	tcpkp->timRetransDrop.value.ui32 = tcps->tcps_mib.tcpTimRetransDrop;
25403 	tcpkp->timKeepalive.value.ui32 = tcps->tcps_mib.tcpTimKeepalive;
25404 	tcpkp->timKeepaliveProbe.value.ui32 =
25405 	    tcps->tcps_mib.tcpTimKeepaliveProbe;
25406 	tcpkp->timKeepaliveDrop.value.ui32 =
25407 	    tcps->tcps_mib.tcpTimKeepaliveDrop;
25408 	tcpkp->listenDrop.value.ui32 = tcps->tcps_mib.tcpListenDrop;
25409 	tcpkp->listenDropQ0.value.ui32 = tcps->tcps_mib.tcpListenDropQ0;
25410 	tcpkp->halfOpenDrop.value.ui32 = tcps->tcps_mib.tcpHalfOpenDrop;
25411 	tcpkp->outSackRetransSegs.value.ui32 =
25412 	    tcps->tcps_mib.tcpOutSackRetransSegs;
25413 	tcpkp->connTableSize6.value.i32 = tcps->tcps_mib.tcp6ConnTableSize;
25414 
25415 	netstack_rele(ns);
25416 	return (0);
25417 }
25418 
25419 void
25420 tcp_reinput(conn_t *connp, mblk_t *mp, squeue_t *sqp)
25421 {
25422 	uint16_t	hdr_len;
25423 	ipha_t		*ipha;
25424 	uint8_t		*nexthdrp;
25425 	tcph_t		*tcph;
25426 	tcp_stack_t	*tcps = connp->conn_tcp->tcp_tcps;
25427 
25428 	/* Already has an eager */
25429 	if ((mp->b_datap->db_struioflag & STRUIO_EAGER) != 0) {
25430 		TCP_STAT(tcps, tcp_reinput_syn);
25431 		SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
25432 		    SQ_PROCESS, SQTAG_TCP_REINPUT_EAGER);
25433 		return;
25434 	}
25435 
25436 	switch (IPH_HDR_VERSION(mp->b_rptr)) {
25437 	case IPV4_VERSION:
25438 		ipha = (ipha_t *)mp->b_rptr;
25439 		hdr_len = IPH_HDR_LENGTH(ipha);
25440 		break;
25441 	case IPV6_VERSION:
25442 		if (!ip_hdr_length_nexthdr_v6(mp, (ip6_t *)mp->b_rptr,
25443 		    &hdr_len, &nexthdrp)) {
25444 			CONN_DEC_REF(connp);
25445 			freemsg(mp);
25446 			return;
25447 		}
25448 		break;
25449 	}
25450 
25451 	tcph = (tcph_t *)&mp->b_rptr[hdr_len];
25452 	if ((tcph->th_flags[0] & (TH_SYN|TH_ACK|TH_RST|TH_URG)) == TH_SYN) {
25453 		mp->b_datap->db_struioflag |= STRUIO_EAGER;
25454 		DB_CKSUMSTART(mp) = (intptr_t)sqp;
25455 	}
25456 
25457 	SQUEUE_ENTER_ONE(connp->conn_sqp, mp, connp->conn_recv, connp,
25458 	    SQ_FILL, SQTAG_TCP_REINPUT);
25459 }
25460 
25461 static int
25462 tcp_squeue_switch(int val)
25463 {
25464 	int rval = SQ_FILL;
25465 
25466 	switch (val) {
25467 	case 1:
25468 		rval = SQ_NODRAIN;
25469 		break;
25470 	case 2:
25471 		rval = SQ_PROCESS;
25472 		break;
25473 	default:
25474 		break;
25475 	}
25476 	return (rval);
25477 }
25478 
25479 /*
25480  * This is called once for each squeue - globally for all stack
25481  * instances.
25482  */
25483 static void
25484 tcp_squeue_add(squeue_t *sqp)
25485 {
25486 	tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc(
25487 	    sizeof (tcp_squeue_priv_t), KM_SLEEP);
25488 
25489 	*squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait;
25490 	tcp_time_wait->tcp_time_wait_tid =
25491 	    timeout_generic(CALLOUT_NORMAL, tcp_time_wait_collector, sqp,
25492 	    TICK_TO_NSEC(TCP_TIME_WAIT_DELAY), CALLOUT_TCP_RESOLUTION,
25493 	    CALLOUT_FLAG_ROUNDUP);
25494 	if (tcp_free_list_max_cnt == 0) {
25495 		int tcp_ncpus = ((boot_max_ncpus == -1) ?
25496 		    max_ncpus : boot_max_ncpus);
25497 
25498 		/*
25499 		 * Limit number of entries to 1% of availble memory / tcp_ncpus
25500 		 */
25501 		tcp_free_list_max_cnt = (freemem * PAGESIZE) /
25502 		    (tcp_ncpus * sizeof (tcp_t) * 100);
25503 	}
25504 	tcp_time_wait->tcp_free_list_cnt = 0;
25505 }
25506 
25507 static int
25508 tcp_post_ip_bind(tcp_t *tcp, mblk_t *mp, int error, cred_t *cr, pid_t pid)
25509 {
25510 	mblk_t	*ire_mp = NULL;
25511 	mblk_t	*syn_mp;
25512 	mblk_t	*mdti;
25513 	mblk_t	*lsoi;
25514 	int	retval;
25515 	tcph_t	*tcph;
25516 	uint32_t	mss;
25517 	queue_t	*q = tcp->tcp_rq;
25518 	conn_t	*connp = tcp->tcp_connp;
25519 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25520 
25521 	if (error == 0) {
25522 		/*
25523 		 * Adapt Multidata information, if any.  The
25524 		 * following tcp_mdt_update routine will free
25525 		 * the message.
25526 		 */
25527 		if (mp != NULL && ((mdti = tcp_mdt_info_mp(mp)) != NULL)) {
25528 			tcp_mdt_update(tcp, &((ip_mdt_info_t *)mdti->
25529 			    b_rptr)->mdt_capab, B_TRUE);
25530 			freemsg(mdti);
25531 		}
25532 
25533 		/*
25534 		 * Check to update LSO information with tcp, and
25535 		 * tcp_lso_update routine will free the message.
25536 		 */
25537 		if (mp != NULL && ((lsoi = tcp_lso_info_mp(mp)) != NULL)) {
25538 			tcp_lso_update(tcp, &((ip_lso_info_t *)lsoi->
25539 			    b_rptr)->lso_capab);
25540 			freemsg(lsoi);
25541 		}
25542 
25543 		/* Get the IRE, if we had requested for it */
25544 		if (mp != NULL)
25545 			ire_mp = tcp_ire_mp(&mp);
25546 
25547 		if (tcp->tcp_hard_binding) {
25548 			tcp->tcp_hard_binding = B_FALSE;
25549 			tcp->tcp_hard_bound = B_TRUE;
25550 			CL_INET_CONNECT(tcp->tcp_connp, tcp, B_TRUE, retval);
25551 			if (retval != 0) {
25552 				error = EADDRINUSE;
25553 				goto bind_failed;
25554 			}
25555 		} else {
25556 			if (ire_mp != NULL)
25557 				freeb(ire_mp);
25558 			goto after_syn_sent;
25559 		}
25560 
25561 		retval = tcp_adapt_ire(tcp, ire_mp);
25562 		if (ire_mp != NULL)
25563 			freeb(ire_mp);
25564 		if (retval == 0) {
25565 			error = (int)((tcp->tcp_state >= TCPS_SYN_SENT) ?
25566 			    ENETUNREACH : EADDRNOTAVAIL);
25567 			goto ipcl_rm;
25568 		}
25569 		/*
25570 		 * Don't let an endpoint connect to itself.
25571 		 * Also checked in tcp_connect() but that
25572 		 * check can't handle the case when the
25573 		 * local IP address is INADDR_ANY.
25574 		 */
25575 		if (tcp->tcp_ipversion == IPV4_VERSION) {
25576 			if ((tcp->tcp_ipha->ipha_dst ==
25577 			    tcp->tcp_ipha->ipha_src) &&
25578 			    (BE16_EQL(tcp->tcp_tcph->th_lport,
25579 			    tcp->tcp_tcph->th_fport))) {
25580 				error = EADDRNOTAVAIL;
25581 				goto ipcl_rm;
25582 			}
25583 		} else {
25584 			if (IN6_ARE_ADDR_EQUAL(
25585 			    &tcp->tcp_ip6h->ip6_dst,
25586 			    &tcp->tcp_ip6h->ip6_src) &&
25587 			    (BE16_EQL(tcp->tcp_tcph->th_lport,
25588 			    tcp->tcp_tcph->th_fport))) {
25589 				error = EADDRNOTAVAIL;
25590 				goto ipcl_rm;
25591 			}
25592 		}
25593 		ASSERT(tcp->tcp_state == TCPS_SYN_SENT);
25594 		/*
25595 		 * This should not be possible!  Just for
25596 		 * defensive coding...
25597 		 */
25598 		if (tcp->tcp_state != TCPS_SYN_SENT)
25599 			goto after_syn_sent;
25600 
25601 		if (is_system_labeled() &&
25602 		    !tcp_update_label(tcp, CONN_CRED(tcp->tcp_connp))) {
25603 			error = EHOSTUNREACH;
25604 			goto ipcl_rm;
25605 		}
25606 
25607 		/*
25608 		 * tcp_adapt_ire() does not adjust
25609 		 * for TCP/IP header length.
25610 		 */
25611 		mss = tcp->tcp_mss - tcp->tcp_hdr_len;
25612 
25613 		/*
25614 		 * Just make sure our rwnd is at
25615 		 * least tcp_recv_hiwat_mss * MSS
25616 		 * large, and round up to the nearest
25617 		 * MSS.
25618 		 *
25619 		 * We do the round up here because
25620 		 * we need to get the interface
25621 		 * MTU first before we can do the
25622 		 * round up.
25623 		 */
25624 		tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss),
25625 		    tcps->tcps_recv_hiwat_minmss * mss);
25626 		if (!IPCL_IS_NONSTR(connp))
25627 			q->q_hiwat = tcp->tcp_rwnd;
25628 		tcp->tcp_recv_hiwater = tcp->tcp_rwnd;
25629 		tcp_set_ws_value(tcp);
25630 		U32_TO_ABE16((tcp->tcp_rwnd >> tcp->tcp_rcv_ws),
25631 		    tcp->tcp_tcph->th_win);
25632 		if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always)
25633 			tcp->tcp_snd_ws_ok = B_TRUE;
25634 
25635 		/*
25636 		 * Set tcp_snd_ts_ok to true
25637 		 * so that tcp_xmit_mp will
25638 		 * include the timestamp
25639 		 * option in the SYN segment.
25640 		 */
25641 		if (tcps->tcps_tstamp_always ||
25642 		    (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) {
25643 			tcp->tcp_snd_ts_ok = B_TRUE;
25644 		}
25645 
25646 		/*
25647 		 * tcp_snd_sack_ok can be set in
25648 		 * tcp_adapt_ire() if the sack metric
25649 		 * is set.  So check it here also.
25650 		 */
25651 		if (tcps->tcps_sack_permitted == 2 ||
25652 		    tcp->tcp_snd_sack_ok) {
25653 			if (tcp->tcp_sack_info == NULL) {
25654 				tcp->tcp_sack_info =
25655 				    kmem_cache_alloc(tcp_sack_info_cache,
25656 				    KM_SLEEP);
25657 			}
25658 			tcp->tcp_snd_sack_ok = B_TRUE;
25659 		}
25660 
25661 		/*
25662 		 * Should we use ECN?  Note that the current
25663 		 * default value (SunOS 5.9) of tcp_ecn_permitted
25664 		 * is 1.  The reason for doing this is that there
25665 		 * are equipments out there that will drop ECN
25666 		 * enabled IP packets.  Setting it to 1 avoids
25667 		 * compatibility problems.
25668 		 */
25669 		if (tcps->tcps_ecn_permitted == 2)
25670 			tcp->tcp_ecn_ok = B_TRUE;
25671 
25672 		TCP_TIMER_RESTART(tcp, tcp->tcp_rto);
25673 		syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL,
25674 		    tcp->tcp_iss, B_FALSE, NULL, B_FALSE);
25675 		if (syn_mp) {
25676 			if (cr == NULL) {
25677 				cr = tcp->tcp_cred;
25678 				pid = tcp->tcp_cpid;
25679 			}
25680 			mblk_setcred(syn_mp, cr, pid);
25681 			tcp_send_data(tcp, tcp->tcp_wq, syn_mp);
25682 		}
25683 	after_syn_sent:
25684 		if (mp != NULL) {
25685 			ASSERT(mp->b_cont == NULL);
25686 			freeb(mp);
25687 		}
25688 		return (error);
25689 	} else {
25690 		/* error */
25691 		if (tcp->tcp_debug) {
25692 			(void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR,
25693 			    "tcp_post_ip_bind: error == %d", error);
25694 		}
25695 		if (mp != NULL) {
25696 			freeb(mp);
25697 		}
25698 	}
25699 
25700 ipcl_rm:
25701 	/*
25702 	 * Need to unbind with classifier since we were just
25703 	 * told that our bind succeeded. a.k.a error == 0 at the entry.
25704 	 */
25705 	tcp->tcp_hard_bound = B_FALSE;
25706 	tcp->tcp_hard_binding = B_FALSE;
25707 
25708 	ipcl_hash_remove(connp);
25709 
25710 bind_failed:
25711 	tcp->tcp_state = TCPS_IDLE;
25712 	if (tcp->tcp_ipversion == IPV4_VERSION)
25713 		tcp->tcp_ipha->ipha_src = 0;
25714 	else
25715 		V6_SET_ZERO(tcp->tcp_ip6h->ip6_src);
25716 	/*
25717 	 * Copy of the src addr. in tcp_t is needed since
25718 	 * the lookup funcs. can only look at tcp_t
25719 	 */
25720 	V6_SET_ZERO(tcp->tcp_ip_src_v6);
25721 
25722 	tcph = tcp->tcp_tcph;
25723 	tcph->th_lport[0] = 0;
25724 	tcph->th_lport[1] = 0;
25725 	tcp_bind_hash_remove(tcp);
25726 	bzero(&connp->u_port, sizeof (connp->u_port));
25727 	/* blow away saved option results if any */
25728 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
25729 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
25730 
25731 	conn_delete_ire(tcp->tcp_connp, NULL);
25732 
25733 	return (error);
25734 }
25735 
25736 static int
25737 tcp_bind_select_lport(tcp_t *tcp, in_port_t *requested_port_ptr,
25738     boolean_t bind_to_req_port_only, cred_t *cr)
25739 {
25740 	in_port_t	mlp_port;
25741 	mlp_type_t 	addrtype, mlptype;
25742 	boolean_t	user_specified;
25743 	in_port_t	allocated_port;
25744 	in_port_t	requested_port = *requested_port_ptr;
25745 	conn_t		*connp;
25746 	zone_t		*zone;
25747 	tcp_stack_t	*tcps = tcp->tcp_tcps;
25748 	in6_addr_t	v6addr = tcp->tcp_ip_src_v6;
25749 
25750 	/*
25751 	 * XXX It's up to the caller to specify bind_to_req_port_only or not.
25752 	 */
25753 	if (cr == NULL)
25754 		cr = tcp->tcp_cred;
25755 	/*
25756 	 * Get a valid port (within the anonymous range and should not
25757 	 * be a privileged one) to use if the user has not given a port.
25758 	 * If multiple threads are here, they may all start with
25759 	 * with the same initial port. But, it should be fine as long as
25760 	 * tcp_bindi will ensure that no two threads will be assigned
25761 	 * the same port.
25762 	 *
25763 	 * NOTE: XXX If a privileged process asks for an anonymous port, we
25764 	 * still check for ports only in the range > tcp_smallest_non_priv_port,
25765 	 * unless TCP_ANONPRIVBIND option is set.
25766 	 */
25767 	mlptype = mlptSingle;
25768 	mlp_port = requested_port;
25769 	if (requested_port == 0) {
25770 		requested_port = tcp->tcp_anon_priv_bind ?
25771 		    tcp_get_next_priv_port(tcp) :
25772 		    tcp_update_next_port(tcps->tcps_next_port_to_try,
25773 		    tcp, B_TRUE);
25774 		if (requested_port == 0) {
25775 			return (-TNOADDR);
25776 		}
25777 		user_specified = B_FALSE;
25778 
25779 		/*
25780 		 * If the user went through one of the RPC interfaces to create
25781 		 * this socket and RPC is MLP in this zone, then give him an
25782 		 * anonymous MLP.
25783 		 */
25784 		connp = tcp->tcp_connp;
25785 		if (connp->conn_anon_mlp && is_system_labeled()) {
25786 			zone = crgetzone(cr);
25787 			addrtype = tsol_mlp_addr_type(zone->zone_id,
25788 			    IPV6_VERSION, &v6addr,
25789 			    tcps->tcps_netstack->netstack_ip);
25790 			if (addrtype == mlptSingle) {
25791 				return (-TNOADDR);
25792 			}
25793 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
25794 			    PMAPPORT, addrtype);
25795 			mlp_port = PMAPPORT;
25796 		}
25797 	} else {
25798 		int i;
25799 		boolean_t priv = B_FALSE;
25800 
25801 		/*
25802 		 * If the requested_port is in the well-known privileged range,
25803 		 * verify that the stream was opened by a privileged user.
25804 		 * Note: No locks are held when inspecting tcp_g_*epriv_ports
25805 		 * but instead the code relies on:
25806 		 * - the fact that the address of the array and its size never
25807 		 *   changes
25808 		 * - the atomic assignment of the elements of the array
25809 		 */
25810 		if (requested_port < tcps->tcps_smallest_nonpriv_port) {
25811 			priv = B_TRUE;
25812 		} else {
25813 			for (i = 0; i < tcps->tcps_g_num_epriv_ports; i++) {
25814 				if (requested_port ==
25815 				    tcps->tcps_g_epriv_ports[i]) {
25816 					priv = B_TRUE;
25817 					break;
25818 				}
25819 			}
25820 		}
25821 		if (priv) {
25822 			if (secpolicy_net_privaddr(cr, requested_port,
25823 			    IPPROTO_TCP) != 0) {
25824 				if (tcp->tcp_debug) {
25825 					(void) strlog(TCP_MOD_ID, 0, 1,
25826 					    SL_ERROR|SL_TRACE,
25827 					    "tcp_bind: no priv for port %d",
25828 					    requested_port);
25829 				}
25830 				return (-TACCES);
25831 			}
25832 		}
25833 		user_specified = B_TRUE;
25834 
25835 		connp = tcp->tcp_connp;
25836 		if (is_system_labeled()) {
25837 			zone = crgetzone(cr);
25838 			addrtype = tsol_mlp_addr_type(zone->zone_id,
25839 			    IPV6_VERSION, &v6addr,
25840 			    tcps->tcps_netstack->netstack_ip);
25841 			if (addrtype == mlptSingle) {
25842 				return (-TNOADDR);
25843 			}
25844 			mlptype = tsol_mlp_port_type(zone, IPPROTO_TCP,
25845 			    requested_port, addrtype);
25846 		}
25847 	}
25848 
25849 	if (mlptype != mlptSingle) {
25850 		if (secpolicy_net_bindmlp(cr) != 0) {
25851 			if (tcp->tcp_debug) {
25852 				(void) strlog(TCP_MOD_ID, 0, 1,
25853 				    SL_ERROR|SL_TRACE,
25854 				    "tcp_bind: no priv for multilevel port %d",
25855 				    requested_port);
25856 			}
25857 			return (-TACCES);
25858 		}
25859 
25860 		/*
25861 		 * If we're specifically binding a shared IP address and the
25862 		 * port is MLP on shared addresses, then check to see if this
25863 		 * zone actually owns the MLP.  Reject if not.
25864 		 */
25865 		if (mlptype == mlptShared && addrtype == mlptShared) {
25866 			/*
25867 			 * No need to handle exclusive-stack zones since
25868 			 * ALL_ZONES only applies to the shared stack.
25869 			 */
25870 			zoneid_t mlpzone;
25871 
25872 			mlpzone = tsol_mlp_findzone(IPPROTO_TCP,
25873 			    htons(mlp_port));
25874 			if (connp->conn_zoneid != mlpzone) {
25875 				if (tcp->tcp_debug) {
25876 					(void) strlog(TCP_MOD_ID, 0, 1,
25877 					    SL_ERROR|SL_TRACE,
25878 					    "tcp_bind: attempt to bind port "
25879 					    "%d on shared addr in zone %d "
25880 					    "(should be %d)",
25881 					    mlp_port, connp->conn_zoneid,
25882 					    mlpzone);
25883 				}
25884 				return (-TACCES);
25885 			}
25886 		}
25887 
25888 		if (!user_specified) {
25889 			int err;
25890 			err = tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
25891 			    requested_port, B_TRUE);
25892 			if (err != 0) {
25893 				if (tcp->tcp_debug) {
25894 					(void) strlog(TCP_MOD_ID, 0, 1,
25895 					    SL_ERROR|SL_TRACE,
25896 					    "tcp_bind: cannot establish anon "
25897 					    "MLP for port %d",
25898 					    requested_port);
25899 				}
25900 				return (err);
25901 			}
25902 			connp->conn_anon_port = B_TRUE;
25903 		}
25904 		connp->conn_mlp_type = mlptype;
25905 	}
25906 
25907 	allocated_port = tcp_bindi(tcp, requested_port, &v6addr,
25908 	    tcp->tcp_reuseaddr, B_FALSE, bind_to_req_port_only, user_specified);
25909 
25910 	if (allocated_port == 0) {
25911 		connp->conn_mlp_type = mlptSingle;
25912 		if (connp->conn_anon_port) {
25913 			connp->conn_anon_port = B_FALSE;
25914 			(void) tsol_mlp_anon(zone, mlptype, connp->conn_ulp,
25915 			    requested_port, B_FALSE);
25916 		}
25917 		if (bind_to_req_port_only) {
25918 			if (tcp->tcp_debug) {
25919 				(void) strlog(TCP_MOD_ID, 0, 1,
25920 				    SL_ERROR|SL_TRACE,
25921 				    "tcp_bind: requested addr busy");
25922 			}
25923 			return (-TADDRBUSY);
25924 		} else {
25925 			/* If we are out of ports, fail the bind. */
25926 			if (tcp->tcp_debug) {
25927 				(void) strlog(TCP_MOD_ID, 0, 1,
25928 				    SL_ERROR|SL_TRACE,
25929 				    "tcp_bind: out of ports?");
25930 			}
25931 			return (-TNOADDR);
25932 		}
25933 	}
25934 
25935 	/* Pass the allocated port back */
25936 	*requested_port_ptr = allocated_port;
25937 	return (0);
25938 }
25939 
25940 static int
25941 tcp_bind_check(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
25942     boolean_t bind_to_req_port_only)
25943 {
25944 	tcp_t	*tcp = connp->conn_tcp;
25945 	sin_t	*sin;
25946 	sin6_t  *sin6;
25947 	in_port_t requested_port;
25948 	ipaddr_t	v4addr;
25949 	in6_addr_t	v6addr;
25950 	uint_t	origipversion;
25951 	int	error = 0;
25952 
25953 	ASSERT((uintptr_t)len <= (uintptr_t)INT_MAX);
25954 
25955 	if (tcp->tcp_state == TCPS_BOUND) {
25956 		return (0);
25957 	} else if (tcp->tcp_state > TCPS_BOUND) {
25958 		if (tcp->tcp_debug) {
25959 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
25960 			    "tcp_bind: bad state, %d", tcp->tcp_state);
25961 		}
25962 		return (-TOUTSTATE);
25963 	}
25964 	origipversion = tcp->tcp_ipversion;
25965 
25966 	ASSERT(sa != NULL && len != 0);
25967 
25968 	if (!OK_32PTR((char *)sa)) {
25969 		if (tcp->tcp_debug) {
25970 			(void) strlog(TCP_MOD_ID, 0, 1,
25971 			    SL_ERROR|SL_TRACE,
25972 			    "tcp_bind: bad address parameter, "
25973 			    "address %p, len %d",
25974 			    (void *)sa, len);
25975 		}
25976 		return (-TPROTO);
25977 	}
25978 
25979 	switch (len) {
25980 	case sizeof (sin_t):	/* Complete IPv4 address */
25981 		sin = (sin_t *)sa;
25982 		/*
25983 		 * With sockets sockfs will accept bogus sin_family in
25984 		 * bind() and replace it with the family used in the socket
25985 		 * call.
25986 		 */
25987 		if (sin->sin_family != AF_INET ||
25988 		    tcp->tcp_family != AF_INET) {
25989 			return (EAFNOSUPPORT);
25990 		}
25991 		requested_port = ntohs(sin->sin_port);
25992 		tcp->tcp_ipversion = IPV4_VERSION;
25993 		v4addr = sin->sin_addr.s_addr;
25994 		IN6_IPADDR_TO_V4MAPPED(v4addr, &v6addr);
25995 		break;
25996 
25997 	case sizeof (sin6_t): /* Complete IPv6 address */
25998 		sin6 = (sin6_t *)sa;
25999 		if (sin6->sin6_family != AF_INET6 ||
26000 		    tcp->tcp_family != AF_INET6) {
26001 			return (EAFNOSUPPORT);
26002 		}
26003 		requested_port = ntohs(sin6->sin6_port);
26004 		tcp->tcp_ipversion = IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr) ?
26005 		    IPV4_VERSION : IPV6_VERSION;
26006 		v6addr = sin6->sin6_addr;
26007 		break;
26008 
26009 	default:
26010 		if (tcp->tcp_debug) {
26011 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
26012 			    "tcp_bind: bad address length, %d", len);
26013 		}
26014 		return (EAFNOSUPPORT);
26015 		/* return (-TBADADDR); */
26016 	}
26017 
26018 	tcp->tcp_bound_source_v6 = v6addr;
26019 
26020 	/* Check for change in ipversion */
26021 	if (origipversion != tcp->tcp_ipversion) {
26022 		ASSERT(tcp->tcp_family == AF_INET6);
26023 		error = tcp->tcp_ipversion == IPV6_VERSION ?
26024 		    tcp_header_init_ipv6(tcp) : tcp_header_init_ipv4(tcp);
26025 		if (error) {
26026 			return (ENOMEM);
26027 		}
26028 	}
26029 
26030 	/*
26031 	 * Initialize family specific fields. Copy of the src addr.
26032 	 * in tcp_t is needed for the lookup funcs.
26033 	 */
26034 	if (tcp->tcp_ipversion == IPV6_VERSION) {
26035 		tcp->tcp_ip6h->ip6_src = v6addr;
26036 	} else {
26037 		IN6_V4MAPPED_TO_IPADDR(&v6addr, tcp->tcp_ipha->ipha_src);
26038 	}
26039 	tcp->tcp_ip_src_v6 = v6addr;
26040 
26041 	bind_to_req_port_only = requested_port != 0 && bind_to_req_port_only;
26042 
26043 	error = tcp_bind_select_lport(tcp, &requested_port,
26044 	    bind_to_req_port_only, cr);
26045 
26046 	return (error);
26047 }
26048 
26049 /*
26050  * Return unix error is tli error is TSYSERR, otherwise return a negative
26051  * tli error.
26052  */
26053 int
26054 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr,
26055     boolean_t bind_to_req_port_only)
26056 {
26057 	int error;
26058 	tcp_t *tcp = connp->conn_tcp;
26059 
26060 	if (tcp->tcp_state >= TCPS_BOUND) {
26061 		if (tcp->tcp_debug) {
26062 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
26063 			    "tcp_bind: bad state, %d", tcp->tcp_state);
26064 		}
26065 		return (-TOUTSTATE);
26066 	}
26067 
26068 	error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only);
26069 	if (error != 0)
26070 		return (error);
26071 
26072 	ASSERT(tcp->tcp_state == TCPS_BOUND);
26073 
26074 	tcp->tcp_conn_req_max = 0;
26075 
26076 	if (tcp->tcp_family == AF_INET6) {
26077 		ASSERT(tcp->tcp_connp->conn_af_isv6);
26078 		error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP,
26079 		    &tcp->tcp_bound_source_v6, 0, B_FALSE);
26080 	} else {
26081 		ASSERT(!tcp->tcp_connp->conn_af_isv6);
26082 		error = ip_proto_bind_laddr_v4(connp, NULL, IPPROTO_TCP,
26083 		    tcp->tcp_ipha->ipha_src, 0, B_FALSE);
26084 	}
26085 	return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0));
26086 }
26087 
26088 int
26089 tcp_bind(sock_lower_handle_t proto_handle, struct sockaddr *sa,
26090     socklen_t len, cred_t *cr)
26091 {
26092 	int 		error;
26093 	conn_t		*connp = (conn_t *)proto_handle;
26094 	squeue_t	*sqp = connp->conn_sqp;
26095 
26096 	/* All Solaris components should pass a cred for this operation. */
26097 	ASSERT(cr != NULL);
26098 
26099 	ASSERT(sqp != NULL);
26100 	ASSERT(connp->conn_upper_handle != NULL);
26101 
26102 	error = squeue_synch_enter(sqp, connp, NULL);
26103 	if (error != 0) {
26104 		/* failed to enter */
26105 		return (ENOSR);
26106 	}
26107 
26108 	/* binding to a NULL address really means unbind */
26109 	if (sa == NULL) {
26110 		if (connp->conn_tcp->tcp_state < TCPS_LISTEN)
26111 			error = tcp_do_unbind(connp);
26112 		else
26113 			error = EINVAL;
26114 	} else {
26115 		error = tcp_do_bind(connp, sa, len, cr, B_TRUE);
26116 	}
26117 
26118 	squeue_synch_exit(sqp, connp);
26119 
26120 	if (error < 0) {
26121 		if (error == -TOUTSTATE)
26122 			error = EINVAL;
26123 		else
26124 			error = proto_tlitosyserr(-error);
26125 	}
26126 
26127 	return (error);
26128 }
26129 
26130 /*
26131  * If the return value from this function is positive, it's a UNIX error.
26132  * Otherwise, if it's negative, then the absolute value is a TLI error.
26133  * the TPI routine tcp_tpi_connect() is a wrapper function for this.
26134  */
26135 int
26136 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len,
26137     cred_t *cr, pid_t pid)
26138 {
26139 	tcp_t		*tcp = connp->conn_tcp;
26140 	sin_t		*sin = (sin_t *)sa;
26141 	sin6_t		*sin6 = (sin6_t *)sa;
26142 	ipaddr_t	*dstaddrp;
26143 	in_port_t	dstport;
26144 	uint_t		srcid;
26145 	int		error = 0;
26146 
26147 	switch (len) {
26148 	default:
26149 		/*
26150 		 * Should never happen
26151 		 */
26152 		return (EINVAL);
26153 
26154 	case sizeof (sin_t):
26155 		sin = (sin_t *)sa;
26156 		if (sin->sin_port == 0) {
26157 			return (-TBADADDR);
26158 		}
26159 		if (tcp->tcp_connp && tcp->tcp_connp->conn_ipv6_v6only) {
26160 			return (EAFNOSUPPORT);
26161 		}
26162 		break;
26163 
26164 	case sizeof (sin6_t):
26165 		sin6 = (sin6_t *)sa;
26166 		if (sin6->sin6_port == 0) {
26167 			return (-TBADADDR);
26168 		}
26169 		break;
26170 	}
26171 	/*
26172 	 * If we're connecting to an IPv4-mapped IPv6 address, we need to
26173 	 * make sure that the template IP header in the tcp structure is an
26174 	 * IPv4 header, and that the tcp_ipversion is IPV4_VERSION.  We
26175 	 * need to this before we call tcp_bindi() so that the port lookup
26176 	 * code will look for ports in the correct port space (IPv4 and
26177 	 * IPv6 have separate port spaces).
26178 	 */
26179 	if (tcp->tcp_family == AF_INET6 && tcp->tcp_ipversion == IPV6_VERSION &&
26180 	    IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
26181 		int err = 0;
26182 
26183 		err = tcp_header_init_ipv4(tcp);
26184 			if (err != 0) {
26185 				error = ENOMEM;
26186 				goto connect_failed;
26187 			}
26188 		if (tcp->tcp_lport != 0)
26189 			*(uint16_t *)tcp->tcp_tcph->th_lport = tcp->tcp_lport;
26190 	}
26191 
26192 	switch (tcp->tcp_state) {
26193 	case TCPS_LISTEN:
26194 		/*
26195 		 * Listening sockets are not allowed to issue connect().
26196 		 */
26197 		if (IPCL_IS_NONSTR(connp))
26198 			return (EOPNOTSUPP);
26199 		/* FALLTHRU */
26200 	case TCPS_IDLE:
26201 		/*
26202 		 * We support quick connect, refer to comments in
26203 		 * tcp_connect_*()
26204 		 */
26205 		/* FALLTHRU */
26206 	case TCPS_BOUND:
26207 		/*
26208 		 * We must bump the generation before the operation start.
26209 		 * This is done to ensure that any upcall made later on sends
26210 		 * up the right generation to the socket.
26211 		 */
26212 		SOCK_CONNID_BUMP(tcp->tcp_connid);
26213 
26214 		if (tcp->tcp_family == AF_INET6) {
26215 			if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
26216 				return (tcp_connect_ipv6(tcp,
26217 				    &sin6->sin6_addr,
26218 				    sin6->sin6_port, sin6->sin6_flowinfo,
26219 				    sin6->__sin6_src_id, sin6->sin6_scope_id,
26220 				    cr, pid));
26221 			}
26222 			/*
26223 			 * Destination adress is mapped IPv6 address.
26224 			 * Source bound address should be unspecified or
26225 			 * IPv6 mapped address as well.
26226 			 */
26227 			if (!IN6_IS_ADDR_UNSPECIFIED(
26228 			    &tcp->tcp_bound_source_v6) &&
26229 			    !IN6_IS_ADDR_V4MAPPED(&tcp->tcp_bound_source_v6)) {
26230 				return (EADDRNOTAVAIL);
26231 			}
26232 			dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr));
26233 			dstport = sin6->sin6_port;
26234 			srcid = sin6->__sin6_src_id;
26235 		} else {
26236 			dstaddrp = &sin->sin_addr.s_addr;
26237 			dstport = sin->sin_port;
26238 			srcid = 0;
26239 		}
26240 
26241 		error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid, cr,
26242 		    pid);
26243 		break;
26244 	default:
26245 		return (-TOUTSTATE);
26246 	}
26247 	/*
26248 	 * Note: Code below is the "failure" case
26249 	 */
26250 connect_failed:
26251 	if (tcp->tcp_conn.tcp_opts_conn_req != NULL)
26252 		tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req);
26253 	return (error);
26254 }
26255 
26256 int
26257 tcp_connect(sock_lower_handle_t proto_handle, const struct sockaddr *sa,
26258     socklen_t len, sock_connid_t *id, cred_t *cr)
26259 {
26260 	conn_t		*connp = (conn_t *)proto_handle;
26261 	tcp_t		*tcp = connp->conn_tcp;
26262 	squeue_t	*sqp = connp->conn_sqp;
26263 	int		error;
26264 
26265 	ASSERT(connp->conn_upper_handle != NULL);
26266 
26267 	/* All Solaris components should pass a cred for this operation. */
26268 	ASSERT(cr != NULL);
26269 
26270 	error = proto_verify_ip_addr(tcp->tcp_family, sa, len);
26271 	if (error != 0) {
26272 		return (error);
26273 	}
26274 
26275 	error = squeue_synch_enter(sqp, connp, NULL);
26276 	if (error != 0) {
26277 		/* failed to enter */
26278 		return (ENOSR);
26279 	}
26280 
26281 	/*
26282 	 * TCP supports quick connect, so no need to do an implicit bind
26283 	 */
26284 	error = tcp_do_connect(connp, sa, len, cr, curproc->p_pid);
26285 	if (error == 0) {
26286 		*id = connp->conn_tcp->tcp_connid;
26287 	} else if (error < 0) {
26288 		if (error == -TOUTSTATE) {
26289 			switch (connp->conn_tcp->tcp_state) {
26290 			case TCPS_SYN_SENT:
26291 				error = EALREADY;
26292 				break;
26293 			case TCPS_ESTABLISHED:
26294 				error = EISCONN;
26295 				break;
26296 			case TCPS_LISTEN:
26297 				error = EOPNOTSUPP;
26298 				break;
26299 			default:
26300 				error = EINVAL;
26301 				break;
26302 			}
26303 		} else {
26304 			error = proto_tlitosyserr(-error);
26305 		}
26306 	}
26307 done:
26308 	squeue_synch_exit(sqp, connp);
26309 
26310 	return ((error == 0) ? EINPROGRESS : error);
26311 }
26312 
26313 /* ARGSUSED */
26314 sock_lower_handle_t
26315 tcp_create(int family, int type, int proto, sock_downcalls_t **sock_downcalls,
26316     uint_t *smodep, int *errorp, int flags, cred_t *credp)
26317 {
26318 	conn_t		*connp;
26319 	boolean_t	isv6 = family == AF_INET6;
26320 	if (type != SOCK_STREAM || (family != AF_INET && family != AF_INET6) ||
26321 	    (proto != 0 && proto != IPPROTO_TCP)) {
26322 		*errorp = EPROTONOSUPPORT;
26323 		return (NULL);
26324 	}
26325 
26326 	connp = tcp_create_common(NULL, credp, isv6, B_TRUE, errorp);
26327 	if (connp == NULL) {
26328 		return (NULL);
26329 	}
26330 
26331 	/*
26332 	 * Put the ref for TCP. Ref for IP was already put
26333 	 * by ipcl_conn_create. Also Make the conn_t globally
26334 	 * visible to walkers
26335 	 */
26336 	mutex_enter(&connp->conn_lock);
26337 	CONN_INC_REF_LOCKED(connp);
26338 	ASSERT(connp->conn_ref == 2);
26339 	connp->conn_state_flags &= ~CONN_INCIPIENT;
26340 
26341 	connp->conn_flags |= IPCL_NONSTR;
26342 	mutex_exit(&connp->conn_lock);
26343 
26344 	ASSERT(errorp != NULL);
26345 	*errorp = 0;
26346 	*sock_downcalls = &sock_tcp_downcalls;
26347 	*smodep = SM_CONNREQUIRED | SM_EXDATA | SM_ACCEPTSUPP |
26348 	    SM_SENDFILESUPP;
26349 
26350 	return ((sock_lower_handle_t)connp);
26351 }
26352 
26353 /* ARGSUSED */
26354 void
26355 tcp_activate(sock_lower_handle_t proto_handle, sock_upper_handle_t sock_handle,
26356     sock_upcalls_t *sock_upcalls, int flags, cred_t *cr)
26357 {
26358 	conn_t *connp = (conn_t *)proto_handle;
26359 	struct sock_proto_props sopp;
26360 
26361 	ASSERT(connp->conn_upper_handle == NULL);
26362 
26363 	/* All Solaris components should pass a cred for this operation. */
26364 	ASSERT(cr != NULL);
26365 
26366 	sopp.sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_RCVLOWAT |
26367 	    SOCKOPT_MAXPSZ | SOCKOPT_MAXBLK | SOCKOPT_RCVTIMER |
26368 	    SOCKOPT_RCVTHRESH | SOCKOPT_MAXADDRLEN | SOCKOPT_MINPSZ;
26369 
26370 	sopp.sopp_rxhiwat = SOCKET_RECVHIWATER;
26371 	sopp.sopp_rxlowat = SOCKET_RECVLOWATER;
26372 	sopp.sopp_maxpsz = INFPSZ;
26373 	sopp.sopp_maxblk = INFPSZ;
26374 	sopp.sopp_rcvtimer = SOCKET_TIMER_INTERVAL;
26375 	sopp.sopp_rcvthresh = SOCKET_RECVHIWATER >> 3;
26376 	sopp.sopp_maxaddrlen = sizeof (sin6_t);
26377 	sopp.sopp_minpsz = (tcp_rinfo.mi_minpsz == 1) ? 0 :
26378 	    tcp_rinfo.mi_minpsz;
26379 
26380 	connp->conn_upcalls = sock_upcalls;
26381 	connp->conn_upper_handle = sock_handle;
26382 
26383 	(*sock_upcalls->su_set_proto_props)(sock_handle, &sopp);
26384 }
26385 
26386 /* ARGSUSED */
26387 int
26388 tcp_close(sock_lower_handle_t proto_handle, int flags, cred_t *cr)
26389 {
26390 	conn_t *connp = (conn_t *)proto_handle;
26391 
26392 	ASSERT(connp->conn_upper_handle != NULL);
26393 
26394 	/* All Solaris components should pass a cred for this operation. */
26395 	ASSERT(cr != NULL);
26396 
26397 	tcp_close_common(connp, flags);
26398 
26399 	ip_free_helper_stream(connp);
26400 
26401 	/*
26402 	 * Drop IP's reference on the conn. This is the last reference
26403 	 * on the connp if the state was less than established. If the
26404 	 * connection has gone into timewait state, then we will have
26405 	 * one ref for the TCP and one more ref (total of two) for the
26406 	 * classifier connected hash list (a timewait connections stays
26407 	 * in connected hash till closed).
26408 	 *
26409 	 * We can't assert the references because there might be other
26410 	 * transient reference places because of some walkers or queued
26411 	 * packets in squeue for the timewait state.
26412 	 */
26413 	CONN_DEC_REF(connp);
26414 	return (0);
26415 }
26416 
26417 /* ARGSUSED */
26418 int
26419 tcp_sendmsg(sock_lower_handle_t proto_handle, mblk_t *mp, struct nmsghdr *msg,
26420     cred_t *cr)
26421 {
26422 	tcp_t		*tcp;
26423 	uint32_t	msize;
26424 	conn_t *connp = (conn_t *)proto_handle;
26425 	int32_t		tcpstate;
26426 
26427 	/* All Solaris components should pass a cred for this operation. */
26428 	ASSERT(cr != NULL);
26429 
26430 	ASSERT(connp->conn_ref >= 2);
26431 	ASSERT(connp->conn_upper_handle != NULL);
26432 
26433 	if (msg->msg_controllen != 0) {
26434 		return (EOPNOTSUPP);
26435 
26436 	}
26437 	switch (DB_TYPE(mp)) {
26438 	case M_DATA:
26439 		tcp = connp->conn_tcp;
26440 		ASSERT(tcp != NULL);
26441 
26442 		tcpstate = tcp->tcp_state;
26443 		if (tcpstate < TCPS_ESTABLISHED) {
26444 			freemsg(mp);
26445 			return (ENOTCONN);
26446 		} else if (tcpstate > TCPS_CLOSE_WAIT) {
26447 			freemsg(mp);
26448 			return (EPIPE);
26449 		}
26450 
26451 		msize = msgdsize(mp);
26452 
26453 		mutex_enter(&tcp->tcp_non_sq_lock);
26454 		tcp->tcp_squeue_bytes += msize;
26455 		/*
26456 		 * Squeue Flow Control
26457 		 */
26458 		if (TCP_UNSENT_BYTES(tcp) > tcp->tcp_xmit_hiwater) {
26459 			tcp_setqfull(tcp);
26460 		}
26461 		mutex_exit(&tcp->tcp_non_sq_lock);
26462 
26463 		/*
26464 		 * The application may pass in an address in the msghdr, but
26465 		 * we ignore the address on connection-oriented sockets.
26466 		 * Just like BSD this code does not generate an error for
26467 		 * TCP (a CONNREQUIRED socket) when sending to an address
26468 		 * passed in with sendto/sendmsg. Instead the data is
26469 		 * delivered on the connection as if no address had been
26470 		 * supplied.
26471 		 */
26472 		CONN_INC_REF(connp);
26473 
26474 		if (msg != NULL && msg->msg_flags & MSG_OOB) {
26475 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
26476 			    tcp_output_urgent, connp, tcp_squeue_flag,
26477 			    SQTAG_TCP_OUTPUT);
26478 		} else {
26479 			SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_output,
26480 			    connp, tcp_squeue_flag, SQTAG_TCP_OUTPUT);
26481 		}
26482 
26483 		return (0);
26484 
26485 	default:
26486 		ASSERT(0);
26487 	}
26488 
26489 	freemsg(mp);
26490 	return (0);
26491 }
26492 
26493 /* ARGSUSED */
26494 void
26495 tcp_output_urgent(void *arg, mblk_t *mp, void *arg2)
26496 {
26497 	int len;
26498 	uint32_t msize;
26499 	conn_t *connp = (conn_t *)arg;
26500 	tcp_t *tcp = connp->conn_tcp;
26501 
26502 	msize = msgdsize(mp);
26503 
26504 	len = msize - 1;
26505 	if (len < 0) {
26506 		freemsg(mp);
26507 		return;
26508 	}
26509 
26510 	/*
26511 	 * Try to force urgent data out on the wire.
26512 	 * Even if we have unsent data this will
26513 	 * at least send the urgent flag.
26514 	 * XXX does not handle more flag correctly.
26515 	 */
26516 	len += tcp->tcp_unsent;
26517 	len += tcp->tcp_snxt;
26518 	tcp->tcp_urg = len;
26519 	tcp->tcp_valid_bits |= TCP_URG_VALID;
26520 
26521 	/* Bypass tcp protocol for fused tcp loopback */
26522 	if (tcp->tcp_fused && tcp_fuse_output(tcp, mp, msize))
26523 		return;
26524 	tcp_wput_data(tcp, mp, B_TRUE);
26525 }
26526 
26527 /* ARGSUSED */
26528 int
26529 tcp_getpeername(sock_lower_handle_t proto_handle, struct sockaddr *addr,
26530     socklen_t *addrlenp, cred_t *cr)
26531 {
26532 	conn_t	*connp = (conn_t *)proto_handle;
26533 	tcp_t	*tcp = connp->conn_tcp;
26534 
26535 	ASSERT(connp->conn_upper_handle != NULL);
26536 	/* All Solaris components should pass a cred for this operation. */
26537 	ASSERT(cr != NULL);
26538 
26539 	ASSERT(tcp != NULL);
26540 
26541 	return (tcp_do_getpeername(tcp, addr, addrlenp));
26542 }
26543 
26544 /* ARGSUSED */
26545 int
26546 tcp_getsockname(sock_lower_handle_t proto_handle, struct sockaddr *addr,
26547     socklen_t *addrlenp, cred_t *cr)
26548 {
26549 	conn_t	*connp = (conn_t *)proto_handle;
26550 	tcp_t	*tcp = connp->conn_tcp;
26551 
26552 	/* All Solaris components should pass a cred for this operation. */
26553 	ASSERT(cr != NULL);
26554 
26555 	ASSERT(connp->conn_upper_handle != NULL);
26556 
26557 	return (tcp_do_getsockname(tcp, addr, addrlenp));
26558 }
26559 
26560 /*
26561  * tcp_fallback
26562  *
26563  * A direct socket is falling back to using STREAMS. The queue
26564  * that is being passed down was created using tcp_open() with
26565  * the SO_FALLBACK flag set. As a result, the queue is not
26566  * associated with a conn, and the q_ptrs instead contain the
26567  * dev and minor area that should be used.
26568  *
26569  * The 'direct_sockfs' flag indicates whether the FireEngine
26570  * optimizations should be used. The common case would be that
26571  * optimizations are enabled, and they might be subsequently
26572  * disabled using the _SIOCSOCKFALLBACK ioctl.
26573  */
26574 
26575 /*
26576  * An active connection is falling back to TPI. Gather all the information
26577  * required by the STREAM head and TPI sonode and send it up.
26578  */
26579 void
26580 tcp_fallback_noneager(tcp_t *tcp, mblk_t *stropt_mp, queue_t *q,
26581     boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb)
26582 {
26583 	conn_t			*connp = tcp->tcp_connp;
26584 	struct stroptions	*stropt;
26585 	struct T_capability_ack tca;
26586 	struct sockaddr_in6	laddr, faddr;
26587 	socklen_t 		laddrlen, faddrlen;
26588 	short			opts;
26589 	int			error;
26590 	mblk_t			*mp;
26591 
26592 	connp->conn_dev = (dev_t)RD(q)->q_ptr;
26593 	connp->conn_minor_arena = WR(q)->q_ptr;
26594 
26595 	RD(q)->q_ptr = WR(q)->q_ptr = connp;
26596 
26597 	connp->conn_tcp->tcp_rq = connp->conn_rq = RD(q);
26598 	connp->conn_tcp->tcp_wq = connp->conn_wq = WR(q);
26599 
26600 	WR(q)->q_qinfo = &tcp_sock_winit;
26601 
26602 	if (!direct_sockfs)
26603 		tcp_disable_direct_sockfs(tcp);
26604 
26605 	/*
26606 	 * free the helper stream
26607 	 */
26608 	ip_free_helper_stream(connp);
26609 
26610 	/*
26611 	 * Notify the STREAM head about options
26612 	 */
26613 	DB_TYPE(stropt_mp) = M_SETOPTS;
26614 	stropt = (struct stroptions *)stropt_mp->b_rptr;
26615 	stropt_mp->b_wptr += sizeof (struct stroptions);
26616 	stropt->so_flags = SO_HIWAT | SO_WROFF | SO_MAXBLK;
26617 
26618 	stropt->so_wroff = tcp->tcp_hdr_len + (tcp->tcp_loopback ? 0 :
26619 	    tcp->tcp_tcps->tcps_wroff_xtra);
26620 	if (tcp->tcp_snd_sack_ok)
26621 		stropt->so_wroff += TCPOPT_MAX_SACK_LEN;
26622 	stropt->so_hiwat = tcp->tcp_fused ?
26623 	    tcp_fuse_set_rcv_hiwat(tcp, tcp->tcp_recv_hiwater) :
26624 	    MAX(tcp->tcp_recv_hiwater, tcp->tcp_tcps->tcps_sth_rcv_hiwat);
26625 	stropt->so_maxblk = tcp_maxpsz_set(tcp, B_FALSE);
26626 
26627 	putnext(RD(q), stropt_mp);
26628 
26629 	/*
26630 	 * Collect the information needed to sync with the sonode
26631 	 */
26632 	tcp_do_capability_ack(tcp, &tca, TC1_INFO|TC1_ACCEPTOR_ID);
26633 
26634 	laddrlen = faddrlen = sizeof (sin6_t);
26635 	(void) tcp_do_getsockname(tcp, (struct sockaddr *)&laddr, &laddrlen);
26636 	error = tcp_do_getpeername(tcp, (struct sockaddr *)&faddr, &faddrlen);
26637 	if (error != 0)
26638 		faddrlen = 0;
26639 
26640 	opts = 0;
26641 	if (tcp->tcp_oobinline)
26642 		opts |= SO_OOBINLINE;
26643 	if (tcp->tcp_dontroute)
26644 		opts |= SO_DONTROUTE;
26645 
26646 	/*
26647 	 * Notify the socket that the protocol is now quiescent,
26648 	 * and it's therefore safe move data from the socket
26649 	 * to the stream head.
26650 	 */
26651 	(*quiesced_cb)(connp->conn_upper_handle, q, &tca,
26652 	    (struct sockaddr *)&laddr, laddrlen,
26653 	    (struct sockaddr *)&faddr, faddrlen, opts);
26654 
26655 	while ((mp = tcp->tcp_rcv_list) != NULL) {
26656 		tcp->tcp_rcv_list = mp->b_next;
26657 		mp->b_next = NULL;
26658 		putnext(q, mp);
26659 	}
26660 	tcp->tcp_rcv_last_head = NULL;
26661 	tcp->tcp_rcv_last_tail = NULL;
26662 	tcp->tcp_rcv_cnt = 0;
26663 }
26664 
26665 /*
26666  * An eager is falling back to TPI. All we have to do is send
26667  * up a T_CONN_IND.
26668  */
26669 void
26670 tcp_fallback_eager(tcp_t *eager, boolean_t direct_sockfs)
26671 {
26672 	tcp_t *listener = eager->tcp_listener;
26673 	mblk_t *mp = eager->tcp_conn.tcp_eager_conn_ind;
26674 
26675 	ASSERT(listener != NULL);
26676 	ASSERT(mp != NULL);
26677 
26678 	eager->tcp_conn.tcp_eager_conn_ind = NULL;
26679 
26680 	/*
26681 	 * TLI/XTI applications will get confused by
26682 	 * sending eager as an option since it violates
26683 	 * the option semantics. So remove the eager as
26684 	 * option since TLI/XTI app doesn't need it anyway.
26685 	 */
26686 	if (!direct_sockfs) {
26687 		struct T_conn_ind *conn_ind;
26688 
26689 		conn_ind = (struct T_conn_ind *)mp->b_rptr;
26690 		conn_ind->OPT_length = 0;
26691 		conn_ind->OPT_offset = 0;
26692 	}
26693 
26694 	/*
26695 	 * Sockfs guarantees that the listener will not be closed
26696 	 * during fallback. So we can safely use the listener's queue.
26697 	 */
26698 	putnext(listener->tcp_rq, mp);
26699 }
26700 
26701 int
26702 tcp_fallback(sock_lower_handle_t proto_handle, queue_t *q,
26703     boolean_t direct_sockfs, so_proto_quiesced_cb_t quiesced_cb)
26704 {
26705 	tcp_t			*tcp;
26706 	conn_t 			*connp = (conn_t *)proto_handle;
26707 	int			error;
26708 	mblk_t			*stropt_mp;
26709 	mblk_t			*ordrel_mp;
26710 	mblk_t			*fused_sigurp_mp;
26711 
26712 	tcp = connp->conn_tcp;
26713 
26714 	stropt_mp = allocb_wait(sizeof (struct stroptions), BPRI_HI, STR_NOSIG,
26715 	    NULL);
26716 
26717 	/* Pre-allocate the T_ordrel_ind mblk. */
26718 	ASSERT(tcp->tcp_ordrel_mp == NULL);
26719 	ordrel_mp = allocb_wait(sizeof (struct T_ordrel_ind), BPRI_HI,
26720 	    STR_NOSIG, NULL);
26721 	ordrel_mp->b_datap->db_type = M_PROTO;
26722 	((struct T_ordrel_ind *)ordrel_mp->b_rptr)->PRIM_type = T_ORDREL_IND;
26723 	ordrel_mp->b_wptr += sizeof (struct T_ordrel_ind);
26724 
26725 	/* Pre-allocate the M_PCSIG used by fusion */
26726 	fused_sigurp_mp = allocb_wait(1, BPRI_HI, STR_NOSIG, NULL);
26727 
26728 	/*
26729 	 * Enter the squeue so that no new packets can come in
26730 	 */
26731 	error = squeue_synch_enter(connp->conn_sqp, connp, NULL);
26732 	if (error != 0) {
26733 		/* failed to enter, free all the pre-allocated messages. */
26734 		freeb(stropt_mp);
26735 		freeb(ordrel_mp);
26736 		freeb(fused_sigurp_mp);
26737 		/*
26738 		 * We cannot process the eager, so at least send out a
26739 		 * RST so the peer can reconnect.
26740 		 */
26741 		if (tcp->tcp_listener != NULL) {
26742 			(void) tcp_eager_blowoff(tcp->tcp_listener,
26743 			    tcp->tcp_conn_req_seqnum);
26744 		}
26745 		return (ENOMEM);
26746 	}
26747 
26748 	/*
26749 	 * No longer a direct socket
26750 	 */
26751 	connp->conn_flags &= ~IPCL_NONSTR;
26752 
26753 	tcp->tcp_ordrel_mp = ordrel_mp;
26754 
26755 	if (tcp->tcp_fused) {
26756 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
26757 		tcp->tcp_fused_sigurg_mp = fused_sigurp_mp;
26758 	} else {
26759 		freeb(fused_sigurp_mp);
26760 	}
26761 
26762 	if (tcp->tcp_listener != NULL) {
26763 		/* The eager will deal with opts when accept() is called */
26764 		freeb(stropt_mp);
26765 		tcp_fallback_eager(tcp, direct_sockfs);
26766 	} else {
26767 		tcp_fallback_noneager(tcp, stropt_mp, q, direct_sockfs,
26768 		    quiesced_cb);
26769 	}
26770 
26771 	/*
26772 	 * There should be atleast two ref's (IP + TCP)
26773 	 */
26774 	ASSERT(connp->conn_ref >= 2);
26775 	squeue_synch_exit(connp->conn_sqp, connp);
26776 
26777 	return (0);
26778 }
26779 
26780 /* ARGSUSED */
26781 static void
26782 tcp_shutdown_output(void *arg, mblk_t *mp, void *arg2)
26783 {
26784 	conn_t 	*connp = (conn_t *)arg;
26785 	tcp_t	*tcp = connp->conn_tcp;
26786 
26787 	freemsg(mp);
26788 
26789 	if (tcp->tcp_fused)
26790 		tcp_unfuse(tcp);
26791 
26792 	if (tcp_xmit_end(tcp) != 0) {
26793 		/*
26794 		 * We were crossing FINs and got a reset from
26795 		 * the other side. Just ignore it.
26796 		 */
26797 		if (tcp->tcp_debug) {
26798 			(void) strlog(TCP_MOD_ID, 0, 1,
26799 			    SL_ERROR|SL_TRACE,
26800 			    "tcp_shutdown_output() out of state %s",
26801 			    tcp_display(tcp, NULL, DISP_ADDR_AND_PORT));
26802 		}
26803 	}
26804 }
26805 
26806 /* ARGSUSED */
26807 int
26808 tcp_shutdown(sock_lower_handle_t proto_handle, int how, cred_t *cr)
26809 {
26810 	conn_t  *connp = (conn_t *)proto_handle;
26811 	tcp_t   *tcp = connp->conn_tcp;
26812 
26813 	ASSERT(connp->conn_upper_handle != NULL);
26814 
26815 	/* All Solaris components should pass a cred for this operation. */
26816 	ASSERT(cr != NULL);
26817 
26818 	/*
26819 	 * X/Open requires that we check the connected state.
26820 	 */
26821 	if (tcp->tcp_state < TCPS_SYN_SENT)
26822 		return (ENOTCONN);
26823 
26824 	/* shutdown the send side */
26825 	if (how != SHUT_RD) {
26826 		mblk_t *bp;
26827 
26828 		bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL);
26829 		CONN_INC_REF(connp);
26830 		SQUEUE_ENTER_ONE(connp->conn_sqp, bp, tcp_shutdown_output,
26831 		    connp, SQ_NODRAIN, SQTAG_TCP_SHUTDOWN_OUTPUT);
26832 
26833 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
26834 		    SOCK_OPCTL_SHUT_SEND, 0);
26835 	}
26836 
26837 	/* shutdown the recv side */
26838 	if (how != SHUT_WR)
26839 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
26840 		    SOCK_OPCTL_SHUT_RECV, 0);
26841 
26842 	return (0);
26843 }
26844 
26845 /*
26846  * SOP_LISTEN() calls into tcp_listen().
26847  */
26848 /* ARGSUSED */
26849 int
26850 tcp_listen(sock_lower_handle_t proto_handle, int backlog, cred_t *cr)
26851 {
26852 	conn_t	*connp = (conn_t *)proto_handle;
26853 	int 	error;
26854 	squeue_t *sqp = connp->conn_sqp;
26855 
26856 	ASSERT(connp->conn_upper_handle != NULL);
26857 
26858 	/* All Solaris components should pass a cred for this operation. */
26859 	ASSERT(cr != NULL);
26860 
26861 	error = squeue_synch_enter(sqp, connp, NULL);
26862 	if (error != 0) {
26863 		/* failed to enter */
26864 		return (ENOBUFS);
26865 	}
26866 
26867 	error = tcp_do_listen(connp, NULL, 0, backlog, cr, FALSE);
26868 	if (error == 0) {
26869 		(*connp->conn_upcalls->su_opctl)(connp->conn_upper_handle,
26870 		    SOCK_OPCTL_ENAB_ACCEPT, (uintptr_t)backlog);
26871 	} else if (error < 0) {
26872 		if (error == -TOUTSTATE)
26873 			error = EINVAL;
26874 		else
26875 			error = proto_tlitosyserr(-error);
26876 	}
26877 	squeue_synch_exit(sqp, connp);
26878 	return (error);
26879 }
26880 
26881 static int
26882 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len,
26883     int backlog, cred_t *cr, boolean_t bind_to_req_port_only)
26884 {
26885 	tcp_t		*tcp = connp->conn_tcp;
26886 	int		error = 0;
26887 	tcp_stack_t	*tcps = tcp->tcp_tcps;
26888 
26889 	/* All Solaris components should pass a cred for this operation. */
26890 	ASSERT(cr != NULL);
26891 
26892 	if (tcp->tcp_state >= TCPS_BOUND) {
26893 		if ((tcp->tcp_state == TCPS_BOUND ||
26894 		    tcp->tcp_state == TCPS_LISTEN) && backlog > 0) {
26895 			/*
26896 			 * Handle listen() increasing backlog.
26897 			 * This is more "liberal" then what the TPI spec
26898 			 * requires but is needed to avoid a t_unbind
26899 			 * when handling listen() since the port number
26900 			 * might be "stolen" between the unbind and bind.
26901 			 */
26902 			goto do_listen;
26903 		}
26904 		if (tcp->tcp_debug) {
26905 			(void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE,
26906 			    "tcp_listen: bad state, %d", tcp->tcp_state);
26907 		}
26908 		return (-TOUTSTATE);
26909 	} else {
26910 		if (sa == NULL) {
26911 			sin6_t	addr;
26912 			sin_t *sin;
26913 			sin6_t *sin6;
26914 
26915 			ASSERT(IPCL_IS_NONSTR(connp));
26916 
26917 			/* Do an implicit bind: Request for a generic port. */
26918 			if (tcp->tcp_family == AF_INET) {
26919 				len = sizeof (sin_t);
26920 				sin = (sin_t *)&addr;
26921 				*sin = sin_null;
26922 				sin->sin_family = AF_INET;
26923 				tcp->tcp_ipversion = IPV4_VERSION;
26924 			} else {
26925 				ASSERT(tcp->tcp_family == AF_INET6);
26926 				len = sizeof (sin6_t);
26927 				sin6 = (sin6_t *)&addr;
26928 				*sin6 = sin6_null;
26929 				sin6->sin6_family = AF_INET6;
26930 				tcp->tcp_ipversion = IPV6_VERSION;
26931 			}
26932 			sa = (struct sockaddr *)&addr;
26933 		}
26934 
26935 		error = tcp_bind_check(connp, sa, len, cr,
26936 		    bind_to_req_port_only);
26937 		if (error)
26938 			return (error);
26939 		/* Fall through and do the fanout insertion */
26940 	}
26941 
26942 do_listen:
26943 	ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN);
26944 	tcp->tcp_conn_req_max = backlog;
26945 	if (tcp->tcp_conn_req_max) {
26946 		if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min)
26947 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_min;
26948 		if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q)
26949 			tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q;
26950 		/*
26951 		 * If this is a listener, do not reset the eager list
26952 		 * and other stuffs.  Note that we don't check if the
26953 		 * existing eager list meets the new tcp_conn_req_max
26954 		 * requirement.
26955 		 */
26956 		if (tcp->tcp_state != TCPS_LISTEN) {
26957 			tcp->tcp_state = TCPS_LISTEN;
26958 			/* Initialize the chain. Don't need the eager_lock */
26959 			tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp;
26960 			tcp->tcp_eager_next_drop_q0 = tcp;
26961 			tcp->tcp_eager_prev_drop_q0 = tcp;
26962 			tcp->tcp_second_ctimer_threshold =
26963 			    tcps->tcps_ip_abort_linterval;
26964 		}
26965 	}
26966 
26967 	/*
26968 	 * We can call ip_bind directly, the processing continues
26969 	 * in tcp_post_ip_bind().
26970 	 *
26971 	 * We need to make sure that the conn_recv is set to a non-null
26972 	 * value before we insert the conn into the classifier table.
26973 	 * This is to avoid a race with an incoming packet which does an
26974 	 * ipcl_classify().
26975 	 */
26976 	connp->conn_recv = tcp_conn_request;
26977 	if (tcp->tcp_family == AF_INET) {
26978 		error = ip_proto_bind_laddr_v4(connp, NULL,
26979 		    IPPROTO_TCP, tcp->tcp_bound_source, tcp->tcp_lport, B_TRUE);
26980 	} else {
26981 		error = ip_proto_bind_laddr_v6(connp, NULL, IPPROTO_TCP,
26982 		    &tcp->tcp_bound_source_v6, tcp->tcp_lport, B_TRUE);
26983 	}
26984 	return (tcp_post_ip_bind(tcp, NULL, error, NULL, 0));
26985 }
26986 
26987 void
26988 tcp_clr_flowctrl(sock_lower_handle_t proto_handle)
26989 {
26990 	conn_t  *connp = (conn_t *)proto_handle;
26991 	tcp_t	*tcp = connp->conn_tcp;
26992 	mblk_t *mp;
26993 	int error;
26994 
26995 	ASSERT(connp->conn_upper_handle != NULL);
26996 
26997 	/*
26998 	 * If tcp->tcp_rsrv_mp == NULL, it means that tcp_clr_flowctrl()
26999 	 * is currently running.
27000 	 */
27001 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
27002 	if ((mp = tcp->tcp_rsrv_mp) == NULL) {
27003 		mutex_exit(&tcp->tcp_rsrv_mp_lock);
27004 		return;
27005 	}
27006 	tcp->tcp_rsrv_mp = NULL;
27007 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
27008 
27009 	error = squeue_synch_enter(connp->conn_sqp, connp, mp);
27010 	ASSERT(error == 0);
27011 
27012 	mutex_enter(&tcp->tcp_rsrv_mp_lock);
27013 	tcp->tcp_rsrv_mp = mp;
27014 	mutex_exit(&tcp->tcp_rsrv_mp_lock);
27015 
27016 	if (tcp->tcp_fused) {
27017 		tcp_fuse_backenable(tcp);
27018 	} else {
27019 		tcp->tcp_rwnd = tcp->tcp_recv_hiwater;
27020 		/*
27021 		 * Send back a window update immediately if TCP is above
27022 		 * ESTABLISHED state and the increase of the rcv window
27023 		 * that the other side knows is at least 1 MSS after flow
27024 		 * control is lifted.
27025 		 */
27026 		if (tcp->tcp_state >= TCPS_ESTABLISHED &&
27027 		    tcp_rwnd_reopen(tcp) == TH_ACK_NEEDED) {
27028 			tcp_xmit_ctl(NULL, tcp,
27029 			    (tcp->tcp_swnd == 0) ? tcp->tcp_suna :
27030 			    tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK);
27031 		}
27032 	}
27033 
27034 	squeue_synch_exit(connp->conn_sqp, connp);
27035 }
27036 
27037 /* ARGSUSED */
27038 int
27039 tcp_ioctl(sock_lower_handle_t proto_handle, int cmd, intptr_t arg,
27040     int mode, int32_t *rvalp, cred_t *cr)
27041 {
27042 	conn_t  	*connp = (conn_t *)proto_handle;
27043 	int		error;
27044 
27045 	ASSERT(connp->conn_upper_handle != NULL);
27046 
27047 	/* All Solaris components should pass a cred for this operation. */
27048 	ASSERT(cr != NULL);
27049 
27050 	switch (cmd) {
27051 		case ND_SET:
27052 		case ND_GET:
27053 		case TCP_IOC_DEFAULT_Q:
27054 		case _SIOCSOCKFALLBACK:
27055 		case TCP_IOC_ABORT_CONN:
27056 		case TI_GETPEERNAME:
27057 		case TI_GETMYNAME:
27058 			ip1dbg(("tcp_ioctl: cmd 0x%x on non sreams socket",
27059 			    cmd));
27060 			error = EINVAL;
27061 			break;
27062 		default:
27063 			/*
27064 			 * Pass on to IP using helper stream
27065 			 */
27066 			error = ldi_ioctl(connp->conn_helper_info->iphs_handle,
27067 			    cmd, arg, mode, cr, rvalp);
27068 			break;
27069 	}
27070 	return (error);
27071 }
27072 
27073 sock_downcalls_t sock_tcp_downcalls = {
27074 	tcp_activate,
27075 	tcp_accept,
27076 	tcp_bind,
27077 	tcp_listen,
27078 	tcp_connect,
27079 	tcp_getpeername,
27080 	tcp_getsockname,
27081 	tcp_getsockopt,
27082 	tcp_setsockopt,
27083 	tcp_sendmsg,
27084 	NULL,
27085 	NULL,
27086 	NULL,
27087 	tcp_shutdown,
27088 	tcp_clr_flowctrl,
27089 	tcp_ioctl,
27090 	tcp_close,
27091 };
27092