xref: /illumos-gate/usr/src/uts/common/fs/zfs/zfs_fm.c (revision f52943a93040563107b95bccb9db87d9971ef47d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/util.h>
40 #include <sys/sysevent.h>
41 
42 /*
43  * This general routine is responsible for generating all the different ZFS
44  * ereports.  The payload is dependent on the class, and which arguments are
45  * supplied to the function:
46  *
47  *	EREPORT			POOL	VDEV	IO
48  *	block			X	X	X
49  *	data			X		X
50  *	device			X	X
51  *	pool			X
52  *
53  * If we are in a loading state, all errors are chained together by the same
54  * SPA-wide ENA (Error Numeric Association).
55  *
56  * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57  * gets very complicated due to RAID-Z, gang blocks, and vdev caching.  We want
58  * to chain together all ereports associated with a logical piece of data.  For
59  * read I/Os, there  are basically three 'types' of I/O, which form a roughly
60  * layered diagram:
61  *
62  *      +---------------+
63  *	| Aggregate I/O |	No associated logical data or device
64  *	+---------------+
65  *              |
66  *              V
67  *	+---------------+	Reads associated with a piece of logical data.
68  *	|   Read I/O    |	This includes reads on behalf of RAID-Z,
69  *	+---------------+       mirrors, gang blocks, retries, etc.
70  *              |
71  *              V
72  *	+---------------+	Reads associated with a particular device, but
73  *	| Physical I/O  |	no logical data.  Issued as part of vdev caching
74  *	+---------------+	and I/O aggregation.
75  *
76  * Note that 'physical I/O' here is not the same terminology as used in the rest
77  * of ZIO.  Typically, 'physical I/O' simply means that there is no attached
78  * blockpointer.  But I/O with no associated block pointer can still be related
79  * to a logical piece of data (i.e. RAID-Z requests).
80  *
81  * Purely physical I/O always have unique ENAs.  They are not related to a
82  * particular piece of logical data, and therefore cannot be chained together.
83  * We still generate an ereport, but the DE doesn't correlate it with any
84  * logical piece of data.  When such an I/O fails, the delegated I/O requests
85  * will issue a retry, which will trigger the 'real' ereport with the correct
86  * ENA.
87  *
88  * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89  * When a new logical I/O is issued, we set this to point to itself.  Child I/Os
90  * then inherit this pointer, so that when it is first set subsequent failures
91  * will use the same ENA.  For vdev cache fill and queue aggregation I/O,
92  * this pointer is set to NULL, and no ereport will be generated (since it
93  * doesn't actually correspond to any particular device or piece of data,
94  * and the caller will always retry without caching or queueing anyway).
95  *
96  * For checksum errors, we want to include more information about the actual
97  * error which occurs.  Accordingly, we build an ereport when the error is
98  * noticed, but instead of sending it in immediately, we hang it off of the
99  * io_cksum_report field of the logical IO.  When the logical IO completes
100  * (successfully or not), zfs_ereport_finish_checksum() is called with the
101  * good and bad versions of the buffer (if available), and we annotate the
102  * ereport with information about the differences.
103  */
104 #ifdef _KERNEL
105 static void
106 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
107     const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
108     zio_t *zio, uint64_t stateoroffset, uint64_t size)
109 {
110 	nvlist_t *ereport, *detector;
111 
112 	uint64_t ena;
113 	char class[64];
114 
115 	/*
116 	 * If we are doing a spa_tryimport() or in recovery mode,
117 	 * ignore errors.
118 	 */
119 	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
120 	    spa_load_state(spa) == SPA_LOAD_RECOVER)
121 		return;
122 
123 	/*
124 	 * If we are in the middle of opening a pool, and the previous attempt
125 	 * failed, don't bother logging any new ereports - we're just going to
126 	 * get the same diagnosis anyway.
127 	 */
128 	if (spa_load_state(spa) != SPA_LOAD_NONE &&
129 	    spa->spa_last_open_failed)
130 		return;
131 
132 	if (zio != NULL) {
133 		/*
134 		 * If this is not a read or write zio, ignore the error.  This
135 		 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
136 		 */
137 		if (zio->io_type != ZIO_TYPE_READ &&
138 		    zio->io_type != ZIO_TYPE_WRITE)
139 			return;
140 
141 		/*
142 		 * Ignore any errors from speculative I/Os, as failure is an
143 		 * expected result.
144 		 */
145 		if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
146 			return;
147 
148 		/*
149 		 * If this I/O is not a retry I/O, don't post an ereport.
150 		 * Otherwise, we risk making bad diagnoses based on B_FAILFAST
151 		 * I/Os.
152 		 */
153 		if (zio->io_error == EIO &&
154 		    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
155 			return;
156 
157 		if (vd != NULL) {
158 			/*
159 			 * If the vdev has already been marked as failing due
160 			 * to a failed probe, then ignore any subsequent I/O
161 			 * errors, as the DE will automatically fault the vdev
162 			 * on the first such failure.  This also catches cases
163 			 * where vdev_remove_wanted is set and the device has
164 			 * not yet been asynchronously placed into the REMOVED
165 			 * state.
166 			 */
167 			if (zio->io_vd == vd && !vdev_accessible(vd, zio))
168 				return;
169 
170 			/*
171 			 * Ignore checksum errors for reads from DTL regions of
172 			 * leaf vdevs.
173 			 */
174 			if (zio->io_type == ZIO_TYPE_READ &&
175 			    zio->io_error == ECKSUM &&
176 			    vd->vdev_ops->vdev_op_leaf &&
177 			    vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
178 				return;
179 		}
180 	}
181 
182 	/*
183 	 * For probe failure, we want to avoid posting ereports if we've
184 	 * already removed the device in the meantime.
185 	 */
186 	if (vd != NULL &&
187 	    strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
188 	    (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
189 		return;
190 
191 	if ((ereport = fm_nvlist_create(NULL)) == NULL)
192 		return;
193 
194 	if ((detector = fm_nvlist_create(NULL)) == NULL) {
195 		fm_nvlist_destroy(ereport, FM_NVA_FREE);
196 		return;
197 	}
198 
199 	/*
200 	 * Serialize ereport generation
201 	 */
202 	mutex_enter(&spa->spa_errlist_lock);
203 
204 	/*
205 	 * Determine the ENA to use for this event.  If we are in a loading
206 	 * state, use a SPA-wide ENA.  Otherwise, if we are in an I/O state, use
207 	 * a root zio-wide ENA.  Otherwise, simply use a unique ENA.
208 	 */
209 	if (spa_load_state(spa) != SPA_LOAD_NONE) {
210 		if (spa->spa_ena == 0)
211 			spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
212 		ena = spa->spa_ena;
213 	} else if (zio != NULL && zio->io_logical != NULL) {
214 		if (zio->io_logical->io_ena == 0)
215 			zio->io_logical->io_ena =
216 			    fm_ena_generate(0, FM_ENA_FMT1);
217 		ena = zio->io_logical->io_ena;
218 	} else {
219 		ena = fm_ena_generate(0, FM_ENA_FMT1);
220 	}
221 
222 	/*
223 	 * Construct the full class, detector, and other standard FMA fields.
224 	 */
225 	(void) snprintf(class, sizeof (class), "%s.%s",
226 	    ZFS_ERROR_CLASS, subclass);
227 
228 	fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
229 	    vd != NULL ? vd->vdev_guid : 0);
230 
231 	fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
232 
233 	/*
234 	 * Construct the per-ereport payload, depending on which parameters are
235 	 * passed in.
236 	 */
237 
238 	/*
239 	 * Generic payload members common to all ereports.
240 	 */
241 	fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL,
242 	    DATA_TYPE_STRING, spa_name(spa), FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
243 	    DATA_TYPE_UINT64, spa_guid(spa),
244 	    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
245 	    spa_load_state(spa), NULL);
246 
247 	if (spa != NULL) {
248 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
249 		    DATA_TYPE_STRING,
250 		    spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
251 		    FM_EREPORT_FAILMODE_WAIT :
252 		    spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
253 		    FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
254 		    NULL);
255 	}
256 
257 	if (vd != NULL) {
258 		vdev_t *pvd = vd->vdev_parent;
259 
260 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
261 		    DATA_TYPE_UINT64, vd->vdev_guid,
262 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
263 		    DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
264 		if (vd->vdev_path != NULL)
265 			fm_payload_set(ereport,
266 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
267 			    DATA_TYPE_STRING, vd->vdev_path, NULL);
268 		if (vd->vdev_devid != NULL)
269 			fm_payload_set(ereport,
270 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
271 			    DATA_TYPE_STRING, vd->vdev_devid, NULL);
272 		if (vd->vdev_fru != NULL)
273 			fm_payload_set(ereport,
274 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
275 			    DATA_TYPE_STRING, vd->vdev_fru, NULL);
276 		if (vd->vdev_ashift)
277 			fm_payload_set(ereport,
278 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT,
279 			    DATA_TYPE_UINT64, vd->vdev_ashift, NULL);
280 
281 		if (pvd != NULL) {
282 			fm_payload_set(ereport,
283 			    FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
284 			    DATA_TYPE_UINT64, pvd->vdev_guid,
285 			    FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
286 			    DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
287 			    NULL);
288 			if (pvd->vdev_path)
289 				fm_payload_set(ereport,
290 				    FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
291 				    DATA_TYPE_STRING, pvd->vdev_path, NULL);
292 			if (pvd->vdev_devid)
293 				fm_payload_set(ereport,
294 				    FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
295 				    DATA_TYPE_STRING, pvd->vdev_devid, NULL);
296 		}
297 	}
298 
299 	if (zio != NULL) {
300 		/*
301 		 * Payload common to all I/Os.
302 		 */
303 		fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
304 		    DATA_TYPE_INT32, zio->io_error, NULL);
305 
306 		/*
307 		 * If the 'size' parameter is non-zero, it indicates this is a
308 		 * RAID-Z or other I/O where the physical offset and length are
309 		 * provided for us, instead of within the zio_t.
310 		 */
311 		if (vd != NULL) {
312 			if (size)
313 				fm_payload_set(ereport,
314 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
315 				    DATA_TYPE_UINT64, stateoroffset,
316 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
317 				    DATA_TYPE_UINT64, size, NULL);
318 			else
319 				fm_payload_set(ereport,
320 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
321 				    DATA_TYPE_UINT64, zio->io_offset,
322 				    FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
323 				    DATA_TYPE_UINT64, zio->io_size, NULL);
324 		}
325 	} else if (vd != NULL) {
326 		/*
327 		 * If we have a vdev but no zio, this is a device fault, and the
328 		 * 'stateoroffset' parameter indicates the previous state of the
329 		 * vdev.
330 		 */
331 		fm_payload_set(ereport,
332 		    FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
333 		    DATA_TYPE_UINT64, stateoroffset, NULL);
334 	}
335 
336 	/*
337 	 * Payload for I/Os with corresponding logical information.
338 	 */
339 	if (zb != NULL && (zio == NULL || zio->io_logical != NULL))
340 		fm_payload_set(ereport,
341 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
342 		    DATA_TYPE_UINT64, zb->zb_objset,
343 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
344 		    DATA_TYPE_UINT64, zb->zb_object,
345 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
346 		    DATA_TYPE_INT64, zb->zb_level,
347 		    FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
348 		    DATA_TYPE_UINT64, zb->zb_blkid, NULL);
349 
350 	mutex_exit(&spa->spa_errlist_lock);
351 
352 	*ereport_out = ereport;
353 	*detector_out = detector;
354 }
355 
356 /* if it's <= 128 bytes, save the corruption directly */
357 #define	ZFM_MAX_INLINE		(128 / sizeof (uint64_t))
358 
359 #define	MAX_RANGES		16
360 
361 typedef struct zfs_ecksum_info {
362 	/* histograms of set and cleared bits by bit number in a 64-bit word */
363 	uint32_t zei_histogram_set[sizeof (uint64_t) * NBBY];
364 	uint32_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
365 
366 	/* inline arrays of bits set and cleared. */
367 	uint64_t zei_bits_set[ZFM_MAX_INLINE];
368 	uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
369 
370 	/*
371 	 * for each range, the number of bits set and cleared.  The Hamming
372 	 * distance between the good and bad buffers is the sum of them all.
373 	 */
374 	uint32_t zei_range_sets[MAX_RANGES];
375 	uint32_t zei_range_clears[MAX_RANGES];
376 
377 	struct zei_ranges {
378 		uint32_t	zr_start;
379 		uint32_t	zr_end;
380 	} zei_ranges[MAX_RANGES];
381 
382 	size_t	zei_range_count;
383 	uint32_t zei_mingap;
384 	uint32_t zei_allowed_mingap;
385 
386 } zfs_ecksum_info_t;
387 
388 static void
389 update_histogram(uint64_t value_arg, uint32_t *hist, uint32_t *count)
390 {
391 	size_t i;
392 	size_t bits = 0;
393 	uint64_t value = BE_64(value_arg);
394 
395 	/* We store the bits in big-endian (largest-first) order */
396 	for (i = 0; i < 64; i++) {
397 		if (value & (1ull << i)) {
398 			hist[63 - i]++;
399 			++bits;
400 		}
401 	}
402 	/* update the count of bits changed */
403 	*count += bits;
404 }
405 
406 /*
407  * We've now filled up the range array, and need to increase "mingap" and
408  * shrink the range list accordingly.  zei_mingap is always the smallest
409  * distance between array entries, so we set the new_allowed_gap to be
410  * one greater than that.  We then go through the list, joining together
411  * any ranges which are closer than the new_allowed_gap.
412  *
413  * By construction, there will be at least one.  We also update zei_mingap
414  * to the new smallest gap, to prepare for our next invocation.
415  */
416 static void
417 shrink_ranges(zfs_ecksum_info_t *eip)
418 {
419 	uint32_t mingap = UINT32_MAX;
420 	uint32_t new_allowed_gap = eip->zei_mingap + 1;
421 
422 	size_t idx, output;
423 	size_t max = eip->zei_range_count;
424 
425 	struct zei_ranges *r = eip->zei_ranges;
426 
427 	ASSERT3U(eip->zei_range_count, >, 0);
428 	ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
429 
430 	output = idx = 0;
431 	while (idx < max - 1) {
432 		uint32_t start = r[idx].zr_start;
433 		uint32_t end = r[idx].zr_end;
434 
435 		while (idx < max - 1) {
436 			idx++;
437 
438 			uint32_t nstart = r[idx].zr_start;
439 			uint32_t nend = r[idx].zr_end;
440 
441 			uint32_t gap = nstart - end;
442 			if (gap < new_allowed_gap) {
443 				end = nend;
444 				continue;
445 			}
446 			if (gap < mingap)
447 				mingap = gap;
448 			break;
449 		}
450 		r[output].zr_start = start;
451 		r[output].zr_end = end;
452 		output++;
453 	}
454 	ASSERT3U(output, <, eip->zei_range_count);
455 	eip->zei_range_count = output;
456 	eip->zei_mingap = mingap;
457 	eip->zei_allowed_mingap = new_allowed_gap;
458 }
459 
460 static void
461 add_range(zfs_ecksum_info_t *eip, int start, int end)
462 {
463 	struct zei_ranges *r = eip->zei_ranges;
464 	size_t count = eip->zei_range_count;
465 
466 	if (count >= MAX_RANGES) {
467 		shrink_ranges(eip);
468 		count = eip->zei_range_count;
469 	}
470 	if (count == 0) {
471 		eip->zei_mingap = UINT32_MAX;
472 		eip->zei_allowed_mingap = 1;
473 	} else {
474 		int gap = start - r[count - 1].zr_end;
475 
476 		if (gap < eip->zei_allowed_mingap) {
477 			r[count - 1].zr_end = end;
478 			return;
479 		}
480 		if (gap < eip->zei_mingap)
481 			eip->zei_mingap = gap;
482 	}
483 	r[count].zr_start = start;
484 	r[count].zr_end = end;
485 	eip->zei_range_count++;
486 }
487 
488 static size_t
489 range_total_size(zfs_ecksum_info_t *eip)
490 {
491 	struct zei_ranges *r = eip->zei_ranges;
492 	size_t count = eip->zei_range_count;
493 	size_t result = 0;
494 	size_t idx;
495 
496 	for (idx = 0; idx < count; idx++)
497 		result += (r[idx].zr_end - r[idx].zr_start);
498 
499 	return (result);
500 }
501 
502 static zfs_ecksum_info_t *
503 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
504     const abd_t *goodabd, const abd_t *badabd, size_t size,
505     boolean_t drop_if_identical)
506 {
507 	const uint64_t *good;
508 	const uint64_t *bad;
509 
510 	uint64_t allset = 0;
511 	uint64_t allcleared = 0;
512 
513 	size_t nui64s = size / sizeof (uint64_t);
514 
515 	size_t inline_size;
516 	int no_inline = 0;
517 	size_t idx;
518 	size_t range;
519 
520 	size_t offset = 0;
521 	ssize_t start = -1;
522 
523 	zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
524 
525 	/* don't do any annotation for injected checksum errors */
526 	if (info != NULL && info->zbc_injected)
527 		return (eip);
528 
529 	if (info != NULL && info->zbc_has_cksum) {
530 		fm_payload_set(ereport,
531 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
532 		    DATA_TYPE_UINT64_ARRAY,
533 		    sizeof (info->zbc_expected) / sizeof (uint64_t),
534 		    (uint64_t *)&info->zbc_expected,
535 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
536 		    DATA_TYPE_UINT64_ARRAY,
537 		    sizeof (info->zbc_actual) / sizeof (uint64_t),
538 		    (uint64_t *)&info->zbc_actual,
539 		    FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
540 		    DATA_TYPE_STRING,
541 		    info->zbc_checksum_name,
542 		    NULL);
543 
544 		if (info->zbc_byteswapped) {
545 			fm_payload_set(ereport,
546 			    FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
547 			    DATA_TYPE_BOOLEAN, 1,
548 			    NULL);
549 		}
550 	}
551 
552 	if (badabd == NULL || goodabd == NULL)
553 		return (eip);
554 
555 	ASSERT3U(nui64s, <=, UINT32_MAX);
556 	ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
557 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
558 	ASSERT3U(size, <=, UINT32_MAX);
559 
560 	good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size);
561 	bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size);
562 
563 	/* build up the range list by comparing the two buffers. */
564 	for (idx = 0; idx < nui64s; idx++) {
565 		if (good[idx] == bad[idx]) {
566 			if (start == -1)
567 				continue;
568 
569 			add_range(eip, start, idx);
570 			start = -1;
571 		} else {
572 			if (start != -1)
573 				continue;
574 
575 			start = idx;
576 		}
577 	}
578 	if (start != -1)
579 		add_range(eip, start, idx);
580 
581 	/* See if it will fit in our inline buffers */
582 	inline_size = range_total_size(eip);
583 	if (inline_size > ZFM_MAX_INLINE)
584 		no_inline = 1;
585 
586 	/*
587 	 * If there is no change and we want to drop if the buffers are
588 	 * identical, do so.
589 	 */
590 	if (inline_size == 0 && drop_if_identical) {
591 		kmem_free(eip, sizeof (*eip));
592 		abd_return_buf((abd_t *)goodabd, (void *)good, size);
593 		abd_return_buf((abd_t *)badabd, (void *)bad, size);
594 		return (NULL);
595 	}
596 
597 	/*
598 	 * Now walk through the ranges, filling in the details of the
599 	 * differences.  Also convert our uint64_t-array offsets to byte
600 	 * offsets.
601 	 */
602 	for (range = 0; range < eip->zei_range_count; range++) {
603 		size_t start = eip->zei_ranges[range].zr_start;
604 		size_t end = eip->zei_ranges[range].zr_end;
605 
606 		for (idx = start; idx < end; idx++) {
607 			uint64_t set, cleared;
608 
609 			// bits set in bad, but not in good
610 			set = ((~good[idx]) & bad[idx]);
611 			// bits set in good, but not in bad
612 			cleared = (good[idx] & (~bad[idx]));
613 
614 			allset |= set;
615 			allcleared |= cleared;
616 
617 			if (!no_inline) {
618 				ASSERT3U(offset, <, inline_size);
619 				eip->zei_bits_set[offset] = set;
620 				eip->zei_bits_cleared[offset] = cleared;
621 				offset++;
622 			}
623 
624 			update_histogram(set, eip->zei_histogram_set,
625 			    &eip->zei_range_sets[range]);
626 			update_histogram(cleared, eip->zei_histogram_cleared,
627 			    &eip->zei_range_clears[range]);
628 		}
629 
630 		/* convert to byte offsets */
631 		eip->zei_ranges[range].zr_start	*= sizeof (uint64_t);
632 		eip->zei_ranges[range].zr_end	*= sizeof (uint64_t);
633 	}
634 
635 	abd_return_buf((abd_t *)goodabd, (void *)good, size);
636 	abd_return_buf((abd_t *)badabd, (void *)bad, size);
637 
638 	eip->zei_allowed_mingap	*= sizeof (uint64_t);
639 	inline_size		*= sizeof (uint64_t);
640 
641 	/* fill in ereport */
642 	fm_payload_set(ereport,
643 	    FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
644 	    DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
645 	    (uint32_t *)eip->zei_ranges,
646 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
647 	    DATA_TYPE_UINT32, eip->zei_allowed_mingap,
648 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
649 	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
650 	    FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
651 	    DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
652 	    NULL);
653 
654 	if (!no_inline) {
655 		fm_payload_set(ereport,
656 		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
657 		    DATA_TYPE_UINT8_ARRAY,
658 		    inline_size, (uint8_t *)eip->zei_bits_set,
659 		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
660 		    DATA_TYPE_UINT8_ARRAY,
661 		    inline_size, (uint8_t *)eip->zei_bits_cleared,
662 		    NULL);
663 	} else {
664 		fm_payload_set(ereport,
665 		    FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
666 		    DATA_TYPE_UINT32_ARRAY,
667 		    NBBY * sizeof (uint64_t), eip->zei_histogram_set,
668 		    FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
669 		    DATA_TYPE_UINT32_ARRAY,
670 		    NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
671 		    NULL);
672 	}
673 	return (eip);
674 }
675 #endif
676 
677 void
678 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd,
679     const struct zbookmark_phys *zb, zio_t *zio, uint64_t stateoroffset,
680     uint64_t size)
681 {
682 #ifdef _KERNEL
683 	nvlist_t *ereport = NULL;
684 	nvlist_t *detector = NULL;
685 
686 	zfs_ereport_start(&ereport, &detector, subclass, spa, vd,
687 	    zb, zio, stateoroffset, size);
688 
689 	if (ereport == NULL)
690 		return;
691 
692 	fm_ereport_post(ereport, EVCH_SLEEP);
693 
694 	fm_nvlist_destroy(ereport, FM_NVA_FREE);
695 	fm_nvlist_destroy(detector, FM_NVA_FREE);
696 #endif
697 }
698 
699 void
700 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
701     struct zio *zio, uint64_t offset, uint64_t length, void *arg,
702     zio_bad_cksum_t *info)
703 {
704 	zio_cksum_report_t *report = kmem_zalloc(sizeof (*report), KM_SLEEP);
705 
706 	if (zio->io_vsd != NULL)
707 		zio->io_vsd_ops->vsd_cksum_report(zio, report, arg);
708 	else
709 		zio_vsd_default_cksum_report(zio, report, arg);
710 
711 	/* copy the checksum failure information if it was provided */
712 	if (info != NULL) {
713 		report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
714 		bcopy(info, report->zcr_ckinfo, sizeof (*info));
715 	}
716 
717 	report->zcr_align = 1ULL << vd->vdev_top->vdev_ashift;
718 	report->zcr_length = length;
719 
720 #ifdef _KERNEL
721 	zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
722 	    FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length);
723 
724 	if (report->zcr_ereport == NULL) {
725 		report->zcr_free(report->zcr_cbdata, report->zcr_cbinfo);
726 		if (report->zcr_ckinfo != NULL) {
727 			kmem_free(report->zcr_ckinfo,
728 			    sizeof (*report->zcr_ckinfo));
729 		}
730 		kmem_free(report, sizeof (*report));
731 		return;
732 	}
733 #endif
734 
735 	mutex_enter(&spa->spa_errlist_lock);
736 	report->zcr_next = zio->io_logical->io_cksum_report;
737 	zio->io_logical->io_cksum_report = report;
738 	mutex_exit(&spa->spa_errlist_lock);
739 }
740 
741 void
742 zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data,
743     const abd_t *bad_data, boolean_t drop_if_identical)
744 {
745 #ifdef _KERNEL
746 	zfs_ecksum_info_t *info = NULL;
747 	info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
748 	    good_data, bad_data, report->zcr_length, drop_if_identical);
749 
750 	if (info != NULL)
751 		fm_ereport_post(report->zcr_ereport, EVCH_SLEEP);
752 
753 	fm_nvlist_destroy(report->zcr_ereport, FM_NVA_FREE);
754 	fm_nvlist_destroy(report->zcr_detector, FM_NVA_FREE);
755 	report->zcr_ereport = report->zcr_detector = NULL;
756 
757 	if (info != NULL)
758 		kmem_free(info, sizeof (*info));
759 #endif
760 }
761 
762 void
763 zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
764 {
765 #ifdef _KERNEL
766 	if (rpt->zcr_ereport != NULL) {
767 		fm_nvlist_destroy(rpt->zcr_ereport,
768 		    FM_NVA_FREE);
769 		fm_nvlist_destroy(rpt->zcr_detector,
770 		    FM_NVA_FREE);
771 	}
772 #endif
773 	rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
774 
775 	if (rpt->zcr_ckinfo != NULL)
776 		kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
777 
778 	kmem_free(rpt, sizeof (*rpt));
779 }
780 
781 void
782 zfs_ereport_send_interim_checksum(zio_cksum_report_t *report)
783 {
784 #ifdef _KERNEL
785 	fm_ereport_post(report->zcr_ereport, EVCH_SLEEP);
786 #endif
787 }
788 
789 void
790 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
791     struct zio *zio, uint64_t offset, uint64_t length,
792     const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc)
793 {
794 #ifdef _KERNEL
795 	nvlist_t *ereport = NULL;
796 	nvlist_t *detector = NULL;
797 	zfs_ecksum_info_t *info;
798 
799 	zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM,
800 	    spa, vd, zb, zio, offset, length);
801 
802 	if (ereport == NULL)
803 		return;
804 
805 	info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
806 	    B_FALSE);
807 
808 	if (info != NULL)
809 		fm_ereport_post(ereport, EVCH_SLEEP);
810 
811 	fm_nvlist_destroy(ereport, FM_NVA_FREE);
812 	fm_nvlist_destroy(detector, FM_NVA_FREE);
813 
814 	if (info != NULL)
815 		kmem_free(info, sizeof (*info));
816 #endif
817 }
818 
819 static void
820 zfs_post_common(spa_t *spa, vdev_t *vd, const char *name)
821 {
822 #ifdef _KERNEL
823 	nvlist_t *resource;
824 	char class[64];
825 
826 	if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
827 		return;
828 
829 	if ((resource = fm_nvlist_create(NULL)) == NULL)
830 		return;
831 
832 	(void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE,
833 	    ZFS_ERROR_CLASS, name);
834 	VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0);
835 	VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0);
836 	VERIFY(nvlist_add_uint64(resource,
837 	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0);
838 	if (vd)
839 		VERIFY(nvlist_add_uint64(resource,
840 		    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0);
841 
842 	fm_ereport_post(resource, EVCH_SLEEP);
843 
844 	fm_nvlist_destroy(resource, FM_NVA_FREE);
845 #endif
846 }
847 
848 /*
849  * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
850  * has been removed from the system.  This will cause the DE to ignore any
851  * recent I/O errors, inferring that they are due to the asynchronous device
852  * removal.
853  */
854 void
855 zfs_post_remove(spa_t *spa, vdev_t *vd)
856 {
857 	zfs_post_common(spa, vd, FM_RESOURCE_REMOVED);
858 }
859 
860 /*
861  * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
862  * has the 'autoreplace' property set, and therefore any broken vdevs will be
863  * handled by higher level logic, and no vdev fault should be generated.
864  */
865 void
866 zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
867 {
868 	zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE);
869 }
870 
871 /*
872  * The 'resource.fs.zfs.statechange' event is an internal signal that the
873  * given vdev has transitioned its state to DEGRADED or HEALTHY.  This will
874  * cause the retire agent to repair any outstanding fault management cases
875  * open because the device was not found (fault.fs.zfs.device).
876  */
877 void
878 zfs_post_state_change(spa_t *spa, vdev_t *vd)
879 {
880 	zfs_post_common(spa, vd, FM_RESOURCE_STATECHANGE);
881 }
882