xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision b6805bf78d2bbbeeaea8909a05623587b42d58b3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/spa_boot.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum.h>
32 #include <sys/zio_compress.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zap.h>
36 #include <sys/zil.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/uberblock_impl.h>
40 #include <sys/txg.h>
41 #include <sys/avl.h>
42 #include <sys/unique.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/arc.h>
50 #include <sys/ddt.h>
51 #include "zfs_prop.h"
52 #include "zfeature_common.h"
53 
54 /*
55  * SPA locking
56  *
57  * There are four basic locks for managing spa_t structures:
58  *
59  * spa_namespace_lock (global mutex)
60  *
61  *	This lock must be acquired to do any of the following:
62  *
63  *		- Lookup a spa_t by name
64  *		- Add or remove a spa_t from the namespace
65  *		- Increase spa_refcount from non-zero
66  *		- Check if spa_refcount is zero
67  *		- Rename a spa_t
68  *		- add/remove/attach/detach devices
69  *		- Held for the duration of create/destroy/import/export
70  *
71  *	It does not need to handle recursion.  A create or destroy may
72  *	reference objects (files or zvols) in other pools, but by
73  *	definition they must have an existing reference, and will never need
74  *	to lookup a spa_t by name.
75  *
76  * spa_refcount (per-spa refcount_t protected by mutex)
77  *
78  *	This reference count keep track of any active users of the spa_t.  The
79  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
80  *	the refcount is never really 'zero' - opening a pool implicitly keeps
81  *	some references in the DMU.  Internally we check against spa_minref, but
82  *	present the image of a zero/non-zero value to consumers.
83  *
84  * spa_config_lock[] (per-spa array of rwlocks)
85  *
86  *	This protects the spa_t from config changes, and must be held in
87  *	the following circumstances:
88  *
89  *		- RW_READER to perform I/O to the spa
90  *		- RW_WRITER to change the vdev config
91  *
92  * The locking order is fairly straightforward:
93  *
94  *		spa_namespace_lock	->	spa_refcount
95  *
96  *	The namespace lock must be acquired to increase the refcount from 0
97  *	or to check if it is zero.
98  *
99  *		spa_refcount		->	spa_config_lock[]
100  *
101  *	There must be at least one valid reference on the spa_t to acquire
102  *	the config lock.
103  *
104  *		spa_namespace_lock	->	spa_config_lock[]
105  *
106  *	The namespace lock must always be taken before the config lock.
107  *
108  *
109  * The spa_namespace_lock can be acquired directly and is globally visible.
110  *
111  * The namespace is manipulated using the following functions, all of which
112  * require the spa_namespace_lock to be held.
113  *
114  *	spa_lookup()		Lookup a spa_t by name.
115  *
116  *	spa_add()		Create a new spa_t in the namespace.
117  *
118  *	spa_remove()		Remove a spa_t from the namespace.  This also
119  *				frees up any memory associated with the spa_t.
120  *
121  *	spa_next()		Returns the next spa_t in the system, or the
122  *				first if NULL is passed.
123  *
124  *	spa_evict_all()		Shutdown and remove all spa_t structures in
125  *				the system.
126  *
127  *	spa_guid_exists()	Determine whether a pool/device guid exists.
128  *
129  * The spa_refcount is manipulated using the following functions:
130  *
131  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
132  *				called with spa_namespace_lock held if the
133  *				refcount is currently zero.
134  *
135  *	spa_close()		Remove a reference from the spa_t.  This will
136  *				not free the spa_t or remove it from the
137  *				namespace.  No locking is required.
138  *
139  *	spa_refcount_zero()	Returns true if the refcount is currently
140  *				zero.  Must be called with spa_namespace_lock
141  *				held.
142  *
143  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
144  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
145  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
146  *
147  * To read the configuration, it suffices to hold one of these locks as reader.
148  * To modify the configuration, you must hold all locks as writer.  To modify
149  * vdev state without altering the vdev tree's topology (e.g. online/offline),
150  * you must hold SCL_STATE and SCL_ZIO as writer.
151  *
152  * We use these distinct config locks to avoid recursive lock entry.
153  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
154  * block allocations (SCL_ALLOC), which may require reading space maps
155  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
156  *
157  * The spa config locks cannot be normal rwlocks because we need the
158  * ability to hand off ownership.  For example, SCL_ZIO is acquired
159  * by the issuing thread and later released by an interrupt thread.
160  * They do, however, obey the usual write-wanted semantics to prevent
161  * writer (i.e. system administrator) starvation.
162  *
163  * The lock acquisition rules are as follows:
164  *
165  * SCL_CONFIG
166  *	Protects changes to the vdev tree topology, such as vdev
167  *	add/remove/attach/detach.  Protects the dirty config list
168  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
169  *
170  * SCL_STATE
171  *	Protects changes to pool state and vdev state, such as vdev
172  *	online/offline/fault/degrade/clear.  Protects the dirty state list
173  *	(spa_state_dirty_list) and global pool state (spa_state).
174  *
175  * SCL_ALLOC
176  *	Protects changes to metaslab groups and classes.
177  *	Held as reader by metaslab_alloc() and metaslab_claim().
178  *
179  * SCL_ZIO
180  *	Held by bp-level zios (those which have no io_vd upon entry)
181  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
182  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
183  *
184  * SCL_FREE
185  *	Protects changes to metaslab groups and classes.
186  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
187  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
188  *	blocks in zio_done() while another i/o that holds either
189  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
190  *
191  * SCL_VDEV
192  *	Held as reader to prevent changes to the vdev tree during trivial
193  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
194  *	other locks, and lower than all of them, to ensure that it's safe
195  *	to acquire regardless of caller context.
196  *
197  * In addition, the following rules apply:
198  *
199  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
200  *	The lock ordering is SCL_CONFIG > spa_props_lock.
201  *
202  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
203  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
204  *	or zio_write_phys() -- the caller must ensure that the config cannot
205  *	cannot change in the interim, and that the vdev cannot be reopened.
206  *	SCL_STATE as reader suffices for both.
207  *
208  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
209  *
210  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
211  *				for writing.
212  *
213  *	spa_vdev_exit()		Release the config lock, wait for all I/O
214  *				to complete, sync the updated configs to the
215  *				cache, and release the namespace lock.
216  *
217  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
218  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
219  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
220  *
221  * spa_rename() is also implemented within this file since it requires
222  * manipulation of the namespace.
223  */
224 
225 static avl_tree_t spa_namespace_avl;
226 kmutex_t spa_namespace_lock;
227 static kcondvar_t spa_namespace_cv;
228 static int spa_active_count;
229 int spa_max_replication_override = SPA_DVAS_PER_BP;
230 
231 static kmutex_t spa_spare_lock;
232 static avl_tree_t spa_spare_avl;
233 static kmutex_t spa_l2cache_lock;
234 static avl_tree_t spa_l2cache_avl;
235 
236 kmem_cache_t *spa_buffer_pool;
237 int spa_mode_global;
238 
239 #ifdef ZFS_DEBUG
240 /* Everything except dprintf and spa is on by default in debug builds */
241 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
242 #else
243 int zfs_flags = 0;
244 #endif
245 
246 /*
247  * zfs_recover can be set to nonzero to attempt to recover from
248  * otherwise-fatal errors, typically caused by on-disk corruption.  When
249  * set, calls to zfs_panic_recover() will turn into warning messages.
250  */
251 int zfs_recover = 0;
252 
253 /*
254  * Expiration time in milliseconds. This value has two meanings. First it is
255  * used to determine when the spa_deadman() logic should fire. By default the
256  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
257  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
258  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
259  * in a system panic.
260  */
261 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
262 
263 /*
264  * Check time in milliseconds. This defines the frequency at which we check
265  * for hung I/O.
266  */
267 uint64_t zfs_deadman_checktime_ms = 5000ULL;
268 
269 /*
270  * Override the zfs deadman behavior via /etc/system. By default the
271  * deadman is enabled except on VMware and sparc deployments.
272  */
273 int zfs_deadman_enabled = -1;
274 
275 /*
276  * The worst case is single-sector max-parity RAID-Z blocks, in which
277  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
278  * times the size; so just assume that.  Add to this the fact that
279  * we can have up to 3 DVAs per bp, and one more factor of 2 because
280  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
281  * the worst case is:
282  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
283  */
284 int spa_asize_inflation = 24;
285 
286 /*
287  * ==========================================================================
288  * SPA config locking
289  * ==========================================================================
290  */
291 static void
292 spa_config_lock_init(spa_t *spa)
293 {
294 	for (int i = 0; i < SCL_LOCKS; i++) {
295 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
296 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
297 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
298 		refcount_create_untracked(&scl->scl_count);
299 		scl->scl_writer = NULL;
300 		scl->scl_write_wanted = 0;
301 	}
302 }
303 
304 static void
305 spa_config_lock_destroy(spa_t *spa)
306 {
307 	for (int i = 0; i < SCL_LOCKS; i++) {
308 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
309 		mutex_destroy(&scl->scl_lock);
310 		cv_destroy(&scl->scl_cv);
311 		refcount_destroy(&scl->scl_count);
312 		ASSERT(scl->scl_writer == NULL);
313 		ASSERT(scl->scl_write_wanted == 0);
314 	}
315 }
316 
317 int
318 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
319 {
320 	for (int i = 0; i < SCL_LOCKS; i++) {
321 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
322 		if (!(locks & (1 << i)))
323 			continue;
324 		mutex_enter(&scl->scl_lock);
325 		if (rw == RW_READER) {
326 			if (scl->scl_writer || scl->scl_write_wanted) {
327 				mutex_exit(&scl->scl_lock);
328 				spa_config_exit(spa, locks ^ (1 << i), tag);
329 				return (0);
330 			}
331 		} else {
332 			ASSERT(scl->scl_writer != curthread);
333 			if (!refcount_is_zero(&scl->scl_count)) {
334 				mutex_exit(&scl->scl_lock);
335 				spa_config_exit(spa, locks ^ (1 << i), tag);
336 				return (0);
337 			}
338 			scl->scl_writer = curthread;
339 		}
340 		(void) refcount_add(&scl->scl_count, tag);
341 		mutex_exit(&scl->scl_lock);
342 	}
343 	return (1);
344 }
345 
346 void
347 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
348 {
349 	int wlocks_held = 0;
350 
351 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
352 
353 	for (int i = 0; i < SCL_LOCKS; i++) {
354 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
355 		if (scl->scl_writer == curthread)
356 			wlocks_held |= (1 << i);
357 		if (!(locks & (1 << i)))
358 			continue;
359 		mutex_enter(&scl->scl_lock);
360 		if (rw == RW_READER) {
361 			while (scl->scl_writer || scl->scl_write_wanted) {
362 				cv_wait(&scl->scl_cv, &scl->scl_lock);
363 			}
364 		} else {
365 			ASSERT(scl->scl_writer != curthread);
366 			while (!refcount_is_zero(&scl->scl_count)) {
367 				scl->scl_write_wanted++;
368 				cv_wait(&scl->scl_cv, &scl->scl_lock);
369 				scl->scl_write_wanted--;
370 			}
371 			scl->scl_writer = curthread;
372 		}
373 		(void) refcount_add(&scl->scl_count, tag);
374 		mutex_exit(&scl->scl_lock);
375 	}
376 	ASSERT(wlocks_held <= locks);
377 }
378 
379 void
380 spa_config_exit(spa_t *spa, int locks, void *tag)
381 {
382 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
383 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
384 		if (!(locks & (1 << i)))
385 			continue;
386 		mutex_enter(&scl->scl_lock);
387 		ASSERT(!refcount_is_zero(&scl->scl_count));
388 		if (refcount_remove(&scl->scl_count, tag) == 0) {
389 			ASSERT(scl->scl_writer == NULL ||
390 			    scl->scl_writer == curthread);
391 			scl->scl_writer = NULL;	/* OK in either case */
392 			cv_broadcast(&scl->scl_cv);
393 		}
394 		mutex_exit(&scl->scl_lock);
395 	}
396 }
397 
398 int
399 spa_config_held(spa_t *spa, int locks, krw_t rw)
400 {
401 	int locks_held = 0;
402 
403 	for (int i = 0; i < SCL_LOCKS; i++) {
404 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
405 		if (!(locks & (1 << i)))
406 			continue;
407 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
408 		    (rw == RW_WRITER && scl->scl_writer == curthread))
409 			locks_held |= 1 << i;
410 	}
411 
412 	return (locks_held);
413 }
414 
415 /*
416  * ==========================================================================
417  * SPA namespace functions
418  * ==========================================================================
419  */
420 
421 /*
422  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
423  * Returns NULL if no matching spa_t is found.
424  */
425 spa_t *
426 spa_lookup(const char *name)
427 {
428 	static spa_t search;	/* spa_t is large; don't allocate on stack */
429 	spa_t *spa;
430 	avl_index_t where;
431 	char *cp;
432 
433 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
434 
435 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
436 
437 	/*
438 	 * If it's a full dataset name, figure out the pool name and
439 	 * just use that.
440 	 */
441 	cp = strpbrk(search.spa_name, "/@");
442 	if (cp != NULL)
443 		*cp = '\0';
444 
445 	spa = avl_find(&spa_namespace_avl, &search, &where);
446 
447 	return (spa);
448 }
449 
450 /*
451  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
452  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
453  * looking for potentially hung I/Os.
454  */
455 void
456 spa_deadman(void *arg)
457 {
458 	spa_t *spa = arg;
459 
460 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
461 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
462 	    ++spa->spa_deadman_calls);
463 	if (zfs_deadman_enabled)
464 		vdev_deadman(spa->spa_root_vdev);
465 }
466 
467 /*
468  * Create an uninitialized spa_t with the given name.  Requires
469  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
470  * exist by calling spa_lookup() first.
471  */
472 spa_t *
473 spa_add(const char *name, nvlist_t *config, const char *altroot)
474 {
475 	spa_t *spa;
476 	spa_config_dirent_t *dp;
477 	cyc_handler_t hdlr;
478 	cyc_time_t when;
479 
480 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
481 
482 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
483 
484 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
485 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
486 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
487 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
488 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
489 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
490 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
491 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
492 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
493 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
494 
495 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
496 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
497 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
498 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
499 
500 	for (int t = 0; t < TXG_SIZE; t++)
501 		bplist_create(&spa->spa_free_bplist[t]);
502 
503 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
504 	spa->spa_state = POOL_STATE_UNINITIALIZED;
505 	spa->spa_freeze_txg = UINT64_MAX;
506 	spa->spa_final_txg = UINT64_MAX;
507 	spa->spa_load_max_txg = UINT64_MAX;
508 	spa->spa_proc = &p0;
509 	spa->spa_proc_state = SPA_PROC_NONE;
510 
511 	hdlr.cyh_func = spa_deadman;
512 	hdlr.cyh_arg = spa;
513 	hdlr.cyh_level = CY_LOW_LEVEL;
514 
515 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
516 
517 	/*
518 	 * This determines how often we need to check for hung I/Os after
519 	 * the cyclic has already fired. Since checking for hung I/Os is
520 	 * an expensive operation we don't want to check too frequently.
521 	 * Instead wait for 5 seconds before checking again.
522 	 */
523 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
524 	when.cyt_when = CY_INFINITY;
525 	mutex_enter(&cpu_lock);
526 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
527 	mutex_exit(&cpu_lock);
528 
529 	refcount_create(&spa->spa_refcount);
530 	spa_config_lock_init(spa);
531 
532 	avl_add(&spa_namespace_avl, spa);
533 
534 	/*
535 	 * Set the alternate root, if there is one.
536 	 */
537 	if (altroot) {
538 		spa->spa_root = spa_strdup(altroot);
539 		spa_active_count++;
540 	}
541 
542 	/*
543 	 * Every pool starts with the default cachefile
544 	 */
545 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
546 	    offsetof(spa_config_dirent_t, scd_link));
547 
548 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
549 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
550 	list_insert_head(&spa->spa_config_list, dp);
551 
552 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
553 	    KM_SLEEP) == 0);
554 
555 	if (config != NULL) {
556 		nvlist_t *features;
557 
558 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
559 		    &features) == 0) {
560 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
561 			    0) == 0);
562 		}
563 
564 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
565 	}
566 
567 	if (spa->spa_label_features == NULL) {
568 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
569 		    KM_SLEEP) == 0);
570 	}
571 
572 	spa->spa_iokstat = kstat_create("zfs", 0, name,
573 	    "disk", KSTAT_TYPE_IO, 1, 0);
574 	if (spa->spa_iokstat) {
575 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
576 		kstat_install(spa->spa_iokstat);
577 	}
578 
579 	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
580 
581 	return (spa);
582 }
583 
584 /*
585  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
586  * spa_namespace_lock.  This is called only after the spa_t has been closed and
587  * deactivated.
588  */
589 void
590 spa_remove(spa_t *spa)
591 {
592 	spa_config_dirent_t *dp;
593 
594 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
595 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
596 
597 	nvlist_free(spa->spa_config_splitting);
598 
599 	avl_remove(&spa_namespace_avl, spa);
600 	cv_broadcast(&spa_namespace_cv);
601 
602 	if (spa->spa_root) {
603 		spa_strfree(spa->spa_root);
604 		spa_active_count--;
605 	}
606 
607 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
608 		list_remove(&spa->spa_config_list, dp);
609 		if (dp->scd_path != NULL)
610 			spa_strfree(dp->scd_path);
611 		kmem_free(dp, sizeof (spa_config_dirent_t));
612 	}
613 
614 	list_destroy(&spa->spa_config_list);
615 
616 	nvlist_free(spa->spa_label_features);
617 	nvlist_free(spa->spa_load_info);
618 	spa_config_set(spa, NULL);
619 
620 	mutex_enter(&cpu_lock);
621 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
622 		cyclic_remove(spa->spa_deadman_cycid);
623 	mutex_exit(&cpu_lock);
624 	spa->spa_deadman_cycid = CYCLIC_NONE;
625 
626 	refcount_destroy(&spa->spa_refcount);
627 
628 	spa_config_lock_destroy(spa);
629 
630 	kstat_delete(spa->spa_iokstat);
631 	spa->spa_iokstat = NULL;
632 
633 	for (int t = 0; t < TXG_SIZE; t++)
634 		bplist_destroy(&spa->spa_free_bplist[t]);
635 
636 	cv_destroy(&spa->spa_async_cv);
637 	cv_destroy(&spa->spa_proc_cv);
638 	cv_destroy(&spa->spa_scrub_io_cv);
639 	cv_destroy(&spa->spa_suspend_cv);
640 
641 	mutex_destroy(&spa->spa_async_lock);
642 	mutex_destroy(&spa->spa_errlist_lock);
643 	mutex_destroy(&spa->spa_errlog_lock);
644 	mutex_destroy(&spa->spa_history_lock);
645 	mutex_destroy(&spa->spa_proc_lock);
646 	mutex_destroy(&spa->spa_props_lock);
647 	mutex_destroy(&spa->spa_scrub_lock);
648 	mutex_destroy(&spa->spa_suspend_lock);
649 	mutex_destroy(&spa->spa_vdev_top_lock);
650 	mutex_destroy(&spa->spa_iokstat_lock);
651 
652 	kmem_free(spa, sizeof (spa_t));
653 }
654 
655 /*
656  * Given a pool, return the next pool in the namespace, or NULL if there is
657  * none.  If 'prev' is NULL, return the first pool.
658  */
659 spa_t *
660 spa_next(spa_t *prev)
661 {
662 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
663 
664 	if (prev)
665 		return (AVL_NEXT(&spa_namespace_avl, prev));
666 	else
667 		return (avl_first(&spa_namespace_avl));
668 }
669 
670 /*
671  * ==========================================================================
672  * SPA refcount functions
673  * ==========================================================================
674  */
675 
676 /*
677  * Add a reference to the given spa_t.  Must have at least one reference, or
678  * have the namespace lock held.
679  */
680 void
681 spa_open_ref(spa_t *spa, void *tag)
682 {
683 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
684 	    MUTEX_HELD(&spa_namespace_lock));
685 	(void) refcount_add(&spa->spa_refcount, tag);
686 }
687 
688 /*
689  * Remove a reference to the given spa_t.  Must have at least one reference, or
690  * have the namespace lock held.
691  */
692 void
693 spa_close(spa_t *spa, void *tag)
694 {
695 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
696 	    MUTEX_HELD(&spa_namespace_lock));
697 	(void) refcount_remove(&spa->spa_refcount, tag);
698 }
699 
700 /*
701  * Check to see if the spa refcount is zero.  Must be called with
702  * spa_namespace_lock held.  We really compare against spa_minref, which is the
703  * number of references acquired when opening a pool
704  */
705 boolean_t
706 spa_refcount_zero(spa_t *spa)
707 {
708 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
709 
710 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
711 }
712 
713 /*
714  * ==========================================================================
715  * SPA spare and l2cache tracking
716  * ==========================================================================
717  */
718 
719 /*
720  * Hot spares and cache devices are tracked using the same code below,
721  * for 'auxiliary' devices.
722  */
723 
724 typedef struct spa_aux {
725 	uint64_t	aux_guid;
726 	uint64_t	aux_pool;
727 	avl_node_t	aux_avl;
728 	int		aux_count;
729 } spa_aux_t;
730 
731 static int
732 spa_aux_compare(const void *a, const void *b)
733 {
734 	const spa_aux_t *sa = a;
735 	const spa_aux_t *sb = b;
736 
737 	if (sa->aux_guid < sb->aux_guid)
738 		return (-1);
739 	else if (sa->aux_guid > sb->aux_guid)
740 		return (1);
741 	else
742 		return (0);
743 }
744 
745 void
746 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
747 {
748 	avl_index_t where;
749 	spa_aux_t search;
750 	spa_aux_t *aux;
751 
752 	search.aux_guid = vd->vdev_guid;
753 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
754 		aux->aux_count++;
755 	} else {
756 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
757 		aux->aux_guid = vd->vdev_guid;
758 		aux->aux_count = 1;
759 		avl_insert(avl, aux, where);
760 	}
761 }
762 
763 void
764 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
765 {
766 	spa_aux_t search;
767 	spa_aux_t *aux;
768 	avl_index_t where;
769 
770 	search.aux_guid = vd->vdev_guid;
771 	aux = avl_find(avl, &search, &where);
772 
773 	ASSERT(aux != NULL);
774 
775 	if (--aux->aux_count == 0) {
776 		avl_remove(avl, aux);
777 		kmem_free(aux, sizeof (spa_aux_t));
778 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
779 		aux->aux_pool = 0ULL;
780 	}
781 }
782 
783 boolean_t
784 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
785 {
786 	spa_aux_t search, *found;
787 
788 	search.aux_guid = guid;
789 	found = avl_find(avl, &search, NULL);
790 
791 	if (pool) {
792 		if (found)
793 			*pool = found->aux_pool;
794 		else
795 			*pool = 0ULL;
796 	}
797 
798 	if (refcnt) {
799 		if (found)
800 			*refcnt = found->aux_count;
801 		else
802 			*refcnt = 0;
803 	}
804 
805 	return (found != NULL);
806 }
807 
808 void
809 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
810 {
811 	spa_aux_t search, *found;
812 	avl_index_t where;
813 
814 	search.aux_guid = vd->vdev_guid;
815 	found = avl_find(avl, &search, &where);
816 	ASSERT(found != NULL);
817 	ASSERT(found->aux_pool == 0ULL);
818 
819 	found->aux_pool = spa_guid(vd->vdev_spa);
820 }
821 
822 /*
823  * Spares are tracked globally due to the following constraints:
824  *
825  * 	- A spare may be part of multiple pools.
826  * 	- A spare may be added to a pool even if it's actively in use within
827  *	  another pool.
828  * 	- A spare in use in any pool can only be the source of a replacement if
829  *	  the target is a spare in the same pool.
830  *
831  * We keep track of all spares on the system through the use of a reference
832  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
833  * spare, then we bump the reference count in the AVL tree.  In addition, we set
834  * the 'vdev_isspare' member to indicate that the device is a spare (active or
835  * inactive).  When a spare is made active (used to replace a device in the
836  * pool), we also keep track of which pool its been made a part of.
837  *
838  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
839  * called under the spa_namespace lock as part of vdev reconfiguration.  The
840  * separate spare lock exists for the status query path, which does not need to
841  * be completely consistent with respect to other vdev configuration changes.
842  */
843 
844 static int
845 spa_spare_compare(const void *a, const void *b)
846 {
847 	return (spa_aux_compare(a, b));
848 }
849 
850 void
851 spa_spare_add(vdev_t *vd)
852 {
853 	mutex_enter(&spa_spare_lock);
854 	ASSERT(!vd->vdev_isspare);
855 	spa_aux_add(vd, &spa_spare_avl);
856 	vd->vdev_isspare = B_TRUE;
857 	mutex_exit(&spa_spare_lock);
858 }
859 
860 void
861 spa_spare_remove(vdev_t *vd)
862 {
863 	mutex_enter(&spa_spare_lock);
864 	ASSERT(vd->vdev_isspare);
865 	spa_aux_remove(vd, &spa_spare_avl);
866 	vd->vdev_isspare = B_FALSE;
867 	mutex_exit(&spa_spare_lock);
868 }
869 
870 boolean_t
871 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
872 {
873 	boolean_t found;
874 
875 	mutex_enter(&spa_spare_lock);
876 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
877 	mutex_exit(&spa_spare_lock);
878 
879 	return (found);
880 }
881 
882 void
883 spa_spare_activate(vdev_t *vd)
884 {
885 	mutex_enter(&spa_spare_lock);
886 	ASSERT(vd->vdev_isspare);
887 	spa_aux_activate(vd, &spa_spare_avl);
888 	mutex_exit(&spa_spare_lock);
889 }
890 
891 /*
892  * Level 2 ARC devices are tracked globally for the same reasons as spares.
893  * Cache devices currently only support one pool per cache device, and so
894  * for these devices the aux reference count is currently unused beyond 1.
895  */
896 
897 static int
898 spa_l2cache_compare(const void *a, const void *b)
899 {
900 	return (spa_aux_compare(a, b));
901 }
902 
903 void
904 spa_l2cache_add(vdev_t *vd)
905 {
906 	mutex_enter(&spa_l2cache_lock);
907 	ASSERT(!vd->vdev_isl2cache);
908 	spa_aux_add(vd, &spa_l2cache_avl);
909 	vd->vdev_isl2cache = B_TRUE;
910 	mutex_exit(&spa_l2cache_lock);
911 }
912 
913 void
914 spa_l2cache_remove(vdev_t *vd)
915 {
916 	mutex_enter(&spa_l2cache_lock);
917 	ASSERT(vd->vdev_isl2cache);
918 	spa_aux_remove(vd, &spa_l2cache_avl);
919 	vd->vdev_isl2cache = B_FALSE;
920 	mutex_exit(&spa_l2cache_lock);
921 }
922 
923 boolean_t
924 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
925 {
926 	boolean_t found;
927 
928 	mutex_enter(&spa_l2cache_lock);
929 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
930 	mutex_exit(&spa_l2cache_lock);
931 
932 	return (found);
933 }
934 
935 void
936 spa_l2cache_activate(vdev_t *vd)
937 {
938 	mutex_enter(&spa_l2cache_lock);
939 	ASSERT(vd->vdev_isl2cache);
940 	spa_aux_activate(vd, &spa_l2cache_avl);
941 	mutex_exit(&spa_l2cache_lock);
942 }
943 
944 /*
945  * ==========================================================================
946  * SPA vdev locking
947  * ==========================================================================
948  */
949 
950 /*
951  * Lock the given spa_t for the purpose of adding or removing a vdev.
952  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
953  * It returns the next transaction group for the spa_t.
954  */
955 uint64_t
956 spa_vdev_enter(spa_t *spa)
957 {
958 	mutex_enter(&spa->spa_vdev_top_lock);
959 	mutex_enter(&spa_namespace_lock);
960 	return (spa_vdev_config_enter(spa));
961 }
962 
963 /*
964  * Internal implementation for spa_vdev_enter().  Used when a vdev
965  * operation requires multiple syncs (i.e. removing a device) while
966  * keeping the spa_namespace_lock held.
967  */
968 uint64_t
969 spa_vdev_config_enter(spa_t *spa)
970 {
971 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
972 
973 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
974 
975 	return (spa_last_synced_txg(spa) + 1);
976 }
977 
978 /*
979  * Used in combination with spa_vdev_config_enter() to allow the syncing
980  * of multiple transactions without releasing the spa_namespace_lock.
981  */
982 void
983 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
984 {
985 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
986 
987 	int config_changed = B_FALSE;
988 
989 	ASSERT(txg > spa_last_synced_txg(spa));
990 
991 	spa->spa_pending_vdev = NULL;
992 
993 	/*
994 	 * Reassess the DTLs.
995 	 */
996 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
997 
998 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
999 		config_changed = B_TRUE;
1000 		spa->spa_config_generation++;
1001 	}
1002 
1003 	/*
1004 	 * Verify the metaslab classes.
1005 	 */
1006 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1007 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1008 
1009 	spa_config_exit(spa, SCL_ALL, spa);
1010 
1011 	/*
1012 	 * Panic the system if the specified tag requires it.  This
1013 	 * is useful for ensuring that configurations are updated
1014 	 * transactionally.
1015 	 */
1016 	if (zio_injection_enabled)
1017 		zio_handle_panic_injection(spa, tag, 0);
1018 
1019 	/*
1020 	 * Note: this txg_wait_synced() is important because it ensures
1021 	 * that there won't be more than one config change per txg.
1022 	 * This allows us to use the txg as the generation number.
1023 	 */
1024 	if (error == 0)
1025 		txg_wait_synced(spa->spa_dsl_pool, txg);
1026 
1027 	if (vd != NULL) {
1028 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
1029 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1030 		vdev_free(vd);
1031 		spa_config_exit(spa, SCL_ALL, spa);
1032 	}
1033 
1034 	/*
1035 	 * If the config changed, update the config cache.
1036 	 */
1037 	if (config_changed)
1038 		spa_config_sync(spa, B_FALSE, B_TRUE);
1039 }
1040 
1041 /*
1042  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1043  * locking of spa_vdev_enter(), we also want make sure the transactions have
1044  * synced to disk, and then update the global configuration cache with the new
1045  * information.
1046  */
1047 int
1048 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1049 {
1050 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1051 	mutex_exit(&spa_namespace_lock);
1052 	mutex_exit(&spa->spa_vdev_top_lock);
1053 
1054 	return (error);
1055 }
1056 
1057 /*
1058  * Lock the given spa_t for the purpose of changing vdev state.
1059  */
1060 void
1061 spa_vdev_state_enter(spa_t *spa, int oplocks)
1062 {
1063 	int locks = SCL_STATE_ALL | oplocks;
1064 
1065 	/*
1066 	 * Root pools may need to read of the underlying devfs filesystem
1067 	 * when opening up a vdev.  Unfortunately if we're holding the
1068 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1069 	 * the read from the root filesystem.  Instead we "prefetch"
1070 	 * the associated vnodes that we need prior to opening the
1071 	 * underlying devices and cache them so that we can prevent
1072 	 * any I/O when we are doing the actual open.
1073 	 */
1074 	if (spa_is_root(spa)) {
1075 		int low = locks & ~(SCL_ZIO - 1);
1076 		int high = locks & ~low;
1077 
1078 		spa_config_enter(spa, high, spa, RW_WRITER);
1079 		vdev_hold(spa->spa_root_vdev);
1080 		spa_config_enter(spa, low, spa, RW_WRITER);
1081 	} else {
1082 		spa_config_enter(spa, locks, spa, RW_WRITER);
1083 	}
1084 	spa->spa_vdev_locks = locks;
1085 }
1086 
1087 int
1088 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1089 {
1090 	boolean_t config_changed = B_FALSE;
1091 
1092 	if (vd != NULL || error == 0)
1093 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1094 		    0, 0, B_FALSE);
1095 
1096 	if (vd != NULL) {
1097 		vdev_state_dirty(vd->vdev_top);
1098 		config_changed = B_TRUE;
1099 		spa->spa_config_generation++;
1100 	}
1101 
1102 	if (spa_is_root(spa))
1103 		vdev_rele(spa->spa_root_vdev);
1104 
1105 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1106 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1107 
1108 	/*
1109 	 * If anything changed, wait for it to sync.  This ensures that,
1110 	 * from the system administrator's perspective, zpool(1M) commands
1111 	 * are synchronous.  This is important for things like zpool offline:
1112 	 * when the command completes, you expect no further I/O from ZFS.
1113 	 */
1114 	if (vd != NULL)
1115 		txg_wait_synced(spa->spa_dsl_pool, 0);
1116 
1117 	/*
1118 	 * If the config changed, update the config cache.
1119 	 */
1120 	if (config_changed) {
1121 		mutex_enter(&spa_namespace_lock);
1122 		spa_config_sync(spa, B_FALSE, B_TRUE);
1123 		mutex_exit(&spa_namespace_lock);
1124 	}
1125 
1126 	return (error);
1127 }
1128 
1129 /*
1130  * ==========================================================================
1131  * Miscellaneous functions
1132  * ==========================================================================
1133  */
1134 
1135 void
1136 spa_activate_mos_feature(spa_t *spa, const char *feature)
1137 {
1138 	(void) nvlist_add_boolean(spa->spa_label_features, feature);
1139 	vdev_config_dirty(spa->spa_root_vdev);
1140 }
1141 
1142 void
1143 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1144 {
1145 	(void) nvlist_remove_all(spa->spa_label_features, feature);
1146 	vdev_config_dirty(spa->spa_root_vdev);
1147 }
1148 
1149 /*
1150  * Rename a spa_t.
1151  */
1152 int
1153 spa_rename(const char *name, const char *newname)
1154 {
1155 	spa_t *spa;
1156 	int err;
1157 
1158 	/*
1159 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1160 	 * actually open the pool so that we can sync out the necessary labels.
1161 	 * It's OK to call spa_open() with the namespace lock held because we
1162 	 * allow recursive calls for other reasons.
1163 	 */
1164 	mutex_enter(&spa_namespace_lock);
1165 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1166 		mutex_exit(&spa_namespace_lock);
1167 		return (err);
1168 	}
1169 
1170 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1171 
1172 	avl_remove(&spa_namespace_avl, spa);
1173 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1174 	avl_add(&spa_namespace_avl, spa);
1175 
1176 	/*
1177 	 * Sync all labels to disk with the new names by marking the root vdev
1178 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1179 	 * during the sync.
1180 	 */
1181 	vdev_config_dirty(spa->spa_root_vdev);
1182 
1183 	spa_config_exit(spa, SCL_ALL, FTAG);
1184 
1185 	txg_wait_synced(spa->spa_dsl_pool, 0);
1186 
1187 	/*
1188 	 * Sync the updated config cache.
1189 	 */
1190 	spa_config_sync(spa, B_FALSE, B_TRUE);
1191 
1192 	spa_close(spa, FTAG);
1193 
1194 	mutex_exit(&spa_namespace_lock);
1195 
1196 	return (0);
1197 }
1198 
1199 /*
1200  * Return the spa_t associated with given pool_guid, if it exists.  If
1201  * device_guid is non-zero, determine whether the pool exists *and* contains
1202  * a device with the specified device_guid.
1203  */
1204 spa_t *
1205 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1206 {
1207 	spa_t *spa;
1208 	avl_tree_t *t = &spa_namespace_avl;
1209 
1210 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1211 
1212 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1213 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1214 			continue;
1215 		if (spa->spa_root_vdev == NULL)
1216 			continue;
1217 		if (spa_guid(spa) == pool_guid) {
1218 			if (device_guid == 0)
1219 				break;
1220 
1221 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1222 			    device_guid) != NULL)
1223 				break;
1224 
1225 			/*
1226 			 * Check any devices we may be in the process of adding.
1227 			 */
1228 			if (spa->spa_pending_vdev) {
1229 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1230 				    device_guid) != NULL)
1231 					break;
1232 			}
1233 		}
1234 	}
1235 
1236 	return (spa);
1237 }
1238 
1239 /*
1240  * Determine whether a pool with the given pool_guid exists.
1241  */
1242 boolean_t
1243 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1244 {
1245 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1246 }
1247 
1248 char *
1249 spa_strdup(const char *s)
1250 {
1251 	size_t len;
1252 	char *new;
1253 
1254 	len = strlen(s);
1255 	new = kmem_alloc(len + 1, KM_SLEEP);
1256 	bcopy(s, new, len);
1257 	new[len] = '\0';
1258 
1259 	return (new);
1260 }
1261 
1262 void
1263 spa_strfree(char *s)
1264 {
1265 	kmem_free(s, strlen(s) + 1);
1266 }
1267 
1268 uint64_t
1269 spa_get_random(uint64_t range)
1270 {
1271 	uint64_t r;
1272 
1273 	ASSERT(range != 0);
1274 
1275 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1276 
1277 	return (r % range);
1278 }
1279 
1280 uint64_t
1281 spa_generate_guid(spa_t *spa)
1282 {
1283 	uint64_t guid = spa_get_random(-1ULL);
1284 
1285 	if (spa != NULL) {
1286 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1287 			guid = spa_get_random(-1ULL);
1288 	} else {
1289 		while (guid == 0 || spa_guid_exists(guid, 0))
1290 			guid = spa_get_random(-1ULL);
1291 	}
1292 
1293 	return (guid);
1294 }
1295 
1296 void
1297 sprintf_blkptr(char *buf, const blkptr_t *bp)
1298 {
1299 	char type[256];
1300 	char *checksum = NULL;
1301 	char *compress = NULL;
1302 
1303 	if (bp != NULL) {
1304 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1305 			dmu_object_byteswap_t bswap =
1306 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1307 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1308 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1309 			    "metadata" : "data",
1310 			    dmu_ot_byteswap[bswap].ob_name);
1311 		} else {
1312 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1313 			    sizeof (type));
1314 		}
1315 		checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1316 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1317 	}
1318 
1319 	SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1320 }
1321 
1322 void
1323 spa_freeze(spa_t *spa)
1324 {
1325 	uint64_t freeze_txg = 0;
1326 
1327 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1328 	if (spa->spa_freeze_txg == UINT64_MAX) {
1329 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1330 		spa->spa_freeze_txg = freeze_txg;
1331 	}
1332 	spa_config_exit(spa, SCL_ALL, FTAG);
1333 	if (freeze_txg != 0)
1334 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1335 }
1336 
1337 void
1338 zfs_panic_recover(const char *fmt, ...)
1339 {
1340 	va_list adx;
1341 
1342 	va_start(adx, fmt);
1343 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1344 	va_end(adx);
1345 }
1346 
1347 /*
1348  * This is a stripped-down version of strtoull, suitable only for converting
1349  * lowercase hexadecimal numbers that don't overflow.
1350  */
1351 uint64_t
1352 strtonum(const char *str, char **nptr)
1353 {
1354 	uint64_t val = 0;
1355 	char c;
1356 	int digit;
1357 
1358 	while ((c = *str) != '\0') {
1359 		if (c >= '0' && c <= '9')
1360 			digit = c - '0';
1361 		else if (c >= 'a' && c <= 'f')
1362 			digit = 10 + c - 'a';
1363 		else
1364 			break;
1365 
1366 		val *= 16;
1367 		val += digit;
1368 
1369 		str++;
1370 	}
1371 
1372 	if (nptr)
1373 		*nptr = (char *)str;
1374 
1375 	return (val);
1376 }
1377 
1378 /*
1379  * ==========================================================================
1380  * Accessor functions
1381  * ==========================================================================
1382  */
1383 
1384 boolean_t
1385 spa_shutting_down(spa_t *spa)
1386 {
1387 	return (spa->spa_async_suspended);
1388 }
1389 
1390 dsl_pool_t *
1391 spa_get_dsl(spa_t *spa)
1392 {
1393 	return (spa->spa_dsl_pool);
1394 }
1395 
1396 boolean_t
1397 spa_is_initializing(spa_t *spa)
1398 {
1399 	return (spa->spa_is_initializing);
1400 }
1401 
1402 blkptr_t *
1403 spa_get_rootblkptr(spa_t *spa)
1404 {
1405 	return (&spa->spa_ubsync.ub_rootbp);
1406 }
1407 
1408 void
1409 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1410 {
1411 	spa->spa_uberblock.ub_rootbp = *bp;
1412 }
1413 
1414 void
1415 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1416 {
1417 	if (spa->spa_root == NULL)
1418 		buf[0] = '\0';
1419 	else
1420 		(void) strncpy(buf, spa->spa_root, buflen);
1421 }
1422 
1423 int
1424 spa_sync_pass(spa_t *spa)
1425 {
1426 	return (spa->spa_sync_pass);
1427 }
1428 
1429 char *
1430 spa_name(spa_t *spa)
1431 {
1432 	return (spa->spa_name);
1433 }
1434 
1435 uint64_t
1436 spa_guid(spa_t *spa)
1437 {
1438 	dsl_pool_t *dp = spa_get_dsl(spa);
1439 	uint64_t guid;
1440 
1441 	/*
1442 	 * If we fail to parse the config during spa_load(), we can go through
1443 	 * the error path (which posts an ereport) and end up here with no root
1444 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1445 	 * this case.
1446 	 */
1447 	if (spa->spa_root_vdev == NULL)
1448 		return (spa->spa_config_guid);
1449 
1450 	guid = spa->spa_last_synced_guid != 0 ?
1451 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1452 
1453 	/*
1454 	 * Return the most recently synced out guid unless we're
1455 	 * in syncing context.
1456 	 */
1457 	if (dp && dsl_pool_sync_context(dp))
1458 		return (spa->spa_root_vdev->vdev_guid);
1459 	else
1460 		return (guid);
1461 }
1462 
1463 uint64_t
1464 spa_load_guid(spa_t *spa)
1465 {
1466 	/*
1467 	 * This is a GUID that exists solely as a reference for the
1468 	 * purposes of the arc.  It is generated at load time, and
1469 	 * is never written to persistent storage.
1470 	 */
1471 	return (spa->spa_load_guid);
1472 }
1473 
1474 uint64_t
1475 spa_last_synced_txg(spa_t *spa)
1476 {
1477 	return (spa->spa_ubsync.ub_txg);
1478 }
1479 
1480 uint64_t
1481 spa_first_txg(spa_t *spa)
1482 {
1483 	return (spa->spa_first_txg);
1484 }
1485 
1486 uint64_t
1487 spa_syncing_txg(spa_t *spa)
1488 {
1489 	return (spa->spa_syncing_txg);
1490 }
1491 
1492 pool_state_t
1493 spa_state(spa_t *spa)
1494 {
1495 	return (spa->spa_state);
1496 }
1497 
1498 spa_load_state_t
1499 spa_load_state(spa_t *spa)
1500 {
1501 	return (spa->spa_load_state);
1502 }
1503 
1504 uint64_t
1505 spa_freeze_txg(spa_t *spa)
1506 {
1507 	return (spa->spa_freeze_txg);
1508 }
1509 
1510 /* ARGSUSED */
1511 uint64_t
1512 spa_get_asize(spa_t *spa, uint64_t lsize)
1513 {
1514 	return (lsize * spa_asize_inflation);
1515 }
1516 
1517 uint64_t
1518 spa_get_dspace(spa_t *spa)
1519 {
1520 	return (spa->spa_dspace);
1521 }
1522 
1523 void
1524 spa_update_dspace(spa_t *spa)
1525 {
1526 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1527 	    ddt_get_dedup_dspace(spa);
1528 }
1529 
1530 /*
1531  * Return the failure mode that has been set to this pool. The default
1532  * behavior will be to block all I/Os when a complete failure occurs.
1533  */
1534 uint8_t
1535 spa_get_failmode(spa_t *spa)
1536 {
1537 	return (spa->spa_failmode);
1538 }
1539 
1540 boolean_t
1541 spa_suspended(spa_t *spa)
1542 {
1543 	return (spa->spa_suspended);
1544 }
1545 
1546 uint64_t
1547 spa_version(spa_t *spa)
1548 {
1549 	return (spa->spa_ubsync.ub_version);
1550 }
1551 
1552 boolean_t
1553 spa_deflate(spa_t *spa)
1554 {
1555 	return (spa->spa_deflate);
1556 }
1557 
1558 metaslab_class_t *
1559 spa_normal_class(spa_t *spa)
1560 {
1561 	return (spa->spa_normal_class);
1562 }
1563 
1564 metaslab_class_t *
1565 spa_log_class(spa_t *spa)
1566 {
1567 	return (spa->spa_log_class);
1568 }
1569 
1570 int
1571 spa_max_replication(spa_t *spa)
1572 {
1573 	/*
1574 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1575 	 * handle BPs with more than one DVA allocated.  Set our max
1576 	 * replication level accordingly.
1577 	 */
1578 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1579 		return (1);
1580 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1581 }
1582 
1583 int
1584 spa_prev_software_version(spa_t *spa)
1585 {
1586 	return (spa->spa_prev_software_version);
1587 }
1588 
1589 uint64_t
1590 spa_deadman_synctime(spa_t *spa)
1591 {
1592 	return (spa->spa_deadman_synctime);
1593 }
1594 
1595 uint64_t
1596 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1597 {
1598 	uint64_t asize = DVA_GET_ASIZE(dva);
1599 	uint64_t dsize = asize;
1600 
1601 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1602 
1603 	if (asize != 0 && spa->spa_deflate) {
1604 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1605 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1606 	}
1607 
1608 	return (dsize);
1609 }
1610 
1611 uint64_t
1612 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1613 {
1614 	uint64_t dsize = 0;
1615 
1616 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1617 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1618 
1619 	return (dsize);
1620 }
1621 
1622 uint64_t
1623 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1624 {
1625 	uint64_t dsize = 0;
1626 
1627 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1628 
1629 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1630 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1631 
1632 	spa_config_exit(spa, SCL_VDEV, FTAG);
1633 
1634 	return (dsize);
1635 }
1636 
1637 /*
1638  * ==========================================================================
1639  * Initialization and Termination
1640  * ==========================================================================
1641  */
1642 
1643 static int
1644 spa_name_compare(const void *a1, const void *a2)
1645 {
1646 	const spa_t *s1 = a1;
1647 	const spa_t *s2 = a2;
1648 	int s;
1649 
1650 	s = strcmp(s1->spa_name, s2->spa_name);
1651 	if (s > 0)
1652 		return (1);
1653 	if (s < 0)
1654 		return (-1);
1655 	return (0);
1656 }
1657 
1658 int
1659 spa_busy(void)
1660 {
1661 	return (spa_active_count);
1662 }
1663 
1664 void
1665 spa_boot_init()
1666 {
1667 	spa_config_load();
1668 }
1669 
1670 void
1671 spa_init(int mode)
1672 {
1673 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1674 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1675 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1676 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1677 
1678 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1679 	    offsetof(spa_t, spa_avl));
1680 
1681 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1682 	    offsetof(spa_aux_t, aux_avl));
1683 
1684 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1685 	    offsetof(spa_aux_t, aux_avl));
1686 
1687 	spa_mode_global = mode;
1688 
1689 #ifdef _KERNEL
1690 	spa_arch_init();
1691 #else
1692 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1693 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1694 		if (arc_procfd == -1) {
1695 			perror("could not enable watchpoints: "
1696 			    "opening /proc/self/ctl failed: ");
1697 		} else {
1698 			arc_watch = B_TRUE;
1699 		}
1700 	}
1701 #endif
1702 
1703 	refcount_init();
1704 	unique_init();
1705 	space_map_init();
1706 	zio_init();
1707 	dmu_init();
1708 	zil_init();
1709 	vdev_cache_stat_init();
1710 	zfs_prop_init();
1711 	zpool_prop_init();
1712 	zpool_feature_init();
1713 	spa_config_load();
1714 	l2arc_start();
1715 }
1716 
1717 void
1718 spa_fini(void)
1719 {
1720 	l2arc_stop();
1721 
1722 	spa_evict_all();
1723 
1724 	vdev_cache_stat_fini();
1725 	zil_fini();
1726 	dmu_fini();
1727 	zio_fini();
1728 	space_map_fini();
1729 	unique_fini();
1730 	refcount_fini();
1731 
1732 	avl_destroy(&spa_namespace_avl);
1733 	avl_destroy(&spa_spare_avl);
1734 	avl_destroy(&spa_l2cache_avl);
1735 
1736 	cv_destroy(&spa_namespace_cv);
1737 	mutex_destroy(&spa_namespace_lock);
1738 	mutex_destroy(&spa_spare_lock);
1739 	mutex_destroy(&spa_l2cache_lock);
1740 }
1741 
1742 /*
1743  * Return whether this pool has slogs. No locking needed.
1744  * It's not a problem if the wrong answer is returned as it's only for
1745  * performance and not correctness
1746  */
1747 boolean_t
1748 spa_has_slogs(spa_t *spa)
1749 {
1750 	return (spa->spa_log_class->mc_rotor != NULL);
1751 }
1752 
1753 spa_log_state_t
1754 spa_get_log_state(spa_t *spa)
1755 {
1756 	return (spa->spa_log_state);
1757 }
1758 
1759 void
1760 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1761 {
1762 	spa->spa_log_state = state;
1763 }
1764 
1765 boolean_t
1766 spa_is_root(spa_t *spa)
1767 {
1768 	return (spa->spa_is_root);
1769 }
1770 
1771 boolean_t
1772 spa_writeable(spa_t *spa)
1773 {
1774 	return (!!(spa->spa_mode & FWRITE));
1775 }
1776 
1777 int
1778 spa_mode(spa_t *spa)
1779 {
1780 	return (spa->spa_mode);
1781 }
1782 
1783 uint64_t
1784 spa_bootfs(spa_t *spa)
1785 {
1786 	return (spa->spa_bootfs);
1787 }
1788 
1789 uint64_t
1790 spa_delegation(spa_t *spa)
1791 {
1792 	return (spa->spa_delegation);
1793 }
1794 
1795 objset_t *
1796 spa_meta_objset(spa_t *spa)
1797 {
1798 	return (spa->spa_meta_objset);
1799 }
1800 
1801 enum zio_checksum
1802 spa_dedup_checksum(spa_t *spa)
1803 {
1804 	return (spa->spa_dedup_checksum);
1805 }
1806 
1807 /*
1808  * Reset pool scan stat per scan pass (or reboot).
1809  */
1810 void
1811 spa_scan_stat_init(spa_t *spa)
1812 {
1813 	/* data not stored on disk */
1814 	spa->spa_scan_pass_start = gethrestime_sec();
1815 	spa->spa_scan_pass_exam = 0;
1816 	vdev_scan_stat_init(spa->spa_root_vdev);
1817 }
1818 
1819 /*
1820  * Get scan stats for zpool status reports
1821  */
1822 int
1823 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1824 {
1825 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1826 
1827 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1828 		return (SET_ERROR(ENOENT));
1829 	bzero(ps, sizeof (pool_scan_stat_t));
1830 
1831 	/* data stored on disk */
1832 	ps->pss_func = scn->scn_phys.scn_func;
1833 	ps->pss_start_time = scn->scn_phys.scn_start_time;
1834 	ps->pss_end_time = scn->scn_phys.scn_end_time;
1835 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1836 	ps->pss_examined = scn->scn_phys.scn_examined;
1837 	ps->pss_to_process = scn->scn_phys.scn_to_process;
1838 	ps->pss_processed = scn->scn_phys.scn_processed;
1839 	ps->pss_errors = scn->scn_phys.scn_errors;
1840 	ps->pss_state = scn->scn_phys.scn_state;
1841 
1842 	/* data not stored on disk */
1843 	ps->pss_pass_start = spa->spa_scan_pass_start;
1844 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
1845 
1846 	return (0);
1847 }
1848 
1849 boolean_t
1850 spa_debug_enabled(spa_t *spa)
1851 {
1852 	return (spa->spa_debug);
1853 }
1854