xref: /illumos-gate/usr/src/uts/common/fs/zfs/metaslab.c (revision f52943a93040563107b95bccb9db87d9971ef47d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright (c) 2017, Intel Corporation.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/space_map.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/zio.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zfeature.h>
38 #include <sys/vdev_indirect_mapping.h>
39 #include <sys/zap.h>
40 
41 #define	GANG_ALLOCATION(flags) \
42 	((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
43 
44 uint64_t metaslab_aliquot = 512ULL << 10;
45 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;	/* force gang blocks */
46 
47 /*
48  * In pools where the log space map feature is not enabled we touch
49  * multiple metaslabs (and their respective space maps) with each
50  * transaction group. Thus, we benefit from having a small space map
51  * block size since it allows us to issue more I/O operations scattered
52  * around the disk. So a sane default for the space map block size
53  * is 8~16K.
54  */
55 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
56 
57 /*
58  * When the log space map feature is enabled, we accumulate a lot of
59  * changes per metaslab that are flushed once in a while so we benefit
60  * from a bigger block size like 128K for the metaslab space maps.
61  */
62 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
63 
64 /*
65  * The in-core space map representation is more compact than its on-disk form.
66  * The zfs_condense_pct determines how much more compact the in-core
67  * space map representation must be before we compact it on-disk.
68  * Values should be greater than or equal to 100.
69  */
70 int zfs_condense_pct = 200;
71 
72 /*
73  * Condensing a metaslab is not guaranteed to actually reduce the amount of
74  * space used on disk. In particular, a space map uses data in increments of
75  * MAX(1 << ashift, space_map_blksize), so a metaslab might use the
76  * same number of blocks after condensing. Since the goal of condensing is to
77  * reduce the number of IOPs required to read the space map, we only want to
78  * condense when we can be sure we will reduce the number of blocks used by the
79  * space map. Unfortunately, we cannot precisely compute whether or not this is
80  * the case in metaslab_should_condense since we are holding ms_lock. Instead,
81  * we apply the following heuristic: do not condense a spacemap unless the
82  * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
83  * blocks.
84  */
85 int zfs_metaslab_condense_block_threshold = 4;
86 
87 /*
88  * The zfs_mg_noalloc_threshold defines which metaslab groups should
89  * be eligible for allocation. The value is defined as a percentage of
90  * free space. Metaslab groups that have more free space than
91  * zfs_mg_noalloc_threshold are always eligible for allocations. Once
92  * a metaslab group's free space is less than or equal to the
93  * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
94  * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
95  * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
96  * groups are allowed to accept allocations. Gang blocks are always
97  * eligible to allocate on any metaslab group. The default value of 0 means
98  * no metaslab group will be excluded based on this criterion.
99  */
100 int zfs_mg_noalloc_threshold = 0;
101 
102 /*
103  * Metaslab groups are considered eligible for allocations if their
104  * fragmenation metric (measured as a percentage) is less than or
105  * equal to zfs_mg_fragmentation_threshold. If a metaslab group
106  * exceeds this threshold then it will be skipped unless all metaslab
107  * groups within the metaslab class have also crossed this threshold.
108  *
109  * This tunable was introduced to avoid edge cases where we continue
110  * allocating from very fragmented disks in our pool while other, less
111  * fragmented disks, exists. On the other hand, if all disks in the
112  * pool are uniformly approaching the threshold, the threshold can
113  * be a speed bump in performance, where we keep switching the disks
114  * that we allocate from (e.g. we allocate some segments from disk A
115  * making it bypassing the threshold while freeing segments from disk
116  * B getting its fragmentation below the threshold).
117  *
118  * Empirically, we've seen that our vdev selection for allocations is
119  * good enough that fragmentation increases uniformly across all vdevs
120  * the majority of the time. Thus we set the threshold percentage high
121  * enough to avoid hitting the speed bump on pools that are being pushed
122  * to the edge.
123  */
124 int zfs_mg_fragmentation_threshold = 95;
125 
126 /*
127  * Allow metaslabs to keep their active state as long as their fragmentation
128  * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
129  * active metaslab that exceeds this threshold will no longer keep its active
130  * status allowing better metaslabs to be selected.
131  */
132 int zfs_metaslab_fragmentation_threshold = 70;
133 
134 /*
135  * When set will load all metaslabs when pool is first opened.
136  */
137 int metaslab_debug_load = 0;
138 
139 /*
140  * When set will prevent metaslabs from being unloaded.
141  */
142 int metaslab_debug_unload = 0;
143 
144 /*
145  * Minimum size which forces the dynamic allocator to change
146  * it's allocation strategy.  Once the space map cannot satisfy
147  * an allocation of this size then it switches to using more
148  * aggressive strategy (i.e search by size rather than offset).
149  */
150 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
151 
152 /*
153  * The minimum free space, in percent, which must be available
154  * in a space map to continue allocations in a first-fit fashion.
155  * Once the space map's free space drops below this level we dynamically
156  * switch to using best-fit allocations.
157  */
158 int metaslab_df_free_pct = 4;
159 
160 /*
161  * Maximum distance to search forward from the last offset. Without this
162  * limit, fragmented pools can see >100,000 iterations and
163  * metaslab_block_picker() becomes the performance limiting factor on
164  * high-performance storage.
165  *
166  * With the default setting of 16MB, we typically see less than 500
167  * iterations, even with very fragmented, ashift=9 pools. The maximum number
168  * of iterations possible is:
169  *     metaslab_df_max_search / (2 * (1<<ashift))
170  * With the default setting of 16MB this is 16*1024 (with ashift=9) or
171  * 2048 (with ashift=12).
172  */
173 int metaslab_df_max_search = 16 * 1024 * 1024;
174 
175 /*
176  * If we are not searching forward (due to metaslab_df_max_search,
177  * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
178  * controls what segment is used.  If it is set, we will use the largest free
179  * segment.  If it is not set, we will use a segment of exactly the requested
180  * size (or larger).
181  */
182 int metaslab_df_use_largest_segment = B_FALSE;
183 
184 /*
185  * A metaslab is considered "free" if it contains a contiguous
186  * segment which is greater than metaslab_min_alloc_size.
187  */
188 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
189 
190 /*
191  * Percentage of all cpus that can be used by the metaslab taskq.
192  */
193 int metaslab_load_pct = 50;
194 
195 /*
196  * These tunables control how long a metaslab will remain loaded after the
197  * last allocation from it.  A metaslab can't be unloaded until at least
198  * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
199  * have elapsed.  However, zfs_metaslab_mem_limit may cause it to be
200  * unloaded sooner.  These settings are intended to be generous -- to keep
201  * metaslabs loaded for a long time, reducing the rate of metaslab loading.
202  */
203 int metaslab_unload_delay = 32;
204 int metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
205 
206 /*
207  * Max number of metaslabs per group to preload.
208  */
209 int metaslab_preload_limit = 10;
210 
211 /*
212  * Enable/disable preloading of metaslab.
213  */
214 boolean_t metaslab_preload_enabled = B_TRUE;
215 
216 /*
217  * Enable/disable fragmentation weighting on metaslabs.
218  */
219 boolean_t metaslab_fragmentation_factor_enabled = B_TRUE;
220 
221 /*
222  * Enable/disable lba weighting (i.e. outer tracks are given preference).
223  */
224 boolean_t metaslab_lba_weighting_enabled = B_TRUE;
225 
226 /*
227  * Enable/disable metaslab group biasing.
228  */
229 boolean_t metaslab_bias_enabled = B_TRUE;
230 
231 /*
232  * Enable/disable remapping of indirect DVAs to their concrete vdevs.
233  */
234 boolean_t zfs_remap_blkptr_enable = B_TRUE;
235 
236 /*
237  * Enable/disable segment-based metaslab selection.
238  */
239 boolean_t zfs_metaslab_segment_weight_enabled = B_TRUE;
240 
241 /*
242  * When using segment-based metaslab selection, we will continue
243  * allocating from the active metaslab until we have exhausted
244  * zfs_metaslab_switch_threshold of its buckets.
245  */
246 int zfs_metaslab_switch_threshold = 2;
247 
248 /*
249  * Internal switch to enable/disable the metaslab allocation tracing
250  * facility.
251  */
252 boolean_t metaslab_trace_enabled = B_TRUE;
253 
254 /*
255  * Maximum entries that the metaslab allocation tracing facility will keep
256  * in a given list when running in non-debug mode. We limit the number
257  * of entries in non-debug mode to prevent us from using up too much memory.
258  * The limit should be sufficiently large that we don't expect any allocation
259  * to every exceed this value. In debug mode, the system will panic if this
260  * limit is ever reached allowing for further investigation.
261  */
262 uint64_t metaslab_trace_max_entries = 5000;
263 
264 /*
265  * Maximum number of metaslabs per group that can be disabled
266  * simultaneously.
267  */
268 int max_disabled_ms = 3;
269 
270 /*
271  * Maximum percentage of memory to use on storing loaded metaslabs. If loading
272  * a metaslab would take it over this percentage, the oldest selected metaslab
273  * is automatically unloaded.
274  */
275 int zfs_metaslab_mem_limit = 25;
276 
277 /*
278  * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
279  * To avoid 64-bit overflow, don't set above UINT32_MAX.
280  */
281 unsigned long zfs_metaslab_max_size_cache_sec = 3600; /* 1 hour */
282 
283 static uint64_t metaslab_weight(metaslab_t *);
284 static void metaslab_set_fragmentation(metaslab_t *);
285 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
286 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
287 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
288 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
289 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
290 static unsigned int metaslab_idx_func(multilist_t *, void *);
291 static void metaslab_evict(metaslab_t *, uint64_t);
292 
293 kmem_cache_t *metaslab_alloc_trace_cache;
294 
295 /*
296  * ==========================================================================
297  * Metaslab classes
298  * ==========================================================================
299  */
300 metaslab_class_t *
301 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
302 {
303 	metaslab_class_t *mc;
304 
305 	mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
306 
307 	mc->mc_spa = spa;
308 	mc->mc_rotor = NULL;
309 	mc->mc_ops = ops;
310 	mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
311 	mc->mc_metaslab_txg_list = multilist_create(sizeof (metaslab_t),
312 	    offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
313 	mc->mc_alloc_slots = kmem_zalloc(spa->spa_alloc_count *
314 	    sizeof (zfs_refcount_t), KM_SLEEP);
315 	mc->mc_alloc_max_slots = kmem_zalloc(spa->spa_alloc_count *
316 	    sizeof (uint64_t), KM_SLEEP);
317 	for (int i = 0; i < spa->spa_alloc_count; i++)
318 		zfs_refcount_create_tracked(&mc->mc_alloc_slots[i]);
319 
320 	return (mc);
321 }
322 
323 void
324 metaslab_class_destroy(metaslab_class_t *mc)
325 {
326 	ASSERT(mc->mc_rotor == NULL);
327 	ASSERT(mc->mc_alloc == 0);
328 	ASSERT(mc->mc_deferred == 0);
329 	ASSERT(mc->mc_space == 0);
330 	ASSERT(mc->mc_dspace == 0);
331 
332 	for (int i = 0; i < mc->mc_spa->spa_alloc_count; i++)
333 		zfs_refcount_destroy(&mc->mc_alloc_slots[i]);
334 	kmem_free(mc->mc_alloc_slots, mc->mc_spa->spa_alloc_count *
335 	    sizeof (zfs_refcount_t));
336 	kmem_free(mc->mc_alloc_max_slots, mc->mc_spa->spa_alloc_count *
337 	    sizeof (uint64_t));
338 	mutex_destroy(&mc->mc_lock);
339 	multilist_destroy(mc->mc_metaslab_txg_list);
340 	kmem_free(mc, sizeof (metaslab_class_t));
341 }
342 
343 int
344 metaslab_class_validate(metaslab_class_t *mc)
345 {
346 	metaslab_group_t *mg;
347 	vdev_t *vd;
348 
349 	/*
350 	 * Must hold one of the spa_config locks.
351 	 */
352 	ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
353 	    spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
354 
355 	if ((mg = mc->mc_rotor) == NULL)
356 		return (0);
357 
358 	do {
359 		vd = mg->mg_vd;
360 		ASSERT(vd->vdev_mg != NULL);
361 		ASSERT3P(vd->vdev_top, ==, vd);
362 		ASSERT3P(mg->mg_class, ==, mc);
363 		ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
364 	} while ((mg = mg->mg_next) != mc->mc_rotor);
365 
366 	return (0);
367 }
368 
369 static void
370 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
371     int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
372 {
373 	atomic_add_64(&mc->mc_alloc, alloc_delta);
374 	atomic_add_64(&mc->mc_deferred, defer_delta);
375 	atomic_add_64(&mc->mc_space, space_delta);
376 	atomic_add_64(&mc->mc_dspace, dspace_delta);
377 }
378 
379 uint64_t
380 metaslab_class_get_alloc(metaslab_class_t *mc)
381 {
382 	return (mc->mc_alloc);
383 }
384 
385 uint64_t
386 metaslab_class_get_deferred(metaslab_class_t *mc)
387 {
388 	return (mc->mc_deferred);
389 }
390 
391 uint64_t
392 metaslab_class_get_space(metaslab_class_t *mc)
393 {
394 	return (mc->mc_space);
395 }
396 
397 uint64_t
398 metaslab_class_get_dspace(metaslab_class_t *mc)
399 {
400 	return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
401 }
402 
403 void
404 metaslab_class_histogram_verify(metaslab_class_t *mc)
405 {
406 	spa_t *spa = mc->mc_spa;
407 	vdev_t *rvd = spa->spa_root_vdev;
408 	uint64_t *mc_hist;
409 	int i;
410 
411 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
412 		return;
413 
414 	mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
415 	    KM_SLEEP);
416 
417 	for (int c = 0; c < rvd->vdev_children; c++) {
418 		vdev_t *tvd = rvd->vdev_child[c];
419 		metaslab_group_t *mg = tvd->vdev_mg;
420 
421 		/*
422 		 * Skip any holes, uninitialized top-levels, or
423 		 * vdevs that are not in this metalab class.
424 		 */
425 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
426 		    mg->mg_class != mc) {
427 			continue;
428 		}
429 
430 		for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
431 			mc_hist[i] += mg->mg_histogram[i];
432 	}
433 
434 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
435 		VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
436 
437 	kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
438 }
439 
440 /*
441  * Calculate the metaslab class's fragmentation metric. The metric
442  * is weighted based on the space contribution of each metaslab group.
443  * The return value will be a number between 0 and 100 (inclusive), or
444  * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
445  * zfs_frag_table for more information about the metric.
446  */
447 uint64_t
448 metaslab_class_fragmentation(metaslab_class_t *mc)
449 {
450 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
451 	uint64_t fragmentation = 0;
452 
453 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
454 
455 	for (int c = 0; c < rvd->vdev_children; c++) {
456 		vdev_t *tvd = rvd->vdev_child[c];
457 		metaslab_group_t *mg = tvd->vdev_mg;
458 
459 		/*
460 		 * Skip any holes, uninitialized top-levels,
461 		 * or vdevs that are not in this metalab class.
462 		 */
463 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
464 		    mg->mg_class != mc) {
465 			continue;
466 		}
467 
468 		/*
469 		 * If a metaslab group does not contain a fragmentation
470 		 * metric then just bail out.
471 		 */
472 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
473 			spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
474 			return (ZFS_FRAG_INVALID);
475 		}
476 
477 		/*
478 		 * Determine how much this metaslab_group is contributing
479 		 * to the overall pool fragmentation metric.
480 		 */
481 		fragmentation += mg->mg_fragmentation *
482 		    metaslab_group_get_space(mg);
483 	}
484 	fragmentation /= metaslab_class_get_space(mc);
485 
486 	ASSERT3U(fragmentation, <=, 100);
487 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
488 	return (fragmentation);
489 }
490 
491 /*
492  * Calculate the amount of expandable space that is available in
493  * this metaslab class. If a device is expanded then its expandable
494  * space will be the amount of allocatable space that is currently not
495  * part of this metaslab class.
496  */
497 uint64_t
498 metaslab_class_expandable_space(metaslab_class_t *mc)
499 {
500 	vdev_t *rvd = mc->mc_spa->spa_root_vdev;
501 	uint64_t space = 0;
502 
503 	spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
504 	for (int c = 0; c < rvd->vdev_children; c++) {
505 		uint64_t tspace;
506 		vdev_t *tvd = rvd->vdev_child[c];
507 		metaslab_group_t *mg = tvd->vdev_mg;
508 
509 		if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
510 		    mg->mg_class != mc) {
511 			continue;
512 		}
513 
514 		/*
515 		 * Calculate if we have enough space to add additional
516 		 * metaslabs. We report the expandable space in terms
517 		 * of the metaslab size since that's the unit of expansion.
518 		 * Adjust by efi system partition size.
519 		 */
520 		tspace = tvd->vdev_max_asize - tvd->vdev_asize;
521 		if (tspace > mc->mc_spa->spa_bootsize) {
522 			tspace -= mc->mc_spa->spa_bootsize;
523 		}
524 		space += P2ALIGN(tspace, 1ULL << tvd->vdev_ms_shift);
525 	}
526 	spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
527 	return (space);
528 }
529 
530 void
531 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
532 {
533 	multilist_t *ml = mc->mc_metaslab_txg_list;
534 	for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
535 		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
536 		metaslab_t *msp = multilist_sublist_head(mls);
537 		multilist_sublist_unlock(mls);
538 		while (msp != NULL) {
539 			mutex_enter(&msp->ms_lock);
540 
541 			/*
542 			 * If the metaslab has been removed from the list
543 			 * (which could happen if we were at the memory limit
544 			 * and it was evicted during this loop), then we can't
545 			 * proceed and we should restart the sublist.
546 			 */
547 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
548 				mutex_exit(&msp->ms_lock);
549 				i--;
550 				break;
551 			}
552 			mls = multilist_sublist_lock(ml, i);
553 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
554 			multilist_sublist_unlock(mls);
555 			if (txg >
556 			    msp->ms_selected_txg + metaslab_unload_delay &&
557 			    gethrtime() > msp->ms_selected_time +
558 			    (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) {
559 				metaslab_evict(msp, txg);
560 			} else {
561 				/*
562 				 * Once we've hit a metaslab selected too
563 				 * recently to evict, we're done evicting for
564 				 * now.
565 				 */
566 				mutex_exit(&msp->ms_lock);
567 				break;
568 			}
569 			mutex_exit(&msp->ms_lock);
570 			msp = next_msp;
571 		}
572 	}
573 }
574 
575 static int
576 metaslab_compare(const void *x1, const void *x2)
577 {
578 	const metaslab_t *m1 = (const metaslab_t *)x1;
579 	const metaslab_t *m2 = (const metaslab_t *)x2;
580 
581 	int sort1 = 0;
582 	int sort2 = 0;
583 	if (m1->ms_allocator != -1 && m1->ms_primary)
584 		sort1 = 1;
585 	else if (m1->ms_allocator != -1 && !m1->ms_primary)
586 		sort1 = 2;
587 	if (m2->ms_allocator != -1 && m2->ms_primary)
588 		sort2 = 1;
589 	else if (m2->ms_allocator != -1 && !m2->ms_primary)
590 		sort2 = 2;
591 
592 	/*
593 	 * Sort inactive metaslabs first, then primaries, then secondaries. When
594 	 * selecting a metaslab to allocate from, an allocator first tries its
595 	 * primary, then secondary active metaslab. If it doesn't have active
596 	 * metaslabs, or can't allocate from them, it searches for an inactive
597 	 * metaslab to activate. If it can't find a suitable one, it will steal
598 	 * a primary or secondary metaslab from another allocator.
599 	 */
600 	if (sort1 < sort2)
601 		return (-1);
602 	if (sort1 > sort2)
603 		return (1);
604 
605 	int cmp = AVL_CMP(m2->ms_weight, m1->ms_weight);
606 	if (likely(cmp))
607 		return (cmp);
608 
609 	IMPLY(AVL_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
610 
611 	return (AVL_CMP(m1->ms_start, m2->ms_start));
612 }
613 
614 /*
615  * ==========================================================================
616  * Metaslab groups
617  * ==========================================================================
618  */
619 /*
620  * Update the allocatable flag and the metaslab group's capacity.
621  * The allocatable flag is set to true if the capacity is below
622  * the zfs_mg_noalloc_threshold or has a fragmentation value that is
623  * greater than zfs_mg_fragmentation_threshold. If a metaslab group
624  * transitions from allocatable to non-allocatable or vice versa then the
625  * metaslab group's class is updated to reflect the transition.
626  */
627 static void
628 metaslab_group_alloc_update(metaslab_group_t *mg)
629 {
630 	vdev_t *vd = mg->mg_vd;
631 	metaslab_class_t *mc = mg->mg_class;
632 	vdev_stat_t *vs = &vd->vdev_stat;
633 	boolean_t was_allocatable;
634 	boolean_t was_initialized;
635 
636 	ASSERT(vd == vd->vdev_top);
637 	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
638 	    SCL_ALLOC);
639 
640 	mutex_enter(&mg->mg_lock);
641 	was_allocatable = mg->mg_allocatable;
642 	was_initialized = mg->mg_initialized;
643 
644 	mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
645 	    (vs->vs_space + 1);
646 
647 	mutex_enter(&mc->mc_lock);
648 
649 	/*
650 	 * If the metaslab group was just added then it won't
651 	 * have any space until we finish syncing out this txg.
652 	 * At that point we will consider it initialized and available
653 	 * for allocations.  We also don't consider non-activated
654 	 * metaslab groups (e.g. vdevs that are in the middle of being removed)
655 	 * to be initialized, because they can't be used for allocation.
656 	 */
657 	mg->mg_initialized = metaslab_group_initialized(mg);
658 	if (!was_initialized && mg->mg_initialized) {
659 		mc->mc_groups++;
660 	} else if (was_initialized && !mg->mg_initialized) {
661 		ASSERT3U(mc->mc_groups, >, 0);
662 		mc->mc_groups--;
663 	}
664 	if (mg->mg_initialized)
665 		mg->mg_no_free_space = B_FALSE;
666 
667 	/*
668 	 * A metaslab group is considered allocatable if it has plenty
669 	 * of free space or is not heavily fragmented. We only take
670 	 * fragmentation into account if the metaslab group has a valid
671 	 * fragmentation metric (i.e. a value between 0 and 100).
672 	 */
673 	mg->mg_allocatable = (mg->mg_activation_count > 0 &&
674 	    mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
675 	    (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
676 	    mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
677 
678 	/*
679 	 * The mc_alloc_groups maintains a count of the number of
680 	 * groups in this metaslab class that are still above the
681 	 * zfs_mg_noalloc_threshold. This is used by the allocating
682 	 * threads to determine if they should avoid allocations to
683 	 * a given group. The allocator will avoid allocations to a group
684 	 * if that group has reached or is below the zfs_mg_noalloc_threshold
685 	 * and there are still other groups that are above the threshold.
686 	 * When a group transitions from allocatable to non-allocatable or
687 	 * vice versa we update the metaslab class to reflect that change.
688 	 * When the mc_alloc_groups value drops to 0 that means that all
689 	 * groups have reached the zfs_mg_noalloc_threshold making all groups
690 	 * eligible for allocations. This effectively means that all devices
691 	 * are balanced again.
692 	 */
693 	if (was_allocatable && !mg->mg_allocatable)
694 		mc->mc_alloc_groups--;
695 	else if (!was_allocatable && mg->mg_allocatable)
696 		mc->mc_alloc_groups++;
697 	mutex_exit(&mc->mc_lock);
698 
699 	mutex_exit(&mg->mg_lock);
700 }
701 
702 int
703 metaslab_sort_by_flushed(const void *va, const void *vb)
704 {
705 	const metaslab_t *a = va;
706 	const metaslab_t *b = vb;
707 
708 	int cmp = AVL_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
709 	if (likely(cmp))
710 		return (cmp);
711 
712 	uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
713 	uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
714 	cmp = AVL_CMP(a_vdev_id, b_vdev_id);
715 	if (cmp)
716 		return (cmp);
717 
718 	return (AVL_CMP(a->ms_id, b->ms_id));
719 }
720 
721 metaslab_group_t *
722 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
723 {
724 	metaslab_group_t *mg;
725 
726 	mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
727 	mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
728 	mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
729 	cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
730 	mg->mg_primaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
731 	    KM_SLEEP);
732 	mg->mg_secondaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
733 	    KM_SLEEP);
734 	avl_create(&mg->mg_metaslab_tree, metaslab_compare,
735 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
736 	mg->mg_vd = vd;
737 	mg->mg_class = mc;
738 	mg->mg_activation_count = 0;
739 	mg->mg_initialized = B_FALSE;
740 	mg->mg_no_free_space = B_TRUE;
741 	mg->mg_allocators = allocators;
742 
743 	mg->mg_alloc_queue_depth = kmem_zalloc(allocators *
744 	    sizeof (zfs_refcount_t), KM_SLEEP);
745 	mg->mg_cur_max_alloc_queue_depth = kmem_zalloc(allocators *
746 	    sizeof (uint64_t), KM_SLEEP);
747 	for (int i = 0; i < allocators; i++) {
748 		zfs_refcount_create_tracked(&mg->mg_alloc_queue_depth[i]);
749 		mg->mg_cur_max_alloc_queue_depth[i] = 0;
750 	}
751 
752 	mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
753 	    minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT);
754 
755 	return (mg);
756 }
757 
758 void
759 metaslab_group_destroy(metaslab_group_t *mg)
760 {
761 	ASSERT(mg->mg_prev == NULL);
762 	ASSERT(mg->mg_next == NULL);
763 	/*
764 	 * We may have gone below zero with the activation count
765 	 * either because we never activated in the first place or
766 	 * because we're done, and possibly removing the vdev.
767 	 */
768 	ASSERT(mg->mg_activation_count <= 0);
769 
770 	taskq_destroy(mg->mg_taskq);
771 	avl_destroy(&mg->mg_metaslab_tree);
772 	kmem_free(mg->mg_primaries, mg->mg_allocators * sizeof (metaslab_t *));
773 	kmem_free(mg->mg_secondaries, mg->mg_allocators *
774 	    sizeof (metaslab_t *));
775 	mutex_destroy(&mg->mg_lock);
776 	mutex_destroy(&mg->mg_ms_disabled_lock);
777 	cv_destroy(&mg->mg_ms_disabled_cv);
778 
779 	for (int i = 0; i < mg->mg_allocators; i++) {
780 		zfs_refcount_destroy(&mg->mg_alloc_queue_depth[i]);
781 		mg->mg_cur_max_alloc_queue_depth[i] = 0;
782 	}
783 	kmem_free(mg->mg_alloc_queue_depth, mg->mg_allocators *
784 	    sizeof (zfs_refcount_t));
785 	kmem_free(mg->mg_cur_max_alloc_queue_depth, mg->mg_allocators *
786 	    sizeof (uint64_t));
787 
788 	kmem_free(mg, sizeof (metaslab_group_t));
789 }
790 
791 void
792 metaslab_group_activate(metaslab_group_t *mg)
793 {
794 	metaslab_class_t *mc = mg->mg_class;
795 	metaslab_group_t *mgprev, *mgnext;
796 
797 	ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0);
798 
799 	ASSERT(mc->mc_rotor != mg);
800 	ASSERT(mg->mg_prev == NULL);
801 	ASSERT(mg->mg_next == NULL);
802 	ASSERT(mg->mg_activation_count <= 0);
803 
804 	if (++mg->mg_activation_count <= 0)
805 		return;
806 
807 	mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
808 	metaslab_group_alloc_update(mg);
809 
810 	if ((mgprev = mc->mc_rotor) == NULL) {
811 		mg->mg_prev = mg;
812 		mg->mg_next = mg;
813 	} else {
814 		mgnext = mgprev->mg_next;
815 		mg->mg_prev = mgprev;
816 		mg->mg_next = mgnext;
817 		mgprev->mg_next = mg;
818 		mgnext->mg_prev = mg;
819 	}
820 	mc->mc_rotor = mg;
821 }
822 
823 /*
824  * Passivate a metaslab group and remove it from the allocation rotor.
825  * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
826  * a metaslab group. This function will momentarily drop spa_config_locks
827  * that are lower than the SCL_ALLOC lock (see comment below).
828  */
829 void
830 metaslab_group_passivate(metaslab_group_t *mg)
831 {
832 	metaslab_class_t *mc = mg->mg_class;
833 	spa_t *spa = mc->mc_spa;
834 	metaslab_group_t *mgprev, *mgnext;
835 	int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
836 
837 	ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
838 	    (SCL_ALLOC | SCL_ZIO));
839 
840 	if (--mg->mg_activation_count != 0) {
841 		ASSERT(mc->mc_rotor != mg);
842 		ASSERT(mg->mg_prev == NULL);
843 		ASSERT(mg->mg_next == NULL);
844 		ASSERT(mg->mg_activation_count < 0);
845 		return;
846 	}
847 
848 	/*
849 	 * The spa_config_lock is an array of rwlocks, ordered as
850 	 * follows (from highest to lowest):
851 	 *	SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
852 	 *	SCL_ZIO > SCL_FREE > SCL_VDEV
853 	 * (For more information about the spa_config_lock see spa_misc.c)
854 	 * The higher the lock, the broader its coverage. When we passivate
855 	 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
856 	 * config locks. However, the metaslab group's taskq might be trying
857 	 * to preload metaslabs so we must drop the SCL_ZIO lock and any
858 	 * lower locks to allow the I/O to complete. At a minimum,
859 	 * we continue to hold the SCL_ALLOC lock, which prevents any future
860 	 * allocations from taking place and any changes to the vdev tree.
861 	 */
862 	spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
863 	taskq_wait(mg->mg_taskq);
864 	spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
865 	metaslab_group_alloc_update(mg);
866 	for (int i = 0; i < mg->mg_allocators; i++) {
867 		metaslab_t *msp = mg->mg_primaries[i];
868 		if (msp != NULL) {
869 			mutex_enter(&msp->ms_lock);
870 			metaslab_passivate(msp,
871 			    metaslab_weight_from_range_tree(msp));
872 			mutex_exit(&msp->ms_lock);
873 		}
874 		msp = mg->mg_secondaries[i];
875 		if (msp != NULL) {
876 			mutex_enter(&msp->ms_lock);
877 			metaslab_passivate(msp,
878 			    metaslab_weight_from_range_tree(msp));
879 			mutex_exit(&msp->ms_lock);
880 		}
881 	}
882 
883 	mgprev = mg->mg_prev;
884 	mgnext = mg->mg_next;
885 
886 	if (mg == mgnext) {
887 		mc->mc_rotor = NULL;
888 	} else {
889 		mc->mc_rotor = mgnext;
890 		mgprev->mg_next = mgnext;
891 		mgnext->mg_prev = mgprev;
892 	}
893 
894 	mg->mg_prev = NULL;
895 	mg->mg_next = NULL;
896 }
897 
898 boolean_t
899 metaslab_group_initialized(metaslab_group_t *mg)
900 {
901 	vdev_t *vd = mg->mg_vd;
902 	vdev_stat_t *vs = &vd->vdev_stat;
903 
904 	return (vs->vs_space != 0 && mg->mg_activation_count > 0);
905 }
906 
907 uint64_t
908 metaslab_group_get_space(metaslab_group_t *mg)
909 {
910 	return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
911 }
912 
913 void
914 metaslab_group_histogram_verify(metaslab_group_t *mg)
915 {
916 	uint64_t *mg_hist;
917 	vdev_t *vd = mg->mg_vd;
918 	uint64_t ashift = vd->vdev_ashift;
919 	int i;
920 
921 	if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
922 		return;
923 
924 	mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
925 	    KM_SLEEP);
926 
927 	ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
928 	    SPACE_MAP_HISTOGRAM_SIZE + ashift);
929 
930 	for (int m = 0; m < vd->vdev_ms_count; m++) {
931 		metaslab_t *msp = vd->vdev_ms[m];
932 
933 		/* skip if not active or not a member */
934 		if (msp->ms_sm == NULL || msp->ms_group != mg)
935 			continue;
936 
937 		for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
938 			mg_hist[i + ashift] +=
939 			    msp->ms_sm->sm_phys->smp_histogram[i];
940 	}
941 
942 	for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
943 		VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
944 
945 	kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
946 }
947 
948 static void
949 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
950 {
951 	metaslab_class_t *mc = mg->mg_class;
952 	uint64_t ashift = mg->mg_vd->vdev_ashift;
953 
954 	ASSERT(MUTEX_HELD(&msp->ms_lock));
955 	if (msp->ms_sm == NULL)
956 		return;
957 
958 	mutex_enter(&mg->mg_lock);
959 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
960 		mg->mg_histogram[i + ashift] +=
961 		    msp->ms_sm->sm_phys->smp_histogram[i];
962 		mc->mc_histogram[i + ashift] +=
963 		    msp->ms_sm->sm_phys->smp_histogram[i];
964 	}
965 	mutex_exit(&mg->mg_lock);
966 }
967 
968 void
969 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
970 {
971 	metaslab_class_t *mc = mg->mg_class;
972 	uint64_t ashift = mg->mg_vd->vdev_ashift;
973 
974 	ASSERT(MUTEX_HELD(&msp->ms_lock));
975 	if (msp->ms_sm == NULL)
976 		return;
977 
978 	mutex_enter(&mg->mg_lock);
979 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
980 		ASSERT3U(mg->mg_histogram[i + ashift], >=,
981 		    msp->ms_sm->sm_phys->smp_histogram[i]);
982 		ASSERT3U(mc->mc_histogram[i + ashift], >=,
983 		    msp->ms_sm->sm_phys->smp_histogram[i]);
984 
985 		mg->mg_histogram[i + ashift] -=
986 		    msp->ms_sm->sm_phys->smp_histogram[i];
987 		mc->mc_histogram[i + ashift] -=
988 		    msp->ms_sm->sm_phys->smp_histogram[i];
989 	}
990 	mutex_exit(&mg->mg_lock);
991 }
992 
993 static void
994 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
995 {
996 	ASSERT(msp->ms_group == NULL);
997 	mutex_enter(&mg->mg_lock);
998 	msp->ms_group = mg;
999 	msp->ms_weight = 0;
1000 	avl_add(&mg->mg_metaslab_tree, msp);
1001 	mutex_exit(&mg->mg_lock);
1002 
1003 	mutex_enter(&msp->ms_lock);
1004 	metaslab_group_histogram_add(mg, msp);
1005 	mutex_exit(&msp->ms_lock);
1006 }
1007 
1008 static void
1009 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1010 {
1011 	mutex_enter(&msp->ms_lock);
1012 	metaslab_group_histogram_remove(mg, msp);
1013 	mutex_exit(&msp->ms_lock);
1014 
1015 	mutex_enter(&mg->mg_lock);
1016 	ASSERT(msp->ms_group == mg);
1017 	avl_remove(&mg->mg_metaslab_tree, msp);
1018 
1019 	metaslab_class_t *mc = msp->ms_group->mg_class;
1020 	multilist_sublist_t *mls =
1021 	    multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp);
1022 	if (multilist_link_active(&msp->ms_class_txg_node))
1023 		multilist_sublist_remove(mls, msp);
1024 	multilist_sublist_unlock(mls);
1025 
1026 	msp->ms_group = NULL;
1027 	mutex_exit(&mg->mg_lock);
1028 }
1029 
1030 static void
1031 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1032 {
1033 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1034 	ASSERT(MUTEX_HELD(&mg->mg_lock));
1035 	ASSERT(msp->ms_group == mg);
1036 
1037 	avl_remove(&mg->mg_metaslab_tree, msp);
1038 	msp->ms_weight = weight;
1039 	avl_add(&mg->mg_metaslab_tree, msp);
1040 
1041 }
1042 
1043 static void
1044 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1045 {
1046 	/*
1047 	 * Although in principle the weight can be any value, in
1048 	 * practice we do not use values in the range [1, 511].
1049 	 */
1050 	ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1051 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1052 
1053 	mutex_enter(&mg->mg_lock);
1054 	metaslab_group_sort_impl(mg, msp, weight);
1055 	mutex_exit(&mg->mg_lock);
1056 }
1057 
1058 /*
1059  * Calculate the fragmentation for a given metaslab group. We can use
1060  * a simple average here since all metaslabs within the group must have
1061  * the same size. The return value will be a value between 0 and 100
1062  * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1063  * group have a fragmentation metric.
1064  */
1065 uint64_t
1066 metaslab_group_fragmentation(metaslab_group_t *mg)
1067 {
1068 	vdev_t *vd = mg->mg_vd;
1069 	uint64_t fragmentation = 0;
1070 	uint64_t valid_ms = 0;
1071 
1072 	for (int m = 0; m < vd->vdev_ms_count; m++) {
1073 		metaslab_t *msp = vd->vdev_ms[m];
1074 
1075 		if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1076 			continue;
1077 		if (msp->ms_group != mg)
1078 			continue;
1079 
1080 		valid_ms++;
1081 		fragmentation += msp->ms_fragmentation;
1082 	}
1083 
1084 	if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1085 		return (ZFS_FRAG_INVALID);
1086 
1087 	fragmentation /= valid_ms;
1088 	ASSERT3U(fragmentation, <=, 100);
1089 	return (fragmentation);
1090 }
1091 
1092 /*
1093  * Determine if a given metaslab group should skip allocations. A metaslab
1094  * group should avoid allocations if its free capacity is less than the
1095  * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1096  * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1097  * that can still handle allocations. If the allocation throttle is enabled
1098  * then we skip allocations to devices that have reached their maximum
1099  * allocation queue depth unless the selected metaslab group is the only
1100  * eligible group remaining.
1101  */
1102 static boolean_t
1103 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1104     uint64_t psize, int allocator, int d)
1105 {
1106 	spa_t *spa = mg->mg_vd->vdev_spa;
1107 	metaslab_class_t *mc = mg->mg_class;
1108 
1109 	/*
1110 	 * We can only consider skipping this metaslab group if it's
1111 	 * in the normal metaslab class and there are other metaslab
1112 	 * groups to select from. Otherwise, we always consider it eligible
1113 	 * for allocations.
1114 	 */
1115 	if ((mc != spa_normal_class(spa) &&
1116 	    mc != spa_special_class(spa) &&
1117 	    mc != spa_dedup_class(spa)) ||
1118 	    mc->mc_groups <= 1)
1119 		return (B_TRUE);
1120 
1121 	/*
1122 	 * If the metaslab group's mg_allocatable flag is set (see comments
1123 	 * in metaslab_group_alloc_update() for more information) and
1124 	 * the allocation throttle is disabled then allow allocations to this
1125 	 * device. However, if the allocation throttle is enabled then
1126 	 * check if we have reached our allocation limit (mg_alloc_queue_depth)
1127 	 * to determine if we should allow allocations to this metaslab group.
1128 	 * If all metaslab groups are no longer considered allocatable
1129 	 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1130 	 * gang block size then we allow allocations on this metaslab group
1131 	 * regardless of the mg_allocatable or throttle settings.
1132 	 */
1133 	if (mg->mg_allocatable) {
1134 		metaslab_group_t *mgp;
1135 		int64_t qdepth;
1136 		uint64_t qmax = mg->mg_cur_max_alloc_queue_depth[allocator];
1137 
1138 		if (!mc->mc_alloc_throttle_enabled)
1139 			return (B_TRUE);
1140 
1141 		/*
1142 		 * If this metaslab group does not have any free space, then
1143 		 * there is no point in looking further.
1144 		 */
1145 		if (mg->mg_no_free_space)
1146 			return (B_FALSE);
1147 
1148 		/*
1149 		 * Relax allocation throttling for ditto blocks.  Due to
1150 		 * random imbalances in allocation it tends to push copies
1151 		 * to one vdev, that looks a bit better at the moment.
1152 		 */
1153 		qmax = qmax * (4 + d) / 4;
1154 
1155 		qdepth = zfs_refcount_count(
1156 		    &mg->mg_alloc_queue_depth[allocator]);
1157 
1158 		/*
1159 		 * If this metaslab group is below its qmax or it's
1160 		 * the only allocatable metasable group, then attempt
1161 		 * to allocate from it.
1162 		 */
1163 		if (qdepth < qmax || mc->mc_alloc_groups == 1)
1164 			return (B_TRUE);
1165 		ASSERT3U(mc->mc_alloc_groups, >, 1);
1166 
1167 		/*
1168 		 * Since this metaslab group is at or over its qmax, we
1169 		 * need to determine if there are metaslab groups after this
1170 		 * one that might be able to handle this allocation. This is
1171 		 * racy since we can't hold the locks for all metaslab
1172 		 * groups at the same time when we make this check.
1173 		 */
1174 		for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) {
1175 			qmax = mgp->mg_cur_max_alloc_queue_depth[allocator];
1176 			qmax = qmax * (4 + d) / 4;
1177 			qdepth = zfs_refcount_count(
1178 			    &mgp->mg_alloc_queue_depth[allocator]);
1179 
1180 			/*
1181 			 * If there is another metaslab group that
1182 			 * might be able to handle the allocation, then
1183 			 * we return false so that we skip this group.
1184 			 */
1185 			if (qdepth < qmax && !mgp->mg_no_free_space)
1186 				return (B_FALSE);
1187 		}
1188 
1189 		/*
1190 		 * We didn't find another group to handle the allocation
1191 		 * so we can't skip this metaslab group even though
1192 		 * we are at or over our qmax.
1193 		 */
1194 		return (B_TRUE);
1195 
1196 	} else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1197 		return (B_TRUE);
1198 	}
1199 	return (B_FALSE);
1200 }
1201 
1202 /*
1203  * ==========================================================================
1204  * Range tree callbacks
1205  * ==========================================================================
1206  */
1207 
1208 /*
1209  * Comparison function for the private size-ordered tree. Tree is sorted
1210  * by size, larger sizes at the end of the tree.
1211  */
1212 static int
1213 metaslab_rangesize_compare(const void *x1, const void *x2)
1214 {
1215 	const range_seg_t *r1 = x1;
1216 	const range_seg_t *r2 = x2;
1217 	uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1218 	uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1219 
1220 	int cmp = AVL_CMP(rs_size1, rs_size2);
1221 	if (likely(cmp))
1222 		return (cmp);
1223 
1224 	return (AVL_CMP(r1->rs_start, r2->rs_start));
1225 }
1226 
1227 /*
1228  * ==========================================================================
1229  * Common allocator routines
1230  * ==========================================================================
1231  */
1232 
1233 /*
1234  * Return the maximum contiguous segment within the metaslab.
1235  */
1236 uint64_t
1237 metaslab_largest_allocatable(metaslab_t *msp)
1238 {
1239 	avl_tree_t *t = &msp->ms_allocatable_by_size;
1240 	range_seg_t *rs;
1241 
1242 	if (t == NULL)
1243 		return (0);
1244 	rs = avl_last(t);
1245 	if (rs == NULL)
1246 		return (0);
1247 
1248 	return (rs->rs_end - rs->rs_start);
1249 }
1250 
1251 /*
1252  * Return the maximum contiguous segment within the unflushed frees of this
1253  * metaslab.
1254  */
1255 uint64_t
1256 metaslab_largest_unflushed_free(metaslab_t *msp)
1257 {
1258 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1259 
1260 	if (msp->ms_unflushed_frees == NULL)
1261 		return (0);
1262 
1263 	range_seg_t *rs = avl_last(&msp->ms_unflushed_frees_by_size);
1264 	if (rs == NULL)
1265 		return (0);
1266 
1267 	/*
1268 	 * When a range is freed from the metaslab, that range is added to
1269 	 * both the unflushed frees and the deferred frees. While the block
1270 	 * will eventually be usable, if the metaslab were loaded the range
1271 	 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1272 	 * txgs had passed.  As a result, when attempting to estimate an upper
1273 	 * bound for the largest currently-usable free segment in the
1274 	 * metaslab, we need to not consider any ranges currently in the defer
1275 	 * trees. This algorithm approximates the largest available chunk in
1276 	 * the largest range in the unflushed_frees tree by taking the first
1277 	 * chunk.  While this may be a poor estimate, it should only remain so
1278 	 * briefly and should eventually self-correct as frees are no longer
1279 	 * deferred. Similar logic applies to the ms_freed tree. See
1280 	 * metaslab_load() for more details.
1281 	 *
1282 	 * There are two primary sources of innacuracy in this estimate. Both
1283 	 * are tolerated for performance reasons. The first source is that we
1284 	 * only check the largest segment for overlaps. Smaller segments may
1285 	 * have more favorable overlaps with the other trees, resulting in
1286 	 * larger usable chunks.  Second, we only look at the first chunk in
1287 	 * the largest segment; there may be other usable chunks in the
1288 	 * largest segment, but we ignore them.
1289 	 */
1290 	uint64_t rstart = rs->rs_start;
1291 	uint64_t rsize = rs->rs_end - rstart;
1292 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1293 		uint64_t start = 0;
1294 		uint64_t size = 0;
1295 		boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
1296 		    rsize, &start, &size);
1297 		if (found) {
1298 			if (rstart == start)
1299 				return (0);
1300 			rsize = start - rstart;
1301 		}
1302 	}
1303 
1304 	uint64_t start = 0;
1305 	uint64_t size = 0;
1306 	boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
1307 	    rsize, &start, &size);
1308 	if (found)
1309 		rsize = start - rstart;
1310 
1311 	return (rsize);
1312 }
1313 
1314 static range_seg_t *
1315 metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size)
1316 {
1317 	range_seg_t *rs, rsearch;
1318 	avl_index_t where;
1319 
1320 	rsearch.rs_start = start;
1321 	rsearch.rs_end = start + size;
1322 
1323 	rs = avl_find(t, &rsearch, &where);
1324 	if (rs == NULL) {
1325 		rs = avl_nearest(t, where, AVL_AFTER);
1326 	}
1327 
1328 	return (rs);
1329 }
1330 
1331 /*
1332  * This is a helper function that can be used by the allocator to find
1333  * a suitable block to allocate. This will search the specified AVL
1334  * tree looking for a block that matches the specified criteria.
1335  */
1336 static uint64_t
1337 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
1338     uint64_t max_search)
1339 {
1340 	range_seg_t *rs = metaslab_block_find(t, *cursor, size);
1341 	uint64_t first_found;
1342 
1343 	if (rs != NULL)
1344 		first_found = rs->rs_start;
1345 
1346 	while (rs != NULL && rs->rs_start - first_found <= max_search) {
1347 		uint64_t offset = rs->rs_start;
1348 		if (offset + size <= rs->rs_end) {
1349 			*cursor = offset + size;
1350 			return (offset);
1351 		}
1352 		rs = AVL_NEXT(t, rs);
1353 	}
1354 
1355 	*cursor = 0;
1356 	return (-1ULL);
1357 }
1358 
1359 /*
1360  * ==========================================================================
1361  * Dynamic Fit (df) block allocator
1362  *
1363  * Search for a free chunk of at least this size, starting from the last
1364  * offset (for this alignment of block) looking for up to
1365  * metaslab_df_max_search bytes (16MB).  If a large enough free chunk is not
1366  * found within 16MB, then return a free chunk of exactly the requested size (or
1367  * larger).
1368  *
1369  * If it seems like searching from the last offset will be unproductive, skip
1370  * that and just return a free chunk of exactly the requested size (or larger).
1371  * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct.  This
1372  * mechanism is probably not very useful and may be removed in the future.
1373  *
1374  * The behavior when not searching can be changed to return the largest free
1375  * chunk, instead of a free chunk of exactly the requested size, by setting
1376  * metaslab_df_use_largest_segment.
1377  * ==========================================================================
1378  */
1379 static uint64_t
1380 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1381 {
1382 	/*
1383 	 * Find the largest power of 2 block size that evenly divides the
1384 	 * requested size. This is used to try to allocate blocks with similar
1385 	 * alignment from the same area of the metaslab (i.e. same cursor
1386 	 * bucket) but it does not guarantee that other allocations sizes
1387 	 * may exist in the same region.
1388 	 */
1389 	uint64_t align = size & -size;
1390 	uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1391 	range_tree_t *rt = msp->ms_allocatable;
1392 	int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1393 	uint64_t offset;
1394 
1395 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1396 	ASSERT3U(avl_numnodes(&rt->rt_root), ==,
1397 	    avl_numnodes(&msp->ms_allocatable_by_size));
1398 
1399 	/*
1400 	 * If we're running low on space, find a segment based on size,
1401 	 * rather than iterating based on offset.
1402 	 */
1403 	if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1404 	    free_pct < metaslab_df_free_pct) {
1405 		offset = -1;
1406 	} else {
1407 		offset = metaslab_block_picker(&rt->rt_root,
1408 		    cursor, size, metaslab_df_max_search);
1409 	}
1410 
1411 	if (offset == -1) {
1412 		range_seg_t *rs;
1413 		if (metaslab_df_use_largest_segment) {
1414 			/* use largest free segment */
1415 			rs = avl_last(&msp->ms_allocatable_by_size);
1416 		} else {
1417 			/* use segment of this size, or next largest */
1418 			rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1419 			    0, size);
1420 		}
1421 		if (rs != NULL && rs->rs_start + size <= rs->rs_end) {
1422 			offset = rs->rs_start;
1423 			*cursor = offset + size;
1424 		}
1425 	}
1426 
1427 	return (offset);
1428 }
1429 
1430 static metaslab_ops_t metaslab_df_ops = {
1431 	metaslab_df_alloc
1432 };
1433 
1434 /*
1435  * ==========================================================================
1436  * Cursor fit block allocator -
1437  * Select the largest region in the metaslab, set the cursor to the beginning
1438  * of the range and the cursor_end to the end of the range. As allocations
1439  * are made advance the cursor. Continue allocating from the cursor until
1440  * the range is exhausted and then find a new range.
1441  * ==========================================================================
1442  */
1443 static uint64_t
1444 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1445 {
1446 	range_tree_t *rt = msp->ms_allocatable;
1447 	avl_tree_t *t = &msp->ms_allocatable_by_size;
1448 	uint64_t *cursor = &msp->ms_lbas[0];
1449 	uint64_t *cursor_end = &msp->ms_lbas[1];
1450 	uint64_t offset = 0;
1451 
1452 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1453 	ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1454 
1455 	ASSERT3U(*cursor_end, >=, *cursor);
1456 
1457 	if ((*cursor + size) > *cursor_end) {
1458 		range_seg_t *rs;
1459 
1460 		rs = avl_last(&msp->ms_allocatable_by_size);
1461 		if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1462 			return (-1ULL);
1463 
1464 		*cursor = rs->rs_start;
1465 		*cursor_end = rs->rs_end;
1466 	}
1467 
1468 	offset = *cursor;
1469 	*cursor += size;
1470 
1471 	return (offset);
1472 }
1473 
1474 static metaslab_ops_t metaslab_cf_ops = {
1475 	metaslab_cf_alloc
1476 };
1477 
1478 /*
1479  * ==========================================================================
1480  * New dynamic fit allocator -
1481  * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1482  * contiguous blocks. If no region is found then just use the largest segment
1483  * that remains.
1484  * ==========================================================================
1485  */
1486 
1487 /*
1488  * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1489  * to request from the allocator.
1490  */
1491 uint64_t metaslab_ndf_clump_shift = 4;
1492 
1493 static uint64_t
1494 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1495 {
1496 	avl_tree_t *t = &msp->ms_allocatable->rt_root;
1497 	avl_index_t where;
1498 	range_seg_t *rs, rsearch;
1499 	uint64_t hbit = highbit64(size);
1500 	uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1501 	uint64_t max_size = metaslab_largest_allocatable(msp);
1502 
1503 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1504 	ASSERT3U(avl_numnodes(t), ==,
1505 	    avl_numnodes(&msp->ms_allocatable_by_size));
1506 
1507 	if (max_size < size)
1508 		return (-1ULL);
1509 
1510 	rsearch.rs_start = *cursor;
1511 	rsearch.rs_end = *cursor + size;
1512 
1513 	rs = avl_find(t, &rsearch, &where);
1514 	if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1515 		t = &msp->ms_allocatable_by_size;
1516 
1517 		rsearch.rs_start = 0;
1518 		rsearch.rs_end = MIN(max_size,
1519 		    1ULL << (hbit + metaslab_ndf_clump_shift));
1520 		rs = avl_find(t, &rsearch, &where);
1521 		if (rs == NULL)
1522 			rs = avl_nearest(t, where, AVL_AFTER);
1523 		ASSERT(rs != NULL);
1524 	}
1525 
1526 	if ((rs->rs_end - rs->rs_start) >= size) {
1527 		*cursor = rs->rs_start + size;
1528 		return (rs->rs_start);
1529 	}
1530 	return (-1ULL);
1531 }
1532 
1533 static metaslab_ops_t metaslab_ndf_ops = {
1534 	metaslab_ndf_alloc
1535 };
1536 
1537 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1538 
1539 /*
1540  * ==========================================================================
1541  * Metaslabs
1542  * ==========================================================================
1543  */
1544 
1545 /*
1546  * Wait for any in-progress metaslab loads to complete.
1547  */
1548 void
1549 metaslab_load_wait(metaslab_t *msp)
1550 {
1551 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1552 
1553 	while (msp->ms_loading) {
1554 		ASSERT(!msp->ms_loaded);
1555 		cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1556 	}
1557 }
1558 
1559 /*
1560  * Wait for any in-progress flushing to complete.
1561  */
1562 void
1563 metaslab_flush_wait(metaslab_t *msp)
1564 {
1565 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1566 
1567 	while (msp->ms_flushing)
1568 		cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
1569 }
1570 
1571 static unsigned int
1572 metaslab_idx_func(multilist_t *ml, void *arg)
1573 {
1574 	metaslab_t *msp = arg;
1575 	return (msp->ms_id % multilist_get_num_sublists(ml));
1576 }
1577 
1578 uint64_t
1579 metaslab_allocated_space(metaslab_t *msp)
1580 {
1581 	return (msp->ms_allocated_space);
1582 }
1583 
1584 /*
1585  * Verify that the space accounting on disk matches the in-core range_trees.
1586  */
1587 static void
1588 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
1589 {
1590 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1591 	uint64_t allocating = 0;
1592 	uint64_t sm_free_space, msp_free_space;
1593 
1594 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1595 	ASSERT(!msp->ms_condensing);
1596 
1597 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1598 		return;
1599 
1600 	/*
1601 	 * We can only verify the metaslab space when we're called
1602 	 * from syncing context with a loaded metaslab that has an
1603 	 * allocated space map. Calling this in non-syncing context
1604 	 * does not provide a consistent view of the metaslab since
1605 	 * we're performing allocations in the future.
1606 	 */
1607 	if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
1608 	    !msp->ms_loaded)
1609 		return;
1610 
1611 	/*
1612 	 * Even though the smp_alloc field can get negative,
1613 	 * when it comes to a metaslab's space map, that should
1614 	 * never be the case.
1615 	 */
1616 	ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
1617 
1618 	ASSERT3U(space_map_allocated(msp->ms_sm), >=,
1619 	    range_tree_space(msp->ms_unflushed_frees));
1620 
1621 	ASSERT3U(metaslab_allocated_space(msp), ==,
1622 	    space_map_allocated(msp->ms_sm) +
1623 	    range_tree_space(msp->ms_unflushed_allocs) -
1624 	    range_tree_space(msp->ms_unflushed_frees));
1625 
1626 	sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
1627 
1628 	/*
1629 	 * Account for future allocations since we would have
1630 	 * already deducted that space from the ms_allocatable.
1631 	 */
1632 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
1633 		allocating +=
1634 		    range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
1635 	}
1636 	ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
1637 	    msp->ms_allocating_total);
1638 
1639 	ASSERT3U(msp->ms_deferspace, ==,
1640 	    range_tree_space(msp->ms_defer[0]) +
1641 	    range_tree_space(msp->ms_defer[1]));
1642 
1643 	msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
1644 	    msp->ms_deferspace + range_tree_space(msp->ms_freed);
1645 
1646 	VERIFY3U(sm_free_space, ==, msp_free_space);
1647 }
1648 
1649 static void
1650 metaslab_aux_histograms_clear(metaslab_t *msp)
1651 {
1652 	/*
1653 	 * Auxiliary histograms are only cleared when resetting them,
1654 	 * which can only happen while the metaslab is loaded.
1655 	 */
1656 	ASSERT(msp->ms_loaded);
1657 
1658 	bzero(msp->ms_synchist, sizeof (msp->ms_synchist));
1659 	for (int t = 0; t < TXG_DEFER_SIZE; t++)
1660 		bzero(msp->ms_deferhist[t], sizeof (msp->ms_deferhist[t]));
1661 }
1662 
1663 static void
1664 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
1665     range_tree_t *rt)
1666 {
1667 	/*
1668 	 * This is modeled after space_map_histogram_add(), so refer to that
1669 	 * function for implementation details. We want this to work like
1670 	 * the space map histogram, and not the range tree histogram, as we
1671 	 * are essentially constructing a delta that will be later subtracted
1672 	 * from the space map histogram.
1673 	 */
1674 	int idx = 0;
1675 	for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1676 		ASSERT3U(i, >=, idx + shift);
1677 		histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
1678 
1679 		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
1680 			ASSERT3U(idx + shift, ==, i);
1681 			idx++;
1682 			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
1683 		}
1684 	}
1685 }
1686 
1687 /*
1688  * Called at every sync pass that the metaslab gets synced.
1689  *
1690  * The reason is that we want our auxiliary histograms to be updated
1691  * wherever the metaslab's space map histogram is updated. This way
1692  * we stay consistent on which parts of the metaslab space map's
1693  * histogram are currently not available for allocations (e.g because
1694  * they are in the defer, freed, and freeing trees).
1695  */
1696 static void
1697 metaslab_aux_histograms_update(metaslab_t *msp)
1698 {
1699 	space_map_t *sm = msp->ms_sm;
1700 	ASSERT(sm != NULL);
1701 
1702 	/*
1703 	 * This is similar to the metaslab's space map histogram updates
1704 	 * that take place in metaslab_sync(). The only difference is that
1705 	 * we only care about segments that haven't made it into the
1706 	 * ms_allocatable tree yet.
1707 	 */
1708 	if (msp->ms_loaded) {
1709 		metaslab_aux_histograms_clear(msp);
1710 
1711 		metaslab_aux_histogram_add(msp->ms_synchist,
1712 		    sm->sm_shift, msp->ms_freed);
1713 
1714 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1715 			metaslab_aux_histogram_add(msp->ms_deferhist[t],
1716 			    sm->sm_shift, msp->ms_defer[t]);
1717 		}
1718 	}
1719 
1720 	metaslab_aux_histogram_add(msp->ms_synchist,
1721 	    sm->sm_shift, msp->ms_freeing);
1722 }
1723 
1724 /*
1725  * Called every time we are done syncing (writing to) the metaslab,
1726  * i.e. at the end of each sync pass.
1727  * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
1728  */
1729 static void
1730 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
1731 {
1732 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1733 	space_map_t *sm = msp->ms_sm;
1734 
1735 	if (sm == NULL) {
1736 		/*
1737 		 * We came here from metaslab_init() when creating/opening a
1738 		 * pool, looking at a metaslab that hasn't had any allocations
1739 		 * yet.
1740 		 */
1741 		return;
1742 	}
1743 
1744 	/*
1745 	 * This is similar to the actions that we take for the ms_freed
1746 	 * and ms_defer trees in metaslab_sync_done().
1747 	 */
1748 	uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
1749 	if (defer_allowed) {
1750 		bcopy(msp->ms_synchist, msp->ms_deferhist[hist_index],
1751 		    sizeof (msp->ms_synchist));
1752 	} else {
1753 		bzero(msp->ms_deferhist[hist_index],
1754 		    sizeof (msp->ms_deferhist[hist_index]));
1755 	}
1756 	bzero(msp->ms_synchist, sizeof (msp->ms_synchist));
1757 }
1758 
1759 /*
1760  * Ensure that the metaslab's weight and fragmentation are consistent
1761  * with the contents of the histogram (either the range tree's histogram
1762  * or the space map's depending whether the metaslab is loaded).
1763  */
1764 static void
1765 metaslab_verify_weight_and_frag(metaslab_t *msp)
1766 {
1767 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1768 
1769 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1770 		return;
1771 
1772 	/*
1773 	 * We can end up here from vdev_remove_complete(), in which case we
1774 	 * cannot do these assertions because we hold spa config locks and
1775 	 * thus we are not allowed to read from the DMU.
1776 	 *
1777 	 * We check if the metaslab group has been removed and if that's
1778 	 * the case we return immediately as that would mean that we are
1779 	 * here from the aforementioned code path.
1780 	 */
1781 	if (msp->ms_group == NULL)
1782 		return;
1783 
1784 	/*
1785 	 * Devices being removed always return a weight of 0 and leave
1786 	 * fragmentation and ms_max_size as is - there is nothing for
1787 	 * us to verify here.
1788 	 */
1789 	vdev_t *vd = msp->ms_group->mg_vd;
1790 	if (vd->vdev_removing)
1791 		return;
1792 
1793 	/*
1794 	 * If the metaslab is dirty it probably means that we've done
1795 	 * some allocations or frees that have changed our histograms
1796 	 * and thus the weight.
1797 	 */
1798 	for (int t = 0; t < TXG_SIZE; t++) {
1799 		if (txg_list_member(&vd->vdev_ms_list, msp, t))
1800 			return;
1801 	}
1802 
1803 	/*
1804 	 * This verification checks that our in-memory state is consistent
1805 	 * with what's on disk. If the pool is read-only then there aren't
1806 	 * any changes and we just have the initially-loaded state.
1807 	 */
1808 	if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
1809 		return;
1810 
1811 	/* some extra verification for in-core tree if you can */
1812 	if (msp->ms_loaded) {
1813 		range_tree_stat_verify(msp->ms_allocatable);
1814 		VERIFY(space_map_histogram_verify(msp->ms_sm,
1815 		    msp->ms_allocatable));
1816 	}
1817 
1818 	uint64_t weight = msp->ms_weight;
1819 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
1820 	boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
1821 	uint64_t frag = msp->ms_fragmentation;
1822 	uint64_t max_segsize = msp->ms_max_size;
1823 
1824 	msp->ms_weight = 0;
1825 	msp->ms_fragmentation = 0;
1826 
1827 	/*
1828 	 * This function is used for verification purposes. Regardless of
1829 	 * whether metaslab_weight() thinks this metaslab should be active or
1830 	 * not, we want to ensure that the actual weight (and therefore the
1831 	 * value of ms_weight) would be the same if it was to be recalculated
1832 	 * at this point.
1833 	 */
1834 	msp->ms_weight = metaslab_weight(msp) | was_active;
1835 
1836 	VERIFY3U(max_segsize, ==, msp->ms_max_size);
1837 
1838 	/*
1839 	 * If the weight type changed then there is no point in doing
1840 	 * verification. Revert fields to their original values.
1841 	 */
1842 	if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
1843 	    (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
1844 		msp->ms_fragmentation = frag;
1845 		msp->ms_weight = weight;
1846 		return;
1847 	}
1848 
1849 	VERIFY3U(msp->ms_fragmentation, ==, frag);
1850 	VERIFY3U(msp->ms_weight, ==, weight);
1851 }
1852 
1853 /*
1854  * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
1855  * this class that was used longest ago, and attempt to unload it.  We don't
1856  * want to spend too much time in this loop to prevent performance
1857  * degredation, and we expect that most of the time this operation will
1858  * succeed. Between that and the normal unloading processing during txg sync,
1859  * we expect this to keep the metaslab memory usage under control.
1860  */
1861 static void
1862 metaslab_potentially_evict(metaslab_class_t *mc)
1863 {
1864 #ifdef _KERNEL
1865 	uint64_t allmem = arc_all_memory();
1866 	extern kmem_cache_t *range_seg_cache;
1867 	uint64_t inuse = kmem_cache_stat(range_seg_cache, "buf_inuse");
1868 	uint64_t size =	kmem_cache_stat(range_seg_cache, "buf_size");
1869 	int tries = 0;
1870 	for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
1871 	    tries < multilist_get_num_sublists(mc->mc_metaslab_txg_list) * 2;
1872 	    tries++) {
1873 		unsigned int idx = multilist_get_random_index(
1874 		    mc->mc_metaslab_txg_list);
1875 		multilist_sublist_t *mls =
1876 		    multilist_sublist_lock(mc->mc_metaslab_txg_list, idx);
1877 		metaslab_t *msp = multilist_sublist_head(mls);
1878 		multilist_sublist_unlock(mls);
1879 		while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
1880 		    inuse * size) {
1881 			VERIFY3P(mls, ==, multilist_sublist_lock(
1882 			    mc->mc_metaslab_txg_list, idx));
1883 			ASSERT3U(idx, ==,
1884 			    metaslab_idx_func(mc->mc_metaslab_txg_list, msp));
1885 
1886 			if (!multilist_link_active(&msp->ms_class_txg_node)) {
1887 				multilist_sublist_unlock(mls);
1888 				break;
1889 			}
1890 			metaslab_t *next_msp = multilist_sublist_next(mls, msp);
1891 			multilist_sublist_unlock(mls);
1892 			/*
1893 			 * If the metaslab is currently loading there are two
1894 			 * cases. If it's the metaslab we're evicting, we
1895 			 * can't continue on or we'll panic when we attempt to
1896 			 * recursively lock the mutex. If it's another
1897 			 * metaslab that's loading, it can be safely skipped,
1898 			 * since we know it's very new and therefore not a
1899 			 * good eviction candidate. We check later once the
1900 			 * lock is held that the metaslab is fully loaded
1901 			 * before actually unloading it.
1902 			 */
1903 			if (msp->ms_loading) {
1904 				msp = next_msp;
1905 				inuse = kmem_cache_stat(range_seg_cache,
1906 				    "buf_inuse");
1907 				continue;
1908 			}
1909 			/*
1910 			 * We can't unload metaslabs with no spacemap because
1911 			 * they're not ready to be unloaded yet. We can't
1912 			 * unload metaslabs with outstanding allocations
1913 			 * because doing so could cause the metaslab's weight
1914 			 * to decrease while it's unloaded, which violates an
1915 			 * invariant that we use to prevent unnecessary
1916 			 * loading. We also don't unload metaslabs that are
1917 			 * currently active because they are high-weight
1918 			 * metaslabs that are likely to be used in the near
1919 			 * future.
1920 			 */
1921 			mutex_enter(&msp->ms_lock);
1922 			if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
1923 			    msp->ms_allocating_total == 0) {
1924 				metaslab_unload(msp);
1925 			}
1926 			mutex_exit(&msp->ms_lock);
1927 			msp = next_msp;
1928 			inuse = kmem_cache_stat(range_seg_cache, "buf_inuse");
1929 		}
1930 	}
1931 #endif
1932 }
1933 
1934 static int
1935 metaslab_load_impl(metaslab_t *msp)
1936 {
1937 	int error = 0;
1938 
1939 	ASSERT(MUTEX_HELD(&msp->ms_lock));
1940 	ASSERT(msp->ms_loading);
1941 	ASSERT(!msp->ms_condensing);
1942 
1943 	/*
1944 	 * We temporarily drop the lock to unblock other operations while we
1945 	 * are reading the space map. Therefore, metaslab_sync() and
1946 	 * metaslab_sync_done() can run at the same time as we do.
1947 	 *
1948 	 * If we are using the log space maps, metaslab_sync() can't write to
1949 	 * the metaslab's space map while we are loading as we only write to
1950 	 * it when we are flushing the metaslab, and that can't happen while
1951 	 * we are loading it.
1952 	 *
1953 	 * If we are not using log space maps though, metaslab_sync() can
1954 	 * append to the space map while we are loading. Therefore we load
1955 	 * only entries that existed when we started the load. Additionally,
1956 	 * metaslab_sync_done() has to wait for the load to complete because
1957 	 * there are potential races like metaslab_load() loading parts of the
1958 	 * space map that are currently being appended by metaslab_sync(). If
1959 	 * we didn't, the ms_allocatable would have entries that
1960 	 * metaslab_sync_done() would try to re-add later.
1961 	 *
1962 	 * That's why before dropping the lock we remember the synced length
1963 	 * of the metaslab and read up to that point of the space map,
1964 	 * ignoring entries appended by metaslab_sync() that happen after we
1965 	 * drop the lock.
1966 	 */
1967 	uint64_t length = msp->ms_synced_length;
1968 	mutex_exit(&msp->ms_lock);
1969 
1970 	hrtime_t load_start = gethrtime();
1971 	if (msp->ms_sm != NULL) {
1972 		error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
1973 		    SM_FREE, length);
1974 	} else {
1975 		/*
1976 		 * The space map has not been allocated yet, so treat
1977 		 * all the space in the metaslab as free and add it to the
1978 		 * ms_allocatable tree.
1979 		 */
1980 		range_tree_add(msp->ms_allocatable,
1981 		    msp->ms_start, msp->ms_size);
1982 
1983 		if (msp->ms_freed != NULL) {
1984 			/*
1985 			 * If the ms_sm doesn't exist, this means that this
1986 			 * metaslab hasn't gone through metaslab_sync() and
1987 			 * thus has never been dirtied. So we shouldn't
1988 			 * expect any unflushed allocs or frees from previous
1989 			 * TXGs.
1990 			 *
1991 			 * Note: ms_freed and all the other trees except for
1992 			 * the ms_allocatable, can be NULL at this point only
1993 			 * if this is a new metaslab of a vdev that just got
1994 			 * expanded.
1995 			 */
1996 			ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
1997 			ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
1998 		}
1999 	}
2000 
2001 	/*
2002 	 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2003 	 * changing the ms_sm (or log_sm) and the metaslab's range trees
2004 	 * while we are about to use them and populate the ms_allocatable.
2005 	 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2006 	 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2007 	 */
2008 	mutex_enter(&msp->ms_sync_lock);
2009 	mutex_enter(&msp->ms_lock);
2010 
2011 	ASSERT(!msp->ms_condensing);
2012 	ASSERT(!msp->ms_flushing);
2013 
2014 	if (error != 0) {
2015 		mutex_exit(&msp->ms_sync_lock);
2016 		return (error);
2017 	}
2018 
2019 	ASSERT3P(msp->ms_group, !=, NULL);
2020 	msp->ms_loaded = B_TRUE;
2021 
2022 	/*
2023 	 * Apply all the unflushed changes to ms_allocatable right
2024 	 * away so any manipulations we do below have a clear view
2025 	 * of what is allocated and what is free.
2026 	 */
2027 	range_tree_walk(msp->ms_unflushed_allocs,
2028 	    range_tree_remove, msp->ms_allocatable);
2029 	range_tree_walk(msp->ms_unflushed_frees,
2030 	    range_tree_add, msp->ms_allocatable);
2031 
2032 	msp->ms_loaded = B_TRUE;
2033 
2034 	ASSERT3P(msp->ms_group, !=, NULL);
2035 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2036 	if (spa_syncing_log_sm(spa) != NULL) {
2037 		ASSERT(spa_feature_is_enabled(spa,
2038 		    SPA_FEATURE_LOG_SPACEMAP));
2039 
2040 		/*
2041 		 * If we use a log space map we add all the segments
2042 		 * that are in ms_unflushed_frees so they are available
2043 		 * for allocation.
2044 		 *
2045 		 * ms_allocatable needs to contain all free segments
2046 		 * that are ready for allocations (thus not segments
2047 		 * from ms_freeing, ms_freed, and the ms_defer trees).
2048 		 * But if we grab the lock in this code path at a sync
2049 		 * pass later that 1, then it also contains the
2050 		 * segments of ms_freed (they were added to it earlier
2051 		 * in this path through ms_unflushed_frees). So we
2052 		 * need to remove all the segments that exist in
2053 		 * ms_freed from ms_allocatable as they will be added
2054 		 * later in metaslab_sync_done().
2055 		 *
2056 		 * When there's no log space map, the ms_allocatable
2057 		 * correctly doesn't contain any segments that exist
2058 		 * in ms_freed [see ms_synced_length].
2059 		 */
2060 		range_tree_walk(msp->ms_freed,
2061 		    range_tree_remove, msp->ms_allocatable);
2062 	}
2063 
2064 	/*
2065 	 * If we are not using the log space map, ms_allocatable
2066 	 * contains the segments that exist in the ms_defer trees
2067 	 * [see ms_synced_length]. Thus we need to remove them
2068 	 * from ms_allocatable as they will be added again in
2069 	 * metaslab_sync_done().
2070 	 *
2071 	 * If we are using the log space map, ms_allocatable still
2072 	 * contains the segments that exist in the ms_defer trees.
2073 	 * Not because it read them through the ms_sm though. But
2074 	 * because these segments are part of ms_unflushed_frees
2075 	 * whose segments we add to ms_allocatable earlier in this
2076 	 * code path.
2077 	 */
2078 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2079 		range_tree_walk(msp->ms_defer[t],
2080 		    range_tree_remove, msp->ms_allocatable);
2081 	}
2082 
2083 	/*
2084 	 * Call metaslab_recalculate_weight_and_sort() now that the
2085 	 * metaslab is loaded so we get the metaslab's real weight.
2086 	 *
2087 	 * Unless this metaslab was created with older software and
2088 	 * has not yet been converted to use segment-based weight, we
2089 	 * expect the new weight to be better or equal to the weight
2090 	 * that the metaslab had while it was not loaded. This is
2091 	 * because the old weight does not take into account the
2092 	 * consolidation of adjacent segments between TXGs. [see
2093 	 * comment for ms_synchist and ms_deferhist[] for more info]
2094 	 */
2095 	uint64_t weight = msp->ms_weight;
2096 	uint64_t max_size = msp->ms_max_size;
2097 	metaslab_recalculate_weight_and_sort(msp);
2098 	if (!WEIGHT_IS_SPACEBASED(weight))
2099 		ASSERT3U(weight, <=, msp->ms_weight);
2100 	msp->ms_max_size = metaslab_largest_allocatable(msp);
2101 	ASSERT3U(max_size, <=, msp->ms_max_size);
2102 	hrtime_t load_end = gethrtime();
2103 		msp->ms_load_time = load_end;
2104 	if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
2105 		zfs_dbgmsg("loading: txg %llu, spa %s, vdev_id %llu, "
2106 		    "ms_id %llu, smp_length %llu, "
2107 		    "unflushed_allocs %llu, unflushed_frees %llu, "
2108 		    "freed %llu, defer %llu + %llu, "
2109 		    "loading_time %lld ms, ms_max_size %llu, "
2110 		    "max size error %llu",
2111 		    spa_syncing_txg(spa), spa_name(spa),
2112 		    msp->ms_group->mg_vd->vdev_id, msp->ms_id,
2113 		    space_map_length(msp->ms_sm),
2114 		    range_tree_space(msp->ms_unflushed_allocs),
2115 		    range_tree_space(msp->ms_unflushed_frees),
2116 		    range_tree_space(msp->ms_freed),
2117 		    range_tree_space(msp->ms_defer[0]),
2118 		    range_tree_space(msp->ms_defer[1]),
2119 		    (longlong_t)((load_end - load_start) / 1000000),
2120 		    msp->ms_max_size, msp->ms_max_size - max_size);
2121 	}
2122 
2123 	metaslab_verify_space(msp, spa_syncing_txg(spa));
2124 	mutex_exit(&msp->ms_sync_lock);
2125 	return (0);
2126 }
2127 
2128 int
2129 metaslab_load(metaslab_t *msp)
2130 {
2131 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2132 
2133 	/*
2134 	 * There may be another thread loading the same metaslab, if that's
2135 	 * the case just wait until the other thread is done and return.
2136 	 */
2137 	metaslab_load_wait(msp);
2138 	if (msp->ms_loaded)
2139 		return (0);
2140 	VERIFY(!msp->ms_loading);
2141 	ASSERT(!msp->ms_condensing);
2142 
2143 	/*
2144 	 * We set the loading flag BEFORE potentially dropping the lock to
2145 	 * wait for an ongoing flush (see ms_flushing below). This way other
2146 	 * threads know that there is already a thread that is loading this
2147 	 * metaslab.
2148 	 */
2149 	msp->ms_loading = B_TRUE;
2150 
2151 	/*
2152 	 * Wait for any in-progress flushing to finish as we drop the ms_lock
2153 	 * both here (during space_map_load()) and in metaslab_flush() (when
2154 	 * we flush our changes to the ms_sm).
2155 	 */
2156 	if (msp->ms_flushing)
2157 		metaslab_flush_wait(msp);
2158 
2159 	/*
2160 	 * In the possibility that we were waiting for the metaslab to be
2161 	 * flushed (where we temporarily dropped the ms_lock), ensure that
2162 	 * no one else loaded the metaslab somehow.
2163 	 */
2164 	ASSERT(!msp->ms_loaded);
2165 
2166 	/*
2167 	 * If we're loading a metaslab in the normal class, consider evicting
2168 	 * another one to keep our memory usage under the limit defined by the
2169 	 * zfs_metaslab_mem_limit tunable.
2170 	 */
2171 	if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2172 	    msp->ms_group->mg_class) {
2173 		metaslab_potentially_evict(msp->ms_group->mg_class);
2174 	}
2175 
2176 	int error = metaslab_load_impl(msp);
2177 
2178 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2179 	msp->ms_loading = B_FALSE;
2180 	cv_broadcast(&msp->ms_load_cv);
2181 
2182 	return (error);
2183 }
2184 
2185 void
2186 metaslab_unload(metaslab_t *msp)
2187 {
2188 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2189 
2190 	/*
2191 	 * This can happen if a metaslab is selected for eviction (in
2192 	 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2193 	 * metaslab_class_evict_old).
2194 	 */
2195 	if (!msp->ms_loaded)
2196 		return;
2197 
2198 	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2199 	msp->ms_loaded = B_FALSE;
2200 	msp->ms_unload_time = gethrtime();
2201 
2202 	msp->ms_activation_weight = 0;
2203 	msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2204 
2205 	if (msp->ms_group != NULL) {
2206 		metaslab_class_t *mc = msp->ms_group->mg_class;
2207 		multilist_sublist_t *mls =
2208 		    multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp);
2209 		if (multilist_link_active(&msp->ms_class_txg_node))
2210 			multilist_sublist_remove(mls, msp);
2211 		multilist_sublist_unlock(mls);
2212 	}
2213 
2214 	/*
2215 	 * We explicitly recalculate the metaslab's weight based on its space
2216 	 * map (as it is now not loaded). We want unload metaslabs to always
2217 	 * have their weights calculated from the space map histograms, while
2218 	 * loaded ones have it calculated from their in-core range tree
2219 	 * [see metaslab_load()]. This way, the weight reflects the information
2220 	 * available in-core, whether it is loaded or not.
2221 	 *
2222 	 * If ms_group == NULL means that we came here from metaslab_fini(),
2223 	 * at which point it doesn't make sense for us to do the recalculation
2224 	 * and the sorting.
2225 	 */
2226 	if (msp->ms_group != NULL)
2227 		metaslab_recalculate_weight_and_sort(msp);
2228 }
2229 
2230 void
2231 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2232 {
2233 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2234 	metaslab_class_t *mc = msp->ms_group->mg_class;
2235 	multilist_sublist_t *mls =
2236 	    multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp);
2237 	if (multilist_link_active(&msp->ms_class_txg_node))
2238 		multilist_sublist_remove(mls, msp);
2239 	msp->ms_selected_txg = txg;
2240 	msp->ms_selected_time = gethrtime();
2241 	multilist_sublist_insert_tail(mls, msp);
2242 	multilist_sublist_unlock(mls);
2243 }
2244 
2245 void
2246 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2247     int64_t defer_delta, int64_t space_delta)
2248 {
2249 	vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2250 
2251 	ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2252 	ASSERT(vd->vdev_ms_count != 0);
2253 
2254 	metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2255 	    vdev_deflated_space(vd, space_delta));
2256 }
2257 
2258 int
2259 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2260     uint64_t txg, metaslab_t **msp)
2261 {
2262 	vdev_t *vd = mg->mg_vd;
2263 	spa_t *spa = vd->vdev_spa;
2264 	objset_t *mos = spa->spa_meta_objset;
2265 	metaslab_t *ms;
2266 	int error;
2267 
2268 	ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2269 	mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2270 	mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2271 	cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2272 	cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2273 	multilist_link_init(&ms->ms_class_txg_node);
2274 
2275 	ms->ms_id = id;
2276 	ms->ms_start = id << vd->vdev_ms_shift;
2277 	ms->ms_size = 1ULL << vd->vdev_ms_shift;
2278 	ms->ms_allocator = -1;
2279 	ms->ms_new = B_TRUE;
2280 
2281 	/*
2282 	 * We only open space map objects that already exist. All others
2283 	 * will be opened when we finally allocate an object for it.
2284 	 *
2285 	 * Note:
2286 	 * When called from vdev_expand(), we can't call into the DMU as
2287 	 * we are holding the spa_config_lock as a writer and we would
2288 	 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2289 	 * that case, the object parameter is zero though, so we won't
2290 	 * call into the DMU.
2291 	 */
2292 	if (object != 0) {
2293 		error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2294 		    ms->ms_size, vd->vdev_ashift);
2295 
2296 		if (error != 0) {
2297 			kmem_free(ms, sizeof (metaslab_t));
2298 			return (error);
2299 		}
2300 
2301 		ASSERT(ms->ms_sm != NULL);
2302 		ASSERT3S(space_map_allocated(ms->ms_sm), >=, 0);
2303 		ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2304 	}
2305 
2306 	/*
2307 	 * We create the ms_allocatable here, but we don't create the
2308 	 * other range trees until metaslab_sync_done().  This serves
2309 	 * two purposes: it allows metaslab_sync_done() to detect the
2310 	 * addition of new space; and for debugging, it ensures that
2311 	 * we'd data fault on any attempt to use this metaslab before
2312 	 * it's ready.
2313 	 */
2314 	ms->ms_allocatable = range_tree_create_impl(&rt_avl_ops,
2315 	    &ms->ms_allocatable_by_size, metaslab_rangesize_compare, 0);
2316 
2317 	ms->ms_trim = range_tree_create(NULL, NULL);
2318 
2319 	metaslab_group_add(mg, ms);
2320 	metaslab_set_fragmentation(ms);
2321 
2322 	/*
2323 	 * If we're opening an existing pool (txg == 0) or creating
2324 	 * a new one (txg == TXG_INITIAL), all space is available now.
2325 	 * If we're adding space to an existing pool, the new space
2326 	 * does not become available until after this txg has synced.
2327 	 * The metaslab's weight will also be initialized when we sync
2328 	 * out this txg. This ensures that we don't attempt to allocate
2329 	 * from it before we have initialized it completely.
2330 	 */
2331 	if (txg <= TXG_INITIAL) {
2332 		metaslab_sync_done(ms, 0);
2333 		metaslab_space_update(vd, mg->mg_class,
2334 		    metaslab_allocated_space(ms), 0, 0);
2335 	}
2336 
2337 	if (txg != 0) {
2338 		vdev_dirty(vd, 0, NULL, txg);
2339 		vdev_dirty(vd, VDD_METASLAB, ms, txg);
2340 	}
2341 
2342 	*msp = ms;
2343 
2344 	return (0);
2345 }
2346 
2347 static void
2348 metaslab_fini_flush_data(metaslab_t *msp)
2349 {
2350 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2351 
2352 	if (metaslab_unflushed_txg(msp) == 0) {
2353 		ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2354 		    ==, NULL);
2355 		return;
2356 	}
2357 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2358 
2359 	mutex_enter(&spa->spa_flushed_ms_lock);
2360 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2361 	mutex_exit(&spa->spa_flushed_ms_lock);
2362 
2363 	spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2364 	spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2365 }
2366 
2367 uint64_t
2368 metaslab_unflushed_changes_memused(metaslab_t *ms)
2369 {
2370 	return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
2371 	    range_tree_numsegs(ms->ms_unflushed_frees)) *
2372 	    sizeof (range_seg_t));
2373 }
2374 
2375 void
2376 metaslab_fini(metaslab_t *msp)
2377 {
2378 	metaslab_group_t *mg = msp->ms_group;
2379 	vdev_t *vd = mg->mg_vd;
2380 	spa_t *spa = vd->vdev_spa;
2381 
2382 	metaslab_fini_flush_data(msp);
2383 
2384 	metaslab_group_remove(mg, msp);
2385 
2386 	mutex_enter(&msp->ms_lock);
2387 	VERIFY(msp->ms_group == NULL);
2388 	metaslab_space_update(vd, mg->mg_class,
2389 	    -metaslab_allocated_space(msp), 0, -msp->ms_size);
2390 
2391 	space_map_close(msp->ms_sm);
2392 	msp->ms_sm = NULL;
2393 
2394 	metaslab_unload(msp);
2395 	range_tree_destroy(msp->ms_allocatable);
2396 	range_tree_destroy(msp->ms_freeing);
2397 	range_tree_destroy(msp->ms_freed);
2398 
2399 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2400 	    metaslab_unflushed_changes_memused(msp));
2401 	spa->spa_unflushed_stats.sus_memused -=
2402 	    metaslab_unflushed_changes_memused(msp);
2403 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2404 	range_tree_destroy(msp->ms_unflushed_allocs);
2405 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2406 	range_tree_destroy(msp->ms_unflushed_frees);
2407 
2408 	for (int t = 0; t < TXG_SIZE; t++) {
2409 		range_tree_destroy(msp->ms_allocating[t]);
2410 	}
2411 
2412 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2413 		range_tree_destroy(msp->ms_defer[t]);
2414 	}
2415 	ASSERT0(msp->ms_deferspace);
2416 
2417 	range_tree_destroy(msp->ms_checkpointing);
2418 
2419 	for (int t = 0; t < TXG_SIZE; t++)
2420 		ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2421 
2422 	range_tree_vacate(msp->ms_trim, NULL, NULL);
2423 	range_tree_destroy(msp->ms_trim);
2424 
2425 	mutex_exit(&msp->ms_lock);
2426 	cv_destroy(&msp->ms_load_cv);
2427 	cv_destroy(&msp->ms_flush_cv);
2428 	mutex_destroy(&msp->ms_lock);
2429 	mutex_destroy(&msp->ms_sync_lock);
2430 	ASSERT3U(msp->ms_allocator, ==, -1);
2431 
2432 	kmem_free(msp, sizeof (metaslab_t));
2433 }
2434 
2435 #define	FRAGMENTATION_TABLE_SIZE	17
2436 
2437 /*
2438  * This table defines a segment size based fragmentation metric that will
2439  * allow each metaslab to derive its own fragmentation value. This is done
2440  * by calculating the space in each bucket of the spacemap histogram and
2441  * multiplying that by the fragmentation metric in this table. Doing
2442  * this for all buckets and dividing it by the total amount of free
2443  * space in this metaslab (i.e. the total free space in all buckets) gives
2444  * us the fragmentation metric. This means that a high fragmentation metric
2445  * equates to most of the free space being comprised of small segments.
2446  * Conversely, if the metric is low, then most of the free space is in
2447  * large segments. A 10% change in fragmentation equates to approximately
2448  * double the number of segments.
2449  *
2450  * This table defines 0% fragmented space using 16MB segments. Testing has
2451  * shown that segments that are greater than or equal to 16MB do not suffer
2452  * from drastic performance problems. Using this value, we derive the rest
2453  * of the table. Since the fragmentation value is never stored on disk, it
2454  * is possible to change these calculations in the future.
2455  */
2456 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
2457 	100,	/* 512B	*/
2458 	100,	/* 1K	*/
2459 	98,	/* 2K	*/
2460 	95,	/* 4K	*/
2461 	90,	/* 8K	*/
2462 	80,	/* 16K	*/
2463 	70,	/* 32K	*/
2464 	60,	/* 64K	*/
2465 	50,	/* 128K	*/
2466 	40,	/* 256K	*/
2467 	30,	/* 512K	*/
2468 	20,	/* 1M	*/
2469 	15,	/* 2M	*/
2470 	10,	/* 4M	*/
2471 	5,	/* 8M	*/
2472 	0	/* 16M	*/
2473 };
2474 
2475 /*
2476  * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2477  * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2478  * been upgraded and does not support this metric. Otherwise, the return
2479  * value should be in the range [0, 100].
2480  */
2481 static void
2482 metaslab_set_fragmentation(metaslab_t *msp)
2483 {
2484 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2485 	uint64_t fragmentation = 0;
2486 	uint64_t total = 0;
2487 	boolean_t feature_enabled = spa_feature_is_enabled(spa,
2488 	    SPA_FEATURE_SPACEMAP_HISTOGRAM);
2489 
2490 	if (!feature_enabled) {
2491 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2492 		return;
2493 	}
2494 
2495 	/*
2496 	 * A null space map means that the entire metaslab is free
2497 	 * and thus is not fragmented.
2498 	 */
2499 	if (msp->ms_sm == NULL) {
2500 		msp->ms_fragmentation = 0;
2501 		return;
2502 	}
2503 
2504 	/*
2505 	 * If this metaslab's space map has not been upgraded, flag it
2506 	 * so that we upgrade next time we encounter it.
2507 	 */
2508 	if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2509 		uint64_t txg = spa_syncing_txg(spa);
2510 		vdev_t *vd = msp->ms_group->mg_vd;
2511 
2512 		/*
2513 		 * If we've reached the final dirty txg, then we must
2514 		 * be shutting down the pool. We don't want to dirty
2515 		 * any data past this point so skip setting the condense
2516 		 * flag. We can retry this action the next time the pool
2517 		 * is imported.
2518 		 */
2519 		if (spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2520 			msp->ms_condense_wanted = B_TRUE;
2521 			vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2522 			zfs_dbgmsg("txg %llu, requesting force condense: "
2523 			    "ms_id %llu, vdev_id %llu", txg, msp->ms_id,
2524 			    vd->vdev_id);
2525 		}
2526 		msp->ms_fragmentation = ZFS_FRAG_INVALID;
2527 		return;
2528 	}
2529 
2530 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2531 		uint64_t space = 0;
2532 		uint8_t shift = msp->ms_sm->sm_shift;
2533 
2534 		int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2535 		    FRAGMENTATION_TABLE_SIZE - 1);
2536 
2537 		if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2538 			continue;
2539 
2540 		space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
2541 		total += space;
2542 
2543 		ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
2544 		fragmentation += space * zfs_frag_table[idx];
2545 	}
2546 
2547 	if (total > 0)
2548 		fragmentation /= total;
2549 	ASSERT3U(fragmentation, <=, 100);
2550 
2551 	msp->ms_fragmentation = fragmentation;
2552 }
2553 
2554 /*
2555  * Compute a weight -- a selection preference value -- for the given metaslab.
2556  * This is based on the amount of free space, the level of fragmentation,
2557  * the LBA range, and whether the metaslab is loaded.
2558  */
2559 static uint64_t
2560 metaslab_space_weight(metaslab_t *msp)
2561 {
2562 	metaslab_group_t *mg = msp->ms_group;
2563 	vdev_t *vd = mg->mg_vd;
2564 	uint64_t weight, space;
2565 
2566 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2567 
2568 	/*
2569 	 * The baseline weight is the metaslab's free space.
2570 	 */
2571 	space = msp->ms_size - metaslab_allocated_space(msp);
2572 
2573 	if (metaslab_fragmentation_factor_enabled &&
2574 	    msp->ms_fragmentation != ZFS_FRAG_INVALID) {
2575 		/*
2576 		 * Use the fragmentation information to inversely scale
2577 		 * down the baseline weight. We need to ensure that we
2578 		 * don't exclude this metaslab completely when it's 100%
2579 		 * fragmented. To avoid this we reduce the fragmented value
2580 		 * by 1.
2581 		 */
2582 		space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
2583 
2584 		/*
2585 		 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
2586 		 * this metaslab again. The fragmentation metric may have
2587 		 * decreased the space to something smaller than
2588 		 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
2589 		 * so that we can consume any remaining space.
2590 		 */
2591 		if (space > 0 && space < SPA_MINBLOCKSIZE)
2592 			space = SPA_MINBLOCKSIZE;
2593 	}
2594 	weight = space;
2595 
2596 	/*
2597 	 * Modern disks have uniform bit density and constant angular velocity.
2598 	 * Therefore, the outer recording zones are faster (higher bandwidth)
2599 	 * than the inner zones by the ratio of outer to inner track diameter,
2600 	 * which is typically around 2:1.  We account for this by assigning
2601 	 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
2602 	 * In effect, this means that we'll select the metaslab with the most
2603 	 * free bandwidth rather than simply the one with the most free space.
2604 	 */
2605 	if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
2606 		weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
2607 		ASSERT(weight >= space && weight <= 2 * space);
2608 	}
2609 
2610 	/*
2611 	 * If this metaslab is one we're actively using, adjust its
2612 	 * weight to make it preferable to any inactive metaslab so
2613 	 * we'll polish it off. If the fragmentation on this metaslab
2614 	 * has exceed our threshold, then don't mark it active.
2615 	 */
2616 	if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
2617 	    msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
2618 		weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
2619 	}
2620 
2621 	WEIGHT_SET_SPACEBASED(weight);
2622 	return (weight);
2623 }
2624 
2625 /*
2626  * Return the weight of the specified metaslab, according to the segment-based
2627  * weighting algorithm. The metaslab must be loaded. This function can
2628  * be called within a sync pass since it relies only on the metaslab's
2629  * range tree which is always accurate when the metaslab is loaded.
2630  */
2631 static uint64_t
2632 metaslab_weight_from_range_tree(metaslab_t *msp)
2633 {
2634 	uint64_t weight = 0;
2635 	uint32_t segments = 0;
2636 
2637 	ASSERT(msp->ms_loaded);
2638 
2639 	for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
2640 	    i--) {
2641 		uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
2642 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
2643 
2644 		segments <<= 1;
2645 		segments += msp->ms_allocatable->rt_histogram[i];
2646 
2647 		/*
2648 		 * The range tree provides more precision than the space map
2649 		 * and must be downgraded so that all values fit within the
2650 		 * space map's histogram. This allows us to compare loaded
2651 		 * vs. unloaded metaslabs to determine which metaslab is
2652 		 * considered "best".
2653 		 */
2654 		if (i > max_idx)
2655 			continue;
2656 
2657 		if (segments != 0) {
2658 			WEIGHT_SET_COUNT(weight, segments);
2659 			WEIGHT_SET_INDEX(weight, i);
2660 			WEIGHT_SET_ACTIVE(weight, 0);
2661 			break;
2662 		}
2663 	}
2664 	return (weight);
2665 }
2666 
2667 /*
2668  * Calculate the weight based on the on-disk histogram. Should be applied
2669  * only to unloaded metaslabs  (i.e no incoming allocations) in-order to
2670  * give results consistent with the on-disk state
2671  */
2672 static uint64_t
2673 metaslab_weight_from_spacemap(metaslab_t *msp)
2674 {
2675 	space_map_t *sm = msp->ms_sm;
2676 	ASSERT(!msp->ms_loaded);
2677 	ASSERT(sm != NULL);
2678 	ASSERT3U(space_map_object(sm), !=, 0);
2679 	ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
2680 
2681 	/*
2682 	 * Create a joint histogram from all the segments that have made
2683 	 * it to the metaslab's space map histogram, that are not yet
2684 	 * available for allocation because they are still in the freeing
2685 	 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
2686 	 * these segments from the space map's histogram to get a more
2687 	 * accurate weight.
2688 	 */
2689 	uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
2690 	for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
2691 		deferspace_histogram[i] += msp->ms_synchist[i];
2692 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2693 		for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2694 			deferspace_histogram[i] += msp->ms_deferhist[t][i];
2695 		}
2696 	}
2697 
2698 	uint64_t weight = 0;
2699 	for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
2700 		ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
2701 		    deferspace_histogram[i]);
2702 		uint64_t count =
2703 		    sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
2704 		if (count != 0) {
2705 			WEIGHT_SET_COUNT(weight, count);
2706 			WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
2707 			WEIGHT_SET_ACTIVE(weight, 0);
2708 			break;
2709 		}
2710 	}
2711 	return (weight);
2712 }
2713 
2714 /*
2715  * Compute a segment-based weight for the specified metaslab. The weight
2716  * is determined by highest bucket in the histogram. The information
2717  * for the highest bucket is encoded into the weight value.
2718  */
2719 static uint64_t
2720 metaslab_segment_weight(metaslab_t *msp)
2721 {
2722 	metaslab_group_t *mg = msp->ms_group;
2723 	uint64_t weight = 0;
2724 	uint8_t shift = mg->mg_vd->vdev_ashift;
2725 
2726 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2727 
2728 	/*
2729 	 * The metaslab is completely free.
2730 	 */
2731 	if (metaslab_allocated_space(msp) == 0) {
2732 		int idx = highbit64(msp->ms_size) - 1;
2733 		int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
2734 
2735 		if (idx < max_idx) {
2736 			WEIGHT_SET_COUNT(weight, 1ULL);
2737 			WEIGHT_SET_INDEX(weight, idx);
2738 		} else {
2739 			WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
2740 			WEIGHT_SET_INDEX(weight, max_idx);
2741 		}
2742 		WEIGHT_SET_ACTIVE(weight, 0);
2743 		ASSERT(!WEIGHT_IS_SPACEBASED(weight));
2744 		return (weight);
2745 	}
2746 
2747 	ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
2748 
2749 	/*
2750 	 * If the metaslab is fully allocated then just make the weight 0.
2751 	 */
2752 	if (metaslab_allocated_space(msp) == msp->ms_size)
2753 		return (0);
2754 	/*
2755 	 * If the metaslab is already loaded, then use the range tree to
2756 	 * determine the weight. Otherwise, we rely on the space map information
2757 	 * to generate the weight.
2758 	 */
2759 	if (msp->ms_loaded) {
2760 		weight = metaslab_weight_from_range_tree(msp);
2761 	} else {
2762 		weight = metaslab_weight_from_spacemap(msp);
2763 	}
2764 
2765 	/*
2766 	 * If the metaslab was active the last time we calculated its weight
2767 	 * then keep it active. We want to consume the entire region that
2768 	 * is associated with this weight.
2769 	 */
2770 	if (msp->ms_activation_weight != 0 && weight != 0)
2771 		WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
2772 	return (weight);
2773 }
2774 
2775 /*
2776  * Determine if we should attempt to allocate from this metaslab. If the
2777  * metaslab is loaded, then we can determine if the desired allocation
2778  * can be satisfied by looking at the size of the maximum free segment
2779  * on that metaslab. Otherwise, we make our decision based on the metaslab's
2780  * weight. For segment-based weighting we can determine the maximum
2781  * allocation based on the index encoded in its value. For space-based
2782  * weights we rely on the entire weight (excluding the weight-type bit).
2783  */
2784 boolean_t
2785 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
2786 {
2787 	/*
2788 	 * If the metaslab is loaded, ms_max_size is definitive and we can use
2789 	 * the fast check. If it's not, the ms_max_size is a lower bound (once
2790 	 * set), and we should use the fast check as long as we're not in
2791 	 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
2792 	 * seconds since the metaslab was unloaded.
2793 	 */
2794 	if (msp->ms_loaded ||
2795 	    (msp->ms_max_size != 0 && !try_hard && gethrtime() <
2796 	    msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
2797 		return (msp->ms_max_size >= asize);
2798 
2799 	boolean_t should_allocate;
2800 	if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
2801 		/*
2802 		 * The metaslab segment weight indicates segments in the
2803 		 * range [2^i, 2^(i+1)), where i is the index in the weight.
2804 		 * Since the asize might be in the middle of the range, we
2805 		 * should attempt the allocation if asize < 2^(i+1).
2806 		 */
2807 		should_allocate = (asize <
2808 		    1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
2809 	} else {
2810 		should_allocate = (asize <=
2811 		    (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
2812 	}
2813 
2814 	return (should_allocate);
2815 }
2816 
2817 static uint64_t
2818 metaslab_weight(metaslab_t *msp)
2819 {
2820 	vdev_t *vd = msp->ms_group->mg_vd;
2821 	spa_t *spa = vd->vdev_spa;
2822 	uint64_t weight;
2823 
2824 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2825 
2826 	metaslab_set_fragmentation(msp);
2827 
2828 	/*
2829 	 * Update the maximum size. If the metaslab is loaded, this will
2830 	 * ensure that we get an accurate maximum size if newly freed space
2831 	 * has been added back into the free tree. If the metaslab is
2832 	 * unloaded, we check if there's a larger free segment in the
2833 	 * unflushed frees. This is a lower bound on the largest allocatable
2834 	 * segment size. Coalescing of adjacent entries may reveal larger
2835 	 * allocatable segments, but we aren't aware of those until loading
2836 	 * the space map into a range tree.
2837 	 */
2838 	if (msp->ms_loaded) {
2839 		msp->ms_max_size = metaslab_largest_allocatable(msp);
2840 	} else {
2841 		msp->ms_max_size = MAX(msp->ms_max_size,
2842 		    metaslab_largest_unflushed_free(msp));
2843 	}
2844 
2845 	/*
2846 	 * Segment-based weighting requires space map histogram support.
2847 	 */
2848 	if (zfs_metaslab_segment_weight_enabled &&
2849 	    spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
2850 	    (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
2851 	    sizeof (space_map_phys_t))) {
2852 		weight = metaslab_segment_weight(msp);
2853 	} else {
2854 		weight = metaslab_space_weight(msp);
2855 	}
2856 	return (weight);
2857 }
2858 
2859 void
2860 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
2861 {
2862 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2863 
2864 	/* note: we preserve the mask (e.g. indication of primary, etc..) */
2865 	uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2866 	metaslab_group_sort(msp->ms_group, msp,
2867 	    metaslab_weight(msp) | was_active);
2868 }
2869 
2870 static int
2871 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2872     int allocator, uint64_t activation_weight)
2873 {
2874 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2875 
2876 	/*
2877 	 * If we're activating for the claim code, we don't want to actually
2878 	 * set the metaslab up for a specific allocator.
2879 	 */
2880 	if (activation_weight == METASLAB_WEIGHT_CLAIM) {
2881 		ASSERT0(msp->ms_activation_weight);
2882 		msp->ms_activation_weight = msp->ms_weight;
2883 		metaslab_group_sort(mg, msp, msp->ms_weight |
2884 		    activation_weight);
2885 		return (0);
2886 	}
2887 
2888 	metaslab_t **arr = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
2889 	    mg->mg_primaries : mg->mg_secondaries);
2890 
2891 	mutex_enter(&mg->mg_lock);
2892 	if (arr[allocator] != NULL) {
2893 		mutex_exit(&mg->mg_lock);
2894 		return (EEXIST);
2895 	}
2896 
2897 	arr[allocator] = msp;
2898 	ASSERT3S(msp->ms_allocator, ==, -1);
2899 	msp->ms_allocator = allocator;
2900 	msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
2901 
2902 	ASSERT0(msp->ms_activation_weight);
2903 	msp->ms_activation_weight = msp->ms_weight;
2904 	metaslab_group_sort_impl(mg, msp,
2905 	    msp->ms_weight | activation_weight);
2906 
2907 	mutex_exit(&mg->mg_lock);
2908 
2909 	return (0);
2910 }
2911 
2912 static int
2913 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
2914 {
2915 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2916 
2917 	/*
2918 	 * The current metaslab is already activated for us so there
2919 	 * is nothing to do. Already activated though, doesn't mean
2920 	 * that this metaslab is activated for our allocator nor our
2921 	 * requested activation weight. The metaslab could have started
2922 	 * as an active one for our allocator but changed allocators
2923 	 * while we were waiting to grab its ms_lock or we stole it
2924 	 * [see find_valid_metaslab()]. This means that there is a
2925 	 * possibility of passivating a metaslab of another allocator
2926 	 * or from a different activation mask, from this thread.
2927 	 */
2928 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
2929 		ASSERT(msp->ms_loaded);
2930 		return (0);
2931 	}
2932 
2933 	int error = metaslab_load(msp);
2934 	if (error != 0) {
2935 		metaslab_group_sort(msp->ms_group, msp, 0);
2936 		return (error);
2937 	}
2938 
2939 	/*
2940 	 * When entering metaslab_load() we may have dropped the
2941 	 * ms_lock because we were loading this metaslab, or we
2942 	 * were waiting for another thread to load it for us. In
2943 	 * that scenario, we recheck the weight of the metaslab
2944 	 * to see if it was activated by another thread.
2945 	 *
2946 	 * If the metaslab was activated for another allocator or
2947 	 * it was activated with a different activation weight (e.g.
2948 	 * we wanted to make it a primary but it was activated as
2949 	 * secondary) we return error (EBUSY).
2950 	 *
2951 	 * If the metaslab was activated for the same allocator
2952 	 * and requested activation mask, skip activating it.
2953 	 */
2954 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
2955 		if (msp->ms_allocator != allocator)
2956 			return (EBUSY);
2957 
2958 		if ((msp->ms_weight & activation_weight) == 0)
2959 			return (EBUSY);
2960 
2961 		EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
2962 		    msp->ms_primary);
2963 		return (0);
2964 	}
2965 
2966 	/*
2967 	 * If the metaslab has literally 0 space, it will have weight 0. In
2968 	 * that case, don't bother activating it. This can happen if the
2969 	 * metaslab had space during find_valid_metaslab, but another thread
2970 	 * loaded it and used all that space while we were waiting to grab the
2971 	 * lock.
2972 	 */
2973 	if (msp->ms_weight == 0) {
2974 		ASSERT0(range_tree_space(msp->ms_allocatable));
2975 		return (SET_ERROR(ENOSPC));
2976 	}
2977 
2978 	if ((error = metaslab_activate_allocator(msp->ms_group, msp,
2979 	    allocator, activation_weight)) != 0) {
2980 		return (error);
2981 	}
2982 
2983 	ASSERT(msp->ms_loaded);
2984 	ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
2985 
2986 	return (0);
2987 }
2988 
2989 static void
2990 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2991     uint64_t weight)
2992 {
2993 	ASSERT(MUTEX_HELD(&msp->ms_lock));
2994 	ASSERT(msp->ms_loaded);
2995 
2996 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
2997 		metaslab_group_sort(mg, msp, weight);
2998 		return;
2999 	}
3000 
3001 	mutex_enter(&mg->mg_lock);
3002 	ASSERT3P(msp->ms_group, ==, mg);
3003 	ASSERT3S(0, <=, msp->ms_allocator);
3004 	ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
3005 
3006 	if (msp->ms_primary) {
3007 		ASSERT3P(mg->mg_primaries[msp->ms_allocator], ==, msp);
3008 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3009 		mg->mg_primaries[msp->ms_allocator] = NULL;
3010 	} else {
3011 		ASSERT3P(mg->mg_secondaries[msp->ms_allocator], ==, msp);
3012 		ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3013 		mg->mg_secondaries[msp->ms_allocator] = NULL;
3014 	}
3015 	msp->ms_allocator = -1;
3016 	metaslab_group_sort_impl(mg, msp, weight);
3017 	mutex_exit(&mg->mg_lock);
3018 }
3019 
3020 static void
3021 metaslab_passivate(metaslab_t *msp, uint64_t weight)
3022 {
3023 	uint64_t size = weight & ~METASLAB_WEIGHT_TYPE;
3024 
3025 	/*
3026 	 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3027 	 * this metaslab again.  In that case, it had better be empty,
3028 	 * or we would be leaving space on the table.
3029 	 */
3030 	ASSERT(size >= SPA_MINBLOCKSIZE ||
3031 	    range_tree_is_empty(msp->ms_allocatable));
3032 	ASSERT0(weight & METASLAB_ACTIVE_MASK);
3033 
3034 	ASSERT(msp->ms_activation_weight != 0);
3035 	msp->ms_activation_weight = 0;
3036 	metaslab_passivate_allocator(msp->ms_group, msp, weight);
3037 	ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3038 }
3039 
3040 /*
3041  * Segment-based metaslabs are activated once and remain active until
3042  * we either fail an allocation attempt (similar to space-based metaslabs)
3043  * or have exhausted the free space in zfs_metaslab_switch_threshold
3044  * buckets since the metaslab was activated. This function checks to see
3045  * if we've exhaused the zfs_metaslab_switch_threshold buckets in the
3046  * metaslab and passivates it proactively. This will allow us to select a
3047  * metaslabs with larger contiguous region if any remaining within this
3048  * metaslab group. If we're in sync pass > 1, then we continue using this
3049  * metaslab so that we don't dirty more block and cause more sync passes.
3050  */
3051 void
3052 metaslab_segment_may_passivate(metaslab_t *msp)
3053 {
3054 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3055 
3056 	if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3057 		return;
3058 
3059 	/*
3060 	 * Since we are in the middle of a sync pass, the most accurate
3061 	 * information that is accessible to us is the in-core range tree
3062 	 * histogram; calculate the new weight based on that information.
3063 	 */
3064 	uint64_t weight = metaslab_weight_from_range_tree(msp);
3065 	int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3066 	int current_idx = WEIGHT_GET_INDEX(weight);
3067 
3068 	if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3069 		metaslab_passivate(msp, weight);
3070 }
3071 
3072 static void
3073 metaslab_preload(void *arg)
3074 {
3075 	metaslab_t *msp = arg;
3076 	metaslab_class_t *mc = msp->ms_group->mg_class;
3077 	spa_t *spa = mc->mc_spa;
3078 
3079 	ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3080 
3081 	mutex_enter(&msp->ms_lock);
3082 	(void) metaslab_load(msp);
3083 	metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3084 	mutex_exit(&msp->ms_lock);
3085 }
3086 
3087 static void
3088 metaslab_group_preload(metaslab_group_t *mg)
3089 {
3090 	spa_t *spa = mg->mg_vd->vdev_spa;
3091 	metaslab_t *msp;
3092 	avl_tree_t *t = &mg->mg_metaslab_tree;
3093 	int m = 0;
3094 
3095 	if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
3096 		taskq_wait(mg->mg_taskq);
3097 		return;
3098 	}
3099 
3100 	mutex_enter(&mg->mg_lock);
3101 
3102 	/*
3103 	 * Load the next potential metaslabs
3104 	 */
3105 	for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3106 		ASSERT3P(msp->ms_group, ==, mg);
3107 
3108 		/*
3109 		 * We preload only the maximum number of metaslabs specified
3110 		 * by metaslab_preload_limit. If a metaslab is being forced
3111 		 * to condense then we preload it too. This will ensure
3112 		 * that force condensing happens in the next txg.
3113 		 */
3114 		if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3115 			continue;
3116 		}
3117 
3118 		VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
3119 		    msp, TQ_SLEEP) != TASKQID_INVALID);
3120 	}
3121 	mutex_exit(&mg->mg_lock);
3122 }
3123 
3124 /*
3125  * Determine if the space map's on-disk footprint is past our tolerance for
3126  * inefficiency. We would like to use the following criteria to make our
3127  * decision:
3128  *
3129  * 1. Do not condense if the size of the space map object would dramatically
3130  *    increase as a result of writing out the free space range tree.
3131  *
3132  * 2. Condense if the on on-disk space map representation is at least
3133  *    zfs_condense_pct/100 times the size of the optimal representation
3134  *    (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3135  *
3136  * 3. Do not condense if the on-disk size of the space map does not actually
3137  *    decrease.
3138  *
3139  * Unfortunately, we cannot compute the on-disk size of the space map in this
3140  * context because we cannot accurately compute the effects of compression, etc.
3141  * Instead, we apply the heuristic described in the block comment for
3142  * zfs_metaslab_condense_block_threshold - we only condense if the space used
3143  * is greater than a threshold number of blocks.
3144  */
3145 static boolean_t
3146 metaslab_should_condense(metaslab_t *msp)
3147 {
3148 	space_map_t *sm = msp->ms_sm;
3149 	vdev_t *vd = msp->ms_group->mg_vd;
3150 	uint64_t vdev_blocksize = 1 << vd->vdev_ashift;
3151 
3152 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3153 	ASSERT(msp->ms_loaded);
3154 	ASSERT(sm != NULL);
3155 	ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3156 
3157 	/*
3158 	 * We always condense metaslabs that are empty and metaslabs for
3159 	 * which a condense request has been made.
3160 	 */
3161 	if (avl_is_empty(&msp->ms_allocatable_by_size) ||
3162 	    msp->ms_condense_wanted)
3163 		return (B_TRUE);
3164 
3165 	uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3166 	uint64_t object_size = space_map_length(sm);
3167 	uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3168 	    msp->ms_allocatable, SM_NO_VDEVID);
3169 
3170 	return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3171 	    object_size > zfs_metaslab_condense_block_threshold * record_size);
3172 }
3173 
3174 /*
3175  * Condense the on-disk space map representation to its minimized form.
3176  * The minimized form consists of a small number of allocations followed
3177  * by the entries of the free range tree (ms_allocatable). The condensed
3178  * spacemap contains all the entries of previous TXGs (including those in
3179  * the pool-wide log spacemaps; thus this is effectively a superset of
3180  * metaslab_flush()), but this TXG's entries still need to be written.
3181  */
3182 static void
3183 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3184 {
3185 	range_tree_t *condense_tree;
3186 	space_map_t *sm = msp->ms_sm;
3187 	uint64_t txg = dmu_tx_get_txg(tx);
3188 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3189 
3190 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3191 	ASSERT(msp->ms_loaded);
3192 	ASSERT(msp->ms_sm != NULL);
3193 
3194 	/*
3195 	 * In order to condense the space map, we need to change it so it
3196 	 * only describes which segments are currently allocated and free.
3197 	 *
3198 	 * All the current free space resides in the ms_allocatable, all
3199 	 * the ms_defer trees, and all the ms_allocating trees. We ignore
3200 	 * ms_freed because it is empty because we're in sync pass 1. We
3201 	 * ignore ms_freeing because these changes are not yet reflected
3202 	 * in the spacemap (they will be written later this txg).
3203 	 *
3204 	 * So to truncate the space map to represent all the entries of
3205 	 * previous TXGs we do the following:
3206 	 *
3207 	 * 1] We create a range tree (condense tree) that is 100% allocated.
3208 	 * 2] We remove from it all segments found in the ms_defer trees
3209 	 *    as those segments are marked as free in the original space
3210 	 *    map. We do the same with the ms_allocating trees for the same
3211 	 *    reason. Removing these segments should be a relatively
3212 	 *    inexpensive operation since we expect these trees to have a
3213 	 *    small number of nodes.
3214 	 * 3] We vacate any unflushed allocs as they should already exist
3215 	 *    in the condense tree. Then we vacate any unflushed frees as
3216 	 *    they should already be part of ms_allocatable.
3217 	 * 4] At this point, we would ideally like to remove all segments
3218 	 *    in the ms_allocatable tree from the condense tree. This way
3219 	 *    we would write all the entries of the condense tree as the
3220 	 *    condensed space map, which would only contain allocated
3221 	 *    segments with everything else assumed to be freed.
3222 	 *
3223 	 *    Doing so can be prohibitively expensive as ms_allocatable can
3224 	 *    be large, and therefore computationally expensive to subtract
3225 	 *    from the condense_tree. Instead we first sync out the
3226 	 *    condense_tree and then the ms_allocatable, in the condensed
3227 	 *    space map. While this is not optimal, it is typically close to
3228 	 *    optimal and more importantly much cheaper to compute.
3229 	 *
3230 	 * 5] Finally, as both of the unflushed trees were written to our
3231 	 *    new and condensed metaslab space map, we basically flushed
3232 	 *    all the unflushed changes to disk, thus we call
3233 	 *    metaslab_flush_update().
3234 	 */
3235 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3236 	ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3237 
3238 	zfs_dbgmsg("condensing: txg %llu, msp[%llu] %p, vdev id %llu, "
3239 	    "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
3240 	    msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
3241 	    spa->spa_name, space_map_length(msp->ms_sm),
3242 	    avl_numnodes(&msp->ms_allocatable->rt_root),
3243 	    msp->ms_condense_wanted ? "TRUE" : "FALSE");
3244 
3245 	msp->ms_condense_wanted = B_FALSE;
3246 
3247 	condense_tree = range_tree_create(NULL, NULL);
3248 	range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
3249 
3250 	for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3251 		range_tree_walk(msp->ms_defer[t],
3252 		    range_tree_remove, condense_tree);
3253 	}
3254 
3255 	for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3256 		range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3257 		    range_tree_remove, condense_tree);
3258 	}
3259 
3260 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3261 	    metaslab_unflushed_changes_memused(msp));
3262 	spa->spa_unflushed_stats.sus_memused -=
3263 	    metaslab_unflushed_changes_memused(msp);
3264 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3265 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3266 
3267 	/*
3268 	 * We're about to drop the metaslab's lock thus allowing other
3269 	 * consumers to change its content. Set the metaslab's ms_condensing
3270 	 * flag to ensure that allocations on this metaslab do not occur
3271 	 * while we're in the middle of committing it to disk. This is only
3272 	 * critical for ms_allocatable as all other range trees use per TXG
3273 	 * views of their content.
3274 	 */
3275 	msp->ms_condensing = B_TRUE;
3276 
3277 	mutex_exit(&msp->ms_lock);
3278 	uint64_t object = space_map_object(msp->ms_sm);
3279 	space_map_truncate(sm,
3280 	    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3281 	    zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3282 
3283 	/*
3284 	 * space_map_truncate() may have reallocated the spacemap object.
3285 	 * If so, update the vdev_ms_array.
3286 	 */
3287 	if (space_map_object(msp->ms_sm) != object) {
3288 		object = space_map_object(msp->ms_sm);
3289 		dmu_write(spa->spa_meta_objset,
3290 		    msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3291 		    msp->ms_id, sizeof (uint64_t), &object, tx);
3292 	}
3293 
3294 	/*
3295 	 * Note:
3296 	 * When the log space map feature is enabled, each space map will
3297 	 * always have ALLOCS followed by FREES for each sync pass. This is
3298 	 * typically true even when the log space map feature is disabled,
3299 	 * except from the case where a metaslab goes through metaslab_sync()
3300 	 * and gets condensed. In that case the metaslab's space map will have
3301 	 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3302 	 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3303 	 * sync pass 1.
3304 	 */
3305 	space_map_write(sm, condense_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3306 	space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3307 
3308 	range_tree_vacate(condense_tree, NULL, NULL);
3309 	range_tree_destroy(condense_tree);
3310 	mutex_enter(&msp->ms_lock);
3311 
3312 	msp->ms_condensing = B_FALSE;
3313 	metaslab_flush_update(msp, tx);
3314 }
3315 
3316 /*
3317  * Called when the metaslab has been flushed (its own spacemap now reflects
3318  * all the contents of the pool-wide spacemap log). Updates the metaslab's
3319  * metadata and any pool-wide related log space map data (e.g. summary,
3320  * obsolete logs, etc.) to reflect that.
3321  */
3322 static void
3323 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
3324 {
3325 	metaslab_group_t *mg = msp->ms_group;
3326 	spa_t *spa = mg->mg_vd->vdev_spa;
3327 
3328 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3329 
3330 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3331 	ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3332 	ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3333 
3334 	/*
3335 	 * Just because a metaslab got flushed, that doesn't mean that
3336 	 * it will pass through metaslab_sync_done(). Thus, make sure to
3337 	 * update ms_synced_length here in case it doesn't.
3338 	 */
3339 	msp->ms_synced_length = space_map_length(msp->ms_sm);
3340 
3341 	/*
3342 	 * We may end up here from metaslab_condense() without the
3343 	 * feature being active. In that case this is a no-op.
3344 	 */
3345 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
3346 		return;
3347 
3348 	ASSERT(spa_syncing_log_sm(spa) != NULL);
3349 	ASSERT(msp->ms_sm != NULL);
3350 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3351 	ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3352 
3353 	VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3354 
3355 	/* update metaslab's position in our flushing tree */
3356 	uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
3357 	mutex_enter(&spa->spa_flushed_ms_lock);
3358 	avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3359 	metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3360 	avl_add(&spa->spa_metaslabs_by_flushed, msp);
3361 	mutex_exit(&spa->spa_flushed_ms_lock);
3362 
3363 	/* update metaslab counts of spa_log_sm_t nodes */
3364 	spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3365 	spa_log_sm_increment_current_mscount(spa);
3366 
3367 	/* cleanup obsolete logs if any */
3368 	uint64_t log_blocks_before = spa_log_sm_nblocks(spa);
3369 	spa_cleanup_old_sm_logs(spa, tx);
3370 	uint64_t log_blocks_after = spa_log_sm_nblocks(spa);
3371 	VERIFY3U(log_blocks_after, <=, log_blocks_before);
3372 
3373 	/* update log space map summary */
3374 	uint64_t blocks_gone = log_blocks_before - log_blocks_after;
3375 	spa_log_summary_add_flushed_metaslab(spa);
3376 	spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg);
3377 	spa_log_summary_decrement_blkcount(spa, blocks_gone);
3378 }
3379 
3380 boolean_t
3381 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
3382 {
3383 	spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3384 
3385 	ASSERT(MUTEX_HELD(&msp->ms_lock));
3386 	ASSERT3U(spa_sync_pass(spa), ==, 1);
3387 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3388 
3389 	ASSERT(msp->ms_sm != NULL);
3390 	ASSERT(metaslab_unflushed_txg(msp) != 0);
3391 	ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
3392 
3393 	/*
3394 	 * There is nothing wrong with flushing the same metaslab twice, as
3395 	 * this codepath should work on that case. However, the current
3396 	 * flushing scheme makes sure to avoid this situation as we would be
3397 	 * making all these calls without having anything meaningful to write
3398 	 * to disk. We assert this behavior here.
3399 	 */
3400 	ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
3401 
3402 	/*
3403 	 * We can not flush while loading, because then we would
3404 	 * not load the ms_unflushed_{allocs,frees}.
3405 	 */
3406 	if (msp->ms_loading)
3407 		return (B_FALSE);
3408 
3409 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3410 	metaslab_verify_weight_and_frag(msp);
3411 
3412 	/*
3413 	 * Metaslab condensing is effectively flushing. Therefore if the
3414 	 * metaslab can be condensed we can just condense it instead of
3415 	 * flushing it.
3416 	 *
3417 	 * Note that metaslab_condense() does call metaslab_flush_update()
3418 	 * so we can just return immediately after condensing. We also
3419 	 * don't need to care about setting ms_flushing or broadcasting
3420 	 * ms_flush_cv, even if we temporarily drop the ms_lock in
3421 	 * metaslab_condense(), as the metaslab is already loaded.
3422 	 */
3423 	if (msp->ms_loaded && metaslab_should_condense(msp)) {
3424 		metaslab_group_t *mg = msp->ms_group;
3425 
3426 		/*
3427 		 * For all histogram operations below refer to the
3428 		 * comments of metaslab_sync() where we follow a
3429 		 * similar procedure.
3430 		 */
3431 		metaslab_group_histogram_verify(mg);
3432 		metaslab_class_histogram_verify(mg->mg_class);
3433 		metaslab_group_histogram_remove(mg, msp);
3434 
3435 		metaslab_condense(msp, tx);
3436 
3437 		space_map_histogram_clear(msp->ms_sm);
3438 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3439 		ASSERT(range_tree_is_empty(msp->ms_freed));
3440 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3441 			space_map_histogram_add(msp->ms_sm,
3442 			    msp->ms_defer[t], tx);
3443 		}
3444 		metaslab_aux_histograms_update(msp);
3445 
3446 		metaslab_group_histogram_add(mg, msp);
3447 		metaslab_group_histogram_verify(mg);
3448 		metaslab_class_histogram_verify(mg->mg_class);
3449 
3450 		metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3451 
3452 		/*
3453 		 * Since we recreated the histogram (and potentially
3454 		 * the ms_sm too while condensing) ensure that the
3455 		 * weight is updated too because we are not guaranteed
3456 		 * that this metaslab is dirty and will go through
3457 		 * metaslab_sync_done().
3458 		 */
3459 		metaslab_recalculate_weight_and_sort(msp);
3460 		return (B_TRUE);
3461 	}
3462 
3463 	msp->ms_flushing = B_TRUE;
3464 	uint64_t sm_len_before = space_map_length(msp->ms_sm);
3465 
3466 	mutex_exit(&msp->ms_lock);
3467 	space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
3468 	    SM_NO_VDEVID, tx);
3469 	space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
3470 	    SM_NO_VDEVID, tx);
3471 	mutex_enter(&msp->ms_lock);
3472 
3473 	uint64_t sm_len_after = space_map_length(msp->ms_sm);
3474 	if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
3475 		zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
3476 		    "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
3477 		    "appended %llu bytes", dmu_tx_get_txg(tx), spa_name(spa),
3478 		    msp->ms_group->mg_vd->vdev_id, msp->ms_id,
3479 		    range_tree_space(msp->ms_unflushed_allocs),
3480 		    range_tree_space(msp->ms_unflushed_frees),
3481 		    (sm_len_after - sm_len_before));
3482 	}
3483 
3484 	ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3485 	    metaslab_unflushed_changes_memused(msp));
3486 	spa->spa_unflushed_stats.sus_memused -=
3487 	    metaslab_unflushed_changes_memused(msp);
3488 	range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3489 	range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3490 
3491 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3492 	metaslab_verify_weight_and_frag(msp);
3493 
3494 	metaslab_flush_update(msp, tx);
3495 
3496 	metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3497 	metaslab_verify_weight_and_frag(msp);
3498 
3499 	msp->ms_flushing = B_FALSE;
3500 	cv_broadcast(&msp->ms_flush_cv);
3501 	return (B_TRUE);
3502 }
3503 
3504 /*
3505  * Write a metaslab to disk in the context of the specified transaction group.
3506  */
3507 void
3508 metaslab_sync(metaslab_t *msp, uint64_t txg)
3509 {
3510 	metaslab_group_t *mg = msp->ms_group;
3511 	vdev_t *vd = mg->mg_vd;
3512 	spa_t *spa = vd->vdev_spa;
3513 	objset_t *mos = spa_meta_objset(spa);
3514 	range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
3515 	dmu_tx_t *tx;
3516 
3517 	ASSERT(!vd->vdev_ishole);
3518 
3519 	/*
3520 	 * This metaslab has just been added so there's no work to do now.
3521 	 */
3522 	if (msp->ms_freeing == NULL) {
3523 		ASSERT3P(alloctree, ==, NULL);
3524 		return;
3525 	}
3526 
3527 	ASSERT3P(alloctree, !=, NULL);
3528 	ASSERT3P(msp->ms_freeing, !=, NULL);
3529 	ASSERT3P(msp->ms_freed, !=, NULL);
3530 	ASSERT3P(msp->ms_checkpointing, !=, NULL);
3531 	ASSERT3P(msp->ms_trim, !=, NULL);
3532 
3533 	/*
3534 	 * Normally, we don't want to process a metaslab if there are no
3535 	 * allocations or frees to perform. However, if the metaslab is being
3536 	 * forced to condense, it's loaded and we're not beyond the final
3537 	 * dirty txg, we need to let it through. Not condensing beyond the
3538 	 * final dirty txg prevents an issue where metaslabs that need to be
3539 	 * condensed but were loaded for other reasons could cause a panic
3540 	 * here. By only checking the txg in that branch of the conditional,
3541 	 * we preserve the utility of the VERIFY statements in all other
3542 	 * cases.
3543 	 */
3544 	if (range_tree_is_empty(alloctree) &&
3545 	    range_tree_is_empty(msp->ms_freeing) &&
3546 	    range_tree_is_empty(msp->ms_checkpointing) &&
3547 	    !(msp->ms_loaded && msp->ms_condense_wanted &&
3548 	    txg <= spa_final_dirty_txg(spa)))
3549 		return;
3550 
3551 
3552 	VERIFY(txg <= spa_final_dirty_txg(spa));
3553 
3554 	/*
3555 	 * The only state that can actually be changing concurrently
3556 	 * with metaslab_sync() is the metaslab's ms_allocatable. No
3557 	 * other thread can be modifying this txg's alloc, freeing,
3558 	 * freed, or space_map_phys_t.  We drop ms_lock whenever we
3559 	 * could call into the DMU, because the DMU can call down to
3560 	 * us (e.g. via zio_free()) at any time.
3561 	 *
3562 	 * The spa_vdev_remove_thread() can be reading metaslab state
3563 	 * concurrently, and it is locked out by the ms_sync_lock.
3564 	 * Note that the ms_lock is insufficient for this, because it
3565 	 * is dropped by space_map_write().
3566 	 */
3567 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3568 
3569 	/*
3570 	 * Generate a log space map if one doesn't exist already.
3571 	 */
3572 	spa_generate_syncing_log_sm(spa, tx);
3573 
3574 	if (msp->ms_sm == NULL) {
3575 		uint64_t new_object = space_map_alloc(mos,
3576 		    spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3577 		    zfs_metaslab_sm_blksz_with_log :
3578 		    zfs_metaslab_sm_blksz_no_log, tx);
3579 		VERIFY3U(new_object, !=, 0);
3580 
3581 		dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
3582 		    msp->ms_id, sizeof (uint64_t), &new_object, tx);
3583 
3584 		VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
3585 		    msp->ms_start, msp->ms_size, vd->vdev_ashift));
3586 		ASSERT(msp->ms_sm != NULL);
3587 
3588 		ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3589 		ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3590 		ASSERT0(metaslab_allocated_space(msp));
3591 	}
3592 
3593 	if (metaslab_unflushed_txg(msp) == 0 &&
3594 	    spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
3595 		ASSERT(spa_syncing_log_sm(spa) != NULL);
3596 
3597 		metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3598 		spa_log_sm_increment_current_mscount(spa);
3599 		spa_log_summary_add_flushed_metaslab(spa);
3600 
3601 		ASSERT(msp->ms_sm != NULL);
3602 		mutex_enter(&spa->spa_flushed_ms_lock);
3603 		avl_add(&spa->spa_metaslabs_by_flushed, msp);
3604 		mutex_exit(&spa->spa_flushed_ms_lock);
3605 
3606 		ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3607 		ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3608 	}
3609 
3610 	if (!range_tree_is_empty(msp->ms_checkpointing) &&
3611 	    vd->vdev_checkpoint_sm == NULL) {
3612 		ASSERT(spa_has_checkpoint(spa));
3613 
3614 		uint64_t new_object = space_map_alloc(mos,
3615 		    zfs_vdev_standard_sm_blksz, tx);
3616 		VERIFY3U(new_object, !=, 0);
3617 
3618 		VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
3619 		    mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
3620 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3621 
3622 		/*
3623 		 * We save the space map object as an entry in vdev_top_zap
3624 		 * so it can be retrieved when the pool is reopened after an
3625 		 * export or through zdb.
3626 		 */
3627 		VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
3628 		    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
3629 		    sizeof (new_object), 1, &new_object, tx));
3630 	}
3631 
3632 	mutex_enter(&msp->ms_sync_lock);
3633 	mutex_enter(&msp->ms_lock);
3634 
3635 	/*
3636 	 * Note: metaslab_condense() clears the space map's histogram.
3637 	 * Therefore we must verify and remove this histogram before
3638 	 * condensing.
3639 	 */
3640 	metaslab_group_histogram_verify(mg);
3641 	metaslab_class_histogram_verify(mg->mg_class);
3642 	metaslab_group_histogram_remove(mg, msp);
3643 
3644 	if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
3645 	    metaslab_should_condense(msp))
3646 		metaslab_condense(msp, tx);
3647 
3648 	/*
3649 	 * We'll be going to disk to sync our space accounting, thus we
3650 	 * drop the ms_lock during that time so allocations coming from
3651 	 * open-context (ZIL) for future TXGs do not block.
3652 	 */
3653 	mutex_exit(&msp->ms_lock);
3654 	space_map_t *log_sm = spa_syncing_log_sm(spa);
3655 	if (log_sm != NULL) {
3656 		ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
3657 
3658 		space_map_write(log_sm, alloctree, SM_ALLOC,
3659 		    vd->vdev_id, tx);
3660 		space_map_write(log_sm, msp->ms_freeing, SM_FREE,
3661 		    vd->vdev_id, tx);
3662 		mutex_enter(&msp->ms_lock);
3663 
3664 		ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3665 		    metaslab_unflushed_changes_memused(msp));
3666 		spa->spa_unflushed_stats.sus_memused -=
3667 		    metaslab_unflushed_changes_memused(msp);
3668 		range_tree_remove_xor_add(alloctree,
3669 		    msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
3670 		range_tree_remove_xor_add(msp->ms_freeing,
3671 		    msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
3672 		spa->spa_unflushed_stats.sus_memused +=
3673 		    metaslab_unflushed_changes_memused(msp);
3674 	} else {
3675 		ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
3676 
3677 		space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
3678 		    SM_NO_VDEVID, tx);
3679 		space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
3680 		    SM_NO_VDEVID, tx);
3681 		mutex_enter(&msp->ms_lock);
3682 	}
3683 
3684 	msp->ms_allocated_space += range_tree_space(alloctree);
3685 	ASSERT3U(msp->ms_allocated_space, >=,
3686 	    range_tree_space(msp->ms_freeing));
3687 	msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
3688 
3689 	if (!range_tree_is_empty(msp->ms_checkpointing)) {
3690 		ASSERT(spa_has_checkpoint(spa));
3691 		ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3692 
3693 		/*
3694 		 * Since we are doing writes to disk and the ms_checkpointing
3695 		 * tree won't be changing during that time, we drop the
3696 		 * ms_lock while writing to the checkpoint space map, for the
3697 		 * same reason mentioned above.
3698 		 */
3699 		mutex_exit(&msp->ms_lock);
3700 		space_map_write(vd->vdev_checkpoint_sm,
3701 		    msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
3702 		mutex_enter(&msp->ms_lock);
3703 
3704 		spa->spa_checkpoint_info.sci_dspace +=
3705 		    range_tree_space(msp->ms_checkpointing);
3706 		vd->vdev_stat.vs_checkpoint_space +=
3707 		    range_tree_space(msp->ms_checkpointing);
3708 		ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
3709 		    -space_map_allocated(vd->vdev_checkpoint_sm));
3710 
3711 		range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
3712 	}
3713 
3714 	if (msp->ms_loaded) {
3715 		/*
3716 		 * When the space map is loaded, we have an accurate
3717 		 * histogram in the range tree. This gives us an opportunity
3718 		 * to bring the space map's histogram up-to-date so we clear
3719 		 * it first before updating it.
3720 		 */
3721 		space_map_histogram_clear(msp->ms_sm);
3722 		space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3723 
3724 		/*
3725 		 * Since we've cleared the histogram we need to add back
3726 		 * any free space that has already been processed, plus
3727 		 * any deferred space. This allows the on-disk histogram
3728 		 * to accurately reflect all free space even if some space
3729 		 * is not yet available for allocation (i.e. deferred).
3730 		 */
3731 		space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
3732 
3733 		/*
3734 		 * Add back any deferred free space that has not been
3735 		 * added back into the in-core free tree yet. This will
3736 		 * ensure that we don't end up with a space map histogram
3737 		 * that is completely empty unless the metaslab is fully
3738 		 * allocated.
3739 		 */
3740 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3741 			space_map_histogram_add(msp->ms_sm,
3742 			    msp->ms_defer[t], tx);
3743 		}
3744 	}
3745 
3746 	/*
3747 	 * Always add the free space from this sync pass to the space
3748 	 * map histogram. We want to make sure that the on-disk histogram
3749 	 * accounts for all free space. If the space map is not loaded,
3750 	 * then we will lose some accuracy but will correct it the next
3751 	 * time we load the space map.
3752 	 */
3753 	space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
3754 	metaslab_aux_histograms_update(msp);
3755 
3756 	metaslab_group_histogram_add(mg, msp);
3757 	metaslab_group_histogram_verify(mg);
3758 	metaslab_class_histogram_verify(mg->mg_class);
3759 
3760 	/*
3761 	 * For sync pass 1, we avoid traversing this txg's free range tree
3762 	 * and instead will just swap the pointers for freeing and freed.
3763 	 * We can safely do this since the freed_tree is guaranteed to be
3764 	 * empty on the initial pass.
3765 	 *
3766 	 * Keep in mind that even if we are currently using a log spacemap
3767 	 * we want current frees to end up in the ms_allocatable (but not
3768 	 * get appended to the ms_sm) so their ranges can be reused as usual.
3769 	 */
3770 	if (spa_sync_pass(spa) == 1) {
3771 		range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
3772 		ASSERT0(msp->ms_allocated_this_txg);
3773 	} else {
3774 		range_tree_vacate(msp->ms_freeing,
3775 		    range_tree_add, msp->ms_freed);
3776 	}
3777 	msp->ms_allocated_this_txg += range_tree_space(alloctree);
3778 	range_tree_vacate(alloctree, NULL, NULL);
3779 
3780 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
3781 	ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
3782 	    & TXG_MASK]));
3783 	ASSERT0(range_tree_space(msp->ms_freeing));
3784 	ASSERT0(range_tree_space(msp->ms_checkpointing));
3785 
3786 	mutex_exit(&msp->ms_lock);
3787 
3788 	/*
3789 	 * Verify that the space map object ID has been recorded in the
3790 	 * vdev_ms_array.
3791 	 */
3792 	uint64_t object;
3793 	VERIFY0(dmu_read(mos, vd->vdev_ms_array,
3794 	    msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
3795 	VERIFY3U(object, ==, space_map_object(msp->ms_sm));
3796 
3797 	mutex_exit(&msp->ms_sync_lock);
3798 	dmu_tx_commit(tx);
3799 }
3800 
3801 static void
3802 metaslab_evict(metaslab_t *msp, uint64_t txg)
3803 {
3804 	if (!msp->ms_loaded || msp->ms_disabled != 0)
3805 		return;
3806 
3807 	for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
3808 		VERIFY0(range_tree_space(
3809 		    msp->ms_allocating[(txg + t) & TXG_MASK]));
3810 	}
3811 	if (msp->ms_allocator != -1)
3812 		metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
3813 
3814 	if (!metaslab_debug_unload)
3815 		metaslab_unload(msp);
3816 }
3817 
3818 /*
3819  * Called after a transaction group has completely synced to mark
3820  * all of the metaslab's free space as usable.
3821  */
3822 void
3823 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
3824 {
3825 	metaslab_group_t *mg = msp->ms_group;
3826 	vdev_t *vd = mg->mg_vd;
3827 	spa_t *spa = vd->vdev_spa;
3828 	range_tree_t **defer_tree;
3829 	int64_t alloc_delta, defer_delta;
3830 	boolean_t defer_allowed = B_TRUE;
3831 
3832 	ASSERT(!vd->vdev_ishole);
3833 
3834 	mutex_enter(&msp->ms_lock);
3835 
3836 	/*
3837 	 * If this metaslab is just becoming available, initialize its
3838 	 * range trees and add its capacity to the vdev.
3839 	 */
3840 	if (msp->ms_freed == NULL) {
3841 		for (int t = 0; t < TXG_SIZE; t++) {
3842 			ASSERT(msp->ms_allocating[t] == NULL);
3843 
3844 			msp->ms_allocating[t] = range_tree_create(NULL, NULL);
3845 		}
3846 
3847 		ASSERT3P(msp->ms_freeing, ==, NULL);
3848 		msp->ms_freeing = range_tree_create(NULL, NULL);
3849 
3850 		ASSERT3P(msp->ms_freed, ==, NULL);
3851 		msp->ms_freed = range_tree_create(NULL, NULL);
3852 
3853 		for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3854 			ASSERT3P(msp->ms_defer[t], ==, NULL);
3855 			msp->ms_defer[t] = range_tree_create(NULL, NULL);
3856 		}
3857 
3858 		ASSERT3P(msp->ms_checkpointing, ==, NULL);
3859 		msp->ms_checkpointing = range_tree_create(NULL, NULL);
3860 
3861 		ASSERT3P(msp->ms_unflushed_allocs, ==, NULL);
3862 		msp->ms_unflushed_allocs = range_tree_create(NULL, NULL);
3863 		ASSERT3P(msp->ms_unflushed_frees, ==, NULL);
3864 		msp->ms_unflushed_frees = range_tree_create_impl(&rt_avl_ops,
3865 		    &msp->ms_unflushed_frees_by_size,
3866 		    metaslab_rangesize_compare, 0);
3867 
3868 		metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
3869 	}
3870 	ASSERT0(range_tree_space(msp->ms_freeing));
3871 	ASSERT0(range_tree_space(msp->ms_checkpointing));
3872 
3873 	defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
3874 
3875 	uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
3876 	    metaslab_class_get_alloc(spa_normal_class(spa));
3877 	if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
3878 		defer_allowed = B_FALSE;
3879 	}
3880 
3881 	defer_delta = 0;
3882 	alloc_delta = msp->ms_allocated_this_txg -
3883 	    range_tree_space(msp->ms_freed);
3884 
3885 	if (defer_allowed) {
3886 		defer_delta = range_tree_space(msp->ms_freed) -
3887 		    range_tree_space(*defer_tree);
3888 	} else {
3889 		defer_delta -= range_tree_space(*defer_tree);
3890 	}
3891 	metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
3892 	    defer_delta, 0);
3893 
3894 	if (spa_syncing_log_sm(spa) == NULL) {
3895 		/*
3896 		 * If there's a metaslab_load() in progress and we don't have
3897 		 * a log space map, it means that we probably wrote to the
3898 		 * metaslab's space map. If this is the case, we need to
3899 		 * make sure that we wait for the load to complete so that we
3900 		 * have a consistent view at the in-core side of the metaslab.
3901 		 */
3902 		metaslab_load_wait(msp);
3903 	} else {
3904 		ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3905 	}
3906 
3907 	/*
3908 	 * When auto-trimming is enabled, free ranges which are added to
3909 	 * ms_allocatable are also be added to ms_trim.  The ms_trim tree is
3910 	 * periodically consumed by the vdev_autotrim_thread() which issues
3911 	 * trims for all ranges and then vacates the tree.  The ms_trim tree
3912 	 * can be discarded at any time with the sole consequence of recent
3913 	 * frees not being trimmed.
3914 	 */
3915 	if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
3916 		range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
3917 		if (!defer_allowed) {
3918 			range_tree_walk(msp->ms_freed, range_tree_add,
3919 			    msp->ms_trim);
3920 		}
3921 	} else {
3922 		range_tree_vacate(msp->ms_trim, NULL, NULL);
3923 	}
3924 
3925 	/*
3926 	 * Move the frees from the defer_tree back to the free
3927 	 * range tree (if it's loaded). Swap the freed_tree and
3928 	 * the defer_tree -- this is safe to do because we've
3929 	 * just emptied out the defer_tree.
3930 	 */
3931 	range_tree_vacate(*defer_tree,
3932 	    msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
3933 	if (defer_allowed) {
3934 		range_tree_swap(&msp->ms_freed, defer_tree);
3935 	} else {
3936 		range_tree_vacate(msp->ms_freed,
3937 		    msp->ms_loaded ? range_tree_add : NULL,
3938 		    msp->ms_allocatable);
3939 	}
3940 
3941 	msp->ms_synced_length = space_map_length(msp->ms_sm);
3942 
3943 	msp->ms_deferspace += defer_delta;
3944 	ASSERT3S(msp->ms_deferspace, >=, 0);
3945 	ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
3946 	if (msp->ms_deferspace != 0) {
3947 		/*
3948 		 * Keep syncing this metaslab until all deferred frees
3949 		 * are back in circulation.
3950 		 */
3951 		vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
3952 	}
3953 	metaslab_aux_histograms_update_done(msp, defer_allowed);
3954 
3955 	if (msp->ms_new) {
3956 		msp->ms_new = B_FALSE;
3957 		mutex_enter(&mg->mg_lock);
3958 		mg->mg_ms_ready++;
3959 		mutex_exit(&mg->mg_lock);
3960 	}
3961 
3962 	/*
3963 	 * Re-sort metaslab within its group now that we've adjusted
3964 	 * its allocatable space.
3965 	 */
3966 	metaslab_recalculate_weight_and_sort(msp);
3967 
3968 	/*
3969 	 * If the metaslab is loaded and we've not tried to load or allocate
3970 	 * from it in 'metaslab_unload_delay' txgs, then unload it.
3971 	 */
3972 	if (msp->ms_loaded &&
3973 	    msp->ms_disabled == 0 &&
3974 	    msp->ms_selected_txg + metaslab_unload_delay < txg) {
3975 
3976 		for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
3977 			VERIFY0(range_tree_space(
3978 			    msp->ms_allocating[(txg + t) & TXG_MASK]));
3979 		}
3980 		if (msp->ms_allocator != -1) {
3981 			metaslab_passivate(msp, msp->ms_weight &
3982 			    ~METASLAB_ACTIVE_MASK);
3983 		}
3984 
3985 		if (!metaslab_debug_unload)
3986 			metaslab_unload(msp);
3987 	}
3988 
3989 	ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
3990 	ASSERT0(range_tree_space(msp->ms_freeing));
3991 	ASSERT0(range_tree_space(msp->ms_freed));
3992 	ASSERT0(range_tree_space(msp->ms_checkpointing));
3993 	msp->ms_allocating_total -= msp->ms_allocated_this_txg;
3994 	msp->ms_allocated_this_txg = 0;
3995 	mutex_exit(&msp->ms_lock);
3996 }
3997 
3998 void
3999 metaslab_sync_reassess(metaslab_group_t *mg)
4000 {
4001 	spa_t *spa = mg->mg_class->mc_spa;
4002 
4003 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4004 	metaslab_group_alloc_update(mg);
4005 	mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4006 
4007 	/*
4008 	 * Preload the next potential metaslabs but only on active
4009 	 * metaslab groups. We can get into a state where the metaslab
4010 	 * is no longer active since we dirty metaslabs as we remove a
4011 	 * a device, thus potentially making the metaslab group eligible
4012 	 * for preloading.
4013 	 */
4014 	if (mg->mg_activation_count > 0) {
4015 		metaslab_group_preload(mg);
4016 	}
4017 	spa_config_exit(spa, SCL_ALLOC, FTAG);
4018 }
4019 
4020 /*
4021  * When writing a ditto block (i.e. more than one DVA for a given BP) on
4022  * the same vdev as an existing DVA of this BP, then try to allocate it
4023  * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4024  */
4025 static boolean_t
4026 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4027 {
4028 	uint64_t dva_ms_id;
4029 
4030 	if (DVA_GET_ASIZE(dva) == 0)
4031 		return (B_TRUE);
4032 
4033 	if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4034 		return (B_TRUE);
4035 
4036 	dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4037 
4038 	return (msp->ms_id != dva_ms_id);
4039 }
4040 
4041 /*
4042  * ==========================================================================
4043  * Metaslab allocation tracing facility
4044  * ==========================================================================
4045  */
4046 kstat_t *metaslab_trace_ksp;
4047 kstat_named_t metaslab_trace_over_limit;
4048 
4049 void
4050 metaslab_alloc_trace_init(void)
4051 {
4052 	ASSERT(metaslab_alloc_trace_cache == NULL);
4053 	metaslab_alloc_trace_cache = kmem_cache_create(
4054 	    "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
4055 	    0, NULL, NULL, NULL, NULL, NULL, 0);
4056 	metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats",
4057 	    "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL);
4058 	if (metaslab_trace_ksp != NULL) {
4059 		metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit;
4060 		kstat_named_init(&metaslab_trace_over_limit,
4061 		    "metaslab_trace_over_limit", KSTAT_DATA_UINT64);
4062 		kstat_install(metaslab_trace_ksp);
4063 	}
4064 }
4065 
4066 void
4067 metaslab_alloc_trace_fini(void)
4068 {
4069 	if (metaslab_trace_ksp != NULL) {
4070 		kstat_delete(metaslab_trace_ksp);
4071 		metaslab_trace_ksp = NULL;
4072 	}
4073 	kmem_cache_destroy(metaslab_alloc_trace_cache);
4074 	metaslab_alloc_trace_cache = NULL;
4075 }
4076 
4077 /*
4078  * Add an allocation trace element to the allocation tracing list.
4079  */
4080 static void
4081 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4082     metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4083     int allocator)
4084 {
4085 	if (!metaslab_trace_enabled)
4086 		return;
4087 
4088 	/*
4089 	 * When the tracing list reaches its maximum we remove
4090 	 * the second element in the list before adding a new one.
4091 	 * By removing the second element we preserve the original
4092 	 * entry as a clue to what allocations steps have already been
4093 	 * performed.
4094 	 */
4095 	if (zal->zal_size == metaslab_trace_max_entries) {
4096 		metaslab_alloc_trace_t *mat_next;
4097 #ifdef DEBUG
4098 		panic("too many entries in allocation list");
4099 #endif
4100 		atomic_inc_64(&metaslab_trace_over_limit.value.ui64);
4101 		zal->zal_size--;
4102 		mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4103 		list_remove(&zal->zal_list, mat_next);
4104 		kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4105 	}
4106 
4107 	metaslab_alloc_trace_t *mat =
4108 	    kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4109 	list_link_init(&mat->mat_list_node);
4110 	mat->mat_mg = mg;
4111 	mat->mat_msp = msp;
4112 	mat->mat_size = psize;
4113 	mat->mat_dva_id = dva_id;
4114 	mat->mat_offset = offset;
4115 	mat->mat_weight = 0;
4116 	mat->mat_allocator = allocator;
4117 
4118 	if (msp != NULL)
4119 		mat->mat_weight = msp->ms_weight;
4120 
4121 	/*
4122 	 * The list is part of the zio so locking is not required. Only
4123 	 * a single thread will perform allocations for a given zio.
4124 	 */
4125 	list_insert_tail(&zal->zal_list, mat);
4126 	zal->zal_size++;
4127 
4128 	ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4129 }
4130 
4131 void
4132 metaslab_trace_init(zio_alloc_list_t *zal)
4133 {
4134 	list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4135 	    offsetof(metaslab_alloc_trace_t, mat_list_node));
4136 	zal->zal_size = 0;
4137 }
4138 
4139 void
4140 metaslab_trace_fini(zio_alloc_list_t *zal)
4141 {
4142 	metaslab_alloc_trace_t *mat;
4143 
4144 	while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4145 		kmem_cache_free(metaslab_alloc_trace_cache, mat);
4146 	list_destroy(&zal->zal_list);
4147 	zal->zal_size = 0;
4148 }
4149 
4150 /*
4151  * ==========================================================================
4152  * Metaslab block operations
4153  * ==========================================================================
4154  */
4155 
4156 static void
4157 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags,
4158     int allocator)
4159 {
4160 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
4161 	    (flags & METASLAB_DONT_THROTTLE))
4162 		return;
4163 
4164 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4165 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4166 		return;
4167 
4168 	(void) zfs_refcount_add(&mg->mg_alloc_queue_depth[allocator], tag);
4169 }
4170 
4171 static void
4172 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
4173 {
4174 	uint64_t max = mg->mg_max_alloc_queue_depth;
4175 	uint64_t cur = mg->mg_cur_max_alloc_queue_depth[allocator];
4176 	while (cur < max) {
4177 		if (atomic_cas_64(&mg->mg_cur_max_alloc_queue_depth[allocator],
4178 		    cur, cur + 1) == cur) {
4179 			atomic_inc_64(
4180 			    &mg->mg_class->mc_alloc_max_slots[allocator]);
4181 			return;
4182 		}
4183 		cur = mg->mg_cur_max_alloc_queue_depth[allocator];
4184 	}
4185 }
4186 
4187 void
4188 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags,
4189     int allocator, boolean_t io_complete)
4190 {
4191 	if (!(flags & METASLAB_ASYNC_ALLOC) ||
4192 	    (flags & METASLAB_DONT_THROTTLE))
4193 		return;
4194 
4195 	metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4196 	if (!mg->mg_class->mc_alloc_throttle_enabled)
4197 		return;
4198 
4199 	(void) zfs_refcount_remove(&mg->mg_alloc_queue_depth[allocator], tag);
4200 	if (io_complete)
4201 		metaslab_group_increment_qdepth(mg, allocator);
4202 }
4203 
4204 void
4205 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag,
4206     int allocator)
4207 {
4208 #ifdef ZFS_DEBUG
4209 	const dva_t *dva = bp->blk_dva;
4210 	int ndvas = BP_GET_NDVAS(bp);
4211 
4212 	for (int d = 0; d < ndvas; d++) {
4213 		uint64_t vdev = DVA_GET_VDEV(&dva[d]);
4214 		metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4215 		VERIFY(zfs_refcount_not_held(
4216 		    &mg->mg_alloc_queue_depth[allocator], tag));
4217 	}
4218 #endif
4219 }
4220 
4221 static uint64_t
4222 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
4223 {
4224 	uint64_t start;
4225 	range_tree_t *rt = msp->ms_allocatable;
4226 	metaslab_class_t *mc = msp->ms_group->mg_class;
4227 
4228 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4229 	VERIFY(!msp->ms_condensing);
4230 	VERIFY0(msp->ms_disabled);
4231 
4232 	start = mc->mc_ops->msop_alloc(msp, size);
4233 	if (start != -1ULL) {
4234 		metaslab_group_t *mg = msp->ms_group;
4235 		vdev_t *vd = mg->mg_vd;
4236 
4237 		VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4238 		VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4239 		VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
4240 		range_tree_remove(rt, start, size);
4241 		range_tree_clear(msp->ms_trim, start, size);
4242 
4243 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4244 			vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4245 
4246 		range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
4247 		msp->ms_allocating_total += size;
4248 
4249 		/* Track the last successful allocation */
4250 		msp->ms_alloc_txg = txg;
4251 		metaslab_verify_space(msp, txg);
4252 	}
4253 
4254 	/*
4255 	 * Now that we've attempted the allocation we need to update the
4256 	 * metaslab's maximum block size since it may have changed.
4257 	 */
4258 	msp->ms_max_size = metaslab_largest_allocatable(msp);
4259 	return (start);
4260 }
4261 
4262 /*
4263  * Find the metaslab with the highest weight that is less than what we've
4264  * already tried.  In the common case, this means that we will examine each
4265  * metaslab at most once. Note that concurrent callers could reorder metaslabs
4266  * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4267  * activated by another thread, and we fail to allocate from the metaslab we
4268  * have selected, we may not try the newly-activated metaslab, and instead
4269  * activate another metaslab.  This is not optimal, but generally does not cause
4270  * any problems (a possible exception being if every metaslab is completely full
4271  * except for the the newly-activated metaslab which we fail to examine).
4272  */
4273 static metaslab_t *
4274 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4275     dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
4276     boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4277     boolean_t *was_active)
4278 {
4279 	avl_index_t idx;
4280 	avl_tree_t *t = &mg->mg_metaslab_tree;
4281 	metaslab_t *msp = avl_find(t, search, &idx);
4282 	if (msp == NULL)
4283 		msp = avl_nearest(t, idx, AVL_AFTER);
4284 
4285 	for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4286 		int i;
4287 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4288 			metaslab_trace_add(zal, mg, msp, asize, d,
4289 			    TRACE_TOO_SMALL, allocator);
4290 			continue;
4291 		}
4292 
4293 		/*
4294 		 * If the selected metaslab is condensing or disabled,
4295 		 * skip it.
4296 		 */
4297 		if (msp->ms_condensing || msp->ms_disabled > 0)
4298 			continue;
4299 
4300 		*was_active = msp->ms_allocator != -1;
4301 		/*
4302 		 * If we're activating as primary, this is our first allocation
4303 		 * from this disk, so we don't need to check how close we are.
4304 		 * If the metaslab under consideration was already active,
4305 		 * we're getting desperate enough to steal another allocator's
4306 		 * metaslab, so we still don't care about distances.
4307 		 */
4308 		if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4309 			break;
4310 
4311 		for (i = 0; i < d; i++) {
4312 			if (want_unique &&
4313 			    !metaslab_is_unique(msp, &dva[i]))
4314 				break;  /* try another metaslab */
4315 		}
4316 		if (i == d)
4317 			break;
4318 	}
4319 
4320 	if (msp != NULL) {
4321 		search->ms_weight = msp->ms_weight;
4322 		search->ms_start = msp->ms_start + 1;
4323 		search->ms_allocator = msp->ms_allocator;
4324 		search->ms_primary = msp->ms_primary;
4325 	}
4326 	return (msp);
4327 }
4328 
4329 void
4330 metaslab_active_mask_verify(metaslab_t *msp)
4331 {
4332 	ASSERT(MUTEX_HELD(&msp->ms_lock));
4333 
4334 	if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4335 		return;
4336 
4337 	if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4338 		return;
4339 
4340 	if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4341 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4342 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4343 		VERIFY3S(msp->ms_allocator, !=, -1);
4344 		VERIFY(msp->ms_primary);
4345 		return;
4346 	}
4347 
4348 	if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4349 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4350 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4351 		VERIFY3S(msp->ms_allocator, !=, -1);
4352 		VERIFY(!msp->ms_primary);
4353 		return;
4354 	}
4355 
4356 	if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4357 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4358 		VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4359 		VERIFY3S(msp->ms_allocator, ==, -1);
4360 		return;
4361 	}
4362 }
4363 
4364 /* ARGSUSED */
4365 static uint64_t
4366 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
4367     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
4368     int allocator, boolean_t try_hard)
4369 {
4370 	metaslab_t *msp = NULL;
4371 	uint64_t offset = -1ULL;
4372 
4373 	uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4374 	for (int i = 0; i < d; i++) {
4375 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4376 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4377 			activation_weight = METASLAB_WEIGHT_SECONDARY;
4378 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4379 		    DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4380 			activation_weight = METASLAB_WEIGHT_CLAIM;
4381 			break;
4382 		}
4383 	}
4384 
4385 	/*
4386 	 * If we don't have enough metaslabs active to fill the entire array, we
4387 	 * just use the 0th slot.
4388 	 */
4389 	if (mg->mg_ms_ready < mg->mg_allocators * 3)
4390 		allocator = 0;
4391 
4392 	ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4393 
4394 	metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4395 	search->ms_weight = UINT64_MAX;
4396 	search->ms_start = 0;
4397 	/*
4398 	 * At the end of the metaslab tree are the already-active metaslabs,
4399 	 * first the primaries, then the secondaries. When we resume searching
4400 	 * through the tree, we need to consider ms_allocator and ms_primary so
4401 	 * we start in the location right after where we left off, and don't
4402 	 * accidentally loop forever considering the same metaslabs.
4403 	 */
4404 	search->ms_allocator = -1;
4405 	search->ms_primary = B_TRUE;
4406 	for (;;) {
4407 		boolean_t was_active = B_FALSE;
4408 
4409 		mutex_enter(&mg->mg_lock);
4410 
4411 		if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4412 		    mg->mg_primaries[allocator] != NULL) {
4413 			msp = mg->mg_primaries[allocator];
4414 
4415 			/*
4416 			 * Even though we don't hold the ms_lock for the
4417 			 * primary metaslab, those fields should not
4418 			 * change while we hold the mg_lock. Thus is is
4419 			 * safe to make assertions on them.
4420 			 */
4421 			ASSERT(msp->ms_primary);
4422 			ASSERT3S(msp->ms_allocator, ==, allocator);
4423 			ASSERT(msp->ms_loaded);
4424 
4425 			was_active = B_TRUE;
4426 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4427 		} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4428 		    mg->mg_secondaries[allocator] != NULL) {
4429 			msp = mg->mg_secondaries[allocator];
4430 
4431 			/*
4432 			 * See comment above about the similar assertions
4433 			 * for the primary metaslab.
4434 			 */
4435 			ASSERT(!msp->ms_primary);
4436 			ASSERT3S(msp->ms_allocator, ==, allocator);
4437 			ASSERT(msp->ms_loaded);
4438 
4439 			was_active = B_TRUE;
4440 			ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4441 		} else {
4442 			msp = find_valid_metaslab(mg, activation_weight, dva, d,
4443 			    want_unique, asize, allocator, try_hard, zal,
4444 			    search, &was_active);
4445 		}
4446 
4447 		mutex_exit(&mg->mg_lock);
4448 		if (msp == NULL) {
4449 			kmem_free(search, sizeof (*search));
4450 			return (-1ULL);
4451 		}
4452 		mutex_enter(&msp->ms_lock);
4453 
4454 		metaslab_active_mask_verify(msp);
4455 
4456 		/*
4457 		 * This code is disabled out because of issues with
4458 		 * tracepoints in non-gpl kernel modules.
4459 		 */
4460 #if 0
4461 		DTRACE_PROBE3(ms__activation__attempt,
4462 		    metaslab_t *, msp, uint64_t, activation_weight,
4463 		    boolean_t, was_active);
4464 #endif
4465 
4466 		/*
4467 		 * Ensure that the metaslab we have selected is still
4468 		 * capable of handling our request. It's possible that
4469 		 * another thread may have changed the weight while we
4470 		 * were blocked on the metaslab lock. We check the
4471 		 * active status first to see if we need to set_selected_txg
4472 		 * a new metaslab.
4473 		 */
4474 		if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
4475 			ASSERT3S(msp->ms_allocator, ==, -1);
4476 			mutex_exit(&msp->ms_lock);
4477 			continue;
4478 		}
4479 
4480 		/*
4481 		 * If the metaslab was activated for another allocator
4482 		 * while we were waiting in the ms_lock above, or it's
4483 		 * a primary and we're seeking a secondary (or vice versa),
4484 		 * we go back and select a new metaslab.
4485 		 */
4486 		if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4487 		    (msp->ms_allocator != -1) &&
4488 		    (msp->ms_allocator != allocator || ((activation_weight ==
4489 		    METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
4490 			ASSERT(msp->ms_loaded);
4491 			ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
4492 			    msp->ms_allocator != -1);
4493 			mutex_exit(&msp->ms_lock);
4494 			continue;
4495 		}
4496 
4497 		/*
4498 		 * This metaslab was used for claiming regions allocated
4499 		 * by the ZIL during pool import. Once these regions are
4500 		 * claimed we don't need to keep the CLAIM bit set
4501 		 * anymore. Passivate this metaslab to zero its activation
4502 		 * mask.
4503 		 */
4504 		if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
4505 		    activation_weight != METASLAB_WEIGHT_CLAIM) {
4506 			ASSERT(msp->ms_loaded);
4507 			ASSERT3S(msp->ms_allocator, ==, -1);
4508 			metaslab_passivate(msp, msp->ms_weight &
4509 			    ~METASLAB_WEIGHT_CLAIM);
4510 			mutex_exit(&msp->ms_lock);
4511 			continue;
4512 		}
4513 
4514 		metaslab_set_selected_txg(msp, txg);
4515 
4516 		int activation_error =
4517 		    metaslab_activate(msp, allocator, activation_weight);
4518 		metaslab_active_mask_verify(msp);
4519 
4520 		/*
4521 		 * If the metaslab was activated by another thread for
4522 		 * another allocator or activation_weight (EBUSY), or it
4523 		 * failed because another metaslab was assigned as primary
4524 		 * for this allocator (EEXIST) we continue using this
4525 		 * metaslab for our allocation, rather than going on to a
4526 		 * worse metaslab (we waited for that metaslab to be loaded
4527 		 * after all).
4528 		 *
4529 		 * If the activation failed due to an I/O error or ENOSPC we
4530 		 * skip to the next metaslab.
4531 		 */
4532 		boolean_t activated;
4533 		if (activation_error == 0) {
4534 			activated = B_TRUE;
4535 		} else if (activation_error == EBUSY ||
4536 		    activation_error == EEXIST) {
4537 			activated = B_FALSE;
4538 		} else {
4539 			mutex_exit(&msp->ms_lock);
4540 			continue;
4541 		}
4542 		ASSERT(msp->ms_loaded);
4543 
4544 		/*
4545 		 * Now that we have the lock, recheck to see if we should
4546 		 * continue to use this metaslab for this allocation. The
4547 		 * the metaslab is now loaded so metaslab_should_allocate()
4548 		 * can accurately determine if the allocation attempt should
4549 		 * proceed.
4550 		 */
4551 		if (!metaslab_should_allocate(msp, asize, try_hard)) {
4552 			/* Passivate this metaslab and select a new one. */
4553 			metaslab_trace_add(zal, mg, msp, asize, d,
4554 			    TRACE_TOO_SMALL, allocator);
4555 			goto next;
4556 		}
4557 
4558 		/*
4559 		 * If this metaslab is currently condensing then pick again
4560 		 * as we can't manipulate this metaslab until it's committed
4561 		 * to disk. If this metaslab is being initialized, we shouldn't
4562 		 * allocate from it since the allocated region might be
4563 		 * overwritten after allocation.
4564 		 */
4565 		if (msp->ms_condensing) {
4566 			metaslab_trace_add(zal, mg, msp, asize, d,
4567 			    TRACE_CONDENSING, allocator);
4568 			if (activated) {
4569 				metaslab_passivate(msp, msp->ms_weight &
4570 				    ~METASLAB_ACTIVE_MASK);
4571 			}
4572 			mutex_exit(&msp->ms_lock);
4573 			continue;
4574 		} else if (msp->ms_disabled > 0) {
4575 			metaslab_trace_add(zal, mg, msp, asize, d,
4576 			    TRACE_DISABLED, allocator);
4577 			if (activated) {
4578 				metaslab_passivate(msp, msp->ms_weight &
4579 				    ~METASLAB_ACTIVE_MASK);
4580 			}
4581 			mutex_exit(&msp->ms_lock);
4582 			continue;
4583 		}
4584 
4585 		offset = metaslab_block_alloc(msp, asize, txg);
4586 		metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
4587 
4588 		if (offset != -1ULL) {
4589 			/* Proactively passivate the metaslab, if needed */
4590 			if (activated)
4591 				metaslab_segment_may_passivate(msp);
4592 			break;
4593 		}
4594 next:
4595 		ASSERT(msp->ms_loaded);
4596 
4597 		/*
4598 		 * This code is disabled out because of issues with
4599 		 * tracepoints in non-gpl kernel modules.
4600 		 */
4601 #if 0
4602 		DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
4603 		    uint64_t, asize);
4604 #endif
4605 
4606 		/*
4607 		 * We were unable to allocate from this metaslab so determine
4608 		 * a new weight for this metaslab. Now that we have loaded
4609 		 * the metaslab we can provide a better hint to the metaslab
4610 		 * selector.
4611 		 *
4612 		 * For space-based metaslabs, we use the maximum block size.
4613 		 * This information is only available when the metaslab
4614 		 * is loaded and is more accurate than the generic free
4615 		 * space weight that was calculated by metaslab_weight().
4616 		 * This information allows us to quickly compare the maximum
4617 		 * available allocation in the metaslab to the allocation
4618 		 * size being requested.
4619 		 *
4620 		 * For segment-based metaslabs, determine the new weight
4621 		 * based on the highest bucket in the range tree. We
4622 		 * explicitly use the loaded segment weight (i.e. the range
4623 		 * tree histogram) since it contains the space that is
4624 		 * currently available for allocation and is accurate
4625 		 * even within a sync pass.
4626 		 */
4627 		uint64_t weight;
4628 		if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
4629 			weight = metaslab_largest_allocatable(msp);
4630 			WEIGHT_SET_SPACEBASED(weight);
4631 		} else {
4632 			weight = metaslab_weight_from_range_tree(msp);
4633 		}
4634 
4635 		if (activated) {
4636 			metaslab_passivate(msp, weight);
4637 		} else {
4638 			/*
4639 			 * For the case where we use the metaslab that is
4640 			 * active for another allocator we want to make
4641 			 * sure that we retain the activation mask.
4642 			 *
4643 			 * Note that we could attempt to use something like
4644 			 * metaslab_recalculate_weight_and_sort() that
4645 			 * retains the activation mask here. That function
4646 			 * uses metaslab_weight() to set the weight though
4647 			 * which is not as accurate as the calculations
4648 			 * above.
4649 			 */
4650 			weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
4651 			metaslab_group_sort(mg, msp, weight);
4652 		}
4653 		metaslab_active_mask_verify(msp);
4654 
4655 		/*
4656 		 * We have just failed an allocation attempt, check
4657 		 * that metaslab_should_allocate() agrees. Otherwise,
4658 		 * we may end up in an infinite loop retrying the same
4659 		 * metaslab.
4660 		 */
4661 		ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
4662 
4663 		mutex_exit(&msp->ms_lock);
4664 	}
4665 	mutex_exit(&msp->ms_lock);
4666 	kmem_free(search, sizeof (*search));
4667 	return (offset);
4668 }
4669 
4670 static uint64_t
4671 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
4672     uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
4673     int allocator, boolean_t try_hard)
4674 {
4675 	uint64_t offset;
4676 	ASSERT(mg->mg_initialized);
4677 
4678 	offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
4679 	    dva, d, allocator, try_hard);
4680 
4681 	mutex_enter(&mg->mg_lock);
4682 	if (offset == -1ULL) {
4683 		mg->mg_failed_allocations++;
4684 		metaslab_trace_add(zal, mg, NULL, asize, d,
4685 		    TRACE_GROUP_FAILURE, allocator);
4686 		if (asize == SPA_GANGBLOCKSIZE) {
4687 			/*
4688 			 * This metaslab group was unable to allocate
4689 			 * the minimum gang block size so it must be out of
4690 			 * space. We must notify the allocation throttle
4691 			 * to start skipping allocation attempts to this
4692 			 * metaslab group until more space becomes available.
4693 			 * Note: this failure cannot be caused by the
4694 			 * allocation throttle since the allocation throttle
4695 			 * is only responsible for skipping devices and
4696 			 * not failing block allocations.
4697 			 */
4698 			mg->mg_no_free_space = B_TRUE;
4699 		}
4700 	}
4701 	mg->mg_allocations++;
4702 	mutex_exit(&mg->mg_lock);
4703 	return (offset);
4704 }
4705 
4706 /*
4707  * Allocate a block for the specified i/o.
4708  */
4709 int
4710 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
4711     dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
4712     zio_alloc_list_t *zal, int allocator)
4713 {
4714 	metaslab_group_t *mg, *rotor;
4715 	vdev_t *vd;
4716 	boolean_t try_hard = B_FALSE;
4717 
4718 	ASSERT(!DVA_IS_VALID(&dva[d]));
4719 
4720 	/*
4721 	 * For testing, make some blocks above a certain size be gang blocks.
4722 	 * This will also test spilling from special to normal.
4723 	 */
4724 	if (psize >= metaslab_force_ganging && (ddi_get_lbolt() & 3) == 0) {
4725 		metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
4726 		    allocator);
4727 		return (SET_ERROR(ENOSPC));
4728 	}
4729 
4730 	/*
4731 	 * Start at the rotor and loop through all mgs until we find something.
4732 	 * Note that there's no locking on mc_rotor or mc_aliquot because
4733 	 * nothing actually breaks if we miss a few updates -- we just won't
4734 	 * allocate quite as evenly.  It all balances out over time.
4735 	 *
4736 	 * If we are doing ditto or log blocks, try to spread them across
4737 	 * consecutive vdevs.  If we're forced to reuse a vdev before we've
4738 	 * allocated all of our ditto blocks, then try and spread them out on
4739 	 * that vdev as much as possible.  If it turns out to not be possible,
4740 	 * gradually lower our standards until anything becomes acceptable.
4741 	 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
4742 	 * gives us hope of containing our fault domains to something we're
4743 	 * able to reason about.  Otherwise, any two top-level vdev failures
4744 	 * will guarantee the loss of data.  With consecutive allocation,
4745 	 * only two adjacent top-level vdev failures will result in data loss.
4746 	 *
4747 	 * If we are doing gang blocks (hintdva is non-NULL), try to keep
4748 	 * ourselves on the same vdev as our gang block header.  That
4749 	 * way, we can hope for locality in vdev_cache, plus it makes our
4750 	 * fault domains something tractable.
4751 	 */
4752 	if (hintdva) {
4753 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
4754 
4755 		/*
4756 		 * It's possible the vdev we're using as the hint no
4757 		 * longer exists or its mg has been closed (e.g. by
4758 		 * device removal).  Consult the rotor when
4759 		 * all else fails.
4760 		 */
4761 		if (vd != NULL && vd->vdev_mg != NULL) {
4762 			mg = vd->vdev_mg;
4763 
4764 			if (flags & METASLAB_HINTBP_AVOID &&
4765 			    mg->mg_next != NULL)
4766 				mg = mg->mg_next;
4767 		} else {
4768 			mg = mc->mc_rotor;
4769 		}
4770 	} else if (d != 0) {
4771 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
4772 		mg = vd->vdev_mg->mg_next;
4773 	} else {
4774 		ASSERT(mc->mc_rotor != NULL);
4775 		mg = mc->mc_rotor;
4776 	}
4777 
4778 	/*
4779 	 * If the hint put us into the wrong metaslab class, or into a
4780 	 * metaslab group that has been passivated, just follow the rotor.
4781 	 */
4782 	if (mg->mg_class != mc || mg->mg_activation_count <= 0)
4783 		mg = mc->mc_rotor;
4784 
4785 	rotor = mg;
4786 top:
4787 	do {
4788 		boolean_t allocatable;
4789 
4790 		ASSERT(mg->mg_activation_count == 1);
4791 		vd = mg->mg_vd;
4792 
4793 		/*
4794 		 * Don't allocate from faulted devices.
4795 		 */
4796 		if (try_hard) {
4797 			spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
4798 			allocatable = vdev_allocatable(vd);
4799 			spa_config_exit(spa, SCL_ZIO, FTAG);
4800 		} else {
4801 			allocatable = vdev_allocatable(vd);
4802 		}
4803 
4804 		/*
4805 		 * Determine if the selected metaslab group is eligible
4806 		 * for allocations. If we're ganging then don't allow
4807 		 * this metaslab group to skip allocations since that would
4808 		 * inadvertently return ENOSPC and suspend the pool
4809 		 * even though space is still available.
4810 		 */
4811 		if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
4812 			allocatable = metaslab_group_allocatable(mg, rotor,
4813 			    psize, allocator, d);
4814 		}
4815 
4816 		if (!allocatable) {
4817 			metaslab_trace_add(zal, mg, NULL, psize, d,
4818 			    TRACE_NOT_ALLOCATABLE, allocator);
4819 			goto next;
4820 		}
4821 
4822 		ASSERT(mg->mg_initialized);
4823 
4824 		/*
4825 		 * Avoid writing single-copy data to a failing,
4826 		 * non-redundant vdev, unless we've already tried all
4827 		 * other vdevs.
4828 		 */
4829 		if ((vd->vdev_stat.vs_write_errors > 0 ||
4830 		    vd->vdev_state < VDEV_STATE_HEALTHY) &&
4831 		    d == 0 && !try_hard && vd->vdev_children == 0) {
4832 			metaslab_trace_add(zal, mg, NULL, psize, d,
4833 			    TRACE_VDEV_ERROR, allocator);
4834 			goto next;
4835 		}
4836 
4837 		ASSERT(mg->mg_class == mc);
4838 
4839 		uint64_t asize = vdev_psize_to_asize(vd, psize);
4840 		ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
4841 
4842 		/*
4843 		 * If we don't need to try hard, then require that the
4844 		 * block be on an different metaslab from any other DVAs
4845 		 * in this BP (unique=true).  If we are trying hard, then
4846 		 * allow any metaslab to be used (unique=false).
4847 		 */
4848 		uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
4849 		    !try_hard, dva, d, allocator, try_hard);
4850 
4851 		if (offset != -1ULL) {
4852 			/*
4853 			 * If we've just selected this metaslab group,
4854 			 * figure out whether the corresponding vdev is
4855 			 * over- or under-used relative to the pool,
4856 			 * and set an allocation bias to even it out.
4857 			 */
4858 			if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
4859 				vdev_stat_t *vs = &vd->vdev_stat;
4860 				int64_t vu, cu;
4861 
4862 				vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
4863 				cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
4864 
4865 				/*
4866 				 * Calculate how much more or less we should
4867 				 * try to allocate from this device during
4868 				 * this iteration around the rotor.
4869 				 * For example, if a device is 80% full
4870 				 * and the pool is 20% full then we should
4871 				 * reduce allocations by 60% on this device.
4872 				 *
4873 				 * mg_bias = (20 - 80) * 512K / 100 = -307K
4874 				 *
4875 				 * This reduces allocations by 307K for this
4876 				 * iteration.
4877 				 */
4878 				mg->mg_bias = ((cu - vu) *
4879 				    (int64_t)mg->mg_aliquot) / 100;
4880 			} else if (!metaslab_bias_enabled) {
4881 				mg->mg_bias = 0;
4882 			}
4883 
4884 			if (atomic_add_64_nv(&mc->mc_aliquot, asize) >=
4885 			    mg->mg_aliquot + mg->mg_bias) {
4886 				mc->mc_rotor = mg->mg_next;
4887 				mc->mc_aliquot = 0;
4888 			}
4889 
4890 			DVA_SET_VDEV(&dva[d], vd->vdev_id);
4891 			DVA_SET_OFFSET(&dva[d], offset);
4892 			DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
4893 			DVA_SET_ASIZE(&dva[d], asize);
4894 
4895 			return (0);
4896 		}
4897 next:
4898 		mc->mc_rotor = mg->mg_next;
4899 		mc->mc_aliquot = 0;
4900 	} while ((mg = mg->mg_next) != rotor);
4901 
4902 	/*
4903 	 * If we haven't tried hard, do so now.
4904 	 */
4905 	if (!try_hard) {
4906 		try_hard = B_TRUE;
4907 		goto top;
4908 	}
4909 
4910 	bzero(&dva[d], sizeof (dva_t));
4911 
4912 	metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
4913 	return (SET_ERROR(ENOSPC));
4914 }
4915 
4916 void
4917 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
4918     boolean_t checkpoint)
4919 {
4920 	metaslab_t *msp;
4921 	spa_t *spa = vd->vdev_spa;
4922 
4923 	ASSERT(vdev_is_concrete(vd));
4924 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4925 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
4926 
4927 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
4928 
4929 	VERIFY(!msp->ms_condensing);
4930 	VERIFY3U(offset, >=, msp->ms_start);
4931 	VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
4932 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
4933 	VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
4934 
4935 	metaslab_check_free_impl(vd, offset, asize);
4936 
4937 	mutex_enter(&msp->ms_lock);
4938 	if (range_tree_is_empty(msp->ms_freeing) &&
4939 	    range_tree_is_empty(msp->ms_checkpointing)) {
4940 		vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
4941 	}
4942 
4943 	if (checkpoint) {
4944 		ASSERT(spa_has_checkpoint(spa));
4945 		range_tree_add(msp->ms_checkpointing, offset, asize);
4946 	} else {
4947 		range_tree_add(msp->ms_freeing, offset, asize);
4948 	}
4949 	mutex_exit(&msp->ms_lock);
4950 }
4951 
4952 /* ARGSUSED */
4953 void
4954 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
4955     uint64_t size, void *arg)
4956 {
4957 	boolean_t *checkpoint = arg;
4958 
4959 	ASSERT3P(checkpoint, !=, NULL);
4960 
4961 	if (vd->vdev_ops->vdev_op_remap != NULL)
4962 		vdev_indirect_mark_obsolete(vd, offset, size);
4963 	else
4964 		metaslab_free_impl(vd, offset, size, *checkpoint);
4965 }
4966 
4967 static void
4968 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
4969     boolean_t checkpoint)
4970 {
4971 	spa_t *spa = vd->vdev_spa;
4972 
4973 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4974 
4975 	if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
4976 		return;
4977 
4978 	if (spa->spa_vdev_removal != NULL &&
4979 	    spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
4980 	    vdev_is_concrete(vd)) {
4981 		/*
4982 		 * Note: we check if the vdev is concrete because when
4983 		 * we complete the removal, we first change the vdev to be
4984 		 * an indirect vdev (in open context), and then (in syncing
4985 		 * context) clear spa_vdev_removal.
4986 		 */
4987 		free_from_removing_vdev(vd, offset, size);
4988 	} else if (vd->vdev_ops->vdev_op_remap != NULL) {
4989 		vdev_indirect_mark_obsolete(vd, offset, size);
4990 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
4991 		    metaslab_free_impl_cb, &checkpoint);
4992 	} else {
4993 		metaslab_free_concrete(vd, offset, size, checkpoint);
4994 	}
4995 }
4996 
4997 typedef struct remap_blkptr_cb_arg {
4998 	blkptr_t *rbca_bp;
4999 	spa_remap_cb_t rbca_cb;
5000 	vdev_t *rbca_remap_vd;
5001 	uint64_t rbca_remap_offset;
5002 	void *rbca_cb_arg;
5003 } remap_blkptr_cb_arg_t;
5004 
5005 void
5006 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5007     uint64_t size, void *arg)
5008 {
5009 	remap_blkptr_cb_arg_t *rbca = arg;
5010 	blkptr_t *bp = rbca->rbca_bp;
5011 
5012 	/* We can not remap split blocks. */
5013 	if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5014 		return;
5015 	ASSERT0(inner_offset);
5016 
5017 	if (rbca->rbca_cb != NULL) {
5018 		/*
5019 		 * At this point we know that we are not handling split
5020 		 * blocks and we invoke the callback on the previous
5021 		 * vdev which must be indirect.
5022 		 */
5023 		ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5024 
5025 		rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5026 		    rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5027 
5028 		/* set up remap_blkptr_cb_arg for the next call */
5029 		rbca->rbca_remap_vd = vd;
5030 		rbca->rbca_remap_offset = offset;
5031 	}
5032 
5033 	/*
5034 	 * The phys birth time is that of dva[0].  This ensures that we know
5035 	 * when each dva was written, so that resilver can determine which
5036 	 * blocks need to be scrubbed (i.e. those written during the time
5037 	 * the vdev was offline).  It also ensures that the key used in
5038 	 * the ARC hash table is unique (i.e. dva[0] + phys_birth).  If
5039 	 * we didn't change the phys_birth, a lookup in the ARC for a
5040 	 * remapped BP could find the data that was previously stored at
5041 	 * this vdev + offset.
5042 	 */
5043 	vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5044 	    DVA_GET_VDEV(&bp->blk_dva[0]));
5045 	vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5046 	bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
5047 	    DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5048 
5049 	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5050 	DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5051 }
5052 
5053 /*
5054  * If the block pointer contains any indirect DVAs, modify them to refer to
5055  * concrete DVAs.  Note that this will sometimes not be possible, leaving
5056  * the indirect DVA in place.  This happens if the indirect DVA spans multiple
5057  * segments in the mapping (i.e. it is a "split block").
5058  *
5059  * If the BP was remapped, calls the callback on the original dva (note the
5060  * callback can be called multiple times if the original indirect DVA refers
5061  * to another indirect DVA, etc).
5062  *
5063  * Returns TRUE if the BP was remapped.
5064  */
5065 boolean_t
5066 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5067 {
5068 	remap_blkptr_cb_arg_t rbca;
5069 
5070 	if (!zfs_remap_blkptr_enable)
5071 		return (B_FALSE);
5072 
5073 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5074 		return (B_FALSE);
5075 
5076 	/*
5077 	 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5078 	 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5079 	 */
5080 	if (BP_GET_DEDUP(bp))
5081 		return (B_FALSE);
5082 
5083 	/*
5084 	 * Gang blocks can not be remapped, because
5085 	 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5086 	 * the BP used to read the gang block header (GBH) being the same
5087 	 * as the DVA[0] that we allocated for the GBH.
5088 	 */
5089 	if (BP_IS_GANG(bp))
5090 		return (B_FALSE);
5091 
5092 	/*
5093 	 * Embedded BP's have no DVA to remap.
5094 	 */
5095 	if (BP_GET_NDVAS(bp) < 1)
5096 		return (B_FALSE);
5097 
5098 	/*
5099 	 * Note: we only remap dva[0].  If we remapped other dvas, we
5100 	 * would no longer know what their phys birth txg is.
5101 	 */
5102 	dva_t *dva = &bp->blk_dva[0];
5103 
5104 	uint64_t offset = DVA_GET_OFFSET(dva);
5105 	uint64_t size = DVA_GET_ASIZE(dva);
5106 	vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5107 
5108 	if (vd->vdev_ops->vdev_op_remap == NULL)
5109 		return (B_FALSE);
5110 
5111 	rbca.rbca_bp = bp;
5112 	rbca.rbca_cb = callback;
5113 	rbca.rbca_remap_vd = vd;
5114 	rbca.rbca_remap_offset = offset;
5115 	rbca.rbca_cb_arg = arg;
5116 
5117 	/*
5118 	 * remap_blkptr_cb() will be called in order for each level of
5119 	 * indirection, until a concrete vdev is reached or a split block is
5120 	 * encountered. old_vd and old_offset are updated within the callback
5121 	 * as we go from the one indirect vdev to the next one (either concrete
5122 	 * or indirect again) in that order.
5123 	 */
5124 	vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5125 
5126 	/* Check if the DVA wasn't remapped because it is a split block */
5127 	if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5128 		return (B_FALSE);
5129 
5130 	return (B_TRUE);
5131 }
5132 
5133 /*
5134  * Undo the allocation of a DVA which happened in the given transaction group.
5135  */
5136 void
5137 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5138 {
5139 	metaslab_t *msp;
5140 	vdev_t *vd;
5141 	uint64_t vdev = DVA_GET_VDEV(dva);
5142 	uint64_t offset = DVA_GET_OFFSET(dva);
5143 	uint64_t size = DVA_GET_ASIZE(dva);
5144 
5145 	ASSERT(DVA_IS_VALID(dva));
5146 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5147 
5148 	if (txg > spa_freeze_txg(spa))
5149 		return;
5150 
5151 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
5152 	    (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5153 		cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
5154 		    (u_longlong_t)vdev, (u_longlong_t)offset);
5155 		ASSERT(0);
5156 		return;
5157 	}
5158 
5159 	ASSERT(!vd->vdev_removing);
5160 	ASSERT(vdev_is_concrete(vd));
5161 	ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5162 	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
5163 
5164 	if (DVA_GET_GANG(dva))
5165 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
5166 
5167 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5168 
5169 	mutex_enter(&msp->ms_lock);
5170 	range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5171 	    offset, size);
5172 	msp->ms_allocating_total -= size;
5173 
5174 	VERIFY(!msp->ms_condensing);
5175 	VERIFY3U(offset, >=, msp->ms_start);
5176 	VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5177 	VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
5178 	    msp->ms_size);
5179 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5180 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5181 	range_tree_add(msp->ms_allocatable, offset, size);
5182 	mutex_exit(&msp->ms_lock);
5183 }
5184 
5185 /*
5186  * Free the block represented by the given DVA.
5187  */
5188 void
5189 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5190 {
5191 	uint64_t vdev = DVA_GET_VDEV(dva);
5192 	uint64_t offset = DVA_GET_OFFSET(dva);
5193 	uint64_t size = DVA_GET_ASIZE(dva);
5194 	vdev_t *vd = vdev_lookup_top(spa, vdev);
5195 
5196 	ASSERT(DVA_IS_VALID(dva));
5197 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5198 
5199 	if (DVA_GET_GANG(dva)) {
5200 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
5201 	}
5202 
5203 	metaslab_free_impl(vd, offset, size, checkpoint);
5204 }
5205 
5206 /*
5207  * Reserve some allocation slots. The reservation system must be called
5208  * before we call into the allocator. If there aren't any available slots
5209  * then the I/O will be throttled until an I/O completes and its slots are
5210  * freed up. The function returns true if it was successful in placing
5211  * the reservation.
5212  */
5213 boolean_t
5214 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
5215     zio_t *zio, int flags)
5216 {
5217 	uint64_t available_slots = 0;
5218 	boolean_t slot_reserved = B_FALSE;
5219 	uint64_t max = mc->mc_alloc_max_slots[allocator];
5220 
5221 	ASSERT(mc->mc_alloc_throttle_enabled);
5222 	mutex_enter(&mc->mc_lock);
5223 
5224 	uint64_t reserved_slots =
5225 	    zfs_refcount_count(&mc->mc_alloc_slots[allocator]);
5226 	if (reserved_slots < max)
5227 		available_slots = max - reserved_slots;
5228 
5229 	if (slots <= available_slots || GANG_ALLOCATION(flags) ||
5230 	    flags & METASLAB_MUST_RESERVE) {
5231 		/*
5232 		 * We reserve the slots individually so that we can unreserve
5233 		 * them individually when an I/O completes.
5234 		 */
5235 		for (int d = 0; d < slots; d++) {
5236 			reserved_slots =
5237 			    zfs_refcount_add(&mc->mc_alloc_slots[allocator],
5238 			    zio);
5239 		}
5240 		zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
5241 		slot_reserved = B_TRUE;
5242 	}
5243 
5244 	mutex_exit(&mc->mc_lock);
5245 	return (slot_reserved);
5246 }
5247 
5248 void
5249 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5250     int allocator, zio_t *zio)
5251 {
5252 	ASSERT(mc->mc_alloc_throttle_enabled);
5253 	mutex_enter(&mc->mc_lock);
5254 	for (int d = 0; d < slots; d++) {
5255 		(void) zfs_refcount_remove(&mc->mc_alloc_slots[allocator],
5256 		    zio);
5257 	}
5258 	mutex_exit(&mc->mc_lock);
5259 }
5260 
5261 static int
5262 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5263     uint64_t txg)
5264 {
5265 	metaslab_t *msp;
5266 	spa_t *spa = vd->vdev_spa;
5267 	int error = 0;
5268 
5269 	if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5270 		return (ENXIO);
5271 
5272 	ASSERT3P(vd->vdev_ms, !=, NULL);
5273 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5274 
5275 	mutex_enter(&msp->ms_lock);
5276 
5277 	if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
5278 		error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5279 	/*
5280 	 * No need to fail in that case; someone else has activated the
5281 	 * metaslab, but that doesn't preclude us from using it.
5282 	 */
5283 	if (error == EBUSY)
5284 		error = 0;
5285 
5286 	if (error == 0 &&
5287 	    !range_tree_contains(msp->ms_allocatable, offset, size))
5288 		error = SET_ERROR(ENOENT);
5289 
5290 	if (error || txg == 0) {	/* txg == 0 indicates dry run */
5291 		mutex_exit(&msp->ms_lock);
5292 		return (error);
5293 	}
5294 
5295 	VERIFY(!msp->ms_condensing);
5296 	VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5297 	VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5298 	VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
5299 	    msp->ms_size);
5300 	range_tree_remove(msp->ms_allocatable, offset, size);
5301 	range_tree_clear(msp->ms_trim, offset, size);
5302 
5303 	if (spa_writeable(spa)) {	/* don't dirty if we're zdb(1M) */
5304 		metaslab_class_t *mc = msp->ms_group->mg_class;
5305 		multilist_sublist_t *mls =
5306 		    multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp);
5307 		if (!multilist_link_active(&msp->ms_class_txg_node)) {
5308 			msp->ms_selected_txg = txg;
5309 			multilist_sublist_insert_head(mls, msp);
5310 		}
5311 		multilist_sublist_unlock(mls);
5312 
5313 		if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5314 			vdev_dirty(vd, VDD_METASLAB, msp, txg);
5315 		range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5316 		    offset, size);
5317 		msp->ms_allocating_total += size;
5318 	}
5319 
5320 	mutex_exit(&msp->ms_lock);
5321 
5322 	return (0);
5323 }
5324 
5325 typedef struct metaslab_claim_cb_arg_t {
5326 	uint64_t	mcca_txg;
5327 	int		mcca_error;
5328 } metaslab_claim_cb_arg_t;
5329 
5330 /* ARGSUSED */
5331 static void
5332 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5333     uint64_t size, void *arg)
5334 {
5335 	metaslab_claim_cb_arg_t *mcca_arg = arg;
5336 
5337 	if (mcca_arg->mcca_error == 0) {
5338 		mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5339 		    size, mcca_arg->mcca_txg);
5340 	}
5341 }
5342 
5343 int
5344 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5345 {
5346 	if (vd->vdev_ops->vdev_op_remap != NULL) {
5347 		metaslab_claim_cb_arg_t arg;
5348 
5349 		/*
5350 		 * Only zdb(1M) can claim on indirect vdevs.  This is used
5351 		 * to detect leaks of mapped space (that are not accounted
5352 		 * for in the obsolete counts, spacemap, or bpobj).
5353 		 */
5354 		ASSERT(!spa_writeable(vd->vdev_spa));
5355 		arg.mcca_error = 0;
5356 		arg.mcca_txg = txg;
5357 
5358 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5359 		    metaslab_claim_impl_cb, &arg);
5360 
5361 		if (arg.mcca_error == 0) {
5362 			arg.mcca_error = metaslab_claim_concrete(vd,
5363 			    offset, size, txg);
5364 		}
5365 		return (arg.mcca_error);
5366 	} else {
5367 		return (metaslab_claim_concrete(vd, offset, size, txg));
5368 	}
5369 }
5370 
5371 /*
5372  * Intent log support: upon opening the pool after a crash, notify the SPA
5373  * of blocks that the intent log has allocated for immediate write, but
5374  * which are still considered free by the SPA because the last transaction
5375  * group didn't commit yet.
5376  */
5377 static int
5378 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5379 {
5380 	uint64_t vdev = DVA_GET_VDEV(dva);
5381 	uint64_t offset = DVA_GET_OFFSET(dva);
5382 	uint64_t size = DVA_GET_ASIZE(dva);
5383 	vdev_t *vd;
5384 
5385 	if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5386 		return (SET_ERROR(ENXIO));
5387 	}
5388 
5389 	ASSERT(DVA_IS_VALID(dva));
5390 
5391 	if (DVA_GET_GANG(dva))
5392 		size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
5393 
5394 	return (metaslab_claim_impl(vd, offset, size, txg));
5395 }
5396 
5397 int
5398 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5399     int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
5400     zio_alloc_list_t *zal, zio_t *zio, int allocator)
5401 {
5402 	dva_t *dva = bp->blk_dva;
5403 	dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5404 	int error = 0;
5405 
5406 	ASSERT(bp->blk_birth == 0);
5407 	ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
5408 
5409 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5410 
5411 	if (mc->mc_rotor == NULL) {	/* no vdevs in this class */
5412 		spa_config_exit(spa, SCL_ALLOC, FTAG);
5413 		return (SET_ERROR(ENOSPC));
5414 	}
5415 
5416 	ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5417 	ASSERT(BP_GET_NDVAS(bp) == 0);
5418 	ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
5419 	ASSERT3P(zal, !=, NULL);
5420 
5421 	for (int d = 0; d < ndvas; d++) {
5422 		error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
5423 		    txg, flags, zal, allocator);
5424 		if (error != 0) {
5425 			for (d--; d >= 0; d--) {
5426 				metaslab_unalloc_dva(spa, &dva[d], txg);
5427 				metaslab_group_alloc_decrement(spa,
5428 				    DVA_GET_VDEV(&dva[d]), zio, flags,
5429 				    allocator, B_FALSE);
5430 				bzero(&dva[d], sizeof (dva_t));
5431 			}
5432 			spa_config_exit(spa, SCL_ALLOC, FTAG);
5433 			return (error);
5434 		} else {
5435 			/*
5436 			 * Update the metaslab group's queue depth
5437 			 * based on the newly allocated dva.
5438 			 */
5439 			metaslab_group_alloc_increment(spa,
5440 			    DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
5441 		}
5442 
5443 	}
5444 	ASSERT(error == 0);
5445 	ASSERT(BP_GET_NDVAS(bp) == ndvas);
5446 
5447 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5448 
5449 	BP_SET_BIRTH(bp, txg, txg);
5450 
5451 	return (0);
5452 }
5453 
5454 void
5455 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
5456 {
5457 	const dva_t *dva = bp->blk_dva;
5458 	int ndvas = BP_GET_NDVAS(bp);
5459 
5460 	ASSERT(!BP_IS_HOLE(bp));
5461 	ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
5462 
5463 	/*
5464 	 * If we have a checkpoint for the pool we need to make sure that
5465 	 * the blocks that we free that are part of the checkpoint won't be
5466 	 * reused until the checkpoint is discarded or we revert to it.
5467 	 *
5468 	 * The checkpoint flag is passed down the metaslab_free code path
5469 	 * and is set whenever we want to add a block to the checkpoint's
5470 	 * accounting. That is, we "checkpoint" blocks that existed at the
5471 	 * time the checkpoint was created and are therefore referenced by
5472 	 * the checkpointed uberblock.
5473 	 *
5474 	 * Note that, we don't checkpoint any blocks if the current
5475 	 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5476 	 * normally as they will be referenced by the checkpointed uberblock.
5477 	 */
5478 	boolean_t checkpoint = B_FALSE;
5479 	if (bp->blk_birth <= spa->spa_checkpoint_txg &&
5480 	    spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
5481 		/*
5482 		 * At this point, if the block is part of the checkpoint
5483 		 * there is no way it was created in the current txg.
5484 		 */
5485 		ASSERT(!now);
5486 		ASSERT3U(spa_syncing_txg(spa), ==, txg);
5487 		checkpoint = B_TRUE;
5488 	}
5489 
5490 	spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
5491 
5492 	for (int d = 0; d < ndvas; d++) {
5493 		if (now) {
5494 			metaslab_unalloc_dva(spa, &dva[d], txg);
5495 		} else {
5496 			ASSERT3U(txg, ==, spa_syncing_txg(spa));
5497 			metaslab_free_dva(spa, &dva[d], checkpoint);
5498 		}
5499 	}
5500 
5501 	spa_config_exit(spa, SCL_FREE, FTAG);
5502 }
5503 
5504 int
5505 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
5506 {
5507 	const dva_t *dva = bp->blk_dva;
5508 	int ndvas = BP_GET_NDVAS(bp);
5509 	int error = 0;
5510 
5511 	ASSERT(!BP_IS_HOLE(bp));
5512 
5513 	if (txg != 0) {
5514 		/*
5515 		 * First do a dry run to make sure all DVAs are claimable,
5516 		 * so we don't have to unwind from partial failures below.
5517 		 */
5518 		if ((error = metaslab_claim(spa, bp, 0)) != 0)
5519 			return (error);
5520 	}
5521 
5522 	spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5523 
5524 	for (int d = 0; d < ndvas; d++) {
5525 		error = metaslab_claim_dva(spa, &dva[d], txg);
5526 		if (error != 0)
5527 			break;
5528 	}
5529 
5530 	spa_config_exit(spa, SCL_ALLOC, FTAG);
5531 
5532 	ASSERT(error == 0 || txg == 0);
5533 
5534 	return (error);
5535 }
5536 
5537 /* ARGSUSED */
5538 static void
5539 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
5540     uint64_t size, void *arg)
5541 {
5542 	if (vd->vdev_ops == &vdev_indirect_ops)
5543 		return;
5544 
5545 	metaslab_check_free_impl(vd, offset, size);
5546 }
5547 
5548 static void
5549 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
5550 {
5551 	metaslab_t *msp;
5552 	spa_t *spa = vd->vdev_spa;
5553 
5554 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
5555 		return;
5556 
5557 	if (vd->vdev_ops->vdev_op_remap != NULL) {
5558 		vd->vdev_ops->vdev_op_remap(vd, offset, size,
5559 		    metaslab_check_free_impl_cb, NULL);
5560 		return;
5561 	}
5562 
5563 	ASSERT(vdev_is_concrete(vd));
5564 	ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5565 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5566 
5567 	msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5568 
5569 	mutex_enter(&msp->ms_lock);
5570 	if (msp->ms_loaded) {
5571 		range_tree_verify_not_present(msp->ms_allocatable,
5572 		    offset, size);
5573 	}
5574 
5575 	/*
5576 	 * Check all segments that currently exist in the freeing pipeline.
5577 	 *
5578 	 * It would intuitively make sense to also check the current allocating
5579 	 * tree since metaslab_unalloc_dva() exists for extents that are
5580 	 * allocated and freed in the same sync pass withing the same txg.
5581 	 * Unfortunately there are places (e.g. the ZIL) where we allocate a
5582 	 * segment but then we free part of it within the same txg
5583 	 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
5584 	 * current allocating tree.
5585 	 */
5586 	range_tree_verify_not_present(msp->ms_freeing, offset, size);
5587 	range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
5588 	range_tree_verify_not_present(msp->ms_freed, offset, size);
5589 	for (int j = 0; j < TXG_DEFER_SIZE; j++)
5590 		range_tree_verify_not_present(msp->ms_defer[j], offset, size);
5591 	range_tree_verify_not_present(msp->ms_trim, offset, size);
5592 	mutex_exit(&msp->ms_lock);
5593 }
5594 
5595 void
5596 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
5597 {
5598 	if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
5599 		return;
5600 
5601 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5602 	for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
5603 		uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
5604 		vdev_t *vd = vdev_lookup_top(spa, vdev);
5605 		uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
5606 		uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
5607 
5608 		if (DVA_GET_GANG(&bp->blk_dva[i]))
5609 			size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
5610 
5611 		ASSERT3P(vd, !=, NULL);
5612 
5613 		metaslab_check_free_impl(vd, offset, size);
5614 	}
5615 	spa_config_exit(spa, SCL_VDEV, FTAG);
5616 }
5617 
5618 static void
5619 metaslab_group_disable_wait(metaslab_group_t *mg)
5620 {
5621 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
5622 	while (mg->mg_disabled_updating) {
5623 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
5624 	}
5625 }
5626 
5627 static void
5628 metaslab_group_disabled_increment(metaslab_group_t *mg)
5629 {
5630 	ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
5631 	ASSERT(mg->mg_disabled_updating);
5632 
5633 	while (mg->mg_ms_disabled >= max_disabled_ms) {
5634 		cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
5635 	}
5636 	mg->mg_ms_disabled++;
5637 	ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
5638 }
5639 
5640 /*
5641  * Mark the metaslab as disabled to prevent any allocations on this metaslab.
5642  * We must also track how many metaslabs are currently disabled within a
5643  * metaslab group and limit them to prevent allocation failures from
5644  * occurring because all metaslabs are disabled.
5645  */
5646 void
5647 metaslab_disable(metaslab_t *msp)
5648 {
5649 	ASSERT(!MUTEX_HELD(&msp->ms_lock));
5650 	metaslab_group_t *mg = msp->ms_group;
5651 
5652 	mutex_enter(&mg->mg_ms_disabled_lock);
5653 
5654 	/*
5655 	 * To keep an accurate count of how many threads have disabled
5656 	 * a specific metaslab group, we only allow one thread to mark
5657 	 * the metaslab group at a time. This ensures that the value of
5658 	 * ms_disabled will be accurate when we decide to mark a metaslab
5659 	 * group as disabled. To do this we force all other threads
5660 	 * to wait till the metaslab's mg_disabled_updating flag is no
5661 	 * longer set.
5662 	 */
5663 	metaslab_group_disable_wait(mg);
5664 	mg->mg_disabled_updating = B_TRUE;
5665 	if (msp->ms_disabled == 0) {
5666 		metaslab_group_disabled_increment(mg);
5667 	}
5668 	mutex_enter(&msp->ms_lock);
5669 	msp->ms_disabled++;
5670 	mutex_exit(&msp->ms_lock);
5671 
5672 	mg->mg_disabled_updating = B_FALSE;
5673 	cv_broadcast(&mg->mg_ms_disabled_cv);
5674 	mutex_exit(&mg->mg_ms_disabled_lock);
5675 }
5676 
5677 void
5678 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
5679 {
5680 	metaslab_group_t *mg = msp->ms_group;
5681 	spa_t *spa = mg->mg_vd->vdev_spa;
5682 
5683 	/*
5684 	 * Wait for the outstanding IO to be synced to prevent newly
5685 	 * allocated blocks from being overwritten.  This used by
5686 	 * initialize and TRIM which are modifying unallocated space.
5687 	 */
5688 	if (sync)
5689 		txg_wait_synced(spa_get_dsl(spa), 0);
5690 
5691 	mutex_enter(&mg->mg_ms_disabled_lock);
5692 	mutex_enter(&msp->ms_lock);
5693 	if (--msp->ms_disabled == 0) {
5694 		mg->mg_ms_disabled--;
5695 		cv_broadcast(&mg->mg_ms_disabled_cv);
5696 		if (unload)
5697 			metaslab_unload(msp);
5698 	}
5699 	mutex_exit(&msp->ms_lock);
5700 	mutex_exit(&mg->mg_ms_disabled_lock);
5701 }
5702 
5703 static void
5704 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
5705 {
5706 	vdev_t *vd = ms->ms_group->mg_vd;
5707 	spa_t *spa = vd->vdev_spa;
5708 	objset_t *mos = spa_meta_objset(spa);
5709 
5710 	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
5711 
5712 	metaslab_unflushed_phys_t entry = {
5713 		.msp_unflushed_txg = metaslab_unflushed_txg(ms),
5714 	};
5715 	uint64_t entry_size = sizeof (entry);
5716 	uint64_t entry_offset = ms->ms_id * entry_size;
5717 
5718 	uint64_t object = 0;
5719 	int err = zap_lookup(mos, vd->vdev_top_zap,
5720 	    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
5721 	    &object);
5722 	if (err == ENOENT) {
5723 		object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
5724 		    SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
5725 		VERIFY0(zap_add(mos, vd->vdev_top_zap,
5726 		    VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
5727 		    &object, tx));
5728 	} else {
5729 		VERIFY0(err);
5730 	}
5731 
5732 	dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
5733 	    &entry, tx);
5734 }
5735 
5736 void
5737 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
5738 {
5739 	spa_t *spa = ms->ms_group->mg_vd->vdev_spa;
5740 
5741 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
5742 		return;
5743 
5744 	ms->ms_unflushed_txg = txg;
5745 	metaslab_update_ondisk_flush_data(ms, tx);
5746 }
5747 
5748 uint64_t
5749 metaslab_unflushed_txg(metaslab_t *ms)
5750 {
5751 	return (ms->ms_unflushed_txg);
5752 }
5753