xref: /illumos-gate/usr/src/uts/common/fs/zfs/zio.c (revision f52943a93040563107b95bccb9db87d9971ef47d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright (c) 2017, Intel Corporation.
27  */
28 
29 #include <sys/sysmacros.h>
30 #include <sys/zfs_context.h>
31 #include <sys/fm/fs/zfs.h>
32 #include <sys/spa.h>
33 #include <sys/txg.h>
34 #include <sys/spa_impl.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/vdev_trim.h>
37 #include <sys/zio_impl.h>
38 #include <sys/zio_compress.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/dmu_objset.h>
41 #include <sys/arc.h>
42 #include <sys/ddt.h>
43 #include <sys/blkptr.h>
44 #include <sys/zfeature.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/abd.h>
48 #include <sys/cityhash.h>
49 #include <sys/dsl_crypt.h>
50 
51 /*
52  * ==========================================================================
53  * I/O type descriptions
54  * ==========================================================================
55  */
56 const char *zio_type_name[ZIO_TYPES] = {
57 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
58 	"zio_ioctl", "z_trim"
59 };
60 
61 boolean_t zio_dva_throttle_enabled = B_TRUE;
62 
63 /*
64  * ==========================================================================
65  * I/O kmem caches
66  * ==========================================================================
67  */
68 kmem_cache_t *zio_cache;
69 kmem_cache_t *zio_link_cache;
70 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
71 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
72 
73 #ifdef _KERNEL
74 extern vmem_t *zio_alloc_arena;
75 #endif
76 
77 #define	ZIO_PIPELINE_CONTINUE		0x100
78 #define	ZIO_PIPELINE_STOP		0x101
79 
80 #define	BP_SPANB(indblkshift, level) \
81 	(((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
82 #define	COMPARE_META_LEVEL	0x80000000ul
83 /*
84  * The following actions directly effect the spa's sync-to-convergence logic.
85  * The values below define the sync pass when we start performing the action.
86  * Care should be taken when changing these values as they directly impact
87  * spa_sync() performance. Tuning these values may introduce subtle performance
88  * pathologies and should only be done in the context of performance analysis.
89  * These tunables will eventually be removed and replaced with #defines once
90  * enough analysis has been done to determine optimal values.
91  *
92  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
93  * regular blocks are not deferred.
94  */
95 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
96 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
97 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
98 
99 /*
100  * An allocating zio is one that either currently has the DVA allocate
101  * stage set or will have it later in its lifetime.
102  */
103 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
104 
105 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
106 
107 #ifdef ZFS_DEBUG
108 int zio_buf_debug_limit = 16384;
109 #else
110 int zio_buf_debug_limit = 0;
111 #endif
112 
113 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
114 
115 void
116 zio_init(void)
117 {
118 	size_t c;
119 	vmem_t *data_alloc_arena = NULL;
120 
121 #ifdef _KERNEL
122 	data_alloc_arena = zio_alloc_arena;
123 #endif
124 	zio_cache = kmem_cache_create("zio_cache",
125 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
126 	zio_link_cache = kmem_cache_create("zio_link_cache",
127 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
128 
129 	/*
130 	 * For small buffers, we want a cache for each multiple of
131 	 * SPA_MINBLOCKSIZE.  For larger buffers, we want a cache
132 	 * for each quarter-power of 2.
133 	 */
134 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
135 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
136 		size_t p2 = size;
137 		size_t align = 0;
138 		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
139 
140 		while (!ISP2(p2))
141 			p2 &= p2 - 1;
142 
143 #ifndef _KERNEL
144 		/*
145 		 * If we are using watchpoints, put each buffer on its own page,
146 		 * to eliminate the performance overhead of trapping to the
147 		 * kernel when modifying a non-watched buffer that shares the
148 		 * page with a watched buffer.
149 		 */
150 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
151 			continue;
152 #endif
153 		if (size <= 4 * SPA_MINBLOCKSIZE) {
154 			align = SPA_MINBLOCKSIZE;
155 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
156 			align = MIN(p2 >> 2, PAGESIZE);
157 		}
158 
159 		if (align != 0) {
160 			char name[36];
161 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
162 			zio_buf_cache[c] = kmem_cache_create(name, size,
163 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
164 
165 			/*
166 			 * Since zio_data bufs do not appear in crash dumps, we
167 			 * pass KMC_NOTOUCH so that no allocator metadata is
168 			 * stored with the buffers.
169 			 */
170 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
171 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
172 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
173 			    cflags | KMC_NOTOUCH);
174 		}
175 	}
176 
177 	while (--c != 0) {
178 		ASSERT(zio_buf_cache[c] != NULL);
179 		if (zio_buf_cache[c - 1] == NULL)
180 			zio_buf_cache[c - 1] = zio_buf_cache[c];
181 
182 		ASSERT(zio_data_buf_cache[c] != NULL);
183 		if (zio_data_buf_cache[c - 1] == NULL)
184 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
185 	}
186 
187 	zio_inject_init();
188 }
189 
190 void
191 zio_fini(void)
192 {
193 	size_t c;
194 	kmem_cache_t *last_cache = NULL;
195 	kmem_cache_t *last_data_cache = NULL;
196 
197 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
198 		if (zio_buf_cache[c] != last_cache) {
199 			last_cache = zio_buf_cache[c];
200 			kmem_cache_destroy(zio_buf_cache[c]);
201 		}
202 		zio_buf_cache[c] = NULL;
203 
204 		if (zio_data_buf_cache[c] != last_data_cache) {
205 			last_data_cache = zio_data_buf_cache[c];
206 			kmem_cache_destroy(zio_data_buf_cache[c]);
207 		}
208 		zio_data_buf_cache[c] = NULL;
209 	}
210 
211 	kmem_cache_destroy(zio_link_cache);
212 	kmem_cache_destroy(zio_cache);
213 
214 	zio_inject_fini();
215 }
216 
217 /*
218  * ==========================================================================
219  * Allocate and free I/O buffers
220  * ==========================================================================
221  */
222 
223 /*
224  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
225  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
226  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
227  * excess / transient data in-core during a crashdump.
228  */
229 void *
230 zio_buf_alloc(size_t size)
231 {
232 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
233 
234 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
235 
236 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
237 }
238 
239 /*
240  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
241  * crashdump if the kernel panics.  This exists so that we will limit the amount
242  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
243  * of kernel heap dumped to disk when the kernel panics)
244  */
245 void *
246 zio_data_buf_alloc(size_t size)
247 {
248 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
249 
250 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
251 
252 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
253 }
254 
255 void
256 zio_buf_free(void *buf, size_t size)
257 {
258 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
259 
260 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
261 
262 	kmem_cache_free(zio_buf_cache[c], buf);
263 }
264 
265 void
266 zio_data_buf_free(void *buf, size_t size)
267 {
268 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
269 
270 	VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
271 
272 	kmem_cache_free(zio_data_buf_cache[c], buf);
273 }
274 
275 /* ARGSUSED */
276 static void
277 zio_abd_free(void *abd, size_t size)
278 {
279 	abd_free((abd_t *)abd);
280 }
281 
282 /*
283  * ==========================================================================
284  * Push and pop I/O transform buffers
285  * ==========================================================================
286  */
287 void
288 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
289     zio_transform_func_t *transform)
290 {
291 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
292 
293 	/*
294 	 * Ensure that anyone expecting this zio to contain a linear ABD isn't
295 	 * going to get a nasty surprise when they try to access the data.
296 	 */
297 	IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
298 
299 	zt->zt_orig_abd = zio->io_abd;
300 	zt->zt_orig_size = zio->io_size;
301 	zt->zt_bufsize = bufsize;
302 	zt->zt_transform = transform;
303 
304 	zt->zt_next = zio->io_transform_stack;
305 	zio->io_transform_stack = zt;
306 
307 	zio->io_abd = data;
308 	zio->io_size = size;
309 }
310 
311 void
312 zio_pop_transforms(zio_t *zio)
313 {
314 	zio_transform_t *zt;
315 
316 	while ((zt = zio->io_transform_stack) != NULL) {
317 		if (zt->zt_transform != NULL)
318 			zt->zt_transform(zio,
319 			    zt->zt_orig_abd, zt->zt_orig_size);
320 
321 		if (zt->zt_bufsize != 0)
322 			abd_free(zio->io_abd);
323 
324 		zio->io_abd = zt->zt_orig_abd;
325 		zio->io_size = zt->zt_orig_size;
326 		zio->io_transform_stack = zt->zt_next;
327 
328 		kmem_free(zt, sizeof (zio_transform_t));
329 	}
330 }
331 
332 /*
333  * ==========================================================================
334  * I/O transform callbacks for subblocks, decompression, and decryption
335  * ==========================================================================
336  */
337 static void
338 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
339 {
340 	ASSERT(zio->io_size > size);
341 
342 	if (zio->io_type == ZIO_TYPE_READ)
343 		abd_copy(data, zio->io_abd, size);
344 }
345 
346 static void
347 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
348 {
349 	if (zio->io_error == 0) {
350 		void *tmp = abd_borrow_buf(data, size);
351 		int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
352 		    zio->io_abd, tmp, zio->io_size, size);
353 		abd_return_buf_copy(data, tmp, size);
354 
355 		if (ret != 0)
356 			zio->io_error = SET_ERROR(EIO);
357 	}
358 }
359 
360 static void
361 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
362 {
363 	int ret;
364 	void *tmp;
365 	blkptr_t *bp = zio->io_bp;
366 	spa_t *spa = zio->io_spa;
367 	uint64_t dsobj = zio->io_bookmark.zb_objset;
368 	uint64_t lsize = BP_GET_LSIZE(bp);
369 	dmu_object_type_t ot = BP_GET_TYPE(bp);
370 	uint8_t salt[ZIO_DATA_SALT_LEN];
371 	uint8_t iv[ZIO_DATA_IV_LEN];
372 	uint8_t mac[ZIO_DATA_MAC_LEN];
373 	boolean_t no_crypt = B_FALSE;
374 
375 	ASSERT(BP_USES_CRYPT(bp));
376 	ASSERT3U(size, !=, 0);
377 
378 	if (zio->io_error != 0)
379 		return;
380 
381 	/*
382 	 * Verify the cksum of MACs stored in an indirect bp. It will always
383 	 * be possible to verify this since it does not require an encryption
384 	 * key.
385 	 */
386 	if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
387 		zio_crypt_decode_mac_bp(bp, mac);
388 
389 		if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
390 			/*
391 			 * We haven't decompressed the data yet, but
392 			 * zio_crypt_do_indirect_mac_checksum() requires
393 			 * decompressed data to be able to parse out the MACs
394 			 * from the indirect block. We decompress it now and
395 			 * throw away the result after we are finished.
396 			 */
397 			tmp = zio_buf_alloc(lsize);
398 			ret = zio_decompress_data(BP_GET_COMPRESS(bp),
399 			    zio->io_abd, tmp, zio->io_size, lsize);
400 			if (ret != 0) {
401 				ret = SET_ERROR(EIO);
402 				goto error;
403 			}
404 			ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
405 			    tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
406 			zio_buf_free(tmp, lsize);
407 		} else {
408 			ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
409 			    zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
410 		}
411 		abd_copy(data, zio->io_abd, size);
412 
413 		if (ret != 0)
414 			goto error;
415 
416 		return;
417 	}
418 
419 	/*
420 	 * If this is an authenticated block, just check the MAC. It would be
421 	 * nice to separate this out into its own flag, but for the moment
422 	 * enum zio_flag is out of bits.
423 	 */
424 	if (BP_IS_AUTHENTICATED(bp)) {
425 		if (ot == DMU_OT_OBJSET) {
426 			ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
427 			    dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
428 		} else {
429 			zio_crypt_decode_mac_bp(bp, mac);
430 			ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
431 			    zio->io_abd, size, mac);
432 		}
433 		abd_copy(data, zio->io_abd, size);
434 
435 		if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
436 			ret = zio_handle_decrypt_injection(spa,
437 			    &zio->io_bookmark, ot, ECKSUM);
438 		}
439 		if (ret != 0)
440 			goto error;
441 
442 		return;
443 	}
444 
445 	zio_crypt_decode_params_bp(bp, salt, iv);
446 
447 	if (ot == DMU_OT_INTENT_LOG) {
448 		tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
449 		zio_crypt_decode_mac_zil(tmp, mac);
450 		abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
451 	} else {
452 		zio_crypt_decode_mac_bp(bp, mac);
453 	}
454 
455 	ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
456 	    BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
457 	    zio->io_abd, &no_crypt);
458 	if (no_crypt)
459 		abd_copy(data, zio->io_abd, size);
460 
461 	if (ret != 0)
462 		goto error;
463 
464 	return;
465 
466 error:
467 	/* assert that the key was found unless this was speculative */
468 	ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
469 
470 	/*
471 	 * If there was a decryption / authentication error return EIO as
472 	 * the io_error. If this was not a speculative zio, create an ereport.
473 	 */
474 	if (ret == ECKSUM) {
475 		zio->io_error = SET_ERROR(EIO);
476 		if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
477 			spa_log_error(spa, &zio->io_bookmark);
478 			zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
479 			    spa, NULL, &zio->io_bookmark, zio, 0, 0);
480 		}
481 	} else {
482 		zio->io_error = ret;
483 	}
484 }
485 
486 /*
487  * ==========================================================================
488  * I/O parent/child relationships and pipeline interlocks
489  * ==========================================================================
490  */
491 zio_t *
492 zio_walk_parents(zio_t *cio, zio_link_t **zl)
493 {
494 	list_t *pl = &cio->io_parent_list;
495 
496 	*zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
497 	if (*zl == NULL)
498 		return (NULL);
499 
500 	ASSERT((*zl)->zl_child == cio);
501 	return ((*zl)->zl_parent);
502 }
503 
504 zio_t *
505 zio_walk_children(zio_t *pio, zio_link_t **zl)
506 {
507 	list_t *cl = &pio->io_child_list;
508 
509 	ASSERT(MUTEX_HELD(&pio->io_lock));
510 
511 	*zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
512 	if (*zl == NULL)
513 		return (NULL);
514 
515 	ASSERT((*zl)->zl_parent == pio);
516 	return ((*zl)->zl_child);
517 }
518 
519 zio_t *
520 zio_unique_parent(zio_t *cio)
521 {
522 	zio_link_t *zl = NULL;
523 	zio_t *pio = zio_walk_parents(cio, &zl);
524 
525 	VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
526 	return (pio);
527 }
528 
529 void
530 zio_add_child(zio_t *pio, zio_t *cio)
531 {
532 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
533 
534 	/*
535 	 * Logical I/Os can have logical, gang, or vdev children.
536 	 * Gang I/Os can have gang or vdev children.
537 	 * Vdev I/Os can only have vdev children.
538 	 * The following ASSERT captures all of these constraints.
539 	 */
540 	ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
541 
542 	zl->zl_parent = pio;
543 	zl->zl_child = cio;
544 
545 	mutex_enter(&pio->io_lock);
546 	mutex_enter(&cio->io_lock);
547 
548 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
549 
550 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
551 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
552 
553 	list_insert_head(&pio->io_child_list, zl);
554 	list_insert_head(&cio->io_parent_list, zl);
555 
556 	pio->io_child_count++;
557 	cio->io_parent_count++;
558 
559 	mutex_exit(&cio->io_lock);
560 	mutex_exit(&pio->io_lock);
561 }
562 
563 static void
564 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
565 {
566 	ASSERT(zl->zl_parent == pio);
567 	ASSERT(zl->zl_child == cio);
568 
569 	mutex_enter(&pio->io_lock);
570 	mutex_enter(&cio->io_lock);
571 
572 	list_remove(&pio->io_child_list, zl);
573 	list_remove(&cio->io_parent_list, zl);
574 
575 	pio->io_child_count--;
576 	cio->io_parent_count--;
577 
578 	mutex_exit(&cio->io_lock);
579 	mutex_exit(&pio->io_lock);
580 
581 	kmem_cache_free(zio_link_cache, zl);
582 }
583 
584 static boolean_t
585 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
586 {
587 	boolean_t waiting = B_FALSE;
588 
589 	mutex_enter(&zio->io_lock);
590 	ASSERT(zio->io_stall == NULL);
591 	for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
592 		if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
593 			continue;
594 
595 		uint64_t *countp = &zio->io_children[c][wait];
596 		if (*countp != 0) {
597 			zio->io_stage >>= 1;
598 			ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
599 			zio->io_stall = countp;
600 			waiting = B_TRUE;
601 			break;
602 		}
603 	}
604 	mutex_exit(&zio->io_lock);
605 	return (waiting);
606 }
607 
608 static void
609 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
610 {
611 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
612 	int *errorp = &pio->io_child_error[zio->io_child_type];
613 
614 	mutex_enter(&pio->io_lock);
615 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
616 		*errorp = zio_worst_error(*errorp, zio->io_error);
617 	pio->io_reexecute |= zio->io_reexecute;
618 	ASSERT3U(*countp, >, 0);
619 
620 	(*countp)--;
621 
622 	if (*countp == 0 && pio->io_stall == countp) {
623 		zio_taskq_type_t type =
624 		    pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
625 		    ZIO_TASKQ_INTERRUPT;
626 		pio->io_stall = NULL;
627 		mutex_exit(&pio->io_lock);
628 		/*
629 		 * Dispatch the parent zio in its own taskq so that
630 		 * the child can continue to make progress. This also
631 		 * prevents overflowing the stack when we have deeply nested
632 		 * parent-child relationships.
633 		 */
634 		zio_taskq_dispatch(pio, type, B_FALSE);
635 	} else {
636 		mutex_exit(&pio->io_lock);
637 	}
638 }
639 
640 static void
641 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
642 {
643 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
644 		zio->io_error = zio->io_child_error[c];
645 }
646 
647 int
648 zio_bookmark_compare(const void *x1, const void *x2)
649 {
650 	const zio_t *z1 = x1;
651 	const zio_t *z2 = x2;
652 
653 	if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
654 		return (-1);
655 	if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
656 		return (1);
657 
658 	if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
659 		return (-1);
660 	if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
661 		return (1);
662 
663 	if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
664 		return (-1);
665 	if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
666 		return (1);
667 
668 	if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
669 		return (-1);
670 	if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
671 		return (1);
672 
673 	if (z1 < z2)
674 		return (-1);
675 	if (z1 > z2)
676 		return (1);
677 
678 	return (0);
679 }
680 
681 /*
682  * ==========================================================================
683  * Create the various types of I/O (read, write, free, etc)
684  * ==========================================================================
685  */
686 static zio_t *
687 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
688     abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
689     void *private, zio_type_t type, zio_priority_t priority,
690     enum zio_flag flags, vdev_t *vd, uint64_t offset,
691     const zbookmark_phys_t *zb, enum zio_stage stage, enum zio_stage pipeline)
692 {
693 	zio_t *zio;
694 
695 	IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
696 	ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
697 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
698 
699 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
700 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
701 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
702 
703 	IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
704 
705 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
706 	bzero(zio, sizeof (zio_t));
707 
708 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
709 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
710 
711 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
712 	    offsetof(zio_link_t, zl_parent_node));
713 	list_create(&zio->io_child_list, sizeof (zio_link_t),
714 	    offsetof(zio_link_t, zl_child_node));
715 	metaslab_trace_init(&zio->io_alloc_list);
716 
717 	if (vd != NULL)
718 		zio->io_child_type = ZIO_CHILD_VDEV;
719 	else if (flags & ZIO_FLAG_GANG_CHILD)
720 		zio->io_child_type = ZIO_CHILD_GANG;
721 	else if (flags & ZIO_FLAG_DDT_CHILD)
722 		zio->io_child_type = ZIO_CHILD_DDT;
723 	else
724 		zio->io_child_type = ZIO_CHILD_LOGICAL;
725 
726 	if (bp != NULL) {
727 		zio->io_bp = (blkptr_t *)bp;
728 		zio->io_bp_copy = *bp;
729 		zio->io_bp_orig = *bp;
730 		if (type != ZIO_TYPE_WRITE ||
731 		    zio->io_child_type == ZIO_CHILD_DDT)
732 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
733 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
734 			zio->io_logical = zio;
735 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
736 			pipeline |= ZIO_GANG_STAGES;
737 	}
738 
739 	zio->io_spa = spa;
740 	zio->io_txg = txg;
741 	zio->io_done = done;
742 	zio->io_private = private;
743 	zio->io_type = type;
744 	zio->io_priority = priority;
745 	zio->io_vd = vd;
746 	zio->io_offset = offset;
747 	zio->io_orig_abd = zio->io_abd = data;
748 	zio->io_orig_size = zio->io_size = psize;
749 	zio->io_lsize = lsize;
750 	zio->io_orig_flags = zio->io_flags = flags;
751 	zio->io_orig_stage = zio->io_stage = stage;
752 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
753 	zio->io_pipeline_trace = ZIO_STAGE_OPEN;
754 
755 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
756 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
757 
758 	if (zb != NULL)
759 		zio->io_bookmark = *zb;
760 
761 	if (pio != NULL) {
762 		if (zio->io_metaslab_class == NULL)
763 			zio->io_metaslab_class = pio->io_metaslab_class;
764 		if (zio->io_logical == NULL)
765 			zio->io_logical = pio->io_logical;
766 		if (zio->io_child_type == ZIO_CHILD_GANG)
767 			zio->io_gang_leader = pio->io_gang_leader;
768 		zio_add_child(pio, zio);
769 	}
770 
771 	return (zio);
772 }
773 
774 static void
775 zio_destroy(zio_t *zio)
776 {
777 	metaslab_trace_fini(&zio->io_alloc_list);
778 	list_destroy(&zio->io_parent_list);
779 	list_destroy(&zio->io_child_list);
780 	mutex_destroy(&zio->io_lock);
781 	cv_destroy(&zio->io_cv);
782 	kmem_cache_free(zio_cache, zio);
783 }
784 
785 zio_t *
786 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
787     void *private, enum zio_flag flags)
788 {
789 	zio_t *zio;
790 
791 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
792 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
793 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
794 
795 	return (zio);
796 }
797 
798 zio_t *
799 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
800 {
801 	return (zio_null(NULL, spa, NULL, done, private, flags));
802 }
803 
804 void
805 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
806 {
807 	if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
808 		zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
809 		    bp, (longlong_t)BP_GET_TYPE(bp));
810 	}
811 	if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
812 	    BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
813 		zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
814 		    bp, (longlong_t)BP_GET_CHECKSUM(bp));
815 	}
816 	if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
817 	    BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
818 		zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
819 		    bp, (longlong_t)BP_GET_COMPRESS(bp));
820 	}
821 	if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
822 		zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
823 		    bp, (longlong_t)BP_GET_LSIZE(bp));
824 	}
825 	if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
826 		zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
827 		    bp, (longlong_t)BP_GET_PSIZE(bp));
828 	}
829 
830 	if (BP_IS_EMBEDDED(bp)) {
831 		if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
832 			zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
833 			    bp, (longlong_t)BPE_GET_ETYPE(bp));
834 		}
835 	}
836 
837 	/*
838 	 * Do not verify individual DVAs if the config is not trusted. This
839 	 * will be done once the zio is executed in vdev_mirror_map_alloc.
840 	 */
841 	if (!spa->spa_trust_config)
842 		return;
843 
844 	/*
845 	 * Pool-specific checks.
846 	 *
847 	 * Note: it would be nice to verify that the blk_birth and
848 	 * BP_PHYSICAL_BIRTH() are not too large.  However, spa_freeze()
849 	 * allows the birth time of log blocks (and dmu_sync()-ed blocks
850 	 * that are in the log) to be arbitrarily large.
851 	 */
852 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
853 		uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
854 		if (vdevid >= spa->spa_root_vdev->vdev_children) {
855 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
856 			    "VDEV %llu",
857 			    bp, i, (longlong_t)vdevid);
858 			continue;
859 		}
860 		vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
861 		if (vd == NULL) {
862 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
863 			    "VDEV %llu",
864 			    bp, i, (longlong_t)vdevid);
865 			continue;
866 		}
867 		if (vd->vdev_ops == &vdev_hole_ops) {
868 			zfs_panic_recover("blkptr at %p DVA %u has hole "
869 			    "VDEV %llu",
870 			    bp, i, (longlong_t)vdevid);
871 			continue;
872 		}
873 		if (vd->vdev_ops == &vdev_missing_ops) {
874 			/*
875 			 * "missing" vdevs are valid during import, but we
876 			 * don't have their detailed info (e.g. asize), so
877 			 * we can't perform any more checks on them.
878 			 */
879 			continue;
880 		}
881 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
882 		uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
883 		if (BP_IS_GANG(bp))
884 			asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
885 		if (offset + asize > vd->vdev_asize) {
886 			zfs_panic_recover("blkptr at %p DVA %u has invalid "
887 			    "OFFSET %llu",
888 			    bp, i, (longlong_t)offset);
889 		}
890 	}
891 }
892 
893 boolean_t
894 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
895 {
896 	uint64_t vdevid = DVA_GET_VDEV(dva);
897 
898 	if (vdevid >= spa->spa_root_vdev->vdev_children)
899 		return (B_FALSE);
900 
901 	vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
902 	if (vd == NULL)
903 		return (B_FALSE);
904 
905 	if (vd->vdev_ops == &vdev_hole_ops)
906 		return (B_FALSE);
907 
908 	if (vd->vdev_ops == &vdev_missing_ops) {
909 		return (B_FALSE);
910 	}
911 
912 	uint64_t offset = DVA_GET_OFFSET(dva);
913 	uint64_t asize = DVA_GET_ASIZE(dva);
914 
915 	if (BP_IS_GANG(bp))
916 		asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
917 	if (offset + asize > vd->vdev_asize)
918 		return (B_FALSE);
919 
920 	return (B_TRUE);
921 }
922 
923 zio_t *
924 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
925     abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
926     zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
927 {
928 	zio_t *zio;
929 
930 	zfs_blkptr_verify(spa, bp);
931 
932 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
933 	    data, size, size, done, private,
934 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
935 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
936 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
937 
938 	return (zio);
939 }
940 
941 zio_t *
942 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
943     abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
944     zio_done_func_t *ready, zio_done_func_t *children_ready,
945     zio_done_func_t *physdone, zio_done_func_t *done,
946     void *private, zio_priority_t priority, enum zio_flag flags,
947     const zbookmark_phys_t *zb)
948 {
949 	zio_t *zio;
950 
951 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
952 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
953 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
954 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
955 	    DMU_OT_IS_VALID(zp->zp_type) &&
956 	    zp->zp_level < 32 &&
957 	    zp->zp_copies > 0 &&
958 	    zp->zp_copies <= spa_max_replication(spa));
959 
960 	zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
961 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
962 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
963 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
964 
965 	zio->io_ready = ready;
966 	zio->io_children_ready = children_ready;
967 	zio->io_physdone = physdone;
968 	zio->io_prop = *zp;
969 
970 	/*
971 	 * Data can be NULL if we are going to call zio_write_override() to
972 	 * provide the already-allocated BP.  But we may need the data to
973 	 * verify a dedup hit (if requested).  In this case, don't try to
974 	 * dedup (just take the already-allocated BP verbatim). Encrypted
975 	 * dedup blocks need data as well so we also disable dedup in this
976 	 * case.
977 	 */
978 	if (data == NULL &&
979 	    (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
980 		zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
981 	}
982 
983 	return (zio);
984 }
985 
986 zio_t *
987 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
988     uint64_t size, zio_done_func_t *done, void *private,
989     zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
990 {
991 	zio_t *zio;
992 
993 	zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
994 	    ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
995 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
996 
997 	return (zio);
998 }
999 
1000 void
1001 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1002 {
1003 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1004 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1005 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1006 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1007 
1008 	/*
1009 	 * We must reset the io_prop to match the values that existed
1010 	 * when the bp was first written by dmu_sync() keeping in mind
1011 	 * that nopwrite and dedup are mutually exclusive.
1012 	 */
1013 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1014 	zio->io_prop.zp_nopwrite = nopwrite;
1015 	zio->io_prop.zp_copies = copies;
1016 	zio->io_bp_override = bp;
1017 }
1018 
1019 void
1020 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1021 {
1022 
1023 	zfs_blkptr_verify(spa, bp);
1024 
1025 	/*
1026 	 * The check for EMBEDDED is a performance optimization.  We
1027 	 * process the free here (by ignoring it) rather than
1028 	 * putting it on the list and then processing it in zio_free_sync().
1029 	 */
1030 	if (BP_IS_EMBEDDED(bp))
1031 		return;
1032 	metaslab_check_free(spa, bp);
1033 
1034 	/*
1035 	 * Frees that are for the currently-syncing txg, are not going to be
1036 	 * deferred, and which will not need to do a read (i.e. not GANG or
1037 	 * DEDUP), can be processed immediately.  Otherwise, put them on the
1038 	 * in-memory list for later processing.
1039 	 *
1040 	 * Note that we only defer frees after zfs_sync_pass_deferred_free
1041 	 * when the log space map feature is disabled. [see relevant comment
1042 	 * in spa_sync_iterate_to_convergence()]
1043 	 */
1044 	if (BP_IS_GANG(bp) ||
1045 	    BP_GET_DEDUP(bp) ||
1046 	    txg != spa->spa_syncing_txg ||
1047 	    (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1048 	    !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1049 		bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1050 	} else {
1051 		VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
1052 	}
1053 }
1054 
1055 zio_t *
1056 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1057     enum zio_flag flags)
1058 {
1059 	zio_t *zio;
1060 	enum zio_stage stage = ZIO_FREE_PIPELINE;
1061 
1062 	ASSERT(!BP_IS_HOLE(bp));
1063 	ASSERT(spa_syncing_txg(spa) == txg);
1064 
1065 	if (BP_IS_EMBEDDED(bp))
1066 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1067 
1068 	metaslab_check_free(spa, bp);
1069 	arc_freed(spa, bp);
1070 	dsl_scan_freed(spa, bp);
1071 
1072 	/*
1073 	 * GANG and DEDUP blocks can induce a read (for the gang block header,
1074 	 * or the DDT), so issue them asynchronously so that this thread is
1075 	 * not tied up.
1076 	 */
1077 	if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
1078 		stage |= ZIO_STAGE_ISSUE_ASYNC;
1079 
1080 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1081 	    BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1082 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
1083 
1084 	return (zio);
1085 }
1086 
1087 zio_t *
1088 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1089     zio_done_func_t *done, void *private, enum zio_flag flags)
1090 {
1091 	zio_t *zio;
1092 
1093 	zfs_blkptr_verify(spa, bp);
1094 
1095 	if (BP_IS_EMBEDDED(bp))
1096 		return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1097 
1098 	/*
1099 	 * A claim is an allocation of a specific block.  Claims are needed
1100 	 * to support immediate writes in the intent log.  The issue is that
1101 	 * immediate writes contain committed data, but in a txg that was
1102 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
1103 	 * the intent log claims all blocks that contain immediate write data
1104 	 * so that the SPA knows they're in use.
1105 	 *
1106 	 * All claims *must* be resolved in the first txg -- before the SPA
1107 	 * starts allocating blocks -- so that nothing is allocated twice.
1108 	 * If txg == 0 we just verify that the block is claimable.
1109 	 */
1110 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1111 	    spa_min_claim_txg(spa));
1112 	ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1113 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
1114 
1115 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1116 	    BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1117 	    flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1118 	ASSERT0(zio->io_queued_timestamp);
1119 
1120 	return (zio);
1121 }
1122 
1123 zio_t *
1124 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1125     zio_done_func_t *done, void *private, enum zio_flag flags)
1126 {
1127 	zio_t *zio;
1128 	int c;
1129 
1130 	if (vd->vdev_children == 0) {
1131 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1132 		    ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1133 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1134 
1135 		zio->io_cmd = cmd;
1136 	} else {
1137 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1138 
1139 		for (c = 0; c < vd->vdev_children; c++)
1140 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1141 			    done, private, flags));
1142 	}
1143 
1144 	return (zio);
1145 }
1146 
1147 zio_t *
1148 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1149     zio_done_func_t *done, void *private, zio_priority_t priority,
1150     enum zio_flag flags, enum trim_flag trim_flags)
1151 {
1152 	zio_t *zio;
1153 
1154 	ASSERT0(vd->vdev_children);
1155 	ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1156 	ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1157 	ASSERT3U(size, !=, 0);
1158 
1159 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1160 	    private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1161 	    vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1162 	zio->io_trim_flags = trim_flags;
1163 
1164 	return (zio);
1165 }
1166 
1167 zio_t *
1168 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1169     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1170     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1171 {
1172 	zio_t *zio;
1173 
1174 	ASSERT(vd->vdev_children == 0);
1175 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1176 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1177 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1178 
1179 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1180 	    private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1181 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1182 
1183 	zio->io_prop.zp_checksum = checksum;
1184 
1185 	return (zio);
1186 }
1187 
1188 zio_t *
1189 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1190     abd_t *data, int checksum, zio_done_func_t *done, void *private,
1191     zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1192 {
1193 	zio_t *zio;
1194 
1195 	ASSERT(vd->vdev_children == 0);
1196 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1197 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1198 	ASSERT3U(offset + size, <=, vd->vdev_psize);
1199 
1200 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1201 	    private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1202 	    offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1203 
1204 	zio->io_prop.zp_checksum = checksum;
1205 
1206 	if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1207 		/*
1208 		 * zec checksums are necessarily destructive -- they modify
1209 		 * the end of the write buffer to hold the verifier/checksum.
1210 		 * Therefore, we must make a local copy in case the data is
1211 		 * being written to multiple places in parallel.
1212 		 */
1213 		abd_t *wbuf = abd_alloc_sametype(data, size);
1214 		abd_copy(wbuf, data, size);
1215 
1216 		zio_push_transform(zio, wbuf, size, size, NULL);
1217 	}
1218 
1219 	return (zio);
1220 }
1221 
1222 /*
1223  * Create a child I/O to do some work for us.
1224  */
1225 zio_t *
1226 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1227     abd_t *data, uint64_t size, int type, zio_priority_t priority,
1228     enum zio_flag flags, zio_done_func_t *done, void *private)
1229 {
1230 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1231 	zio_t *zio;
1232 
1233 	/*
1234 	 * vdev child I/Os do not propagate their error to the parent.
1235 	 * Therefore, for correct operation the caller *must* check for
1236 	 * and handle the error in the child i/o's done callback.
1237 	 * The only exceptions are i/os that we don't care about
1238 	 * (OPTIONAL or REPAIR).
1239 	 */
1240 	ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1241 	    done != NULL);
1242 
1243 	if (type == ZIO_TYPE_READ && bp != NULL) {
1244 		/*
1245 		 * If we have the bp, then the child should perform the
1246 		 * checksum and the parent need not.  This pushes error
1247 		 * detection as close to the leaves as possible and
1248 		 * eliminates redundant checksums in the interior nodes.
1249 		 */
1250 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1251 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1252 	}
1253 
1254 	if (vd->vdev_ops->vdev_op_leaf) {
1255 		ASSERT0(vd->vdev_children);
1256 		offset += VDEV_LABEL_START_SIZE;
1257 	}
1258 
1259 	flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1260 
1261 	/*
1262 	 * If we've decided to do a repair, the write is not speculative --
1263 	 * even if the original read was.
1264 	 */
1265 	if (flags & ZIO_FLAG_IO_REPAIR)
1266 		flags &= ~ZIO_FLAG_SPECULATIVE;
1267 
1268 	/*
1269 	 * If we're creating a child I/O that is not associated with a
1270 	 * top-level vdev, then the child zio is not an allocating I/O.
1271 	 * If this is a retried I/O then we ignore it since we will
1272 	 * have already processed the original allocating I/O.
1273 	 */
1274 	if (flags & ZIO_FLAG_IO_ALLOCATING &&
1275 	    (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1276 		ASSERT(pio->io_metaslab_class != NULL);
1277 		ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1278 		ASSERT(type == ZIO_TYPE_WRITE);
1279 		ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1280 		ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1281 		ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1282 		    pio->io_child_type == ZIO_CHILD_GANG);
1283 
1284 		flags &= ~ZIO_FLAG_IO_ALLOCATING;
1285 	}
1286 
1287 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1288 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1289 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1290 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1291 
1292 	zio->io_physdone = pio->io_physdone;
1293 	if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1294 		zio->io_logical->io_phys_children++;
1295 
1296 	return (zio);
1297 }
1298 
1299 zio_t *
1300 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1301     zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1302     zio_done_func_t *done, void *private)
1303 {
1304 	zio_t *zio;
1305 
1306 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1307 
1308 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1309 	    data, size, size, done, private, type, priority,
1310 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1311 	    vd, offset, NULL,
1312 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1313 
1314 	return (zio);
1315 }
1316 
1317 void
1318 zio_flush(zio_t *zio, vdev_t *vd)
1319 {
1320 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1321 	    NULL, NULL,
1322 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1323 }
1324 
1325 void
1326 zio_shrink(zio_t *zio, uint64_t size)
1327 {
1328 	ASSERT3P(zio->io_executor, ==, NULL);
1329 	ASSERT3P(zio->io_orig_size, ==, zio->io_size);
1330 	ASSERT3U(size, <=, zio->io_size);
1331 
1332 	/*
1333 	 * We don't shrink for raidz because of problems with the
1334 	 * reconstruction when reading back less than the block size.
1335 	 * Note, BP_IS_RAIDZ() assumes no compression.
1336 	 */
1337 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1338 	if (!BP_IS_RAIDZ(zio->io_bp)) {
1339 		/* we are not doing a raw write */
1340 		ASSERT3U(zio->io_size, ==, zio->io_lsize);
1341 		zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1342 	}
1343 }
1344 
1345 /*
1346  * ==========================================================================
1347  * Prepare to read and write logical blocks
1348  * ==========================================================================
1349  */
1350 
1351 static int
1352 zio_read_bp_init(zio_t *zio)
1353 {
1354 	blkptr_t *bp = zio->io_bp;
1355 	uint64_t psize =
1356 	    BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1357 
1358 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1359 
1360 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1361 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
1362 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1363 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1364 		    psize, psize, zio_decompress);
1365 	}
1366 
1367 	if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1368 	    BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1369 	    zio->io_child_type == ZIO_CHILD_LOGICAL) {
1370 		zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1371 		    psize, psize, zio_decrypt);
1372 	}
1373 
1374 	if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1375 		int psize = BPE_GET_PSIZE(bp);
1376 		void *data = abd_borrow_buf(zio->io_abd, psize);
1377 
1378 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1379 		decode_embedded_bp_compressed(bp, data);
1380 		abd_return_buf_copy(zio->io_abd, data, psize);
1381 	} else {
1382 		ASSERT(!BP_IS_EMBEDDED(bp));
1383 		ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1384 	}
1385 
1386 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1387 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1388 
1389 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1390 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1391 
1392 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1393 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1394 
1395 	return (ZIO_PIPELINE_CONTINUE);
1396 }
1397 
1398 static int
1399 zio_write_bp_init(zio_t *zio)
1400 {
1401 	if (!IO_IS_ALLOCATING(zio))
1402 		return (ZIO_PIPELINE_CONTINUE);
1403 
1404 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1405 
1406 	if (zio->io_bp_override) {
1407 		blkptr_t *bp = zio->io_bp;
1408 		zio_prop_t *zp = &zio->io_prop;
1409 
1410 		ASSERT(bp->blk_birth != zio->io_txg);
1411 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1412 
1413 		*bp = *zio->io_bp_override;
1414 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1415 
1416 		if (BP_IS_EMBEDDED(bp))
1417 			return (ZIO_PIPELINE_CONTINUE);
1418 
1419 		/*
1420 		 * If we've been overridden and nopwrite is set then
1421 		 * set the flag accordingly to indicate that a nopwrite
1422 		 * has already occurred.
1423 		 */
1424 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1425 			ASSERT(!zp->zp_dedup);
1426 			ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1427 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
1428 			return (ZIO_PIPELINE_CONTINUE);
1429 		}
1430 
1431 		ASSERT(!zp->zp_nopwrite);
1432 
1433 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1434 			return (ZIO_PIPELINE_CONTINUE);
1435 
1436 		ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1437 		    ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1438 
1439 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1440 		    !zp->zp_encrypt) {
1441 			BP_SET_DEDUP(bp, 1);
1442 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1443 			return (ZIO_PIPELINE_CONTINUE);
1444 		}
1445 
1446 		/*
1447 		 * We were unable to handle this as an override bp, treat
1448 		 * it as a regular write I/O.
1449 		 */
1450 		zio->io_bp_override = NULL;
1451 		*bp = zio->io_bp_orig;
1452 		zio->io_pipeline = zio->io_orig_pipeline;
1453 	}
1454 
1455 	return (ZIO_PIPELINE_CONTINUE);
1456 }
1457 
1458 static int
1459 zio_write_compress(zio_t *zio)
1460 {
1461 	spa_t *spa = zio->io_spa;
1462 	zio_prop_t *zp = &zio->io_prop;
1463 	enum zio_compress compress = zp->zp_compress;
1464 	blkptr_t *bp = zio->io_bp;
1465 	uint64_t lsize = zio->io_lsize;
1466 	uint64_t psize = zio->io_size;
1467 	int pass = 1;
1468 
1469 	/*
1470 	 * If our children haven't all reached the ready stage,
1471 	 * wait for them and then repeat this pipeline stage.
1472 	 */
1473 	if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1474 	    ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1475 		return (ZIO_PIPELINE_STOP);
1476 	}
1477 
1478 	if (!IO_IS_ALLOCATING(zio))
1479 		return (ZIO_PIPELINE_CONTINUE);
1480 
1481 	if (zio->io_children_ready != NULL) {
1482 		/*
1483 		 * Now that all our children are ready, run the callback
1484 		 * associated with this zio in case it wants to modify the
1485 		 * data to be written.
1486 		 */
1487 		ASSERT3U(zp->zp_level, >, 0);
1488 		zio->io_children_ready(zio);
1489 	}
1490 
1491 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1492 	ASSERT(zio->io_bp_override == NULL);
1493 
1494 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1495 		/*
1496 		 * We're rewriting an existing block, which means we're
1497 		 * working on behalf of spa_sync().  For spa_sync() to
1498 		 * converge, it must eventually be the case that we don't
1499 		 * have to allocate new blocks.  But compression changes
1500 		 * the blocksize, which forces a reallocate, and makes
1501 		 * convergence take longer.  Therefore, after the first
1502 		 * few passes, stop compressing to ensure convergence.
1503 		 */
1504 		pass = spa_sync_pass(spa);
1505 
1506 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1507 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1508 		ASSERT(!BP_GET_DEDUP(bp));
1509 
1510 		if (pass >= zfs_sync_pass_dont_compress)
1511 			compress = ZIO_COMPRESS_OFF;
1512 
1513 		/* Make sure someone doesn't change their mind on overwrites */
1514 		ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1515 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1516 	}
1517 
1518 	/* If it's a compressed write that is not raw, compress the buffer. */
1519 	if (compress != ZIO_COMPRESS_OFF &&
1520 	    !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1521 		void *cbuf = zio_buf_alloc(lsize);
1522 		psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1523 		if (psize == 0 || psize == lsize) {
1524 			compress = ZIO_COMPRESS_OFF;
1525 			zio_buf_free(cbuf, lsize);
1526 		} else if (!zp->zp_dedup && !zp->zp_encrypt &&
1527 		    psize <= BPE_PAYLOAD_SIZE &&
1528 		    zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1529 		    spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1530 			encode_embedded_bp_compressed(bp,
1531 			    cbuf, compress, lsize, psize);
1532 			BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1533 			BP_SET_TYPE(bp, zio->io_prop.zp_type);
1534 			BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1535 			zio_buf_free(cbuf, lsize);
1536 			bp->blk_birth = zio->io_txg;
1537 			zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1538 			ASSERT(spa_feature_is_active(spa,
1539 			    SPA_FEATURE_EMBEDDED_DATA));
1540 			return (ZIO_PIPELINE_CONTINUE);
1541 		} else {
1542 			/*
1543 			 * Round up compressed size up to the ashift
1544 			 * of the smallest-ashift device, and zero the tail.
1545 			 * This ensures that the compressed size of the BP
1546 			 * (and thus compressratio property) are correct,
1547 			 * in that we charge for the padding used to fill out
1548 			 * the last sector.
1549 			 */
1550 			ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1551 			size_t rounded = (size_t)P2ROUNDUP(psize,
1552 			    1ULL << spa->spa_min_ashift);
1553 			if (rounded >= lsize) {
1554 				compress = ZIO_COMPRESS_OFF;
1555 				zio_buf_free(cbuf, lsize);
1556 				psize = lsize;
1557 			} else {
1558 				abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1559 				abd_take_ownership_of_buf(cdata, B_TRUE);
1560 				abd_zero_off(cdata, psize, rounded - psize);
1561 				psize = rounded;
1562 				zio_push_transform(zio, cdata,
1563 				    psize, lsize, NULL);
1564 			}
1565 		}
1566 
1567 		/*
1568 		 * We were unable to handle this as an override bp, treat
1569 		 * it as a regular write I/O.
1570 		 */
1571 		zio->io_bp_override = NULL;
1572 		*bp = zio->io_bp_orig;
1573 		zio->io_pipeline = zio->io_orig_pipeline;
1574 
1575 	} else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1576 	    zp->zp_type == DMU_OT_DNODE) {
1577 		/*
1578 		 * The DMU actually relies on the zio layer's compression
1579 		 * to free metadnode blocks that have had all contained
1580 		 * dnodes freed. As a result, even when doing a raw
1581 		 * receive, we must check whether the block can be compressed
1582 		 * to a hole.
1583 		 */
1584 		psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1585 		    zio->io_abd, NULL, lsize);
1586 		if (psize == 0)
1587 			compress = ZIO_COMPRESS_OFF;
1588 	} else {
1589 		ASSERT3U(psize, !=, 0);
1590 	}
1591 
1592 	/*
1593 	 * The final pass of spa_sync() must be all rewrites, but the first
1594 	 * few passes offer a trade-off: allocating blocks defers convergence,
1595 	 * but newly allocated blocks are sequential, so they can be written
1596 	 * to disk faster.  Therefore, we allow the first few passes of
1597 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1598 	 * There should only be a handful of blocks after pass 1 in any case.
1599 	 */
1600 	if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1601 	    BP_GET_PSIZE(bp) == psize &&
1602 	    pass >= zfs_sync_pass_rewrite) {
1603 		VERIFY3U(psize, !=, 0);
1604 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1605 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1606 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1607 	} else {
1608 		BP_ZERO(bp);
1609 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1610 	}
1611 
1612 	if (psize == 0) {
1613 		if (zio->io_bp_orig.blk_birth != 0 &&
1614 		    spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1615 			BP_SET_LSIZE(bp, lsize);
1616 			BP_SET_TYPE(bp, zp->zp_type);
1617 			BP_SET_LEVEL(bp, zp->zp_level);
1618 			BP_SET_BIRTH(bp, zio->io_txg, 0);
1619 		}
1620 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1621 	} else {
1622 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1623 		BP_SET_LSIZE(bp, lsize);
1624 		BP_SET_TYPE(bp, zp->zp_type);
1625 		BP_SET_LEVEL(bp, zp->zp_level);
1626 		BP_SET_PSIZE(bp, psize);
1627 		BP_SET_COMPRESS(bp, compress);
1628 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1629 		BP_SET_DEDUP(bp, zp->zp_dedup);
1630 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1631 		if (zp->zp_dedup) {
1632 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1633 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1634 			ASSERT(!zp->zp_encrypt ||
1635 			    DMU_OT_IS_ENCRYPTED(zp->zp_type));
1636 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1637 		}
1638 		if (zp->zp_nopwrite) {
1639 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1640 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1641 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1642 		}
1643 	}
1644 	return (ZIO_PIPELINE_CONTINUE);
1645 }
1646 
1647 static int
1648 zio_free_bp_init(zio_t *zio)
1649 {
1650 	blkptr_t *bp = zio->io_bp;
1651 
1652 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1653 		if (BP_GET_DEDUP(bp))
1654 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1655 	}
1656 
1657 	ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1658 
1659 	return (ZIO_PIPELINE_CONTINUE);
1660 }
1661 
1662 /*
1663  * ==========================================================================
1664  * Execute the I/O pipeline
1665  * ==========================================================================
1666  */
1667 
1668 static void
1669 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1670 {
1671 	spa_t *spa = zio->io_spa;
1672 	zio_type_t t = zio->io_type;
1673 	int flags = (cutinline ? TQ_FRONT : 0);
1674 
1675 	/*
1676 	 * If we're a config writer or a probe, the normal issue and
1677 	 * interrupt threads may all be blocked waiting for the config lock.
1678 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1679 	 */
1680 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1681 		t = ZIO_TYPE_NULL;
1682 
1683 	/*
1684 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1685 	 */
1686 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1687 		t = ZIO_TYPE_NULL;
1688 
1689 	/*
1690 	 * If this is a high priority I/O, then use the high priority taskq if
1691 	 * available.
1692 	 */
1693 	if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1694 	    zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1695 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1696 		q++;
1697 
1698 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1699 
1700 	/*
1701 	 * NB: We are assuming that the zio can only be dispatched
1702 	 * to a single taskq at a time.  It would be a grievous error
1703 	 * to dispatch the zio to another taskq at the same time.
1704 	 */
1705 	ASSERT(zio->io_tqent.tqent_next == NULL);
1706 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1707 	    flags, &zio->io_tqent);
1708 }
1709 
1710 static boolean_t
1711 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1712 {
1713 	kthread_t *executor = zio->io_executor;
1714 	spa_t *spa = zio->io_spa;
1715 
1716 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1717 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1718 		uint_t i;
1719 		for (i = 0; i < tqs->stqs_count; i++) {
1720 			if (taskq_member(tqs->stqs_taskq[i], executor))
1721 				return (B_TRUE);
1722 		}
1723 	}
1724 
1725 	return (B_FALSE);
1726 }
1727 
1728 static int
1729 zio_issue_async(zio_t *zio)
1730 {
1731 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1732 
1733 	return (ZIO_PIPELINE_STOP);
1734 }
1735 
1736 void
1737 zio_interrupt(zio_t *zio)
1738 {
1739 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1740 }
1741 
1742 void
1743 zio_delay_interrupt(zio_t *zio)
1744 {
1745 	/*
1746 	 * The timeout_generic() function isn't defined in userspace, so
1747 	 * rather than trying to implement the function, the zio delay
1748 	 * functionality has been disabled for userspace builds.
1749 	 */
1750 
1751 #ifdef _KERNEL
1752 	/*
1753 	 * If io_target_timestamp is zero, then no delay has been registered
1754 	 * for this IO, thus jump to the end of this function and "skip" the
1755 	 * delay; issuing it directly to the zio layer.
1756 	 */
1757 	if (zio->io_target_timestamp != 0) {
1758 		hrtime_t now = gethrtime();
1759 
1760 		if (now >= zio->io_target_timestamp) {
1761 			/*
1762 			 * This IO has already taken longer than the target
1763 			 * delay to complete, so we don't want to delay it
1764 			 * any longer; we "miss" the delay and issue it
1765 			 * directly to the zio layer. This is likely due to
1766 			 * the target latency being set to a value less than
1767 			 * the underlying hardware can satisfy (e.g. delay
1768 			 * set to 1ms, but the disks take 10ms to complete an
1769 			 * IO request).
1770 			 */
1771 
1772 			DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1773 			    hrtime_t, now);
1774 
1775 			zio_interrupt(zio);
1776 		} else {
1777 			hrtime_t diff = zio->io_target_timestamp - now;
1778 
1779 			DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1780 			    hrtime_t, now, hrtime_t, diff);
1781 
1782 			(void) timeout_generic(CALLOUT_NORMAL,
1783 			    (void (*)(void *))zio_interrupt, zio, diff, 1, 0);
1784 		}
1785 
1786 		return;
1787 	}
1788 #endif
1789 
1790 	DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1791 	zio_interrupt(zio);
1792 }
1793 
1794 /*
1795  * Execute the I/O pipeline until one of the following occurs:
1796  *
1797  *	(1) the I/O completes
1798  *	(2) the pipeline stalls waiting for dependent child I/Os
1799  *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1800  *	(4) the I/O is delegated by vdev-level caching or aggregation
1801  *	(5) the I/O is deferred due to vdev-level queueing
1802  *	(6) the I/O is handed off to another thread.
1803  *
1804  * In all cases, the pipeline stops whenever there's no CPU work; it never
1805  * burns a thread in cv_wait().
1806  *
1807  * There's no locking on io_stage because there's no legitimate way
1808  * for multiple threads to be attempting to process the same I/O.
1809  */
1810 static zio_pipe_stage_t *zio_pipeline[];
1811 
1812 void
1813 zio_execute(zio_t *zio)
1814 {
1815 	zio->io_executor = curthread;
1816 
1817 	ASSERT3U(zio->io_queued_timestamp, >, 0);
1818 
1819 	while (zio->io_stage < ZIO_STAGE_DONE) {
1820 		enum zio_stage pipeline = zio->io_pipeline;
1821 		enum zio_stage stage = zio->io_stage;
1822 		int rv;
1823 
1824 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1825 		ASSERT(ISP2(stage));
1826 		ASSERT(zio->io_stall == NULL);
1827 
1828 		do {
1829 			stage <<= 1;
1830 		} while ((stage & pipeline) == 0);
1831 
1832 		ASSERT(stage <= ZIO_STAGE_DONE);
1833 
1834 		/*
1835 		 * If we are in interrupt context and this pipeline stage
1836 		 * will grab a config lock that is held across I/O,
1837 		 * or may wait for an I/O that needs an interrupt thread
1838 		 * to complete, issue async to avoid deadlock.
1839 		 *
1840 		 * For VDEV_IO_START, we cut in line so that the io will
1841 		 * be sent to disk promptly.
1842 		 */
1843 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1844 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1845 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1846 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1847 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1848 			return;
1849 		}
1850 
1851 		zio->io_stage = stage;
1852 		zio->io_pipeline_trace |= zio->io_stage;
1853 		rv = zio_pipeline[highbit64(stage) - 1](zio);
1854 
1855 		if (rv == ZIO_PIPELINE_STOP)
1856 			return;
1857 
1858 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1859 	}
1860 }
1861 
1862 /*
1863  * ==========================================================================
1864  * Initiate I/O, either sync or async
1865  * ==========================================================================
1866  */
1867 int
1868 zio_wait(zio_t *zio)
1869 {
1870 	int error;
1871 
1872 	ASSERT3P(zio->io_stage, ==, ZIO_STAGE_OPEN);
1873 	ASSERT3P(zio->io_executor, ==, NULL);
1874 
1875 	zio->io_waiter = curthread;
1876 	ASSERT0(zio->io_queued_timestamp);
1877 	zio->io_queued_timestamp = gethrtime();
1878 
1879 	zio_execute(zio);
1880 
1881 	mutex_enter(&zio->io_lock);
1882 	while (zio->io_executor != NULL)
1883 		cv_wait(&zio->io_cv, &zio->io_lock);
1884 	mutex_exit(&zio->io_lock);
1885 
1886 	error = zio->io_error;
1887 	zio_destroy(zio);
1888 
1889 	return (error);
1890 }
1891 
1892 void
1893 zio_nowait(zio_t *zio)
1894 {
1895 	ASSERT3P(zio->io_executor, ==, NULL);
1896 
1897 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1898 	    zio_unique_parent(zio) == NULL) {
1899 		/*
1900 		 * This is a logical async I/O with no parent to wait for it.
1901 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1902 		 * will ensure they complete prior to unloading the pool.
1903 		 */
1904 		spa_t *spa = zio->io_spa;
1905 
1906 		zio_add_child(spa->spa_async_zio_root[CPU_SEQID], zio);
1907 	}
1908 
1909 	ASSERT0(zio->io_queued_timestamp);
1910 	zio->io_queued_timestamp = gethrtime();
1911 	zio_execute(zio);
1912 }
1913 
1914 /*
1915  * ==========================================================================
1916  * Reexecute, cancel, or suspend/resume failed I/O
1917  * ==========================================================================
1918  */
1919 
1920 static void
1921 zio_reexecute(zio_t *pio)
1922 {
1923 	zio_t *cio, *cio_next;
1924 
1925 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1926 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1927 	ASSERT(pio->io_gang_leader == NULL);
1928 	ASSERT(pio->io_gang_tree == NULL);
1929 
1930 	pio->io_flags = pio->io_orig_flags;
1931 	pio->io_stage = pio->io_orig_stage;
1932 	pio->io_pipeline = pio->io_orig_pipeline;
1933 	pio->io_reexecute = 0;
1934 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1935 	pio->io_pipeline_trace = 0;
1936 	pio->io_error = 0;
1937 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1938 		pio->io_state[w] = 0;
1939 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1940 		pio->io_child_error[c] = 0;
1941 
1942 	if (IO_IS_ALLOCATING(pio))
1943 		BP_ZERO(pio->io_bp);
1944 
1945 	/*
1946 	 * As we reexecute pio's children, new children could be created.
1947 	 * New children go to the head of pio's io_child_list, however,
1948 	 * so we will (correctly) not reexecute them.  The key is that
1949 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1950 	 * cannot be affected by any side effects of reexecuting 'cio'.
1951 	 */
1952 	zio_link_t *zl = NULL;
1953 	mutex_enter(&pio->io_lock);
1954 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1955 		cio_next = zio_walk_children(pio, &zl);
1956 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1957 			pio->io_children[cio->io_child_type][w]++;
1958 		mutex_exit(&pio->io_lock);
1959 		zio_reexecute(cio);
1960 		mutex_enter(&pio->io_lock);
1961 	}
1962 	mutex_exit(&pio->io_lock);
1963 
1964 	/*
1965 	 * Now that all children have been reexecuted, execute the parent.
1966 	 * We don't reexecute "The Godfather" I/O here as it's the
1967 	 * responsibility of the caller to wait on it.
1968 	 */
1969 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1970 		pio->io_queued_timestamp = gethrtime();
1971 		zio_execute(pio);
1972 	}
1973 }
1974 
1975 void
1976 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
1977 {
1978 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1979 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1980 		    "failure and the failure mode property for this pool "
1981 		    "is set to panic.", spa_name(spa));
1982 
1983 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
1984 	    NULL, NULL, 0, 0);
1985 
1986 	mutex_enter(&spa->spa_suspend_lock);
1987 
1988 	if (spa->spa_suspend_zio_root == NULL)
1989 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1990 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1991 		    ZIO_FLAG_GODFATHER);
1992 
1993 	spa->spa_suspended = reason;
1994 
1995 	if (zio != NULL) {
1996 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1997 		ASSERT(zio != spa->spa_suspend_zio_root);
1998 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1999 		ASSERT(zio_unique_parent(zio) == NULL);
2000 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2001 		zio_add_child(spa->spa_suspend_zio_root, zio);
2002 	}
2003 
2004 	mutex_exit(&spa->spa_suspend_lock);
2005 }
2006 
2007 int
2008 zio_resume(spa_t *spa)
2009 {
2010 	zio_t *pio;
2011 
2012 	/*
2013 	 * Reexecute all previously suspended i/o.
2014 	 */
2015 	mutex_enter(&spa->spa_suspend_lock);
2016 	spa->spa_suspended = ZIO_SUSPEND_NONE;
2017 	cv_broadcast(&spa->spa_suspend_cv);
2018 	pio = spa->spa_suspend_zio_root;
2019 	spa->spa_suspend_zio_root = NULL;
2020 	mutex_exit(&spa->spa_suspend_lock);
2021 
2022 	if (pio == NULL)
2023 		return (0);
2024 
2025 	zio_reexecute(pio);
2026 	return (zio_wait(pio));
2027 }
2028 
2029 void
2030 zio_resume_wait(spa_t *spa)
2031 {
2032 	mutex_enter(&spa->spa_suspend_lock);
2033 	while (spa_suspended(spa))
2034 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2035 	mutex_exit(&spa->spa_suspend_lock);
2036 }
2037 
2038 /*
2039  * ==========================================================================
2040  * Gang blocks.
2041  *
2042  * A gang block is a collection of small blocks that looks to the DMU
2043  * like one large block.  When zio_dva_allocate() cannot find a block
2044  * of the requested size, due to either severe fragmentation or the pool
2045  * being nearly full, it calls zio_write_gang_block() to construct the
2046  * block from smaller fragments.
2047  *
2048  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2049  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
2050  * an indirect block: it's an array of block pointers.  It consumes
2051  * only one sector and hence is allocatable regardless of fragmentation.
2052  * The gang header's bps point to its gang members, which hold the data.
2053  *
2054  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2055  * as the verifier to ensure uniqueness of the SHA256 checksum.
2056  * Critically, the gang block bp's blk_cksum is the checksum of the data,
2057  * not the gang header.  This ensures that data block signatures (needed for
2058  * deduplication) are independent of how the block is physically stored.
2059  *
2060  * Gang blocks can be nested: a gang member may itself be a gang block.
2061  * Thus every gang block is a tree in which root and all interior nodes are
2062  * gang headers, and the leaves are normal blocks that contain user data.
2063  * The root of the gang tree is called the gang leader.
2064  *
2065  * To perform any operation (read, rewrite, free, claim) on a gang block,
2066  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2067  * in the io_gang_tree field of the original logical i/o by recursively
2068  * reading the gang leader and all gang headers below it.  This yields
2069  * an in-core tree containing the contents of every gang header and the
2070  * bps for every constituent of the gang block.
2071  *
2072  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2073  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
2074  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2075  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2076  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2077  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
2078  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2079  * of the gang header plus zio_checksum_compute() of the data to update the
2080  * gang header's blk_cksum as described above.
2081  *
2082  * The two-phase assemble/issue model solves the problem of partial failure --
2083  * what if you'd freed part of a gang block but then couldn't read the
2084  * gang header for another part?  Assembling the entire gang tree first
2085  * ensures that all the necessary gang header I/O has succeeded before
2086  * starting the actual work of free, claim, or write.  Once the gang tree
2087  * is assembled, free and claim are in-memory operations that cannot fail.
2088  *
2089  * In the event that a gang write fails, zio_dva_unallocate() walks the
2090  * gang tree to immediately free (i.e. insert back into the space map)
2091  * everything we've allocated.  This ensures that we don't get ENOSPC
2092  * errors during repeated suspend/resume cycles due to a flaky device.
2093  *
2094  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
2095  * the gang tree, we won't modify the block, so we can safely defer the free
2096  * (knowing that the block is still intact).  If we *can* assemble the gang
2097  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2098  * each constituent bp and we can allocate a new block on the next sync pass.
2099  *
2100  * In all cases, the gang tree allows complete recovery from partial failure.
2101  * ==========================================================================
2102  */
2103 
2104 static void
2105 zio_gang_issue_func_done(zio_t *zio)
2106 {
2107 	abd_put(zio->io_abd);
2108 }
2109 
2110 static zio_t *
2111 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2112     uint64_t offset)
2113 {
2114 	if (gn != NULL)
2115 		return (pio);
2116 
2117 	return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2118 	    BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2119 	    NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2120 	    &pio->io_bookmark));
2121 }
2122 
2123 static zio_t *
2124 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2125     uint64_t offset)
2126 {
2127 	zio_t *zio;
2128 
2129 	if (gn != NULL) {
2130 		abd_t *gbh_abd =
2131 		    abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2132 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2133 		    gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2134 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2135 		    &pio->io_bookmark);
2136 		/*
2137 		 * As we rewrite each gang header, the pipeline will compute
2138 		 * a new gang block header checksum for it; but no one will
2139 		 * compute a new data checksum, so we do that here.  The one
2140 		 * exception is the gang leader: the pipeline already computed
2141 		 * its data checksum because that stage precedes gang assembly.
2142 		 * (Presently, nothing actually uses interior data checksums;
2143 		 * this is just good hygiene.)
2144 		 */
2145 		if (gn != pio->io_gang_leader->io_gang_tree) {
2146 			abd_t *buf = abd_get_offset(data, offset);
2147 
2148 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2149 			    buf, BP_GET_PSIZE(bp));
2150 
2151 			abd_put(buf);
2152 		}
2153 		/*
2154 		 * If we are here to damage data for testing purposes,
2155 		 * leave the GBH alone so that we can detect the damage.
2156 		 */
2157 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2158 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2159 	} else {
2160 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2161 		    abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2162 		    zio_gang_issue_func_done, NULL, pio->io_priority,
2163 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2164 	}
2165 
2166 	return (zio);
2167 }
2168 
2169 /* ARGSUSED */
2170 static zio_t *
2171 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2172     uint64_t offset)
2173 {
2174 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2175 	    ZIO_GANG_CHILD_FLAGS(pio)));
2176 }
2177 
2178 /* ARGSUSED */
2179 static zio_t *
2180 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2181     uint64_t offset)
2182 {
2183 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2184 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2185 }
2186 
2187 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2188 	NULL,
2189 	zio_read_gang,
2190 	zio_rewrite_gang,
2191 	zio_free_gang,
2192 	zio_claim_gang,
2193 	NULL
2194 };
2195 
2196 static void zio_gang_tree_assemble_done(zio_t *zio);
2197 
2198 static zio_gang_node_t *
2199 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2200 {
2201 	zio_gang_node_t *gn;
2202 
2203 	ASSERT(*gnpp == NULL);
2204 
2205 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2206 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2207 	*gnpp = gn;
2208 
2209 	return (gn);
2210 }
2211 
2212 static void
2213 zio_gang_node_free(zio_gang_node_t **gnpp)
2214 {
2215 	zio_gang_node_t *gn = *gnpp;
2216 
2217 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2218 		ASSERT(gn->gn_child[g] == NULL);
2219 
2220 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2221 	kmem_free(gn, sizeof (*gn));
2222 	*gnpp = NULL;
2223 }
2224 
2225 static void
2226 zio_gang_tree_free(zio_gang_node_t **gnpp)
2227 {
2228 	zio_gang_node_t *gn = *gnpp;
2229 
2230 	if (gn == NULL)
2231 		return;
2232 
2233 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2234 		zio_gang_tree_free(&gn->gn_child[g]);
2235 
2236 	zio_gang_node_free(gnpp);
2237 }
2238 
2239 static void
2240 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2241 {
2242 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2243 	abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2244 
2245 	ASSERT(gio->io_gang_leader == gio);
2246 	ASSERT(BP_IS_GANG(bp));
2247 
2248 	zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2249 	    zio_gang_tree_assemble_done, gn, gio->io_priority,
2250 	    ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2251 }
2252 
2253 static void
2254 zio_gang_tree_assemble_done(zio_t *zio)
2255 {
2256 	zio_t *gio = zio->io_gang_leader;
2257 	zio_gang_node_t *gn = zio->io_private;
2258 	blkptr_t *bp = zio->io_bp;
2259 
2260 	ASSERT(gio == zio_unique_parent(zio));
2261 	ASSERT(zio->io_child_count == 0);
2262 
2263 	if (zio->io_error)
2264 		return;
2265 
2266 	/* this ABD was created from a linear buf in zio_gang_tree_assemble */
2267 	if (BP_SHOULD_BYTESWAP(bp))
2268 		byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2269 
2270 	ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2271 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2272 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2273 
2274 	abd_put(zio->io_abd);
2275 
2276 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2277 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2278 		if (!BP_IS_GANG(gbp))
2279 			continue;
2280 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2281 	}
2282 }
2283 
2284 static void
2285 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2286     uint64_t offset)
2287 {
2288 	zio_t *gio = pio->io_gang_leader;
2289 	zio_t *zio;
2290 
2291 	ASSERT(BP_IS_GANG(bp) == !!gn);
2292 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2293 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2294 
2295 	/*
2296 	 * If you're a gang header, your data is in gn->gn_gbh.
2297 	 * If you're a gang member, your data is in 'data' and gn == NULL.
2298 	 */
2299 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2300 
2301 	if (gn != NULL) {
2302 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2303 
2304 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2305 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2306 			if (BP_IS_HOLE(gbp))
2307 				continue;
2308 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2309 			    offset);
2310 			offset += BP_GET_PSIZE(gbp);
2311 		}
2312 	}
2313 
2314 	if (gn == gio->io_gang_tree)
2315 		ASSERT3U(gio->io_size, ==, offset);
2316 
2317 	if (zio != pio)
2318 		zio_nowait(zio);
2319 }
2320 
2321 static int
2322 zio_gang_assemble(zio_t *zio)
2323 {
2324 	blkptr_t *bp = zio->io_bp;
2325 
2326 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2327 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2328 
2329 	zio->io_gang_leader = zio;
2330 
2331 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2332 
2333 	return (ZIO_PIPELINE_CONTINUE);
2334 }
2335 
2336 static int
2337 zio_gang_issue(zio_t *zio)
2338 {
2339 	blkptr_t *bp = zio->io_bp;
2340 
2341 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2342 		return (ZIO_PIPELINE_STOP);
2343 	}
2344 
2345 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2346 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2347 
2348 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2349 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2350 		    0);
2351 	else
2352 		zio_gang_tree_free(&zio->io_gang_tree);
2353 
2354 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2355 
2356 	return (ZIO_PIPELINE_CONTINUE);
2357 }
2358 
2359 static void
2360 zio_write_gang_member_ready(zio_t *zio)
2361 {
2362 	zio_t *pio = zio_unique_parent(zio);
2363 	zio_t *gio = zio->io_gang_leader;
2364 	dva_t *cdva = zio->io_bp->blk_dva;
2365 	dva_t *pdva = pio->io_bp->blk_dva;
2366 	uint64_t asize;
2367 
2368 	if (BP_IS_HOLE(zio->io_bp))
2369 		return;
2370 
2371 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2372 
2373 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2374 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2375 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2376 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2377 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2378 
2379 	mutex_enter(&pio->io_lock);
2380 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2381 		ASSERT(DVA_GET_GANG(&pdva[d]));
2382 		asize = DVA_GET_ASIZE(&pdva[d]);
2383 		asize += DVA_GET_ASIZE(&cdva[d]);
2384 		DVA_SET_ASIZE(&pdva[d], asize);
2385 	}
2386 	mutex_exit(&pio->io_lock);
2387 }
2388 
2389 static void
2390 zio_write_gang_done(zio_t *zio)
2391 {
2392 	/*
2393 	 * The io_abd field will be NULL for a zio with no data.  The io_flags
2394 	 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2395 	 * check for it here as it is cleared in zio_ready.
2396 	 */
2397 	if (zio->io_abd != NULL)
2398 		abd_put(zio->io_abd);
2399 }
2400 
2401 static int
2402 zio_write_gang_block(zio_t *pio)
2403 {
2404 	spa_t *spa = pio->io_spa;
2405 	metaslab_class_t *mc = spa_normal_class(spa);
2406 	blkptr_t *bp = pio->io_bp;
2407 	zio_t *gio = pio->io_gang_leader;
2408 	zio_t *zio;
2409 	zio_gang_node_t *gn, **gnpp;
2410 	zio_gbh_phys_t *gbh;
2411 	abd_t *gbh_abd;
2412 	uint64_t txg = pio->io_txg;
2413 	uint64_t resid = pio->io_size;
2414 	uint64_t lsize;
2415 	int copies = gio->io_prop.zp_copies;
2416 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2417 	zio_prop_t zp;
2418 	int error;
2419 	boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2420 
2421 	/*
2422 	 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2423 	 * have a third copy.
2424 	 */
2425 	if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2426 		gbh_copies = SPA_DVAS_PER_BP - 1;
2427 
2428 	int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2429 	if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2430 		ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2431 		ASSERT(has_data);
2432 
2433 		flags |= METASLAB_ASYNC_ALLOC;
2434 		VERIFY(zfs_refcount_held(&mc->mc_alloc_slots[pio->io_allocator],
2435 		    pio));
2436 
2437 		/*
2438 		 * The logical zio has already placed a reservation for
2439 		 * 'copies' allocation slots but gang blocks may require
2440 		 * additional copies. These additional copies
2441 		 * (i.e. gbh_copies - copies) are guaranteed to succeed
2442 		 * since metaslab_class_throttle_reserve() always allows
2443 		 * additional reservations for gang blocks.
2444 		 */
2445 		VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2446 		    pio->io_allocator, pio, flags));
2447 	}
2448 
2449 	error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2450 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2451 	    &pio->io_alloc_list, pio, pio->io_allocator);
2452 	if (error) {
2453 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2454 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2455 			ASSERT(has_data);
2456 
2457 			/*
2458 			 * If we failed to allocate the gang block header then
2459 			 * we remove any additional allocation reservations that
2460 			 * we placed here. The original reservation will
2461 			 * be removed when the logical I/O goes to the ready
2462 			 * stage.
2463 			 */
2464 			metaslab_class_throttle_unreserve(mc,
2465 			    gbh_copies - copies, pio->io_allocator, pio);
2466 		}
2467 		pio->io_error = error;
2468 		return (ZIO_PIPELINE_CONTINUE);
2469 	}
2470 
2471 	if (pio == gio) {
2472 		gnpp = &gio->io_gang_tree;
2473 	} else {
2474 		gnpp = pio->io_private;
2475 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
2476 	}
2477 
2478 	gn = zio_gang_node_alloc(gnpp);
2479 	gbh = gn->gn_gbh;
2480 	bzero(gbh, SPA_GANGBLOCKSIZE);
2481 	gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2482 
2483 	/*
2484 	 * Create the gang header.
2485 	 */
2486 	zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2487 	    zio_write_gang_done, NULL, pio->io_priority,
2488 	    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2489 
2490 	/*
2491 	 * Create and nowait the gang children.
2492 	 */
2493 	for (int g = 0; resid != 0; resid -= lsize, g++) {
2494 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2495 		    SPA_MINBLOCKSIZE);
2496 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2497 
2498 		zp.zp_checksum = gio->io_prop.zp_checksum;
2499 		zp.zp_compress = ZIO_COMPRESS_OFF;
2500 		zp.zp_type = DMU_OT_NONE;
2501 		zp.zp_level = 0;
2502 		zp.zp_copies = gio->io_prop.zp_copies;
2503 		zp.zp_dedup = B_FALSE;
2504 		zp.zp_dedup_verify = B_FALSE;
2505 		zp.zp_nopwrite = B_FALSE;
2506 		zp.zp_encrypt = gio->io_prop.zp_encrypt;
2507 		zp.zp_byteorder = gio->io_prop.zp_byteorder;
2508 		bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2509 		bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2510 		bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2511 
2512 		zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2513 		    has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2514 		    resid) : NULL, lsize, lsize, &zp,
2515 		    zio_write_gang_member_ready, NULL, NULL,
2516 		    zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2517 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2518 
2519 		if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2520 			ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2521 			ASSERT(has_data);
2522 
2523 			/*
2524 			 * Gang children won't throttle but we should
2525 			 * account for their work, so reserve an allocation
2526 			 * slot for them here.
2527 			 */
2528 			VERIFY(metaslab_class_throttle_reserve(mc,
2529 			    zp.zp_copies, cio->io_allocator, cio, flags));
2530 		}
2531 		zio_nowait(cio);
2532 	}
2533 
2534 	/*
2535 	 * Set pio's pipeline to just wait for zio to finish.
2536 	 */
2537 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2538 
2539 	zio_nowait(zio);
2540 
2541 	return (ZIO_PIPELINE_CONTINUE);
2542 }
2543 
2544 /*
2545  * The zio_nop_write stage in the pipeline determines if allocating a
2546  * new bp is necessary.  The nopwrite feature can handle writes in
2547  * either syncing or open context (i.e. zil writes) and as a result is
2548  * mutually exclusive with dedup.
2549  *
2550  * By leveraging a cryptographically secure checksum, such as SHA256, we
2551  * can compare the checksums of the new data and the old to determine if
2552  * allocating a new block is required.  Note that our requirements for
2553  * cryptographic strength are fairly weak: there can't be any accidental
2554  * hash collisions, but we don't need to be secure against intentional
2555  * (malicious) collisions.  To trigger a nopwrite, you have to be able
2556  * to write the file to begin with, and triggering an incorrect (hash
2557  * collision) nopwrite is no worse than simply writing to the file.
2558  * That said, there are no known attacks against the checksum algorithms
2559  * used for nopwrite, assuming that the salt and the checksums
2560  * themselves remain secret.
2561  */
2562 static int
2563 zio_nop_write(zio_t *zio)
2564 {
2565 	blkptr_t *bp = zio->io_bp;
2566 	blkptr_t *bp_orig = &zio->io_bp_orig;
2567 	zio_prop_t *zp = &zio->io_prop;
2568 
2569 	ASSERT(BP_GET_LEVEL(bp) == 0);
2570 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2571 	ASSERT(zp->zp_nopwrite);
2572 	ASSERT(!zp->zp_dedup);
2573 	ASSERT(zio->io_bp_override == NULL);
2574 	ASSERT(IO_IS_ALLOCATING(zio));
2575 
2576 	/*
2577 	 * Check to see if the original bp and the new bp have matching
2578 	 * characteristics (i.e. same checksum, compression algorithms, etc).
2579 	 * If they don't then just continue with the pipeline which will
2580 	 * allocate a new bp.
2581 	 */
2582 	if (BP_IS_HOLE(bp_orig) ||
2583 	    !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2584 	    ZCHECKSUM_FLAG_NOPWRITE) ||
2585 	    BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2586 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2587 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2588 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2589 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
2590 		return (ZIO_PIPELINE_CONTINUE);
2591 
2592 	/*
2593 	 * If the checksums match then reset the pipeline so that we
2594 	 * avoid allocating a new bp and issuing any I/O.
2595 	 */
2596 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2597 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2598 		    ZCHECKSUM_FLAG_NOPWRITE);
2599 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2600 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2601 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2602 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2603 		    sizeof (uint64_t)) == 0);
2604 
2605 		*bp = *bp_orig;
2606 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2607 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
2608 	}
2609 
2610 	return (ZIO_PIPELINE_CONTINUE);
2611 }
2612 
2613 /*
2614  * ==========================================================================
2615  * Dedup
2616  * ==========================================================================
2617  */
2618 static void
2619 zio_ddt_child_read_done(zio_t *zio)
2620 {
2621 	blkptr_t *bp = zio->io_bp;
2622 	ddt_entry_t *dde = zio->io_private;
2623 	ddt_phys_t *ddp;
2624 	zio_t *pio = zio_unique_parent(zio);
2625 
2626 	mutex_enter(&pio->io_lock);
2627 	ddp = ddt_phys_select(dde, bp);
2628 	if (zio->io_error == 0)
2629 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
2630 
2631 	if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2632 		dde->dde_repair_abd = zio->io_abd;
2633 	else
2634 		abd_free(zio->io_abd);
2635 	mutex_exit(&pio->io_lock);
2636 }
2637 
2638 static int
2639 zio_ddt_read_start(zio_t *zio)
2640 {
2641 	blkptr_t *bp = zio->io_bp;
2642 
2643 	ASSERT(BP_GET_DEDUP(bp));
2644 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2645 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2646 
2647 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2648 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2649 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2650 		ddt_phys_t *ddp = dde->dde_phys;
2651 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2652 		blkptr_t blk;
2653 
2654 		ASSERT(zio->io_vsd == NULL);
2655 		zio->io_vsd = dde;
2656 
2657 		if (ddp_self == NULL)
2658 			return (ZIO_PIPELINE_CONTINUE);
2659 
2660 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2661 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2662 				continue;
2663 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2664 			    &blk);
2665 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
2666 			    abd_alloc_for_io(zio->io_size, B_TRUE),
2667 			    zio->io_size, zio_ddt_child_read_done, dde,
2668 			    zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2669 			    ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2670 		}
2671 		return (ZIO_PIPELINE_CONTINUE);
2672 	}
2673 
2674 	zio_nowait(zio_read(zio, zio->io_spa, bp,
2675 	    zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2676 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2677 
2678 	return (ZIO_PIPELINE_CONTINUE);
2679 }
2680 
2681 static int
2682 zio_ddt_read_done(zio_t *zio)
2683 {
2684 	blkptr_t *bp = zio->io_bp;
2685 
2686 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
2687 		return (ZIO_PIPELINE_STOP);
2688 	}
2689 
2690 	ASSERT(BP_GET_DEDUP(bp));
2691 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2692 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2693 
2694 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
2695 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
2696 		ddt_entry_t *dde = zio->io_vsd;
2697 		if (ddt == NULL) {
2698 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2699 			return (ZIO_PIPELINE_CONTINUE);
2700 		}
2701 		if (dde == NULL) {
2702 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2703 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2704 			return (ZIO_PIPELINE_STOP);
2705 		}
2706 		if (dde->dde_repair_abd != NULL) {
2707 			abd_copy(zio->io_abd, dde->dde_repair_abd,
2708 			    zio->io_size);
2709 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
2710 		}
2711 		ddt_repair_done(ddt, dde);
2712 		zio->io_vsd = NULL;
2713 	}
2714 
2715 	ASSERT(zio->io_vsd == NULL);
2716 
2717 	return (ZIO_PIPELINE_CONTINUE);
2718 }
2719 
2720 static boolean_t
2721 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2722 {
2723 	spa_t *spa = zio->io_spa;
2724 	boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
2725 
2726 	/* We should never get a raw, override zio */
2727 	ASSERT(!(zio->io_bp_override && do_raw));
2728 
2729 	/*
2730 	 * Note: we compare the original data, not the transformed data,
2731 	 * because when zio->io_bp is an override bp, we will not have
2732 	 * pushed the I/O transforms.  That's an important optimization
2733 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2734 	 * However, we should never get a raw, override zio so in these
2735 	 * cases we can compare the io_data directly. This is useful because
2736 	 * it allows us to do dedup verification even if we don't have access
2737 	 * to the original data (for instance, if the encryption keys aren't
2738 	 * loaded).
2739 	 */
2740 
2741 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2742 		zio_t *lio = dde->dde_lead_zio[p];
2743 
2744 		if (lio != NULL && do_raw) {
2745 			return (lio->io_size != zio->io_size ||
2746 			    abd_cmp(zio->io_abd, lio->io_abd,
2747 			    zio->io_size) != 0);
2748 		} else if (lio != NULL) {
2749 			return (lio->io_orig_size != zio->io_orig_size ||
2750 			    abd_cmp(zio->io_orig_abd, lio->io_orig_abd,
2751 			    zio->io_orig_size) != 0);
2752 		}
2753 	}
2754 
2755 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2756 		ddt_phys_t *ddp = &dde->dde_phys[p];
2757 
2758 		if (ddp->ddp_phys_birth != 0 && do_raw) {
2759 			blkptr_t blk = *zio->io_bp;
2760 			uint64_t psize;
2761 			abd_t *tmpabd;
2762 			int error;
2763 
2764 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2765 			psize = BP_GET_PSIZE(&blk);
2766 
2767 			if (psize != zio->io_size)
2768 				return (B_TRUE);
2769 
2770 			ddt_exit(ddt);
2771 
2772 			tmpabd = abd_alloc_for_io(psize, B_TRUE);
2773 
2774 			error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
2775 			    psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
2776 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2777 			    ZIO_FLAG_RAW, &zio->io_bookmark));
2778 
2779 			if (error == 0) {
2780 				if (abd_cmp(tmpabd, zio->io_abd, psize) != 0)
2781 					error = SET_ERROR(ENOENT);
2782 			}
2783 
2784 			abd_free(tmpabd);
2785 			ddt_enter(ddt);
2786 			return (error != 0);
2787 		} else if (ddp->ddp_phys_birth != 0) {
2788 			arc_buf_t *abuf = NULL;
2789 			arc_flags_t aflags = ARC_FLAG_WAIT;
2790 			int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2791 			blkptr_t blk = *zio->io_bp;
2792 			int error;
2793 
2794 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2795 
2796 			if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
2797 				return (B_TRUE);
2798 
2799 			ddt_exit(ddt);
2800 
2801 			/*
2802 			 * Intuitively, it would make more sense to compare
2803 			 * io_abd than io_orig_abd in the raw case since you
2804 			 * don't want to look at any transformations that have
2805 			 * happened to the data. However, for raw I/Os the
2806 			 * data will actually be the same in io_abd and
2807 			 * io_orig_abd, so all we have to do is issue this as
2808 			 * a raw ARC read.
2809 			 */
2810 			if (do_raw) {
2811 				zio_flags |= ZIO_FLAG_RAW;
2812 				ASSERT3U(zio->io_size, ==, zio->io_orig_size);
2813 				ASSERT0(abd_cmp(zio->io_abd, zio->io_orig_abd,
2814 				    zio->io_size));
2815 				ASSERT3P(zio->io_transform_stack, ==, NULL);
2816 			}
2817 
2818 			error = arc_read(NULL, spa, &blk,
2819 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2820 			    zio_flags, &aflags, &zio->io_bookmark);
2821 
2822 			if (error == 0) {
2823 				if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2824 				    zio->io_orig_size) != 0)
2825 					error = SET_ERROR(ENOENT);
2826 				arc_buf_destroy(abuf, &abuf);
2827 			}
2828 
2829 			ddt_enter(ddt);
2830 			return (error != 0);
2831 		}
2832 	}
2833 
2834 	return (B_FALSE);
2835 }
2836 
2837 static void
2838 zio_ddt_child_write_ready(zio_t *zio)
2839 {
2840 	int p = zio->io_prop.zp_copies;
2841 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2842 	ddt_entry_t *dde = zio->io_private;
2843 	ddt_phys_t *ddp = &dde->dde_phys[p];
2844 	zio_t *pio;
2845 
2846 	if (zio->io_error)
2847 		return;
2848 
2849 	ddt_enter(ddt);
2850 
2851 	ASSERT(dde->dde_lead_zio[p] == zio);
2852 
2853 	ddt_phys_fill(ddp, zio->io_bp);
2854 
2855 	zio_link_t *zl = NULL;
2856 	while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2857 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2858 
2859 	ddt_exit(ddt);
2860 }
2861 
2862 static void
2863 zio_ddt_child_write_done(zio_t *zio)
2864 {
2865 	int p = zio->io_prop.zp_copies;
2866 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2867 	ddt_entry_t *dde = zio->io_private;
2868 	ddt_phys_t *ddp = &dde->dde_phys[p];
2869 
2870 	ddt_enter(ddt);
2871 
2872 	ASSERT(ddp->ddp_refcnt == 0);
2873 	ASSERT(dde->dde_lead_zio[p] == zio);
2874 	dde->dde_lead_zio[p] = NULL;
2875 
2876 	if (zio->io_error == 0) {
2877 		zio_link_t *zl = NULL;
2878 		while (zio_walk_parents(zio, &zl) != NULL)
2879 			ddt_phys_addref(ddp);
2880 	} else {
2881 		ddt_phys_clear(ddp);
2882 	}
2883 
2884 	ddt_exit(ddt);
2885 }
2886 
2887 static void
2888 zio_ddt_ditto_write_done(zio_t *zio)
2889 {
2890 	int p = DDT_PHYS_DITTO;
2891 	zio_prop_t *zp = &zio->io_prop;
2892 	blkptr_t *bp = zio->io_bp;
2893 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2894 	ddt_entry_t *dde = zio->io_private;
2895 	ddt_phys_t *ddp = &dde->dde_phys[p];
2896 	ddt_key_t *ddk = &dde->dde_key;
2897 
2898 	ddt_enter(ddt);
2899 
2900 	ASSERT(ddp->ddp_refcnt == 0);
2901 	ASSERT(dde->dde_lead_zio[p] == zio);
2902 	dde->dde_lead_zio[p] = NULL;
2903 
2904 	if (zio->io_error == 0) {
2905 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2906 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2907 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2908 		if (ddp->ddp_phys_birth != 0)
2909 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2910 		ddt_phys_fill(ddp, bp);
2911 	}
2912 
2913 	ddt_exit(ddt);
2914 }
2915 
2916 static int
2917 zio_ddt_write(zio_t *zio)
2918 {
2919 	spa_t *spa = zio->io_spa;
2920 	blkptr_t *bp = zio->io_bp;
2921 	uint64_t txg = zio->io_txg;
2922 	zio_prop_t *zp = &zio->io_prop;
2923 	int p = zp->zp_copies;
2924 	int ditto_copies;
2925 	zio_t *cio = NULL;
2926 	zio_t *dio = NULL;
2927 	ddt_t *ddt = ddt_select(spa, bp);
2928 	ddt_entry_t *dde;
2929 	ddt_phys_t *ddp;
2930 
2931 	ASSERT(BP_GET_DEDUP(bp));
2932 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2933 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2934 	ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2935 
2936 	ddt_enter(ddt);
2937 	dde = ddt_lookup(ddt, bp, B_TRUE);
2938 	ddp = &dde->dde_phys[p];
2939 
2940 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2941 		/*
2942 		 * If we're using a weak checksum, upgrade to a strong checksum
2943 		 * and try again.  If we're already using a strong checksum,
2944 		 * we can't resolve it, so just convert to an ordinary write.
2945 		 * (And automatically e-mail a paper to Nature?)
2946 		 */
2947 		if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2948 		    ZCHECKSUM_FLAG_DEDUP)) {
2949 			zp->zp_checksum = spa_dedup_checksum(spa);
2950 			zio_pop_transforms(zio);
2951 			zio->io_stage = ZIO_STAGE_OPEN;
2952 			BP_ZERO(bp);
2953 		} else {
2954 			zp->zp_dedup = B_FALSE;
2955 			BP_SET_DEDUP(bp, B_FALSE);
2956 		}
2957 		ASSERT(!BP_GET_DEDUP(bp));
2958 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2959 		ddt_exit(ddt);
2960 		return (ZIO_PIPELINE_CONTINUE);
2961 	}
2962 
2963 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2964 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2965 
2966 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2967 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2968 		zio_prop_t czp = *zp;
2969 
2970 		czp.zp_copies = ditto_copies;
2971 
2972 		/*
2973 		 * If we arrived here with an override bp, we won't have run
2974 		 * the transform stack, so we won't have the data we need to
2975 		 * generate a child i/o.  So, toss the override bp and restart.
2976 		 * This is safe, because using the override bp is just an
2977 		 * optimization; and it's rare, so the cost doesn't matter.
2978 		 */
2979 		if (zio->io_bp_override) {
2980 			zio_pop_transforms(zio);
2981 			zio->io_stage = ZIO_STAGE_OPEN;
2982 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2983 			zio->io_bp_override = NULL;
2984 			BP_ZERO(bp);
2985 			ddt_exit(ddt);
2986 			return (ZIO_PIPELINE_CONTINUE);
2987 		}
2988 
2989 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2990 		    zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
2991 		    NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2992 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2993 
2994 		zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
2995 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2996 	}
2997 
2998 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2999 		if (ddp->ddp_phys_birth != 0)
3000 			ddt_bp_fill(ddp, bp, txg);
3001 		if (dde->dde_lead_zio[p] != NULL)
3002 			zio_add_child(zio, dde->dde_lead_zio[p]);
3003 		else
3004 			ddt_phys_addref(ddp);
3005 	} else if (zio->io_bp_override) {
3006 		ASSERT(bp->blk_birth == txg);
3007 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3008 		ddt_phys_fill(ddp, bp);
3009 		ddt_phys_addref(ddp);
3010 	} else {
3011 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3012 		    zio->io_orig_size, zio->io_orig_size, zp,
3013 		    zio_ddt_child_write_ready, NULL, NULL,
3014 		    zio_ddt_child_write_done, dde, zio->io_priority,
3015 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3016 
3017 		zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3018 		dde->dde_lead_zio[p] = cio;
3019 	}
3020 
3021 	ddt_exit(ddt);
3022 
3023 	if (cio)
3024 		zio_nowait(cio);
3025 	if (dio)
3026 		zio_nowait(dio);
3027 
3028 	return (ZIO_PIPELINE_CONTINUE);
3029 }
3030 
3031 ddt_entry_t *freedde; /* for debugging */
3032 
3033 static int
3034 zio_ddt_free(zio_t *zio)
3035 {
3036 	spa_t *spa = zio->io_spa;
3037 	blkptr_t *bp = zio->io_bp;
3038 	ddt_t *ddt = ddt_select(spa, bp);
3039 	ddt_entry_t *dde;
3040 	ddt_phys_t *ddp;
3041 
3042 	ASSERT(BP_GET_DEDUP(bp));
3043 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3044 
3045 	ddt_enter(ddt);
3046 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3047 	ddp = ddt_phys_select(dde, bp);
3048 	ddt_phys_decref(ddp);
3049 	ddt_exit(ddt);
3050 
3051 	return (ZIO_PIPELINE_CONTINUE);
3052 }
3053 
3054 /*
3055  * ==========================================================================
3056  * Allocate and free blocks
3057  * ==========================================================================
3058  */
3059 
3060 static zio_t *
3061 zio_io_to_allocate(spa_t *spa, int allocator)
3062 {
3063 	zio_t *zio;
3064 
3065 	ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
3066 
3067 	zio = avl_first(&spa->spa_alloc_trees[allocator]);
3068 	if (zio == NULL)
3069 		return (NULL);
3070 
3071 	ASSERT(IO_IS_ALLOCATING(zio));
3072 
3073 	/*
3074 	 * Try to place a reservation for this zio. If we're unable to
3075 	 * reserve then we throttle.
3076 	 */
3077 	ASSERT3U(zio->io_allocator, ==, allocator);
3078 	if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3079 	    zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
3080 		return (NULL);
3081 	}
3082 
3083 	avl_remove(&spa->spa_alloc_trees[allocator], zio);
3084 	ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3085 
3086 	return (zio);
3087 }
3088 
3089 static int
3090 zio_dva_throttle(zio_t *zio)
3091 {
3092 	spa_t *spa = zio->io_spa;
3093 	zio_t *nio;
3094 	metaslab_class_t *mc;
3095 
3096 	/* locate an appropriate allocation class */
3097 	mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3098 	    zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3099 
3100 	if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3101 	    !mc->mc_alloc_throttle_enabled ||
3102 	    zio->io_child_type == ZIO_CHILD_GANG ||
3103 	    zio->io_flags & ZIO_FLAG_NODATA) {
3104 		return (ZIO_PIPELINE_CONTINUE);
3105 	}
3106 
3107 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3108 
3109 	ASSERT3U(zio->io_queued_timestamp, >, 0);
3110 	ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3111 
3112 	zbookmark_phys_t *bm = &zio->io_bookmark;
3113 	/*
3114 	 * We want to try to use as many allocators as possible to help improve
3115 	 * performance, but we also want logically adjacent IOs to be physically
3116 	 * adjacent to improve sequential read performance. We chunk each object
3117 	 * into 2^20 block regions, and then hash based on the objset, object,
3118 	 * level, and region to accomplish both of these goals.
3119 	 */
3120 	zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
3121 	    bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3122 	mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
3123 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3124 	zio->io_metaslab_class = mc;
3125 	avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
3126 	nio = zio_io_to_allocate(spa, zio->io_allocator);
3127 	mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
3128 
3129 	if (nio == zio)
3130 		return (ZIO_PIPELINE_CONTINUE);
3131 
3132 	if (nio != NULL) {
3133 		ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3134 		/*
3135 		 * We are passing control to a new zio so make sure that
3136 		 * it is processed by a different thread. We do this to
3137 		 * avoid stack overflows that can occur when parents are
3138 		 * throttled and children are making progress. We allow
3139 		 * it to go to the head of the taskq since it's already
3140 		 * been waiting.
3141 		 */
3142 		zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
3143 	}
3144 	return (ZIO_PIPELINE_STOP);
3145 }
3146 
3147 static void
3148 zio_allocate_dispatch(spa_t *spa, int allocator)
3149 {
3150 	zio_t *zio;
3151 
3152 	mutex_enter(&spa->spa_alloc_locks[allocator]);
3153 	zio = zio_io_to_allocate(spa, allocator);
3154 	mutex_exit(&spa->spa_alloc_locks[allocator]);
3155 	if (zio == NULL)
3156 		return;
3157 
3158 	ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3159 	ASSERT0(zio->io_error);
3160 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3161 }
3162 
3163 static int
3164 zio_dva_allocate(zio_t *zio)
3165 {
3166 	spa_t *spa = zio->io_spa;
3167 	metaslab_class_t *mc;
3168 	blkptr_t *bp = zio->io_bp;
3169 	int error;
3170 	int flags = 0;
3171 
3172 	if (zio->io_gang_leader == NULL) {
3173 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3174 		zio->io_gang_leader = zio;
3175 	}
3176 
3177 	ASSERT(BP_IS_HOLE(bp));
3178 	ASSERT0(BP_GET_NDVAS(bp));
3179 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
3180 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3181 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3182 
3183 	if (zio->io_flags & ZIO_FLAG_NODATA)
3184 		flags |= METASLAB_DONT_THROTTLE;
3185 	if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3186 		flags |= METASLAB_GANG_CHILD;
3187 	if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3188 		flags |= METASLAB_ASYNC_ALLOC;
3189 
3190 	/*
3191 	 * if not already chosen, locate an appropriate allocation class
3192 	 */
3193 	mc = zio->io_metaslab_class;
3194 	if (mc == NULL) {
3195 		mc = spa_preferred_class(spa, zio->io_size,
3196 		    zio->io_prop.zp_type, zio->io_prop.zp_level,
3197 		    zio->io_prop.zp_zpl_smallblk);
3198 		zio->io_metaslab_class = mc;
3199 	}
3200 
3201 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
3202 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3203 	    &zio->io_alloc_list, zio, zio->io_allocator);
3204 
3205 	/*
3206 	 * Fallback to normal class when an alloc class is full
3207 	 */
3208 	if (error == ENOSPC && mc != spa_normal_class(spa)) {
3209 		/*
3210 		 * If throttling, transfer reservation over to normal class.
3211 		 * The io_allocator slot can remain the same even though we
3212 		 * are switching classes.
3213 		 */
3214 		if (mc->mc_alloc_throttle_enabled &&
3215 		    (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3216 			metaslab_class_throttle_unreserve(mc,
3217 			    zio->io_prop.zp_copies, zio->io_allocator, zio);
3218 			zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3219 
3220 			mc = spa_normal_class(spa);
3221 			VERIFY(metaslab_class_throttle_reserve(mc,
3222 			    zio->io_prop.zp_copies, zio->io_allocator, zio,
3223 			    flags | METASLAB_MUST_RESERVE));
3224 		} else {
3225 			mc = spa_normal_class(spa);
3226 		}
3227 		zio->io_metaslab_class = mc;
3228 
3229 		error = metaslab_alloc(spa, mc, zio->io_size, bp,
3230 		    zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3231 		    &zio->io_alloc_list, zio, zio->io_allocator);
3232 	}
3233 
3234 	if (error != 0) {
3235 		zfs_dbgmsg("%s: metaslab allocation failure: zio %p, "
3236 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
3237 		    error);
3238 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
3239 			return (zio_write_gang_block(zio));
3240 		zio->io_error = error;
3241 	}
3242 
3243 	return (ZIO_PIPELINE_CONTINUE);
3244 }
3245 
3246 static int
3247 zio_dva_free(zio_t *zio)
3248 {
3249 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3250 
3251 	return (ZIO_PIPELINE_CONTINUE);
3252 }
3253 
3254 static int
3255 zio_dva_claim(zio_t *zio)
3256 {
3257 	int error;
3258 
3259 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3260 	if (error)
3261 		zio->io_error = error;
3262 
3263 	return (ZIO_PIPELINE_CONTINUE);
3264 }
3265 
3266 /*
3267  * Undo an allocation.  This is used by zio_done() when an I/O fails
3268  * and we want to give back the block we just allocated.
3269  * This handles both normal blocks and gang blocks.
3270  */
3271 static void
3272 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3273 {
3274 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3275 	ASSERT(zio->io_bp_override == NULL);
3276 
3277 	if (!BP_IS_HOLE(bp))
3278 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3279 
3280 	if (gn != NULL) {
3281 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3282 			zio_dva_unallocate(zio, gn->gn_child[g],
3283 			    &gn->gn_gbh->zg_blkptr[g]);
3284 		}
3285 	}
3286 }
3287 
3288 /*
3289  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
3290  */
3291 int
3292 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3293     blkptr_t *old_bp, uint64_t size, boolean_t *slog)
3294 {
3295 	int error = 1;
3296 	zio_alloc_list_t io_alloc_list;
3297 
3298 	ASSERT(txg > spa_syncing_txg(spa));
3299 
3300 	metaslab_trace_init(&io_alloc_list);
3301 
3302 	/*
3303 	 * Block pointer fields are useful to metaslabs for stats and debugging.
3304 	 * Fill in the obvious ones before calling into metaslab_alloc().
3305 	 */
3306 	BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3307 	BP_SET_PSIZE(new_bp, size);
3308 	BP_SET_LEVEL(new_bp, 0);
3309 
3310 	/*
3311 	 * When allocating a zil block, we don't have information about
3312 	 * the final destination of the block except the objset it's part
3313 	 * of, so we just hash the objset ID to pick the allocator to get
3314 	 * some parallelism.
3315 	 */
3316 	error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3317 	    txg, old_bp, METASLAB_HINTBP_AVOID, &io_alloc_list, NULL,
3318 	    cityhash4(0, 0, 0,
3319 	    os->os_dsl_dataset->ds_object) % spa->spa_alloc_count);
3320 	if (error == 0) {
3321 		*slog = TRUE;
3322 	} else {
3323 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
3324 		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID,
3325 		    &io_alloc_list, NULL, cityhash4(0, 0, 0,
3326 		    os->os_dsl_dataset->ds_object) % spa->spa_alloc_count);
3327 		if (error == 0)
3328 			*slog = FALSE;
3329 	}
3330 	metaslab_trace_fini(&io_alloc_list);
3331 
3332 	if (error == 0) {
3333 		BP_SET_LSIZE(new_bp, size);
3334 		BP_SET_PSIZE(new_bp, size);
3335 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3336 		BP_SET_CHECKSUM(new_bp,
3337 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3338 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3339 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3340 		BP_SET_LEVEL(new_bp, 0);
3341 		BP_SET_DEDUP(new_bp, 0);
3342 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3343 
3344 		/*
3345 		 * encrypted blocks will require an IV and salt. We generate
3346 		 * these now since we will not be rewriting the bp at
3347 		 * rewrite time.
3348 		 */
3349 		if (os->os_encrypted) {
3350 			uint8_t iv[ZIO_DATA_IV_LEN];
3351 			uint8_t salt[ZIO_DATA_SALT_LEN];
3352 
3353 			BP_SET_CRYPT(new_bp, B_TRUE);
3354 			VERIFY0(spa_crypt_get_salt(spa,
3355 			    dmu_objset_id(os), salt));
3356 			VERIFY0(zio_crypt_generate_iv(iv));
3357 
3358 			zio_crypt_encode_params_bp(new_bp, salt, iv);
3359 		}
3360 	} else {
3361 		zfs_dbgmsg("%s: zil block allocation failure: "
3362 		    "size %llu, error %d", spa_name(spa), size, error);
3363 	}
3364 
3365 	return (error);
3366 }
3367 
3368 /*
3369  * ==========================================================================
3370  * Read and write to physical devices
3371  * ==========================================================================
3372  */
3373 
3374 /*
3375  * Issue an I/O to the underlying vdev. Typically the issue pipeline
3376  * stops after this stage and will resume upon I/O completion.
3377  * However, there are instances where the vdev layer may need to
3378  * continue the pipeline when an I/O was not issued. Since the I/O
3379  * that was sent to the vdev layer might be different than the one
3380  * currently active in the pipeline (see vdev_queue_io()), we explicitly
3381  * force the underlying vdev layers to call either zio_execute() or
3382  * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3383  */
3384 static int
3385 zio_vdev_io_start(zio_t *zio)
3386 {
3387 	vdev_t *vd = zio->io_vd;
3388 	uint64_t align;
3389 	spa_t *spa = zio->io_spa;
3390 
3391 	ASSERT(zio->io_error == 0);
3392 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3393 
3394 	if (vd == NULL) {
3395 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3396 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3397 
3398 		/*
3399 		 * The mirror_ops handle multiple DVAs in a single BP.
3400 		 */
3401 		vdev_mirror_ops.vdev_op_io_start(zio);
3402 		return (ZIO_PIPELINE_STOP);
3403 	}
3404 
3405 	ASSERT3P(zio->io_logical, !=, zio);
3406 	if (zio->io_type == ZIO_TYPE_WRITE) {
3407 		ASSERT(spa->spa_trust_config);
3408 
3409 		/*
3410 		 * Note: the code can handle other kinds of writes,
3411 		 * but we don't expect them.
3412 		 */
3413 		if (zio->io_vd->vdev_removing) {
3414 			ASSERT(zio->io_flags &
3415 			    (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3416 			    ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3417 		}
3418 	}
3419 
3420 	align = 1ULL << vd->vdev_top->vdev_ashift;
3421 
3422 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3423 	    P2PHASE(zio->io_size, align) != 0) {
3424 		/* Transform logical writes to be a full physical block size. */
3425 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
3426 		abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3427 		ASSERT(vd == vd->vdev_top);
3428 		if (zio->io_type == ZIO_TYPE_WRITE) {
3429 			abd_copy(abuf, zio->io_abd, zio->io_size);
3430 			abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3431 		}
3432 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3433 	}
3434 
3435 	/*
3436 	 * If this is not a physical io, make sure that it is properly aligned
3437 	 * before proceeding.
3438 	 */
3439 	if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3440 		ASSERT0(P2PHASE(zio->io_offset, align));
3441 		ASSERT0(P2PHASE(zio->io_size, align));
3442 	} else {
3443 		/*
3444 		 * For physical writes, we allow 512b aligned writes and assume
3445 		 * the device will perform a read-modify-write as necessary.
3446 		 */
3447 		ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3448 		ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3449 	}
3450 
3451 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3452 
3453 	/*
3454 	 * If this is a repair I/O, and there's no self-healing involved --
3455 	 * that is, we're just resilvering what we expect to resilver --
3456 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3457 	 * This prevents spurious resilvering.
3458 	 *
3459 	 * There are a few ways that we can end up creating these spurious
3460 	 * resilver i/os:
3461 	 *
3462 	 * 1. A resilver i/o will be issued if any DVA in the BP has a
3463 	 * dirty DTL.  The mirror code will issue resilver writes to
3464 	 * each DVA, including the one(s) that are not on vdevs with dirty
3465 	 * DTLs.
3466 	 *
3467 	 * 2. With nested replication, which happens when we have a
3468 	 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3469 	 * For example, given mirror(replacing(A+B), C), it's likely that
3470 	 * only A is out of date (it's the new device). In this case, we'll
3471 	 * read from C, then use the data to resilver A+B -- but we don't
3472 	 * actually want to resilver B, just A. The top-level mirror has no
3473 	 * way to know this, so instead we just discard unnecessary repairs
3474 	 * as we work our way down the vdev tree.
3475 	 *
3476 	 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3477 	 * The same logic applies to any form of nested replication: ditto
3478 	 * + mirror, RAID-Z + replacing, etc.
3479 	 *
3480 	 * However, indirect vdevs point off to other vdevs which may have
3481 	 * DTL's, so we never bypass them.  The child i/os on concrete vdevs
3482 	 * will be properly bypassed instead.
3483 	 */
3484 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3485 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3486 	    zio->io_txg != 0 &&	/* not a delegated i/o */
3487 	    vd->vdev_ops != &vdev_indirect_ops &&
3488 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3489 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3490 		zio_vdev_io_bypass(zio);
3491 		return (ZIO_PIPELINE_CONTINUE);
3492 	}
3493 
3494 	if (vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ ||
3495 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) {
3496 
3497 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3498 			return (ZIO_PIPELINE_CONTINUE);
3499 
3500 		if ((zio = vdev_queue_io(zio)) == NULL)
3501 			return (ZIO_PIPELINE_STOP);
3502 
3503 		if (!vdev_accessible(vd, zio)) {
3504 			zio->io_error = SET_ERROR(ENXIO);
3505 			zio_interrupt(zio);
3506 			return (ZIO_PIPELINE_STOP);
3507 		}
3508 	}
3509 
3510 	vd->vdev_ops->vdev_op_io_start(zio);
3511 	return (ZIO_PIPELINE_STOP);
3512 }
3513 
3514 static int
3515 zio_vdev_io_done(zio_t *zio)
3516 {
3517 	vdev_t *vd = zio->io_vd;
3518 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3519 	boolean_t unexpected_error = B_FALSE;
3520 
3521 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3522 		return (ZIO_PIPELINE_STOP);
3523 	}
3524 
3525 	ASSERT(zio->io_type == ZIO_TYPE_READ ||
3526 	    zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3527 
3528 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3529 
3530 		vdev_queue_io_done(zio);
3531 
3532 		if (zio->io_type == ZIO_TYPE_WRITE)
3533 			vdev_cache_write(zio);
3534 
3535 		if (zio_injection_enabled && zio->io_error == 0)
3536 			zio->io_error = zio_handle_device_injection(vd,
3537 			    zio, EIO);
3538 
3539 		if (zio_injection_enabled && zio->io_error == 0)
3540 			zio->io_error = zio_handle_label_injection(zio, EIO);
3541 
3542 		if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3543 			if (!vdev_accessible(vd, zio)) {
3544 				zio->io_error = SET_ERROR(ENXIO);
3545 			} else {
3546 				unexpected_error = B_TRUE;
3547 			}
3548 		}
3549 	}
3550 
3551 	ops->vdev_op_io_done(zio);
3552 
3553 	if (unexpected_error)
3554 		VERIFY(vdev_probe(vd, zio) == NULL);
3555 
3556 	return (ZIO_PIPELINE_CONTINUE);
3557 }
3558 
3559 /*
3560  * This function is used to change the priority of an existing zio that is
3561  * currently in-flight. This is used by the arc to upgrade priority in the
3562  * event that a demand read is made for a block that is currently queued
3563  * as a scrub or async read IO. Otherwise, the high priority read request
3564  * would end up having to wait for the lower priority IO.
3565  */
3566 void
3567 zio_change_priority(zio_t *pio, zio_priority_t priority)
3568 {
3569 	zio_t *cio, *cio_next;
3570 	zio_link_t *zl = NULL;
3571 
3572 	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3573 
3574 	if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3575 		vdev_queue_change_io_priority(pio, priority);
3576 	} else {
3577 		pio->io_priority = priority;
3578 	}
3579 
3580 	mutex_enter(&pio->io_lock);
3581 	for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3582 		cio_next = zio_walk_children(pio, &zl);
3583 		zio_change_priority(cio, priority);
3584 	}
3585 	mutex_exit(&pio->io_lock);
3586 }
3587 
3588 /*
3589  * For non-raidz ZIOs, we can just copy aside the bad data read from the
3590  * disk, and use that to finish the checksum ereport later.
3591  */
3592 static void
3593 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3594     const abd_t *good_buf)
3595 {
3596 	/* no processing needed */
3597 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3598 }
3599 
3600 /*ARGSUSED*/
3601 void
3602 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3603 {
3604 	void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3605 
3606 	abd_copy(abd, zio->io_abd, zio->io_size);
3607 
3608 	zcr->zcr_cbinfo = zio->io_size;
3609 	zcr->zcr_cbdata = abd;
3610 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
3611 	zcr->zcr_free = zio_abd_free;
3612 }
3613 
3614 static int
3615 zio_vdev_io_assess(zio_t *zio)
3616 {
3617 	vdev_t *vd = zio->io_vd;
3618 
3619 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3620 		return (ZIO_PIPELINE_STOP);
3621 	}
3622 
3623 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3624 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3625 
3626 	if (zio->io_vsd != NULL) {
3627 		zio->io_vsd_ops->vsd_free(zio);
3628 		zio->io_vsd = NULL;
3629 	}
3630 
3631 	if (zio_injection_enabled && zio->io_error == 0)
3632 		zio->io_error = zio_handle_fault_injection(zio, EIO);
3633 
3634 	/*
3635 	 * If the I/O failed, determine whether we should attempt to retry it.
3636 	 *
3637 	 * On retry, we cut in line in the issue queue, since we don't want
3638 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3639 	 */
3640 	if (zio->io_error && vd == NULL &&
3641 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3642 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
3643 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
3644 		zio->io_error = 0;
3645 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
3646 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3647 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3648 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3649 		    zio_requeue_io_start_cut_in_line);
3650 		return (ZIO_PIPELINE_STOP);
3651 	}
3652 
3653 	/*
3654 	 * If we got an error on a leaf device, convert it to ENXIO
3655 	 * if the device is not accessible at all.
3656 	 */
3657 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3658 	    !vdev_accessible(vd, zio))
3659 		zio->io_error = SET_ERROR(ENXIO);
3660 
3661 	/*
3662 	 * If we can't write to an interior vdev (mirror or RAID-Z),
3663 	 * set vdev_cant_write so that we stop trying to allocate from it.
3664 	 */
3665 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3666 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3667 		vd->vdev_cant_write = B_TRUE;
3668 	}
3669 
3670 	/*
3671 	 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3672 	 * attempts will ever succeed. In this case we set a persistent
3673 	 * boolean flag so that we don't bother with it in the future.
3674 	 */
3675 	if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3676 	    zio->io_type == ZIO_TYPE_IOCTL &&
3677 	    zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3678 		vd->vdev_nowritecache = B_TRUE;
3679 
3680 	if (zio->io_error)
3681 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3682 
3683 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3684 	    zio->io_physdone != NULL) {
3685 		ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3686 		ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3687 		zio->io_physdone(zio->io_logical);
3688 	}
3689 
3690 	return (ZIO_PIPELINE_CONTINUE);
3691 }
3692 
3693 void
3694 zio_vdev_io_reissue(zio_t *zio)
3695 {
3696 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3697 	ASSERT(zio->io_error == 0);
3698 
3699 	zio->io_stage >>= 1;
3700 }
3701 
3702 void
3703 zio_vdev_io_redone(zio_t *zio)
3704 {
3705 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3706 
3707 	zio->io_stage >>= 1;
3708 }
3709 
3710 void
3711 zio_vdev_io_bypass(zio_t *zio)
3712 {
3713 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3714 	ASSERT(zio->io_error == 0);
3715 
3716 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3717 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3718 }
3719 
3720 /*
3721  * ==========================================================================
3722  * Encrypt and store encryption parameters
3723  * ==========================================================================
3724  */
3725 
3726 
3727 /*
3728  * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
3729  * managing the storage of encryption parameters and passing them to the
3730  * lower-level encryption functions.
3731  */
3732 static int
3733 zio_encrypt(zio_t *zio)
3734 {
3735 	zio_prop_t *zp = &zio->io_prop;
3736 	spa_t *spa = zio->io_spa;
3737 	blkptr_t *bp = zio->io_bp;
3738 	uint64_t psize = BP_GET_PSIZE(bp);
3739 	uint64_t dsobj = zio->io_bookmark.zb_objset;
3740 	dmu_object_type_t ot = BP_GET_TYPE(bp);
3741 	void *enc_buf = NULL;
3742 	abd_t *eabd = NULL;
3743 	uint8_t salt[ZIO_DATA_SALT_LEN];
3744 	uint8_t iv[ZIO_DATA_IV_LEN];
3745 	uint8_t mac[ZIO_DATA_MAC_LEN];
3746 	boolean_t no_crypt = B_FALSE;
3747 
3748 	/* the root zio already encrypted the data */
3749 	if (zio->io_child_type == ZIO_CHILD_GANG)
3750 		return (ZIO_PIPELINE_CONTINUE);
3751 
3752 	/* only ZIL blocks are re-encrypted on rewrite */
3753 	if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
3754 		return (ZIO_PIPELINE_CONTINUE);
3755 
3756 	if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
3757 		BP_SET_CRYPT(bp, B_FALSE);
3758 		return (ZIO_PIPELINE_CONTINUE);
3759 	}
3760 
3761 	/* if we are doing raw encryption set the provided encryption params */
3762 	if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
3763 		ASSERT0(BP_GET_LEVEL(bp));
3764 		BP_SET_CRYPT(bp, B_TRUE);
3765 		BP_SET_BYTEORDER(bp, zp->zp_byteorder);
3766 		if (ot != DMU_OT_OBJSET)
3767 			zio_crypt_encode_mac_bp(bp, zp->zp_mac);
3768 
3769 		/* dnode blocks must be written out in the provided byteorder */
3770 		if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
3771 		    ot == DMU_OT_DNODE) {
3772 			void *bswap_buf = zio_buf_alloc(psize);
3773 			abd_t *babd = abd_get_from_buf(bswap_buf, psize);
3774 
3775 			ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
3776 			abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
3777 			dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
3778 			    psize);
3779 
3780 			abd_take_ownership_of_buf(babd, B_TRUE);
3781 			zio_push_transform(zio, babd, psize, psize, NULL);
3782 		}
3783 
3784 		if (DMU_OT_IS_ENCRYPTED(ot))
3785 			zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
3786 		return (ZIO_PIPELINE_CONTINUE);
3787 	}
3788 
3789 	/* indirect blocks only maintain a cksum of the lower level MACs */
3790 	if (BP_GET_LEVEL(bp) > 0) {
3791 		BP_SET_CRYPT(bp, B_TRUE);
3792 		VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
3793 		    zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
3794 		    mac));
3795 		zio_crypt_encode_mac_bp(bp, mac);
3796 		return (ZIO_PIPELINE_CONTINUE);
3797 	}
3798 
3799 	/*
3800 	 * Objset blocks are a special case since they have 2 256-bit MACs
3801 	 * embedded within them.
3802 	 */
3803 	if (ot == DMU_OT_OBJSET) {
3804 		ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
3805 		ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
3806 		BP_SET_CRYPT(bp, B_TRUE);
3807 		VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
3808 		    zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
3809 		return (ZIO_PIPELINE_CONTINUE);
3810 	}
3811 
3812 	/* unencrypted object types are only authenticated with a MAC */
3813 	if (!DMU_OT_IS_ENCRYPTED(ot)) {
3814 		BP_SET_CRYPT(bp, B_TRUE);
3815 		VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
3816 		    zio->io_abd, psize, mac));
3817 		zio_crypt_encode_mac_bp(bp, mac);
3818 		return (ZIO_PIPELINE_CONTINUE);
3819 	}
3820 
3821 	/*
3822 	 * Later passes of sync-to-convergence may decide to rewrite data
3823 	 * in place to avoid more disk reallocations. This presents a problem
3824 	 * for encryption because this consitutes rewriting the new data with
3825 	 * the same encryption key and IV. However, this only applies to blocks
3826 	 * in the MOS (particularly the spacemaps) and we do not encrypt the
3827 	 * MOS. We assert that the zio is allocating or an intent log write
3828 	 * to enforce this.
3829 	 */
3830 	ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
3831 	ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
3832 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
3833 	ASSERT3U(psize, !=, 0);
3834 
3835 	enc_buf = zio_buf_alloc(psize);
3836 	eabd = abd_get_from_buf(enc_buf, psize);
3837 	abd_take_ownership_of_buf(eabd, B_TRUE);
3838 
3839 	/*
3840 	 * For an explanation of what encryption parameters are stored
3841 	 * where, see the block comment in zio_crypt.c.
3842 	 */
3843 	if (ot == DMU_OT_INTENT_LOG) {
3844 		zio_crypt_decode_params_bp(bp, salt, iv);
3845 	} else {
3846 		BP_SET_CRYPT(bp, B_TRUE);
3847 	}
3848 
3849 	/* Perform the encryption. This should not fail */
3850 	VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
3851 	    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
3852 	    salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
3853 
3854 	/* encode encryption metadata into the bp */
3855 	if (ot == DMU_OT_INTENT_LOG) {
3856 		/*
3857 		 * ZIL blocks store the MAC in the embedded checksum, so the
3858 		 * transform must always be applied.
3859 		 */
3860 		zio_crypt_encode_mac_zil(enc_buf, mac);
3861 		zio_push_transform(zio, eabd, psize, psize, NULL);
3862 	} else {
3863 		BP_SET_CRYPT(bp, B_TRUE);
3864 		zio_crypt_encode_params_bp(bp, salt, iv);
3865 		zio_crypt_encode_mac_bp(bp, mac);
3866 
3867 		if (no_crypt) {
3868 			ASSERT3U(ot, ==, DMU_OT_DNODE);
3869 			abd_free(eabd);
3870 		} else {
3871 			zio_push_transform(zio, eabd, psize, psize, NULL);
3872 		}
3873 	}
3874 
3875 	return (ZIO_PIPELINE_CONTINUE);
3876 }
3877 
3878 /*
3879  * ==========================================================================
3880  * Generate and verify checksums
3881  * ==========================================================================
3882  */
3883 static int
3884 zio_checksum_generate(zio_t *zio)
3885 {
3886 	blkptr_t *bp = zio->io_bp;
3887 	enum zio_checksum checksum;
3888 
3889 	if (bp == NULL) {
3890 		/*
3891 		 * This is zio_write_phys().
3892 		 * We're either generating a label checksum, or none at all.
3893 		 */
3894 		checksum = zio->io_prop.zp_checksum;
3895 
3896 		if (checksum == ZIO_CHECKSUM_OFF)
3897 			return (ZIO_PIPELINE_CONTINUE);
3898 
3899 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3900 	} else {
3901 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3902 			ASSERT(!IO_IS_ALLOCATING(zio));
3903 			checksum = ZIO_CHECKSUM_GANG_HEADER;
3904 		} else {
3905 			checksum = BP_GET_CHECKSUM(bp);
3906 		}
3907 	}
3908 
3909 	zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3910 
3911 	return (ZIO_PIPELINE_CONTINUE);
3912 }
3913 
3914 static int
3915 zio_checksum_verify(zio_t *zio)
3916 {
3917 	zio_bad_cksum_t info;
3918 	blkptr_t *bp = zio->io_bp;
3919 	int error;
3920 
3921 	ASSERT(zio->io_vd != NULL);
3922 
3923 	if (bp == NULL) {
3924 		/*
3925 		 * This is zio_read_phys().
3926 		 * We're either verifying a label checksum, or nothing at all.
3927 		 */
3928 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3929 			return (ZIO_PIPELINE_CONTINUE);
3930 
3931 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3932 	}
3933 
3934 	if ((error = zio_checksum_error(zio, &info)) != 0) {
3935 		zio->io_error = error;
3936 		if (error == ECKSUM &&
3937 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3938 			zfs_ereport_start_checksum(zio->io_spa,
3939 			    zio->io_vd, &zio->io_bookmark, zio,
3940 			    zio->io_offset, zio->io_size, NULL, &info);
3941 		}
3942 	}
3943 
3944 	return (ZIO_PIPELINE_CONTINUE);
3945 }
3946 
3947 /*
3948  * Called by RAID-Z to ensure we don't compute the checksum twice.
3949  */
3950 void
3951 zio_checksum_verified(zio_t *zio)
3952 {
3953 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3954 }
3955 
3956 /*
3957  * ==========================================================================
3958  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3959  * An error of 0 indicates success.  ENXIO indicates whole-device failure,
3960  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
3961  * indicate errors that are specific to one I/O, and most likely permanent.
3962  * Any other error is presumed to be worse because we weren't expecting it.
3963  * ==========================================================================
3964  */
3965 int
3966 zio_worst_error(int e1, int e2)
3967 {
3968 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3969 	int r1, r2;
3970 
3971 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3972 		if (e1 == zio_error_rank[r1])
3973 			break;
3974 
3975 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3976 		if (e2 == zio_error_rank[r2])
3977 			break;
3978 
3979 	return (r1 > r2 ? e1 : e2);
3980 }
3981 
3982 /*
3983  * ==========================================================================
3984  * I/O completion
3985  * ==========================================================================
3986  */
3987 static int
3988 zio_ready(zio_t *zio)
3989 {
3990 	blkptr_t *bp = zio->io_bp;
3991 	zio_t *pio, *pio_next;
3992 	zio_link_t *zl = NULL;
3993 
3994 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
3995 	    ZIO_WAIT_READY)) {
3996 		return (ZIO_PIPELINE_STOP);
3997 	}
3998 
3999 	if (zio->io_ready) {
4000 		ASSERT(IO_IS_ALLOCATING(zio));
4001 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4002 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
4003 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4004 
4005 		zio->io_ready(zio);
4006 	}
4007 
4008 	if (bp != NULL && bp != &zio->io_bp_copy)
4009 		zio->io_bp_copy = *bp;
4010 
4011 	if (zio->io_error != 0) {
4012 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4013 
4014 		if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4015 			ASSERT(IO_IS_ALLOCATING(zio));
4016 			ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4017 			ASSERT(zio->io_metaslab_class != NULL);
4018 
4019 			/*
4020 			 * We were unable to allocate anything, unreserve and
4021 			 * issue the next I/O to allocate.
4022 			 */
4023 			metaslab_class_throttle_unreserve(
4024 			    zio->io_metaslab_class, zio->io_prop.zp_copies,
4025 			    zio->io_allocator, zio);
4026 			zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4027 		}
4028 	}
4029 
4030 	mutex_enter(&zio->io_lock);
4031 	zio->io_state[ZIO_WAIT_READY] = 1;
4032 	pio = zio_walk_parents(zio, &zl);
4033 	mutex_exit(&zio->io_lock);
4034 
4035 	/*
4036 	 * As we notify zio's parents, new parents could be added.
4037 	 * New parents go to the head of zio's io_parent_list, however,
4038 	 * so we will (correctly) not notify them.  The remainder of zio's
4039 	 * io_parent_list, from 'pio_next' onward, cannot change because
4040 	 * all parents must wait for us to be done before they can be done.
4041 	 */
4042 	for (; pio != NULL; pio = pio_next) {
4043 		pio_next = zio_walk_parents(zio, &zl);
4044 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
4045 	}
4046 
4047 	if (zio->io_flags & ZIO_FLAG_NODATA) {
4048 		if (BP_IS_GANG(bp)) {
4049 			zio->io_flags &= ~ZIO_FLAG_NODATA;
4050 		} else {
4051 			ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4052 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4053 		}
4054 	}
4055 
4056 	if (zio_injection_enabled &&
4057 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
4058 		zio_handle_ignored_writes(zio);
4059 
4060 	return (ZIO_PIPELINE_CONTINUE);
4061 }
4062 
4063 /*
4064  * Update the allocation throttle accounting.
4065  */
4066 static void
4067 zio_dva_throttle_done(zio_t *zio)
4068 {
4069 	zio_t *lio = zio->io_logical;
4070 	zio_t *pio = zio_unique_parent(zio);
4071 	vdev_t *vd = zio->io_vd;
4072 	int flags = METASLAB_ASYNC_ALLOC;
4073 
4074 	ASSERT3P(zio->io_bp, !=, NULL);
4075 	ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4076 	ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4077 	ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4078 	ASSERT(vd != NULL);
4079 	ASSERT3P(vd, ==, vd->vdev_top);
4080 	ASSERT(!(zio->io_flags & (ZIO_FLAG_IO_REPAIR | ZIO_FLAG_IO_RETRY)));
4081 	ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4082 	ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4083 	ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4084 
4085 	/*
4086 	 * Parents of gang children can have two flavors -- ones that
4087 	 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4088 	 * and ones that allocated the constituent blocks. The allocation
4089 	 * throttle needs to know the allocating parent zio so we must find
4090 	 * it here.
4091 	 */
4092 	if (pio->io_child_type == ZIO_CHILD_GANG) {
4093 		/*
4094 		 * If our parent is a rewrite gang child then our grandparent
4095 		 * would have been the one that performed the allocation.
4096 		 */
4097 		if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4098 			pio = zio_unique_parent(pio);
4099 		flags |= METASLAB_GANG_CHILD;
4100 	}
4101 
4102 	ASSERT(IO_IS_ALLOCATING(pio));
4103 	ASSERT3P(zio, !=, zio->io_logical);
4104 	ASSERT(zio->io_logical != NULL);
4105 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4106 	ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4107 	ASSERT(zio->io_metaslab_class != NULL);
4108 
4109 	mutex_enter(&pio->io_lock);
4110 	metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4111 	    pio->io_allocator, B_TRUE);
4112 	mutex_exit(&pio->io_lock);
4113 
4114 	metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4115 	    pio->io_allocator, pio);
4116 
4117 	/*
4118 	 * Call into the pipeline to see if there is more work that
4119 	 * needs to be done. If there is work to be done it will be
4120 	 * dispatched to another taskq thread.
4121 	 */
4122 	zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4123 }
4124 
4125 static int
4126 zio_done(zio_t *zio)
4127 {
4128 	spa_t *spa = zio->io_spa;
4129 	zio_t *lio = zio->io_logical;
4130 	blkptr_t *bp = zio->io_bp;
4131 	vdev_t *vd = zio->io_vd;
4132 	uint64_t psize = zio->io_size;
4133 	zio_t *pio, *pio_next;
4134 	zio_link_t *zl = NULL;
4135 
4136 	/*
4137 	 * If our children haven't all completed,
4138 	 * wait for them and then repeat this pipeline stage.
4139 	 */
4140 	if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4141 		return (ZIO_PIPELINE_STOP);
4142 	}
4143 
4144 	/*
4145 	 * If the allocation throttle is enabled, then update the accounting.
4146 	 * We only track child I/Os that are part of an allocating async
4147 	 * write. We must do this since the allocation is performed
4148 	 * by the logical I/O but the actual write is done by child I/Os.
4149 	 */
4150 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4151 	    zio->io_child_type == ZIO_CHILD_VDEV) {
4152 		ASSERT(zio->io_metaslab_class != NULL);
4153 		ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4154 		zio_dva_throttle_done(zio);
4155 	}
4156 
4157 	/*
4158 	 * If the allocation throttle is enabled, verify that
4159 	 * we have decremented the refcounts for every I/O that was throttled.
4160 	 */
4161 	if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4162 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4163 		ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4164 		ASSERT(bp != NULL);
4165 
4166 		metaslab_group_alloc_verify(spa, zio->io_bp, zio,
4167 		    zio->io_allocator);
4168 		VERIFY(zfs_refcount_not_held(
4169 		    &zio->io_metaslab_class->mc_alloc_slots[zio->io_allocator],
4170 		    zio));
4171 	}
4172 
4173 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4174 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4175 			ASSERT(zio->io_children[c][w] == 0);
4176 
4177 	if (bp != NULL && !BP_IS_EMBEDDED(bp)) {
4178 		ASSERT(bp->blk_pad[0] == 0);
4179 		ASSERT(bp->blk_pad[1] == 0);
4180 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
4181 		    (bp == zio_unique_parent(zio)->io_bp));
4182 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
4183 		    zio->io_bp_override == NULL &&
4184 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4185 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
4186 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
4187 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
4188 		}
4189 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4190 			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
4191 	}
4192 
4193 	/*
4194 	 * If there were child vdev/gang/ddt errors, they apply to us now.
4195 	 */
4196 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4197 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4198 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4199 
4200 	/*
4201 	 * If the I/O on the transformed data was successful, generate any
4202 	 * checksum reports now while we still have the transformed data.
4203 	 */
4204 	if (zio->io_error == 0) {
4205 		while (zio->io_cksum_report != NULL) {
4206 			zio_cksum_report_t *zcr = zio->io_cksum_report;
4207 			uint64_t align = zcr->zcr_align;
4208 			uint64_t asize = P2ROUNDUP(psize, align);
4209 			abd_t *adata = zio->io_abd;
4210 
4211 			if (asize != psize) {
4212 				adata = abd_alloc(asize, B_TRUE);
4213 				abd_copy(adata, zio->io_abd, psize);
4214 				abd_zero_off(adata, psize, asize - psize);
4215 			}
4216 
4217 			zio->io_cksum_report = zcr->zcr_next;
4218 			zcr->zcr_next = NULL;
4219 			zcr->zcr_finish(zcr, adata);
4220 			zfs_ereport_free_checksum(zcr);
4221 
4222 			if (asize != psize)
4223 				abd_free(adata);
4224 		}
4225 	}
4226 
4227 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
4228 
4229 	vdev_stat_update(zio, psize);
4230 
4231 	if (zio->io_error) {
4232 		/*
4233 		 * If this I/O is attached to a particular vdev,
4234 		 * generate an error message describing the I/O failure
4235 		 * at the block level.  We ignore these errors if the
4236 		 * device is currently unavailable.
4237 		 */
4238 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
4239 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd,
4240 			    &zio->io_bookmark, zio, 0, 0);
4241 
4242 		if ((zio->io_error == EIO || !(zio->io_flags &
4243 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4244 		    zio == lio) {
4245 			/*
4246 			 * For logical I/O requests, tell the SPA to log the
4247 			 * error and generate a logical data ereport.
4248 			 */
4249 			spa_log_error(spa, &zio->io_bookmark);
4250 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL,
4251 			    &zio->io_bookmark, zio, 0, 0);
4252 		}
4253 	}
4254 
4255 	if (zio->io_error && zio == lio) {
4256 		/*
4257 		 * Determine whether zio should be reexecuted.  This will
4258 		 * propagate all the way to the root via zio_notify_parent().
4259 		 */
4260 		ASSERT(vd == NULL && bp != NULL);
4261 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4262 
4263 		if (IO_IS_ALLOCATING(zio) &&
4264 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4265 			if (zio->io_error != ENOSPC)
4266 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4267 			else
4268 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4269 		}
4270 
4271 		if ((zio->io_type == ZIO_TYPE_READ ||
4272 		    zio->io_type == ZIO_TYPE_FREE) &&
4273 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4274 		    zio->io_error == ENXIO &&
4275 		    spa_load_state(spa) == SPA_LOAD_NONE &&
4276 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
4277 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4278 
4279 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4280 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4281 
4282 		/*
4283 		 * Here is a possibly good place to attempt to do
4284 		 * either combinatorial reconstruction or error correction
4285 		 * based on checksums.  It also might be a good place
4286 		 * to send out preliminary ereports before we suspend
4287 		 * processing.
4288 		 */
4289 	}
4290 
4291 	/*
4292 	 * If there were logical child errors, they apply to us now.
4293 	 * We defer this until now to avoid conflating logical child
4294 	 * errors with errors that happened to the zio itself when
4295 	 * updating vdev stats and reporting FMA events above.
4296 	 */
4297 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4298 
4299 	if ((zio->io_error || zio->io_reexecute) &&
4300 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4301 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4302 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
4303 
4304 	zio_gang_tree_free(&zio->io_gang_tree);
4305 
4306 	/*
4307 	 * Godfather I/Os should never suspend.
4308 	 */
4309 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4310 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4311 		zio->io_reexecute = 0;
4312 
4313 	if (zio->io_reexecute) {
4314 		/*
4315 		 * This is a logical I/O that wants to reexecute.
4316 		 *
4317 		 * Reexecute is top-down.  When an i/o fails, if it's not
4318 		 * the root, it simply notifies its parent and sticks around.
4319 		 * The parent, seeing that it still has children in zio_done(),
4320 		 * does the same.  This percolates all the way up to the root.
4321 		 * The root i/o will reexecute or suspend the entire tree.
4322 		 *
4323 		 * This approach ensures that zio_reexecute() honors
4324 		 * all the original i/o dependency relationships, e.g.
4325 		 * parents not executing until children are ready.
4326 		 */
4327 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4328 
4329 		zio->io_gang_leader = NULL;
4330 
4331 		mutex_enter(&zio->io_lock);
4332 		zio->io_state[ZIO_WAIT_DONE] = 1;
4333 		mutex_exit(&zio->io_lock);
4334 
4335 		/*
4336 		 * "The Godfather" I/O monitors its children but is
4337 		 * not a true parent to them. It will track them through
4338 		 * the pipeline but severs its ties whenever they get into
4339 		 * trouble (e.g. suspended). This allows "The Godfather"
4340 		 * I/O to return status without blocking.
4341 		 */
4342 		zl = NULL;
4343 		for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4344 		    pio = pio_next) {
4345 			zio_link_t *remove_zl = zl;
4346 			pio_next = zio_walk_parents(zio, &zl);
4347 
4348 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4349 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4350 				zio_remove_child(pio, zio, remove_zl);
4351 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4352 			}
4353 		}
4354 
4355 		if ((pio = zio_unique_parent(zio)) != NULL) {
4356 			/*
4357 			 * We're not a root i/o, so there's nothing to do
4358 			 * but notify our parent.  Don't propagate errors
4359 			 * upward since we haven't permanently failed yet.
4360 			 */
4361 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4362 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4363 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4364 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4365 			/*
4366 			 * We'd fail again if we reexecuted now, so suspend
4367 			 * until conditions improve (e.g. device comes online).
4368 			 */
4369 			zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4370 		} else {
4371 			/*
4372 			 * Reexecution is potentially a huge amount of work.
4373 			 * Hand it off to the otherwise-unused claim taskq.
4374 			 */
4375 			ASSERT(zio->io_tqent.tqent_next == NULL);
4376 			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
4377 			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
4378 			    0, &zio->io_tqent);
4379 		}
4380 		return (ZIO_PIPELINE_STOP);
4381 	}
4382 
4383 	ASSERT(zio->io_child_count == 0);
4384 	ASSERT(zio->io_reexecute == 0);
4385 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4386 
4387 	/*
4388 	 * Report any checksum errors, since the I/O is complete.
4389 	 */
4390 	while (zio->io_cksum_report != NULL) {
4391 		zio_cksum_report_t *zcr = zio->io_cksum_report;
4392 		zio->io_cksum_report = zcr->zcr_next;
4393 		zcr->zcr_next = NULL;
4394 		zcr->zcr_finish(zcr, NULL);
4395 		zfs_ereport_free_checksum(zcr);
4396 	}
4397 
4398 	/*
4399 	 * It is the responsibility of the done callback to ensure that this
4400 	 * particular zio is no longer discoverable for adoption, and as
4401 	 * such, cannot acquire any new parents.
4402 	 */
4403 	if (zio->io_done)
4404 		zio->io_done(zio);
4405 
4406 	mutex_enter(&zio->io_lock);
4407 	zio->io_state[ZIO_WAIT_DONE] = 1;
4408 	mutex_exit(&zio->io_lock);
4409 
4410 	zl = NULL;
4411 	for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4412 		zio_link_t *remove_zl = zl;
4413 		pio_next = zio_walk_parents(zio, &zl);
4414 		zio_remove_child(pio, zio, remove_zl);
4415 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4416 	}
4417 
4418 	if (zio->io_waiter != NULL) {
4419 		mutex_enter(&zio->io_lock);
4420 		zio->io_executor = NULL;
4421 		cv_broadcast(&zio->io_cv);
4422 		mutex_exit(&zio->io_lock);
4423 	} else {
4424 		zio_destroy(zio);
4425 	}
4426 
4427 	return (ZIO_PIPELINE_STOP);
4428 }
4429 
4430 /*
4431  * ==========================================================================
4432  * I/O pipeline definition
4433  * ==========================================================================
4434  */
4435 static zio_pipe_stage_t *zio_pipeline[] = {
4436 	NULL,
4437 	zio_read_bp_init,
4438 	zio_write_bp_init,
4439 	zio_free_bp_init,
4440 	zio_issue_async,
4441 	zio_write_compress,
4442 	zio_encrypt,
4443 	zio_checksum_generate,
4444 	zio_nop_write,
4445 	zio_ddt_read_start,
4446 	zio_ddt_read_done,
4447 	zio_ddt_write,
4448 	zio_ddt_free,
4449 	zio_gang_assemble,
4450 	zio_gang_issue,
4451 	zio_dva_throttle,
4452 	zio_dva_allocate,
4453 	zio_dva_free,
4454 	zio_dva_claim,
4455 	zio_ready,
4456 	zio_vdev_io_start,
4457 	zio_vdev_io_done,
4458 	zio_vdev_io_assess,
4459 	zio_checksum_verify,
4460 	zio_done
4461 };
4462 
4463 
4464 
4465 
4466 /*
4467  * Compare two zbookmark_phys_t's to see which we would reach first in a
4468  * pre-order traversal of the object tree.
4469  *
4470  * This is simple in every case aside from the meta-dnode object. For all other
4471  * objects, we traverse them in order (object 1 before object 2, and so on).
4472  * However, all of these objects are traversed while traversing object 0, since
4473  * the data it points to is the list of objects.  Thus, we need to convert to a
4474  * canonical representation so we can compare meta-dnode bookmarks to
4475  * non-meta-dnode bookmarks.
4476  *
4477  * We do this by calculating "equivalents" for each field of the zbookmark.
4478  * zbookmarks outside of the meta-dnode use their own object and level, and
4479  * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4480  * blocks this bookmark refers to) by multiplying their blkid by their span
4481  * (the number of L0 blocks contained within one block at their level).
4482  * zbookmarks inside the meta-dnode calculate their object equivalent
4483  * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4484  * level + 1<<31 (any value larger than a level could ever be) for their level.
4485  * This causes them to always compare before a bookmark in their object
4486  * equivalent, compare appropriately to bookmarks in other objects, and to
4487  * compare appropriately to other bookmarks in the meta-dnode.
4488  */
4489 int
4490 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4491     const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4492 {
4493 	/*
4494 	 * These variables represent the "equivalent" values for the zbookmark,
4495 	 * after converting zbookmarks inside the meta dnode to their
4496 	 * normal-object equivalents.
4497 	 */
4498 	uint64_t zb1obj, zb2obj;
4499 	uint64_t zb1L0, zb2L0;
4500 	uint64_t zb1level, zb2level;
4501 
4502 	if (zb1->zb_object == zb2->zb_object &&
4503 	    zb1->zb_level == zb2->zb_level &&
4504 	    zb1->zb_blkid == zb2->zb_blkid)
4505 		return (0);
4506 
4507 	/*
4508 	 * BP_SPANB calculates the span in blocks.
4509 	 */
4510 	zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4511 	zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4512 
4513 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4514 		zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4515 		zb1L0 = 0;
4516 		zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4517 	} else {
4518 		zb1obj = zb1->zb_object;
4519 		zb1level = zb1->zb_level;
4520 	}
4521 
4522 	if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4523 		zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4524 		zb2L0 = 0;
4525 		zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4526 	} else {
4527 		zb2obj = zb2->zb_object;
4528 		zb2level = zb2->zb_level;
4529 	}
4530 
4531 	/* Now that we have a canonical representation, do the comparison. */
4532 	if (zb1obj != zb2obj)
4533 		return (zb1obj < zb2obj ? -1 : 1);
4534 	else if (zb1L0 != zb2L0)
4535 		return (zb1L0 < zb2L0 ? -1 : 1);
4536 	else if (zb1level != zb2level)
4537 		return (zb1level > zb2level ? -1 : 1);
4538 	/*
4539 	 * This can (theoretically) happen if the bookmarks have the same object
4540 	 * and level, but different blkids, if the block sizes are not the same.
4541 	 * There is presently no way to change the indirect block sizes
4542 	 */
4543 	return (0);
4544 }
4545 
4546 /*
4547  *  This function checks the following: given that last_block is the place that
4548  *  our traversal stopped last time, does that guarantee that we've visited
4549  *  every node under subtree_root?  Therefore, we can't just use the raw output
4550  *  of zbookmark_compare.  We have to pass in a modified version of
4551  *  subtree_root; by incrementing the block id, and then checking whether
4552  *  last_block is before or equal to that, we can tell whether or not having
4553  *  visited last_block implies that all of subtree_root's children have been
4554  *  visited.
4555  */
4556 boolean_t
4557 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4558     const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4559 {
4560 	zbookmark_phys_t mod_zb = *subtree_root;
4561 	mod_zb.zb_blkid++;
4562 	ASSERT(last_block->zb_level == 0);
4563 
4564 	/* The objset_phys_t isn't before anything. */
4565 	if (dnp == NULL)
4566 		return (B_FALSE);
4567 
4568 	/*
4569 	 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4570 	 * data block size in sectors, because that variable is only used if
4571 	 * the bookmark refers to a block in the meta-dnode.  Since we don't
4572 	 * know without examining it what object it refers to, and there's no
4573 	 * harm in passing in this value in other cases, we always pass it in.
4574 	 *
4575 	 * We pass in 0 for the indirect block size shift because zb2 must be
4576 	 * level 0.  The indirect block size is only used to calculate the span
4577 	 * of the bookmark, but since the bookmark must be level 0, the span is
4578 	 * always 1, so the math works out.
4579 	 *
4580 	 * If you make changes to how the zbookmark_compare code works, be sure
4581 	 * to make sure that this code still works afterwards.
4582 	 */
4583 	return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4584 	    1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4585 	    last_block) <= 0);
4586 }
4587