xref: /illumos-gate/usr/src/uts/common/fs/zfs/sys/zap.h (revision 5f82aa32fbc5dc2c59bca6ff315f44a4c4c9ea86)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  */
27 
28 #ifndef	_SYS_ZAP_H
29 #define	_SYS_ZAP_H
30 
31 /*
32  * ZAP - ZFS Attribute Processor
33  *
34  * The ZAP is a module which sits on top of the DMU (Data Management
35  * Unit) and implements a higher-level storage primitive using DMU
36  * objects.  Its primary consumer is the ZPL (ZFS Posix Layer).
37  *
38  * A "zapobj" is a DMU object which the ZAP uses to stores attributes.
39  * Users should use only zap routines to access a zapobj - they should
40  * not access the DMU object directly using DMU routines.
41  *
42  * The attributes stored in a zapobj are name-value pairs.  The name is
43  * a zero-terminated string of up to ZAP_MAXNAMELEN bytes (including
44  * terminating NULL).  The value is an array of integers, which may be
45  * 1, 2, 4, or 8 bytes long.  The total space used by the array (number
46  * of integers * integer length) can be up to ZAP_MAXVALUELEN bytes.
47  * Note that an 8-byte integer value can be used to store the location
48  * (object number) of another dmu object (which may be itself a zapobj).
49  * Note that you can use a zero-length attribute to store a single bit
50  * of information - the attribute is present or not.
51  *
52  * The ZAP routines are thread-safe.  However, you must observe the
53  * DMU's restriction that a transaction may not be operated on
54  * concurrently.
55  *
56  * Any of the routines that return an int may return an I/O error (EIO
57  * or ECHECKSUM).
58  *
59  *
60  * Implementation / Performance Notes:
61  *
62  * The ZAP is intended to operate most efficiently on attributes with
63  * short (49 bytes or less) names and single 8-byte values, for which
64  * the microzap will be used.  The ZAP should be efficient enough so
65  * that the user does not need to cache these attributes.
66  *
67  * The ZAP's locking scheme makes its routines thread-safe.  Operations
68  * on different zapobjs will be processed concurrently.  Operations on
69  * the same zapobj which only read data will be processed concurrently.
70  * Operations on the same zapobj which modify data will be processed
71  * concurrently when there are many attributes in the zapobj (because
72  * the ZAP uses per-block locking - more than 128 * (number of cpus)
73  * small attributes will suffice).
74  */
75 
76 /*
77  * We're using zero-terminated byte strings (ie. ASCII or UTF-8 C
78  * strings) for the names of attributes, rather than a byte string
79  * bounded by an explicit length.  If some day we want to support names
80  * in character sets which have embedded zeros (eg. UTF-16, UTF-32),
81  * we'll have to add routines for using length-bounded strings.
82  */
83 
84 #include <sys/dmu.h>
85 #include <sys/refcount.h>
86 
87 #ifdef	__cplusplus
88 extern "C" {
89 #endif
90 
91 /*
92  * Specifies matching criteria for ZAP lookups.
93  * MT_NORMALIZE		Use ZAP normalization flags, which can include both
94  *			unicode normalization and case-insensitivity.
95  * MT_MATCH_CASE	Do case-sensitive lookups even if MT_NORMALIZE is
96  *			specified and ZAP normalization flags include
97  *			U8_TEXTPREP_TOUPPER.
98  */
99 typedef enum matchtype {
100 	MT_NORMALIZE = 1 << 0,
101 	MT_MATCH_CASE = 1 << 1,
102 } matchtype_t;
103 
104 typedef enum zap_flags {
105 	/* Use 64-bit hash value (serialized cursors will always use 64-bits) */
106 	ZAP_FLAG_HASH64 = 1 << 0,
107 	/* Key is binary, not string (zap_add_uint64() can be used) */
108 	ZAP_FLAG_UINT64_KEY = 1 << 1,
109 	/*
110 	 * First word of key (which must be an array of uint64) is
111 	 * already randomly distributed.
112 	 */
113 	ZAP_FLAG_PRE_HASHED_KEY = 1 << 2,
114 } zap_flags_t;
115 
116 /*
117  * Create a new zapobj with no attributes and return its object number.
118  */
119 uint64_t zap_create(objset_t *ds, dmu_object_type_t ot,
120     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
121 uint64_t zap_create_norm(objset_t *ds, int normflags, dmu_object_type_t ot,
122     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
123 uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
124     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
125     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
126 uint64_t zap_create_link(objset_t *os, dmu_object_type_t ot,
127     uint64_t parent_obj, const char *name, dmu_tx_t *tx);
128 
129 /*
130  * Initialize an already-allocated object.
131  */
132 void mzap_create_impl(objset_t *os, uint64_t obj, int normflags,
133     zap_flags_t flags, dmu_tx_t *tx);
134 
135 /*
136  * Create a new zapobj with no attributes from the given (unallocated)
137  * object number.
138  */
139 int zap_create_claim(objset_t *ds, uint64_t obj, dmu_object_type_t ot,
140     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
141 int zap_create_claim_norm(objset_t *ds, uint64_t obj,
142     int normflags, dmu_object_type_t ot,
143     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
144 
145 /*
146  * The zapobj passed in must be a valid ZAP object for all of the
147  * following routines.
148  */
149 
150 /*
151  * Destroy this zapobj and all its attributes.
152  *
153  * Frees the object number using dmu_object_free.
154  */
155 int zap_destroy(objset_t *ds, uint64_t zapobj, dmu_tx_t *tx);
156 
157 /*
158  * Manipulate attributes.
159  *
160  * 'integer_size' is in bytes, and must be 1, 2, 4, or 8.
161  */
162 
163 /*
164  * Retrieve the contents of the attribute with the given name.
165  *
166  * If the requested attribute does not exist, the call will fail and
167  * return ENOENT.
168  *
169  * If 'integer_size' is smaller than the attribute's integer size, the
170  * call will fail and return EINVAL.
171  *
172  * If 'integer_size' is equal to or larger than the attribute's integer
173  * size, the call will succeed and return 0.
174  *
175  * When converting to a larger integer size, the integers will be treated as
176  * unsigned (ie. no sign-extension will be performed).
177  *
178  * 'num_integers' is the length (in integers) of 'buf'.
179  *
180  * If the attribute is longer than the buffer, as many integers as will
181  * fit will be transferred to 'buf'.  If the entire attribute was not
182  * transferred, the call will return EOVERFLOW.
183  */
184 int zap_lookup(objset_t *ds, uint64_t zapobj, const char *name,
185     uint64_t integer_size, uint64_t num_integers, void *buf);
186 
187 /*
188  * If rn_len is nonzero, realname will be set to the name of the found
189  * entry (which may be different from the requested name if matchtype is
190  * not MT_EXACT).
191  *
192  * If normalization_conflictp is not NULL, it will be set if there is
193  * another name with the same case/unicode normalized form.
194  */
195 int zap_lookup_norm(objset_t *ds, uint64_t zapobj, const char *name,
196     uint64_t integer_size, uint64_t num_integers, void *buf,
197     matchtype_t mt, char *realname, int rn_len,
198     boolean_t *normalization_conflictp);
199 int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
200     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf);
201 int zap_contains(objset_t *ds, uint64_t zapobj, const char *name);
202 int zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
203     int key_numints);
204 int zap_lookup_by_dnode(dnode_t *dn, const char *name,
205     uint64_t integer_size, uint64_t num_integers, void *buf);
206 int zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
207     uint64_t integer_size, uint64_t num_integers, void *buf,
208     matchtype_t mt, char *realname, int rn_len,
209     boolean_t *ncp);
210 
211 int zap_count_write_by_dnode(dnode_t *dn, const char *name,
212     int add, refcount_t *towrite, refcount_t *tooverwrite);
213 
214 /*
215  * Create an attribute with the given name and value.
216  *
217  * If an attribute with the given name already exists, the call will
218  * fail and return EEXIST.
219  */
220 int zap_add(objset_t *ds, uint64_t zapobj, const char *key,
221     int integer_size, uint64_t num_integers,
222     const void *val, dmu_tx_t *tx);
223 int zap_add_by_dnode(dnode_t *dn, const char *key,
224     int integer_size, uint64_t num_integers,
225     const void *val, dmu_tx_t *tx);
226 int zap_add_uint64(objset_t *ds, uint64_t zapobj, const uint64_t *key,
227     int key_numints, int integer_size, uint64_t num_integers,
228     const void *val, dmu_tx_t *tx);
229 
230 /*
231  * Set the attribute with the given name to the given value.  If an
232  * attribute with the given name does not exist, it will be created.  If
233  * an attribute with the given name already exists, the previous value
234  * will be overwritten.  The integer_size may be different from the
235  * existing attribute's integer size, in which case the attribute's
236  * integer size will be updated to the new value.
237  */
238 int zap_update(objset_t *ds, uint64_t zapobj, const char *name,
239     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
240 int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
241     int key_numints,
242     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx);
243 
244 /*
245  * Get the length (in integers) and the integer size of the specified
246  * attribute.
247  *
248  * If the requested attribute does not exist, the call will fail and
249  * return ENOENT.
250  */
251 int zap_length(objset_t *ds, uint64_t zapobj, const char *name,
252     uint64_t *integer_size, uint64_t *num_integers);
253 int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
254     int key_numints, uint64_t *integer_size, uint64_t *num_integers);
255 
256 /*
257  * Remove the specified attribute.
258  *
259  * If the specified attribute does not exist, the call will fail and
260  * return ENOENT.
261  */
262 int zap_remove(objset_t *ds, uint64_t zapobj, const char *name, dmu_tx_t *tx);
263 int zap_remove_norm(objset_t *ds, uint64_t zapobj, const char *name,
264     matchtype_t mt, dmu_tx_t *tx);
265 int zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx);
266 int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
267     int key_numints, dmu_tx_t *tx);
268 
269 /*
270  * Returns (in *count) the number of attributes in the specified zap
271  * object.
272  */
273 int zap_count(objset_t *ds, uint64_t zapobj, uint64_t *count);
274 
275 /*
276  * Returns (in name) the name of the entry whose (value & mask)
277  * (za_first_integer) is value, or ENOENT if not found.  The string
278  * pointed to by name must be at least 256 bytes long.  If mask==0, the
279  * match must be exact (ie, same as mask=-1ULL).
280  */
281 int zap_value_search(objset_t *os, uint64_t zapobj,
282     uint64_t value, uint64_t mask, char *name);
283 
284 /*
285  * Transfer all the entries from fromobj into intoobj.  Only works on
286  * int_size=8 num_integers=1 values.  Fails if there are any duplicated
287  * entries.
288  */
289 int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx);
290 
291 /* Same as zap_join, but set the values to 'value'. */
292 int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
293     uint64_t value, dmu_tx_t *tx);
294 
295 /* Same as zap_join, but add together any duplicated entries. */
296 int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
297     dmu_tx_t *tx);
298 
299 /*
300  * Manipulate entries where the name + value are the "same" (the name is
301  * a stringified version of the value).
302  */
303 int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
304 int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx);
305 int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value);
306 int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
307     dmu_tx_t *tx);
308 
309 /* Here the key is an int and the value is a different int. */
310 int zap_add_int_key(objset_t *os, uint64_t obj,
311     uint64_t key, uint64_t value, dmu_tx_t *tx);
312 int zap_update_int_key(objset_t *os, uint64_t obj,
313     uint64_t key, uint64_t value, dmu_tx_t *tx);
314 int zap_lookup_int_key(objset_t *os, uint64_t obj,
315     uint64_t key, uint64_t *valuep);
316 
317 int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
318     dmu_tx_t *tx);
319 
320 struct zap;
321 struct zap_leaf;
322 typedef struct zap_cursor {
323 	/* This structure is opaque! */
324 	objset_t *zc_objset;
325 	struct zap *zc_zap;
326 	struct zap_leaf *zc_leaf;
327 	uint64_t zc_zapobj;
328 	uint64_t zc_serialized;
329 	uint64_t zc_hash;
330 	uint32_t zc_cd;
331 } zap_cursor_t;
332 
333 typedef struct {
334 	int za_integer_length;
335 	/*
336 	 * za_normalization_conflict will be set if there are additional
337 	 * entries with this normalized form (eg, "foo" and "Foo").
338 	 */
339 	boolean_t za_normalization_conflict;
340 	uint64_t za_num_integers;
341 	uint64_t za_first_integer;	/* no sign extension for <8byte ints */
342 	char za_name[ZAP_MAXNAMELEN];
343 } zap_attribute_t;
344 
345 /*
346  * The interface for listing all the attributes of a zapobj can be
347  * thought of as cursor moving down a list of the attributes one by
348  * one.  The cookie returned by the zap_cursor_serialize routine is
349  * persistent across system calls (and across reboot, even).
350  */
351 
352 /*
353  * Initialize a zap cursor, pointing to the "first" attribute of the
354  * zapobj.  You must _fini the cursor when you are done with it.
355  */
356 void zap_cursor_init(zap_cursor_t *zc, objset_t *ds, uint64_t zapobj);
357 void zap_cursor_fini(zap_cursor_t *zc);
358 
359 /*
360  * Get the attribute currently pointed to by the cursor.  Returns
361  * ENOENT if at the end of the attributes.
362  */
363 int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za);
364 
365 /*
366  * Advance the cursor to the next attribute.
367  */
368 void zap_cursor_advance(zap_cursor_t *zc);
369 
370 /*
371  * Get a persistent cookie pointing to the current position of the zap
372  * cursor.  The low 4 bits in the cookie are always zero, and thus can
373  * be used as to differentiate a serialized cookie from a different type
374  * of value.  The cookie will be less than 2^32 as long as there are
375  * fewer than 2^22 (4.2 million) entries in the zap object.
376  */
377 uint64_t zap_cursor_serialize(zap_cursor_t *zc);
378 
379 /*
380  * Initialize a zap cursor pointing to the position recorded by
381  * zap_cursor_serialize (in the "serialized" argument).  You can also
382  * use a "serialized" argument of 0 to start at the beginning of the
383  * zapobj (ie.  zap_cursor_init_serialized(..., 0) is equivalent to
384  * zap_cursor_init(...).)
385  */
386 void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *ds,
387     uint64_t zapobj, uint64_t serialized);
388 
389 
390 #define	ZAP_HISTOGRAM_SIZE 10
391 
392 typedef struct zap_stats {
393 	/*
394 	 * Size of the pointer table (in number of entries).
395 	 * This is always a power of 2, or zero if it's a microzap.
396 	 * In general, it should be considerably greater than zs_num_leafs.
397 	 */
398 	uint64_t zs_ptrtbl_len;
399 
400 	uint64_t zs_blocksize;		/* size of zap blocks */
401 
402 	/*
403 	 * The number of blocks used.  Note that some blocks may be
404 	 * wasted because old ptrtbl's and large name/value blocks are
405 	 * not reused.  (Although their space is reclaimed, we don't
406 	 * reuse those offsets in the object.)
407 	 */
408 	uint64_t zs_num_blocks;
409 
410 	/*
411 	 * Pointer table values from zap_ptrtbl in the zap_phys_t
412 	 */
413 	uint64_t zs_ptrtbl_nextblk;	  /* next (larger) copy start block */
414 	uint64_t zs_ptrtbl_blks_copied;   /* number source blocks copied */
415 	uint64_t zs_ptrtbl_zt_blk;	  /* starting block number */
416 	uint64_t zs_ptrtbl_zt_numblks;    /* number of blocks */
417 	uint64_t zs_ptrtbl_zt_shift;	  /* bits to index it */
418 
419 	/*
420 	 * Values of the other members of the zap_phys_t
421 	 */
422 	uint64_t zs_block_type;		/* ZBT_HEADER */
423 	uint64_t zs_magic;		/* ZAP_MAGIC */
424 	uint64_t zs_num_leafs;		/* The number of leaf blocks */
425 	uint64_t zs_num_entries;	/* The number of zap entries */
426 	uint64_t zs_salt;		/* salt to stir into hash function */
427 
428 	/*
429 	 * Histograms.  For all histograms, the last index
430 	 * (ZAP_HISTOGRAM_SIZE-1) includes any values which are greater
431 	 * than what can be represented.  For example
432 	 * zs_leafs_with_n5_entries[ZAP_HISTOGRAM_SIZE-1] is the number
433 	 * of leafs with more than 45 entries.
434 	 */
435 
436 	/*
437 	 * zs_leafs_with_n_pointers[n] is the number of leafs with
438 	 * 2^n pointers to it.
439 	 */
440 	uint64_t zs_leafs_with_2n_pointers[ZAP_HISTOGRAM_SIZE];
441 
442 	/*
443 	 * zs_leafs_with_n_entries[n] is the number of leafs with
444 	 * [n*5, (n+1)*5) entries.  In the current implementation, there
445 	 * can be at most 55 entries in any block, but there may be
446 	 * fewer if the name or value is large, or the block is not
447 	 * completely full.
448 	 */
449 	uint64_t zs_blocks_with_n5_entries[ZAP_HISTOGRAM_SIZE];
450 
451 	/*
452 	 * zs_leafs_n_tenths_full[n] is the number of leafs whose
453 	 * fullness is in the range [n/10, (n+1)/10).
454 	 */
455 	uint64_t zs_blocks_n_tenths_full[ZAP_HISTOGRAM_SIZE];
456 
457 	/*
458 	 * zs_entries_using_n_chunks[n] is the number of entries which
459 	 * consume n 24-byte chunks.  (Note, large names/values only use
460 	 * one chunk, but contribute to zs_num_blocks_large.)
461 	 */
462 	uint64_t zs_entries_using_n_chunks[ZAP_HISTOGRAM_SIZE];
463 
464 	/*
465 	 * zs_buckets_with_n_entries[n] is the number of buckets (each
466 	 * leaf has 64 buckets) with n entries.
467 	 * zs_buckets_with_n_entries[1] should be very close to
468 	 * zs_num_entries.
469 	 */
470 	uint64_t zs_buckets_with_n_entries[ZAP_HISTOGRAM_SIZE];
471 } zap_stats_t;
472 
473 /*
474  * Get statistics about a ZAP object.  Note: you need to be aware of the
475  * internal implementation of the ZAP to correctly interpret some of the
476  * statistics.  This interface shouldn't be relied on unless you really
477  * know what you're doing.
478  */
479 int zap_get_stats(objset_t *ds, uint64_t zapobj, zap_stats_t *zs);
480 
481 #ifdef	__cplusplus
482 }
483 #endif
484 
485 #endif	/* _SYS_ZAP_H */
486