xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_config.c (revision cd3e933325e68e23516a196a8fea7f49b1e497c3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/nvpair.h>
29 #include <sys/uio.h>
30 #include <sys/fs/zfs.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/zfs_ioctl.h>
33 #include <sys/utsname.h>
34 #include <sys/systeminfo.h>
35 #include <sys/sunddi.h>
36 #ifdef _KERNEL
37 #include <sys/kobj.h>
38 #include <sys/zone.h>
39 #endif
40 
41 /*
42  * Pool configuration repository.
43  *
44  * Pool configuration is stored as a packed nvlist on the filesystem.  By
45  * default, all pools are stored in /etc/zfs/zpool.cache and loaded on boot
46  * (when the ZFS module is loaded).  Pools can also have the 'cachefile'
47  * property set that allows them to be stored in an alternate location until
48  * the control of external software.
49  *
50  * For each cache file, we have a single nvlist which holds all the
51  * configuration information.  When the module loads, we read this information
52  * from /etc/zfs/zpool.cache and populate the SPA namespace.  This namespace is
53  * maintained independently in spa.c.  Whenever the namespace is modified, or
54  * the configuration of a pool is changed, we call spa_config_sync(), which
55  * walks through all the active pools and writes the configuration to disk.
56  */
57 
58 static uint64_t spa_config_generation = 1;
59 
60 /*
61  * This can be overridden in userland to preserve an alternate namespace for
62  * userland pools when doing testing.
63  */
64 const char *spa_config_path = ZPOOL_CACHE;
65 
66 /*
67  * Called when the module is first loaded, this routine loads the configuration
68  * file into the SPA namespace.  It does not actually open or load the pools; it
69  * only populates the namespace.
70  */
71 void
72 spa_config_load(void)
73 {
74 	void *buf = NULL;
75 	nvlist_t *nvlist, *child;
76 	nvpair_t *nvpair;
77 	char *pathname;
78 	struct _buf *file;
79 	uint64_t fsize;
80 
81 	/*
82 	 * Open the configuration file.
83 	 */
84 	pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
85 
86 	(void) snprintf(pathname, MAXPATHLEN, "%s%s",
87 	    (rootdir != NULL) ? "./" : "", spa_config_path);
88 
89 	file = kobj_open_file(pathname);
90 
91 	kmem_free(pathname, MAXPATHLEN);
92 
93 	if (file == (struct _buf *)-1)
94 		return;
95 
96 	if (kobj_get_filesize(file, &fsize) != 0)
97 		goto out;
98 
99 	buf = kmem_alloc(fsize, KM_SLEEP);
100 
101 	/*
102 	 * Read the nvlist from the file.
103 	 */
104 	if (kobj_read_file(file, buf, fsize, 0) < 0)
105 		goto out;
106 
107 	/*
108 	 * Unpack the nvlist.
109 	 */
110 	if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0)
111 		goto out;
112 
113 	/*
114 	 * Iterate over all elements in the nvlist, creating a new spa_t for
115 	 * each one with the specified configuration.
116 	 */
117 	mutex_enter(&spa_namespace_lock);
118 	nvpair = NULL;
119 	while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) {
120 		if (nvpair_type(nvpair) != DATA_TYPE_NVLIST)
121 			continue;
122 
123 		VERIFY(nvpair_value_nvlist(nvpair, &child) == 0);
124 
125 		if (spa_lookup(nvpair_name(nvpair)) != NULL)
126 			continue;
127 		(void) spa_add(nvpair_name(nvpair), child, NULL);
128 	}
129 	mutex_exit(&spa_namespace_lock);
130 
131 	nvlist_free(nvlist);
132 
133 out:
134 	if (buf != NULL)
135 		kmem_free(buf, fsize);
136 
137 	kobj_close_file(file);
138 }
139 
140 static void
141 spa_config_write(spa_config_dirent_t *dp, nvlist_t *nvl)
142 {
143 	size_t buflen;
144 	char *buf;
145 	vnode_t *vp;
146 	int oflags = FWRITE | FTRUNC | FCREAT | FOFFMAX;
147 	char *temp;
148 
149 	/*
150 	 * If the nvlist is empty (NULL), then remove the old cachefile.
151 	 */
152 	if (nvl == NULL) {
153 		(void) vn_remove(dp->scd_path, UIO_SYSSPACE, RMFILE);
154 		return;
155 	}
156 
157 	/*
158 	 * Pack the configuration into a buffer.
159 	 */
160 	VERIFY(nvlist_size(nvl, &buflen, NV_ENCODE_XDR) == 0);
161 
162 	buf = kmem_alloc(buflen, KM_SLEEP);
163 	temp = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
164 
165 	VERIFY(nvlist_pack(nvl, &buf, &buflen, NV_ENCODE_XDR,
166 	    KM_SLEEP) == 0);
167 
168 	/*
169 	 * Write the configuration to disk.  We need to do the traditional
170 	 * 'write to temporary file, sync, move over original' to make sure we
171 	 * always have a consistent view of the data.
172 	 */
173 	(void) snprintf(temp, MAXPATHLEN, "%s.tmp", dp->scd_path);
174 
175 	if (vn_open(temp, UIO_SYSSPACE, oflags, 0644, &vp, CRCREAT, 0) == 0) {
176 		if (vn_rdwr(UIO_WRITE, vp, buf, buflen, 0, UIO_SYSSPACE,
177 		    0, RLIM64_INFINITY, kcred, NULL) == 0 &&
178 		    VOP_FSYNC(vp, FSYNC, kcred, NULL) == 0) {
179 			(void) vn_rename(temp, dp->scd_path, UIO_SYSSPACE);
180 		}
181 		(void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL);
182 		VN_RELE(vp);
183 	}
184 
185 	(void) vn_remove(temp, UIO_SYSSPACE, RMFILE);
186 
187 	kmem_free(buf, buflen);
188 	kmem_free(temp, MAXPATHLEN);
189 }
190 
191 /*
192  * Synchronize pool configuration to disk.  This must be called with the
193  * namespace lock held.
194  */
195 void
196 spa_config_sync(spa_t *target, boolean_t removing, boolean_t postsysevent)
197 {
198 	spa_config_dirent_t *dp, *tdp;
199 	nvlist_t *nvl;
200 
201 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
202 
203 	if (rootdir == NULL || !(spa_mode_global & FWRITE))
204 		return;
205 
206 	/*
207 	 * Iterate over all cachefiles for the pool, past or present.  When the
208 	 * cachefile is changed, the new one is pushed onto this list, allowing
209 	 * us to update previous cachefiles that no longer contain this pool.
210 	 */
211 	for (dp = list_head(&target->spa_config_list); dp != NULL;
212 	    dp = list_next(&target->spa_config_list, dp)) {
213 		spa_t *spa = NULL;
214 		if (dp->scd_path == NULL)
215 			continue;
216 
217 		/*
218 		 * Iterate over all pools, adding any matching pools to 'nvl'.
219 		 */
220 		nvl = NULL;
221 		while ((spa = spa_next(spa)) != NULL) {
222 			if (spa == target && removing)
223 				continue;
224 
225 			mutex_enter(&spa->spa_props_lock);
226 			tdp = list_head(&spa->spa_config_list);
227 			if (spa->spa_config == NULL ||
228 			    tdp->scd_path == NULL ||
229 			    strcmp(tdp->scd_path, dp->scd_path) != 0) {
230 				mutex_exit(&spa->spa_props_lock);
231 				continue;
232 			}
233 
234 			if (nvl == NULL)
235 				VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME,
236 				    KM_SLEEP) == 0);
237 
238 			VERIFY(nvlist_add_nvlist(nvl, spa->spa_name,
239 			    spa->spa_config) == 0);
240 			mutex_exit(&spa->spa_props_lock);
241 		}
242 
243 		spa_config_write(dp, nvl);
244 		nvlist_free(nvl);
245 	}
246 
247 	/*
248 	 * Remove any config entries older than the current one.
249 	 */
250 	dp = list_head(&target->spa_config_list);
251 	while ((tdp = list_next(&target->spa_config_list, dp)) != NULL) {
252 		list_remove(&target->spa_config_list, tdp);
253 		if (tdp->scd_path != NULL)
254 			spa_strfree(tdp->scd_path);
255 		kmem_free(tdp, sizeof (spa_config_dirent_t));
256 	}
257 
258 	spa_config_generation++;
259 
260 	if (postsysevent)
261 		spa_event_notify(target, NULL, ESC_ZFS_CONFIG_SYNC);
262 }
263 
264 /*
265  * Sigh.  Inside a local zone, we don't have access to /etc/zfs/zpool.cache,
266  * and we don't want to allow the local zone to see all the pools anyway.
267  * So we have to invent the ZFS_IOC_CONFIG ioctl to grab the configuration
268  * information for all pool visible within the zone.
269  */
270 nvlist_t *
271 spa_all_configs(uint64_t *generation)
272 {
273 	nvlist_t *pools;
274 	spa_t *spa = NULL;
275 
276 	if (*generation == spa_config_generation)
277 		return (NULL);
278 
279 	VERIFY(nvlist_alloc(&pools, NV_UNIQUE_NAME, KM_SLEEP) == 0);
280 
281 	mutex_enter(&spa_namespace_lock);
282 	while ((spa = spa_next(spa)) != NULL) {
283 		if (INGLOBALZONE(curproc) ||
284 		    zone_dataset_visible(spa_name(spa), NULL)) {
285 			mutex_enter(&spa->spa_props_lock);
286 			VERIFY(nvlist_add_nvlist(pools, spa_name(spa),
287 			    spa->spa_config) == 0);
288 			mutex_exit(&spa->spa_props_lock);
289 		}
290 	}
291 	*generation = spa_config_generation;
292 	mutex_exit(&spa_namespace_lock);
293 
294 	return (pools);
295 }
296 
297 void
298 spa_config_set(spa_t *spa, nvlist_t *config)
299 {
300 	mutex_enter(&spa->spa_props_lock);
301 	if (spa->spa_config != NULL)
302 		nvlist_free(spa->spa_config);
303 	spa->spa_config = config;
304 	mutex_exit(&spa->spa_props_lock);
305 }
306 
307 /* Add discovered rewind info, if any to the provided nvlist */
308 void
309 spa_rewind_data_to_nvlist(spa_t *spa, nvlist_t *tonvl)
310 {
311 	int64_t loss = 0;
312 
313 	if (tonvl == NULL || spa->spa_load_txg == 0)
314 		return;
315 
316 	VERIFY(nvlist_add_uint64(tonvl, ZPOOL_CONFIG_LOAD_TIME,
317 	    spa->spa_load_txg_ts) == 0);
318 	if (spa->spa_last_ubsync_txg)
319 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
320 	VERIFY(nvlist_add_int64(tonvl, ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
321 	VERIFY(nvlist_add_uint64(tonvl, ZPOOL_CONFIG_LOAD_DATA_ERRORS,
322 	    spa->spa_load_data_errors) == 0);
323 }
324 
325 /*
326  * Generate the pool's configuration based on the current in-core state.
327  * We infer whether to generate a complete config or just one top-level config
328  * based on whether vd is the root vdev.
329  */
330 nvlist_t *
331 spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats)
332 {
333 	nvlist_t *config, *nvroot;
334 	vdev_t *rvd = spa->spa_root_vdev;
335 	unsigned long hostid = 0;
336 	boolean_t locked = B_FALSE;
337 	uint64_t split_guid;
338 
339 	if (vd == NULL) {
340 		vd = rvd;
341 		locked = B_TRUE;
342 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
343 	}
344 
345 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
346 	    (SCL_CONFIG | SCL_STATE));
347 
348 	/*
349 	 * If txg is -1, report the current value of spa->spa_config_txg.
350 	 */
351 	if (txg == -1ULL)
352 		txg = spa->spa_config_txg;
353 
354 	VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, KM_SLEEP) == 0);
355 
356 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
357 	    spa_version(spa)) == 0);
358 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
359 	    spa_name(spa)) == 0);
360 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
361 	    spa_state(spa)) == 0);
362 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
363 	    txg) == 0);
364 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
365 	    spa_guid(spa)) == 0);
366 #ifdef	_KERNEL
367 	hostid = zone_get_hostid(NULL);
368 #else	/* _KERNEL */
369 	/*
370 	 * We're emulating the system's hostid in userland, so we can't use
371 	 * zone_get_hostid().
372 	 */
373 	(void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
374 #endif	/* _KERNEL */
375 	if (hostid != 0) {
376 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
377 		    hostid) == 0);
378 	}
379 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
380 	    utsname.nodename) == 0);
381 
382 	if (vd != rvd) {
383 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID,
384 		    vd->vdev_top->vdev_guid) == 0);
385 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_GUID,
386 		    vd->vdev_guid) == 0);
387 		if (vd->vdev_isspare)
388 			VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_SPARE,
389 			    1ULL) == 0);
390 		if (vd->vdev_islog)
391 			VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_LOG,
392 			    1ULL) == 0);
393 		vd = vd->vdev_top;		/* label contains top config */
394 	} else {
395 		/*
396 		 * Only add the (potentially large) split information
397 		 * in the mos config, and not in the vdev labels
398 		 */
399 		if (spa->spa_config_splitting != NULL)
400 			VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT,
401 			    spa->spa_config_splitting) == 0);
402 	}
403 
404 	/*
405 	 * Add the top-level config.  We even add this on pools which
406 	 * don't support holes in the namespace as older pools will
407 	 * just ignore it.
408 	 */
409 	vdev_top_config_generate(spa, config);
410 
411 	/*
412 	 * If we're splitting, record the original pool's guid.
413 	 */
414 	if (spa->spa_config_splitting != NULL &&
415 	    nvlist_lookup_uint64(spa->spa_config_splitting,
416 	    ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) {
417 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID,
418 		    split_guid) == 0);
419 	}
420 
421 	nvroot = vdev_config_generate(spa, vd, getstats, 0);
422 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
423 	nvlist_free(nvroot);
424 
425 	if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) {
426 		ddt_histogram_t *ddh;
427 		ddt_stat_t *dds;
428 		ddt_object_t *ddo;
429 
430 		ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP);
431 		ddt_get_dedup_histogram(spa, ddh);
432 		VERIFY(nvlist_add_uint64_array(config,
433 		    ZPOOL_CONFIG_DDT_HISTOGRAM,
434 		    (uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t)) == 0);
435 		kmem_free(ddh, sizeof (ddt_histogram_t));
436 
437 		ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP);
438 		ddt_get_dedup_object_stats(spa, ddo);
439 		VERIFY(nvlist_add_uint64_array(config,
440 		    ZPOOL_CONFIG_DDT_OBJ_STATS,
441 		    (uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t)) == 0);
442 		kmem_free(ddo, sizeof (ddt_object_t));
443 
444 		dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP);
445 		ddt_get_dedup_stats(spa, dds);
446 		VERIFY(nvlist_add_uint64_array(config,
447 		    ZPOOL_CONFIG_DDT_STATS,
448 		    (uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t)) == 0);
449 		kmem_free(dds, sizeof (ddt_stat_t));
450 	}
451 
452 	spa_rewind_data_to_nvlist(spa, config);
453 
454 	if (locked)
455 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
456 
457 	return (config);
458 }
459 
460 /*
461  * Update all disk labels, generate a fresh config based on the current
462  * in-core state, and sync the global config cache (do not sync the config
463  * cache if this is a booting rootpool).
464  */
465 void
466 spa_config_update(spa_t *spa, int what)
467 {
468 	vdev_t *rvd = spa->spa_root_vdev;
469 	uint64_t txg;
470 	int c;
471 
472 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
473 
474 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
475 	txg = spa_last_synced_txg(spa) + 1;
476 	if (what == SPA_CONFIG_UPDATE_POOL) {
477 		vdev_config_dirty(rvd);
478 	} else {
479 		/*
480 		 * If we have top-level vdevs that were added but have
481 		 * not yet been prepared for allocation, do that now.
482 		 * (It's safe now because the config cache is up to date,
483 		 * so it will be able to translate the new DVAs.)
484 		 * See comments in spa_vdev_add() for full details.
485 		 */
486 		for (c = 0; c < rvd->vdev_children; c++) {
487 			vdev_t *tvd = rvd->vdev_child[c];
488 			if (tvd->vdev_ms_array == 0)
489 				vdev_metaslab_set_size(tvd);
490 			vdev_expand(tvd, txg);
491 		}
492 	}
493 	spa_config_exit(spa, SCL_ALL, FTAG);
494 
495 	/*
496 	 * Wait for the mosconfig to be regenerated and synced.
497 	 */
498 	txg_wait_synced(spa->spa_dsl_pool, txg);
499 
500 	/*
501 	 * Update the global config cache to reflect the new mosconfig.
502 	 */
503 	if (!spa->spa_is_root)
504 		spa_config_sync(spa, B_FALSE, what != SPA_CONFIG_UPDATE_POOL);
505 
506 	if (what == SPA_CONFIG_UPDATE_POOL)
507 		spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS);
508 }
509