xref: /illumos-gate/usr/src/uts/common/crypto/core/kcf_sched.c (revision 5f41bf46ca5230bc3ee6b7d6a714a3a16a390261)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * This file contains the core framework routines for the
28  * kernel cryptographic framework. These routines are at the
29  * layer, between the kernel API/ioctls and the SPI.
30  */
31 
32 #include <sys/types.h>
33 #include <sys/errno.h>
34 #include <sys/kmem.h>
35 #include <sys/proc.h>
36 #include <sys/cpuvar.h>
37 #include <sys/cpupart.h>
38 #include <sys/ksynch.h>
39 #include <sys/callb.h>
40 #include <sys/cmn_err.h>
41 #include <sys/systm.h>
42 #include <sys/sysmacros.h>
43 #include <sys/kstat.h>
44 #include <sys/crypto/common.h>
45 #include <sys/crypto/impl.h>
46 #include <sys/crypto/sched_impl.h>
47 #include <sys/crypto/api.h>
48 #include <sys/crypto/spi.h>
49 #include <sys/taskq_impl.h>
50 #include <sys/ddi.h>
51 #include <sys/sunddi.h>
52 
53 
54 kcf_global_swq_t *gswq;	/* Global software queue */
55 
56 /* Thread pool related variables */
57 static kcf_pool_t *kcfpool;	/* Thread pool of kcfd LWPs */
58 int kcf_maxthreads = 2;
59 int kcf_minthreads = 1;
60 int kcf_thr_multiple = 2;	/* Boot-time tunable for experimentation */
61 static ulong_t	kcf_idlethr_timeout;
62 static boolean_t kcf_sched_running = B_FALSE;
63 #define	KCF_DEFAULT_THRTIMEOUT	60000000	/* 60 seconds */
64 
65 /* kmem caches used by the scheduler */
66 static struct kmem_cache *kcf_sreq_cache;
67 static struct kmem_cache *kcf_areq_cache;
68 static struct kmem_cache *kcf_context_cache;
69 
70 /* Global request ID table */
71 static kcf_reqid_table_t *kcf_reqid_table[REQID_TABLES];
72 
73 /* KCF stats. Not protected. */
74 static kcf_stats_t kcf_ksdata = {
75 	{ "total threads in pool",	KSTAT_DATA_UINT32},
76 	{ "idle threads in pool",	KSTAT_DATA_UINT32},
77 	{ "min threads in pool",	KSTAT_DATA_UINT32},
78 	{ "max threads in pool",	KSTAT_DATA_UINT32},
79 	{ "requests in gswq",		KSTAT_DATA_UINT32},
80 	{ "max requests in gswq",	KSTAT_DATA_UINT32},
81 	{ "threads for HW taskq",	KSTAT_DATA_UINT32},
82 	{ "minalloc for HW taskq",	KSTAT_DATA_UINT32},
83 	{ "maxalloc for HW taskq",	KSTAT_DATA_UINT32}
84 };
85 
86 static kstat_t *kcf_misc_kstat = NULL;
87 ulong_t kcf_swprov_hndl = 0;
88 
89 static kcf_areq_node_t *kcf_areqnode_alloc(kcf_provider_desc_t *,
90     kcf_context_t *, crypto_call_req_t *, kcf_req_params_t *, boolean_t);
91 static int kcf_disp_sw_request(kcf_areq_node_t *);
92 static void process_req_hwp(void *);
93 static kcf_areq_node_t	*kcf_dequeue();
94 static int kcf_enqueue(kcf_areq_node_t *);
95 static void kcf_failover_thread();
96 static void kcfpool_alloc();
97 static void kcf_reqid_delete(kcf_areq_node_t *areq);
98 static crypto_req_id_t kcf_reqid_insert(kcf_areq_node_t *areq);
99 static int kcf_misc_kstat_update(kstat_t *ksp, int rw);
100 static void compute_min_max_threads();
101 
102 
103 /*
104  * Create a new context.
105  */
106 crypto_ctx_t *
107 kcf_new_ctx(crypto_call_req_t *crq, kcf_provider_desc_t *pd,
108     crypto_session_id_t sid)
109 {
110 	crypto_ctx_t *ctx;
111 	kcf_context_t *kcf_ctx;
112 
113 	kcf_ctx = kmem_cache_alloc(kcf_context_cache,
114 	    (crq == NULL) ? KM_SLEEP : KM_NOSLEEP);
115 	if (kcf_ctx == NULL)
116 		return (NULL);
117 
118 	/* initialize the context for the consumer */
119 	kcf_ctx->kc_refcnt = 1;
120 	kcf_ctx->kc_req_chain_first = NULL;
121 	kcf_ctx->kc_req_chain_last = NULL;
122 	kcf_ctx->kc_secondctx = NULL;
123 	KCF_PROV_REFHOLD(pd);
124 	kcf_ctx->kc_prov_desc = pd;
125 	kcf_ctx->kc_sw_prov_desc = NULL;
126 	kcf_ctx->kc_mech = NULL;
127 
128 	ctx = &kcf_ctx->kc_glbl_ctx;
129 	ctx->cc_provider = pd->pd_prov_handle;
130 	ctx->cc_session = sid;
131 	ctx->cc_provider_private = NULL;
132 	ctx->cc_framework_private = (void *)kcf_ctx;
133 	ctx->cc_flags = 0;
134 	ctx->cc_opstate = NULL;
135 
136 	return (ctx);
137 }
138 
139 /*
140  * Allocate a new async request node.
141  *
142  * ictx - Framework private context pointer
143  * crq - Has callback function and argument. Should be non NULL.
144  * req - The parameters to pass to the SPI
145  */
146 static kcf_areq_node_t *
147 kcf_areqnode_alloc(kcf_provider_desc_t *pd, kcf_context_t *ictx,
148     crypto_call_req_t *crq, kcf_req_params_t *req, boolean_t isdual)
149 {
150 	kcf_areq_node_t	*arptr, *areq;
151 
152 	ASSERT(crq != NULL);
153 	arptr = kmem_cache_alloc(kcf_areq_cache, KM_NOSLEEP);
154 	if (arptr == NULL)
155 		return (NULL);
156 
157 	arptr->an_state = REQ_ALLOCATED;
158 	arptr->an_reqarg = *crq;
159 	arptr->an_params = *req;
160 	arptr->an_context = ictx;
161 	arptr->an_isdual = isdual;
162 
163 	arptr->an_next = arptr->an_prev = NULL;
164 	KCF_PROV_REFHOLD(pd);
165 	arptr->an_provider = pd;
166 	arptr->an_tried_plist = NULL;
167 	arptr->an_refcnt = 1;
168 	arptr->an_idnext = arptr->an_idprev = NULL;
169 
170 	/*
171 	 * Requests for context-less operations do not use the
172 	 * fields - an_is_my_turn, and an_ctxchain_next.
173 	 */
174 	if (ictx == NULL)
175 		return (arptr);
176 
177 	KCF_CONTEXT_REFHOLD(ictx);
178 	/*
179 	 * Chain this request to the context.
180 	 */
181 	mutex_enter(&ictx->kc_in_use_lock);
182 	arptr->an_ctxchain_next = NULL;
183 	if ((areq = ictx->kc_req_chain_last) == NULL) {
184 		arptr->an_is_my_turn = B_TRUE;
185 		ictx->kc_req_chain_last =
186 		    ictx->kc_req_chain_first = arptr;
187 	} else {
188 		ASSERT(ictx->kc_req_chain_first != NULL);
189 		arptr->an_is_my_turn = B_FALSE;
190 		/* Insert the new request to the end of the chain. */
191 		areq->an_ctxchain_next = arptr;
192 		ictx->kc_req_chain_last = arptr;
193 	}
194 	mutex_exit(&ictx->kc_in_use_lock);
195 
196 	return (arptr);
197 }
198 
199 /*
200  * Queue the request node and do one of the following:
201  *	- If there is an idle thread signal it to run.
202  *	- If there is no idle thread and max running threads is not
203  *	  reached, signal the creator thread for more threads.
204  *
205  * If the two conditions above are not met, we don't need to do
206  * any thing. The request will be picked up by one of the
207  * worker threads when it becomes available.
208  */
209 static int
210 kcf_disp_sw_request(kcf_areq_node_t *areq)
211 {
212 	int err;
213 	int cnt = 0;
214 
215 	if ((err = kcf_enqueue(areq)) != 0)
216 		return (err);
217 
218 	if (kcfpool->kp_idlethreads > 0) {
219 		/* Signal an idle thread to run */
220 		mutex_enter(&gswq->gs_lock);
221 		cv_signal(&gswq->gs_cv);
222 		mutex_exit(&gswq->gs_lock);
223 
224 		return (CRYPTO_QUEUED);
225 	}
226 
227 	/*
228 	 * We keep the number of running threads to be at
229 	 * kcf_minthreads to reduce gs_lock contention.
230 	 */
231 	cnt = kcf_minthreads -
232 	    (kcfpool->kp_threads - kcfpool->kp_blockedthreads);
233 	if (cnt > 0) {
234 		/*
235 		 * The following ensures the number of threads in pool
236 		 * does not exceed kcf_maxthreads.
237 		 */
238 		cnt = min(cnt, kcf_maxthreads - kcfpool->kp_threads);
239 		if (cnt > 0) {
240 			/* Signal the creator thread for more threads */
241 			mutex_enter(&kcfpool->kp_user_lock);
242 			if (!kcfpool->kp_signal_create_thread) {
243 				kcfpool->kp_signal_create_thread = B_TRUE;
244 				kcfpool->kp_nthrs = cnt;
245 				cv_signal(&kcfpool->kp_user_cv);
246 			}
247 			mutex_exit(&kcfpool->kp_user_lock);
248 		}
249 	}
250 
251 	return (CRYPTO_QUEUED);
252 }
253 
254 /*
255  * This routine is called by the taskq associated with
256  * each hardware provider. We notify the kernel consumer
257  * via the callback routine in case of CRYPTO_SUCCESS or
258  * a failure.
259  *
260  * A request can be of type kcf_areq_node_t or of type
261  * kcf_sreq_node_t.
262  */
263 static void
264 process_req_hwp(void *ireq)
265 {
266 	int error = 0;
267 	crypto_ctx_t *ctx;
268 	kcf_call_type_t ctype;
269 	kcf_provider_desc_t *pd;
270 	kcf_areq_node_t *areq = (kcf_areq_node_t *)ireq;
271 	kcf_sreq_node_t *sreq = (kcf_sreq_node_t *)ireq;
272 
273 	pd = ((ctype = GET_REQ_TYPE(ireq)) == CRYPTO_SYNCH) ?
274 	    sreq->sn_provider : areq->an_provider;
275 
276 	/*
277 	 * Wait if flow control is in effect for the provider. A
278 	 * CRYPTO_PROVIDER_READY or CRYPTO_PROVIDER_FAILED
279 	 * notification will signal us. We also get signaled if
280 	 * the provider is unregistering.
281 	 */
282 	if (pd->pd_state == KCF_PROV_BUSY) {
283 		mutex_enter(&pd->pd_lock);
284 		while (pd->pd_state == KCF_PROV_BUSY)
285 			cv_wait(&pd->pd_resume_cv, &pd->pd_lock);
286 		mutex_exit(&pd->pd_lock);
287 	}
288 
289 	/*
290 	 * Bump the internal reference count while the request is being
291 	 * processed. This is how we know when it's safe to unregister
292 	 * a provider. This step must precede the pd_state check below.
293 	 */
294 	KCF_PROV_IREFHOLD(pd);
295 
296 	/*
297 	 * Fail the request if the provider has failed. We return a
298 	 * recoverable error and the notified clients attempt any
299 	 * recovery. For async clients this is done in kcf_aop_done()
300 	 * and for sync clients it is done in the k-api routines.
301 	 */
302 	if (pd->pd_state >= KCF_PROV_FAILED) {
303 		error = CRYPTO_DEVICE_ERROR;
304 		goto bail;
305 	}
306 
307 	if (ctype == CRYPTO_SYNCH) {
308 		mutex_enter(&sreq->sn_lock);
309 		sreq->sn_state = REQ_INPROGRESS;
310 		mutex_exit(&sreq->sn_lock);
311 
312 		ctx = sreq->sn_context ? &sreq->sn_context->kc_glbl_ctx : NULL;
313 		error = common_submit_request(sreq->sn_provider, ctx,
314 		    sreq->sn_params, sreq);
315 	} else {
316 		kcf_context_t *ictx;
317 		ASSERT(ctype == CRYPTO_ASYNCH);
318 
319 		/*
320 		 * We are in the per-hardware provider thread context and
321 		 * hence can sleep. Note that the caller would have done
322 		 * a taskq_dispatch(..., TQ_NOSLEEP) and would have returned.
323 		 */
324 		ctx = (ictx = areq->an_context) ? &ictx->kc_glbl_ctx : NULL;
325 
326 		mutex_enter(&areq->an_lock);
327 		/*
328 		 * We need to maintain ordering for multi-part requests.
329 		 * an_is_my_turn is set to B_TRUE initially for a request
330 		 * when it is enqueued and there are no other requests
331 		 * for that context. It is set later from kcf_aop_done() when
332 		 * the request before us in the chain of requests for the
333 		 * context completes. We get signaled at that point.
334 		 */
335 		if (ictx != NULL) {
336 			ASSERT(ictx->kc_prov_desc == areq->an_provider);
337 
338 			while (areq->an_is_my_turn == B_FALSE) {
339 				cv_wait(&areq->an_turn_cv, &areq->an_lock);
340 			}
341 		}
342 		areq->an_state = REQ_INPROGRESS;
343 		mutex_exit(&areq->an_lock);
344 
345 		error = common_submit_request(areq->an_provider, ctx,
346 		    &areq->an_params, areq);
347 	}
348 
349 bail:
350 	if (error == CRYPTO_QUEUED) {
351 		/*
352 		 * The request is queued by the provider and we should
353 		 * get a crypto_op_notification() from the provider later.
354 		 * We notify the consumer at that time.
355 		 */
356 		return;
357 	} else {		/* CRYPTO_SUCCESS or other failure */
358 		KCF_PROV_IREFRELE(pd);
359 		if (ctype == CRYPTO_SYNCH)
360 			kcf_sop_done(sreq, error);
361 		else
362 			kcf_aop_done(areq, error);
363 	}
364 }
365 
366 /*
367  * This routine checks if a request can be retried on another
368  * provider. If true, mech1 is initialized to point to the mechanism
369  * structure. mech2 is also initialized in case of a dual operation. fg
370  * is initialized to the correct crypto_func_group_t bit flag. They are
371  * initialized by this routine, so that the caller can pass them to a
372  * kcf_get_mech_provider() or kcf_get_dual_provider() with no further change.
373  *
374  * We check that the request is for a init or atomic routine and that
375  * it is for one of the operation groups used from k-api .
376  */
377 static boolean_t
378 can_resubmit(kcf_areq_node_t *areq, crypto_mechanism_t **mech1,
379     crypto_mechanism_t **mech2, crypto_func_group_t *fg)
380 {
381 	kcf_req_params_t *params;
382 	kcf_op_type_t optype;
383 
384 	params = &areq->an_params;
385 	optype = params->rp_optype;
386 
387 	if (!(IS_INIT_OP(optype) || IS_ATOMIC_OP(optype)))
388 		return (B_FALSE);
389 
390 	switch (params->rp_opgrp) {
391 	case KCF_OG_DIGEST: {
392 		kcf_digest_ops_params_t *dops = &params->rp_u.digest_params;
393 
394 		dops->do_mech.cm_type = dops->do_framework_mechtype;
395 		*mech1 = &dops->do_mech;
396 		*fg = (optype == KCF_OP_INIT) ? CRYPTO_FG_DIGEST :
397 		    CRYPTO_FG_DIGEST_ATOMIC;
398 		break;
399 	}
400 
401 	case KCF_OG_MAC: {
402 		kcf_mac_ops_params_t *mops = &params->rp_u.mac_params;
403 
404 		mops->mo_mech.cm_type = mops->mo_framework_mechtype;
405 		*mech1 = &mops->mo_mech;
406 		*fg = (optype == KCF_OP_INIT) ? CRYPTO_FG_MAC :
407 		    CRYPTO_FG_MAC_ATOMIC;
408 		break;
409 	}
410 
411 	case KCF_OG_SIGN: {
412 		kcf_sign_ops_params_t *sops = &params->rp_u.sign_params;
413 
414 		sops->so_mech.cm_type = sops->so_framework_mechtype;
415 		*mech1 = &sops->so_mech;
416 		switch (optype) {
417 		case KCF_OP_INIT:
418 			*fg = CRYPTO_FG_SIGN;
419 			break;
420 		case KCF_OP_ATOMIC:
421 			*fg = CRYPTO_FG_SIGN_ATOMIC;
422 			break;
423 		default:
424 			ASSERT(optype == KCF_OP_SIGN_RECOVER_ATOMIC);
425 			*fg = CRYPTO_FG_SIGN_RECOVER_ATOMIC;
426 		}
427 		break;
428 	}
429 
430 	case KCF_OG_VERIFY: {
431 		kcf_verify_ops_params_t *vops = &params->rp_u.verify_params;
432 
433 		vops->vo_mech.cm_type = vops->vo_framework_mechtype;
434 		*mech1 = &vops->vo_mech;
435 		switch (optype) {
436 		case KCF_OP_INIT:
437 			*fg = CRYPTO_FG_VERIFY;
438 			break;
439 		case KCF_OP_ATOMIC:
440 			*fg = CRYPTO_FG_VERIFY_ATOMIC;
441 			break;
442 		default:
443 			ASSERT(optype == KCF_OP_VERIFY_RECOVER_ATOMIC);
444 			*fg = CRYPTO_FG_VERIFY_RECOVER_ATOMIC;
445 		}
446 		break;
447 	}
448 
449 	case KCF_OG_ENCRYPT: {
450 		kcf_encrypt_ops_params_t *eops = &params->rp_u.encrypt_params;
451 
452 		eops->eo_mech.cm_type = eops->eo_framework_mechtype;
453 		*mech1 = &eops->eo_mech;
454 		*fg = (optype == KCF_OP_INIT) ? CRYPTO_FG_ENCRYPT :
455 		    CRYPTO_FG_ENCRYPT_ATOMIC;
456 		break;
457 	}
458 
459 	case KCF_OG_DECRYPT: {
460 		kcf_decrypt_ops_params_t *dcrops = &params->rp_u.decrypt_params;
461 
462 		dcrops->dop_mech.cm_type = dcrops->dop_framework_mechtype;
463 		*mech1 = &dcrops->dop_mech;
464 		*fg = (optype == KCF_OP_INIT) ? CRYPTO_FG_DECRYPT :
465 		    CRYPTO_FG_DECRYPT_ATOMIC;
466 		break;
467 	}
468 
469 	case KCF_OG_ENCRYPT_MAC: {
470 		kcf_encrypt_mac_ops_params_t *eops =
471 		    &params->rp_u.encrypt_mac_params;
472 
473 		eops->em_encr_mech.cm_type = eops->em_framework_encr_mechtype;
474 		*mech1 = &eops->em_encr_mech;
475 		eops->em_mac_mech.cm_type = eops->em_framework_mac_mechtype;
476 		*mech2 = &eops->em_mac_mech;
477 		*fg = (optype == KCF_OP_INIT) ? CRYPTO_FG_ENCRYPT_MAC :
478 		    CRYPTO_FG_ENCRYPT_MAC_ATOMIC;
479 		break;
480 	}
481 
482 	case KCF_OG_MAC_DECRYPT: {
483 		kcf_mac_decrypt_ops_params_t *dops =
484 		    &params->rp_u.mac_decrypt_params;
485 
486 		dops->md_mac_mech.cm_type = dops->md_framework_mac_mechtype;
487 		*mech1 = &dops->md_mac_mech;
488 		dops->md_decr_mech.cm_type = dops->md_framework_decr_mechtype;
489 		*mech2 = &dops->md_decr_mech;
490 		*fg = (optype == KCF_OP_INIT) ? CRYPTO_FG_MAC_DECRYPT :
491 		    CRYPTO_FG_MAC_DECRYPT_ATOMIC;
492 		break;
493 	}
494 
495 	default:
496 		return (B_FALSE);
497 	}
498 
499 	return (B_TRUE);
500 }
501 
502 /*
503  * This routine is called when a request to a provider has failed
504  * with a recoverable error. This routine tries to find another provider
505  * and dispatches the request to the new provider, if one is available.
506  * We reuse the request structure.
507  *
508  * A return value of NULL from kcf_get_mech_provider() indicates
509  * we have tried the last provider.
510  */
511 static int
512 kcf_resubmit_request(kcf_areq_node_t *areq)
513 {
514 	int error = CRYPTO_FAILED;
515 	kcf_context_t *ictx;
516 	kcf_provider_desc_t *old_pd;
517 	kcf_provider_desc_t *new_pd;
518 	crypto_mechanism_t *mech1 = NULL, *mech2 = NULL;
519 	crypto_mech_type_t prov_mt1, prov_mt2;
520 	crypto_func_group_t fg;
521 
522 	if (!can_resubmit(areq, &mech1, &mech2, &fg))
523 		return (error);
524 
525 	old_pd = areq->an_provider;
526 	/*
527 	 * Add old_pd to the list of providers already tried. We release
528 	 * the hold on old_pd (from the earlier kcf_get_mech_provider()) in
529 	 * kcf_free_triedlist().
530 	 */
531 	if (kcf_insert_triedlist(&areq->an_tried_plist, old_pd,
532 	    KM_NOSLEEP) == NULL)
533 		return (error);
534 
535 	if (mech1 && !mech2) {
536 		new_pd = kcf_get_mech_provider(mech1->cm_type, NULL, &error,
537 		    areq->an_tried_plist, fg,
538 		    (areq->an_reqarg.cr_flag & CRYPTO_RESTRICTED), 0);
539 	} else {
540 		ASSERT(mech1 != NULL && mech2 != NULL);
541 
542 		new_pd = kcf_get_dual_provider(mech1, mech2, NULL, &prov_mt1,
543 		    &prov_mt2, &error, areq->an_tried_plist, fg, fg,
544 		    (areq->an_reqarg.cr_flag & CRYPTO_RESTRICTED), 0);
545 	}
546 
547 	if (new_pd == NULL)
548 		return (error);
549 
550 	/*
551 	 * We reuse the old context by resetting provider specific
552 	 * fields in it.
553 	 */
554 	if ((ictx = areq->an_context) != NULL) {
555 		crypto_ctx_t *ctx;
556 
557 		ASSERT(old_pd == ictx->kc_prov_desc);
558 		KCF_PROV_REFRELE(ictx->kc_prov_desc);
559 		KCF_PROV_REFHOLD(new_pd);
560 		ictx->kc_prov_desc = new_pd;
561 
562 		ctx = &ictx->kc_glbl_ctx;
563 		ctx->cc_provider = new_pd->pd_prov_handle;
564 		ctx->cc_session = new_pd->pd_sid;
565 		ctx->cc_provider_private = NULL;
566 	}
567 
568 	/* We reuse areq. by resetting the provider and context fields. */
569 	KCF_PROV_REFRELE(old_pd);
570 	KCF_PROV_REFHOLD(new_pd);
571 	areq->an_provider = new_pd;
572 	mutex_enter(&areq->an_lock);
573 	areq->an_state = REQ_WAITING;
574 	mutex_exit(&areq->an_lock);
575 
576 	switch (new_pd->pd_prov_type) {
577 	case CRYPTO_SW_PROVIDER:
578 		error = kcf_disp_sw_request(areq);
579 		break;
580 
581 	case CRYPTO_HW_PROVIDER: {
582 		taskq_t *taskq = new_pd->pd_sched_info.ks_taskq;
583 
584 		if (taskq_dispatch(taskq, process_req_hwp, areq, TQ_NOSLEEP) ==
585 		    (taskqid_t)0) {
586 			error = CRYPTO_HOST_MEMORY;
587 		} else {
588 			error = CRYPTO_QUEUED;
589 		}
590 
591 		break;
592 	}
593 	}
594 
595 	return (error);
596 }
597 
598 #define	EMPTY_TASKQ(tq)	((tq)->tq_task.tqent_next == &(tq)->tq_task)
599 
600 /*
601  * Routine called by both ioctl and k-api. The consumer should
602  * bundle the parameters into a kcf_req_params_t structure. A bunch
603  * of macros are available in ops_impl.h for this bundling. They are:
604  *
605  * 	KCF_WRAP_DIGEST_OPS_PARAMS()
606  *	KCF_WRAP_MAC_OPS_PARAMS()
607  *	KCF_WRAP_ENCRYPT_OPS_PARAMS()
608  *	KCF_WRAP_DECRYPT_OPS_PARAMS() ... etc.
609  *
610  * It is the caller's responsibility to free the ctx argument when
611  * appropriate. See the KCF_CONTEXT_COND_RELEASE macro for details.
612  */
613 int
614 kcf_submit_request(kcf_provider_desc_t *pd, crypto_ctx_t *ctx,
615     crypto_call_req_t *crq, kcf_req_params_t *params, boolean_t cont)
616 {
617 	int error = CRYPTO_SUCCESS;
618 	kcf_areq_node_t *areq;
619 	kcf_sreq_node_t *sreq;
620 	kcf_context_t *kcf_ctx;
621 	taskq_t *taskq = pd->pd_sched_info.ks_taskq;
622 
623 	kcf_ctx = ctx ? (kcf_context_t *)ctx->cc_framework_private : NULL;
624 
625 	/* Synchronous cases */
626 	if (crq == NULL) {
627 		switch (pd->pd_prov_type) {
628 		case CRYPTO_SW_PROVIDER:
629 			error = common_submit_request(pd, ctx, params,
630 			    KCF_RHNDL(KM_SLEEP));
631 			break;
632 
633 		case CRYPTO_HW_PROVIDER:
634 			sreq = kmem_cache_alloc(kcf_sreq_cache, KM_SLEEP);
635 			sreq->sn_state = REQ_ALLOCATED;
636 			sreq->sn_rv = CRYPTO_FAILED;
637 			sreq->sn_params = params;
638 
639 			/*
640 			 * Note that we do not need to hold the context
641 			 * for synchronous case as the context will never
642 			 * become invalid underneath us. We do not need to hold
643 			 * the provider here either as the caller has a hold.
644 			 */
645 			sreq->sn_context = kcf_ctx;
646 			ASSERT(KCF_PROV_REFHELD(pd));
647 			sreq->sn_provider = pd;
648 
649 			ASSERT(taskq != NULL);
650 			/*
651 			 * Call the SPI directly if the taskq is empty and the
652 			 * provider is not busy, else dispatch to the taskq.
653 			 * Calling directly is fine as this is the synchronous
654 			 * case. This is unlike the asynchronous case where we
655 			 * must always dispatch to the taskq.
656 			 */
657 			if (EMPTY_TASKQ(taskq) &&
658 			    pd->pd_state == KCF_PROV_READY) {
659 				process_req_hwp(sreq);
660 			} else {
661 				/*
662 				 * We can not tell from taskq_dispatch() return
663 				 * value if we exceeded maxalloc. Hence the
664 				 * check here. Since we are allowed to wait in
665 				 * the synchronous case, we wait for the taskq
666 				 * to become empty.
667 				 */
668 				if (taskq->tq_nalloc >= crypto_taskq_maxalloc) {
669 					taskq_wait(taskq);
670 				}
671 
672 				(void) taskq_dispatch(taskq, process_req_hwp,
673 				    sreq, TQ_SLEEP);
674 			}
675 
676 			/*
677 			 * Wait for the notification to arrive,
678 			 * if the operation is not done yet.
679 			 * Bug# 4722589 will make the wait a cv_wait_sig().
680 			 */
681 			mutex_enter(&sreq->sn_lock);
682 			while (sreq->sn_state < REQ_DONE)
683 				cv_wait(&sreq->sn_cv, &sreq->sn_lock);
684 			mutex_exit(&sreq->sn_lock);
685 
686 			error = sreq->sn_rv;
687 			kmem_cache_free(kcf_sreq_cache, sreq);
688 
689 			break;
690 
691 		default:
692 			error = CRYPTO_FAILED;
693 			break;
694 		}
695 
696 	} else {	/* Asynchronous cases */
697 		switch (pd->pd_prov_type) {
698 		case CRYPTO_SW_PROVIDER:
699 			if (!(crq->cr_flag & CRYPTO_ALWAYS_QUEUE)) {
700 				/*
701 				 * This case has less overhead since there is
702 				 * no switching of context.
703 				 */
704 				error = common_submit_request(pd, ctx, params,
705 				    KCF_RHNDL(KM_NOSLEEP));
706 			} else {
707 				/*
708 				 * CRYPTO_ALWAYS_QUEUE is set. We need to
709 				 * queue the request and return.
710 				 */
711 				areq = kcf_areqnode_alloc(pd, kcf_ctx, crq,
712 				    params, cont);
713 				if (areq == NULL)
714 					error = CRYPTO_HOST_MEMORY;
715 				else {
716 					if (!(crq->cr_flag
717 					    & CRYPTO_SKIP_REQID)) {
718 					/*
719 					 * Set the request handle. This handle
720 					 * is used for any crypto_cancel_req(9f)
721 					 * calls from the consumer. We have to
722 					 * do this before dispatching the
723 					 * request.
724 					 */
725 					crq->cr_reqid = kcf_reqid_insert(areq);
726 					}
727 
728 					error = kcf_disp_sw_request(areq);
729 					/*
730 					 * There is an error processing this
731 					 * request. Remove the handle and
732 					 * release the request structure.
733 					 */
734 					if (error != CRYPTO_QUEUED) {
735 						if (!(crq->cr_flag
736 						    & CRYPTO_SKIP_REQID))
737 							kcf_reqid_delete(areq);
738 						KCF_AREQ_REFRELE(areq);
739 					}
740 				}
741 			}
742 			break;
743 
744 		case CRYPTO_HW_PROVIDER:
745 			/*
746 			 * We need to queue the request and return.
747 			 */
748 			areq = kcf_areqnode_alloc(pd, kcf_ctx, crq, params,
749 			    cont);
750 			if (areq == NULL) {
751 				error = CRYPTO_HOST_MEMORY;
752 				goto done;
753 			}
754 
755 			ASSERT(taskq != NULL);
756 			/*
757 			 * We can not tell from taskq_dispatch() return
758 			 * value if we exceeded maxalloc. Hence the check
759 			 * here.
760 			 */
761 			if (taskq->tq_nalloc >= crypto_taskq_maxalloc) {
762 				error = CRYPTO_BUSY;
763 				KCF_AREQ_REFRELE(areq);
764 				goto done;
765 			}
766 
767 			if (!(crq->cr_flag & CRYPTO_SKIP_REQID)) {
768 			/*
769 			 * Set the request handle. This handle is used
770 			 * for any crypto_cancel_req(9f) calls from the
771 			 * consumer. We have to do this before dispatching
772 			 * the request.
773 			 */
774 			crq->cr_reqid = kcf_reqid_insert(areq);
775 			}
776 
777 			if (taskq_dispatch(taskq,
778 			    process_req_hwp, areq, TQ_NOSLEEP) ==
779 			    (taskqid_t)0) {
780 				error = CRYPTO_HOST_MEMORY;
781 				if (!(crq->cr_flag & CRYPTO_SKIP_REQID))
782 					kcf_reqid_delete(areq);
783 				KCF_AREQ_REFRELE(areq);
784 			} else {
785 				error = CRYPTO_QUEUED;
786 			}
787 			break;
788 
789 		default:
790 			error = CRYPTO_FAILED;
791 			break;
792 		}
793 	}
794 
795 done:
796 	return (error);
797 }
798 
799 /*
800  * We're done with this framework context, so free it. Note that freeing
801  * framework context (kcf_context) frees the global context (crypto_ctx).
802  *
803  * The provider is responsible for freeing provider private context after a
804  * final or single operation and resetting the cc_provider_private field
805  * to NULL. It should do this before it notifies the framework of the
806  * completion. We still need to call KCF_PROV_FREE_CONTEXT to handle cases
807  * like crypto_cancel_ctx(9f).
808  */
809 void
810 kcf_free_context(kcf_context_t *kcf_ctx)
811 {
812 	kcf_provider_desc_t *pd = kcf_ctx->kc_prov_desc;
813 	crypto_ctx_t *gctx = &kcf_ctx->kc_glbl_ctx;
814 	kcf_context_t *kcf_secondctx = kcf_ctx->kc_secondctx;
815 
816 	/* Release the second context, if any */
817 
818 	if (kcf_secondctx != NULL)
819 		KCF_CONTEXT_REFRELE(kcf_secondctx);
820 
821 	if (gctx->cc_provider_private != NULL) {
822 		mutex_enter(&pd->pd_lock);
823 		if (!KCF_IS_PROV_REMOVED(pd)) {
824 			/*
825 			 * Increment the provider's internal refcnt so it
826 			 * doesn't unregister from the framework while
827 			 * we're calling the entry point.
828 			 */
829 			KCF_PROV_IREFHOLD(pd);
830 			mutex_exit(&pd->pd_lock);
831 			(void) KCF_PROV_FREE_CONTEXT(pd, gctx);
832 			KCF_PROV_IREFRELE(pd);
833 		} else {
834 			mutex_exit(&pd->pd_lock);
835 		}
836 	}
837 
838 	/* kcf_ctx->kc_prov_desc has a hold on pd */
839 	KCF_PROV_REFRELE(kcf_ctx->kc_prov_desc);
840 
841 	/* check if this context is shared with a software provider */
842 	if ((gctx->cc_flags & CRYPTO_INIT_OPSTATE) &&
843 	    kcf_ctx->kc_sw_prov_desc != NULL) {
844 		KCF_PROV_REFRELE(kcf_ctx->kc_sw_prov_desc);
845 	}
846 
847 	kmem_cache_free(kcf_context_cache, kcf_ctx);
848 }
849 
850 /*
851  * Free the request after releasing all the holds.
852  */
853 void
854 kcf_free_req(kcf_areq_node_t *areq)
855 {
856 	KCF_PROV_REFRELE(areq->an_provider);
857 	if (areq->an_context != NULL)
858 		KCF_CONTEXT_REFRELE(areq->an_context);
859 
860 	if (areq->an_tried_plist != NULL)
861 		kcf_free_triedlist(areq->an_tried_plist);
862 	kmem_cache_free(kcf_areq_cache, areq);
863 }
864 
865 /*
866  * Utility routine to remove a request from the chain of requests
867  * hanging off a context.
868  */
869 void
870 kcf_removereq_in_ctxchain(kcf_context_t *ictx, kcf_areq_node_t *areq)
871 {
872 	kcf_areq_node_t *cur, *prev;
873 
874 	/*
875 	 * Get context lock, search for areq in the chain and remove it.
876 	 */
877 	ASSERT(ictx != NULL);
878 	mutex_enter(&ictx->kc_in_use_lock);
879 	prev = cur = ictx->kc_req_chain_first;
880 
881 	while (cur != NULL) {
882 		if (cur == areq) {
883 			if (prev == cur) {
884 				if ((ictx->kc_req_chain_first =
885 				    cur->an_ctxchain_next) == NULL)
886 					ictx->kc_req_chain_last = NULL;
887 			} else {
888 				if (cur == ictx->kc_req_chain_last)
889 					ictx->kc_req_chain_last = prev;
890 				prev->an_ctxchain_next = cur->an_ctxchain_next;
891 			}
892 
893 			break;
894 		}
895 		prev = cur;
896 		cur = cur->an_ctxchain_next;
897 	}
898 	mutex_exit(&ictx->kc_in_use_lock);
899 }
900 
901 /*
902  * Remove the specified node from the global software queue.
903  *
904  * The caller must hold the queue lock and request lock (an_lock).
905  */
906 void
907 kcf_remove_node(kcf_areq_node_t *node)
908 {
909 	kcf_areq_node_t *nextp = node->an_next;
910 	kcf_areq_node_t *prevp = node->an_prev;
911 
912 	ASSERT(mutex_owned(&gswq->gs_lock));
913 
914 	if (nextp != NULL)
915 		nextp->an_prev = prevp;
916 	else
917 		gswq->gs_last = prevp;
918 
919 	if (prevp != NULL)
920 		prevp->an_next = nextp;
921 	else
922 		gswq->gs_first = nextp;
923 
924 	ASSERT(mutex_owned(&node->an_lock));
925 	node->an_state = REQ_CANCELED;
926 }
927 
928 /*
929  * Remove and return the first node in the global software queue.
930  *
931  * The caller must hold the queue lock.
932  */
933 static kcf_areq_node_t *
934 kcf_dequeue()
935 {
936 	kcf_areq_node_t *tnode = NULL;
937 
938 	ASSERT(mutex_owned(&gswq->gs_lock));
939 	if ((tnode = gswq->gs_first) == NULL) {
940 		return (NULL);
941 	} else {
942 		ASSERT(gswq->gs_first->an_prev == NULL);
943 		gswq->gs_first = tnode->an_next;
944 		if (tnode->an_next == NULL)
945 			gswq->gs_last = NULL;
946 		else
947 			tnode->an_next->an_prev = NULL;
948 	}
949 
950 	gswq->gs_njobs--;
951 	return (tnode);
952 }
953 
954 /*
955  * Add the request node to the end of the global software queue.
956  *
957  * The caller should not hold the queue lock. Returns 0 if the
958  * request is successfully queued. Returns CRYPTO_BUSY if the limit
959  * on the number of jobs is exceeded.
960  */
961 static int
962 kcf_enqueue(kcf_areq_node_t *node)
963 {
964 	kcf_areq_node_t *tnode;
965 
966 	mutex_enter(&gswq->gs_lock);
967 
968 	if (gswq->gs_njobs >= gswq->gs_maxjobs) {
969 		mutex_exit(&gswq->gs_lock);
970 		return (CRYPTO_BUSY);
971 	}
972 
973 	if (gswq->gs_last == NULL) {
974 		gswq->gs_first = gswq->gs_last = node;
975 	} else {
976 		ASSERT(gswq->gs_last->an_next == NULL);
977 		tnode = gswq->gs_last;
978 		tnode->an_next = node;
979 		gswq->gs_last = node;
980 		node->an_prev = tnode;
981 	}
982 
983 	gswq->gs_njobs++;
984 
985 	/* an_lock not needed here as we hold gs_lock */
986 	node->an_state = REQ_WAITING;
987 
988 	mutex_exit(&gswq->gs_lock);
989 
990 	return (0);
991 }
992 
993 /*
994  * Decrement the thread pool count and signal the failover
995  * thread if we are the last one out.
996  */
997 static void
998 kcf_decrcnt_andsignal()
999 {
1000 	KCF_ATOMIC_DECR(kcfpool->kp_threads);
1001 
1002 	mutex_enter(&kcfpool->kp_thread_lock);
1003 	if (kcfpool->kp_threads == 0)
1004 		cv_signal(&kcfpool->kp_nothr_cv);
1005 	mutex_exit(&kcfpool->kp_thread_lock);
1006 }
1007 
1008 /*
1009  * Function run by a thread from kcfpool to work on global software queue.
1010  * It is called from ioctl(CRYPTO_POOL_RUN, ...).
1011  */
1012 int
1013 kcf_svc_do_run(void)
1014 {
1015 	int error = 0;
1016 	clock_t rv;
1017 	clock_t timeout_val;
1018 	kcf_areq_node_t *req;
1019 	kcf_context_t *ictx;
1020 	kcf_provider_desc_t *pd;
1021 
1022 	KCF_ATOMIC_INCR(kcfpool->kp_threads);
1023 
1024 	for (;;) {
1025 		mutex_enter(&gswq->gs_lock);
1026 
1027 		while ((req = kcf_dequeue()) == NULL) {
1028 			timeout_val = ddi_get_lbolt() +
1029 			    drv_usectohz(kcf_idlethr_timeout);
1030 
1031 			KCF_ATOMIC_INCR(kcfpool->kp_idlethreads);
1032 			rv = cv_timedwait_sig(&gswq->gs_cv, &gswq->gs_lock,
1033 			    timeout_val);
1034 			KCF_ATOMIC_DECR(kcfpool->kp_idlethreads);
1035 
1036 			switch (rv) {
1037 			case 0:
1038 				/*
1039 				 * A signal (as in kill(2)) is pending. We did
1040 				 * not get any cv_signal().
1041 				 */
1042 				kcf_decrcnt_andsignal();
1043 				mutex_exit(&gswq->gs_lock);
1044 				return (EINTR);
1045 
1046 			case -1:
1047 				/*
1048 				 * Timed out and we are not signaled. Let us
1049 				 * see if this thread should exit. We should
1050 				 * keep at least kcf_minthreads.
1051 				 */
1052 				if (kcfpool->kp_threads > kcf_minthreads) {
1053 					kcf_decrcnt_andsignal();
1054 					mutex_exit(&gswq->gs_lock);
1055 					return (0);
1056 				}
1057 
1058 				/* Resume the wait for work */
1059 				break;
1060 
1061 			default:
1062 				/*
1063 				 * We are signaled to work on the queue.
1064 				 */
1065 				break;
1066 			}
1067 		}
1068 
1069 		mutex_exit(&gswq->gs_lock);
1070 
1071 		ictx = req->an_context;
1072 		if (ictx == NULL) {	/* Context-less operation */
1073 			pd = req->an_provider;
1074 			error = common_submit_request(pd, NULL,
1075 			    &req->an_params, req);
1076 			kcf_aop_done(req, error);
1077 			continue;
1078 		}
1079 
1080 		/*
1081 		 * We check if we can work on the request now.
1082 		 * Solaris does not guarantee any order on how the threads
1083 		 * are scheduled or how the waiters on a mutex are chosen.
1084 		 * So, we need to maintain our own order.
1085 		 *
1086 		 * is_my_turn is set to B_TRUE initially for a request when
1087 		 * it is enqueued and there are no other requests
1088 		 * for that context.  Note that a thread sleeping on
1089 		 * an_turn_cv is not counted as an idle thread. This is
1090 		 * because we define an idle thread as one that sleeps on the
1091 		 * global queue waiting for new requests.
1092 		 */
1093 		mutex_enter(&req->an_lock);
1094 		while (req->an_is_my_turn == B_FALSE) {
1095 			KCF_ATOMIC_INCR(kcfpool->kp_blockedthreads);
1096 			cv_wait(&req->an_turn_cv, &req->an_lock);
1097 			KCF_ATOMIC_DECR(kcfpool->kp_blockedthreads);
1098 		}
1099 
1100 		req->an_state = REQ_INPROGRESS;
1101 		mutex_exit(&req->an_lock);
1102 
1103 		pd = ictx->kc_prov_desc;
1104 		ASSERT(pd == req->an_provider);
1105 		error = common_submit_request(pd, &ictx->kc_glbl_ctx,
1106 		    &req->an_params, req);
1107 
1108 		kcf_aop_done(req, error);
1109 	}
1110 }
1111 
1112 /*
1113  * kmem_cache_alloc constructor for sync request structure.
1114  */
1115 /* ARGSUSED */
1116 static int
1117 kcf_sreq_cache_constructor(void *buf, void *cdrarg, int kmflags)
1118 {
1119 	kcf_sreq_node_t *sreq = (kcf_sreq_node_t *)buf;
1120 
1121 	sreq->sn_type = CRYPTO_SYNCH;
1122 	cv_init(&sreq->sn_cv, NULL, CV_DEFAULT, NULL);
1123 	mutex_init(&sreq->sn_lock, NULL, MUTEX_DEFAULT, NULL);
1124 
1125 	return (0);
1126 }
1127 
1128 /* ARGSUSED */
1129 static void
1130 kcf_sreq_cache_destructor(void *buf, void *cdrarg)
1131 {
1132 	kcf_sreq_node_t *sreq = (kcf_sreq_node_t *)buf;
1133 
1134 	mutex_destroy(&sreq->sn_lock);
1135 	cv_destroy(&sreq->sn_cv);
1136 }
1137 
1138 /*
1139  * kmem_cache_alloc constructor for async request structure.
1140  */
1141 /* ARGSUSED */
1142 static int
1143 kcf_areq_cache_constructor(void *buf, void *cdrarg, int kmflags)
1144 {
1145 	kcf_areq_node_t *areq = (kcf_areq_node_t *)buf;
1146 
1147 	areq->an_type = CRYPTO_ASYNCH;
1148 	areq->an_refcnt = 0;
1149 	mutex_init(&areq->an_lock, NULL, MUTEX_DEFAULT, NULL);
1150 	cv_init(&areq->an_done, NULL, CV_DEFAULT, NULL);
1151 	cv_init(&areq->an_turn_cv, NULL, CV_DEFAULT, NULL);
1152 
1153 	return (0);
1154 }
1155 
1156 /* ARGSUSED */
1157 static void
1158 kcf_areq_cache_destructor(void *buf, void *cdrarg)
1159 {
1160 	kcf_areq_node_t *areq = (kcf_areq_node_t *)buf;
1161 
1162 	ASSERT(areq->an_refcnt == 0);
1163 	mutex_destroy(&areq->an_lock);
1164 	cv_destroy(&areq->an_done);
1165 	cv_destroy(&areq->an_turn_cv);
1166 }
1167 
1168 /*
1169  * kmem_cache_alloc constructor for kcf_context structure.
1170  */
1171 /* ARGSUSED */
1172 static int
1173 kcf_context_cache_constructor(void *buf, void *cdrarg, int kmflags)
1174 {
1175 	kcf_context_t *kctx = (kcf_context_t *)buf;
1176 
1177 	kctx->kc_refcnt = 0;
1178 	mutex_init(&kctx->kc_in_use_lock, NULL, MUTEX_DEFAULT, NULL);
1179 
1180 	return (0);
1181 }
1182 
1183 /* ARGSUSED */
1184 static void
1185 kcf_context_cache_destructor(void *buf, void *cdrarg)
1186 {
1187 	kcf_context_t *kctx = (kcf_context_t *)buf;
1188 
1189 	ASSERT(kctx->kc_refcnt == 0);
1190 	mutex_destroy(&kctx->kc_in_use_lock);
1191 }
1192 
1193 /*
1194  * Creates and initializes all the structures needed by the framework.
1195  */
1196 void
1197 kcf_sched_init(void)
1198 {
1199 	int i;
1200 	kcf_reqid_table_t *rt;
1201 
1202 	/*
1203 	 * Create all the kmem caches needed by the framework. We set the
1204 	 * align argument to 64, to get a slab aligned to 64-byte as well as
1205 	 * have the objects (cache_chunksize) to be a 64-byte multiple.
1206 	 * This helps to avoid false sharing as this is the size of the
1207 	 * CPU cache line.
1208 	 */
1209 	kcf_sreq_cache = kmem_cache_create("kcf_sreq_cache",
1210 	    sizeof (struct kcf_sreq_node), 64, kcf_sreq_cache_constructor,
1211 	    kcf_sreq_cache_destructor, NULL, NULL, NULL, 0);
1212 
1213 	kcf_areq_cache = kmem_cache_create("kcf_areq_cache",
1214 	    sizeof (struct kcf_areq_node), 64, kcf_areq_cache_constructor,
1215 	    kcf_areq_cache_destructor, NULL, NULL, NULL, 0);
1216 
1217 	kcf_context_cache = kmem_cache_create("kcf_context_cache",
1218 	    sizeof (struct kcf_context), 64, kcf_context_cache_constructor,
1219 	    kcf_context_cache_destructor, NULL, NULL, NULL, 0);
1220 
1221 	mutex_init(&kcf_dh_lock, NULL, MUTEX_DEFAULT, NULL);
1222 
1223 	gswq = kmem_alloc(sizeof (kcf_global_swq_t), KM_SLEEP);
1224 
1225 	mutex_init(&gswq->gs_lock, NULL, MUTEX_DEFAULT, NULL);
1226 	cv_init(&gswq->gs_cv, NULL, CV_DEFAULT, NULL);
1227 	gswq->gs_njobs = 0;
1228 	gswq->gs_maxjobs = kcf_maxthreads * crypto_taskq_maxalloc;
1229 	gswq->gs_first = gswq->gs_last = NULL;
1230 
1231 	/* Initialize the global reqid table */
1232 	for (i = 0; i < REQID_TABLES; i++) {
1233 		rt = kmem_zalloc(sizeof (kcf_reqid_table_t), KM_SLEEP);
1234 		kcf_reqid_table[i] = rt;
1235 		mutex_init(&rt->rt_lock, NULL, MUTEX_DEFAULT, NULL);
1236 		rt->rt_curid = i;
1237 	}
1238 
1239 	/* Allocate and initialize the thread pool */
1240 	kcfpool_alloc();
1241 
1242 	/* Initialize the event notification list variables */
1243 	mutex_init(&ntfy_list_lock, NULL, MUTEX_DEFAULT, NULL);
1244 	cv_init(&ntfy_list_cv, NULL, CV_DEFAULT, NULL);
1245 
1246 	/* Initialize the crypto_bufcall list variables */
1247 	mutex_init(&cbuf_list_lock, NULL, MUTEX_DEFAULT, NULL);
1248 	cv_init(&cbuf_list_cv, NULL, CV_DEFAULT, NULL);
1249 
1250 	/* Create the kcf kstat */
1251 	kcf_misc_kstat = kstat_create("kcf", 0, "framework_stats", "crypto",
1252 	    KSTAT_TYPE_NAMED, sizeof (kcf_stats_t) / sizeof (kstat_named_t),
1253 	    KSTAT_FLAG_VIRTUAL);
1254 
1255 	if (kcf_misc_kstat != NULL) {
1256 		kcf_misc_kstat->ks_data = &kcf_ksdata;
1257 		kcf_misc_kstat->ks_update = kcf_misc_kstat_update;
1258 		kstat_install(kcf_misc_kstat);
1259 	}
1260 }
1261 
1262 /*
1263  * This routine should only be called by drv/cryptoadm.
1264  *
1265  * kcf_sched_running flag isn't protected by a lock. But, we are safe because
1266  * the first thread ("cryptoadm refresh") calling this routine during
1267  * boot time completes before any other thread that can call this routine.
1268  */
1269 void
1270 kcf_sched_start(void)
1271 {
1272 	if (kcf_sched_running)
1273 		return;
1274 
1275 	/* Start the failover kernel thread for now */
1276 	(void) thread_create(NULL, 0, &kcf_failover_thread, 0, 0, &p0,
1277 	    TS_RUN, minclsyspri);
1278 
1279 	/* Start the background processing thread. */
1280 	(void) thread_create(NULL, 0, &crypto_bufcall_service, 0, 0, &p0,
1281 	    TS_RUN, minclsyspri);
1282 
1283 	kcf_sched_running = B_TRUE;
1284 }
1285 
1286 /*
1287  * Signal the waiting sync client.
1288  */
1289 void
1290 kcf_sop_done(kcf_sreq_node_t *sreq, int error)
1291 {
1292 	mutex_enter(&sreq->sn_lock);
1293 	sreq->sn_state = REQ_DONE;
1294 	sreq->sn_rv = error;
1295 	cv_signal(&sreq->sn_cv);
1296 	mutex_exit(&sreq->sn_lock);
1297 }
1298 
1299 /*
1300  * Callback the async client with the operation status.
1301  * We free the async request node and possibly the context.
1302  * We also handle any chain of requests hanging off of
1303  * the context.
1304  */
1305 void
1306 kcf_aop_done(kcf_areq_node_t *areq, int error)
1307 {
1308 	kcf_op_type_t optype;
1309 	boolean_t skip_notify = B_FALSE;
1310 	kcf_context_t *ictx;
1311 	kcf_areq_node_t *nextreq;
1312 
1313 	/*
1314 	 * Handle recoverable errors. This has to be done first
1315 	 * before doing any thing else in this routine so that
1316 	 * we do not change the state of the request.
1317 	 */
1318 	if (error != CRYPTO_SUCCESS && IS_RECOVERABLE(error)) {
1319 		/*
1320 		 * We try another provider, if one is available. Else
1321 		 * we continue with the failure notification to the
1322 		 * client.
1323 		 */
1324 		if (kcf_resubmit_request(areq) == CRYPTO_QUEUED)
1325 			return;
1326 	}
1327 
1328 	mutex_enter(&areq->an_lock);
1329 	areq->an_state = REQ_DONE;
1330 	mutex_exit(&areq->an_lock);
1331 
1332 	optype = (&areq->an_params)->rp_optype;
1333 	if ((ictx = areq->an_context) != NULL) {
1334 		/*
1335 		 * A request after it is removed from the request
1336 		 * queue, still stays on a chain of requests hanging
1337 		 * of its context structure. It needs to be removed
1338 		 * from this chain at this point.
1339 		 */
1340 		mutex_enter(&ictx->kc_in_use_lock);
1341 		nextreq = areq->an_ctxchain_next;
1342 		if (nextreq != NULL) {
1343 			mutex_enter(&nextreq->an_lock);
1344 			nextreq->an_is_my_turn = B_TRUE;
1345 			cv_signal(&nextreq->an_turn_cv);
1346 			mutex_exit(&nextreq->an_lock);
1347 		}
1348 
1349 		ictx->kc_req_chain_first = nextreq;
1350 		if (nextreq == NULL)
1351 			ictx->kc_req_chain_last = NULL;
1352 		mutex_exit(&ictx->kc_in_use_lock);
1353 
1354 		if (IS_SINGLE_OP(optype) || IS_FINAL_OP(optype)) {
1355 			ASSERT(nextreq == NULL);
1356 			KCF_CONTEXT_REFRELE(ictx);
1357 		} else if (error != CRYPTO_SUCCESS && IS_INIT_OP(optype)) {
1358 		/*
1359 		 * NOTE - We do not release the context in case of update
1360 		 * operations. We require the consumer to free it explicitly,
1361 		 * in case it wants to abandon an update operation. This is done
1362 		 * as there may be mechanisms in ECB mode that can continue
1363 		 * even if an operation on a block fails.
1364 		 */
1365 			KCF_CONTEXT_REFRELE(ictx);
1366 		}
1367 	}
1368 
1369 	/* Deal with the internal continuation to this request first */
1370 
1371 	if (areq->an_isdual) {
1372 		kcf_dual_req_t *next_arg;
1373 		next_arg = (kcf_dual_req_t *)areq->an_reqarg.cr_callback_arg;
1374 		next_arg->kr_areq = areq;
1375 		KCF_AREQ_REFHOLD(areq);
1376 		areq->an_isdual = B_FALSE;
1377 
1378 		NOTIFY_CLIENT(areq, error);
1379 		return;
1380 	}
1381 
1382 	/*
1383 	 * If CRYPTO_NOTIFY_OPDONE flag is set, we should notify
1384 	 * always. If this flag is clear, we skip the notification
1385 	 * provided there are no errors.  We check this flag for only
1386 	 * init or update operations. It is ignored for single, final or
1387 	 * atomic operations.
1388 	 */
1389 	skip_notify = (IS_UPDATE_OP(optype) || IS_INIT_OP(optype)) &&
1390 	    (!(areq->an_reqarg.cr_flag & CRYPTO_NOTIFY_OPDONE)) &&
1391 	    (error == CRYPTO_SUCCESS);
1392 
1393 	if (!skip_notify) {
1394 		NOTIFY_CLIENT(areq, error);
1395 	}
1396 
1397 	if (!(areq->an_reqarg.cr_flag & CRYPTO_SKIP_REQID))
1398 		kcf_reqid_delete(areq);
1399 
1400 	KCF_AREQ_REFRELE(areq);
1401 }
1402 
1403 /*
1404  * Allocate the thread pool and initialize all the fields.
1405  */
1406 static void
1407 kcfpool_alloc()
1408 {
1409 	kcfpool = kmem_alloc(sizeof (kcf_pool_t), KM_SLEEP);
1410 
1411 	kcfpool->kp_threads = kcfpool->kp_idlethreads = 0;
1412 	kcfpool->kp_blockedthreads = 0;
1413 	kcfpool->kp_signal_create_thread = B_FALSE;
1414 	kcfpool->kp_nthrs = 0;
1415 	kcfpool->kp_user_waiting = B_FALSE;
1416 
1417 	mutex_init(&kcfpool->kp_thread_lock, NULL, MUTEX_DEFAULT, NULL);
1418 	cv_init(&kcfpool->kp_nothr_cv, NULL, CV_DEFAULT, NULL);
1419 
1420 	mutex_init(&kcfpool->kp_user_lock, NULL, MUTEX_DEFAULT, NULL);
1421 	cv_init(&kcfpool->kp_user_cv, NULL, CV_DEFAULT, NULL);
1422 
1423 	kcf_idlethr_timeout = KCF_DEFAULT_THRTIMEOUT;
1424 }
1425 
1426 /*
1427  * This function is run by the 'creator' thread in the pool.
1428  * It is called from ioctl(CRYPTO_POOL_WAIT, ...).
1429  */
1430 int
1431 kcf_svc_wait(int *nthrs)
1432 {
1433 	clock_t rv;
1434 	clock_t timeout_val;
1435 
1436 	if (kcfpool == NULL)
1437 		return (ENOENT);
1438 
1439 	mutex_enter(&kcfpool->kp_user_lock);
1440 	/* Check if there's already a user thread waiting on this kcfpool */
1441 	if (kcfpool->kp_user_waiting) {
1442 		mutex_exit(&kcfpool->kp_user_lock);
1443 		*nthrs = 0;
1444 		return (EBUSY);
1445 	}
1446 
1447 	kcfpool->kp_user_waiting = B_TRUE;
1448 
1449 	/* Go to sleep, waiting for the signaled flag. */
1450 	while (!kcfpool->kp_signal_create_thread) {
1451 		timeout_val = ddi_get_lbolt() +
1452 		    drv_usectohz(kcf_idlethr_timeout);
1453 
1454 		rv = cv_timedwait_sig(&kcfpool->kp_user_cv,
1455 		    &kcfpool->kp_user_lock, timeout_val);
1456 		switch (rv) {
1457 		case 0:
1458 			/* Interrupted, return to handle exit or signal */
1459 			kcfpool->kp_user_waiting = B_FALSE;
1460 			kcfpool->kp_signal_create_thread = B_FALSE;
1461 			mutex_exit(&kcfpool->kp_user_lock);
1462 			/*
1463 			 * kcfd is exiting. Release the door and
1464 			 * invalidate it.
1465 			 */
1466 			mutex_enter(&kcf_dh_lock);
1467 			if (kcf_dh != NULL) {
1468 				door_ki_rele(kcf_dh);
1469 				kcf_dh = NULL;
1470 			}
1471 			mutex_exit(&kcf_dh_lock);
1472 			return (EINTR);
1473 
1474 		case -1:
1475 			/* Timed out. Recalculate the min/max threads */
1476 			compute_min_max_threads();
1477 			break;
1478 
1479 		default:
1480 			/* Worker thread did a cv_signal() */
1481 			break;
1482 		}
1483 	}
1484 
1485 	kcfpool->kp_signal_create_thread = B_FALSE;
1486 	kcfpool->kp_user_waiting = B_FALSE;
1487 
1488 	*nthrs = kcfpool->kp_nthrs;
1489 	mutex_exit(&kcfpool->kp_user_lock);
1490 
1491 	/* Return to userland for possible thread creation. */
1492 	return (0);
1493 }
1494 
1495 
1496 /*
1497  * This routine introduces a locking order for gswq->gs_lock followed
1498  * by cpu_lock.
1499  * This means that no consumer of the k-api should hold cpu_lock when calling
1500  * k-api routines.
1501  */
1502 static void
1503 compute_min_max_threads()
1504 {
1505 	mutex_enter(&gswq->gs_lock);
1506 	mutex_enter(&cpu_lock);
1507 	kcf_minthreads = curthread->t_cpupart->cp_ncpus;
1508 	mutex_exit(&cpu_lock);
1509 	kcf_maxthreads = kcf_thr_multiple * kcf_minthreads;
1510 	gswq->gs_maxjobs = kcf_maxthreads * crypto_taskq_maxalloc;
1511 	mutex_exit(&gswq->gs_lock);
1512 }
1513 
1514 /*
1515  * This is the main routine of the failover kernel thread.
1516  * If there are any threads in the pool we sleep. The last thread in the
1517  * pool to exit will signal us to get to work. We get back to sleep
1518  * once we detect that the pool has threads.
1519  *
1520  * Note that in the hand-off from us to a pool thread we get to run once.
1521  * Since this hand-off is a rare event this should be fine.
1522  */
1523 static void
1524 kcf_failover_thread()
1525 {
1526 	int error = 0;
1527 	kcf_context_t *ictx;
1528 	kcf_areq_node_t *req;
1529 	callb_cpr_t cpr_info;
1530 	kmutex_t cpr_lock;
1531 	static boolean_t is_logged = B_FALSE;
1532 
1533 	mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
1534 	CALLB_CPR_INIT(&cpr_info, &cpr_lock, callb_generic_cpr,
1535 	    "kcf_failover_thread");
1536 
1537 	for (;;) {
1538 		/*
1539 		 * Wait if there are any threads are in the pool.
1540 		 */
1541 		if (kcfpool->kp_threads > 0) {
1542 			mutex_enter(&cpr_lock);
1543 			CALLB_CPR_SAFE_BEGIN(&cpr_info);
1544 			mutex_exit(&cpr_lock);
1545 
1546 			mutex_enter(&kcfpool->kp_thread_lock);
1547 			cv_wait(&kcfpool->kp_nothr_cv,
1548 			    &kcfpool->kp_thread_lock);
1549 			mutex_exit(&kcfpool->kp_thread_lock);
1550 
1551 			mutex_enter(&cpr_lock);
1552 			CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
1553 			mutex_exit(&cpr_lock);
1554 			is_logged = B_FALSE;
1555 		}
1556 
1557 		/*
1558 		 * Get the requests from the queue and wait if needed.
1559 		 */
1560 		mutex_enter(&gswq->gs_lock);
1561 
1562 		while ((req = kcf_dequeue()) == NULL) {
1563 			mutex_enter(&cpr_lock);
1564 			CALLB_CPR_SAFE_BEGIN(&cpr_info);
1565 			mutex_exit(&cpr_lock);
1566 
1567 			KCF_ATOMIC_INCR(kcfpool->kp_idlethreads);
1568 			cv_wait(&gswq->gs_cv, &gswq->gs_lock);
1569 			KCF_ATOMIC_DECR(kcfpool->kp_idlethreads);
1570 
1571 			mutex_enter(&cpr_lock);
1572 			CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
1573 			mutex_exit(&cpr_lock);
1574 		}
1575 
1576 		mutex_exit(&gswq->gs_lock);
1577 
1578 		/*
1579 		 * We check the kp_threads since kcfd could have started
1580 		 * while we are waiting on the global software queue.
1581 		 */
1582 		if (kcfpool->kp_threads <= 0 && !is_logged) {
1583 			cmn_err(CE_WARN, "kcfd is not running. Please check "
1584 			    "and restart kcfd. Using the failover kernel "
1585 			    "thread for now.\n");
1586 			is_logged = B_TRUE;
1587 		}
1588 
1589 		/*
1590 		 * Get to work on the request.
1591 		 */
1592 		ictx = req->an_context;
1593 		mutex_enter(&req->an_lock);
1594 		req->an_state = REQ_INPROGRESS;
1595 		mutex_exit(&req->an_lock);
1596 
1597 		error = common_submit_request(req->an_provider, ictx ?
1598 		    &ictx->kc_glbl_ctx : NULL, &req->an_params, req);
1599 
1600 		kcf_aop_done(req, error);
1601 	}
1602 }
1603 
1604 /*
1605  * Insert the async request in the hash table after assigning it
1606  * an ID. Returns the ID.
1607  *
1608  * The ID is used by the caller to pass as an argument to a
1609  * cancel_req() routine later.
1610  */
1611 static crypto_req_id_t
1612 kcf_reqid_insert(kcf_areq_node_t *areq)
1613 {
1614 	int indx;
1615 	crypto_req_id_t id;
1616 	kcf_areq_node_t *headp;
1617 	kcf_reqid_table_t *rt =
1618 	    kcf_reqid_table[CPU->cpu_seqid & REQID_TABLE_MASK];
1619 
1620 	mutex_enter(&rt->rt_lock);
1621 
1622 	rt->rt_curid = id =
1623 	    (rt->rt_curid - REQID_COUNTER_LOW) | REQID_COUNTER_HIGH;
1624 	SET_REQID(areq, id);
1625 	indx = REQID_HASH(id);
1626 	headp = areq->an_idnext = rt->rt_idhash[indx];
1627 	areq->an_idprev = NULL;
1628 	if (headp != NULL)
1629 		headp->an_idprev = areq;
1630 
1631 	rt->rt_idhash[indx] = areq;
1632 	mutex_exit(&rt->rt_lock);
1633 
1634 	return (id);
1635 }
1636 
1637 /*
1638  * Delete the async request from the hash table.
1639  */
1640 static void
1641 kcf_reqid_delete(kcf_areq_node_t *areq)
1642 {
1643 	int indx;
1644 	kcf_areq_node_t *nextp, *prevp;
1645 	crypto_req_id_t id = GET_REQID(areq);
1646 	kcf_reqid_table_t *rt;
1647 
1648 	rt = kcf_reqid_table[id & REQID_TABLE_MASK];
1649 	indx = REQID_HASH(id);
1650 
1651 	mutex_enter(&rt->rt_lock);
1652 
1653 	nextp = areq->an_idnext;
1654 	prevp = areq->an_idprev;
1655 	if (nextp != NULL)
1656 		nextp->an_idprev = prevp;
1657 	if (prevp != NULL)
1658 		prevp->an_idnext = nextp;
1659 	else
1660 		rt->rt_idhash[indx] = nextp;
1661 
1662 	SET_REQID(areq, 0);
1663 	cv_broadcast(&areq->an_done);
1664 
1665 	mutex_exit(&rt->rt_lock);
1666 }
1667 
1668 /*
1669  * Cancel a single asynchronous request.
1670  *
1671  * We guarantee that no problems will result from calling
1672  * crypto_cancel_req() for a request which is either running, or
1673  * has already completed. We remove the request from any queues
1674  * if it is possible. We wait for request completion if the
1675  * request is dispatched to a provider.
1676  *
1677  * Calling context:
1678  * 	Can be called from user context only.
1679  *
1680  * NOTE: We acquire the following locks in this routine (in order):
1681  *	- rt_lock (kcf_reqid_table_t)
1682  *	- gswq->gs_lock
1683  *	- areq->an_lock
1684  *	- ictx->kc_in_use_lock (from kcf_removereq_in_ctxchain())
1685  *
1686  * This locking order MUST be maintained in code every where else.
1687  */
1688 void
1689 crypto_cancel_req(crypto_req_id_t id)
1690 {
1691 	int indx;
1692 	kcf_areq_node_t *areq;
1693 	kcf_provider_desc_t *pd;
1694 	kcf_context_t *ictx;
1695 	kcf_reqid_table_t *rt;
1696 
1697 	rt = kcf_reqid_table[id & REQID_TABLE_MASK];
1698 	indx = REQID_HASH(id);
1699 
1700 	mutex_enter(&rt->rt_lock);
1701 	for (areq = rt->rt_idhash[indx]; areq; areq = areq->an_idnext) {
1702 	if (GET_REQID(areq) == id) {
1703 		/*
1704 		 * We found the request. It is either still waiting
1705 		 * in the framework queues or running at the provider.
1706 		 */
1707 		pd = areq->an_provider;
1708 		ASSERT(pd != NULL);
1709 
1710 		switch (pd->pd_prov_type) {
1711 		case CRYPTO_SW_PROVIDER:
1712 			mutex_enter(&gswq->gs_lock);
1713 			mutex_enter(&areq->an_lock);
1714 
1715 			/* This request can be safely canceled. */
1716 			if (areq->an_state <= REQ_WAITING) {
1717 				/* Remove from gswq, global software queue. */
1718 				kcf_remove_node(areq);
1719 				if ((ictx = areq->an_context) != NULL)
1720 					kcf_removereq_in_ctxchain(ictx, areq);
1721 
1722 				mutex_exit(&areq->an_lock);
1723 				mutex_exit(&gswq->gs_lock);
1724 				mutex_exit(&rt->rt_lock);
1725 
1726 				/* Remove areq from hash table and free it. */
1727 				kcf_reqid_delete(areq);
1728 				KCF_AREQ_REFRELE(areq);
1729 				return;
1730 			}
1731 
1732 			mutex_exit(&areq->an_lock);
1733 			mutex_exit(&gswq->gs_lock);
1734 			break;
1735 
1736 		case CRYPTO_HW_PROVIDER:
1737 			/*
1738 			 * There is no interface to remove an entry
1739 			 * once it is on the taskq. So, we do not do
1740 			 * any thing for a hardware provider.
1741 			 */
1742 			break;
1743 		}
1744 
1745 		/*
1746 		 * The request is running. Wait for the request completion
1747 		 * to notify us.
1748 		 */
1749 		KCF_AREQ_REFHOLD(areq);
1750 		while (GET_REQID(areq) == id)
1751 			cv_wait(&areq->an_done, &rt->rt_lock);
1752 		KCF_AREQ_REFRELE(areq);
1753 		break;
1754 	}
1755 	}
1756 
1757 	mutex_exit(&rt->rt_lock);
1758 }
1759 
1760 /*
1761  * Cancel all asynchronous requests associated with the
1762  * passed in crypto context and free it.
1763  *
1764  * A client SHOULD NOT call this routine after calling a crypto_*_final
1765  * routine. This routine is called only during intermediate operations.
1766  * The client should not use the crypto context after this function returns
1767  * since we destroy it.
1768  *
1769  * Calling context:
1770  * 	Can be called from user context only.
1771  */
1772 void
1773 crypto_cancel_ctx(crypto_context_t ctx)
1774 {
1775 	kcf_context_t *ictx;
1776 	kcf_areq_node_t *areq;
1777 
1778 	if (ctx == NULL)
1779 		return;
1780 
1781 	ictx = (kcf_context_t *)((crypto_ctx_t *)ctx)->cc_framework_private;
1782 
1783 	mutex_enter(&ictx->kc_in_use_lock);
1784 
1785 	/* Walk the chain and cancel each request */
1786 	while ((areq = ictx->kc_req_chain_first) != NULL) {
1787 		/*
1788 		 * We have to drop the lock here as we may have
1789 		 * to wait for request completion. We hold the
1790 		 * request before dropping the lock though, so that it
1791 		 * won't be freed underneath us.
1792 		 */
1793 		KCF_AREQ_REFHOLD(areq);
1794 		mutex_exit(&ictx->kc_in_use_lock);
1795 
1796 		crypto_cancel_req(GET_REQID(areq));
1797 		KCF_AREQ_REFRELE(areq);
1798 
1799 		mutex_enter(&ictx->kc_in_use_lock);
1800 	}
1801 
1802 	mutex_exit(&ictx->kc_in_use_lock);
1803 	KCF_CONTEXT_REFRELE(ictx);
1804 }
1805 
1806 /*
1807  * Update kstats.
1808  */
1809 static int
1810 kcf_misc_kstat_update(kstat_t *ksp, int rw)
1811 {
1812 	uint_t tcnt;
1813 	kcf_stats_t *ks_data;
1814 
1815 	if (rw == KSTAT_WRITE)
1816 		return (EACCES);
1817 
1818 	ks_data = ksp->ks_data;
1819 
1820 	ks_data->ks_thrs_in_pool.value.ui32 = kcfpool->kp_threads;
1821 	/*
1822 	 * The failover thread is counted in kp_idlethreads in
1823 	 * some corner cases. This is done to avoid doing more checks
1824 	 * when submitting a request. We account for those cases below.
1825 	 */
1826 	if ((tcnt = kcfpool->kp_idlethreads) == (kcfpool->kp_threads + 1))
1827 		tcnt--;
1828 	ks_data->ks_idle_thrs.value.ui32 = tcnt;
1829 	ks_data->ks_minthrs.value.ui32 = kcf_minthreads;
1830 	ks_data->ks_maxthrs.value.ui32 = kcf_maxthreads;
1831 	ks_data->ks_swq_njobs.value.ui32 = gswq->gs_njobs;
1832 	ks_data->ks_swq_maxjobs.value.ui32 = gswq->gs_maxjobs;
1833 	ks_data->ks_taskq_threads.value.ui32 = crypto_taskq_threads;
1834 	ks_data->ks_taskq_minalloc.value.ui32 = crypto_taskq_minalloc;
1835 	ks_data->ks_taskq_maxalloc.value.ui32 = crypto_taskq_maxalloc;
1836 
1837 	return (0);
1838 }
1839 
1840 /*
1841  * Allocate and initiatize a kcf_dual_req, used for saving the arguments of
1842  * a dual operation or an atomic operation that has to be internally
1843  * simulated with multiple single steps.
1844  * crq determines the memory allocation flags.
1845  */
1846 
1847 kcf_dual_req_t *
1848 kcf_alloc_req(crypto_call_req_t *crq)
1849 {
1850 	kcf_dual_req_t *kcr;
1851 
1852 	kcr = kmem_alloc(sizeof (kcf_dual_req_t), KCF_KMFLAG(crq));
1853 
1854 	if (kcr == NULL)
1855 		return (NULL);
1856 
1857 	/* Copy the whole crypto_call_req struct, as it isn't persistant */
1858 	if (crq != NULL)
1859 		kcr->kr_callreq = *crq;
1860 	else
1861 		bzero(&(kcr->kr_callreq), sizeof (crypto_call_req_t));
1862 	kcr->kr_areq = NULL;
1863 	kcr->kr_saveoffset = 0;
1864 	kcr->kr_savelen = 0;
1865 
1866 	return (kcr);
1867 }
1868 
1869 /*
1870  * Callback routine for the next part of a simulated dual part.
1871  * Schedules the next step.
1872  *
1873  * This routine can be called from interrupt context.
1874  */
1875 void
1876 kcf_next_req(void *next_req_arg, int status)
1877 {
1878 	kcf_dual_req_t *next_req = (kcf_dual_req_t *)next_req_arg;
1879 	kcf_req_params_t *params = &(next_req->kr_params);
1880 	kcf_areq_node_t *areq = next_req->kr_areq;
1881 	int error = status;
1882 	kcf_provider_desc_t *pd;
1883 	crypto_dual_data_t *ct;
1884 
1885 	/* Stop the processing if an error occured at this step */
1886 	if (error != CRYPTO_SUCCESS) {
1887 out:
1888 		areq->an_reqarg = next_req->kr_callreq;
1889 		KCF_AREQ_REFRELE(areq);
1890 		kmem_free(next_req, sizeof (kcf_dual_req_t));
1891 		areq->an_isdual = B_FALSE;
1892 		kcf_aop_done(areq, error);
1893 		return;
1894 	}
1895 
1896 	switch (params->rp_opgrp) {
1897 	case KCF_OG_MAC: {
1898 
1899 		/*
1900 		 * The next req is submitted with the same reqid as the
1901 		 * first part. The consumer only got back that reqid, and
1902 		 * should still be able to cancel the operation during its
1903 		 * second step.
1904 		 */
1905 		kcf_mac_ops_params_t *mops = &(params->rp_u.mac_params);
1906 		crypto_ctx_template_t mac_tmpl;
1907 		kcf_mech_entry_t *me;
1908 
1909 		ct = (crypto_dual_data_t *)mops->mo_data;
1910 		mac_tmpl = (crypto_ctx_template_t)mops->mo_templ;
1911 
1912 		/* No expected recoverable failures, so no retry list */
1913 		pd = kcf_get_mech_provider(mops->mo_framework_mechtype,
1914 		    &me, &error, NULL, CRYPTO_FG_MAC_ATOMIC,
1915 		    (areq->an_reqarg.cr_flag & CRYPTO_RESTRICTED), ct->dd_len2);
1916 
1917 		if (pd == NULL) {
1918 			error = CRYPTO_MECH_NOT_SUPPORTED;
1919 			goto out;
1920 		}
1921 		/* Validate the MAC context template here */
1922 		if ((pd->pd_prov_type == CRYPTO_SW_PROVIDER) &&
1923 		    (mac_tmpl != NULL)) {
1924 			kcf_ctx_template_t *ctx_mac_tmpl;
1925 
1926 			ctx_mac_tmpl = (kcf_ctx_template_t *)mac_tmpl;
1927 
1928 			if (ctx_mac_tmpl->ct_generation != me->me_gen_swprov) {
1929 				KCF_PROV_REFRELE(pd);
1930 				error = CRYPTO_OLD_CTX_TEMPLATE;
1931 				goto out;
1932 			}
1933 			mops->mo_templ = ctx_mac_tmpl->ct_prov_tmpl;
1934 		}
1935 
1936 		break;
1937 	}
1938 	case KCF_OG_DECRYPT: {
1939 		kcf_decrypt_ops_params_t *dcrops =
1940 		    &(params->rp_u.decrypt_params);
1941 
1942 		ct = (crypto_dual_data_t *)dcrops->dop_ciphertext;
1943 		/* No expected recoverable failures, so no retry list */
1944 		pd = kcf_get_mech_provider(dcrops->dop_framework_mechtype,
1945 		    NULL, &error, NULL, CRYPTO_FG_DECRYPT_ATOMIC,
1946 		    (areq->an_reqarg.cr_flag & CRYPTO_RESTRICTED), ct->dd_len1);
1947 
1948 		if (pd == NULL) {
1949 			error = CRYPTO_MECH_NOT_SUPPORTED;
1950 			goto out;
1951 		}
1952 		break;
1953 	}
1954 	}
1955 
1956 	/* The second step uses len2 and offset2 of the dual_data */
1957 	next_req->kr_saveoffset = ct->dd_offset1;
1958 	next_req->kr_savelen = ct->dd_len1;
1959 	ct->dd_offset1 = ct->dd_offset2;
1960 	ct->dd_len1 = ct->dd_len2;
1961 
1962 	/* preserve if the caller is restricted */
1963 	if (areq->an_reqarg.cr_flag & CRYPTO_RESTRICTED) {
1964 		areq->an_reqarg.cr_flag = CRYPTO_RESTRICTED;
1965 	} else {
1966 		areq->an_reqarg.cr_flag = 0;
1967 	}
1968 
1969 	areq->an_reqarg.cr_callback_func = kcf_last_req;
1970 	areq->an_reqarg.cr_callback_arg = next_req;
1971 	areq->an_isdual = B_TRUE;
1972 
1973 	/*
1974 	 * We would like to call kcf_submit_request() here. But,
1975 	 * that is not possible as that routine allocates a new
1976 	 * kcf_areq_node_t request structure, while we need to
1977 	 * reuse the existing request structure.
1978 	 */
1979 	switch (pd->pd_prov_type) {
1980 	case CRYPTO_SW_PROVIDER:
1981 		error = common_submit_request(pd, NULL, params,
1982 		    KCF_RHNDL(KM_NOSLEEP));
1983 		break;
1984 
1985 	case CRYPTO_HW_PROVIDER: {
1986 		kcf_provider_desc_t *old_pd;
1987 		taskq_t *taskq = pd->pd_sched_info.ks_taskq;
1988 
1989 		/*
1990 		 * Set the params for the second step in the
1991 		 * dual-ops.
1992 		 */
1993 		areq->an_params = *params;
1994 		old_pd = areq->an_provider;
1995 		KCF_PROV_REFRELE(old_pd);
1996 		KCF_PROV_REFHOLD(pd);
1997 		areq->an_provider = pd;
1998 
1999 		/*
2000 		 * Note that we have to do a taskq_dispatch()
2001 		 * here as we may be in interrupt context.
2002 		 */
2003 		if (taskq_dispatch(taskq, process_req_hwp, areq,
2004 		    TQ_NOSLEEP) == (taskqid_t)0) {
2005 			error = CRYPTO_HOST_MEMORY;
2006 		} else {
2007 			error = CRYPTO_QUEUED;
2008 		}
2009 		break;
2010 	}
2011 	}
2012 
2013 	/*
2014 	 * We have to release the holds on the request and the provider
2015 	 * in all cases.
2016 	 */
2017 	KCF_AREQ_REFRELE(areq);
2018 	KCF_PROV_REFRELE(pd);
2019 
2020 	if (error != CRYPTO_QUEUED) {
2021 		/* restore, clean up, and invoke the client's callback */
2022 
2023 		ct->dd_offset1 = next_req->kr_saveoffset;
2024 		ct->dd_len1 = next_req->kr_savelen;
2025 		areq->an_reqarg = next_req->kr_callreq;
2026 		kmem_free(next_req, sizeof (kcf_dual_req_t));
2027 		areq->an_isdual = B_FALSE;
2028 		kcf_aop_done(areq, error);
2029 	}
2030 }
2031 
2032 /*
2033  * Last part of an emulated dual operation.
2034  * Clean up and restore ...
2035  */
2036 void
2037 kcf_last_req(void *last_req_arg, int status)
2038 {
2039 	kcf_dual_req_t *last_req = (kcf_dual_req_t *)last_req_arg;
2040 
2041 	kcf_req_params_t *params = &(last_req->kr_params);
2042 	kcf_areq_node_t *areq = last_req->kr_areq;
2043 	crypto_dual_data_t *ct;
2044 
2045 	switch (params->rp_opgrp) {
2046 	case KCF_OG_MAC: {
2047 		kcf_mac_ops_params_t *mops = &(params->rp_u.mac_params);
2048 
2049 		ct = (crypto_dual_data_t *)mops->mo_data;
2050 		break;
2051 	}
2052 	case KCF_OG_DECRYPT: {
2053 		kcf_decrypt_ops_params_t *dcrops =
2054 		    &(params->rp_u.decrypt_params);
2055 
2056 		ct = (crypto_dual_data_t *)dcrops->dop_ciphertext;
2057 		break;
2058 	}
2059 	}
2060 	ct->dd_offset1 = last_req->kr_saveoffset;
2061 	ct->dd_len1 = last_req->kr_savelen;
2062 
2063 	/* The submitter used kcf_last_req as its callback */
2064 
2065 	if (areq == NULL) {
2066 		crypto_call_req_t *cr = &last_req->kr_callreq;
2067 
2068 		(*(cr->cr_callback_func))(cr->cr_callback_arg, status);
2069 		kmem_free(last_req, sizeof (kcf_dual_req_t));
2070 		return;
2071 	}
2072 	areq->an_reqarg = last_req->kr_callreq;
2073 	KCF_AREQ_REFRELE(areq);
2074 	kmem_free(last_req, sizeof (kcf_dual_req_t));
2075 	areq->an_isdual = B_FALSE;
2076 	kcf_aop_done(areq, status);
2077 }
2078