xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision bbe876c07ed632b8f85e195d41e7948382064a95)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2013, 2014, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  */
28 
29 /*
30  * SPA: Storage Pool Allocator
31  *
32  * This file contains all the routines used when modifying on-disk SPA state.
33  * This includes opening, importing, destroying, exporting a pool, and syncing a
34  * pool.
35  */
36 
37 #include <sys/zfs_context.h>
38 #include <sys/fm/fs/zfs.h>
39 #include <sys/spa_impl.h>
40 #include <sys/zio.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu.h>
43 #include <sys/dmu_tx.h>
44 #include <sys/zap.h>
45 #include <sys/zil.h>
46 #include <sys/ddt.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/metaslab.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/uberblock_impl.h>
51 #include <sys/txg.h>
52 #include <sys/avl.h>
53 #include <sys/dmu_traverse.h>
54 #include <sys/dmu_objset.h>
55 #include <sys/unique.h>
56 #include <sys/dsl_pool.h>
57 #include <sys/dsl_dataset.h>
58 #include <sys/dsl_dir.h>
59 #include <sys/dsl_prop.h>
60 #include <sys/dsl_synctask.h>
61 #include <sys/fs/zfs.h>
62 #include <sys/arc.h>
63 #include <sys/callb.h>
64 #include <sys/systeminfo.h>
65 #include <sys/spa_boot.h>
66 #include <sys/zfs_ioctl.h>
67 #include <sys/dsl_scan.h>
68 #include <sys/zfeature.h>
69 #include <sys/dsl_destroy.h>
70 
71 #ifdef	_KERNEL
72 #include <sys/bootprops.h>
73 #include <sys/callb.h>
74 #include <sys/cpupart.h>
75 #include <sys/pool.h>
76 #include <sys/sysdc.h>
77 #include <sys/zone.h>
78 #endif	/* _KERNEL */
79 
80 #include "zfs_prop.h"
81 #include "zfs_comutil.h"
82 
83 /*
84  * The interval, in seconds, at which failed configuration cache file writes
85  * should be retried.
86  */
87 static int zfs_ccw_retry_interval = 300;
88 
89 typedef enum zti_modes {
90 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
91 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
92 	ZTI_MODE_NULL,			/* don't create a taskq */
93 	ZTI_NMODES
94 } zti_modes_t;
95 
96 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
97 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
98 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
99 
100 #define	ZTI_N(n)	ZTI_P(n, 1)
101 #define	ZTI_ONE		ZTI_N(1)
102 
103 typedef struct zio_taskq_info {
104 	zti_modes_t zti_mode;
105 	uint_t zti_value;
106 	uint_t zti_count;
107 } zio_taskq_info_t;
108 
109 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
110 	"issue", "issue_high", "intr", "intr_high"
111 };
112 
113 /*
114  * This table defines the taskq settings for each ZFS I/O type. When
115  * initializing a pool, we use this table to create an appropriately sized
116  * taskq. Some operations are low volume and therefore have a small, static
117  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
118  * macros. Other operations process a large amount of data; the ZTI_BATCH
119  * macro causes us to create a taskq oriented for throughput. Some operations
120  * are so high frequency and short-lived that the taskq itself can become a a
121  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
122  * additional degree of parallelism specified by the number of threads per-
123  * taskq and the number of taskqs; when dispatching an event in this case, the
124  * particular taskq is chosen at random.
125  *
126  * The different taskq priorities are to handle the different contexts (issue
127  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
128  * need to be handled with minimum delay.
129  */
130 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
131 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
132 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
133 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
134 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
135 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
136 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
137 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
138 };
139 
140 static void spa_sync_version(void *arg, dmu_tx_t *tx);
141 static void spa_sync_props(void *arg, dmu_tx_t *tx);
142 static boolean_t spa_has_active_shared_spare(spa_t *spa);
143 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
144     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
145     char **ereport);
146 static void spa_vdev_resilver_done(spa_t *spa);
147 
148 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
149 id_t		zio_taskq_psrset_bind = PS_NONE;
150 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
151 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
152 
153 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
154 extern int	zfs_sync_pass_deferred_free;
155 
156 /*
157  * This (illegal) pool name is used when temporarily importing a spa_t in order
158  * to get the vdev stats associated with the imported devices.
159  */
160 #define	TRYIMPORT_NAME	"$import"
161 
162 /*
163  * ==========================================================================
164  * SPA properties routines
165  * ==========================================================================
166  */
167 
168 /*
169  * Add a (source=src, propname=propval) list to an nvlist.
170  */
171 static void
172 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
173     uint64_t intval, zprop_source_t src)
174 {
175 	const char *propname = zpool_prop_to_name(prop);
176 	nvlist_t *propval;
177 
178 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
179 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
180 
181 	if (strval != NULL)
182 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
183 	else
184 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
185 
186 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
187 	nvlist_free(propval);
188 }
189 
190 /*
191  * Get property values from the spa configuration.
192  */
193 static void
194 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
195 {
196 	vdev_t *rvd = spa->spa_root_vdev;
197 	dsl_pool_t *pool = spa->spa_dsl_pool;
198 	uint64_t size, alloc, cap, version;
199 	zprop_source_t src = ZPROP_SRC_NONE;
200 	spa_config_dirent_t *dp;
201 	metaslab_class_t *mc = spa_normal_class(spa);
202 
203 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
204 
205 	if (rvd != NULL) {
206 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
207 		size = metaslab_class_get_space(spa_normal_class(spa));
208 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
209 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
210 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
211 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
212 		    size - alloc, src);
213 
214 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
215 		    metaslab_class_fragmentation(mc), src);
216 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
217 		    metaslab_class_expandable_space(mc), src);
218 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
219 		    (spa_mode(spa) == FREAD), src);
220 
221 		cap = (size == 0) ? 0 : (alloc * 100 / size);
222 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
223 
224 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
225 		    ddt_get_pool_dedup_ratio(spa), src);
226 
227 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
228 		    rvd->vdev_state, src);
229 
230 		version = spa_version(spa);
231 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
232 			src = ZPROP_SRC_DEFAULT;
233 		else
234 			src = ZPROP_SRC_LOCAL;
235 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
236 	}
237 
238 	if (pool != NULL) {
239 		/*
240 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
241 		 * when opening pools before this version freedir will be NULL.
242 		 */
243 		if (pool->dp_free_dir != NULL) {
244 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
245 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
246 			    src);
247 		} else {
248 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
249 			    NULL, 0, src);
250 		}
251 
252 		if (pool->dp_leak_dir != NULL) {
253 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
254 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
255 			    src);
256 		} else {
257 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
258 			    NULL, 0, src);
259 		}
260 	}
261 
262 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
263 
264 	if (spa->spa_comment != NULL) {
265 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
266 		    0, ZPROP_SRC_LOCAL);
267 	}
268 
269 	if (spa->spa_root != NULL)
270 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
271 		    0, ZPROP_SRC_LOCAL);
272 
273 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
274 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
275 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
276 	} else {
277 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
278 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
279 	}
280 
281 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
282 		if (dp->scd_path == NULL) {
283 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
284 			    "none", 0, ZPROP_SRC_LOCAL);
285 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
286 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
287 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
288 		}
289 	}
290 }
291 
292 /*
293  * Get zpool property values.
294  */
295 int
296 spa_prop_get(spa_t *spa, nvlist_t **nvp)
297 {
298 	objset_t *mos = spa->spa_meta_objset;
299 	zap_cursor_t zc;
300 	zap_attribute_t za;
301 	int err;
302 
303 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
304 
305 	mutex_enter(&spa->spa_props_lock);
306 
307 	/*
308 	 * Get properties from the spa config.
309 	 */
310 	spa_prop_get_config(spa, nvp);
311 
312 	/* If no pool property object, no more prop to get. */
313 	if (mos == NULL || spa->spa_pool_props_object == 0) {
314 		mutex_exit(&spa->spa_props_lock);
315 		return (0);
316 	}
317 
318 	/*
319 	 * Get properties from the MOS pool property object.
320 	 */
321 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
322 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
323 	    zap_cursor_advance(&zc)) {
324 		uint64_t intval = 0;
325 		char *strval = NULL;
326 		zprop_source_t src = ZPROP_SRC_DEFAULT;
327 		zpool_prop_t prop;
328 
329 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
330 			continue;
331 
332 		switch (za.za_integer_length) {
333 		case 8:
334 			/* integer property */
335 			if (za.za_first_integer !=
336 			    zpool_prop_default_numeric(prop))
337 				src = ZPROP_SRC_LOCAL;
338 
339 			if (prop == ZPOOL_PROP_BOOTFS) {
340 				dsl_pool_t *dp;
341 				dsl_dataset_t *ds = NULL;
342 
343 				dp = spa_get_dsl(spa);
344 				dsl_pool_config_enter(dp, FTAG);
345 				if (err = dsl_dataset_hold_obj(dp,
346 				    za.za_first_integer, FTAG, &ds)) {
347 					dsl_pool_config_exit(dp, FTAG);
348 					break;
349 				}
350 
351 				strval = kmem_alloc(
352 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
353 				    KM_SLEEP);
354 				dsl_dataset_name(ds, strval);
355 				dsl_dataset_rele(ds, FTAG);
356 				dsl_pool_config_exit(dp, FTAG);
357 			} else {
358 				strval = NULL;
359 				intval = za.za_first_integer;
360 			}
361 
362 			spa_prop_add_list(*nvp, prop, strval, intval, src);
363 
364 			if (strval != NULL)
365 				kmem_free(strval,
366 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
367 
368 			break;
369 
370 		case 1:
371 			/* string property */
372 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
373 			err = zap_lookup(mos, spa->spa_pool_props_object,
374 			    za.za_name, 1, za.za_num_integers, strval);
375 			if (err) {
376 				kmem_free(strval, za.za_num_integers);
377 				break;
378 			}
379 			spa_prop_add_list(*nvp, prop, strval, 0, src);
380 			kmem_free(strval, za.za_num_integers);
381 			break;
382 
383 		default:
384 			break;
385 		}
386 	}
387 	zap_cursor_fini(&zc);
388 	mutex_exit(&spa->spa_props_lock);
389 out:
390 	if (err && err != ENOENT) {
391 		nvlist_free(*nvp);
392 		*nvp = NULL;
393 		return (err);
394 	}
395 
396 	return (0);
397 }
398 
399 /*
400  * Validate the given pool properties nvlist and modify the list
401  * for the property values to be set.
402  */
403 static int
404 spa_prop_validate(spa_t *spa, nvlist_t *props)
405 {
406 	nvpair_t *elem;
407 	int error = 0, reset_bootfs = 0;
408 	uint64_t objnum = 0;
409 	boolean_t has_feature = B_FALSE;
410 
411 	elem = NULL;
412 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
413 		uint64_t intval;
414 		char *strval, *slash, *check, *fname;
415 		const char *propname = nvpair_name(elem);
416 		zpool_prop_t prop = zpool_name_to_prop(propname);
417 
418 		switch (prop) {
419 		case ZPROP_INVAL:
420 			if (!zpool_prop_feature(propname)) {
421 				error = SET_ERROR(EINVAL);
422 				break;
423 			}
424 
425 			/*
426 			 * Sanitize the input.
427 			 */
428 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
429 				error = SET_ERROR(EINVAL);
430 				break;
431 			}
432 
433 			if (nvpair_value_uint64(elem, &intval) != 0) {
434 				error = SET_ERROR(EINVAL);
435 				break;
436 			}
437 
438 			if (intval != 0) {
439 				error = SET_ERROR(EINVAL);
440 				break;
441 			}
442 
443 			fname = strchr(propname, '@') + 1;
444 			if (zfeature_lookup_name(fname, NULL) != 0) {
445 				error = SET_ERROR(EINVAL);
446 				break;
447 			}
448 
449 			has_feature = B_TRUE;
450 			break;
451 
452 		case ZPOOL_PROP_VERSION:
453 			error = nvpair_value_uint64(elem, &intval);
454 			if (!error &&
455 			    (intval < spa_version(spa) ||
456 			    intval > SPA_VERSION_BEFORE_FEATURES ||
457 			    has_feature))
458 				error = SET_ERROR(EINVAL);
459 			break;
460 
461 		case ZPOOL_PROP_DELEGATION:
462 		case ZPOOL_PROP_AUTOREPLACE:
463 		case ZPOOL_PROP_LISTSNAPS:
464 		case ZPOOL_PROP_AUTOEXPAND:
465 			error = nvpair_value_uint64(elem, &intval);
466 			if (!error && intval > 1)
467 				error = SET_ERROR(EINVAL);
468 			break;
469 
470 		case ZPOOL_PROP_BOOTFS:
471 			/*
472 			 * If the pool version is less than SPA_VERSION_BOOTFS,
473 			 * or the pool is still being created (version == 0),
474 			 * the bootfs property cannot be set.
475 			 */
476 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
477 				error = SET_ERROR(ENOTSUP);
478 				break;
479 			}
480 
481 			/*
482 			 * Make sure the vdev config is bootable
483 			 */
484 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
485 				error = SET_ERROR(ENOTSUP);
486 				break;
487 			}
488 
489 			reset_bootfs = 1;
490 
491 			error = nvpair_value_string(elem, &strval);
492 
493 			if (!error) {
494 				objset_t *os;
495 				uint64_t propval;
496 
497 				if (strval == NULL || strval[0] == '\0') {
498 					objnum = zpool_prop_default_numeric(
499 					    ZPOOL_PROP_BOOTFS);
500 					break;
501 				}
502 
503 				if (error = dmu_objset_hold(strval, FTAG, &os))
504 					break;
505 
506 				/*
507 				 * Must be ZPL, and its property settings
508 				 * must be supported by GRUB (compression
509 				 * is not gzip, and large blocks are not used).
510 				 */
511 
512 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
513 					error = SET_ERROR(ENOTSUP);
514 				} else if ((error =
515 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
516 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
517 				    &propval)) == 0 &&
518 				    !BOOTFS_COMPRESS_VALID(propval)) {
519 					error = SET_ERROR(ENOTSUP);
520 				} else if ((error =
521 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
522 				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
523 				    &propval)) == 0 &&
524 				    propval > SPA_OLD_MAXBLOCKSIZE) {
525 					error = SET_ERROR(ENOTSUP);
526 				} else {
527 					objnum = dmu_objset_id(os);
528 				}
529 				dmu_objset_rele(os, FTAG);
530 			}
531 			break;
532 
533 		case ZPOOL_PROP_FAILUREMODE:
534 			error = nvpair_value_uint64(elem, &intval);
535 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
536 			    intval > ZIO_FAILURE_MODE_PANIC))
537 				error = SET_ERROR(EINVAL);
538 
539 			/*
540 			 * This is a special case which only occurs when
541 			 * the pool has completely failed. This allows
542 			 * the user to change the in-core failmode property
543 			 * without syncing it out to disk (I/Os might
544 			 * currently be blocked). We do this by returning
545 			 * EIO to the caller (spa_prop_set) to trick it
546 			 * into thinking we encountered a property validation
547 			 * error.
548 			 */
549 			if (!error && spa_suspended(spa)) {
550 				spa->spa_failmode = intval;
551 				error = SET_ERROR(EIO);
552 			}
553 			break;
554 
555 		case ZPOOL_PROP_CACHEFILE:
556 			if ((error = nvpair_value_string(elem, &strval)) != 0)
557 				break;
558 
559 			if (strval[0] == '\0')
560 				break;
561 
562 			if (strcmp(strval, "none") == 0)
563 				break;
564 
565 			if (strval[0] != '/') {
566 				error = SET_ERROR(EINVAL);
567 				break;
568 			}
569 
570 			slash = strrchr(strval, '/');
571 			ASSERT(slash != NULL);
572 
573 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
574 			    strcmp(slash, "/..") == 0)
575 				error = SET_ERROR(EINVAL);
576 			break;
577 
578 		case ZPOOL_PROP_COMMENT:
579 			if ((error = nvpair_value_string(elem, &strval)) != 0)
580 				break;
581 			for (check = strval; *check != '\0'; check++) {
582 				/*
583 				 * The kernel doesn't have an easy isprint()
584 				 * check.  For this kernel check, we merely
585 				 * check ASCII apart from DEL.  Fix this if
586 				 * there is an easy-to-use kernel isprint().
587 				 */
588 				if (*check >= 0x7f) {
589 					error = SET_ERROR(EINVAL);
590 					break;
591 				}
592 				check++;
593 			}
594 			if (strlen(strval) > ZPROP_MAX_COMMENT)
595 				error = E2BIG;
596 			break;
597 
598 		case ZPOOL_PROP_DEDUPDITTO:
599 			if (spa_version(spa) < SPA_VERSION_DEDUP)
600 				error = SET_ERROR(ENOTSUP);
601 			else
602 				error = nvpair_value_uint64(elem, &intval);
603 			if (error == 0 &&
604 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
605 				error = SET_ERROR(EINVAL);
606 			break;
607 		}
608 
609 		if (error)
610 			break;
611 	}
612 
613 	if (!error && reset_bootfs) {
614 		error = nvlist_remove(props,
615 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
616 
617 		if (!error) {
618 			error = nvlist_add_uint64(props,
619 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
620 		}
621 	}
622 
623 	return (error);
624 }
625 
626 void
627 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
628 {
629 	char *cachefile;
630 	spa_config_dirent_t *dp;
631 
632 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
633 	    &cachefile) != 0)
634 		return;
635 
636 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
637 	    KM_SLEEP);
638 
639 	if (cachefile[0] == '\0')
640 		dp->scd_path = spa_strdup(spa_config_path);
641 	else if (strcmp(cachefile, "none") == 0)
642 		dp->scd_path = NULL;
643 	else
644 		dp->scd_path = spa_strdup(cachefile);
645 
646 	list_insert_head(&spa->spa_config_list, dp);
647 	if (need_sync)
648 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
649 }
650 
651 int
652 spa_prop_set(spa_t *spa, nvlist_t *nvp)
653 {
654 	int error;
655 	nvpair_t *elem = NULL;
656 	boolean_t need_sync = B_FALSE;
657 
658 	if ((error = spa_prop_validate(spa, nvp)) != 0)
659 		return (error);
660 
661 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
662 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
663 
664 		if (prop == ZPOOL_PROP_CACHEFILE ||
665 		    prop == ZPOOL_PROP_ALTROOT ||
666 		    prop == ZPOOL_PROP_READONLY)
667 			continue;
668 
669 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
670 			uint64_t ver;
671 
672 			if (prop == ZPOOL_PROP_VERSION) {
673 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
674 			} else {
675 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
676 				ver = SPA_VERSION_FEATURES;
677 				need_sync = B_TRUE;
678 			}
679 
680 			/* Save time if the version is already set. */
681 			if (ver == spa_version(spa))
682 				continue;
683 
684 			/*
685 			 * In addition to the pool directory object, we might
686 			 * create the pool properties object, the features for
687 			 * read object, the features for write object, or the
688 			 * feature descriptions object.
689 			 */
690 			error = dsl_sync_task(spa->spa_name, NULL,
691 			    spa_sync_version, &ver,
692 			    6, ZFS_SPACE_CHECK_RESERVED);
693 			if (error)
694 				return (error);
695 			continue;
696 		}
697 
698 		need_sync = B_TRUE;
699 		break;
700 	}
701 
702 	if (need_sync) {
703 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
704 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
705 	}
706 
707 	return (0);
708 }
709 
710 /*
711  * If the bootfs property value is dsobj, clear it.
712  */
713 void
714 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
715 {
716 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
717 		VERIFY(zap_remove(spa->spa_meta_objset,
718 		    spa->spa_pool_props_object,
719 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
720 		spa->spa_bootfs = 0;
721 	}
722 }
723 
724 /*ARGSUSED*/
725 static int
726 spa_change_guid_check(void *arg, dmu_tx_t *tx)
727 {
728 	uint64_t *newguid = arg;
729 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
730 	vdev_t *rvd = spa->spa_root_vdev;
731 	uint64_t vdev_state;
732 
733 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
734 	vdev_state = rvd->vdev_state;
735 	spa_config_exit(spa, SCL_STATE, FTAG);
736 
737 	if (vdev_state != VDEV_STATE_HEALTHY)
738 		return (SET_ERROR(ENXIO));
739 
740 	ASSERT3U(spa_guid(spa), !=, *newguid);
741 
742 	return (0);
743 }
744 
745 static void
746 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
747 {
748 	uint64_t *newguid = arg;
749 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
750 	uint64_t oldguid;
751 	vdev_t *rvd = spa->spa_root_vdev;
752 
753 	oldguid = spa_guid(spa);
754 
755 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
756 	rvd->vdev_guid = *newguid;
757 	rvd->vdev_guid_sum += (*newguid - oldguid);
758 	vdev_config_dirty(rvd);
759 	spa_config_exit(spa, SCL_STATE, FTAG);
760 
761 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
762 	    oldguid, *newguid);
763 }
764 
765 /*
766  * Change the GUID for the pool.  This is done so that we can later
767  * re-import a pool built from a clone of our own vdevs.  We will modify
768  * the root vdev's guid, our own pool guid, and then mark all of our
769  * vdevs dirty.  Note that we must make sure that all our vdevs are
770  * online when we do this, or else any vdevs that weren't present
771  * would be orphaned from our pool.  We are also going to issue a
772  * sysevent to update any watchers.
773  */
774 int
775 spa_change_guid(spa_t *spa)
776 {
777 	int error;
778 	uint64_t guid;
779 
780 	mutex_enter(&spa->spa_vdev_top_lock);
781 	mutex_enter(&spa_namespace_lock);
782 	guid = spa_generate_guid(NULL);
783 
784 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
785 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
786 
787 	if (error == 0) {
788 		spa_config_sync(spa, B_FALSE, B_TRUE);
789 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
790 	}
791 
792 	mutex_exit(&spa_namespace_lock);
793 	mutex_exit(&spa->spa_vdev_top_lock);
794 
795 	return (error);
796 }
797 
798 /*
799  * ==========================================================================
800  * SPA state manipulation (open/create/destroy/import/export)
801  * ==========================================================================
802  */
803 
804 static int
805 spa_error_entry_compare(const void *a, const void *b)
806 {
807 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
808 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
809 	int ret;
810 
811 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
812 	    sizeof (zbookmark_phys_t));
813 
814 	if (ret < 0)
815 		return (-1);
816 	else if (ret > 0)
817 		return (1);
818 	else
819 		return (0);
820 }
821 
822 /*
823  * Utility function which retrieves copies of the current logs and
824  * re-initializes them in the process.
825  */
826 void
827 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
828 {
829 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
830 
831 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
832 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
833 
834 	avl_create(&spa->spa_errlist_scrub,
835 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
836 	    offsetof(spa_error_entry_t, se_avl));
837 	avl_create(&spa->spa_errlist_last,
838 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
839 	    offsetof(spa_error_entry_t, se_avl));
840 }
841 
842 static void
843 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
844 {
845 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
846 	enum zti_modes mode = ztip->zti_mode;
847 	uint_t value = ztip->zti_value;
848 	uint_t count = ztip->zti_count;
849 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
850 	char name[32];
851 	uint_t flags = 0;
852 	boolean_t batch = B_FALSE;
853 
854 	if (mode == ZTI_MODE_NULL) {
855 		tqs->stqs_count = 0;
856 		tqs->stqs_taskq = NULL;
857 		return;
858 	}
859 
860 	ASSERT3U(count, >, 0);
861 
862 	tqs->stqs_count = count;
863 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
864 
865 	switch (mode) {
866 	case ZTI_MODE_FIXED:
867 		ASSERT3U(value, >=, 1);
868 		value = MAX(value, 1);
869 		break;
870 
871 	case ZTI_MODE_BATCH:
872 		batch = B_TRUE;
873 		flags |= TASKQ_THREADS_CPU_PCT;
874 		value = zio_taskq_batch_pct;
875 		break;
876 
877 	default:
878 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
879 		    "spa_activate()",
880 		    zio_type_name[t], zio_taskq_types[q], mode, value);
881 		break;
882 	}
883 
884 	for (uint_t i = 0; i < count; i++) {
885 		taskq_t *tq;
886 
887 		if (count > 1) {
888 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
889 			    zio_type_name[t], zio_taskq_types[q], i);
890 		} else {
891 			(void) snprintf(name, sizeof (name), "%s_%s",
892 			    zio_type_name[t], zio_taskq_types[q]);
893 		}
894 
895 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
896 			if (batch)
897 				flags |= TASKQ_DC_BATCH;
898 
899 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
900 			    spa->spa_proc, zio_taskq_basedc, flags);
901 		} else {
902 			pri_t pri = maxclsyspri;
903 			/*
904 			 * The write issue taskq can be extremely CPU
905 			 * intensive.  Run it at slightly lower priority
906 			 * than the other taskqs.
907 			 */
908 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
909 				pri--;
910 
911 			tq = taskq_create_proc(name, value, pri, 50,
912 			    INT_MAX, spa->spa_proc, flags);
913 		}
914 
915 		tqs->stqs_taskq[i] = tq;
916 	}
917 }
918 
919 static void
920 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
921 {
922 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
923 
924 	if (tqs->stqs_taskq == NULL) {
925 		ASSERT0(tqs->stqs_count);
926 		return;
927 	}
928 
929 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
930 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
931 		taskq_destroy(tqs->stqs_taskq[i]);
932 	}
933 
934 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
935 	tqs->stqs_taskq = NULL;
936 }
937 
938 /*
939  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
940  * Note that a type may have multiple discrete taskqs to avoid lock contention
941  * on the taskq itself. In that case we choose which taskq at random by using
942  * the low bits of gethrtime().
943  */
944 void
945 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
946     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
947 {
948 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
949 	taskq_t *tq;
950 
951 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
952 	ASSERT3U(tqs->stqs_count, !=, 0);
953 
954 	if (tqs->stqs_count == 1) {
955 		tq = tqs->stqs_taskq[0];
956 	} else {
957 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
958 	}
959 
960 	taskq_dispatch_ent(tq, func, arg, flags, ent);
961 }
962 
963 static void
964 spa_create_zio_taskqs(spa_t *spa)
965 {
966 	for (int t = 0; t < ZIO_TYPES; t++) {
967 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
968 			spa_taskqs_init(spa, t, q);
969 		}
970 	}
971 }
972 
973 #ifdef _KERNEL
974 static void
975 spa_thread(void *arg)
976 {
977 	callb_cpr_t cprinfo;
978 
979 	spa_t *spa = arg;
980 	user_t *pu = PTOU(curproc);
981 
982 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
983 	    spa->spa_name);
984 
985 	ASSERT(curproc != &p0);
986 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
987 	    "zpool-%s", spa->spa_name);
988 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
989 
990 	/* bind this thread to the requested psrset */
991 	if (zio_taskq_psrset_bind != PS_NONE) {
992 		pool_lock();
993 		mutex_enter(&cpu_lock);
994 		mutex_enter(&pidlock);
995 		mutex_enter(&curproc->p_lock);
996 
997 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
998 		    0, NULL, NULL) == 0)  {
999 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1000 		} else {
1001 			cmn_err(CE_WARN,
1002 			    "Couldn't bind process for zfs pool \"%s\" to "
1003 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1004 		}
1005 
1006 		mutex_exit(&curproc->p_lock);
1007 		mutex_exit(&pidlock);
1008 		mutex_exit(&cpu_lock);
1009 		pool_unlock();
1010 	}
1011 
1012 	if (zio_taskq_sysdc) {
1013 		sysdc_thread_enter(curthread, 100, 0);
1014 	}
1015 
1016 	spa->spa_proc = curproc;
1017 	spa->spa_did = curthread->t_did;
1018 
1019 	spa_create_zio_taskqs(spa);
1020 
1021 	mutex_enter(&spa->spa_proc_lock);
1022 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1023 
1024 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1025 	cv_broadcast(&spa->spa_proc_cv);
1026 
1027 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1028 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1029 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1030 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1031 
1032 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1033 	spa->spa_proc_state = SPA_PROC_GONE;
1034 	spa->spa_proc = &p0;
1035 	cv_broadcast(&spa->spa_proc_cv);
1036 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1037 
1038 	mutex_enter(&curproc->p_lock);
1039 	lwp_exit();
1040 }
1041 #endif
1042 
1043 /*
1044  * Activate an uninitialized pool.
1045  */
1046 static void
1047 spa_activate(spa_t *spa, int mode)
1048 {
1049 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1050 
1051 	spa->spa_state = POOL_STATE_ACTIVE;
1052 	spa->spa_mode = mode;
1053 
1054 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1055 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1056 
1057 	/* Try to create a covering process */
1058 	mutex_enter(&spa->spa_proc_lock);
1059 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1060 	ASSERT(spa->spa_proc == &p0);
1061 	spa->spa_did = 0;
1062 
1063 	/* Only create a process if we're going to be around a while. */
1064 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1065 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1066 		    NULL, 0) == 0) {
1067 			spa->spa_proc_state = SPA_PROC_CREATED;
1068 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1069 				cv_wait(&spa->spa_proc_cv,
1070 				    &spa->spa_proc_lock);
1071 			}
1072 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1073 			ASSERT(spa->spa_proc != &p0);
1074 			ASSERT(spa->spa_did != 0);
1075 		} else {
1076 #ifdef _KERNEL
1077 			cmn_err(CE_WARN,
1078 			    "Couldn't create process for zfs pool \"%s\"\n",
1079 			    spa->spa_name);
1080 #endif
1081 		}
1082 	}
1083 	mutex_exit(&spa->spa_proc_lock);
1084 
1085 	/* If we didn't create a process, we need to create our taskqs. */
1086 	if (spa->spa_proc == &p0) {
1087 		spa_create_zio_taskqs(spa);
1088 	}
1089 
1090 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1091 	    offsetof(vdev_t, vdev_config_dirty_node));
1092 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1093 	    offsetof(objset_t, os_evicting_node));
1094 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1095 	    offsetof(vdev_t, vdev_state_dirty_node));
1096 
1097 	txg_list_create(&spa->spa_vdev_txg_list,
1098 	    offsetof(struct vdev, vdev_txg_node));
1099 
1100 	avl_create(&spa->spa_errlist_scrub,
1101 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1102 	    offsetof(spa_error_entry_t, se_avl));
1103 	avl_create(&spa->spa_errlist_last,
1104 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1105 	    offsetof(spa_error_entry_t, se_avl));
1106 }
1107 
1108 /*
1109  * Opposite of spa_activate().
1110  */
1111 static void
1112 spa_deactivate(spa_t *spa)
1113 {
1114 	ASSERT(spa->spa_sync_on == B_FALSE);
1115 	ASSERT(spa->spa_dsl_pool == NULL);
1116 	ASSERT(spa->spa_root_vdev == NULL);
1117 	ASSERT(spa->spa_async_zio_root == NULL);
1118 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1119 
1120 	spa_evicting_os_wait(spa);
1121 
1122 	txg_list_destroy(&spa->spa_vdev_txg_list);
1123 
1124 	list_destroy(&spa->spa_config_dirty_list);
1125 	list_destroy(&spa->spa_evicting_os_list);
1126 	list_destroy(&spa->spa_state_dirty_list);
1127 
1128 	for (int t = 0; t < ZIO_TYPES; t++) {
1129 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1130 			spa_taskqs_fini(spa, t, q);
1131 		}
1132 	}
1133 
1134 	metaslab_class_destroy(spa->spa_normal_class);
1135 	spa->spa_normal_class = NULL;
1136 
1137 	metaslab_class_destroy(spa->spa_log_class);
1138 	spa->spa_log_class = NULL;
1139 
1140 	/*
1141 	 * If this was part of an import or the open otherwise failed, we may
1142 	 * still have errors left in the queues.  Empty them just in case.
1143 	 */
1144 	spa_errlog_drain(spa);
1145 
1146 	avl_destroy(&spa->spa_errlist_scrub);
1147 	avl_destroy(&spa->spa_errlist_last);
1148 
1149 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1150 
1151 	mutex_enter(&spa->spa_proc_lock);
1152 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1153 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1154 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1155 		cv_broadcast(&spa->spa_proc_cv);
1156 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1157 			ASSERT(spa->spa_proc != &p0);
1158 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1159 		}
1160 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1161 		spa->spa_proc_state = SPA_PROC_NONE;
1162 	}
1163 	ASSERT(spa->spa_proc == &p0);
1164 	mutex_exit(&spa->spa_proc_lock);
1165 
1166 	/*
1167 	 * We want to make sure spa_thread() has actually exited the ZFS
1168 	 * module, so that the module can't be unloaded out from underneath
1169 	 * it.
1170 	 */
1171 	if (spa->spa_did != 0) {
1172 		thread_join(spa->spa_did);
1173 		spa->spa_did = 0;
1174 	}
1175 }
1176 
1177 /*
1178  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1179  * will create all the necessary vdevs in the appropriate layout, with each vdev
1180  * in the CLOSED state.  This will prep the pool before open/creation/import.
1181  * All vdev validation is done by the vdev_alloc() routine.
1182  */
1183 static int
1184 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1185     uint_t id, int atype)
1186 {
1187 	nvlist_t **child;
1188 	uint_t children;
1189 	int error;
1190 
1191 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1192 		return (error);
1193 
1194 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1195 		return (0);
1196 
1197 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1198 	    &child, &children);
1199 
1200 	if (error == ENOENT)
1201 		return (0);
1202 
1203 	if (error) {
1204 		vdev_free(*vdp);
1205 		*vdp = NULL;
1206 		return (SET_ERROR(EINVAL));
1207 	}
1208 
1209 	for (int c = 0; c < children; c++) {
1210 		vdev_t *vd;
1211 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1212 		    atype)) != 0) {
1213 			vdev_free(*vdp);
1214 			*vdp = NULL;
1215 			return (error);
1216 		}
1217 	}
1218 
1219 	ASSERT(*vdp != NULL);
1220 
1221 	return (0);
1222 }
1223 
1224 /*
1225  * Opposite of spa_load().
1226  */
1227 static void
1228 spa_unload(spa_t *spa)
1229 {
1230 	int i;
1231 
1232 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1233 
1234 	/*
1235 	 * Stop async tasks.
1236 	 */
1237 	spa_async_suspend(spa);
1238 
1239 	/*
1240 	 * Stop syncing.
1241 	 */
1242 	if (spa->spa_sync_on) {
1243 		txg_sync_stop(spa->spa_dsl_pool);
1244 		spa->spa_sync_on = B_FALSE;
1245 	}
1246 
1247 	/*
1248 	 * Wait for any outstanding async I/O to complete.
1249 	 */
1250 	if (spa->spa_async_zio_root != NULL) {
1251 		for (int i = 0; i < max_ncpus; i++)
1252 			(void) zio_wait(spa->spa_async_zio_root[i]);
1253 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1254 		spa->spa_async_zio_root = NULL;
1255 	}
1256 
1257 	bpobj_close(&spa->spa_deferred_bpobj);
1258 
1259 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1260 
1261 	/*
1262 	 * Close all vdevs.
1263 	 */
1264 	if (spa->spa_root_vdev)
1265 		vdev_free(spa->spa_root_vdev);
1266 	ASSERT(spa->spa_root_vdev == NULL);
1267 
1268 	/*
1269 	 * Close the dsl pool.
1270 	 */
1271 	if (spa->spa_dsl_pool) {
1272 		dsl_pool_close(spa->spa_dsl_pool);
1273 		spa->spa_dsl_pool = NULL;
1274 		spa->spa_meta_objset = NULL;
1275 	}
1276 
1277 	ddt_unload(spa);
1278 
1279 
1280 	/*
1281 	 * Drop and purge level 2 cache
1282 	 */
1283 	spa_l2cache_drop(spa);
1284 
1285 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1286 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1287 	if (spa->spa_spares.sav_vdevs) {
1288 		kmem_free(spa->spa_spares.sav_vdevs,
1289 		    spa->spa_spares.sav_count * sizeof (void *));
1290 		spa->spa_spares.sav_vdevs = NULL;
1291 	}
1292 	if (spa->spa_spares.sav_config) {
1293 		nvlist_free(spa->spa_spares.sav_config);
1294 		spa->spa_spares.sav_config = NULL;
1295 	}
1296 	spa->spa_spares.sav_count = 0;
1297 
1298 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1299 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1300 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1301 	}
1302 	if (spa->spa_l2cache.sav_vdevs) {
1303 		kmem_free(spa->spa_l2cache.sav_vdevs,
1304 		    spa->spa_l2cache.sav_count * sizeof (void *));
1305 		spa->spa_l2cache.sav_vdevs = NULL;
1306 	}
1307 	if (spa->spa_l2cache.sav_config) {
1308 		nvlist_free(spa->spa_l2cache.sav_config);
1309 		spa->spa_l2cache.sav_config = NULL;
1310 	}
1311 	spa->spa_l2cache.sav_count = 0;
1312 
1313 	spa->spa_async_suspended = 0;
1314 
1315 	if (spa->spa_comment != NULL) {
1316 		spa_strfree(spa->spa_comment);
1317 		spa->spa_comment = NULL;
1318 	}
1319 
1320 	spa_config_exit(spa, SCL_ALL, FTAG);
1321 }
1322 
1323 /*
1324  * Load (or re-load) the current list of vdevs describing the active spares for
1325  * this pool.  When this is called, we have some form of basic information in
1326  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1327  * then re-generate a more complete list including status information.
1328  */
1329 static void
1330 spa_load_spares(spa_t *spa)
1331 {
1332 	nvlist_t **spares;
1333 	uint_t nspares;
1334 	int i;
1335 	vdev_t *vd, *tvd;
1336 
1337 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1338 
1339 	/*
1340 	 * First, close and free any existing spare vdevs.
1341 	 */
1342 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1343 		vd = spa->spa_spares.sav_vdevs[i];
1344 
1345 		/* Undo the call to spa_activate() below */
1346 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1347 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1348 			spa_spare_remove(tvd);
1349 		vdev_close(vd);
1350 		vdev_free(vd);
1351 	}
1352 
1353 	if (spa->spa_spares.sav_vdevs)
1354 		kmem_free(spa->spa_spares.sav_vdevs,
1355 		    spa->spa_spares.sav_count * sizeof (void *));
1356 
1357 	if (spa->spa_spares.sav_config == NULL)
1358 		nspares = 0;
1359 	else
1360 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1361 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1362 
1363 	spa->spa_spares.sav_count = (int)nspares;
1364 	spa->spa_spares.sav_vdevs = NULL;
1365 
1366 	if (nspares == 0)
1367 		return;
1368 
1369 	/*
1370 	 * Construct the array of vdevs, opening them to get status in the
1371 	 * process.   For each spare, there is potentially two different vdev_t
1372 	 * structures associated with it: one in the list of spares (used only
1373 	 * for basic validation purposes) and one in the active vdev
1374 	 * configuration (if it's spared in).  During this phase we open and
1375 	 * validate each vdev on the spare list.  If the vdev also exists in the
1376 	 * active configuration, then we also mark this vdev as an active spare.
1377 	 */
1378 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1379 	    KM_SLEEP);
1380 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1381 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1382 		    VDEV_ALLOC_SPARE) == 0);
1383 		ASSERT(vd != NULL);
1384 
1385 		spa->spa_spares.sav_vdevs[i] = vd;
1386 
1387 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1388 		    B_FALSE)) != NULL) {
1389 			if (!tvd->vdev_isspare)
1390 				spa_spare_add(tvd);
1391 
1392 			/*
1393 			 * We only mark the spare active if we were successfully
1394 			 * able to load the vdev.  Otherwise, importing a pool
1395 			 * with a bad active spare would result in strange
1396 			 * behavior, because multiple pool would think the spare
1397 			 * is actively in use.
1398 			 *
1399 			 * There is a vulnerability here to an equally bizarre
1400 			 * circumstance, where a dead active spare is later
1401 			 * brought back to life (onlined or otherwise).  Given
1402 			 * the rarity of this scenario, and the extra complexity
1403 			 * it adds, we ignore the possibility.
1404 			 */
1405 			if (!vdev_is_dead(tvd))
1406 				spa_spare_activate(tvd);
1407 		}
1408 
1409 		vd->vdev_top = vd;
1410 		vd->vdev_aux = &spa->spa_spares;
1411 
1412 		if (vdev_open(vd) != 0)
1413 			continue;
1414 
1415 		if (vdev_validate_aux(vd) == 0)
1416 			spa_spare_add(vd);
1417 	}
1418 
1419 	/*
1420 	 * Recompute the stashed list of spares, with status information
1421 	 * this time.
1422 	 */
1423 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1424 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1425 
1426 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1427 	    KM_SLEEP);
1428 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1429 		spares[i] = vdev_config_generate(spa,
1430 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1431 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1432 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1433 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1434 		nvlist_free(spares[i]);
1435 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1436 }
1437 
1438 /*
1439  * Load (or re-load) the current list of vdevs describing the active l2cache for
1440  * this pool.  When this is called, we have some form of basic information in
1441  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1442  * then re-generate a more complete list including status information.
1443  * Devices which are already active have their details maintained, and are
1444  * not re-opened.
1445  */
1446 static void
1447 spa_load_l2cache(spa_t *spa)
1448 {
1449 	nvlist_t **l2cache;
1450 	uint_t nl2cache;
1451 	int i, j, oldnvdevs;
1452 	uint64_t guid;
1453 	vdev_t *vd, **oldvdevs, **newvdevs;
1454 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1455 
1456 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1457 
1458 	if (sav->sav_config != NULL) {
1459 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1460 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1461 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1462 	} else {
1463 		nl2cache = 0;
1464 		newvdevs = NULL;
1465 	}
1466 
1467 	oldvdevs = sav->sav_vdevs;
1468 	oldnvdevs = sav->sav_count;
1469 	sav->sav_vdevs = NULL;
1470 	sav->sav_count = 0;
1471 
1472 	/*
1473 	 * Process new nvlist of vdevs.
1474 	 */
1475 	for (i = 0; i < nl2cache; i++) {
1476 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1477 		    &guid) == 0);
1478 
1479 		newvdevs[i] = NULL;
1480 		for (j = 0; j < oldnvdevs; j++) {
1481 			vd = oldvdevs[j];
1482 			if (vd != NULL && guid == vd->vdev_guid) {
1483 				/*
1484 				 * Retain previous vdev for add/remove ops.
1485 				 */
1486 				newvdevs[i] = vd;
1487 				oldvdevs[j] = NULL;
1488 				break;
1489 			}
1490 		}
1491 
1492 		if (newvdevs[i] == NULL) {
1493 			/*
1494 			 * Create new vdev
1495 			 */
1496 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1497 			    VDEV_ALLOC_L2CACHE) == 0);
1498 			ASSERT(vd != NULL);
1499 			newvdevs[i] = vd;
1500 
1501 			/*
1502 			 * Commit this vdev as an l2cache device,
1503 			 * even if it fails to open.
1504 			 */
1505 			spa_l2cache_add(vd);
1506 
1507 			vd->vdev_top = vd;
1508 			vd->vdev_aux = sav;
1509 
1510 			spa_l2cache_activate(vd);
1511 
1512 			if (vdev_open(vd) != 0)
1513 				continue;
1514 
1515 			(void) vdev_validate_aux(vd);
1516 
1517 			if (!vdev_is_dead(vd))
1518 				l2arc_add_vdev(spa, vd);
1519 		}
1520 	}
1521 
1522 	/*
1523 	 * Purge vdevs that were dropped
1524 	 */
1525 	for (i = 0; i < oldnvdevs; i++) {
1526 		uint64_t pool;
1527 
1528 		vd = oldvdevs[i];
1529 		if (vd != NULL) {
1530 			ASSERT(vd->vdev_isl2cache);
1531 
1532 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1533 			    pool != 0ULL && l2arc_vdev_present(vd))
1534 				l2arc_remove_vdev(vd);
1535 			vdev_clear_stats(vd);
1536 			vdev_free(vd);
1537 		}
1538 	}
1539 
1540 	if (oldvdevs)
1541 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1542 
1543 	if (sav->sav_config == NULL)
1544 		goto out;
1545 
1546 	sav->sav_vdevs = newvdevs;
1547 	sav->sav_count = (int)nl2cache;
1548 
1549 	/*
1550 	 * Recompute the stashed list of l2cache devices, with status
1551 	 * information this time.
1552 	 */
1553 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1554 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1555 
1556 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1557 	for (i = 0; i < sav->sav_count; i++)
1558 		l2cache[i] = vdev_config_generate(spa,
1559 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1560 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1561 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1562 out:
1563 	for (i = 0; i < sav->sav_count; i++)
1564 		nvlist_free(l2cache[i]);
1565 	if (sav->sav_count)
1566 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1567 }
1568 
1569 static int
1570 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1571 {
1572 	dmu_buf_t *db;
1573 	char *packed = NULL;
1574 	size_t nvsize = 0;
1575 	int error;
1576 	*value = NULL;
1577 
1578 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1579 	if (error != 0)
1580 		return (error);
1581 
1582 	nvsize = *(uint64_t *)db->db_data;
1583 	dmu_buf_rele(db, FTAG);
1584 
1585 	packed = kmem_alloc(nvsize, KM_SLEEP);
1586 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1587 	    DMU_READ_PREFETCH);
1588 	if (error == 0)
1589 		error = nvlist_unpack(packed, nvsize, value, 0);
1590 	kmem_free(packed, nvsize);
1591 
1592 	return (error);
1593 }
1594 
1595 /*
1596  * Checks to see if the given vdev could not be opened, in which case we post a
1597  * sysevent to notify the autoreplace code that the device has been removed.
1598  */
1599 static void
1600 spa_check_removed(vdev_t *vd)
1601 {
1602 	for (int c = 0; c < vd->vdev_children; c++)
1603 		spa_check_removed(vd->vdev_child[c]);
1604 
1605 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1606 	    !vd->vdev_ishole) {
1607 		zfs_post_autoreplace(vd->vdev_spa, vd);
1608 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1609 	}
1610 }
1611 
1612 /*
1613  * Validate the current config against the MOS config
1614  */
1615 static boolean_t
1616 spa_config_valid(spa_t *spa, nvlist_t *config)
1617 {
1618 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1619 	nvlist_t *nv;
1620 
1621 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1622 
1623 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1624 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1625 
1626 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1627 
1628 	/*
1629 	 * If we're doing a normal import, then build up any additional
1630 	 * diagnostic information about missing devices in this config.
1631 	 * We'll pass this up to the user for further processing.
1632 	 */
1633 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1634 		nvlist_t **child, *nv;
1635 		uint64_t idx = 0;
1636 
1637 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1638 		    KM_SLEEP);
1639 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1640 
1641 		for (int c = 0; c < rvd->vdev_children; c++) {
1642 			vdev_t *tvd = rvd->vdev_child[c];
1643 			vdev_t *mtvd  = mrvd->vdev_child[c];
1644 
1645 			if (tvd->vdev_ops == &vdev_missing_ops &&
1646 			    mtvd->vdev_ops != &vdev_missing_ops &&
1647 			    mtvd->vdev_islog)
1648 				child[idx++] = vdev_config_generate(spa, mtvd,
1649 				    B_FALSE, 0);
1650 		}
1651 
1652 		if (idx) {
1653 			VERIFY(nvlist_add_nvlist_array(nv,
1654 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1655 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1656 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1657 
1658 			for (int i = 0; i < idx; i++)
1659 				nvlist_free(child[i]);
1660 		}
1661 		nvlist_free(nv);
1662 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1663 	}
1664 
1665 	/*
1666 	 * Compare the root vdev tree with the information we have
1667 	 * from the MOS config (mrvd). Check each top-level vdev
1668 	 * with the corresponding MOS config top-level (mtvd).
1669 	 */
1670 	for (int c = 0; c < rvd->vdev_children; c++) {
1671 		vdev_t *tvd = rvd->vdev_child[c];
1672 		vdev_t *mtvd  = mrvd->vdev_child[c];
1673 
1674 		/*
1675 		 * Resolve any "missing" vdevs in the current configuration.
1676 		 * If we find that the MOS config has more accurate information
1677 		 * about the top-level vdev then use that vdev instead.
1678 		 */
1679 		if (tvd->vdev_ops == &vdev_missing_ops &&
1680 		    mtvd->vdev_ops != &vdev_missing_ops) {
1681 
1682 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1683 				continue;
1684 
1685 			/*
1686 			 * Device specific actions.
1687 			 */
1688 			if (mtvd->vdev_islog) {
1689 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1690 			} else {
1691 				/*
1692 				 * XXX - once we have 'readonly' pool
1693 				 * support we should be able to handle
1694 				 * missing data devices by transitioning
1695 				 * the pool to readonly.
1696 				 */
1697 				continue;
1698 			}
1699 
1700 			/*
1701 			 * Swap the missing vdev with the data we were
1702 			 * able to obtain from the MOS config.
1703 			 */
1704 			vdev_remove_child(rvd, tvd);
1705 			vdev_remove_child(mrvd, mtvd);
1706 
1707 			vdev_add_child(rvd, mtvd);
1708 			vdev_add_child(mrvd, tvd);
1709 
1710 			spa_config_exit(spa, SCL_ALL, FTAG);
1711 			vdev_load(mtvd);
1712 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1713 
1714 			vdev_reopen(rvd);
1715 		} else if (mtvd->vdev_islog) {
1716 			/*
1717 			 * Load the slog device's state from the MOS config
1718 			 * since it's possible that the label does not
1719 			 * contain the most up-to-date information.
1720 			 */
1721 			vdev_load_log_state(tvd, mtvd);
1722 			vdev_reopen(tvd);
1723 		}
1724 	}
1725 	vdev_free(mrvd);
1726 	spa_config_exit(spa, SCL_ALL, FTAG);
1727 
1728 	/*
1729 	 * Ensure we were able to validate the config.
1730 	 */
1731 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1732 }
1733 
1734 /*
1735  * Check for missing log devices
1736  */
1737 static boolean_t
1738 spa_check_logs(spa_t *spa)
1739 {
1740 	boolean_t rv = B_FALSE;
1741 
1742 	switch (spa->spa_log_state) {
1743 	case SPA_LOG_MISSING:
1744 		/* need to recheck in case slog has been restored */
1745 	case SPA_LOG_UNKNOWN:
1746 		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1747 		    NULL, DS_FIND_CHILDREN) != 0);
1748 		if (rv)
1749 			spa_set_log_state(spa, SPA_LOG_MISSING);
1750 		break;
1751 	}
1752 	return (rv);
1753 }
1754 
1755 static boolean_t
1756 spa_passivate_log(spa_t *spa)
1757 {
1758 	vdev_t *rvd = spa->spa_root_vdev;
1759 	boolean_t slog_found = B_FALSE;
1760 
1761 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1762 
1763 	if (!spa_has_slogs(spa))
1764 		return (B_FALSE);
1765 
1766 	for (int c = 0; c < rvd->vdev_children; c++) {
1767 		vdev_t *tvd = rvd->vdev_child[c];
1768 		metaslab_group_t *mg = tvd->vdev_mg;
1769 
1770 		if (tvd->vdev_islog) {
1771 			metaslab_group_passivate(mg);
1772 			slog_found = B_TRUE;
1773 		}
1774 	}
1775 
1776 	return (slog_found);
1777 }
1778 
1779 static void
1780 spa_activate_log(spa_t *spa)
1781 {
1782 	vdev_t *rvd = spa->spa_root_vdev;
1783 
1784 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1785 
1786 	for (int c = 0; c < rvd->vdev_children; c++) {
1787 		vdev_t *tvd = rvd->vdev_child[c];
1788 		metaslab_group_t *mg = tvd->vdev_mg;
1789 
1790 		if (tvd->vdev_islog)
1791 			metaslab_group_activate(mg);
1792 	}
1793 }
1794 
1795 int
1796 spa_offline_log(spa_t *spa)
1797 {
1798 	int error;
1799 
1800 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1801 	    NULL, DS_FIND_CHILDREN);
1802 	if (error == 0) {
1803 		/*
1804 		 * We successfully offlined the log device, sync out the
1805 		 * current txg so that the "stubby" block can be removed
1806 		 * by zil_sync().
1807 		 */
1808 		txg_wait_synced(spa->spa_dsl_pool, 0);
1809 	}
1810 	return (error);
1811 }
1812 
1813 static void
1814 spa_aux_check_removed(spa_aux_vdev_t *sav)
1815 {
1816 	for (int i = 0; i < sav->sav_count; i++)
1817 		spa_check_removed(sav->sav_vdevs[i]);
1818 }
1819 
1820 void
1821 spa_claim_notify(zio_t *zio)
1822 {
1823 	spa_t *spa = zio->io_spa;
1824 
1825 	if (zio->io_error)
1826 		return;
1827 
1828 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1829 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1830 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1831 	mutex_exit(&spa->spa_props_lock);
1832 }
1833 
1834 typedef struct spa_load_error {
1835 	uint64_t	sle_meta_count;
1836 	uint64_t	sle_data_count;
1837 } spa_load_error_t;
1838 
1839 static void
1840 spa_load_verify_done(zio_t *zio)
1841 {
1842 	blkptr_t *bp = zio->io_bp;
1843 	spa_load_error_t *sle = zio->io_private;
1844 	dmu_object_type_t type = BP_GET_TYPE(bp);
1845 	int error = zio->io_error;
1846 	spa_t *spa = zio->io_spa;
1847 
1848 	if (error) {
1849 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1850 		    type != DMU_OT_INTENT_LOG)
1851 			atomic_inc_64(&sle->sle_meta_count);
1852 		else
1853 			atomic_inc_64(&sle->sle_data_count);
1854 	}
1855 	zio_data_buf_free(zio->io_data, zio->io_size);
1856 
1857 	mutex_enter(&spa->spa_scrub_lock);
1858 	spa->spa_scrub_inflight--;
1859 	cv_broadcast(&spa->spa_scrub_io_cv);
1860 	mutex_exit(&spa->spa_scrub_lock);
1861 }
1862 
1863 /*
1864  * Maximum number of concurrent scrub i/os to create while verifying
1865  * a pool while importing it.
1866  */
1867 int spa_load_verify_maxinflight = 10000;
1868 boolean_t spa_load_verify_metadata = B_TRUE;
1869 boolean_t spa_load_verify_data = B_TRUE;
1870 
1871 /*ARGSUSED*/
1872 static int
1873 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1874     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1875 {
1876 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1877 		return (0);
1878 	/*
1879 	 * Note: normally this routine will not be called if
1880 	 * spa_load_verify_metadata is not set.  However, it may be useful
1881 	 * to manually set the flag after the traversal has begun.
1882 	 */
1883 	if (!spa_load_verify_metadata)
1884 		return (0);
1885 	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1886 		return (0);
1887 
1888 	zio_t *rio = arg;
1889 	size_t size = BP_GET_PSIZE(bp);
1890 	void *data = zio_data_buf_alloc(size);
1891 
1892 	mutex_enter(&spa->spa_scrub_lock);
1893 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1894 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1895 	spa->spa_scrub_inflight++;
1896 	mutex_exit(&spa->spa_scrub_lock);
1897 
1898 	zio_nowait(zio_read(rio, spa, bp, data, size,
1899 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1900 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1901 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1902 	return (0);
1903 }
1904 
1905 static int
1906 spa_load_verify(spa_t *spa)
1907 {
1908 	zio_t *rio;
1909 	spa_load_error_t sle = { 0 };
1910 	zpool_rewind_policy_t policy;
1911 	boolean_t verify_ok = B_FALSE;
1912 	int error = 0;
1913 
1914 	zpool_get_rewind_policy(spa->spa_config, &policy);
1915 
1916 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1917 		return (0);
1918 
1919 	rio = zio_root(spa, NULL, &sle,
1920 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1921 
1922 	if (spa_load_verify_metadata) {
1923 		error = traverse_pool(spa, spa->spa_verify_min_txg,
1924 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1925 		    spa_load_verify_cb, rio);
1926 	}
1927 
1928 	(void) zio_wait(rio);
1929 
1930 	spa->spa_load_meta_errors = sle.sle_meta_count;
1931 	spa->spa_load_data_errors = sle.sle_data_count;
1932 
1933 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1934 	    sle.sle_data_count <= policy.zrp_maxdata) {
1935 		int64_t loss = 0;
1936 
1937 		verify_ok = B_TRUE;
1938 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1939 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1940 
1941 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1942 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1943 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1944 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1945 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1946 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1947 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1948 	} else {
1949 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1950 	}
1951 
1952 	if (error) {
1953 		if (error != ENXIO && error != EIO)
1954 			error = SET_ERROR(EIO);
1955 		return (error);
1956 	}
1957 
1958 	return (verify_ok ? 0 : EIO);
1959 }
1960 
1961 /*
1962  * Find a value in the pool props object.
1963  */
1964 static void
1965 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1966 {
1967 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1968 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1969 }
1970 
1971 /*
1972  * Find a value in the pool directory object.
1973  */
1974 static int
1975 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1976 {
1977 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1978 	    name, sizeof (uint64_t), 1, val));
1979 }
1980 
1981 static int
1982 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1983 {
1984 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1985 	return (err);
1986 }
1987 
1988 /*
1989  * Fix up config after a partly-completed split.  This is done with the
1990  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1991  * pool have that entry in their config, but only the splitting one contains
1992  * a list of all the guids of the vdevs that are being split off.
1993  *
1994  * This function determines what to do with that list: either rejoin
1995  * all the disks to the pool, or complete the splitting process.  To attempt
1996  * the rejoin, each disk that is offlined is marked online again, and
1997  * we do a reopen() call.  If the vdev label for every disk that was
1998  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1999  * then we call vdev_split() on each disk, and complete the split.
2000  *
2001  * Otherwise we leave the config alone, with all the vdevs in place in
2002  * the original pool.
2003  */
2004 static void
2005 spa_try_repair(spa_t *spa, nvlist_t *config)
2006 {
2007 	uint_t extracted;
2008 	uint64_t *glist;
2009 	uint_t i, gcount;
2010 	nvlist_t *nvl;
2011 	vdev_t **vd;
2012 	boolean_t attempt_reopen;
2013 
2014 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2015 		return;
2016 
2017 	/* check that the config is complete */
2018 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2019 	    &glist, &gcount) != 0)
2020 		return;
2021 
2022 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2023 
2024 	/* attempt to online all the vdevs & validate */
2025 	attempt_reopen = B_TRUE;
2026 	for (i = 0; i < gcount; i++) {
2027 		if (glist[i] == 0)	/* vdev is hole */
2028 			continue;
2029 
2030 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2031 		if (vd[i] == NULL) {
2032 			/*
2033 			 * Don't bother attempting to reopen the disks;
2034 			 * just do the split.
2035 			 */
2036 			attempt_reopen = B_FALSE;
2037 		} else {
2038 			/* attempt to re-online it */
2039 			vd[i]->vdev_offline = B_FALSE;
2040 		}
2041 	}
2042 
2043 	if (attempt_reopen) {
2044 		vdev_reopen(spa->spa_root_vdev);
2045 
2046 		/* check each device to see what state it's in */
2047 		for (extracted = 0, i = 0; i < gcount; i++) {
2048 			if (vd[i] != NULL &&
2049 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2050 				break;
2051 			++extracted;
2052 		}
2053 	}
2054 
2055 	/*
2056 	 * If every disk has been moved to the new pool, or if we never
2057 	 * even attempted to look at them, then we split them off for
2058 	 * good.
2059 	 */
2060 	if (!attempt_reopen || gcount == extracted) {
2061 		for (i = 0; i < gcount; i++)
2062 			if (vd[i] != NULL)
2063 				vdev_split(vd[i]);
2064 		vdev_reopen(spa->spa_root_vdev);
2065 	}
2066 
2067 	kmem_free(vd, gcount * sizeof (vdev_t *));
2068 }
2069 
2070 static int
2071 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2072     boolean_t mosconfig)
2073 {
2074 	nvlist_t *config = spa->spa_config;
2075 	char *ereport = FM_EREPORT_ZFS_POOL;
2076 	char *comment;
2077 	int error;
2078 	uint64_t pool_guid;
2079 	nvlist_t *nvl;
2080 
2081 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2082 		return (SET_ERROR(EINVAL));
2083 
2084 	ASSERT(spa->spa_comment == NULL);
2085 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2086 		spa->spa_comment = spa_strdup(comment);
2087 
2088 	/*
2089 	 * Versioning wasn't explicitly added to the label until later, so if
2090 	 * it's not present treat it as the initial version.
2091 	 */
2092 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2093 	    &spa->spa_ubsync.ub_version) != 0)
2094 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2095 
2096 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2097 	    &spa->spa_config_txg);
2098 
2099 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2100 	    spa_guid_exists(pool_guid, 0)) {
2101 		error = SET_ERROR(EEXIST);
2102 	} else {
2103 		spa->spa_config_guid = pool_guid;
2104 
2105 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2106 		    &nvl) == 0) {
2107 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2108 			    KM_SLEEP) == 0);
2109 		}
2110 
2111 		nvlist_free(spa->spa_load_info);
2112 		spa->spa_load_info = fnvlist_alloc();
2113 
2114 		gethrestime(&spa->spa_loaded_ts);
2115 		error = spa_load_impl(spa, pool_guid, config, state, type,
2116 		    mosconfig, &ereport);
2117 	}
2118 
2119 	/*
2120 	 * Don't count references from objsets that are already closed
2121 	 * and are making their way through the eviction process.
2122 	 */
2123 	spa_evicting_os_wait(spa);
2124 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2125 	if (error) {
2126 		if (error != EEXIST) {
2127 			spa->spa_loaded_ts.tv_sec = 0;
2128 			spa->spa_loaded_ts.tv_nsec = 0;
2129 		}
2130 		if (error != EBADF) {
2131 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2132 		}
2133 	}
2134 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2135 	spa->spa_ena = 0;
2136 
2137 	return (error);
2138 }
2139 
2140 /*
2141  * Load an existing storage pool, using the pool's builtin spa_config as a
2142  * source of configuration information.
2143  */
2144 static int
2145 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2146     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2147     char **ereport)
2148 {
2149 	int error = 0;
2150 	nvlist_t *nvroot = NULL;
2151 	nvlist_t *label;
2152 	vdev_t *rvd;
2153 	uberblock_t *ub = &spa->spa_uberblock;
2154 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2155 	int orig_mode = spa->spa_mode;
2156 	int parse;
2157 	uint64_t obj;
2158 	boolean_t missing_feat_write = B_FALSE;
2159 
2160 	/*
2161 	 * If this is an untrusted config, access the pool in read-only mode.
2162 	 * This prevents things like resilvering recently removed devices.
2163 	 */
2164 	if (!mosconfig)
2165 		spa->spa_mode = FREAD;
2166 
2167 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2168 
2169 	spa->spa_load_state = state;
2170 
2171 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2172 		return (SET_ERROR(EINVAL));
2173 
2174 	parse = (type == SPA_IMPORT_EXISTING ?
2175 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2176 
2177 	/*
2178 	 * Create "The Godfather" zio to hold all async IOs
2179 	 */
2180 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2181 	    KM_SLEEP);
2182 	for (int i = 0; i < max_ncpus; i++) {
2183 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2184 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2185 		    ZIO_FLAG_GODFATHER);
2186 	}
2187 
2188 	/*
2189 	 * Parse the configuration into a vdev tree.  We explicitly set the
2190 	 * value that will be returned by spa_version() since parsing the
2191 	 * configuration requires knowing the version number.
2192 	 */
2193 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2194 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2195 	spa_config_exit(spa, SCL_ALL, FTAG);
2196 
2197 	if (error != 0)
2198 		return (error);
2199 
2200 	ASSERT(spa->spa_root_vdev == rvd);
2201 
2202 	if (type != SPA_IMPORT_ASSEMBLE) {
2203 		ASSERT(spa_guid(spa) == pool_guid);
2204 	}
2205 
2206 	/*
2207 	 * Try to open all vdevs, loading each label in the process.
2208 	 */
2209 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2210 	error = vdev_open(rvd);
2211 	spa_config_exit(spa, SCL_ALL, FTAG);
2212 	if (error != 0)
2213 		return (error);
2214 
2215 	/*
2216 	 * We need to validate the vdev labels against the configuration that
2217 	 * we have in hand, which is dependent on the setting of mosconfig. If
2218 	 * mosconfig is true then we're validating the vdev labels based on
2219 	 * that config.  Otherwise, we're validating against the cached config
2220 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2221 	 * later we will recursively call spa_load() and validate against
2222 	 * the vdev config.
2223 	 *
2224 	 * If we're assembling a new pool that's been split off from an
2225 	 * existing pool, the labels haven't yet been updated so we skip
2226 	 * validation for now.
2227 	 */
2228 	if (type != SPA_IMPORT_ASSEMBLE) {
2229 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2230 		error = vdev_validate(rvd, mosconfig);
2231 		spa_config_exit(spa, SCL_ALL, FTAG);
2232 
2233 		if (error != 0)
2234 			return (error);
2235 
2236 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2237 			return (SET_ERROR(ENXIO));
2238 	}
2239 
2240 	/*
2241 	 * Find the best uberblock.
2242 	 */
2243 	vdev_uberblock_load(rvd, ub, &label);
2244 
2245 	/*
2246 	 * If we weren't able to find a single valid uberblock, return failure.
2247 	 */
2248 	if (ub->ub_txg == 0) {
2249 		nvlist_free(label);
2250 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2251 	}
2252 
2253 	/*
2254 	 * If the pool has an unsupported version we can't open it.
2255 	 */
2256 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2257 		nvlist_free(label);
2258 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2259 	}
2260 
2261 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2262 		nvlist_t *features;
2263 
2264 		/*
2265 		 * If we weren't able to find what's necessary for reading the
2266 		 * MOS in the label, return failure.
2267 		 */
2268 		if (label == NULL || nvlist_lookup_nvlist(label,
2269 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2270 			nvlist_free(label);
2271 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2272 			    ENXIO));
2273 		}
2274 
2275 		/*
2276 		 * Update our in-core representation with the definitive values
2277 		 * from the label.
2278 		 */
2279 		nvlist_free(spa->spa_label_features);
2280 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2281 	}
2282 
2283 	nvlist_free(label);
2284 
2285 	/*
2286 	 * Look through entries in the label nvlist's features_for_read. If
2287 	 * there is a feature listed there which we don't understand then we
2288 	 * cannot open a pool.
2289 	 */
2290 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2291 		nvlist_t *unsup_feat;
2292 
2293 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2294 		    0);
2295 
2296 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2297 		    NULL); nvp != NULL;
2298 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2299 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2300 				VERIFY(nvlist_add_string(unsup_feat,
2301 				    nvpair_name(nvp), "") == 0);
2302 			}
2303 		}
2304 
2305 		if (!nvlist_empty(unsup_feat)) {
2306 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2307 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2308 			nvlist_free(unsup_feat);
2309 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2310 			    ENOTSUP));
2311 		}
2312 
2313 		nvlist_free(unsup_feat);
2314 	}
2315 
2316 	/*
2317 	 * If the vdev guid sum doesn't match the uberblock, we have an
2318 	 * incomplete configuration.  We first check to see if the pool
2319 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2320 	 * If it is, defer the vdev_guid_sum check till later so we
2321 	 * can handle missing vdevs.
2322 	 */
2323 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2324 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2325 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2326 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2327 
2328 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2329 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2330 		spa_try_repair(spa, config);
2331 		spa_config_exit(spa, SCL_ALL, FTAG);
2332 		nvlist_free(spa->spa_config_splitting);
2333 		spa->spa_config_splitting = NULL;
2334 	}
2335 
2336 	/*
2337 	 * Initialize internal SPA structures.
2338 	 */
2339 	spa->spa_state = POOL_STATE_ACTIVE;
2340 	spa->spa_ubsync = spa->spa_uberblock;
2341 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2342 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2343 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2344 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2345 	spa->spa_claim_max_txg = spa->spa_first_txg;
2346 	spa->spa_prev_software_version = ub->ub_software_version;
2347 
2348 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2349 	if (error)
2350 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2351 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2352 
2353 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2354 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2355 
2356 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2357 		boolean_t missing_feat_read = B_FALSE;
2358 		nvlist_t *unsup_feat, *enabled_feat;
2359 
2360 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2361 		    &spa->spa_feat_for_read_obj) != 0) {
2362 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2363 		}
2364 
2365 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2366 		    &spa->spa_feat_for_write_obj) != 0) {
2367 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2368 		}
2369 
2370 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2371 		    &spa->spa_feat_desc_obj) != 0) {
2372 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2373 		}
2374 
2375 		enabled_feat = fnvlist_alloc();
2376 		unsup_feat = fnvlist_alloc();
2377 
2378 		if (!spa_features_check(spa, B_FALSE,
2379 		    unsup_feat, enabled_feat))
2380 			missing_feat_read = B_TRUE;
2381 
2382 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2383 			if (!spa_features_check(spa, B_TRUE,
2384 			    unsup_feat, enabled_feat)) {
2385 				missing_feat_write = B_TRUE;
2386 			}
2387 		}
2388 
2389 		fnvlist_add_nvlist(spa->spa_load_info,
2390 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2391 
2392 		if (!nvlist_empty(unsup_feat)) {
2393 			fnvlist_add_nvlist(spa->spa_load_info,
2394 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2395 		}
2396 
2397 		fnvlist_free(enabled_feat);
2398 		fnvlist_free(unsup_feat);
2399 
2400 		if (!missing_feat_read) {
2401 			fnvlist_add_boolean(spa->spa_load_info,
2402 			    ZPOOL_CONFIG_CAN_RDONLY);
2403 		}
2404 
2405 		/*
2406 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2407 		 * twofold: to determine whether the pool is available for
2408 		 * import in read-write mode and (if it is not) whether the
2409 		 * pool is available for import in read-only mode. If the pool
2410 		 * is available for import in read-write mode, it is displayed
2411 		 * as available in userland; if it is not available for import
2412 		 * in read-only mode, it is displayed as unavailable in
2413 		 * userland. If the pool is available for import in read-only
2414 		 * mode but not read-write mode, it is displayed as unavailable
2415 		 * in userland with a special note that the pool is actually
2416 		 * available for open in read-only mode.
2417 		 *
2418 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2419 		 * missing a feature for write, we must first determine whether
2420 		 * the pool can be opened read-only before returning to
2421 		 * userland in order to know whether to display the
2422 		 * abovementioned note.
2423 		 */
2424 		if (missing_feat_read || (missing_feat_write &&
2425 		    spa_writeable(spa))) {
2426 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2427 			    ENOTSUP));
2428 		}
2429 
2430 		/*
2431 		 * Load refcounts for ZFS features from disk into an in-memory
2432 		 * cache during SPA initialization.
2433 		 */
2434 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2435 			uint64_t refcount;
2436 
2437 			error = feature_get_refcount_from_disk(spa,
2438 			    &spa_feature_table[i], &refcount);
2439 			if (error == 0) {
2440 				spa->spa_feat_refcount_cache[i] = refcount;
2441 			} else if (error == ENOTSUP) {
2442 				spa->spa_feat_refcount_cache[i] =
2443 				    SPA_FEATURE_DISABLED;
2444 			} else {
2445 				return (spa_vdev_err(rvd,
2446 				    VDEV_AUX_CORRUPT_DATA, EIO));
2447 			}
2448 		}
2449 	}
2450 
2451 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2452 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2453 		    &spa->spa_feat_enabled_txg_obj) != 0)
2454 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2455 	}
2456 
2457 	spa->spa_is_initializing = B_TRUE;
2458 	error = dsl_pool_open(spa->spa_dsl_pool);
2459 	spa->spa_is_initializing = B_FALSE;
2460 	if (error != 0)
2461 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2462 
2463 	if (!mosconfig) {
2464 		uint64_t hostid;
2465 		nvlist_t *policy = NULL, *nvconfig;
2466 
2467 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2468 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2469 
2470 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2471 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2472 			char *hostname;
2473 			unsigned long myhostid = 0;
2474 
2475 			VERIFY(nvlist_lookup_string(nvconfig,
2476 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2477 
2478 #ifdef	_KERNEL
2479 			myhostid = zone_get_hostid(NULL);
2480 #else	/* _KERNEL */
2481 			/*
2482 			 * We're emulating the system's hostid in userland, so
2483 			 * we can't use zone_get_hostid().
2484 			 */
2485 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2486 #endif	/* _KERNEL */
2487 			if (hostid != 0 && myhostid != 0 &&
2488 			    hostid != myhostid) {
2489 				nvlist_free(nvconfig);
2490 				cmn_err(CE_WARN, "pool '%s' could not be "
2491 				    "loaded as it was last accessed by "
2492 				    "another system (host: %s hostid: 0x%lx). "
2493 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2494 				    spa_name(spa), hostname,
2495 				    (unsigned long)hostid);
2496 				return (SET_ERROR(EBADF));
2497 			}
2498 		}
2499 		if (nvlist_lookup_nvlist(spa->spa_config,
2500 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2501 			VERIFY(nvlist_add_nvlist(nvconfig,
2502 			    ZPOOL_REWIND_POLICY, policy) == 0);
2503 
2504 		spa_config_set(spa, nvconfig);
2505 		spa_unload(spa);
2506 		spa_deactivate(spa);
2507 		spa_activate(spa, orig_mode);
2508 
2509 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2510 	}
2511 
2512 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2513 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2514 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2515 	if (error != 0)
2516 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2517 
2518 	/*
2519 	 * Load the bit that tells us to use the new accounting function
2520 	 * (raid-z deflation).  If we have an older pool, this will not
2521 	 * be present.
2522 	 */
2523 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2524 	if (error != 0 && error != ENOENT)
2525 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2526 
2527 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2528 	    &spa->spa_creation_version);
2529 	if (error != 0 && error != ENOENT)
2530 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2531 
2532 	/*
2533 	 * Load the persistent error log.  If we have an older pool, this will
2534 	 * not be present.
2535 	 */
2536 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2537 	if (error != 0 && error != ENOENT)
2538 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2539 
2540 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2541 	    &spa->spa_errlog_scrub);
2542 	if (error != 0 && error != ENOENT)
2543 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2544 
2545 	/*
2546 	 * Load the history object.  If we have an older pool, this
2547 	 * will not be present.
2548 	 */
2549 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2550 	if (error != 0 && error != ENOENT)
2551 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2552 
2553 	/*
2554 	 * If we're assembling the pool from the split-off vdevs of
2555 	 * an existing pool, we don't want to attach the spares & cache
2556 	 * devices.
2557 	 */
2558 
2559 	/*
2560 	 * Load any hot spares for this pool.
2561 	 */
2562 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2563 	if (error != 0 && error != ENOENT)
2564 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2565 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2566 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2567 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2568 		    &spa->spa_spares.sav_config) != 0)
2569 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2570 
2571 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2572 		spa_load_spares(spa);
2573 		spa_config_exit(spa, SCL_ALL, FTAG);
2574 	} else if (error == 0) {
2575 		spa->spa_spares.sav_sync = B_TRUE;
2576 	}
2577 
2578 	/*
2579 	 * Load any level 2 ARC devices for this pool.
2580 	 */
2581 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2582 	    &spa->spa_l2cache.sav_object);
2583 	if (error != 0 && error != ENOENT)
2584 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2585 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2586 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2587 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2588 		    &spa->spa_l2cache.sav_config) != 0)
2589 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2590 
2591 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2592 		spa_load_l2cache(spa);
2593 		spa_config_exit(spa, SCL_ALL, FTAG);
2594 	} else if (error == 0) {
2595 		spa->spa_l2cache.sav_sync = B_TRUE;
2596 	}
2597 
2598 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2599 
2600 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2601 	if (error && error != ENOENT)
2602 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2603 
2604 	if (error == 0) {
2605 		uint64_t autoreplace;
2606 
2607 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2608 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2609 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2610 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2611 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2612 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2613 		    &spa->spa_dedup_ditto);
2614 
2615 		spa->spa_autoreplace = (autoreplace != 0);
2616 	}
2617 
2618 	/*
2619 	 * If the 'autoreplace' property is set, then post a resource notifying
2620 	 * the ZFS DE that it should not issue any faults for unopenable
2621 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2622 	 * unopenable vdevs so that the normal autoreplace handler can take
2623 	 * over.
2624 	 */
2625 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2626 		spa_check_removed(spa->spa_root_vdev);
2627 		/*
2628 		 * For the import case, this is done in spa_import(), because
2629 		 * at this point we're using the spare definitions from
2630 		 * the MOS config, not necessarily from the userland config.
2631 		 */
2632 		if (state != SPA_LOAD_IMPORT) {
2633 			spa_aux_check_removed(&spa->spa_spares);
2634 			spa_aux_check_removed(&spa->spa_l2cache);
2635 		}
2636 	}
2637 
2638 	/*
2639 	 * Load the vdev state for all toplevel vdevs.
2640 	 */
2641 	vdev_load(rvd);
2642 
2643 	/*
2644 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2645 	 */
2646 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2647 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2648 	spa_config_exit(spa, SCL_ALL, FTAG);
2649 
2650 	/*
2651 	 * Load the DDTs (dedup tables).
2652 	 */
2653 	error = ddt_load(spa);
2654 	if (error != 0)
2655 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2656 
2657 	spa_update_dspace(spa);
2658 
2659 	/*
2660 	 * Validate the config, using the MOS config to fill in any
2661 	 * information which might be missing.  If we fail to validate
2662 	 * the config then declare the pool unfit for use. If we're
2663 	 * assembling a pool from a split, the log is not transferred
2664 	 * over.
2665 	 */
2666 	if (type != SPA_IMPORT_ASSEMBLE) {
2667 		nvlist_t *nvconfig;
2668 
2669 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2670 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2671 
2672 		if (!spa_config_valid(spa, nvconfig)) {
2673 			nvlist_free(nvconfig);
2674 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2675 			    ENXIO));
2676 		}
2677 		nvlist_free(nvconfig);
2678 
2679 		/*
2680 		 * Now that we've validated the config, check the state of the
2681 		 * root vdev.  If it can't be opened, it indicates one or
2682 		 * more toplevel vdevs are faulted.
2683 		 */
2684 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2685 			return (SET_ERROR(ENXIO));
2686 
2687 		if (spa_check_logs(spa)) {
2688 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2689 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2690 		}
2691 	}
2692 
2693 	if (missing_feat_write) {
2694 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2695 
2696 		/*
2697 		 * At this point, we know that we can open the pool in
2698 		 * read-only mode but not read-write mode. We now have enough
2699 		 * information and can return to userland.
2700 		 */
2701 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2702 	}
2703 
2704 	/*
2705 	 * We've successfully opened the pool, verify that we're ready
2706 	 * to start pushing transactions.
2707 	 */
2708 	if (state != SPA_LOAD_TRYIMPORT) {
2709 		if (error = spa_load_verify(spa))
2710 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2711 			    error));
2712 	}
2713 
2714 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2715 	    spa->spa_load_max_txg == UINT64_MAX)) {
2716 		dmu_tx_t *tx;
2717 		int need_update = B_FALSE;
2718 
2719 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2720 
2721 		/*
2722 		 * Claim log blocks that haven't been committed yet.
2723 		 * This must all happen in a single txg.
2724 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2725 		 * invoked from zil_claim_log_block()'s i/o done callback.
2726 		 * Price of rollback is that we abandon the log.
2727 		 */
2728 		spa->spa_claiming = B_TRUE;
2729 
2730 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2731 		    spa_first_txg(spa));
2732 		(void) dmu_objset_find(spa_name(spa),
2733 		    zil_claim, tx, DS_FIND_CHILDREN);
2734 		dmu_tx_commit(tx);
2735 
2736 		spa->spa_claiming = B_FALSE;
2737 
2738 		spa_set_log_state(spa, SPA_LOG_GOOD);
2739 		spa->spa_sync_on = B_TRUE;
2740 		txg_sync_start(spa->spa_dsl_pool);
2741 
2742 		/*
2743 		 * Wait for all claims to sync.  We sync up to the highest
2744 		 * claimed log block birth time so that claimed log blocks
2745 		 * don't appear to be from the future.  spa_claim_max_txg
2746 		 * will have been set for us by either zil_check_log_chain()
2747 		 * (invoked from spa_check_logs()) or zil_claim() above.
2748 		 */
2749 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2750 
2751 		/*
2752 		 * If the config cache is stale, or we have uninitialized
2753 		 * metaslabs (see spa_vdev_add()), then update the config.
2754 		 *
2755 		 * If this is a verbatim import, trust the current
2756 		 * in-core spa_config and update the disk labels.
2757 		 */
2758 		if (config_cache_txg != spa->spa_config_txg ||
2759 		    state == SPA_LOAD_IMPORT ||
2760 		    state == SPA_LOAD_RECOVER ||
2761 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2762 			need_update = B_TRUE;
2763 
2764 		for (int c = 0; c < rvd->vdev_children; c++)
2765 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2766 				need_update = B_TRUE;
2767 
2768 		/*
2769 		 * Update the config cache asychronously in case we're the
2770 		 * root pool, in which case the config cache isn't writable yet.
2771 		 */
2772 		if (need_update)
2773 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2774 
2775 		/*
2776 		 * Check all DTLs to see if anything needs resilvering.
2777 		 */
2778 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2779 		    vdev_resilver_needed(rvd, NULL, NULL))
2780 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2781 
2782 		/*
2783 		 * Log the fact that we booted up (so that we can detect if
2784 		 * we rebooted in the middle of an operation).
2785 		 */
2786 		spa_history_log_version(spa, "open");
2787 
2788 		/*
2789 		 * Delete any inconsistent datasets.
2790 		 */
2791 		(void) dmu_objset_find(spa_name(spa),
2792 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2793 
2794 		/*
2795 		 * Clean up any stale temporary dataset userrefs.
2796 		 */
2797 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2798 	}
2799 
2800 	return (0);
2801 }
2802 
2803 static int
2804 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2805 {
2806 	int mode = spa->spa_mode;
2807 
2808 	spa_unload(spa);
2809 	spa_deactivate(spa);
2810 
2811 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2812 
2813 	spa_activate(spa, mode);
2814 	spa_async_suspend(spa);
2815 
2816 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2817 }
2818 
2819 /*
2820  * If spa_load() fails this function will try loading prior txg's. If
2821  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2822  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2823  * function will not rewind the pool and will return the same error as
2824  * spa_load().
2825  */
2826 static int
2827 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2828     uint64_t max_request, int rewind_flags)
2829 {
2830 	nvlist_t *loadinfo = NULL;
2831 	nvlist_t *config = NULL;
2832 	int load_error, rewind_error;
2833 	uint64_t safe_rewind_txg;
2834 	uint64_t min_txg;
2835 
2836 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2837 		spa->spa_load_max_txg = spa->spa_load_txg;
2838 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2839 	} else {
2840 		spa->spa_load_max_txg = max_request;
2841 		if (max_request != UINT64_MAX)
2842 			spa->spa_extreme_rewind = B_TRUE;
2843 	}
2844 
2845 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2846 	    mosconfig);
2847 	if (load_error == 0)
2848 		return (0);
2849 
2850 	if (spa->spa_root_vdev != NULL)
2851 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2852 
2853 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2854 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2855 
2856 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2857 		nvlist_free(config);
2858 		return (load_error);
2859 	}
2860 
2861 	if (state == SPA_LOAD_RECOVER) {
2862 		/* Price of rolling back is discarding txgs, including log */
2863 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2864 	} else {
2865 		/*
2866 		 * If we aren't rolling back save the load info from our first
2867 		 * import attempt so that we can restore it after attempting
2868 		 * to rewind.
2869 		 */
2870 		loadinfo = spa->spa_load_info;
2871 		spa->spa_load_info = fnvlist_alloc();
2872 	}
2873 
2874 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2875 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2876 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2877 	    TXG_INITIAL : safe_rewind_txg;
2878 
2879 	/*
2880 	 * Continue as long as we're finding errors, we're still within
2881 	 * the acceptable rewind range, and we're still finding uberblocks
2882 	 */
2883 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2884 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2885 		if (spa->spa_load_max_txg < safe_rewind_txg)
2886 			spa->spa_extreme_rewind = B_TRUE;
2887 		rewind_error = spa_load_retry(spa, state, mosconfig);
2888 	}
2889 
2890 	spa->spa_extreme_rewind = B_FALSE;
2891 	spa->spa_load_max_txg = UINT64_MAX;
2892 
2893 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2894 		spa_config_set(spa, config);
2895 
2896 	if (state == SPA_LOAD_RECOVER) {
2897 		ASSERT3P(loadinfo, ==, NULL);
2898 		return (rewind_error);
2899 	} else {
2900 		/* Store the rewind info as part of the initial load info */
2901 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2902 		    spa->spa_load_info);
2903 
2904 		/* Restore the initial load info */
2905 		fnvlist_free(spa->spa_load_info);
2906 		spa->spa_load_info = loadinfo;
2907 
2908 		return (load_error);
2909 	}
2910 }
2911 
2912 /*
2913  * Pool Open/Import
2914  *
2915  * The import case is identical to an open except that the configuration is sent
2916  * down from userland, instead of grabbed from the configuration cache.  For the
2917  * case of an open, the pool configuration will exist in the
2918  * POOL_STATE_UNINITIALIZED state.
2919  *
2920  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2921  * the same time open the pool, without having to keep around the spa_t in some
2922  * ambiguous state.
2923  */
2924 static int
2925 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2926     nvlist_t **config)
2927 {
2928 	spa_t *spa;
2929 	spa_load_state_t state = SPA_LOAD_OPEN;
2930 	int error;
2931 	int locked = B_FALSE;
2932 
2933 	*spapp = NULL;
2934 
2935 	/*
2936 	 * As disgusting as this is, we need to support recursive calls to this
2937 	 * function because dsl_dir_open() is called during spa_load(), and ends
2938 	 * up calling spa_open() again.  The real fix is to figure out how to
2939 	 * avoid dsl_dir_open() calling this in the first place.
2940 	 */
2941 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2942 		mutex_enter(&spa_namespace_lock);
2943 		locked = B_TRUE;
2944 	}
2945 
2946 	if ((spa = spa_lookup(pool)) == NULL) {
2947 		if (locked)
2948 			mutex_exit(&spa_namespace_lock);
2949 		return (SET_ERROR(ENOENT));
2950 	}
2951 
2952 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2953 		zpool_rewind_policy_t policy;
2954 
2955 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2956 		    &policy);
2957 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2958 			state = SPA_LOAD_RECOVER;
2959 
2960 		spa_activate(spa, spa_mode_global);
2961 
2962 		if (state != SPA_LOAD_RECOVER)
2963 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2964 
2965 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2966 		    policy.zrp_request);
2967 
2968 		if (error == EBADF) {
2969 			/*
2970 			 * If vdev_validate() returns failure (indicated by
2971 			 * EBADF), it indicates that one of the vdevs indicates
2972 			 * that the pool has been exported or destroyed.  If
2973 			 * this is the case, the config cache is out of sync and
2974 			 * we should remove the pool from the namespace.
2975 			 */
2976 			spa_unload(spa);
2977 			spa_deactivate(spa);
2978 			spa_config_sync(spa, B_TRUE, B_TRUE);
2979 			spa_remove(spa);
2980 			if (locked)
2981 				mutex_exit(&spa_namespace_lock);
2982 			return (SET_ERROR(ENOENT));
2983 		}
2984 
2985 		if (error) {
2986 			/*
2987 			 * We can't open the pool, but we still have useful
2988 			 * information: the state of each vdev after the
2989 			 * attempted vdev_open().  Return this to the user.
2990 			 */
2991 			if (config != NULL && spa->spa_config) {
2992 				VERIFY(nvlist_dup(spa->spa_config, config,
2993 				    KM_SLEEP) == 0);
2994 				VERIFY(nvlist_add_nvlist(*config,
2995 				    ZPOOL_CONFIG_LOAD_INFO,
2996 				    spa->spa_load_info) == 0);
2997 			}
2998 			spa_unload(spa);
2999 			spa_deactivate(spa);
3000 			spa->spa_last_open_failed = error;
3001 			if (locked)
3002 				mutex_exit(&spa_namespace_lock);
3003 			*spapp = NULL;
3004 			return (error);
3005 		}
3006 	}
3007 
3008 	spa_open_ref(spa, tag);
3009 
3010 	if (config != NULL)
3011 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3012 
3013 	/*
3014 	 * If we've recovered the pool, pass back any information we
3015 	 * gathered while doing the load.
3016 	 */
3017 	if (state == SPA_LOAD_RECOVER) {
3018 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3019 		    spa->spa_load_info) == 0);
3020 	}
3021 
3022 	if (locked) {
3023 		spa->spa_last_open_failed = 0;
3024 		spa->spa_last_ubsync_txg = 0;
3025 		spa->spa_load_txg = 0;
3026 		mutex_exit(&spa_namespace_lock);
3027 	}
3028 
3029 	*spapp = spa;
3030 
3031 	return (0);
3032 }
3033 
3034 int
3035 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3036     nvlist_t **config)
3037 {
3038 	return (spa_open_common(name, spapp, tag, policy, config));
3039 }
3040 
3041 int
3042 spa_open(const char *name, spa_t **spapp, void *tag)
3043 {
3044 	return (spa_open_common(name, spapp, tag, NULL, NULL));
3045 }
3046 
3047 /*
3048  * Lookup the given spa_t, incrementing the inject count in the process,
3049  * preventing it from being exported or destroyed.
3050  */
3051 spa_t *
3052 spa_inject_addref(char *name)
3053 {
3054 	spa_t *spa;
3055 
3056 	mutex_enter(&spa_namespace_lock);
3057 	if ((spa = spa_lookup(name)) == NULL) {
3058 		mutex_exit(&spa_namespace_lock);
3059 		return (NULL);
3060 	}
3061 	spa->spa_inject_ref++;
3062 	mutex_exit(&spa_namespace_lock);
3063 
3064 	return (spa);
3065 }
3066 
3067 void
3068 spa_inject_delref(spa_t *spa)
3069 {
3070 	mutex_enter(&spa_namespace_lock);
3071 	spa->spa_inject_ref--;
3072 	mutex_exit(&spa_namespace_lock);
3073 }
3074 
3075 /*
3076  * Add spares device information to the nvlist.
3077  */
3078 static void
3079 spa_add_spares(spa_t *spa, nvlist_t *config)
3080 {
3081 	nvlist_t **spares;
3082 	uint_t i, nspares;
3083 	nvlist_t *nvroot;
3084 	uint64_t guid;
3085 	vdev_stat_t *vs;
3086 	uint_t vsc;
3087 	uint64_t pool;
3088 
3089 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3090 
3091 	if (spa->spa_spares.sav_count == 0)
3092 		return;
3093 
3094 	VERIFY(nvlist_lookup_nvlist(config,
3095 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3096 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3097 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3098 	if (nspares != 0) {
3099 		VERIFY(nvlist_add_nvlist_array(nvroot,
3100 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3101 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3102 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3103 
3104 		/*
3105 		 * Go through and find any spares which have since been
3106 		 * repurposed as an active spare.  If this is the case, update
3107 		 * their status appropriately.
3108 		 */
3109 		for (i = 0; i < nspares; i++) {
3110 			VERIFY(nvlist_lookup_uint64(spares[i],
3111 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3112 			if (spa_spare_exists(guid, &pool, NULL) &&
3113 			    pool != 0ULL) {
3114 				VERIFY(nvlist_lookup_uint64_array(
3115 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3116 				    (uint64_t **)&vs, &vsc) == 0);
3117 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3118 				vs->vs_aux = VDEV_AUX_SPARED;
3119 			}
3120 		}
3121 	}
3122 }
3123 
3124 /*
3125  * Add l2cache device information to the nvlist, including vdev stats.
3126  */
3127 static void
3128 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3129 {
3130 	nvlist_t **l2cache;
3131 	uint_t i, j, nl2cache;
3132 	nvlist_t *nvroot;
3133 	uint64_t guid;
3134 	vdev_t *vd;
3135 	vdev_stat_t *vs;
3136 	uint_t vsc;
3137 
3138 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3139 
3140 	if (spa->spa_l2cache.sav_count == 0)
3141 		return;
3142 
3143 	VERIFY(nvlist_lookup_nvlist(config,
3144 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3145 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3146 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3147 	if (nl2cache != 0) {
3148 		VERIFY(nvlist_add_nvlist_array(nvroot,
3149 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3150 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3151 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3152 
3153 		/*
3154 		 * Update level 2 cache device stats.
3155 		 */
3156 
3157 		for (i = 0; i < nl2cache; i++) {
3158 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3159 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3160 
3161 			vd = NULL;
3162 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3163 				if (guid ==
3164 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3165 					vd = spa->spa_l2cache.sav_vdevs[j];
3166 					break;
3167 				}
3168 			}
3169 			ASSERT(vd != NULL);
3170 
3171 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3172 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3173 			    == 0);
3174 			vdev_get_stats(vd, vs);
3175 		}
3176 	}
3177 }
3178 
3179 static void
3180 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3181 {
3182 	nvlist_t *features;
3183 	zap_cursor_t zc;
3184 	zap_attribute_t za;
3185 
3186 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3187 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3188 
3189 	if (spa->spa_feat_for_read_obj != 0) {
3190 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3191 		    spa->spa_feat_for_read_obj);
3192 		    zap_cursor_retrieve(&zc, &za) == 0;
3193 		    zap_cursor_advance(&zc)) {
3194 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3195 			    za.za_num_integers == 1);
3196 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3197 			    za.za_first_integer));
3198 		}
3199 		zap_cursor_fini(&zc);
3200 	}
3201 
3202 	if (spa->spa_feat_for_write_obj != 0) {
3203 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3204 		    spa->spa_feat_for_write_obj);
3205 		    zap_cursor_retrieve(&zc, &za) == 0;
3206 		    zap_cursor_advance(&zc)) {
3207 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3208 			    za.za_num_integers == 1);
3209 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3210 			    za.za_first_integer));
3211 		}
3212 		zap_cursor_fini(&zc);
3213 	}
3214 
3215 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3216 	    features) == 0);
3217 	nvlist_free(features);
3218 }
3219 
3220 int
3221 spa_get_stats(const char *name, nvlist_t **config,
3222     char *altroot, size_t buflen)
3223 {
3224 	int error;
3225 	spa_t *spa;
3226 
3227 	*config = NULL;
3228 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3229 
3230 	if (spa != NULL) {
3231 		/*
3232 		 * This still leaves a window of inconsistency where the spares
3233 		 * or l2cache devices could change and the config would be
3234 		 * self-inconsistent.
3235 		 */
3236 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3237 
3238 		if (*config != NULL) {
3239 			uint64_t loadtimes[2];
3240 
3241 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3242 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3243 			VERIFY(nvlist_add_uint64_array(*config,
3244 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3245 
3246 			VERIFY(nvlist_add_uint64(*config,
3247 			    ZPOOL_CONFIG_ERRCOUNT,
3248 			    spa_get_errlog_size(spa)) == 0);
3249 
3250 			if (spa_suspended(spa))
3251 				VERIFY(nvlist_add_uint64(*config,
3252 				    ZPOOL_CONFIG_SUSPENDED,
3253 				    spa->spa_failmode) == 0);
3254 
3255 			spa_add_spares(spa, *config);
3256 			spa_add_l2cache(spa, *config);
3257 			spa_add_feature_stats(spa, *config);
3258 		}
3259 	}
3260 
3261 	/*
3262 	 * We want to get the alternate root even for faulted pools, so we cheat
3263 	 * and call spa_lookup() directly.
3264 	 */
3265 	if (altroot) {
3266 		if (spa == NULL) {
3267 			mutex_enter(&spa_namespace_lock);
3268 			spa = spa_lookup(name);
3269 			if (spa)
3270 				spa_altroot(spa, altroot, buflen);
3271 			else
3272 				altroot[0] = '\0';
3273 			spa = NULL;
3274 			mutex_exit(&spa_namespace_lock);
3275 		} else {
3276 			spa_altroot(spa, altroot, buflen);
3277 		}
3278 	}
3279 
3280 	if (spa != NULL) {
3281 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3282 		spa_close(spa, FTAG);
3283 	}
3284 
3285 	return (error);
3286 }
3287 
3288 /*
3289  * Validate that the auxiliary device array is well formed.  We must have an
3290  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3291  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3292  * specified, as long as they are well-formed.
3293  */
3294 static int
3295 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3296     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3297     vdev_labeltype_t label)
3298 {
3299 	nvlist_t **dev;
3300 	uint_t i, ndev;
3301 	vdev_t *vd;
3302 	int error;
3303 
3304 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3305 
3306 	/*
3307 	 * It's acceptable to have no devs specified.
3308 	 */
3309 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3310 		return (0);
3311 
3312 	if (ndev == 0)
3313 		return (SET_ERROR(EINVAL));
3314 
3315 	/*
3316 	 * Make sure the pool is formatted with a version that supports this
3317 	 * device type.
3318 	 */
3319 	if (spa_version(spa) < version)
3320 		return (SET_ERROR(ENOTSUP));
3321 
3322 	/*
3323 	 * Set the pending device list so we correctly handle device in-use
3324 	 * checking.
3325 	 */
3326 	sav->sav_pending = dev;
3327 	sav->sav_npending = ndev;
3328 
3329 	for (i = 0; i < ndev; i++) {
3330 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3331 		    mode)) != 0)
3332 			goto out;
3333 
3334 		if (!vd->vdev_ops->vdev_op_leaf) {
3335 			vdev_free(vd);
3336 			error = SET_ERROR(EINVAL);
3337 			goto out;
3338 		}
3339 
3340 		/*
3341 		 * The L2ARC currently only supports disk devices in
3342 		 * kernel context.  For user-level testing, we allow it.
3343 		 */
3344 #ifdef _KERNEL
3345 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3346 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3347 			error = SET_ERROR(ENOTBLK);
3348 			vdev_free(vd);
3349 			goto out;
3350 		}
3351 #endif
3352 		vd->vdev_top = vd;
3353 
3354 		if ((error = vdev_open(vd)) == 0 &&
3355 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3356 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3357 			    vd->vdev_guid) == 0);
3358 		}
3359 
3360 		vdev_free(vd);
3361 
3362 		if (error &&
3363 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3364 			goto out;
3365 		else
3366 			error = 0;
3367 	}
3368 
3369 out:
3370 	sav->sav_pending = NULL;
3371 	sav->sav_npending = 0;
3372 	return (error);
3373 }
3374 
3375 static int
3376 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3377 {
3378 	int error;
3379 
3380 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3381 
3382 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3383 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3384 	    VDEV_LABEL_SPARE)) != 0) {
3385 		return (error);
3386 	}
3387 
3388 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3389 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3390 	    VDEV_LABEL_L2CACHE));
3391 }
3392 
3393 static void
3394 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3395     const char *config)
3396 {
3397 	int i;
3398 
3399 	if (sav->sav_config != NULL) {
3400 		nvlist_t **olddevs;
3401 		uint_t oldndevs;
3402 		nvlist_t **newdevs;
3403 
3404 		/*
3405 		 * Generate new dev list by concatentating with the
3406 		 * current dev list.
3407 		 */
3408 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3409 		    &olddevs, &oldndevs) == 0);
3410 
3411 		newdevs = kmem_alloc(sizeof (void *) *
3412 		    (ndevs + oldndevs), KM_SLEEP);
3413 		for (i = 0; i < oldndevs; i++)
3414 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3415 			    KM_SLEEP) == 0);
3416 		for (i = 0; i < ndevs; i++)
3417 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3418 			    KM_SLEEP) == 0);
3419 
3420 		VERIFY(nvlist_remove(sav->sav_config, config,
3421 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3422 
3423 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3424 		    config, newdevs, ndevs + oldndevs) == 0);
3425 		for (i = 0; i < oldndevs + ndevs; i++)
3426 			nvlist_free(newdevs[i]);
3427 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3428 	} else {
3429 		/*
3430 		 * Generate a new dev list.
3431 		 */
3432 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3433 		    KM_SLEEP) == 0);
3434 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3435 		    devs, ndevs) == 0);
3436 	}
3437 }
3438 
3439 /*
3440  * Stop and drop level 2 ARC devices
3441  */
3442 void
3443 spa_l2cache_drop(spa_t *spa)
3444 {
3445 	vdev_t *vd;
3446 	int i;
3447 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3448 
3449 	for (i = 0; i < sav->sav_count; i++) {
3450 		uint64_t pool;
3451 
3452 		vd = sav->sav_vdevs[i];
3453 		ASSERT(vd != NULL);
3454 
3455 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3456 		    pool != 0ULL && l2arc_vdev_present(vd))
3457 			l2arc_remove_vdev(vd);
3458 	}
3459 }
3460 
3461 /*
3462  * Pool Creation
3463  */
3464 int
3465 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3466     nvlist_t *zplprops)
3467 {
3468 	spa_t *spa;
3469 	char *altroot = NULL;
3470 	vdev_t *rvd;
3471 	dsl_pool_t *dp;
3472 	dmu_tx_t *tx;
3473 	int error = 0;
3474 	uint64_t txg = TXG_INITIAL;
3475 	nvlist_t **spares, **l2cache;
3476 	uint_t nspares, nl2cache;
3477 	uint64_t version, obj;
3478 	boolean_t has_features;
3479 
3480 	/*
3481 	 * If this pool already exists, return failure.
3482 	 */
3483 	mutex_enter(&spa_namespace_lock);
3484 	if (spa_lookup(pool) != NULL) {
3485 		mutex_exit(&spa_namespace_lock);
3486 		return (SET_ERROR(EEXIST));
3487 	}
3488 
3489 	/*
3490 	 * Allocate a new spa_t structure.
3491 	 */
3492 	(void) nvlist_lookup_string(props,
3493 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3494 	spa = spa_add(pool, NULL, altroot);
3495 	spa_activate(spa, spa_mode_global);
3496 
3497 	if (props && (error = spa_prop_validate(spa, props))) {
3498 		spa_deactivate(spa);
3499 		spa_remove(spa);
3500 		mutex_exit(&spa_namespace_lock);
3501 		return (error);
3502 	}
3503 
3504 	has_features = B_FALSE;
3505 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3506 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3507 		if (zpool_prop_feature(nvpair_name(elem)))
3508 			has_features = B_TRUE;
3509 	}
3510 
3511 	if (has_features || nvlist_lookup_uint64(props,
3512 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3513 		version = SPA_VERSION;
3514 	}
3515 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3516 
3517 	spa->spa_first_txg = txg;
3518 	spa->spa_uberblock.ub_txg = txg - 1;
3519 	spa->spa_uberblock.ub_version = version;
3520 	spa->spa_ubsync = spa->spa_uberblock;
3521 
3522 	/*
3523 	 * Create "The Godfather" zio to hold all async IOs
3524 	 */
3525 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3526 	    KM_SLEEP);
3527 	for (int i = 0; i < max_ncpus; i++) {
3528 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3529 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3530 		    ZIO_FLAG_GODFATHER);
3531 	}
3532 
3533 	/*
3534 	 * Create the root vdev.
3535 	 */
3536 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3537 
3538 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3539 
3540 	ASSERT(error != 0 || rvd != NULL);
3541 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3542 
3543 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3544 		error = SET_ERROR(EINVAL);
3545 
3546 	if (error == 0 &&
3547 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3548 	    (error = spa_validate_aux(spa, nvroot, txg,
3549 	    VDEV_ALLOC_ADD)) == 0) {
3550 		for (int c = 0; c < rvd->vdev_children; c++) {
3551 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3552 			vdev_expand(rvd->vdev_child[c], txg);
3553 		}
3554 	}
3555 
3556 	spa_config_exit(spa, SCL_ALL, FTAG);
3557 
3558 	if (error != 0) {
3559 		spa_unload(spa);
3560 		spa_deactivate(spa);
3561 		spa_remove(spa);
3562 		mutex_exit(&spa_namespace_lock);
3563 		return (error);
3564 	}
3565 
3566 	/*
3567 	 * Get the list of spares, if specified.
3568 	 */
3569 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3570 	    &spares, &nspares) == 0) {
3571 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3572 		    KM_SLEEP) == 0);
3573 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3574 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3575 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3576 		spa_load_spares(spa);
3577 		spa_config_exit(spa, SCL_ALL, FTAG);
3578 		spa->spa_spares.sav_sync = B_TRUE;
3579 	}
3580 
3581 	/*
3582 	 * Get the list of level 2 cache devices, if specified.
3583 	 */
3584 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3585 	    &l2cache, &nl2cache) == 0) {
3586 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3587 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3588 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3589 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3590 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3591 		spa_load_l2cache(spa);
3592 		spa_config_exit(spa, SCL_ALL, FTAG);
3593 		spa->spa_l2cache.sav_sync = B_TRUE;
3594 	}
3595 
3596 	spa->spa_is_initializing = B_TRUE;
3597 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3598 	spa->spa_meta_objset = dp->dp_meta_objset;
3599 	spa->spa_is_initializing = B_FALSE;
3600 
3601 	/*
3602 	 * Create DDTs (dedup tables).
3603 	 */
3604 	ddt_create(spa);
3605 
3606 	spa_update_dspace(spa);
3607 
3608 	tx = dmu_tx_create_assigned(dp, txg);
3609 
3610 	/*
3611 	 * Create the pool config object.
3612 	 */
3613 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3614 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3615 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3616 
3617 	if (zap_add(spa->spa_meta_objset,
3618 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3619 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3620 		cmn_err(CE_PANIC, "failed to add pool config");
3621 	}
3622 
3623 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3624 		spa_feature_create_zap_objects(spa, tx);
3625 
3626 	if (zap_add(spa->spa_meta_objset,
3627 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3628 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3629 		cmn_err(CE_PANIC, "failed to add pool version");
3630 	}
3631 
3632 	/* Newly created pools with the right version are always deflated. */
3633 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3634 		spa->spa_deflate = TRUE;
3635 		if (zap_add(spa->spa_meta_objset,
3636 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3637 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3638 			cmn_err(CE_PANIC, "failed to add deflate");
3639 		}
3640 	}
3641 
3642 	/*
3643 	 * Create the deferred-free bpobj.  Turn off compression
3644 	 * because sync-to-convergence takes longer if the blocksize
3645 	 * keeps changing.
3646 	 */
3647 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3648 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3649 	    ZIO_COMPRESS_OFF, tx);
3650 	if (zap_add(spa->spa_meta_objset,
3651 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3652 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3653 		cmn_err(CE_PANIC, "failed to add bpobj");
3654 	}
3655 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3656 	    spa->spa_meta_objset, obj));
3657 
3658 	/*
3659 	 * Create the pool's history object.
3660 	 */
3661 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3662 		spa_history_create_obj(spa, tx);
3663 
3664 	/*
3665 	 * Set pool properties.
3666 	 */
3667 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3668 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3669 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3670 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3671 
3672 	if (props != NULL) {
3673 		spa_configfile_set(spa, props, B_FALSE);
3674 		spa_sync_props(props, tx);
3675 	}
3676 
3677 	dmu_tx_commit(tx);
3678 
3679 	spa->spa_sync_on = B_TRUE;
3680 	txg_sync_start(spa->spa_dsl_pool);
3681 
3682 	/*
3683 	 * We explicitly wait for the first transaction to complete so that our
3684 	 * bean counters are appropriately updated.
3685 	 */
3686 	txg_wait_synced(spa->spa_dsl_pool, txg);
3687 
3688 	spa_config_sync(spa, B_FALSE, B_TRUE);
3689 
3690 	spa_history_log_version(spa, "create");
3691 
3692 	/*
3693 	 * Don't count references from objsets that are already closed
3694 	 * and are making their way through the eviction process.
3695 	 */
3696 	spa_evicting_os_wait(spa);
3697 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3698 
3699 	mutex_exit(&spa_namespace_lock);
3700 
3701 	return (0);
3702 }
3703 
3704 #ifdef _KERNEL
3705 /*
3706  * Get the root pool information from the root disk, then import the root pool
3707  * during the system boot up time.
3708  */
3709 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3710 
3711 static nvlist_t *
3712 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3713 {
3714 	nvlist_t *config;
3715 	nvlist_t *nvtop, *nvroot;
3716 	uint64_t pgid;
3717 
3718 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3719 		return (NULL);
3720 
3721 	/*
3722 	 * Add this top-level vdev to the child array.
3723 	 */
3724 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3725 	    &nvtop) == 0);
3726 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3727 	    &pgid) == 0);
3728 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3729 
3730 	/*
3731 	 * Put this pool's top-level vdevs into a root vdev.
3732 	 */
3733 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3734 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3735 	    VDEV_TYPE_ROOT) == 0);
3736 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3737 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3738 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3739 	    &nvtop, 1) == 0);
3740 
3741 	/*
3742 	 * Replace the existing vdev_tree with the new root vdev in
3743 	 * this pool's configuration (remove the old, add the new).
3744 	 */
3745 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3746 	nvlist_free(nvroot);
3747 	return (config);
3748 }
3749 
3750 /*
3751  * Walk the vdev tree and see if we can find a device with "better"
3752  * configuration. A configuration is "better" if the label on that
3753  * device has a more recent txg.
3754  */
3755 static void
3756 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3757 {
3758 	for (int c = 0; c < vd->vdev_children; c++)
3759 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3760 
3761 	if (vd->vdev_ops->vdev_op_leaf) {
3762 		nvlist_t *label;
3763 		uint64_t label_txg;
3764 
3765 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3766 		    &label) != 0)
3767 			return;
3768 
3769 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3770 		    &label_txg) == 0);
3771 
3772 		/*
3773 		 * Do we have a better boot device?
3774 		 */
3775 		if (label_txg > *txg) {
3776 			*txg = label_txg;
3777 			*avd = vd;
3778 		}
3779 		nvlist_free(label);
3780 	}
3781 }
3782 
3783 /*
3784  * Import a root pool.
3785  *
3786  * For x86. devpath_list will consist of devid and/or physpath name of
3787  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3788  * The GRUB "findroot" command will return the vdev we should boot.
3789  *
3790  * For Sparc, devpath_list consists the physpath name of the booting device
3791  * no matter the rootpool is a single device pool or a mirrored pool.
3792  * e.g.
3793  *	"/pci@1f,0/ide@d/disk@0,0:a"
3794  */
3795 int
3796 spa_import_rootpool(char *devpath, char *devid)
3797 {
3798 	spa_t *spa;
3799 	vdev_t *rvd, *bvd, *avd = NULL;
3800 	nvlist_t *config, *nvtop;
3801 	uint64_t guid, txg;
3802 	char *pname;
3803 	int error;
3804 
3805 	/*
3806 	 * Read the label from the boot device and generate a configuration.
3807 	 */
3808 	config = spa_generate_rootconf(devpath, devid, &guid);
3809 #if defined(_OBP) && defined(_KERNEL)
3810 	if (config == NULL) {
3811 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3812 			/* iscsi boot */
3813 			get_iscsi_bootpath_phy(devpath);
3814 			config = spa_generate_rootconf(devpath, devid, &guid);
3815 		}
3816 	}
3817 #endif
3818 	if (config == NULL) {
3819 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3820 		    devpath);
3821 		return (SET_ERROR(EIO));
3822 	}
3823 
3824 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3825 	    &pname) == 0);
3826 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3827 
3828 	mutex_enter(&spa_namespace_lock);
3829 	if ((spa = spa_lookup(pname)) != NULL) {
3830 		/*
3831 		 * Remove the existing root pool from the namespace so that we
3832 		 * can replace it with the correct config we just read in.
3833 		 */
3834 		spa_remove(spa);
3835 	}
3836 
3837 	spa = spa_add(pname, config, NULL);
3838 	spa->spa_is_root = B_TRUE;
3839 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3840 
3841 	/*
3842 	 * Build up a vdev tree based on the boot device's label config.
3843 	 */
3844 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3845 	    &nvtop) == 0);
3846 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3847 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3848 	    VDEV_ALLOC_ROOTPOOL);
3849 	spa_config_exit(spa, SCL_ALL, FTAG);
3850 	if (error) {
3851 		mutex_exit(&spa_namespace_lock);
3852 		nvlist_free(config);
3853 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3854 		    pname);
3855 		return (error);
3856 	}
3857 
3858 	/*
3859 	 * Get the boot vdev.
3860 	 */
3861 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3862 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3863 		    (u_longlong_t)guid);
3864 		error = SET_ERROR(ENOENT);
3865 		goto out;
3866 	}
3867 
3868 	/*
3869 	 * Determine if there is a better boot device.
3870 	 */
3871 	avd = bvd;
3872 	spa_alt_rootvdev(rvd, &avd, &txg);
3873 	if (avd != bvd) {
3874 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3875 		    "try booting from '%s'", avd->vdev_path);
3876 		error = SET_ERROR(EINVAL);
3877 		goto out;
3878 	}
3879 
3880 	/*
3881 	 * If the boot device is part of a spare vdev then ensure that
3882 	 * we're booting off the active spare.
3883 	 */
3884 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3885 	    !bvd->vdev_isspare) {
3886 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3887 		    "try booting from '%s'",
3888 		    bvd->vdev_parent->
3889 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3890 		error = SET_ERROR(EINVAL);
3891 		goto out;
3892 	}
3893 
3894 	error = 0;
3895 out:
3896 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3897 	vdev_free(rvd);
3898 	spa_config_exit(spa, SCL_ALL, FTAG);
3899 	mutex_exit(&spa_namespace_lock);
3900 
3901 	nvlist_free(config);
3902 	return (error);
3903 }
3904 
3905 #endif
3906 
3907 /*
3908  * Import a non-root pool into the system.
3909  */
3910 int
3911 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3912 {
3913 	spa_t *spa;
3914 	char *altroot = NULL;
3915 	spa_load_state_t state = SPA_LOAD_IMPORT;
3916 	zpool_rewind_policy_t policy;
3917 	uint64_t mode = spa_mode_global;
3918 	uint64_t readonly = B_FALSE;
3919 	int error;
3920 	nvlist_t *nvroot;
3921 	nvlist_t **spares, **l2cache;
3922 	uint_t nspares, nl2cache;
3923 
3924 	/*
3925 	 * If a pool with this name exists, return failure.
3926 	 */
3927 	mutex_enter(&spa_namespace_lock);
3928 	if (spa_lookup(pool) != NULL) {
3929 		mutex_exit(&spa_namespace_lock);
3930 		return (SET_ERROR(EEXIST));
3931 	}
3932 
3933 	/*
3934 	 * Create and initialize the spa structure.
3935 	 */
3936 	(void) nvlist_lookup_string(props,
3937 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3938 	(void) nvlist_lookup_uint64(props,
3939 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3940 	if (readonly)
3941 		mode = FREAD;
3942 	spa = spa_add(pool, config, altroot);
3943 	spa->spa_import_flags = flags;
3944 
3945 	/*
3946 	 * Verbatim import - Take a pool and insert it into the namespace
3947 	 * as if it had been loaded at boot.
3948 	 */
3949 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3950 		if (props != NULL)
3951 			spa_configfile_set(spa, props, B_FALSE);
3952 
3953 		spa_config_sync(spa, B_FALSE, B_TRUE);
3954 
3955 		mutex_exit(&spa_namespace_lock);
3956 		return (0);
3957 	}
3958 
3959 	spa_activate(spa, mode);
3960 
3961 	/*
3962 	 * Don't start async tasks until we know everything is healthy.
3963 	 */
3964 	spa_async_suspend(spa);
3965 
3966 	zpool_get_rewind_policy(config, &policy);
3967 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3968 		state = SPA_LOAD_RECOVER;
3969 
3970 	/*
3971 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3972 	 * because the user-supplied config is actually the one to trust when
3973 	 * doing an import.
3974 	 */
3975 	if (state != SPA_LOAD_RECOVER)
3976 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3977 
3978 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3979 	    policy.zrp_request);
3980 
3981 	/*
3982 	 * Propagate anything learned while loading the pool and pass it
3983 	 * back to caller (i.e. rewind info, missing devices, etc).
3984 	 */
3985 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3986 	    spa->spa_load_info) == 0);
3987 
3988 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3989 	/*
3990 	 * Toss any existing sparelist, as it doesn't have any validity
3991 	 * anymore, and conflicts with spa_has_spare().
3992 	 */
3993 	if (spa->spa_spares.sav_config) {
3994 		nvlist_free(spa->spa_spares.sav_config);
3995 		spa->spa_spares.sav_config = NULL;
3996 		spa_load_spares(spa);
3997 	}
3998 	if (spa->spa_l2cache.sav_config) {
3999 		nvlist_free(spa->spa_l2cache.sav_config);
4000 		spa->spa_l2cache.sav_config = NULL;
4001 		spa_load_l2cache(spa);
4002 	}
4003 
4004 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4005 	    &nvroot) == 0);
4006 	if (error == 0)
4007 		error = spa_validate_aux(spa, nvroot, -1ULL,
4008 		    VDEV_ALLOC_SPARE);
4009 	if (error == 0)
4010 		error = spa_validate_aux(spa, nvroot, -1ULL,
4011 		    VDEV_ALLOC_L2CACHE);
4012 	spa_config_exit(spa, SCL_ALL, FTAG);
4013 
4014 	if (props != NULL)
4015 		spa_configfile_set(spa, props, B_FALSE);
4016 
4017 	if (error != 0 || (props && spa_writeable(spa) &&
4018 	    (error = spa_prop_set(spa, props)))) {
4019 		spa_unload(spa);
4020 		spa_deactivate(spa);
4021 		spa_remove(spa);
4022 		mutex_exit(&spa_namespace_lock);
4023 		return (error);
4024 	}
4025 
4026 	spa_async_resume(spa);
4027 
4028 	/*
4029 	 * Override any spares and level 2 cache devices as specified by
4030 	 * the user, as these may have correct device names/devids, etc.
4031 	 */
4032 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4033 	    &spares, &nspares) == 0) {
4034 		if (spa->spa_spares.sav_config)
4035 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4036 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4037 		else
4038 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4039 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4040 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4041 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4042 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4043 		spa_load_spares(spa);
4044 		spa_config_exit(spa, SCL_ALL, FTAG);
4045 		spa->spa_spares.sav_sync = B_TRUE;
4046 	}
4047 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4048 	    &l2cache, &nl2cache) == 0) {
4049 		if (spa->spa_l2cache.sav_config)
4050 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4051 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4052 		else
4053 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4054 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4055 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4056 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4057 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4058 		spa_load_l2cache(spa);
4059 		spa_config_exit(spa, SCL_ALL, FTAG);
4060 		spa->spa_l2cache.sav_sync = B_TRUE;
4061 	}
4062 
4063 	/*
4064 	 * Check for any removed devices.
4065 	 */
4066 	if (spa->spa_autoreplace) {
4067 		spa_aux_check_removed(&spa->spa_spares);
4068 		spa_aux_check_removed(&spa->spa_l2cache);
4069 	}
4070 
4071 	if (spa_writeable(spa)) {
4072 		/*
4073 		 * Update the config cache to include the newly-imported pool.
4074 		 */
4075 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4076 	}
4077 
4078 	/*
4079 	 * It's possible that the pool was expanded while it was exported.
4080 	 * We kick off an async task to handle this for us.
4081 	 */
4082 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4083 
4084 	mutex_exit(&spa_namespace_lock);
4085 	spa_history_log_version(spa, "import");
4086 
4087 	return (0);
4088 }
4089 
4090 nvlist_t *
4091 spa_tryimport(nvlist_t *tryconfig)
4092 {
4093 	nvlist_t *config = NULL;
4094 	char *poolname;
4095 	spa_t *spa;
4096 	uint64_t state;
4097 	int error;
4098 
4099 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4100 		return (NULL);
4101 
4102 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4103 		return (NULL);
4104 
4105 	/*
4106 	 * Create and initialize the spa structure.
4107 	 */
4108 	mutex_enter(&spa_namespace_lock);
4109 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4110 	spa_activate(spa, FREAD);
4111 
4112 	/*
4113 	 * Pass off the heavy lifting to spa_load().
4114 	 * Pass TRUE for mosconfig because the user-supplied config
4115 	 * is actually the one to trust when doing an import.
4116 	 */
4117 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4118 
4119 	/*
4120 	 * If 'tryconfig' was at least parsable, return the current config.
4121 	 */
4122 	if (spa->spa_root_vdev != NULL) {
4123 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4124 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4125 		    poolname) == 0);
4126 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4127 		    state) == 0);
4128 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4129 		    spa->spa_uberblock.ub_timestamp) == 0);
4130 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4131 		    spa->spa_load_info) == 0);
4132 
4133 		/*
4134 		 * If the bootfs property exists on this pool then we
4135 		 * copy it out so that external consumers can tell which
4136 		 * pools are bootable.
4137 		 */
4138 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4139 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4140 
4141 			/*
4142 			 * We have to play games with the name since the
4143 			 * pool was opened as TRYIMPORT_NAME.
4144 			 */
4145 			if (dsl_dsobj_to_dsname(spa_name(spa),
4146 			    spa->spa_bootfs, tmpname) == 0) {
4147 				char *cp;
4148 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4149 
4150 				cp = strchr(tmpname, '/');
4151 				if (cp == NULL) {
4152 					(void) strlcpy(dsname, tmpname,
4153 					    MAXPATHLEN);
4154 				} else {
4155 					(void) snprintf(dsname, MAXPATHLEN,
4156 					    "%s/%s", poolname, ++cp);
4157 				}
4158 				VERIFY(nvlist_add_string(config,
4159 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4160 				kmem_free(dsname, MAXPATHLEN);
4161 			}
4162 			kmem_free(tmpname, MAXPATHLEN);
4163 		}
4164 
4165 		/*
4166 		 * Add the list of hot spares and level 2 cache devices.
4167 		 */
4168 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4169 		spa_add_spares(spa, config);
4170 		spa_add_l2cache(spa, config);
4171 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4172 	}
4173 
4174 	spa_unload(spa);
4175 	spa_deactivate(spa);
4176 	spa_remove(spa);
4177 	mutex_exit(&spa_namespace_lock);
4178 
4179 	return (config);
4180 }
4181 
4182 /*
4183  * Pool export/destroy
4184  *
4185  * The act of destroying or exporting a pool is very simple.  We make sure there
4186  * is no more pending I/O and any references to the pool are gone.  Then, we
4187  * update the pool state and sync all the labels to disk, removing the
4188  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4189  * we don't sync the labels or remove the configuration cache.
4190  */
4191 static int
4192 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4193     boolean_t force, boolean_t hardforce)
4194 {
4195 	spa_t *spa;
4196 
4197 	if (oldconfig)
4198 		*oldconfig = NULL;
4199 
4200 	if (!(spa_mode_global & FWRITE))
4201 		return (SET_ERROR(EROFS));
4202 
4203 	mutex_enter(&spa_namespace_lock);
4204 	if ((spa = spa_lookup(pool)) == NULL) {
4205 		mutex_exit(&spa_namespace_lock);
4206 		return (SET_ERROR(ENOENT));
4207 	}
4208 
4209 	/*
4210 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4211 	 * reacquire the namespace lock, and see if we can export.
4212 	 */
4213 	spa_open_ref(spa, FTAG);
4214 	mutex_exit(&spa_namespace_lock);
4215 	spa_async_suspend(spa);
4216 	mutex_enter(&spa_namespace_lock);
4217 	spa_close(spa, FTAG);
4218 
4219 	/*
4220 	 * The pool will be in core if it's openable,
4221 	 * in which case we can modify its state.
4222 	 */
4223 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4224 		/*
4225 		 * Objsets may be open only because they're dirty, so we
4226 		 * have to force it to sync before checking spa_refcnt.
4227 		 */
4228 		txg_wait_synced(spa->spa_dsl_pool, 0);
4229 		spa_evicting_os_wait(spa);
4230 
4231 		/*
4232 		 * A pool cannot be exported or destroyed if there are active
4233 		 * references.  If we are resetting a pool, allow references by
4234 		 * fault injection handlers.
4235 		 */
4236 		if (!spa_refcount_zero(spa) ||
4237 		    (spa->spa_inject_ref != 0 &&
4238 		    new_state != POOL_STATE_UNINITIALIZED)) {
4239 			spa_async_resume(spa);
4240 			mutex_exit(&spa_namespace_lock);
4241 			return (SET_ERROR(EBUSY));
4242 		}
4243 
4244 		/*
4245 		 * A pool cannot be exported if it has an active shared spare.
4246 		 * This is to prevent other pools stealing the active spare
4247 		 * from an exported pool. At user's own will, such pool can
4248 		 * be forcedly exported.
4249 		 */
4250 		if (!force && new_state == POOL_STATE_EXPORTED &&
4251 		    spa_has_active_shared_spare(spa)) {
4252 			spa_async_resume(spa);
4253 			mutex_exit(&spa_namespace_lock);
4254 			return (SET_ERROR(EXDEV));
4255 		}
4256 
4257 		/*
4258 		 * We want this to be reflected on every label,
4259 		 * so mark them all dirty.  spa_unload() will do the
4260 		 * final sync that pushes these changes out.
4261 		 */
4262 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4263 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4264 			spa->spa_state = new_state;
4265 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4266 			    TXG_DEFER_SIZE + 1;
4267 			vdev_config_dirty(spa->spa_root_vdev);
4268 			spa_config_exit(spa, SCL_ALL, FTAG);
4269 		}
4270 	}
4271 
4272 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4273 
4274 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4275 		spa_unload(spa);
4276 		spa_deactivate(spa);
4277 	}
4278 
4279 	if (oldconfig && spa->spa_config)
4280 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4281 
4282 	if (new_state != POOL_STATE_UNINITIALIZED) {
4283 		if (!hardforce)
4284 			spa_config_sync(spa, B_TRUE, B_TRUE);
4285 		spa_remove(spa);
4286 	}
4287 	mutex_exit(&spa_namespace_lock);
4288 
4289 	return (0);
4290 }
4291 
4292 /*
4293  * Destroy a storage pool.
4294  */
4295 int
4296 spa_destroy(char *pool)
4297 {
4298 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4299 	    B_FALSE, B_FALSE));
4300 }
4301 
4302 /*
4303  * Export a storage pool.
4304  */
4305 int
4306 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4307     boolean_t hardforce)
4308 {
4309 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4310 	    force, hardforce));
4311 }
4312 
4313 /*
4314  * Similar to spa_export(), this unloads the spa_t without actually removing it
4315  * from the namespace in any way.
4316  */
4317 int
4318 spa_reset(char *pool)
4319 {
4320 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4321 	    B_FALSE, B_FALSE));
4322 }
4323 
4324 /*
4325  * ==========================================================================
4326  * Device manipulation
4327  * ==========================================================================
4328  */
4329 
4330 /*
4331  * Add a device to a storage pool.
4332  */
4333 int
4334 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4335 {
4336 	uint64_t txg, id;
4337 	int error;
4338 	vdev_t *rvd = spa->spa_root_vdev;
4339 	vdev_t *vd, *tvd;
4340 	nvlist_t **spares, **l2cache;
4341 	uint_t nspares, nl2cache;
4342 
4343 	ASSERT(spa_writeable(spa));
4344 
4345 	txg = spa_vdev_enter(spa);
4346 
4347 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4348 	    VDEV_ALLOC_ADD)) != 0)
4349 		return (spa_vdev_exit(spa, NULL, txg, error));
4350 
4351 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4352 
4353 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4354 	    &nspares) != 0)
4355 		nspares = 0;
4356 
4357 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4358 	    &nl2cache) != 0)
4359 		nl2cache = 0;
4360 
4361 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4362 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4363 
4364 	if (vd->vdev_children != 0 &&
4365 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4366 		return (spa_vdev_exit(spa, vd, txg, error));
4367 
4368 	/*
4369 	 * We must validate the spares and l2cache devices after checking the
4370 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4371 	 */
4372 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4373 		return (spa_vdev_exit(spa, vd, txg, error));
4374 
4375 	/*
4376 	 * Transfer each new top-level vdev from vd to rvd.
4377 	 */
4378 	for (int c = 0; c < vd->vdev_children; c++) {
4379 
4380 		/*
4381 		 * Set the vdev id to the first hole, if one exists.
4382 		 */
4383 		for (id = 0; id < rvd->vdev_children; id++) {
4384 			if (rvd->vdev_child[id]->vdev_ishole) {
4385 				vdev_free(rvd->vdev_child[id]);
4386 				break;
4387 			}
4388 		}
4389 		tvd = vd->vdev_child[c];
4390 		vdev_remove_child(vd, tvd);
4391 		tvd->vdev_id = id;
4392 		vdev_add_child(rvd, tvd);
4393 		vdev_config_dirty(tvd);
4394 	}
4395 
4396 	if (nspares != 0) {
4397 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4398 		    ZPOOL_CONFIG_SPARES);
4399 		spa_load_spares(spa);
4400 		spa->spa_spares.sav_sync = B_TRUE;
4401 	}
4402 
4403 	if (nl2cache != 0) {
4404 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4405 		    ZPOOL_CONFIG_L2CACHE);
4406 		spa_load_l2cache(spa);
4407 		spa->spa_l2cache.sav_sync = B_TRUE;
4408 	}
4409 
4410 	/*
4411 	 * We have to be careful when adding new vdevs to an existing pool.
4412 	 * If other threads start allocating from these vdevs before we
4413 	 * sync the config cache, and we lose power, then upon reboot we may
4414 	 * fail to open the pool because there are DVAs that the config cache
4415 	 * can't translate.  Therefore, we first add the vdevs without
4416 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4417 	 * and then let spa_config_update() initialize the new metaslabs.
4418 	 *
4419 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4420 	 * if we lose power at any point in this sequence, the remaining
4421 	 * steps will be completed the next time we load the pool.
4422 	 */
4423 	(void) spa_vdev_exit(spa, vd, txg, 0);
4424 
4425 	mutex_enter(&spa_namespace_lock);
4426 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4427 	mutex_exit(&spa_namespace_lock);
4428 
4429 	return (0);
4430 }
4431 
4432 /*
4433  * Attach a device to a mirror.  The arguments are the path to any device
4434  * in the mirror, and the nvroot for the new device.  If the path specifies
4435  * a device that is not mirrored, we automatically insert the mirror vdev.
4436  *
4437  * If 'replacing' is specified, the new device is intended to replace the
4438  * existing device; in this case the two devices are made into their own
4439  * mirror using the 'replacing' vdev, which is functionally identical to
4440  * the mirror vdev (it actually reuses all the same ops) but has a few
4441  * extra rules: you can't attach to it after it's been created, and upon
4442  * completion of resilvering, the first disk (the one being replaced)
4443  * is automatically detached.
4444  */
4445 int
4446 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4447 {
4448 	uint64_t txg, dtl_max_txg;
4449 	vdev_t *rvd = spa->spa_root_vdev;
4450 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4451 	vdev_ops_t *pvops;
4452 	char *oldvdpath, *newvdpath;
4453 	int newvd_isspare;
4454 	int error;
4455 
4456 	ASSERT(spa_writeable(spa));
4457 
4458 	txg = spa_vdev_enter(spa);
4459 
4460 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4461 
4462 	if (oldvd == NULL)
4463 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4464 
4465 	if (!oldvd->vdev_ops->vdev_op_leaf)
4466 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4467 
4468 	pvd = oldvd->vdev_parent;
4469 
4470 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4471 	    VDEV_ALLOC_ATTACH)) != 0)
4472 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4473 
4474 	if (newrootvd->vdev_children != 1)
4475 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4476 
4477 	newvd = newrootvd->vdev_child[0];
4478 
4479 	if (!newvd->vdev_ops->vdev_op_leaf)
4480 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4481 
4482 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4483 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4484 
4485 	/*
4486 	 * Spares can't replace logs
4487 	 */
4488 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4489 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4490 
4491 	if (!replacing) {
4492 		/*
4493 		 * For attach, the only allowable parent is a mirror or the root
4494 		 * vdev.
4495 		 */
4496 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4497 		    pvd->vdev_ops != &vdev_root_ops)
4498 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4499 
4500 		pvops = &vdev_mirror_ops;
4501 	} else {
4502 		/*
4503 		 * Active hot spares can only be replaced by inactive hot
4504 		 * spares.
4505 		 */
4506 		if (pvd->vdev_ops == &vdev_spare_ops &&
4507 		    oldvd->vdev_isspare &&
4508 		    !spa_has_spare(spa, newvd->vdev_guid))
4509 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4510 
4511 		/*
4512 		 * If the source is a hot spare, and the parent isn't already a
4513 		 * spare, then we want to create a new hot spare.  Otherwise, we
4514 		 * want to create a replacing vdev.  The user is not allowed to
4515 		 * attach to a spared vdev child unless the 'isspare' state is
4516 		 * the same (spare replaces spare, non-spare replaces
4517 		 * non-spare).
4518 		 */
4519 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4520 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4521 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4522 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4523 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4524 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4525 		}
4526 
4527 		if (newvd->vdev_isspare)
4528 			pvops = &vdev_spare_ops;
4529 		else
4530 			pvops = &vdev_replacing_ops;
4531 	}
4532 
4533 	/*
4534 	 * Make sure the new device is big enough.
4535 	 */
4536 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4537 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4538 
4539 	/*
4540 	 * The new device cannot have a higher alignment requirement
4541 	 * than the top-level vdev.
4542 	 */
4543 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4544 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4545 
4546 	/*
4547 	 * If this is an in-place replacement, update oldvd's path and devid
4548 	 * to make it distinguishable from newvd, and unopenable from now on.
4549 	 */
4550 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4551 		spa_strfree(oldvd->vdev_path);
4552 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4553 		    KM_SLEEP);
4554 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4555 		    newvd->vdev_path, "old");
4556 		if (oldvd->vdev_devid != NULL) {
4557 			spa_strfree(oldvd->vdev_devid);
4558 			oldvd->vdev_devid = NULL;
4559 		}
4560 	}
4561 
4562 	/* mark the device being resilvered */
4563 	newvd->vdev_resilver_txg = txg;
4564 
4565 	/*
4566 	 * If the parent is not a mirror, or if we're replacing, insert the new
4567 	 * mirror/replacing/spare vdev above oldvd.
4568 	 */
4569 	if (pvd->vdev_ops != pvops)
4570 		pvd = vdev_add_parent(oldvd, pvops);
4571 
4572 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4573 	ASSERT(pvd->vdev_ops == pvops);
4574 	ASSERT(oldvd->vdev_parent == pvd);
4575 
4576 	/*
4577 	 * Extract the new device from its root and add it to pvd.
4578 	 */
4579 	vdev_remove_child(newrootvd, newvd);
4580 	newvd->vdev_id = pvd->vdev_children;
4581 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4582 	vdev_add_child(pvd, newvd);
4583 
4584 	tvd = newvd->vdev_top;
4585 	ASSERT(pvd->vdev_top == tvd);
4586 	ASSERT(tvd->vdev_parent == rvd);
4587 
4588 	vdev_config_dirty(tvd);
4589 
4590 	/*
4591 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4592 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4593 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4594 	 */
4595 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4596 
4597 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4598 	    dtl_max_txg - TXG_INITIAL);
4599 
4600 	if (newvd->vdev_isspare) {
4601 		spa_spare_activate(newvd);
4602 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4603 	}
4604 
4605 	oldvdpath = spa_strdup(oldvd->vdev_path);
4606 	newvdpath = spa_strdup(newvd->vdev_path);
4607 	newvd_isspare = newvd->vdev_isspare;
4608 
4609 	/*
4610 	 * Mark newvd's DTL dirty in this txg.
4611 	 */
4612 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4613 
4614 	/*
4615 	 * Schedule the resilver to restart in the future. We do this to
4616 	 * ensure that dmu_sync-ed blocks have been stitched into the
4617 	 * respective datasets.
4618 	 */
4619 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4620 
4621 	/*
4622 	 * Commit the config
4623 	 */
4624 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4625 
4626 	spa_history_log_internal(spa, "vdev attach", NULL,
4627 	    "%s vdev=%s %s vdev=%s",
4628 	    replacing && newvd_isspare ? "spare in" :
4629 	    replacing ? "replace" : "attach", newvdpath,
4630 	    replacing ? "for" : "to", oldvdpath);
4631 
4632 	spa_strfree(oldvdpath);
4633 	spa_strfree(newvdpath);
4634 
4635 	if (spa->spa_bootfs)
4636 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4637 
4638 	return (0);
4639 }
4640 
4641 /*
4642  * Detach a device from a mirror or replacing vdev.
4643  *
4644  * If 'replace_done' is specified, only detach if the parent
4645  * is a replacing vdev.
4646  */
4647 int
4648 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4649 {
4650 	uint64_t txg;
4651 	int error;
4652 	vdev_t *rvd = spa->spa_root_vdev;
4653 	vdev_t *vd, *pvd, *cvd, *tvd;
4654 	boolean_t unspare = B_FALSE;
4655 	uint64_t unspare_guid = 0;
4656 	char *vdpath;
4657 
4658 	ASSERT(spa_writeable(spa));
4659 
4660 	txg = spa_vdev_enter(spa);
4661 
4662 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4663 
4664 	if (vd == NULL)
4665 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4666 
4667 	if (!vd->vdev_ops->vdev_op_leaf)
4668 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4669 
4670 	pvd = vd->vdev_parent;
4671 
4672 	/*
4673 	 * If the parent/child relationship is not as expected, don't do it.
4674 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4675 	 * vdev that's replacing B with C.  The user's intent in replacing
4676 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4677 	 * the replace by detaching C, the expected behavior is to end up
4678 	 * M(A,B).  But suppose that right after deciding to detach C,
4679 	 * the replacement of B completes.  We would have M(A,C), and then
4680 	 * ask to detach C, which would leave us with just A -- not what
4681 	 * the user wanted.  To prevent this, we make sure that the
4682 	 * parent/child relationship hasn't changed -- in this example,
4683 	 * that C's parent is still the replacing vdev R.
4684 	 */
4685 	if (pvd->vdev_guid != pguid && pguid != 0)
4686 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4687 
4688 	/*
4689 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4690 	 */
4691 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4692 	    pvd->vdev_ops != &vdev_spare_ops)
4693 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4694 
4695 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4696 	    spa_version(spa) >= SPA_VERSION_SPARES);
4697 
4698 	/*
4699 	 * Only mirror, replacing, and spare vdevs support detach.
4700 	 */
4701 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4702 	    pvd->vdev_ops != &vdev_mirror_ops &&
4703 	    pvd->vdev_ops != &vdev_spare_ops)
4704 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4705 
4706 	/*
4707 	 * If this device has the only valid copy of some data,
4708 	 * we cannot safely detach it.
4709 	 */
4710 	if (vdev_dtl_required(vd))
4711 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4712 
4713 	ASSERT(pvd->vdev_children >= 2);
4714 
4715 	/*
4716 	 * If we are detaching the second disk from a replacing vdev, then
4717 	 * check to see if we changed the original vdev's path to have "/old"
4718 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4719 	 */
4720 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4721 	    vd->vdev_path != NULL) {
4722 		size_t len = strlen(vd->vdev_path);
4723 
4724 		for (int c = 0; c < pvd->vdev_children; c++) {
4725 			cvd = pvd->vdev_child[c];
4726 
4727 			if (cvd == vd || cvd->vdev_path == NULL)
4728 				continue;
4729 
4730 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4731 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4732 				spa_strfree(cvd->vdev_path);
4733 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4734 				break;
4735 			}
4736 		}
4737 	}
4738 
4739 	/*
4740 	 * If we are detaching the original disk from a spare, then it implies
4741 	 * that the spare should become a real disk, and be removed from the
4742 	 * active spare list for the pool.
4743 	 */
4744 	if (pvd->vdev_ops == &vdev_spare_ops &&
4745 	    vd->vdev_id == 0 &&
4746 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4747 		unspare = B_TRUE;
4748 
4749 	/*
4750 	 * Erase the disk labels so the disk can be used for other things.
4751 	 * This must be done after all other error cases are handled,
4752 	 * but before we disembowel vd (so we can still do I/O to it).
4753 	 * But if we can't do it, don't treat the error as fatal --
4754 	 * it may be that the unwritability of the disk is the reason
4755 	 * it's being detached!
4756 	 */
4757 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4758 
4759 	/*
4760 	 * Remove vd from its parent and compact the parent's children.
4761 	 */
4762 	vdev_remove_child(pvd, vd);
4763 	vdev_compact_children(pvd);
4764 
4765 	/*
4766 	 * Remember one of the remaining children so we can get tvd below.
4767 	 */
4768 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4769 
4770 	/*
4771 	 * If we need to remove the remaining child from the list of hot spares,
4772 	 * do it now, marking the vdev as no longer a spare in the process.
4773 	 * We must do this before vdev_remove_parent(), because that can
4774 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4775 	 * reason, we must remove the spare now, in the same txg as the detach;
4776 	 * otherwise someone could attach a new sibling, change the GUID, and
4777 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4778 	 */
4779 	if (unspare) {
4780 		ASSERT(cvd->vdev_isspare);
4781 		spa_spare_remove(cvd);
4782 		unspare_guid = cvd->vdev_guid;
4783 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4784 		cvd->vdev_unspare = B_TRUE;
4785 	}
4786 
4787 	/*
4788 	 * If the parent mirror/replacing vdev only has one child,
4789 	 * the parent is no longer needed.  Remove it from the tree.
4790 	 */
4791 	if (pvd->vdev_children == 1) {
4792 		if (pvd->vdev_ops == &vdev_spare_ops)
4793 			cvd->vdev_unspare = B_FALSE;
4794 		vdev_remove_parent(cvd);
4795 	}
4796 
4797 
4798 	/*
4799 	 * We don't set tvd until now because the parent we just removed
4800 	 * may have been the previous top-level vdev.
4801 	 */
4802 	tvd = cvd->vdev_top;
4803 	ASSERT(tvd->vdev_parent == rvd);
4804 
4805 	/*
4806 	 * Reevaluate the parent vdev state.
4807 	 */
4808 	vdev_propagate_state(cvd);
4809 
4810 	/*
4811 	 * If the 'autoexpand' property is set on the pool then automatically
4812 	 * try to expand the size of the pool. For example if the device we
4813 	 * just detached was smaller than the others, it may be possible to
4814 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4815 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4816 	 */
4817 	if (spa->spa_autoexpand) {
4818 		vdev_reopen(tvd);
4819 		vdev_expand(tvd, txg);
4820 	}
4821 
4822 	vdev_config_dirty(tvd);
4823 
4824 	/*
4825 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4826 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4827 	 * But first make sure we're not on any *other* txg's DTL list, to
4828 	 * prevent vd from being accessed after it's freed.
4829 	 */
4830 	vdpath = spa_strdup(vd->vdev_path);
4831 	for (int t = 0; t < TXG_SIZE; t++)
4832 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4833 	vd->vdev_detached = B_TRUE;
4834 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4835 
4836 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4837 
4838 	/* hang on to the spa before we release the lock */
4839 	spa_open_ref(spa, FTAG);
4840 
4841 	error = spa_vdev_exit(spa, vd, txg, 0);
4842 
4843 	spa_history_log_internal(spa, "detach", NULL,
4844 	    "vdev=%s", vdpath);
4845 	spa_strfree(vdpath);
4846 
4847 	/*
4848 	 * If this was the removal of the original device in a hot spare vdev,
4849 	 * then we want to go through and remove the device from the hot spare
4850 	 * list of every other pool.
4851 	 */
4852 	if (unspare) {
4853 		spa_t *altspa = NULL;
4854 
4855 		mutex_enter(&spa_namespace_lock);
4856 		while ((altspa = spa_next(altspa)) != NULL) {
4857 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4858 			    altspa == spa)
4859 				continue;
4860 
4861 			spa_open_ref(altspa, FTAG);
4862 			mutex_exit(&spa_namespace_lock);
4863 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4864 			mutex_enter(&spa_namespace_lock);
4865 			spa_close(altspa, FTAG);
4866 		}
4867 		mutex_exit(&spa_namespace_lock);
4868 
4869 		/* search the rest of the vdevs for spares to remove */
4870 		spa_vdev_resilver_done(spa);
4871 	}
4872 
4873 	/* all done with the spa; OK to release */
4874 	mutex_enter(&spa_namespace_lock);
4875 	spa_close(spa, FTAG);
4876 	mutex_exit(&spa_namespace_lock);
4877 
4878 	return (error);
4879 }
4880 
4881 /*
4882  * Split a set of devices from their mirrors, and create a new pool from them.
4883  */
4884 int
4885 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4886     nvlist_t *props, boolean_t exp)
4887 {
4888 	int error = 0;
4889 	uint64_t txg, *glist;
4890 	spa_t *newspa;
4891 	uint_t c, children, lastlog;
4892 	nvlist_t **child, *nvl, *tmp;
4893 	dmu_tx_t *tx;
4894 	char *altroot = NULL;
4895 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4896 	boolean_t activate_slog;
4897 
4898 	ASSERT(spa_writeable(spa));
4899 
4900 	txg = spa_vdev_enter(spa);
4901 
4902 	/* clear the log and flush everything up to now */
4903 	activate_slog = spa_passivate_log(spa);
4904 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4905 	error = spa_offline_log(spa);
4906 	txg = spa_vdev_config_enter(spa);
4907 
4908 	if (activate_slog)
4909 		spa_activate_log(spa);
4910 
4911 	if (error != 0)
4912 		return (spa_vdev_exit(spa, NULL, txg, error));
4913 
4914 	/* check new spa name before going any further */
4915 	if (spa_lookup(newname) != NULL)
4916 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4917 
4918 	/*
4919 	 * scan through all the children to ensure they're all mirrors
4920 	 */
4921 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4922 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4923 	    &children) != 0)
4924 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4925 
4926 	/* first, check to ensure we've got the right child count */
4927 	rvd = spa->spa_root_vdev;
4928 	lastlog = 0;
4929 	for (c = 0; c < rvd->vdev_children; c++) {
4930 		vdev_t *vd = rvd->vdev_child[c];
4931 
4932 		/* don't count the holes & logs as children */
4933 		if (vd->vdev_islog || vd->vdev_ishole) {
4934 			if (lastlog == 0)
4935 				lastlog = c;
4936 			continue;
4937 		}
4938 
4939 		lastlog = 0;
4940 	}
4941 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4942 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4943 
4944 	/* next, ensure no spare or cache devices are part of the split */
4945 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4946 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4947 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4948 
4949 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4950 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4951 
4952 	/* then, loop over each vdev and validate it */
4953 	for (c = 0; c < children; c++) {
4954 		uint64_t is_hole = 0;
4955 
4956 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4957 		    &is_hole);
4958 
4959 		if (is_hole != 0) {
4960 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4961 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4962 				continue;
4963 			} else {
4964 				error = SET_ERROR(EINVAL);
4965 				break;
4966 			}
4967 		}
4968 
4969 		/* which disk is going to be split? */
4970 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4971 		    &glist[c]) != 0) {
4972 			error = SET_ERROR(EINVAL);
4973 			break;
4974 		}
4975 
4976 		/* look it up in the spa */
4977 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4978 		if (vml[c] == NULL) {
4979 			error = SET_ERROR(ENODEV);
4980 			break;
4981 		}
4982 
4983 		/* make sure there's nothing stopping the split */
4984 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4985 		    vml[c]->vdev_islog ||
4986 		    vml[c]->vdev_ishole ||
4987 		    vml[c]->vdev_isspare ||
4988 		    vml[c]->vdev_isl2cache ||
4989 		    !vdev_writeable(vml[c]) ||
4990 		    vml[c]->vdev_children != 0 ||
4991 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4992 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4993 			error = SET_ERROR(EINVAL);
4994 			break;
4995 		}
4996 
4997 		if (vdev_dtl_required(vml[c])) {
4998 			error = SET_ERROR(EBUSY);
4999 			break;
5000 		}
5001 
5002 		/* we need certain info from the top level */
5003 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5004 		    vml[c]->vdev_top->vdev_ms_array) == 0);
5005 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5006 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5007 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5008 		    vml[c]->vdev_top->vdev_asize) == 0);
5009 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5010 		    vml[c]->vdev_top->vdev_ashift) == 0);
5011 	}
5012 
5013 	if (error != 0) {
5014 		kmem_free(vml, children * sizeof (vdev_t *));
5015 		kmem_free(glist, children * sizeof (uint64_t));
5016 		return (spa_vdev_exit(spa, NULL, txg, error));
5017 	}
5018 
5019 	/* stop writers from using the disks */
5020 	for (c = 0; c < children; c++) {
5021 		if (vml[c] != NULL)
5022 			vml[c]->vdev_offline = B_TRUE;
5023 	}
5024 	vdev_reopen(spa->spa_root_vdev);
5025 
5026 	/*
5027 	 * Temporarily record the splitting vdevs in the spa config.  This
5028 	 * will disappear once the config is regenerated.
5029 	 */
5030 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5031 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5032 	    glist, children) == 0);
5033 	kmem_free(glist, children * sizeof (uint64_t));
5034 
5035 	mutex_enter(&spa->spa_props_lock);
5036 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5037 	    nvl) == 0);
5038 	mutex_exit(&spa->spa_props_lock);
5039 	spa->spa_config_splitting = nvl;
5040 	vdev_config_dirty(spa->spa_root_vdev);
5041 
5042 	/* configure and create the new pool */
5043 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5044 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5045 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5046 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5047 	    spa_version(spa)) == 0);
5048 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5049 	    spa->spa_config_txg) == 0);
5050 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5051 	    spa_generate_guid(NULL)) == 0);
5052 	(void) nvlist_lookup_string(props,
5053 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5054 
5055 	/* add the new pool to the namespace */
5056 	newspa = spa_add(newname, config, altroot);
5057 	newspa->spa_config_txg = spa->spa_config_txg;
5058 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5059 
5060 	/* release the spa config lock, retaining the namespace lock */
5061 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5062 
5063 	if (zio_injection_enabled)
5064 		zio_handle_panic_injection(spa, FTAG, 1);
5065 
5066 	spa_activate(newspa, spa_mode_global);
5067 	spa_async_suspend(newspa);
5068 
5069 	/* create the new pool from the disks of the original pool */
5070 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5071 	if (error)
5072 		goto out;
5073 
5074 	/* if that worked, generate a real config for the new pool */
5075 	if (newspa->spa_root_vdev != NULL) {
5076 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5077 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5078 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5079 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5080 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5081 		    B_TRUE));
5082 	}
5083 
5084 	/* set the props */
5085 	if (props != NULL) {
5086 		spa_configfile_set(newspa, props, B_FALSE);
5087 		error = spa_prop_set(newspa, props);
5088 		if (error)
5089 			goto out;
5090 	}
5091 
5092 	/* flush everything */
5093 	txg = spa_vdev_config_enter(newspa);
5094 	vdev_config_dirty(newspa->spa_root_vdev);
5095 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5096 
5097 	if (zio_injection_enabled)
5098 		zio_handle_panic_injection(spa, FTAG, 2);
5099 
5100 	spa_async_resume(newspa);
5101 
5102 	/* finally, update the original pool's config */
5103 	txg = spa_vdev_config_enter(spa);
5104 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5105 	error = dmu_tx_assign(tx, TXG_WAIT);
5106 	if (error != 0)
5107 		dmu_tx_abort(tx);
5108 	for (c = 0; c < children; c++) {
5109 		if (vml[c] != NULL) {
5110 			vdev_split(vml[c]);
5111 			if (error == 0)
5112 				spa_history_log_internal(spa, "detach", tx,
5113 				    "vdev=%s", vml[c]->vdev_path);
5114 			vdev_free(vml[c]);
5115 		}
5116 	}
5117 	vdev_config_dirty(spa->spa_root_vdev);
5118 	spa->spa_config_splitting = NULL;
5119 	nvlist_free(nvl);
5120 	if (error == 0)
5121 		dmu_tx_commit(tx);
5122 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5123 
5124 	if (zio_injection_enabled)
5125 		zio_handle_panic_injection(spa, FTAG, 3);
5126 
5127 	/* split is complete; log a history record */
5128 	spa_history_log_internal(newspa, "split", NULL,
5129 	    "from pool %s", spa_name(spa));
5130 
5131 	kmem_free(vml, children * sizeof (vdev_t *));
5132 
5133 	/* if we're not going to mount the filesystems in userland, export */
5134 	if (exp)
5135 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5136 		    B_FALSE, B_FALSE);
5137 
5138 	return (error);
5139 
5140 out:
5141 	spa_unload(newspa);
5142 	spa_deactivate(newspa);
5143 	spa_remove(newspa);
5144 
5145 	txg = spa_vdev_config_enter(spa);
5146 
5147 	/* re-online all offlined disks */
5148 	for (c = 0; c < children; c++) {
5149 		if (vml[c] != NULL)
5150 			vml[c]->vdev_offline = B_FALSE;
5151 	}
5152 	vdev_reopen(spa->spa_root_vdev);
5153 
5154 	nvlist_free(spa->spa_config_splitting);
5155 	spa->spa_config_splitting = NULL;
5156 	(void) spa_vdev_exit(spa, NULL, txg, error);
5157 
5158 	kmem_free(vml, children * sizeof (vdev_t *));
5159 	return (error);
5160 }
5161 
5162 static nvlist_t *
5163 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5164 {
5165 	for (int i = 0; i < count; i++) {
5166 		uint64_t guid;
5167 
5168 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5169 		    &guid) == 0);
5170 
5171 		if (guid == target_guid)
5172 			return (nvpp[i]);
5173 	}
5174 
5175 	return (NULL);
5176 }
5177 
5178 static void
5179 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5180 	nvlist_t *dev_to_remove)
5181 {
5182 	nvlist_t **newdev = NULL;
5183 
5184 	if (count > 1)
5185 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5186 
5187 	for (int i = 0, j = 0; i < count; i++) {
5188 		if (dev[i] == dev_to_remove)
5189 			continue;
5190 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5191 	}
5192 
5193 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5194 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5195 
5196 	for (int i = 0; i < count - 1; i++)
5197 		nvlist_free(newdev[i]);
5198 
5199 	if (count > 1)
5200 		kmem_free(newdev, (count - 1) * sizeof (void *));
5201 }
5202 
5203 /*
5204  * Evacuate the device.
5205  */
5206 static int
5207 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5208 {
5209 	uint64_t txg;
5210 	int error = 0;
5211 
5212 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5213 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5214 	ASSERT(vd == vd->vdev_top);
5215 
5216 	/*
5217 	 * Evacuate the device.  We don't hold the config lock as writer
5218 	 * since we need to do I/O but we do keep the
5219 	 * spa_namespace_lock held.  Once this completes the device
5220 	 * should no longer have any blocks allocated on it.
5221 	 */
5222 	if (vd->vdev_islog) {
5223 		if (vd->vdev_stat.vs_alloc != 0)
5224 			error = spa_offline_log(spa);
5225 	} else {
5226 		error = SET_ERROR(ENOTSUP);
5227 	}
5228 
5229 	if (error)
5230 		return (error);
5231 
5232 	/*
5233 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5234 	 * associated with this vdev, and wait for these changes to sync.
5235 	 */
5236 	ASSERT0(vd->vdev_stat.vs_alloc);
5237 	txg = spa_vdev_config_enter(spa);
5238 	vd->vdev_removing = B_TRUE;
5239 	vdev_dirty_leaves(vd, VDD_DTL, txg);
5240 	vdev_config_dirty(vd);
5241 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5242 
5243 	return (0);
5244 }
5245 
5246 /*
5247  * Complete the removal by cleaning up the namespace.
5248  */
5249 static void
5250 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5251 {
5252 	vdev_t *rvd = spa->spa_root_vdev;
5253 	uint64_t id = vd->vdev_id;
5254 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5255 
5256 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5257 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5258 	ASSERT(vd == vd->vdev_top);
5259 
5260 	/*
5261 	 * Only remove any devices which are empty.
5262 	 */
5263 	if (vd->vdev_stat.vs_alloc != 0)
5264 		return;
5265 
5266 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5267 
5268 	if (list_link_active(&vd->vdev_state_dirty_node))
5269 		vdev_state_clean(vd);
5270 	if (list_link_active(&vd->vdev_config_dirty_node))
5271 		vdev_config_clean(vd);
5272 
5273 	vdev_free(vd);
5274 
5275 	if (last_vdev) {
5276 		vdev_compact_children(rvd);
5277 	} else {
5278 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5279 		vdev_add_child(rvd, vd);
5280 	}
5281 	vdev_config_dirty(rvd);
5282 
5283 	/*
5284 	 * Reassess the health of our root vdev.
5285 	 */
5286 	vdev_reopen(rvd);
5287 }
5288 
5289 /*
5290  * Remove a device from the pool -
5291  *
5292  * Removing a device from the vdev namespace requires several steps
5293  * and can take a significant amount of time.  As a result we use
5294  * the spa_vdev_config_[enter/exit] functions which allow us to
5295  * grab and release the spa_config_lock while still holding the namespace
5296  * lock.  During each step the configuration is synced out.
5297  *
5298  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5299  * devices.
5300  */
5301 int
5302 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5303 {
5304 	vdev_t *vd;
5305 	metaslab_group_t *mg;
5306 	nvlist_t **spares, **l2cache, *nv;
5307 	uint64_t txg = 0;
5308 	uint_t nspares, nl2cache;
5309 	int error = 0;
5310 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5311 
5312 	ASSERT(spa_writeable(spa));
5313 
5314 	if (!locked)
5315 		txg = spa_vdev_enter(spa);
5316 
5317 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5318 
5319 	if (spa->spa_spares.sav_vdevs != NULL &&
5320 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5321 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5322 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5323 		/*
5324 		 * Only remove the hot spare if it's not currently in use
5325 		 * in this pool.
5326 		 */
5327 		if (vd == NULL || unspare) {
5328 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5329 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5330 			spa_load_spares(spa);
5331 			spa->spa_spares.sav_sync = B_TRUE;
5332 		} else {
5333 			error = SET_ERROR(EBUSY);
5334 		}
5335 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5336 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5337 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5338 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5339 		/*
5340 		 * Cache devices can always be removed.
5341 		 */
5342 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5343 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5344 		spa_load_l2cache(spa);
5345 		spa->spa_l2cache.sav_sync = B_TRUE;
5346 	} else if (vd != NULL && vd->vdev_islog) {
5347 		ASSERT(!locked);
5348 		ASSERT(vd == vd->vdev_top);
5349 
5350 		mg = vd->vdev_mg;
5351 
5352 		/*
5353 		 * Stop allocating from this vdev.
5354 		 */
5355 		metaslab_group_passivate(mg);
5356 
5357 		/*
5358 		 * Wait for the youngest allocations and frees to sync,
5359 		 * and then wait for the deferral of those frees to finish.
5360 		 */
5361 		spa_vdev_config_exit(spa, NULL,
5362 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5363 
5364 		/*
5365 		 * Attempt to evacuate the vdev.
5366 		 */
5367 		error = spa_vdev_remove_evacuate(spa, vd);
5368 
5369 		txg = spa_vdev_config_enter(spa);
5370 
5371 		/*
5372 		 * If we couldn't evacuate the vdev, unwind.
5373 		 */
5374 		if (error) {
5375 			metaslab_group_activate(mg);
5376 			return (spa_vdev_exit(spa, NULL, txg, error));
5377 		}
5378 
5379 		/*
5380 		 * Clean up the vdev namespace.
5381 		 */
5382 		spa_vdev_remove_from_namespace(spa, vd);
5383 
5384 	} else if (vd != NULL) {
5385 		/*
5386 		 * Normal vdevs cannot be removed (yet).
5387 		 */
5388 		error = SET_ERROR(ENOTSUP);
5389 	} else {
5390 		/*
5391 		 * There is no vdev of any kind with the specified guid.
5392 		 */
5393 		error = SET_ERROR(ENOENT);
5394 	}
5395 
5396 	if (!locked)
5397 		return (spa_vdev_exit(spa, NULL, txg, error));
5398 
5399 	return (error);
5400 }
5401 
5402 /*
5403  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5404  * currently spared, so we can detach it.
5405  */
5406 static vdev_t *
5407 spa_vdev_resilver_done_hunt(vdev_t *vd)
5408 {
5409 	vdev_t *newvd, *oldvd;
5410 
5411 	for (int c = 0; c < vd->vdev_children; c++) {
5412 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5413 		if (oldvd != NULL)
5414 			return (oldvd);
5415 	}
5416 
5417 	/*
5418 	 * Check for a completed replacement.  We always consider the first
5419 	 * vdev in the list to be the oldest vdev, and the last one to be
5420 	 * the newest (see spa_vdev_attach() for how that works).  In
5421 	 * the case where the newest vdev is faulted, we will not automatically
5422 	 * remove it after a resilver completes.  This is OK as it will require
5423 	 * user intervention to determine which disk the admin wishes to keep.
5424 	 */
5425 	if (vd->vdev_ops == &vdev_replacing_ops) {
5426 		ASSERT(vd->vdev_children > 1);
5427 
5428 		newvd = vd->vdev_child[vd->vdev_children - 1];
5429 		oldvd = vd->vdev_child[0];
5430 
5431 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5432 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5433 		    !vdev_dtl_required(oldvd))
5434 			return (oldvd);
5435 	}
5436 
5437 	/*
5438 	 * Check for a completed resilver with the 'unspare' flag set.
5439 	 */
5440 	if (vd->vdev_ops == &vdev_spare_ops) {
5441 		vdev_t *first = vd->vdev_child[0];
5442 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5443 
5444 		if (last->vdev_unspare) {
5445 			oldvd = first;
5446 			newvd = last;
5447 		} else if (first->vdev_unspare) {
5448 			oldvd = last;
5449 			newvd = first;
5450 		} else {
5451 			oldvd = NULL;
5452 		}
5453 
5454 		if (oldvd != NULL &&
5455 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5456 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5457 		    !vdev_dtl_required(oldvd))
5458 			return (oldvd);
5459 
5460 		/*
5461 		 * If there are more than two spares attached to a disk,
5462 		 * and those spares are not required, then we want to
5463 		 * attempt to free them up now so that they can be used
5464 		 * by other pools.  Once we're back down to a single
5465 		 * disk+spare, we stop removing them.
5466 		 */
5467 		if (vd->vdev_children > 2) {
5468 			newvd = vd->vdev_child[1];
5469 
5470 			if (newvd->vdev_isspare && last->vdev_isspare &&
5471 			    vdev_dtl_empty(last, DTL_MISSING) &&
5472 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5473 			    !vdev_dtl_required(newvd))
5474 				return (newvd);
5475 		}
5476 	}
5477 
5478 	return (NULL);
5479 }
5480 
5481 static void
5482 spa_vdev_resilver_done(spa_t *spa)
5483 {
5484 	vdev_t *vd, *pvd, *ppvd;
5485 	uint64_t guid, sguid, pguid, ppguid;
5486 
5487 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5488 
5489 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5490 		pvd = vd->vdev_parent;
5491 		ppvd = pvd->vdev_parent;
5492 		guid = vd->vdev_guid;
5493 		pguid = pvd->vdev_guid;
5494 		ppguid = ppvd->vdev_guid;
5495 		sguid = 0;
5496 		/*
5497 		 * If we have just finished replacing a hot spared device, then
5498 		 * we need to detach the parent's first child (the original hot
5499 		 * spare) as well.
5500 		 */
5501 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5502 		    ppvd->vdev_children == 2) {
5503 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5504 			sguid = ppvd->vdev_child[1]->vdev_guid;
5505 		}
5506 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5507 
5508 		spa_config_exit(spa, SCL_ALL, FTAG);
5509 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5510 			return;
5511 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5512 			return;
5513 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5514 	}
5515 
5516 	spa_config_exit(spa, SCL_ALL, FTAG);
5517 }
5518 
5519 /*
5520  * Update the stored path or FRU for this vdev.
5521  */
5522 int
5523 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5524     boolean_t ispath)
5525 {
5526 	vdev_t *vd;
5527 	boolean_t sync = B_FALSE;
5528 
5529 	ASSERT(spa_writeable(spa));
5530 
5531 	spa_vdev_state_enter(spa, SCL_ALL);
5532 
5533 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5534 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5535 
5536 	if (!vd->vdev_ops->vdev_op_leaf)
5537 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5538 
5539 	if (ispath) {
5540 		if (strcmp(value, vd->vdev_path) != 0) {
5541 			spa_strfree(vd->vdev_path);
5542 			vd->vdev_path = spa_strdup(value);
5543 			sync = B_TRUE;
5544 		}
5545 	} else {
5546 		if (vd->vdev_fru == NULL) {
5547 			vd->vdev_fru = spa_strdup(value);
5548 			sync = B_TRUE;
5549 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5550 			spa_strfree(vd->vdev_fru);
5551 			vd->vdev_fru = spa_strdup(value);
5552 			sync = B_TRUE;
5553 		}
5554 	}
5555 
5556 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5557 }
5558 
5559 int
5560 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5561 {
5562 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5563 }
5564 
5565 int
5566 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5567 {
5568 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5569 }
5570 
5571 /*
5572  * ==========================================================================
5573  * SPA Scanning
5574  * ==========================================================================
5575  */
5576 
5577 int
5578 spa_scan_stop(spa_t *spa)
5579 {
5580 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5581 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5582 		return (SET_ERROR(EBUSY));
5583 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5584 }
5585 
5586 int
5587 spa_scan(spa_t *spa, pool_scan_func_t func)
5588 {
5589 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5590 
5591 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5592 		return (SET_ERROR(ENOTSUP));
5593 
5594 	/*
5595 	 * If a resilver was requested, but there is no DTL on a
5596 	 * writeable leaf device, we have nothing to do.
5597 	 */
5598 	if (func == POOL_SCAN_RESILVER &&
5599 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5600 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5601 		return (0);
5602 	}
5603 
5604 	return (dsl_scan(spa->spa_dsl_pool, func));
5605 }
5606 
5607 /*
5608  * ==========================================================================
5609  * SPA async task processing
5610  * ==========================================================================
5611  */
5612 
5613 static void
5614 spa_async_remove(spa_t *spa, vdev_t *vd)
5615 {
5616 	if (vd->vdev_remove_wanted) {
5617 		vd->vdev_remove_wanted = B_FALSE;
5618 		vd->vdev_delayed_close = B_FALSE;
5619 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5620 
5621 		/*
5622 		 * We want to clear the stats, but we don't want to do a full
5623 		 * vdev_clear() as that will cause us to throw away
5624 		 * degraded/faulted state as well as attempt to reopen the
5625 		 * device, all of which is a waste.
5626 		 */
5627 		vd->vdev_stat.vs_read_errors = 0;
5628 		vd->vdev_stat.vs_write_errors = 0;
5629 		vd->vdev_stat.vs_checksum_errors = 0;
5630 
5631 		vdev_state_dirty(vd->vdev_top);
5632 	}
5633 
5634 	for (int c = 0; c < vd->vdev_children; c++)
5635 		spa_async_remove(spa, vd->vdev_child[c]);
5636 }
5637 
5638 static void
5639 spa_async_probe(spa_t *spa, vdev_t *vd)
5640 {
5641 	if (vd->vdev_probe_wanted) {
5642 		vd->vdev_probe_wanted = B_FALSE;
5643 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5644 	}
5645 
5646 	for (int c = 0; c < vd->vdev_children; c++)
5647 		spa_async_probe(spa, vd->vdev_child[c]);
5648 }
5649 
5650 static void
5651 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5652 {
5653 	sysevent_id_t eid;
5654 	nvlist_t *attr;
5655 	char *physpath;
5656 
5657 	if (!spa->spa_autoexpand)
5658 		return;
5659 
5660 	for (int c = 0; c < vd->vdev_children; c++) {
5661 		vdev_t *cvd = vd->vdev_child[c];
5662 		spa_async_autoexpand(spa, cvd);
5663 	}
5664 
5665 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5666 		return;
5667 
5668 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5669 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5670 
5671 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5672 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5673 
5674 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5675 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5676 
5677 	nvlist_free(attr);
5678 	kmem_free(physpath, MAXPATHLEN);
5679 }
5680 
5681 static void
5682 spa_async_thread(spa_t *spa)
5683 {
5684 	int tasks;
5685 
5686 	ASSERT(spa->spa_sync_on);
5687 
5688 	mutex_enter(&spa->spa_async_lock);
5689 	tasks = spa->spa_async_tasks;
5690 	spa->spa_async_tasks = 0;
5691 	mutex_exit(&spa->spa_async_lock);
5692 
5693 	/*
5694 	 * See if the config needs to be updated.
5695 	 */
5696 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5697 		uint64_t old_space, new_space;
5698 
5699 		mutex_enter(&spa_namespace_lock);
5700 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5701 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5702 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5703 		mutex_exit(&spa_namespace_lock);
5704 
5705 		/*
5706 		 * If the pool grew as a result of the config update,
5707 		 * then log an internal history event.
5708 		 */
5709 		if (new_space != old_space) {
5710 			spa_history_log_internal(spa, "vdev online", NULL,
5711 			    "pool '%s' size: %llu(+%llu)",
5712 			    spa_name(spa), new_space, new_space - old_space);
5713 		}
5714 	}
5715 
5716 	/*
5717 	 * See if any devices need to be marked REMOVED.
5718 	 */
5719 	if (tasks & SPA_ASYNC_REMOVE) {
5720 		spa_vdev_state_enter(spa, SCL_NONE);
5721 		spa_async_remove(spa, spa->spa_root_vdev);
5722 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5723 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5724 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5725 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5726 		(void) spa_vdev_state_exit(spa, NULL, 0);
5727 	}
5728 
5729 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5730 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5731 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5732 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5733 	}
5734 
5735 	/*
5736 	 * See if any devices need to be probed.
5737 	 */
5738 	if (tasks & SPA_ASYNC_PROBE) {
5739 		spa_vdev_state_enter(spa, SCL_NONE);
5740 		spa_async_probe(spa, spa->spa_root_vdev);
5741 		(void) spa_vdev_state_exit(spa, NULL, 0);
5742 	}
5743 
5744 	/*
5745 	 * If any devices are done replacing, detach them.
5746 	 */
5747 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5748 		spa_vdev_resilver_done(spa);
5749 
5750 	/*
5751 	 * Kick off a resilver.
5752 	 */
5753 	if (tasks & SPA_ASYNC_RESILVER)
5754 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5755 
5756 	/*
5757 	 * Let the world know that we're done.
5758 	 */
5759 	mutex_enter(&spa->spa_async_lock);
5760 	spa->spa_async_thread = NULL;
5761 	cv_broadcast(&spa->spa_async_cv);
5762 	mutex_exit(&spa->spa_async_lock);
5763 	thread_exit();
5764 }
5765 
5766 void
5767 spa_async_suspend(spa_t *spa)
5768 {
5769 	mutex_enter(&spa->spa_async_lock);
5770 	spa->spa_async_suspended++;
5771 	while (spa->spa_async_thread != NULL)
5772 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5773 	mutex_exit(&spa->spa_async_lock);
5774 }
5775 
5776 void
5777 spa_async_resume(spa_t *spa)
5778 {
5779 	mutex_enter(&spa->spa_async_lock);
5780 	ASSERT(spa->spa_async_suspended != 0);
5781 	spa->spa_async_suspended--;
5782 	mutex_exit(&spa->spa_async_lock);
5783 }
5784 
5785 static boolean_t
5786 spa_async_tasks_pending(spa_t *spa)
5787 {
5788 	uint_t non_config_tasks;
5789 	uint_t config_task;
5790 	boolean_t config_task_suspended;
5791 
5792 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5793 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5794 	if (spa->spa_ccw_fail_time == 0) {
5795 		config_task_suspended = B_FALSE;
5796 	} else {
5797 		config_task_suspended =
5798 		    (gethrtime() - spa->spa_ccw_fail_time) <
5799 		    (zfs_ccw_retry_interval * NANOSEC);
5800 	}
5801 
5802 	return (non_config_tasks || (config_task && !config_task_suspended));
5803 }
5804 
5805 static void
5806 spa_async_dispatch(spa_t *spa)
5807 {
5808 	mutex_enter(&spa->spa_async_lock);
5809 	if (spa_async_tasks_pending(spa) &&
5810 	    !spa->spa_async_suspended &&
5811 	    spa->spa_async_thread == NULL &&
5812 	    rootdir != NULL)
5813 		spa->spa_async_thread = thread_create(NULL, 0,
5814 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5815 	mutex_exit(&spa->spa_async_lock);
5816 }
5817 
5818 void
5819 spa_async_request(spa_t *spa, int task)
5820 {
5821 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5822 	mutex_enter(&spa->spa_async_lock);
5823 	spa->spa_async_tasks |= task;
5824 	mutex_exit(&spa->spa_async_lock);
5825 }
5826 
5827 /*
5828  * ==========================================================================
5829  * SPA syncing routines
5830  * ==========================================================================
5831  */
5832 
5833 static int
5834 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5835 {
5836 	bpobj_t *bpo = arg;
5837 	bpobj_enqueue(bpo, bp, tx);
5838 	return (0);
5839 }
5840 
5841 static int
5842 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5843 {
5844 	zio_t *zio = arg;
5845 
5846 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5847 	    zio->io_flags));
5848 	return (0);
5849 }
5850 
5851 /*
5852  * Note: this simple function is not inlined to make it easier to dtrace the
5853  * amount of time spent syncing frees.
5854  */
5855 static void
5856 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5857 {
5858 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5859 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5860 	VERIFY(zio_wait(zio) == 0);
5861 }
5862 
5863 /*
5864  * Note: this simple function is not inlined to make it easier to dtrace the
5865  * amount of time spent syncing deferred frees.
5866  */
5867 static void
5868 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5869 {
5870 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5871 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5872 	    spa_free_sync_cb, zio, tx), ==, 0);
5873 	VERIFY0(zio_wait(zio));
5874 }
5875 
5876 
5877 static void
5878 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5879 {
5880 	char *packed = NULL;
5881 	size_t bufsize;
5882 	size_t nvsize = 0;
5883 	dmu_buf_t *db;
5884 
5885 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5886 
5887 	/*
5888 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5889 	 * information.  This avoids the dmu_buf_will_dirty() path and
5890 	 * saves us a pre-read to get data we don't actually care about.
5891 	 */
5892 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5893 	packed = kmem_alloc(bufsize, KM_SLEEP);
5894 
5895 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5896 	    KM_SLEEP) == 0);
5897 	bzero(packed + nvsize, bufsize - nvsize);
5898 
5899 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5900 
5901 	kmem_free(packed, bufsize);
5902 
5903 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5904 	dmu_buf_will_dirty(db, tx);
5905 	*(uint64_t *)db->db_data = nvsize;
5906 	dmu_buf_rele(db, FTAG);
5907 }
5908 
5909 static void
5910 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5911     const char *config, const char *entry)
5912 {
5913 	nvlist_t *nvroot;
5914 	nvlist_t **list;
5915 	int i;
5916 
5917 	if (!sav->sav_sync)
5918 		return;
5919 
5920 	/*
5921 	 * Update the MOS nvlist describing the list of available devices.
5922 	 * spa_validate_aux() will have already made sure this nvlist is
5923 	 * valid and the vdevs are labeled appropriately.
5924 	 */
5925 	if (sav->sav_object == 0) {
5926 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5927 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5928 		    sizeof (uint64_t), tx);
5929 		VERIFY(zap_update(spa->spa_meta_objset,
5930 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5931 		    &sav->sav_object, tx) == 0);
5932 	}
5933 
5934 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5935 	if (sav->sav_count == 0) {
5936 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5937 	} else {
5938 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5939 		for (i = 0; i < sav->sav_count; i++)
5940 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5941 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5942 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5943 		    sav->sav_count) == 0);
5944 		for (i = 0; i < sav->sav_count; i++)
5945 			nvlist_free(list[i]);
5946 		kmem_free(list, sav->sav_count * sizeof (void *));
5947 	}
5948 
5949 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5950 	nvlist_free(nvroot);
5951 
5952 	sav->sav_sync = B_FALSE;
5953 }
5954 
5955 static void
5956 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5957 {
5958 	nvlist_t *config;
5959 
5960 	if (list_is_empty(&spa->spa_config_dirty_list))
5961 		return;
5962 
5963 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5964 
5965 	config = spa_config_generate(spa, spa->spa_root_vdev,
5966 	    dmu_tx_get_txg(tx), B_FALSE);
5967 
5968 	/*
5969 	 * If we're upgrading the spa version then make sure that
5970 	 * the config object gets updated with the correct version.
5971 	 */
5972 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5973 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5974 		    spa->spa_uberblock.ub_version);
5975 
5976 	spa_config_exit(spa, SCL_STATE, FTAG);
5977 
5978 	if (spa->spa_config_syncing)
5979 		nvlist_free(spa->spa_config_syncing);
5980 	spa->spa_config_syncing = config;
5981 
5982 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5983 }
5984 
5985 static void
5986 spa_sync_version(void *arg, dmu_tx_t *tx)
5987 {
5988 	uint64_t *versionp = arg;
5989 	uint64_t version = *versionp;
5990 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5991 
5992 	/*
5993 	 * Setting the version is special cased when first creating the pool.
5994 	 */
5995 	ASSERT(tx->tx_txg != TXG_INITIAL);
5996 
5997 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5998 	ASSERT(version >= spa_version(spa));
5999 
6000 	spa->spa_uberblock.ub_version = version;
6001 	vdev_config_dirty(spa->spa_root_vdev);
6002 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6003 }
6004 
6005 /*
6006  * Set zpool properties.
6007  */
6008 static void
6009 spa_sync_props(void *arg, dmu_tx_t *tx)
6010 {
6011 	nvlist_t *nvp = arg;
6012 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6013 	objset_t *mos = spa->spa_meta_objset;
6014 	nvpair_t *elem = NULL;
6015 
6016 	mutex_enter(&spa->spa_props_lock);
6017 
6018 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6019 		uint64_t intval;
6020 		char *strval, *fname;
6021 		zpool_prop_t prop;
6022 		const char *propname;
6023 		zprop_type_t proptype;
6024 		spa_feature_t fid;
6025 
6026 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6027 		case ZPROP_INVAL:
6028 			/*
6029 			 * We checked this earlier in spa_prop_validate().
6030 			 */
6031 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6032 
6033 			fname = strchr(nvpair_name(elem), '@') + 1;
6034 			VERIFY0(zfeature_lookup_name(fname, &fid));
6035 
6036 			spa_feature_enable(spa, fid, tx);
6037 			spa_history_log_internal(spa, "set", tx,
6038 			    "%s=enabled", nvpair_name(elem));
6039 			break;
6040 
6041 		case ZPOOL_PROP_VERSION:
6042 			intval = fnvpair_value_uint64(elem);
6043 			/*
6044 			 * The version is synced seperatly before other
6045 			 * properties and should be correct by now.
6046 			 */
6047 			ASSERT3U(spa_version(spa), >=, intval);
6048 			break;
6049 
6050 		case ZPOOL_PROP_ALTROOT:
6051 			/*
6052 			 * 'altroot' is a non-persistent property. It should
6053 			 * have been set temporarily at creation or import time.
6054 			 */
6055 			ASSERT(spa->spa_root != NULL);
6056 			break;
6057 
6058 		case ZPOOL_PROP_READONLY:
6059 		case ZPOOL_PROP_CACHEFILE:
6060 			/*
6061 			 * 'readonly' and 'cachefile' are also non-persisitent
6062 			 * properties.
6063 			 */
6064 			break;
6065 		case ZPOOL_PROP_COMMENT:
6066 			strval = fnvpair_value_string(elem);
6067 			if (spa->spa_comment != NULL)
6068 				spa_strfree(spa->spa_comment);
6069 			spa->spa_comment = spa_strdup(strval);
6070 			/*
6071 			 * We need to dirty the configuration on all the vdevs
6072 			 * so that their labels get updated.  It's unnecessary
6073 			 * to do this for pool creation since the vdev's
6074 			 * configuratoin has already been dirtied.
6075 			 */
6076 			if (tx->tx_txg != TXG_INITIAL)
6077 				vdev_config_dirty(spa->spa_root_vdev);
6078 			spa_history_log_internal(spa, "set", tx,
6079 			    "%s=%s", nvpair_name(elem), strval);
6080 			break;
6081 		default:
6082 			/*
6083 			 * Set pool property values in the poolprops mos object.
6084 			 */
6085 			if (spa->spa_pool_props_object == 0) {
6086 				spa->spa_pool_props_object =
6087 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6088 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6089 				    tx);
6090 			}
6091 
6092 			/* normalize the property name */
6093 			propname = zpool_prop_to_name(prop);
6094 			proptype = zpool_prop_get_type(prop);
6095 
6096 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6097 				ASSERT(proptype == PROP_TYPE_STRING);
6098 				strval = fnvpair_value_string(elem);
6099 				VERIFY0(zap_update(mos,
6100 				    spa->spa_pool_props_object, propname,
6101 				    1, strlen(strval) + 1, strval, tx));
6102 				spa_history_log_internal(spa, "set", tx,
6103 				    "%s=%s", nvpair_name(elem), strval);
6104 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6105 				intval = fnvpair_value_uint64(elem);
6106 
6107 				if (proptype == PROP_TYPE_INDEX) {
6108 					const char *unused;
6109 					VERIFY0(zpool_prop_index_to_string(
6110 					    prop, intval, &unused));
6111 				}
6112 				VERIFY0(zap_update(mos,
6113 				    spa->spa_pool_props_object, propname,
6114 				    8, 1, &intval, tx));
6115 				spa_history_log_internal(spa, "set", tx,
6116 				    "%s=%lld", nvpair_name(elem), intval);
6117 			} else {
6118 				ASSERT(0); /* not allowed */
6119 			}
6120 
6121 			switch (prop) {
6122 			case ZPOOL_PROP_DELEGATION:
6123 				spa->spa_delegation = intval;
6124 				break;
6125 			case ZPOOL_PROP_BOOTFS:
6126 				spa->spa_bootfs = intval;
6127 				break;
6128 			case ZPOOL_PROP_FAILUREMODE:
6129 				spa->spa_failmode = intval;
6130 				break;
6131 			case ZPOOL_PROP_AUTOEXPAND:
6132 				spa->spa_autoexpand = intval;
6133 				if (tx->tx_txg != TXG_INITIAL)
6134 					spa_async_request(spa,
6135 					    SPA_ASYNC_AUTOEXPAND);
6136 				break;
6137 			case ZPOOL_PROP_DEDUPDITTO:
6138 				spa->spa_dedup_ditto = intval;
6139 				break;
6140 			default:
6141 				break;
6142 			}
6143 		}
6144 
6145 	}
6146 
6147 	mutex_exit(&spa->spa_props_lock);
6148 }
6149 
6150 /*
6151  * Perform one-time upgrade on-disk changes.  spa_version() does not
6152  * reflect the new version this txg, so there must be no changes this
6153  * txg to anything that the upgrade code depends on after it executes.
6154  * Therefore this must be called after dsl_pool_sync() does the sync
6155  * tasks.
6156  */
6157 static void
6158 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6159 {
6160 	dsl_pool_t *dp = spa->spa_dsl_pool;
6161 
6162 	ASSERT(spa->spa_sync_pass == 1);
6163 
6164 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6165 
6166 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6167 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6168 		dsl_pool_create_origin(dp, tx);
6169 
6170 		/* Keeping the origin open increases spa_minref */
6171 		spa->spa_minref += 3;
6172 	}
6173 
6174 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6175 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6176 		dsl_pool_upgrade_clones(dp, tx);
6177 	}
6178 
6179 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6180 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6181 		dsl_pool_upgrade_dir_clones(dp, tx);
6182 
6183 		/* Keeping the freedir open increases spa_minref */
6184 		spa->spa_minref += 3;
6185 	}
6186 
6187 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6188 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6189 		spa_feature_create_zap_objects(spa, tx);
6190 	}
6191 
6192 	/*
6193 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6194 	 * when possibility to use lz4 compression for metadata was added
6195 	 * Old pools that have this feature enabled must be upgraded to have
6196 	 * this feature active
6197 	 */
6198 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6199 		boolean_t lz4_en = spa_feature_is_enabled(spa,
6200 		    SPA_FEATURE_LZ4_COMPRESS);
6201 		boolean_t lz4_ac = spa_feature_is_active(spa,
6202 		    SPA_FEATURE_LZ4_COMPRESS);
6203 
6204 		if (lz4_en && !lz4_ac)
6205 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6206 	}
6207 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6208 }
6209 
6210 /*
6211  * Sync the specified transaction group.  New blocks may be dirtied as
6212  * part of the process, so we iterate until it converges.
6213  */
6214 void
6215 spa_sync(spa_t *spa, uint64_t txg)
6216 {
6217 	dsl_pool_t *dp = spa->spa_dsl_pool;
6218 	objset_t *mos = spa->spa_meta_objset;
6219 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6220 	vdev_t *rvd = spa->spa_root_vdev;
6221 	vdev_t *vd;
6222 	dmu_tx_t *tx;
6223 	int error;
6224 
6225 	VERIFY(spa_writeable(spa));
6226 
6227 	/*
6228 	 * Lock out configuration changes.
6229 	 */
6230 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6231 
6232 	spa->spa_syncing_txg = txg;
6233 	spa->spa_sync_pass = 0;
6234 
6235 	/*
6236 	 * If there are any pending vdev state changes, convert them
6237 	 * into config changes that go out with this transaction group.
6238 	 */
6239 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6240 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6241 		/*
6242 		 * We need the write lock here because, for aux vdevs,
6243 		 * calling vdev_config_dirty() modifies sav_config.
6244 		 * This is ugly and will become unnecessary when we
6245 		 * eliminate the aux vdev wart by integrating all vdevs
6246 		 * into the root vdev tree.
6247 		 */
6248 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6249 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6250 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6251 			vdev_state_clean(vd);
6252 			vdev_config_dirty(vd);
6253 		}
6254 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6255 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6256 	}
6257 	spa_config_exit(spa, SCL_STATE, FTAG);
6258 
6259 	tx = dmu_tx_create_assigned(dp, txg);
6260 
6261 	spa->spa_sync_starttime = gethrtime();
6262 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6263 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6264 
6265 	/*
6266 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6267 	 * set spa_deflate if we have no raid-z vdevs.
6268 	 */
6269 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6270 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6271 		int i;
6272 
6273 		for (i = 0; i < rvd->vdev_children; i++) {
6274 			vd = rvd->vdev_child[i];
6275 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6276 				break;
6277 		}
6278 		if (i == rvd->vdev_children) {
6279 			spa->spa_deflate = TRUE;
6280 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6281 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6282 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6283 		}
6284 	}
6285 
6286 	/*
6287 	 * Iterate to convergence.
6288 	 */
6289 	do {
6290 		int pass = ++spa->spa_sync_pass;
6291 
6292 		spa_sync_config_object(spa, tx);
6293 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6294 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6295 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6296 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6297 		spa_errlog_sync(spa, txg);
6298 		dsl_pool_sync(dp, txg);
6299 
6300 		if (pass < zfs_sync_pass_deferred_free) {
6301 			spa_sync_frees(spa, free_bpl, tx);
6302 		} else {
6303 			/*
6304 			 * We can not defer frees in pass 1, because
6305 			 * we sync the deferred frees later in pass 1.
6306 			 */
6307 			ASSERT3U(pass, >, 1);
6308 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6309 			    &spa->spa_deferred_bpobj, tx);
6310 		}
6311 
6312 		ddt_sync(spa, txg);
6313 		dsl_scan_sync(dp, tx);
6314 
6315 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6316 			vdev_sync(vd, txg);
6317 
6318 		if (pass == 1) {
6319 			spa_sync_upgrades(spa, tx);
6320 			ASSERT3U(txg, >=,
6321 			    spa->spa_uberblock.ub_rootbp.blk_birth);
6322 			/*
6323 			 * Note: We need to check if the MOS is dirty
6324 			 * because we could have marked the MOS dirty
6325 			 * without updating the uberblock (e.g. if we
6326 			 * have sync tasks but no dirty user data).  We
6327 			 * need to check the uberblock's rootbp because
6328 			 * it is updated if we have synced out dirty
6329 			 * data (though in this case the MOS will most
6330 			 * likely also be dirty due to second order
6331 			 * effects, we don't want to rely on that here).
6332 			 */
6333 			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6334 			    !dmu_objset_is_dirty(mos, txg)) {
6335 				/*
6336 				 * Nothing changed on the first pass,
6337 				 * therefore this TXG is a no-op.  Avoid
6338 				 * syncing deferred frees, so that we
6339 				 * can keep this TXG as a no-op.
6340 				 */
6341 				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6342 				    txg));
6343 				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6344 				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6345 				break;
6346 			}
6347 			spa_sync_deferred_frees(spa, tx);
6348 		}
6349 
6350 	} while (dmu_objset_is_dirty(mos, txg));
6351 
6352 	/*
6353 	 * Rewrite the vdev configuration (which includes the uberblock)
6354 	 * to commit the transaction group.
6355 	 *
6356 	 * If there are no dirty vdevs, we sync the uberblock to a few
6357 	 * random top-level vdevs that are known to be visible in the
6358 	 * config cache (see spa_vdev_add() for a complete description).
6359 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6360 	 */
6361 	for (;;) {
6362 		/*
6363 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6364 		 * while we're attempting to write the vdev labels.
6365 		 */
6366 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6367 
6368 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6369 			vdev_t *svd[SPA_DVAS_PER_BP];
6370 			int svdcount = 0;
6371 			int children = rvd->vdev_children;
6372 			int c0 = spa_get_random(children);
6373 
6374 			for (int c = 0; c < children; c++) {
6375 				vd = rvd->vdev_child[(c0 + c) % children];
6376 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6377 					continue;
6378 				svd[svdcount++] = vd;
6379 				if (svdcount == SPA_DVAS_PER_BP)
6380 					break;
6381 			}
6382 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6383 			if (error != 0)
6384 				error = vdev_config_sync(svd, svdcount, txg,
6385 				    B_TRUE);
6386 		} else {
6387 			error = vdev_config_sync(rvd->vdev_child,
6388 			    rvd->vdev_children, txg, B_FALSE);
6389 			if (error != 0)
6390 				error = vdev_config_sync(rvd->vdev_child,
6391 				    rvd->vdev_children, txg, B_TRUE);
6392 		}
6393 
6394 		if (error == 0)
6395 			spa->spa_last_synced_guid = rvd->vdev_guid;
6396 
6397 		spa_config_exit(spa, SCL_STATE, FTAG);
6398 
6399 		if (error == 0)
6400 			break;
6401 		zio_suspend(spa, NULL);
6402 		zio_resume_wait(spa);
6403 	}
6404 	dmu_tx_commit(tx);
6405 
6406 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6407 
6408 	/*
6409 	 * Clear the dirty config list.
6410 	 */
6411 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6412 		vdev_config_clean(vd);
6413 
6414 	/*
6415 	 * Now that the new config has synced transactionally,
6416 	 * let it become visible to the config cache.
6417 	 */
6418 	if (spa->spa_config_syncing != NULL) {
6419 		spa_config_set(spa, spa->spa_config_syncing);
6420 		spa->spa_config_txg = txg;
6421 		spa->spa_config_syncing = NULL;
6422 	}
6423 
6424 	spa->spa_ubsync = spa->spa_uberblock;
6425 
6426 	dsl_pool_sync_done(dp, txg);
6427 
6428 	/*
6429 	 * Update usable space statistics.
6430 	 */
6431 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6432 		vdev_sync_done(vd, txg);
6433 
6434 	spa_update_dspace(spa);
6435 
6436 	/*
6437 	 * It had better be the case that we didn't dirty anything
6438 	 * since vdev_config_sync().
6439 	 */
6440 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6441 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6442 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6443 
6444 	spa->spa_sync_pass = 0;
6445 
6446 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6447 
6448 	spa_handle_ignored_writes(spa);
6449 
6450 	/*
6451 	 * If any async tasks have been requested, kick them off.
6452 	 */
6453 	spa_async_dispatch(spa);
6454 }
6455 
6456 /*
6457  * Sync all pools.  We don't want to hold the namespace lock across these
6458  * operations, so we take a reference on the spa_t and drop the lock during the
6459  * sync.
6460  */
6461 void
6462 spa_sync_allpools(void)
6463 {
6464 	spa_t *spa = NULL;
6465 	mutex_enter(&spa_namespace_lock);
6466 	while ((spa = spa_next(spa)) != NULL) {
6467 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6468 		    !spa_writeable(spa) || spa_suspended(spa))
6469 			continue;
6470 		spa_open_ref(spa, FTAG);
6471 		mutex_exit(&spa_namespace_lock);
6472 		txg_wait_synced(spa_get_dsl(spa), 0);
6473 		mutex_enter(&spa_namespace_lock);
6474 		spa_close(spa, FTAG);
6475 	}
6476 	mutex_exit(&spa_namespace_lock);
6477 }
6478 
6479 /*
6480  * ==========================================================================
6481  * Miscellaneous routines
6482  * ==========================================================================
6483  */
6484 
6485 /*
6486  * Remove all pools in the system.
6487  */
6488 void
6489 spa_evict_all(void)
6490 {
6491 	spa_t *spa;
6492 
6493 	/*
6494 	 * Remove all cached state.  All pools should be closed now,
6495 	 * so every spa in the AVL tree should be unreferenced.
6496 	 */
6497 	mutex_enter(&spa_namespace_lock);
6498 	while ((spa = spa_next(NULL)) != NULL) {
6499 		/*
6500 		 * Stop async tasks.  The async thread may need to detach
6501 		 * a device that's been replaced, which requires grabbing
6502 		 * spa_namespace_lock, so we must drop it here.
6503 		 */
6504 		spa_open_ref(spa, FTAG);
6505 		mutex_exit(&spa_namespace_lock);
6506 		spa_async_suspend(spa);
6507 		mutex_enter(&spa_namespace_lock);
6508 		spa_close(spa, FTAG);
6509 
6510 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6511 			spa_unload(spa);
6512 			spa_deactivate(spa);
6513 		}
6514 		spa_remove(spa);
6515 	}
6516 	mutex_exit(&spa_namespace_lock);
6517 }
6518 
6519 vdev_t *
6520 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6521 {
6522 	vdev_t *vd;
6523 	int i;
6524 
6525 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6526 		return (vd);
6527 
6528 	if (aux) {
6529 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6530 			vd = spa->spa_l2cache.sav_vdevs[i];
6531 			if (vd->vdev_guid == guid)
6532 				return (vd);
6533 		}
6534 
6535 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6536 			vd = spa->spa_spares.sav_vdevs[i];
6537 			if (vd->vdev_guid == guid)
6538 				return (vd);
6539 		}
6540 	}
6541 
6542 	return (NULL);
6543 }
6544 
6545 void
6546 spa_upgrade(spa_t *spa, uint64_t version)
6547 {
6548 	ASSERT(spa_writeable(spa));
6549 
6550 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6551 
6552 	/*
6553 	 * This should only be called for a non-faulted pool, and since a
6554 	 * future version would result in an unopenable pool, this shouldn't be
6555 	 * possible.
6556 	 */
6557 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6558 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6559 
6560 	spa->spa_uberblock.ub_version = version;
6561 	vdev_config_dirty(spa->spa_root_vdev);
6562 
6563 	spa_config_exit(spa, SCL_ALL, FTAG);
6564 
6565 	txg_wait_synced(spa_get_dsl(spa), 0);
6566 }
6567 
6568 boolean_t
6569 spa_has_spare(spa_t *spa, uint64_t guid)
6570 {
6571 	int i;
6572 	uint64_t spareguid;
6573 	spa_aux_vdev_t *sav = &spa->spa_spares;
6574 
6575 	for (i = 0; i < sav->sav_count; i++)
6576 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6577 			return (B_TRUE);
6578 
6579 	for (i = 0; i < sav->sav_npending; i++) {
6580 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6581 		    &spareguid) == 0 && spareguid == guid)
6582 			return (B_TRUE);
6583 	}
6584 
6585 	return (B_FALSE);
6586 }
6587 
6588 /*
6589  * Check if a pool has an active shared spare device.
6590  * Note: reference count of an active spare is 2, as a spare and as a replace
6591  */
6592 static boolean_t
6593 spa_has_active_shared_spare(spa_t *spa)
6594 {
6595 	int i, refcnt;
6596 	uint64_t pool;
6597 	spa_aux_vdev_t *sav = &spa->spa_spares;
6598 
6599 	for (i = 0; i < sav->sav_count; i++) {
6600 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6601 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6602 		    refcnt > 2)
6603 			return (B_TRUE);
6604 	}
6605 
6606 	return (B_FALSE);
6607 }
6608 
6609 /*
6610  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6611  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6612  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6613  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6614  * or zdb as real changes.
6615  */
6616 void
6617 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6618 {
6619 #ifdef _KERNEL
6620 	sysevent_t		*ev;
6621 	sysevent_attr_list_t	*attr = NULL;
6622 	sysevent_value_t	value;
6623 	sysevent_id_t		eid;
6624 
6625 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6626 	    SE_SLEEP);
6627 
6628 	value.value_type = SE_DATA_TYPE_STRING;
6629 	value.value.sv_string = spa_name(spa);
6630 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6631 		goto done;
6632 
6633 	value.value_type = SE_DATA_TYPE_UINT64;
6634 	value.value.sv_uint64 = spa_guid(spa);
6635 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6636 		goto done;
6637 
6638 	if (vd) {
6639 		value.value_type = SE_DATA_TYPE_UINT64;
6640 		value.value.sv_uint64 = vd->vdev_guid;
6641 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6642 		    SE_SLEEP) != 0)
6643 			goto done;
6644 
6645 		if (vd->vdev_path) {
6646 			value.value_type = SE_DATA_TYPE_STRING;
6647 			value.value.sv_string = vd->vdev_path;
6648 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6649 			    &value, SE_SLEEP) != 0)
6650 				goto done;
6651 		}
6652 	}
6653 
6654 	if (sysevent_attach_attributes(ev, attr) != 0)
6655 		goto done;
6656 	attr = NULL;
6657 
6658 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6659 
6660 done:
6661 	if (attr)
6662 		sysevent_free_attr(attr);
6663 	sysevent_free(ev);
6664 #endif
6665 }
6666