xref: /illumos-gate/usr/src/lib/libzpool/common/kernel.c (revision 5f82aa32fbc5dc2c59bca6ff315f44a4c4c9ea86)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24  * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
25  */
26 
27 #include <assert.h>
28 #include <fcntl.h>
29 #include <poll.h>
30 #include <stdio.h>
31 #include <stdlib.h>
32 #include <string.h>
33 #include <zlib.h>
34 #include <libgen.h>
35 #include <sys/spa.h>
36 #include <sys/stat.h>
37 #include <sys/processor.h>
38 #include <sys/zfs_context.h>
39 #include <sys/rrwlock.h>
40 #include <sys/zmod.h>
41 #include <sys/utsname.h>
42 #include <sys/systeminfo.h>
43 
44 /*
45  * Emulation of kernel services in userland.
46  */
47 
48 int aok;
49 uint64_t physmem;
50 vnode_t *rootdir = (vnode_t *)0xabcd1234;
51 char hw_serial[HW_HOSTID_LEN];
52 kmutex_t cpu_lock;
53 vmem_t *zio_arena = NULL;
54 
55 /* If set, all blocks read will be copied to the specified directory. */
56 char *vn_dumpdir = NULL;
57 
58 struct utsname utsname = {
59 	"userland", "libzpool", "1", "1", "na"
60 };
61 
62 /* this only exists to have its address taken */
63 struct proc p0;
64 
65 /*
66  * =========================================================================
67  * threads
68  * =========================================================================
69  */
70 /*ARGSUSED*/
71 kthread_t *
72 zk_thread_create(void (*func)(), void *arg, uint64_t len)
73 {
74 	thread_t tid;
75 
76 	ASSERT0(len);
77 	VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED,
78 	    &tid) == 0);
79 
80 	return ((void *)(uintptr_t)tid);
81 }
82 
83 /*
84  * =========================================================================
85  * kstats
86  * =========================================================================
87  */
88 /*ARGSUSED*/
89 kstat_t *
90 kstat_create(const char *module, int instance, const char *name,
91     const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag)
92 {
93 	return (NULL);
94 }
95 
96 /*ARGSUSED*/
97 void
98 kstat_named_init(kstat_named_t *knp, const char *name, uchar_t type)
99 {}
100 
101 /*ARGSUSED*/
102 void
103 kstat_install(kstat_t *ksp)
104 {}
105 
106 /*ARGSUSED*/
107 void
108 kstat_delete(kstat_t *ksp)
109 {}
110 
111 /*ARGSUSED*/
112 void
113 kstat_waitq_enter(kstat_io_t *kiop)
114 {}
115 
116 /*ARGSUSED*/
117 void
118 kstat_waitq_exit(kstat_io_t *kiop)
119 {}
120 
121 /*ARGSUSED*/
122 void
123 kstat_runq_enter(kstat_io_t *kiop)
124 {}
125 
126 /*ARGSUSED*/
127 void
128 kstat_runq_exit(kstat_io_t *kiop)
129 {}
130 
131 /*ARGSUSED*/
132 void
133 kstat_waitq_to_runq(kstat_io_t *kiop)
134 {}
135 
136 /*ARGSUSED*/
137 void
138 kstat_runq_back_to_waitq(kstat_io_t *kiop)
139 {}
140 
141 /*
142  * =========================================================================
143  * mutexes
144  * =========================================================================
145  */
146 void
147 zmutex_init(kmutex_t *mp)
148 {
149 	mp->m_owner = NULL;
150 	mp->initialized = B_TRUE;
151 	(void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL);
152 }
153 
154 void
155 zmutex_destroy(kmutex_t *mp)
156 {
157 	ASSERT(mp->initialized == B_TRUE);
158 	ASSERT(mp->m_owner == NULL);
159 	(void) _mutex_destroy(&(mp)->m_lock);
160 	mp->m_owner = (void *)-1UL;
161 	mp->initialized = B_FALSE;
162 }
163 
164 void
165 zmutex_enter(kmutex_t *mp)
166 {
167 	ASSERT(mp->initialized == B_TRUE);
168 	ASSERT(mp->m_owner != (void *)-1UL);
169 	ASSERT(mp->m_owner != curthread);
170 	VERIFY(mutex_lock(&mp->m_lock) == 0);
171 	ASSERT(mp->m_owner == NULL);
172 	mp->m_owner = curthread;
173 }
174 
175 int
176 mutex_tryenter(kmutex_t *mp)
177 {
178 	ASSERT(mp->initialized == B_TRUE);
179 	ASSERT(mp->m_owner != (void *)-1UL);
180 	if (0 == mutex_trylock(&mp->m_lock)) {
181 		ASSERT(mp->m_owner == NULL);
182 		mp->m_owner = curthread;
183 		return (1);
184 	} else {
185 		return (0);
186 	}
187 }
188 
189 void
190 zmutex_exit(kmutex_t *mp)
191 {
192 	ASSERT(mp->initialized == B_TRUE);
193 	ASSERT(mutex_owner(mp) == curthread);
194 	mp->m_owner = NULL;
195 	VERIFY(mutex_unlock(&mp->m_lock) == 0);
196 }
197 
198 void *
199 mutex_owner(kmutex_t *mp)
200 {
201 	ASSERT(mp->initialized == B_TRUE);
202 	return (mp->m_owner);
203 }
204 
205 /*
206  * =========================================================================
207  * rwlocks
208  * =========================================================================
209  */
210 /*ARGSUSED*/
211 void
212 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
213 {
214 	rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL);
215 	rwlp->rw_owner = NULL;
216 	rwlp->initialized = B_TRUE;
217 }
218 
219 void
220 rw_destroy(krwlock_t *rwlp)
221 {
222 	rwlock_destroy(&rwlp->rw_lock);
223 	rwlp->rw_owner = (void *)-1UL;
224 	rwlp->initialized = B_FALSE;
225 }
226 
227 void
228 rw_enter(krwlock_t *rwlp, krw_t rw)
229 {
230 	ASSERT(!RW_LOCK_HELD(rwlp));
231 	ASSERT(rwlp->initialized == B_TRUE);
232 	ASSERT(rwlp->rw_owner != (void *)-1UL);
233 	ASSERT(rwlp->rw_owner != curthread);
234 
235 	if (rw == RW_WRITER)
236 		VERIFY(rw_wrlock(&rwlp->rw_lock) == 0);
237 	else
238 		VERIFY(rw_rdlock(&rwlp->rw_lock) == 0);
239 
240 	rwlp->rw_owner = curthread;
241 }
242 
243 void
244 rw_exit(krwlock_t *rwlp)
245 {
246 	ASSERT(rwlp->initialized == B_TRUE);
247 	ASSERT(rwlp->rw_owner != (void *)-1UL);
248 
249 	rwlp->rw_owner = NULL;
250 	VERIFY(rw_unlock(&rwlp->rw_lock) == 0);
251 }
252 
253 int
254 rw_tryenter(krwlock_t *rwlp, krw_t rw)
255 {
256 	int rv;
257 
258 	ASSERT(rwlp->initialized == B_TRUE);
259 	ASSERT(rwlp->rw_owner != (void *)-1UL);
260 
261 	if (rw == RW_WRITER)
262 		rv = rw_trywrlock(&rwlp->rw_lock);
263 	else
264 		rv = rw_tryrdlock(&rwlp->rw_lock);
265 
266 	if (rv == 0) {
267 		rwlp->rw_owner = curthread;
268 		return (1);
269 	}
270 
271 	return (0);
272 }
273 
274 /*ARGSUSED*/
275 int
276 rw_tryupgrade(krwlock_t *rwlp)
277 {
278 	ASSERT(rwlp->initialized == B_TRUE);
279 	ASSERT(rwlp->rw_owner != (void *)-1UL);
280 
281 	return (0);
282 }
283 
284 /*
285  * =========================================================================
286  * condition variables
287  * =========================================================================
288  */
289 /*ARGSUSED*/
290 void
291 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
292 {
293 	VERIFY(cond_init(cv, type, NULL) == 0);
294 }
295 
296 void
297 cv_destroy(kcondvar_t *cv)
298 {
299 	VERIFY(cond_destroy(cv) == 0);
300 }
301 
302 void
303 cv_wait(kcondvar_t *cv, kmutex_t *mp)
304 {
305 	ASSERT(mutex_owner(mp) == curthread);
306 	mp->m_owner = NULL;
307 	int ret = cond_wait(cv, &mp->m_lock);
308 	VERIFY(ret == 0 || ret == EINTR);
309 	mp->m_owner = curthread;
310 }
311 
312 clock_t
313 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
314 {
315 	int error;
316 	timestruc_t ts;
317 	clock_t delta;
318 
319 top:
320 	delta = abstime - ddi_get_lbolt();
321 	if (delta <= 0)
322 		return (-1);
323 
324 	ts.tv_sec = delta / hz;
325 	ts.tv_nsec = (delta % hz) * (NANOSEC / hz);
326 
327 	ASSERT(mutex_owner(mp) == curthread);
328 	mp->m_owner = NULL;
329 	error = cond_reltimedwait(cv, &mp->m_lock, &ts);
330 	mp->m_owner = curthread;
331 
332 	if (error == ETIME)
333 		return (-1);
334 
335 	if (error == EINTR)
336 		goto top;
337 
338 	ASSERT(error == 0);
339 
340 	return (1);
341 }
342 
343 /*ARGSUSED*/
344 clock_t
345 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
346     int flag)
347 {
348 	int error;
349 	timestruc_t ts;
350 	hrtime_t delta;
351 
352 	ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE);
353 
354 top:
355 	delta = tim;
356 	if (flag & CALLOUT_FLAG_ABSOLUTE)
357 		delta -= gethrtime();
358 
359 	if (delta <= 0)
360 		return (-1);
361 
362 	ts.tv_sec = delta / NANOSEC;
363 	ts.tv_nsec = delta % NANOSEC;
364 
365 	ASSERT(mutex_owner(mp) == curthread);
366 	mp->m_owner = NULL;
367 	error = cond_reltimedwait(cv, &mp->m_lock, &ts);
368 	mp->m_owner = curthread;
369 
370 	if (error == ETIME)
371 		return (-1);
372 
373 	if (error == EINTR)
374 		goto top;
375 
376 	ASSERT(error == 0);
377 
378 	return (1);
379 }
380 
381 void
382 cv_signal(kcondvar_t *cv)
383 {
384 	VERIFY(cond_signal(cv) == 0);
385 }
386 
387 void
388 cv_broadcast(kcondvar_t *cv)
389 {
390 	VERIFY(cond_broadcast(cv) == 0);
391 }
392 
393 /*
394  * =========================================================================
395  * vnode operations
396  * =========================================================================
397  */
398 /*
399  * Note: for the xxxat() versions of these functions, we assume that the
400  * starting vp is always rootdir (which is true for spa_directory.c, the only
401  * ZFS consumer of these interfaces).  We assert this is true, and then emulate
402  * them by adding '/' in front of the path.
403  */
404 
405 /*ARGSUSED*/
406 int
407 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
408 {
409 	int fd;
410 	int dump_fd;
411 	vnode_t *vp;
412 	int old_umask;
413 	char realpath[MAXPATHLEN];
414 	struct stat64 st;
415 
416 	/*
417 	 * If we're accessing a real disk from userland, we need to use
418 	 * the character interface to avoid caching.  This is particularly
419 	 * important if we're trying to look at a real in-kernel storage
420 	 * pool from userland, e.g. via zdb, because otherwise we won't
421 	 * see the changes occurring under the segmap cache.
422 	 * On the other hand, the stupid character device returns zero
423 	 * for its size.  So -- gag -- we open the block device to get
424 	 * its size, and remember it for subsequent VOP_GETATTR().
425 	 */
426 	if (strncmp(path, "/dev/", 5) == 0) {
427 		char *dsk;
428 		fd = open64(path, O_RDONLY);
429 		if (fd == -1)
430 			return (errno);
431 		if (fstat64(fd, &st) == -1) {
432 			close(fd);
433 			return (errno);
434 		}
435 		close(fd);
436 		(void) sprintf(realpath, "%s", path);
437 		dsk = strstr(path, "/dsk/");
438 		if (dsk != NULL)
439 			(void) sprintf(realpath + (dsk - path) + 1, "r%s",
440 			    dsk + 1);
441 	} else {
442 		(void) sprintf(realpath, "%s", path);
443 		if (!(flags & FCREAT) && stat64(realpath, &st) == -1)
444 			return (errno);
445 	}
446 
447 	if (flags & FCREAT)
448 		old_umask = umask(0);
449 
450 	/*
451 	 * The construct 'flags - FREAD' conveniently maps combinations of
452 	 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
453 	 */
454 	fd = open64(realpath, flags - FREAD, mode);
455 
456 	if (flags & FCREAT)
457 		(void) umask(old_umask);
458 
459 	if (vn_dumpdir != NULL) {
460 		char dumppath[MAXPATHLEN];
461 		(void) snprintf(dumppath, sizeof (dumppath),
462 		    "%s/%s", vn_dumpdir, basename(realpath));
463 		dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666);
464 		if (dump_fd == -1)
465 			return (errno);
466 	} else {
467 		dump_fd = -1;
468 	}
469 
470 	if (fd == -1)
471 		return (errno);
472 
473 	if (fstat64(fd, &st) == -1) {
474 		close(fd);
475 		return (errno);
476 	}
477 
478 	(void) fcntl(fd, F_SETFD, FD_CLOEXEC);
479 
480 	*vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
481 
482 	vp->v_fd = fd;
483 	vp->v_size = st.st_size;
484 	vp->v_path = spa_strdup(path);
485 	vp->v_dump_fd = dump_fd;
486 
487 	return (0);
488 }
489 
490 /*ARGSUSED*/
491 int
492 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
493     int x3, vnode_t *startvp, int fd)
494 {
495 	char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
496 	int ret;
497 
498 	ASSERT(startvp == rootdir);
499 	(void) sprintf(realpath, "/%s", path);
500 
501 	/* fd ignored for now, need if want to simulate nbmand support */
502 	ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
503 
504 	umem_free(realpath, strlen(path) + 2);
505 
506 	return (ret);
507 }
508 
509 /*ARGSUSED*/
510 int
511 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
512     int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
513 {
514 	ssize_t iolen, split;
515 
516 	if (uio == UIO_READ) {
517 		iolen = pread64(vp->v_fd, addr, len, offset);
518 		if (vp->v_dump_fd != -1) {
519 			int status =
520 			    pwrite64(vp->v_dump_fd, addr, iolen, offset);
521 			ASSERT(status != -1);
522 		}
523 	} else {
524 		/*
525 		 * To simulate partial disk writes, we split writes into two
526 		 * system calls so that the process can be killed in between.
527 		 */
528 		int sectors = len >> SPA_MINBLOCKSHIFT;
529 		split = (sectors > 0 ? rand() % sectors : 0) <<
530 		    SPA_MINBLOCKSHIFT;
531 		iolen = pwrite64(vp->v_fd, addr, split, offset);
532 		iolen += pwrite64(vp->v_fd, (char *)addr + split,
533 		    len - split, offset + split);
534 	}
535 
536 	if (iolen == -1)
537 		return (errno);
538 	if (residp)
539 		*residp = len - iolen;
540 	else if (iolen != len)
541 		return (EIO);
542 	return (0);
543 }
544 
545 void
546 vn_close(vnode_t *vp)
547 {
548 	close(vp->v_fd);
549 	if (vp->v_dump_fd != -1)
550 		close(vp->v_dump_fd);
551 	spa_strfree(vp->v_path);
552 	umem_free(vp, sizeof (vnode_t));
553 }
554 
555 /*
556  * At a minimum we need to update the size since vdev_reopen()
557  * will no longer call vn_openat().
558  */
559 int
560 fop_getattr(vnode_t *vp, vattr_t *vap)
561 {
562 	struct stat64 st;
563 
564 	if (fstat64(vp->v_fd, &st) == -1) {
565 		close(vp->v_fd);
566 		return (errno);
567 	}
568 
569 	vap->va_size = st.st_size;
570 	return (0);
571 }
572 
573 #ifdef ZFS_DEBUG
574 
575 /*
576  * =========================================================================
577  * Figure out which debugging statements to print
578  * =========================================================================
579  */
580 
581 static char *dprintf_string;
582 static int dprintf_print_all;
583 
584 int
585 dprintf_find_string(const char *string)
586 {
587 	char *tmp_str = dprintf_string;
588 	int len = strlen(string);
589 
590 	/*
591 	 * Find out if this is a string we want to print.
592 	 * String format: file1.c,function_name1,file2.c,file3.c
593 	 */
594 
595 	while (tmp_str != NULL) {
596 		if (strncmp(tmp_str, string, len) == 0 &&
597 		    (tmp_str[len] == ',' || tmp_str[len] == '\0'))
598 			return (1);
599 		tmp_str = strchr(tmp_str, ',');
600 		if (tmp_str != NULL)
601 			tmp_str++; /* Get rid of , */
602 	}
603 	return (0);
604 }
605 
606 void
607 dprintf_setup(int *argc, char **argv)
608 {
609 	int i, j;
610 
611 	/*
612 	 * Debugging can be specified two ways: by setting the
613 	 * environment variable ZFS_DEBUG, or by including a
614 	 * "debug=..."  argument on the command line.  The command
615 	 * line setting overrides the environment variable.
616 	 */
617 
618 	for (i = 1; i < *argc; i++) {
619 		int len = strlen("debug=");
620 		/* First look for a command line argument */
621 		if (strncmp("debug=", argv[i], len) == 0) {
622 			dprintf_string = argv[i] + len;
623 			/* Remove from args */
624 			for (j = i; j < *argc; j++)
625 				argv[j] = argv[j+1];
626 			argv[j] = NULL;
627 			(*argc)--;
628 		}
629 	}
630 
631 	if (dprintf_string == NULL) {
632 		/* Look for ZFS_DEBUG environment variable */
633 		dprintf_string = getenv("ZFS_DEBUG");
634 	}
635 
636 	/*
637 	 * Are we just turning on all debugging?
638 	 */
639 	if (dprintf_find_string("on"))
640 		dprintf_print_all = 1;
641 
642 	if (dprintf_string != NULL)
643 		zfs_flags |= ZFS_DEBUG_DPRINTF;
644 }
645 
646 /*
647  * =========================================================================
648  * debug printfs
649  * =========================================================================
650  */
651 void
652 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
653 {
654 	const char *newfile;
655 	va_list adx;
656 
657 	/*
658 	 * Get rid of annoying "../common/" prefix to filename.
659 	 */
660 	newfile = strrchr(file, '/');
661 	if (newfile != NULL) {
662 		newfile = newfile + 1; /* Get rid of leading / */
663 	} else {
664 		newfile = file;
665 	}
666 
667 	if (dprintf_print_all ||
668 	    dprintf_find_string(newfile) ||
669 	    dprintf_find_string(func)) {
670 		/* Print out just the function name if requested */
671 		flockfile(stdout);
672 		if (dprintf_find_string("pid"))
673 			(void) printf("%d ", getpid());
674 		if (dprintf_find_string("tid"))
675 			(void) printf("%u ", thr_self());
676 		if (dprintf_find_string("cpu"))
677 			(void) printf("%u ", getcpuid());
678 		if (dprintf_find_string("time"))
679 			(void) printf("%llu ", gethrtime());
680 		if (dprintf_find_string("long"))
681 			(void) printf("%s, line %d: ", newfile, line);
682 		(void) printf("%s: ", func);
683 		va_start(adx, fmt);
684 		(void) vprintf(fmt, adx);
685 		va_end(adx);
686 		funlockfile(stdout);
687 	}
688 }
689 
690 #endif /* ZFS_DEBUG */
691 
692 /*
693  * =========================================================================
694  * cmn_err() and panic()
695  * =========================================================================
696  */
697 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
698 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
699 
700 void
701 vpanic(const char *fmt, va_list adx)
702 {
703 	char buf[512];
704 	(void) vsnprintf(buf, 512, fmt, adx);
705 	assfail(buf, NULL, 0);
706 	abort(); /* necessary to make vpanic meet noreturn requirements */
707 }
708 
709 void
710 panic(const char *fmt, ...)
711 {
712 	va_list adx;
713 
714 	va_start(adx, fmt);
715 	vpanic(fmt, adx);
716 	va_end(adx);
717 }
718 
719 void
720 vcmn_err(int ce, const char *fmt, va_list adx)
721 {
722 	if (ce == CE_PANIC)
723 		vpanic(fmt, adx);
724 	if (ce != CE_NOTE) {	/* suppress noise in userland stress testing */
725 		(void) fprintf(stderr, "%s", ce_prefix[ce]);
726 		(void) vfprintf(stderr, fmt, adx);
727 		(void) fprintf(stderr, "%s", ce_suffix[ce]);
728 	}
729 }
730 
731 /*PRINTFLIKE2*/
732 void
733 cmn_err(int ce, const char *fmt, ...)
734 {
735 	va_list adx;
736 
737 	va_start(adx, fmt);
738 	vcmn_err(ce, fmt, adx);
739 	va_end(adx);
740 }
741 
742 /*
743  * =========================================================================
744  * kobj interfaces
745  * =========================================================================
746  */
747 struct _buf *
748 kobj_open_file(char *name)
749 {
750 	struct _buf *file;
751 	vnode_t *vp;
752 
753 	/* set vp as the _fd field of the file */
754 	if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
755 	    -1) != 0)
756 		return ((void *)-1UL);
757 
758 	file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
759 	file->_fd = (intptr_t)vp;
760 	return (file);
761 }
762 
763 int
764 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
765 {
766 	ssize_t resid;
767 
768 	vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
769 	    UIO_SYSSPACE, 0, 0, 0, &resid);
770 
771 	return (size - resid);
772 }
773 
774 void
775 kobj_close_file(struct _buf *file)
776 {
777 	vn_close((vnode_t *)file->_fd);
778 	umem_free(file, sizeof (struct _buf));
779 }
780 
781 int
782 kobj_get_filesize(struct _buf *file, uint64_t *size)
783 {
784 	struct stat64 st;
785 	vnode_t *vp = (vnode_t *)file->_fd;
786 
787 	if (fstat64(vp->v_fd, &st) == -1) {
788 		vn_close(vp);
789 		return (errno);
790 	}
791 	*size = st.st_size;
792 	return (0);
793 }
794 
795 /*
796  * =========================================================================
797  * misc routines
798  * =========================================================================
799  */
800 
801 void
802 delay(clock_t ticks)
803 {
804 	poll(0, 0, ticks * (1000 / hz));
805 }
806 
807 /*
808  * Find highest one bit set.
809  *	Returns bit number + 1 of highest bit that is set, otherwise returns 0.
810  */
811 int
812 highbit64(uint64_t i)
813 {
814 	int h = 1;
815 
816 	if (i == 0)
817 		return (0);
818 	if (i & 0xffffffff00000000ULL) {
819 		h += 32; i >>= 32;
820 	}
821 	if (i & 0xffff0000) {
822 		h += 16; i >>= 16;
823 	}
824 	if (i & 0xff00) {
825 		h += 8; i >>= 8;
826 	}
827 	if (i & 0xf0) {
828 		h += 4; i >>= 4;
829 	}
830 	if (i & 0xc) {
831 		h += 2; i >>= 2;
832 	}
833 	if (i & 0x2) {
834 		h += 1;
835 	}
836 	return (h);
837 }
838 
839 static int random_fd = -1, urandom_fd = -1;
840 
841 static int
842 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
843 {
844 	size_t resid = len;
845 	ssize_t bytes;
846 
847 	ASSERT(fd != -1);
848 
849 	while (resid != 0) {
850 		bytes = read(fd, ptr, resid);
851 		ASSERT3S(bytes, >=, 0);
852 		ptr += bytes;
853 		resid -= bytes;
854 	}
855 
856 	return (0);
857 }
858 
859 int
860 random_get_bytes(uint8_t *ptr, size_t len)
861 {
862 	return (random_get_bytes_common(ptr, len, random_fd));
863 }
864 
865 int
866 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
867 {
868 	return (random_get_bytes_common(ptr, len, urandom_fd));
869 }
870 
871 int
872 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
873 {
874 	char *end;
875 
876 	*result = strtoul(hw_serial, &end, base);
877 	if (*result == 0)
878 		return (errno);
879 	return (0);
880 }
881 
882 int
883 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
884 {
885 	char *end;
886 
887 	*result = strtoull(str, &end, base);
888 	if (*result == 0)
889 		return (errno);
890 	return (0);
891 }
892 
893 /* ARGSUSED */
894 cyclic_id_t
895 cyclic_add(cyc_handler_t *hdlr, cyc_time_t *when)
896 {
897 	return (1);
898 }
899 
900 /* ARGSUSED */
901 void
902 cyclic_remove(cyclic_id_t id)
903 {
904 }
905 
906 /* ARGSUSED */
907 int
908 cyclic_reprogram(cyclic_id_t id, hrtime_t expiration)
909 {
910 	return (1);
911 }
912 
913 /*
914  * =========================================================================
915  * kernel emulation setup & teardown
916  * =========================================================================
917  */
918 static int
919 umem_out_of_memory(void)
920 {
921 	char errmsg[] = "out of memory -- generating core dump\n";
922 
923 	write(fileno(stderr), errmsg, sizeof (errmsg));
924 	abort();
925 	return (0);
926 }
927 
928 void
929 kernel_init(int mode)
930 {
931 	extern uint_t rrw_tsd_key;
932 
933 	umem_nofail_callback(umem_out_of_memory);
934 
935 	physmem = sysconf(_SC_PHYS_PAGES);
936 
937 	dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
938 	    (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
939 
940 	(void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
941 	    (mode & FWRITE) ? gethostid() : 0);
942 
943 	VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
944 	VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
945 
946 	system_taskq_init();
947 
948 	mutex_init(&cpu_lock, NULL, MUTEX_DEFAULT, NULL);
949 
950 	spa_init(mode);
951 
952 	tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
953 }
954 
955 void
956 kernel_fini(void)
957 {
958 	spa_fini();
959 
960 	system_taskq_fini();
961 
962 	close(random_fd);
963 	close(urandom_fd);
964 
965 	random_fd = -1;
966 	urandom_fd = -1;
967 }
968 
969 int
970 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen)
971 {
972 	int ret;
973 	uLongf len = *dstlen;
974 
975 	if ((ret = uncompress(dst, &len, src, srclen)) == Z_OK)
976 		*dstlen = (size_t)len;
977 
978 	return (ret);
979 }
980 
981 int
982 z_compress_level(void *dst, size_t *dstlen, const void *src, size_t srclen,
983     int level)
984 {
985 	int ret;
986 	uLongf len = *dstlen;
987 
988 	if ((ret = compress2(dst, &len, src, srclen, level)) == Z_OK)
989 		*dstlen = (size_t)len;
990 
991 	return (ret);
992 }
993 
994 uid_t
995 crgetuid(cred_t *cr)
996 {
997 	return (0);
998 }
999 
1000 uid_t
1001 crgetruid(cred_t *cr)
1002 {
1003 	return (0);
1004 }
1005 
1006 gid_t
1007 crgetgid(cred_t *cr)
1008 {
1009 	return (0);
1010 }
1011 
1012 int
1013 crgetngroups(cred_t *cr)
1014 {
1015 	return (0);
1016 }
1017 
1018 gid_t *
1019 crgetgroups(cred_t *cr)
1020 {
1021 	return (NULL);
1022 }
1023 
1024 int
1025 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
1026 {
1027 	return (0);
1028 }
1029 
1030 int
1031 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
1032 {
1033 	return (0);
1034 }
1035 
1036 int
1037 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
1038 {
1039 	return (0);
1040 }
1041 
1042 ksiddomain_t *
1043 ksid_lookupdomain(const char *dom)
1044 {
1045 	ksiddomain_t *kd;
1046 
1047 	kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
1048 	kd->kd_name = spa_strdup(dom);
1049 	return (kd);
1050 }
1051 
1052 void
1053 ksiddomain_rele(ksiddomain_t *ksid)
1054 {
1055 	spa_strfree(ksid->kd_name);
1056 	umem_free(ksid, sizeof (ksiddomain_t));
1057 }
1058 
1059 /*
1060  * Do not change the length of the returned string; it must be freed
1061  * with strfree().
1062  */
1063 char *
1064 kmem_asprintf(const char *fmt, ...)
1065 {
1066 	int size;
1067 	va_list adx;
1068 	char *buf;
1069 
1070 	va_start(adx, fmt);
1071 	size = vsnprintf(NULL, 0, fmt, adx) + 1;
1072 	va_end(adx);
1073 
1074 	buf = kmem_alloc(size, KM_SLEEP);
1075 
1076 	va_start(adx, fmt);
1077 	size = vsnprintf(buf, size, fmt, adx);
1078 	va_end(adx);
1079 
1080 	return (buf);
1081 }
1082 
1083 /* ARGSUSED */
1084 int
1085 zfs_onexit_fd_hold(int fd, minor_t *minorp)
1086 {
1087 	*minorp = 0;
1088 	return (0);
1089 }
1090 
1091 /* ARGSUSED */
1092 void
1093 zfs_onexit_fd_rele(int fd)
1094 {
1095 }
1096 
1097 /* ARGSUSED */
1098 int
1099 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
1100     uint64_t *action_handle)
1101 {
1102 	return (0);
1103 }
1104 
1105 /* ARGSUSED */
1106 int
1107 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire)
1108 {
1109 	return (0);
1110 }
1111 
1112 /* ARGSUSED */
1113 int
1114 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data)
1115 {
1116 	return (0);
1117 }
1118 
1119 void
1120 bioinit(buf_t *bp)
1121 {
1122 	bzero(bp, sizeof (buf_t));
1123 }
1124 
1125 void
1126 biodone(buf_t *bp)
1127 {
1128 	if (bp->b_iodone != NULL) {
1129 		(*(bp->b_iodone))(bp);
1130 		return;
1131 	}
1132 	ASSERT((bp->b_flags & B_DONE) == 0);
1133 	bp->b_flags |= B_DONE;
1134 }
1135 
1136 void
1137 bioerror(buf_t *bp, int error)
1138 {
1139 	ASSERT(bp != NULL);
1140 	ASSERT(error >= 0);
1141 
1142 	if (error != 0) {
1143 		bp->b_flags |= B_ERROR;
1144 	} else {
1145 		bp->b_flags &= ~B_ERROR;
1146 	}
1147 	bp->b_error = error;
1148 }
1149 
1150 
1151 int
1152 geterror(struct buf *bp)
1153 {
1154 	int error = 0;
1155 
1156 	if (bp->b_flags & B_ERROR) {
1157 		error = bp->b_error;
1158 		if (!error)
1159 			error = EIO;
1160 	}
1161 	return (error);
1162 }
1163