xref: /illumos-gate/usr/src/uts/common/crypto/io/swrand.c (revision cd3e933325e68e23516a196a8fea7f49b1e497c3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Software based random number provider for the Kernel Cryptographic
28  * Framework (KCF). This provider periodically collects unpredictable input
29  * from external sources and processes it into a pool of entropy (randomness)
30  * in order to satisfy requests for random bits from kCF. It implements
31  * software-based mixing, extraction, and generation algorithms.
32  *
33  * A history note: The software-based algorithms in this file used to be
34  * part of the /dev/random driver.
35  */
36 
37 #include <sys/types.h>
38 #include <sys/errno.h>
39 #include <sys/debug.h>
40 #include <vm/seg_kmem.h>
41 #include <vm/hat.h>
42 #include <sys/systm.h>
43 #include <sys/memlist.h>
44 #include <sys/cmn_err.h>
45 #include <sys/ksynch.h>
46 #include <sys/random.h>
47 #include <sys/ddi.h>
48 #include <sys/mman.h>
49 #include <sys/sysmacros.h>
50 #include <sys/mem_config.h>
51 #include <sys/time.h>
52 #include <sys/crypto/spi.h>
53 #include <sys/sha1.h>
54 #include <sys/sunddi.h>
55 #include <sys/modctl.h>
56 #include <sys/hold_page.h>
57 #include <rng/fips_random.h>
58 
59 #define	RNDPOOLSIZE		1024	/* Pool size in bytes */
60 #define	HASHBUFSIZE		64	/* Buffer size used for pool mixing */
61 #define	MAXMEMBLOCKS		16384	/* Number of memory blocks to scan */
62 #define	MEMBLOCKSIZE		4096	/* Size of memory block to read */
63 #define	MINEXTRACTBITS		160	/* Min entropy level for extraction */
64 #define	TIMEOUT_INTERVAL	5	/* Periodic mixing interval in secs */
65 
66 /* Hash-algo generic definitions. For now, they are SHA1's. */
67 #define	HASHSIZE		20
68 #define	HASH_CTX		SHA1_CTX
69 #define	HashInit(ctx)		SHA1Init((ctx))
70 #define	HashUpdate(ctx, p, s)	SHA1Update((ctx), (p), (s))
71 #define	HashFinal(d, ctx)	SHA1Final((d), (ctx))
72 
73 /* Physical memory entropy source */
74 typedef struct physmem_entsrc_s {
75 	uint8_t *parity;		/* parity bit vector */
76 	caddr_t pmbuf;			/* buffer for memory block */
77 	uint32_t nblocks;		/* number of  memory blocks */
78 	int entperblock;		/* entropy bits per block read */
79 	hrtime_t last_diff;		/* previous time to process a block */
80 	hrtime_t last_delta;		/* previous time delta */
81 	hrtime_t last_delta2;		/* previous 2nd order time delta */
82 } physmem_entsrc_t;
83 
84 static uint32_t srndpool[RNDPOOLSIZE/4];	/* Pool of random bits */
85 static uint32_t buffer[RNDPOOLSIZE/4];	/* entropy mixed in later */
86 static int buffer_bytes;		/* bytes written to buffer */
87 static uint32_t entropy_bits;		/* pool's current amount of entropy */
88 static kmutex_t srndpool_lock;		/* protects r/w accesses to the pool, */
89 					/* and the global variables */
90 static kmutex_t buffer_lock;		/* protects r/w accesses to buffer */
91 static kcondvar_t srndpool_read_cv;	/* serializes poll/read syscalls */
92 static int pindex;			/* Global index for adding/extracting */
93 					/* from the pool */
94 static int bstart, bindex;		/* Global vars for adding/extracting */
95 					/* from the buffer */
96 static uint8_t leftover[HASHSIZE];	/* leftover output */
97 static uint32_t	swrand_XKEY[6];		/* one extra word for getentropy */
98 static int leftover_bytes;		/* leftover length */
99 static uint32_t previous_bytes[HASHSIZE/BYTES_IN_WORD];	/* prev random bytes */
100 
101 static physmem_entsrc_t entsrc;		/* Physical mem as an entropy source */
102 static timeout_id_t rnd_timeout_id;
103 static int snum_waiters;
104 static crypto_kcf_provider_handle_t swrand_prov_handle = NULL;
105 swrand_stats_t swrand_stats;
106 
107 static int physmem_ent_init(physmem_entsrc_t *);
108 static void physmem_ent_fini(physmem_entsrc_t *);
109 static void physmem_ent_gen(physmem_entsrc_t *);
110 static int physmem_parity_update(uint8_t *, uint32_t, int);
111 static void physmem_count_blocks();
112 static void rnd_dr_callback_post_add(void *, pgcnt_t);
113 static int rnd_dr_callback_pre_del(void *, pgcnt_t);
114 static void rnd_dr_callback_post_del(void *, pgcnt_t, int);
115 static void rnd_handler(void *arg);
116 static void swrand_init();
117 static void swrand_schedule_timeout(void);
118 static int swrand_get_entropy(uint8_t *ptr, size_t len, boolean_t);
119 static void swrand_add_entropy(uint8_t *ptr, size_t len, uint16_t entropy_est);
120 static void swrand_add_entropy_later(uint8_t *ptr, size_t len);
121 
122 /* Dynamic Reconfiguration related declarations */
123 kphysm_setup_vector_t rnd_dr_callback_vec = {
124 	KPHYSM_SETUP_VECTOR_VERSION,
125 	rnd_dr_callback_post_add,
126 	rnd_dr_callback_pre_del,
127 	rnd_dr_callback_post_del
128 };
129 
130 extern struct mod_ops mod_cryptoops;
131 
132 /*
133  * Module linkage information for the kernel.
134  */
135 static struct modlcrypto modlcrypto = {
136 	&mod_cryptoops,
137 	"Kernel Random number Provider"
138 };
139 
140 static struct modlinkage modlinkage = {
141 	MODREV_1,
142 	(void *)&modlcrypto,
143 	NULL
144 };
145 
146 /*
147  * CSPI information (entry points, provider info, etc.)
148  */
149 static void swrand_provider_status(crypto_provider_handle_t, uint_t *);
150 
151 static crypto_control_ops_t swrand_control_ops = {
152 	swrand_provider_status
153 };
154 
155 static int swrand_seed_random(crypto_provider_handle_t, crypto_session_id_t,
156     uchar_t *, size_t, uint_t, uint32_t, crypto_req_handle_t);
157 static int swrand_generate_random(crypto_provider_handle_t,
158     crypto_session_id_t, uchar_t *, size_t, crypto_req_handle_t);
159 
160 static crypto_random_number_ops_t swrand_random_number_ops = {
161 	swrand_seed_random,
162 	swrand_generate_random
163 };
164 
165 static void swrand_POST(int *);
166 
167 static crypto_fips140_ops_t swrand_fips140_ops = {
168 	swrand_POST
169 };
170 
171 static crypto_ops_t swrand_crypto_ops = {
172 	&swrand_control_ops,
173 	NULL,
174 	NULL,
175 	NULL,
176 	NULL,
177 	NULL,
178 	NULL,
179 	NULL,
180 	&swrand_random_number_ops,
181 	NULL,
182 	NULL,
183 	NULL,
184 	NULL,
185 	NULL,
186 	NULL,
187 	NULL,
188 	&swrand_fips140_ops
189 };
190 
191 static crypto_provider_info_t swrand_prov_info = {
192 	CRYPTO_SPI_VERSION_4,
193 	"Kernel Random Number Provider",
194 	CRYPTO_SW_PROVIDER,
195 	{&modlinkage},
196 	NULL,
197 	&swrand_crypto_ops,
198 	0,
199 	NULL
200 };
201 
202 int
203 _init(void)
204 {
205 	int ret;
206 	hrtime_t ts;
207 	time_t now;
208 
209 	mutex_init(&srndpool_lock, NULL, MUTEX_DEFAULT, NULL);
210 	mutex_init(&buffer_lock, NULL, MUTEX_DEFAULT, NULL);
211 	cv_init(&srndpool_read_cv, NULL, CV_DEFAULT, NULL);
212 	entropy_bits = 0;
213 	pindex = 0;
214 	bindex = 0;
215 	bstart = 0;
216 	snum_waiters = 0;
217 	leftover_bytes = 0;
218 	buffer_bytes = 0;
219 
220 	/*
221 	 * Initialize the pool using
222 	 * . 2 unpredictable times: high resolution time since the boot-time,
223 	 *   and the current time-of-the day.
224 	 * . The initial physical memory state.
225 	 */
226 	ts = gethrtime();
227 	swrand_add_entropy((uint8_t *)&ts, sizeof (ts), 0);
228 
229 	(void) drv_getparm(TIME, &now);
230 	swrand_add_entropy((uint8_t *)&now, sizeof (now), 0);
231 
232 	ret = kphysm_setup_func_register(&rnd_dr_callback_vec, NULL);
233 	ASSERT(ret == 0);
234 
235 	if (physmem_ent_init(&entsrc) != 0) {
236 		ret = ENOMEM;
237 		goto exit1;
238 	}
239 
240 	if ((ret = mod_install(&modlinkage)) != 0)
241 		goto exit2;
242 
243 	/* Schedule periodic mixing of the pool. */
244 	mutex_enter(&srndpool_lock);
245 	swrand_schedule_timeout();
246 	mutex_exit(&srndpool_lock);
247 	(void) swrand_get_entropy((uint8_t *)swrand_XKEY, HASHSIZE, B_TRUE);
248 	bcopy(swrand_XKEY, previous_bytes, HASHSIZE);
249 
250 	/* Register with KCF. If the registration fails, return error. */
251 	if (crypto_register_provider(&swrand_prov_info, &swrand_prov_handle)) {
252 		(void) mod_remove(&modlinkage);
253 		ret = EACCES;
254 		goto exit2;
255 	}
256 
257 	return (0);
258 
259 exit2:
260 	physmem_ent_fini(&entsrc);
261 exit1:
262 	mutex_destroy(&srndpool_lock);
263 	mutex_destroy(&buffer_lock);
264 	cv_destroy(&srndpool_read_cv);
265 	return (ret);
266 }
267 
268 int
269 _info(struct modinfo *modinfop)
270 {
271 	return (mod_info(&modlinkage, modinfop));
272 }
273 
274 /*
275  * Control entry points.
276  */
277 /* ARGSUSED */
278 static void
279 swrand_provider_status(crypto_provider_handle_t provider, uint_t *status)
280 {
281 	*status = CRYPTO_PROVIDER_READY;
282 }
283 
284 /*
285  * Random number entry points.
286  */
287 /* ARGSUSED */
288 static int
289 swrand_seed_random(crypto_provider_handle_t provider, crypto_session_id_t sid,
290     uchar_t *buf, size_t len, uint_t entropy_est, uint32_t flags,
291     crypto_req_handle_t req)
292 {
293 	/* The entropy estimate is always 0 in this path */
294 	if (flags & CRYPTO_SEED_NOW)
295 		swrand_add_entropy(buf, len, 0);
296 	else
297 		swrand_add_entropy_later(buf, len);
298 	return (CRYPTO_SUCCESS);
299 }
300 
301 /* ARGSUSED */
302 static int
303 swrand_generate_random(crypto_provider_handle_t provider,
304     crypto_session_id_t sid, uchar_t *buf, size_t len, crypto_req_handle_t req)
305 {
306 	if (crypto_kmflag(req) == KM_NOSLEEP)
307 		(void) swrand_get_entropy(buf, len, B_TRUE);
308 	else
309 		(void) swrand_get_entropy(buf, len, B_FALSE);
310 
311 	return (CRYPTO_SUCCESS);
312 }
313 
314 /*
315  * Extraction of entropy from the pool.
316  *
317  * Returns "len" random bytes in *ptr.
318  * Try to gather some more entropy by calling physmem_ent_gen() when less than
319  * MINEXTRACTBITS are present in the pool.
320  * Will block if not enough entropy was available and the call is blocking.
321  */
322 static int
323 swrand_get_entropy(uint8_t *ptr, size_t len, boolean_t nonblock)
324 {
325 	int i, bytes;
326 	HASH_CTX hashctx;
327 	uint8_t digest[HASHSIZE], *pool;
328 	uint32_t tempout[HASHSIZE/BYTES_IN_WORD];
329 	int size;
330 
331 	mutex_enter(&srndpool_lock);
332 	if (leftover_bytes > 0) {
333 		bytes = min(len, leftover_bytes);
334 		bcopy(leftover, ptr, bytes);
335 		len -= bytes;
336 		ptr += bytes;
337 		leftover_bytes -= bytes;
338 		if (leftover_bytes > 0)
339 			ovbcopy(leftover+bytes, leftover, leftover_bytes);
340 	}
341 
342 	while (len > 0) {
343 		/* Check if there is enough entropy */
344 		while (entropy_bits < MINEXTRACTBITS) {
345 
346 			physmem_ent_gen(&entsrc);
347 
348 			if (entropy_bits < MINEXTRACTBITS &&
349 			    nonblock == B_TRUE) {
350 				mutex_exit(&srndpool_lock);
351 				return (EAGAIN);
352 			}
353 
354 			if (entropy_bits < MINEXTRACTBITS) {
355 				ASSERT(nonblock == B_FALSE);
356 				snum_waiters++;
357 				if (cv_wait_sig(&srndpool_read_cv,
358 				    &srndpool_lock) == 0) {
359 					snum_waiters--;
360 					mutex_exit(&srndpool_lock);
361 					return (EINTR);
362 				}
363 				snum_waiters--;
364 			}
365 		}
366 
367 		/* Figure out how many bytes to extract */
368 		bytes = min(HASHSIZE, len);
369 		bytes = min(bytes, CRYPTO_BITS2BYTES(entropy_bits));
370 		entropy_bits -= CRYPTO_BYTES2BITS(bytes);
371 		BUMP_SWRAND_STATS(ss_entOut, CRYPTO_BYTES2BITS(bytes));
372 		swrand_stats.ss_entEst = entropy_bits;
373 
374 		/* Extract entropy by hashing pool content */
375 		HashInit(&hashctx);
376 		HashUpdate(&hashctx, (uint8_t *)srndpool, RNDPOOLSIZE);
377 		HashFinal(digest, &hashctx);
378 
379 		/*
380 		 * Feed the digest back into the pool so next
381 		 * extraction produces different result
382 		 */
383 		pool = (uint8_t *)srndpool;
384 		for (i = 0; i < HASHSIZE; i++) {
385 			pool[pindex++] ^= digest[i];
386 			/* pindex modulo RNDPOOLSIZE */
387 			pindex &= (RNDPOOLSIZE - 1);
388 		}
389 
390 		/* LINTED E_BAD_PTR_CAST_ALIGN */
391 		fips_random_inner(swrand_XKEY, tempout, (uint32_t *)digest);
392 
393 		if (len >= HASHSIZE) {
394 			size = HASHSIZE;
395 		} else {
396 			size = min(bytes, HASHSIZE);
397 		}
398 
399 		/*
400 		 * FIPS 140-2: Continuous RNG test - each generation
401 		 * of an n-bit block shall be compared with the previously
402 		 * generated block. Test shall fail if any two compared
403 		 * n-bit blocks are equal.
404 		 */
405 		for (i = 0; i < HASHSIZE/BYTES_IN_WORD; i++) {
406 			if (tempout[i] != previous_bytes[i])
407 				break;
408 		}
409 
410 		if (i == HASHSIZE/BYTES_IN_WORD) {
411 			cmn_err(CE_WARN, "swrand: The value of 160-bit block "
412 			    "random bytes are same as the previous one.\n");
413 			/* discard random bytes and return error */
414 			return (EIO);
415 		}
416 
417 		bcopy(tempout, previous_bytes, HASHSIZE);
418 
419 		bcopy(tempout, ptr, size);
420 		if (len < HASHSIZE) {
421 			leftover_bytes = HASHSIZE - bytes;
422 			bcopy((uint8_t *)tempout + bytes, leftover,
423 			    leftover_bytes);
424 		}
425 
426 		ptr += size;
427 		len -= size;
428 		BUMP_SWRAND_STATS(ss_bytesOut, size);
429 	}
430 
431 	/* Zero out sensitive information */
432 	bzero(digest, HASHSIZE);
433 	bzero(tempout, HASHSIZE);
434 	mutex_exit(&srndpool_lock);
435 	return (0);
436 }
437 
438 #define	SWRAND_ADD_BYTES(ptr, len, i, pool)		\
439 	ASSERT((ptr) != NULL && (len) > 0);		\
440 	BUMP_SWRAND_STATS(ss_bytesIn, (len));		\
441 	while ((len)--) {				\
442 		(pool)[(i)++] ^= *(ptr);		\
443 		(ptr)++;				\
444 		(i) &= (RNDPOOLSIZE - 1);		\
445 	}
446 
447 /* Write some more user-provided entropy to the pool */
448 static void
449 swrand_add_bytes(uint8_t *ptr, size_t len)
450 {
451 	uint8_t *pool = (uint8_t *)srndpool;
452 
453 	ASSERT(MUTEX_HELD(&srndpool_lock));
454 	SWRAND_ADD_BYTES(ptr, len, pindex, pool);
455 }
456 
457 /*
458  * Add bytes to buffer. Adding the buffer to the random pool
459  * is deferred until the random pool is mixed.
460  */
461 static void
462 swrand_add_bytes_later(uint8_t *ptr, size_t len)
463 {
464 	uint8_t *pool = (uint8_t *)buffer;
465 
466 	ASSERT(MUTEX_HELD(&buffer_lock));
467 	SWRAND_ADD_BYTES(ptr, len, bindex, pool);
468 	buffer_bytes += len;
469 }
470 
471 #undef SWRAND_ADD_BYTES
472 
473 /* Mix the pool */
474 static void
475 swrand_mix_pool(uint16_t entropy_est)
476 {
477 	int i, j, k, start;
478 	HASH_CTX hashctx;
479 	uint8_t digest[HASHSIZE];
480 	uint8_t *pool = (uint8_t *)srndpool;
481 	uint8_t *bp = (uint8_t *)buffer;
482 
483 	ASSERT(MUTEX_HELD(&srndpool_lock));
484 
485 	/* add deferred bytes */
486 	mutex_enter(&buffer_lock);
487 	if (buffer_bytes > 0) {
488 		if (buffer_bytes >= RNDPOOLSIZE) {
489 			for (i = 0; i < RNDPOOLSIZE/4; i++) {
490 				srndpool[i] ^= buffer[i];
491 				buffer[i] = 0;
492 			}
493 			bstart = bindex = 0;
494 		} else {
495 			for (i = 0; i < buffer_bytes; i++) {
496 				pool[pindex++] ^= bp[bstart];
497 				bp[bstart++] = 0;
498 				pindex &= (RNDPOOLSIZE - 1);
499 				bstart &= (RNDPOOLSIZE - 1);
500 			}
501 			ASSERT(bstart == bindex);
502 		}
503 		buffer_bytes = 0;
504 	}
505 	mutex_exit(&buffer_lock);
506 
507 	start = 0;
508 	for (i = 0; i < RNDPOOLSIZE/HASHSIZE + 1; i++) {
509 		HashInit(&hashctx);
510 
511 		/* Hash a buffer centered on a block in the pool */
512 		if (start + HASHBUFSIZE <= RNDPOOLSIZE)
513 			HashUpdate(&hashctx, &pool[start], HASHBUFSIZE);
514 		else {
515 			HashUpdate(&hashctx, &pool[start],
516 			    RNDPOOLSIZE - start);
517 			HashUpdate(&hashctx, pool,
518 			    HASHBUFSIZE - RNDPOOLSIZE + start);
519 		}
520 		HashFinal(digest, &hashctx);
521 
522 		/* XOR the hash result back into the block */
523 		k = (start + HASHSIZE) & (RNDPOOLSIZE - 1);
524 		for (j = 0; j < HASHSIZE; j++) {
525 			pool[k++] ^= digest[j];
526 			k &= (RNDPOOLSIZE - 1);
527 		}
528 
529 		/* Slide the hash buffer and repeat with next block */
530 		start = (start + HASHSIZE) & (RNDPOOLSIZE - 1);
531 	}
532 
533 	entropy_bits += entropy_est;
534 	if (entropy_bits > CRYPTO_BYTES2BITS(RNDPOOLSIZE))
535 		entropy_bits = CRYPTO_BYTES2BITS(RNDPOOLSIZE);
536 
537 	swrand_stats.ss_entEst = entropy_bits;
538 	BUMP_SWRAND_STATS(ss_entIn, entropy_est);
539 }
540 
541 static void
542 swrand_add_entropy_later(uint8_t *ptr, size_t len)
543 {
544 	mutex_enter(&buffer_lock);
545 	swrand_add_bytes_later(ptr, len);
546 	mutex_exit(&buffer_lock);
547 }
548 
549 static void
550 swrand_add_entropy(uint8_t *ptr, size_t len, uint16_t entropy_est)
551 {
552 	mutex_enter(&srndpool_lock);
553 	swrand_add_bytes(ptr, len);
554 	swrand_mix_pool(entropy_est);
555 	mutex_exit(&srndpool_lock);
556 }
557 
558 /*
559  * The physmem_* routines below generate entropy by reading blocks of
560  * physical memory.  Entropy is gathered in a couple of ways:
561  *
562  *  - By reading blocks of physical memory and detecting if changes
563  *    occurred in the blocks read.
564  *
565  *  - By measuring the time it takes to load and hash a block of memory
566  *    and computing the differences in the measured time.
567  *
568  * The first method was used in the CryptoRand implementation.  Physical
569  * memory is divided into blocks of fixed size.  A block of memory is
570  * chosen from the possible blocks and hashed to produce a digest.  This
571  * digest is then mixed into the pool.  A single bit from the digest is
572  * used as a parity bit or "checksum" and compared against the previous
573  * "checksum" computed for the block.  If the single-bit checksum has not
574  * changed, no entropy is credited to the pool.  If there is a change,
575  * then the assumption is that at least one bit in the block has changed.
576  * The possible locations within the memory block of where the bit change
577  * occurred is used as a measure of entropy.  For example, if a block
578  * size of 4096 bytes is used, about log_2(4096*8)=15 bits worth of
579  * entropy is available.  Because the single-bit checksum will miss half
580  * of the changes, the amount of entropy credited to the pool is doubled
581  * when a change is detected.  With a 4096 byte block size, a block
582  * change will add a total of 30 bits of entropy to the pool.
583  *
584  * The second method measures the amount of time it takes to read and
585  * hash a physical memory block (as described above).  The time measured
586  * can vary depending on system load, scheduling and other factors.
587  * Differences between consecutive measurements are computed to come up
588  * with an entropy estimate.  The first, second, and third order delta is
589  * calculated to determine the minimum delta value.  The number of bits
590  * present in this minimum delta value is the entropy estimate.  This
591  * entropy estimation technique using time deltas is similar to that used
592  * in /dev/random implementations from Linux/BSD.
593  */
594 
595 static int
596 physmem_ent_init(physmem_entsrc_t *entsrc)
597 {
598 	uint8_t *ptr;
599 	int i;
600 
601 	bzero(entsrc, sizeof (*entsrc));
602 
603 	/*
604 	 * The maximum entropy amount in bits per block of memory read is
605 	 * log_2(MEMBLOCKSIZE * 8);
606 	 */
607 	i = CRYPTO_BYTES2BITS(MEMBLOCKSIZE);
608 	while (i >>= 1)
609 		entsrc->entperblock++;
610 
611 	/* Initialize entsrc->nblocks */
612 	physmem_count_blocks();
613 
614 	if (entsrc->nblocks == 0) {
615 		cmn_err(CE_WARN, "no memory blocks to scan!");
616 		return (-1);
617 	}
618 
619 	/* Allocate space for the parity vector and memory page */
620 	entsrc->parity = kmem_alloc(howmany(entsrc->nblocks, 8),
621 	    KM_SLEEP);
622 	entsrc->pmbuf = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
623 
624 
625 	/* Initialize parity vector with bits from the pool */
626 	i = howmany(entsrc->nblocks, 8);
627 	ptr = entsrc->parity;
628 	while (i > 0) {
629 		if (i > RNDPOOLSIZE) {
630 			bcopy(srndpool, ptr, RNDPOOLSIZE);
631 			mutex_enter(&srndpool_lock);
632 			swrand_mix_pool(0);
633 			mutex_exit(&srndpool_lock);
634 			ptr += RNDPOOLSIZE;
635 			i -= RNDPOOLSIZE;
636 		} else {
637 			bcopy(srndpool, ptr, i);
638 			break;
639 		}
640 	}
641 
642 	/* Generate some entropy to further initialize the pool */
643 	mutex_enter(&srndpool_lock);
644 	physmem_ent_gen(entsrc);
645 	entropy_bits = 0;
646 	mutex_exit(&srndpool_lock);
647 
648 	return (0);
649 }
650 
651 static void
652 physmem_ent_fini(physmem_entsrc_t *entsrc)
653 {
654 	if (entsrc->pmbuf != NULL)
655 		vmem_free(heap_arena, entsrc->pmbuf, PAGESIZE);
656 	if (entsrc->parity != NULL)
657 		kmem_free(entsrc->parity, howmany(entsrc->nblocks, 8));
658 	bzero(entsrc, sizeof (*entsrc));
659 }
660 
661 static void
662 physmem_ent_gen(physmem_entsrc_t *entsrc)
663 {
664 	struct memlist *pmem;
665 	offset_t offset, poffset;
666 	pfn_t pfn;
667 	int i, nbytes, len, ent = 0;
668 	uint32_t block, oblock;
669 	hrtime_t ts1, ts2, diff, delta, delta2, delta3;
670 	uint8_t digest[HASHSIZE];
671 	HASH_CTX ctx;
672 	page_t *pp;
673 
674 	/*
675 	 * Use each 32-bit quantity in the pool to pick a memory
676 	 * block to read.
677 	 */
678 	for (i = 0; i < RNDPOOLSIZE/4; i++) {
679 
680 		/* If the pool is "full", stop after one block */
681 		if (entropy_bits + ent >= CRYPTO_BYTES2BITS(RNDPOOLSIZE)) {
682 			if (i > 0)
683 				break;
684 		}
685 
686 		/*
687 		 * This lock protects reading of phys_install.
688 		 * Any changes to this list, by DR, are done while
689 		 * holding this lock. So, holding this lock is sufficient
690 		 * to handle DR also.
691 		 */
692 		memlist_read_lock();
693 
694 		/* We're left with less than 4K of memory after DR */
695 		ASSERT(entsrc->nblocks > 0);
696 
697 		/* Pick a memory block to read */
698 		block = oblock = srndpool[i] % entsrc->nblocks;
699 
700 		for (pmem = phys_install; pmem != NULL; pmem = pmem->ml_next) {
701 			if (block < pmem->ml_size / MEMBLOCKSIZE)
702 				break;
703 			block -= pmem->ml_size / MEMBLOCKSIZE;
704 		}
705 
706 		ASSERT(pmem != NULL);
707 
708 		offset = pmem->ml_address + block * MEMBLOCKSIZE;
709 
710 		if (!address_in_memlist(phys_install, offset, MEMBLOCKSIZE)) {
711 			memlist_read_unlock();
712 			continue;
713 		}
714 
715 		/*
716 		 * Do an initial check to see if the address is safe
717 		 */
718 		if (plat_hold_page(offset >> PAGESHIFT, PLAT_HOLD_NO_LOCK, NULL)
719 		    == PLAT_HOLD_FAIL) {
720 			memlist_read_unlock();
721 			continue;
722 		}
723 
724 		/*
725 		 * Figure out which page to load to read the
726 		 * memory block.  Load the page and compute the
727 		 * hash of the memory block.
728 		 */
729 		len = MEMBLOCKSIZE;
730 		ts1 = gethrtime();
731 		HashInit(&ctx);
732 		while (len) {
733 			pfn = offset >> PAGESHIFT;
734 			poffset = offset & PAGEOFFSET;
735 			nbytes = PAGESIZE - poffset < len ?
736 			    PAGESIZE - poffset : len;
737 
738 			/*
739 			 * Re-check the offset, and lock the frame.  If the
740 			 * page was given away after the above check, we'll
741 			 * just bail out.
742 			 */
743 			if (plat_hold_page(pfn, PLAT_HOLD_LOCK, &pp) ==
744 			    PLAT_HOLD_FAIL)
745 				break;
746 
747 			hat_devload(kas.a_hat, entsrc->pmbuf,
748 			    PAGESIZE, pfn, PROT_READ,
749 			    HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK);
750 
751 			HashUpdate(&ctx, (uint8_t *)entsrc->pmbuf + poffset,
752 			    nbytes);
753 
754 			hat_unload(kas.a_hat, entsrc->pmbuf, PAGESIZE,
755 			    HAT_UNLOAD_UNLOCK);
756 
757 			plat_release_page(pp);
758 
759 			len -= nbytes;
760 			offset += nbytes;
761 		}
762 		/* We got our pages. Let the DR roll */
763 		memlist_read_unlock();
764 
765 		/* See if we had to bail out due to a page being given away */
766 		if (len)
767 			continue;
768 
769 		HashFinal(digest, &ctx);
770 		ts2 = gethrtime();
771 
772 		/*
773 		 * Compute the time it took to load and hash the
774 		 * block and compare it against the previous
775 		 * measurement. The delta of the time values
776 		 * provides a small amount of entropy.  The
777 		 * minimum of the first, second, and third order
778 		 * delta is used to estimate how much entropy
779 		 * is present.
780 		 */
781 		diff = ts2 - ts1;
782 		delta = diff - entsrc->last_diff;
783 		if (delta < 0)
784 			delta = -delta;
785 		delta2 = delta - entsrc->last_delta;
786 		if (delta2 < 0)
787 			delta2 = -delta2;
788 		delta3 = delta2 - entsrc->last_delta2;
789 		if (delta3 < 0)
790 			delta3 = -delta3;
791 		entsrc->last_diff = diff;
792 		entsrc->last_delta = delta;
793 		entsrc->last_delta2 = delta2;
794 
795 		if (delta > delta2)
796 			delta = delta2;
797 		if (delta > delta3)
798 			delta = delta3;
799 		delta2 = 0;
800 		while (delta >>= 1)
801 			delta2++;
802 		ent += delta2;
803 
804 		/*
805 		 * If the memory block has changed, credit the pool with
806 		 * the entropy estimate.  The entropy estimate is doubled
807 		 * because the single-bit checksum misses half the change
808 		 * on average.
809 		 */
810 		if (physmem_parity_update(entsrc->parity, oblock,
811 		    digest[0] & 1))
812 			ent += 2 * entsrc->entperblock;
813 
814 		/* Add the entropy bytes to the pool */
815 		swrand_add_bytes(digest, HASHSIZE);
816 		swrand_add_bytes((uint8_t *)&ts1, sizeof (ts1));
817 		swrand_add_bytes((uint8_t *)&ts2, sizeof (ts2));
818 	}
819 
820 	swrand_mix_pool(ent);
821 }
822 
823 static int
824 physmem_parity_update(uint8_t *parity_vec, uint32_t block, int parity)
825 {
826 	/* Test and set the parity bit, return 1 if changed */
827 	if (parity == ((parity_vec[block >> 3] >> (block & 7)) & 1))
828 		return (0);
829 	parity_vec[block >> 3] ^= 1 << (block & 7);
830 	return (1);
831 }
832 
833 /* Compute number of memory blocks available to scan */
834 static void
835 physmem_count_blocks()
836 {
837 	struct memlist *pmem;
838 
839 	memlist_read_lock();
840 	entsrc.nblocks = 0;
841 	for (pmem = phys_install; pmem != NULL; pmem = pmem->ml_next) {
842 		entsrc.nblocks += pmem->ml_size / MEMBLOCKSIZE;
843 		if (entsrc.nblocks > MAXMEMBLOCKS) {
844 			entsrc.nblocks = MAXMEMBLOCKS;
845 			break;
846 		}
847 	}
848 	memlist_read_unlock();
849 }
850 
851 /*
852  * Dynamic Reconfiguration call-back functions
853  */
854 
855 /* ARGSUSED */
856 static void
857 rnd_dr_callback_post_add(void *arg, pgcnt_t delta)
858 {
859 	/* More memory is available now, so update entsrc->nblocks. */
860 	physmem_count_blocks();
861 }
862 
863 /* Call-back routine invoked before the DR starts a memory removal. */
864 /* ARGSUSED */
865 static int
866 rnd_dr_callback_pre_del(void *arg, pgcnt_t delta)
867 {
868 	return (0);
869 }
870 
871 /* Call-back routine invoked after the DR starts a memory removal. */
872 /* ARGSUSED */
873 static void
874 rnd_dr_callback_post_del(void *arg, pgcnt_t delta, int cancelled)
875 {
876 	/* Memory has shrunk, so update entsrc->nblocks. */
877 	physmem_count_blocks();
878 }
879 
880 /* Timeout handling to gather entropy from physmem events */
881 static void
882 swrand_schedule_timeout(void)
883 {
884 	clock_t ut;	/* time in microseconds */
885 
886 	ASSERT(MUTEX_HELD(&srndpool_lock));
887 	/*
888 	 * The new timeout value is taken from the pool of random bits.
889 	 * We're merely reading the first 32 bits from the pool here, not
890 	 * consuming any entropy.
891 	 * This routine is usually called right after stirring the pool, so
892 	 * srndpool[0] will have a *fresh* random value each time.
893 	 * The timeout multiplier value is a random value between 0.7 sec and
894 	 * 1.748575 sec (0.7 sec + 0xFFFFF microseconds).
895 	 * The new timeout is TIMEOUT_INTERVAL times that multiplier.
896 	 */
897 	ut = 700000 + (clock_t)(srndpool[0] & 0xFFFFF);
898 	rnd_timeout_id = timeout(rnd_handler, NULL,
899 	    TIMEOUT_INTERVAL * drv_usectohz(ut));
900 }
901 
902 /*ARGSUSED*/
903 static void
904 rnd_handler(void *arg)
905 {
906 	mutex_enter(&srndpool_lock);
907 
908 	physmem_ent_gen(&entsrc);
909 	if (snum_waiters > 0)
910 		cv_broadcast(&srndpool_read_cv);
911 	swrand_schedule_timeout();
912 
913 	mutex_exit(&srndpool_lock);
914 }
915 
916 /*
917  * Swrand Power-Up Self-Test
918  */
919 void
920 swrand_POST(int *rc)
921 {
922 
923 	*rc = fips_rng_post();
924 
925 }
926