xref: /illumos-gate/usr/src/lib/libproc/common/Pcore.c (revision 5f82aa32fbc5dc2c59bca6ff315f44a4c4c9ea86)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright 2012 DEY Storage Systems, Inc.  All rights reserved.
27  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
28  * Copyright (c) 2013 by Delphix. All rights reserved.
29  * Copyright 2015 Gary Mills
30  */
31 
32 #include <sys/types.h>
33 #include <sys/utsname.h>
34 #include <sys/sysmacros.h>
35 #include <sys/proc.h>
36 
37 #include <alloca.h>
38 #include <rtld_db.h>
39 #include <libgen.h>
40 #include <limits.h>
41 #include <string.h>
42 #include <stdlib.h>
43 #include <unistd.h>
44 #include <errno.h>
45 #include <gelf.h>
46 #include <stddef.h>
47 #include <signal.h>
48 
49 #include "libproc.h"
50 #include "Pcontrol.h"
51 #include "P32ton.h"
52 #include "Putil.h"
53 #ifdef __x86
54 #include "Pcore_linux.h"
55 #endif
56 
57 /*
58  * Pcore.c - Code to initialize a ps_prochandle from a core dump.  We
59  * allocate an additional structure to hold information from the core
60  * file, and attach this to the standard ps_prochandle in place of the
61  * ability to examine /proc/<pid>/ files.
62  */
63 
64 /*
65  * Basic i/o function for reading and writing from the process address space
66  * stored in the core file and associated shared libraries.  We compute the
67  * appropriate fd and offsets, and let the provided prw function do the rest.
68  */
69 static ssize_t
70 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
71     ssize_t (*prw)(int, void *, size_t, off64_t))
72 {
73 	ssize_t resid = n;
74 
75 	while (resid != 0) {
76 		map_info_t *mp = Paddr2mptr(P, addr);
77 
78 		uintptr_t mapoff;
79 		ssize_t len;
80 		off64_t off;
81 		int fd;
82 
83 		if (mp == NULL)
84 			break;	/* No mapping for this address */
85 
86 		if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
87 			if (mp->map_file == NULL || mp->map_file->file_fd < 0)
88 				break;	/* No file or file not open */
89 
90 			fd = mp->map_file->file_fd;
91 		} else
92 			fd = P->asfd;
93 
94 		mapoff = addr - mp->map_pmap.pr_vaddr;
95 		len = MIN(resid, mp->map_pmap.pr_size - mapoff);
96 		off = mp->map_offset + mapoff;
97 
98 		if ((len = prw(fd, buf, len, off)) <= 0)
99 			break;
100 
101 		resid -= len;
102 		addr += len;
103 		buf = (char *)buf + len;
104 	}
105 
106 	/*
107 	 * Important: Be consistent with the behavior of i/o on the as file:
108 	 * writing to an invalid address yields EIO; reading from an invalid
109 	 * address falls through to returning success and zero bytes.
110 	 */
111 	if (resid == n && n != 0 && prw != pread64) {
112 		errno = EIO;
113 		return (-1);
114 	}
115 
116 	return (n - resid);
117 }
118 
119 /*ARGSUSED*/
120 static ssize_t
121 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
122     void *data)
123 {
124 	return (core_rw(P, buf, n, addr, pread64));
125 }
126 
127 /*ARGSUSED*/
128 static ssize_t
129 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr,
130     void *data)
131 {
132 	return (core_rw(P, (void *)buf, n, addr,
133 	    (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64));
134 }
135 
136 /*ARGSUSED*/
137 static int
138 Pcred_core(struct ps_prochandle *P, prcred_t *pcrp, int ngroups, void *data)
139 {
140 	core_info_t *core = data;
141 
142 	if (core->core_cred != NULL) {
143 		/*
144 		 * Avoid returning more supplementary group data than the
145 		 * caller has allocated in their buffer.  We expect them to
146 		 * check pr_ngroups afterward and potentially call us again.
147 		 */
148 		ngroups = MIN(ngroups, core->core_cred->pr_ngroups);
149 
150 		(void) memcpy(pcrp, core->core_cred,
151 		    sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t));
152 
153 		return (0);
154 	}
155 
156 	errno = ENODATA;
157 	return (-1);
158 }
159 
160 /*ARGSUSED*/
161 static int
162 Psecflags_core(struct ps_prochandle *P, prsecflags_t **psf, void *data)
163 {
164 	core_info_t *core = data;
165 
166 	if (core->core_secflags == NULL) {
167 		errno = ENODATA;
168 		return (-1);
169 	}
170 
171 	if ((*psf = calloc(1, sizeof (prsecflags_t))) == NULL)
172 		return (-1);
173 
174 	(void) memcpy(*psf, core->core_secflags, sizeof (prsecflags_t));
175 
176 	return (0);
177 }
178 
179 /*ARGSUSED*/
180 static int
181 Ppriv_core(struct ps_prochandle *P, prpriv_t **pprv, void *data)
182 {
183 	core_info_t *core = data;
184 
185 	if (core->core_priv == NULL) {
186 		errno = ENODATA;
187 		return (-1);
188 	}
189 
190 	*pprv = malloc(core->core_priv_size);
191 	if (*pprv == NULL) {
192 		return (-1);
193 	}
194 
195 	(void) memcpy(*pprv, core->core_priv, core->core_priv_size);
196 	return (0);
197 }
198 
199 /*ARGSUSED*/
200 static const psinfo_t *
201 Ppsinfo_core(struct ps_prochandle *P, psinfo_t *psinfo, void *data)
202 {
203 	return (&P->psinfo);
204 }
205 
206 /*ARGSUSED*/
207 static void
208 Pfini_core(struct ps_prochandle *P, void *data)
209 {
210 	core_info_t *core = data;
211 
212 	if (core != NULL) {
213 		extern void __priv_free_info(void *);
214 		lwp_info_t *nlwp, *lwp = list_next(&core->core_lwp_head);
215 		int i;
216 
217 		for (i = 0; i < core->core_nlwp; i++, lwp = nlwp) {
218 			nlwp = list_next(lwp);
219 #ifdef __sparc
220 			if (lwp->lwp_gwins != NULL)
221 				free(lwp->lwp_gwins);
222 			if (lwp->lwp_xregs != NULL)
223 				free(lwp->lwp_xregs);
224 			if (lwp->lwp_asrs != NULL)
225 				free(lwp->lwp_asrs);
226 #endif
227 			free(lwp);
228 		}
229 
230 		if (core->core_platform != NULL)
231 			free(core->core_platform);
232 		if (core->core_uts != NULL)
233 			free(core->core_uts);
234 		if (core->core_cred != NULL)
235 			free(core->core_cred);
236 		if (core->core_priv != NULL)
237 			free(core->core_priv);
238 		if (core->core_privinfo != NULL)
239 			__priv_free_info(core->core_privinfo);
240 		if (core->core_ppii != NULL)
241 			free(core->core_ppii);
242 		if (core->core_zonename != NULL)
243 			free(core->core_zonename);
244 		if (core->core_secflags != NULL)
245 			free(core->core_secflags);
246 #ifdef __x86
247 		if (core->core_ldt != NULL)
248 			free(core->core_ldt);
249 #endif
250 
251 		free(core);
252 	}
253 }
254 
255 /*ARGSUSED*/
256 static char *
257 Pplatform_core(struct ps_prochandle *P, char *s, size_t n, void *data)
258 {
259 	core_info_t *core = data;
260 
261 	if (core->core_platform == NULL) {
262 		errno = ENODATA;
263 		return (NULL);
264 	}
265 	(void) strncpy(s, core->core_platform, n - 1);
266 	s[n - 1] = '\0';
267 	return (s);
268 }
269 
270 /*ARGSUSED*/
271 static int
272 Puname_core(struct ps_prochandle *P, struct utsname *u, void *data)
273 {
274 	core_info_t *core = data;
275 
276 	if (core->core_uts == NULL) {
277 		errno = ENODATA;
278 		return (-1);
279 	}
280 	(void) memcpy(u, core->core_uts, sizeof (struct utsname));
281 	return (0);
282 }
283 
284 /*ARGSUSED*/
285 static char *
286 Pzonename_core(struct ps_prochandle *P, char *s, size_t n, void *data)
287 {
288 	core_info_t *core = data;
289 
290 	if (core->core_zonename == NULL) {
291 		errno = ENODATA;
292 		return (NULL);
293 	}
294 	(void) strlcpy(s, core->core_zonename, n);
295 	return (s);
296 }
297 
298 #ifdef __x86
299 /*ARGSUSED*/
300 static int
301 Pldt_core(struct ps_prochandle *P, struct ssd *pldt, int nldt, void *data)
302 {
303 	core_info_t *core = data;
304 
305 	if (pldt == NULL || nldt == 0)
306 		return (core->core_nldt);
307 
308 	if (core->core_ldt != NULL) {
309 		nldt = MIN(nldt, core->core_nldt);
310 
311 		(void) memcpy(pldt, core->core_ldt,
312 		    nldt * sizeof (struct ssd));
313 
314 		return (nldt);
315 	}
316 
317 	errno = ENODATA;
318 	return (-1);
319 }
320 #endif
321 
322 static const ps_ops_t P_core_ops = {
323 	.pop_pread	= Pread_core,
324 	.pop_pwrite	= Pwrite_core,
325 	.pop_cred	= Pcred_core,
326 	.pop_priv	= Ppriv_core,
327 	.pop_psinfo	= Ppsinfo_core,
328 	.pop_fini	= Pfini_core,
329 	.pop_platform	= Pplatform_core,
330 	.pop_uname	= Puname_core,
331 	.pop_zonename	= Pzonename_core,
332 	.pop_secflags	= Psecflags_core,
333 #ifdef __x86
334 	.pop_ldt	= Pldt_core
335 #endif
336 };
337 
338 /*
339  * Return the lwp_info_t for the given lwpid.  If no such lwpid has been
340  * encountered yet, allocate a new structure and return a pointer to it.
341  * Create a list of lwp_info_t structures sorted in decreasing lwp_id order.
342  */
343 static lwp_info_t *
344 lwpid2info(struct ps_prochandle *P, lwpid_t id)
345 {
346 	core_info_t *core = P->data;
347 	lwp_info_t *lwp = list_next(&core->core_lwp_head);
348 	lwp_info_t *next;
349 	uint_t i;
350 
351 	for (i = 0; i < core->core_nlwp; i++, lwp = list_next(lwp)) {
352 		if (lwp->lwp_id == id) {
353 			core->core_lwp = lwp;
354 			return (lwp);
355 		}
356 		if (lwp->lwp_id < id) {
357 			break;
358 		}
359 	}
360 
361 	next = lwp;
362 	if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL)
363 		return (NULL);
364 
365 	list_link(lwp, next);
366 	lwp->lwp_id = id;
367 
368 	core->core_lwp = lwp;
369 	core->core_nlwp++;
370 
371 	return (lwp);
372 }
373 
374 /*
375  * The core file itself contains a series of NOTE segments containing saved
376  * structures from /proc at the time the process died.  For each note we
377  * comprehend, we define a function to read it in from the core file,
378  * convert it to our native data model if necessary, and store it inside
379  * the ps_prochandle.  Each function is invoked by Pfgrab_core() with the
380  * seek pointer on P->asfd positioned appropriately.  We populate a table
381  * of pointers to these note functions below.
382  */
383 
384 static int
385 note_pstatus(struct ps_prochandle *P, size_t nbytes)
386 {
387 #ifdef _LP64
388 	core_info_t *core = P->data;
389 
390 	if (core->core_dmodel == PR_MODEL_ILP32) {
391 		pstatus32_t ps32;
392 
393 		if (nbytes < sizeof (pstatus32_t) ||
394 		    read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
395 			goto err;
396 
397 		pstatus_32_to_n(&ps32, &P->status);
398 
399 	} else
400 #endif
401 	if (nbytes < sizeof (pstatus_t) ||
402 	    read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t))
403 		goto err;
404 
405 	P->orig_status = P->status;
406 	P->pid = P->status.pr_pid;
407 
408 	return (0);
409 
410 err:
411 	dprintf("Pgrab_core: failed to read NT_PSTATUS\n");
412 	return (-1);
413 }
414 
415 static int
416 note_lwpstatus(struct ps_prochandle *P, size_t nbytes)
417 {
418 	lwp_info_t *lwp;
419 	lwpstatus_t lps;
420 
421 #ifdef _LP64
422 	core_info_t *core = P->data;
423 
424 	if (core->core_dmodel == PR_MODEL_ILP32) {
425 		lwpstatus32_t l32;
426 
427 		if (nbytes < sizeof (lwpstatus32_t) ||
428 		    read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
429 			goto err;
430 
431 		lwpstatus_32_to_n(&l32, &lps);
432 	} else
433 #endif
434 	if (nbytes < sizeof (lwpstatus_t) ||
435 	    read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
436 		goto err;
437 
438 	if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
439 		dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n");
440 		return (-1);
441 	}
442 
443 	/*
444 	 * Erase a useless and confusing artifact of the kernel implementation:
445 	 * the lwps which did *not* create the core will show SIGKILL.  We can
446 	 * be assured this is bogus because SIGKILL can't produce core files.
447 	 */
448 	if (lps.pr_cursig == SIGKILL)
449 		lps.pr_cursig = 0;
450 
451 	(void) memcpy(&lwp->lwp_status, &lps, sizeof (lps));
452 	return (0);
453 
454 err:
455 	dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n");
456 	return (-1);
457 }
458 
459 #ifdef __x86
460 
461 static void
462 lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t *p32, psinfo_t *psinfo)
463 {
464 	psinfo->pr_flag = p32->pr_flag;
465 	psinfo->pr_pid = p32->pr_pid;
466 	psinfo->pr_ppid = p32->pr_ppid;
467 	psinfo->pr_uid = p32->pr_uid;
468 	psinfo->pr_gid = p32->pr_gid;
469 	psinfo->pr_sid = p32->pr_sid;
470 	psinfo->pr_pgid = p32->pr_pgrp;
471 
472 	(void) memcpy(psinfo->pr_fname, p32->pr_fname,
473 	    sizeof (psinfo->pr_fname));
474 	(void) memcpy(psinfo->pr_psargs, p32->pr_psargs,
475 	    sizeof (psinfo->pr_psargs));
476 }
477 
478 static void
479 lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t *p64, psinfo_t *psinfo)
480 {
481 	psinfo->pr_flag = p64->pr_flag;
482 	psinfo->pr_pid = p64->pr_pid;
483 	psinfo->pr_ppid = p64->pr_ppid;
484 	psinfo->pr_uid = p64->pr_uid;
485 	psinfo->pr_gid = p64->pr_gid;
486 	psinfo->pr_sid = p64->pr_sid;
487 	psinfo->pr_pgid = p64->pr_pgrp;
488 	psinfo->pr_pgid = p64->pr_pgrp;
489 
490 	(void) memcpy(psinfo->pr_fname, p64->pr_fname,
491 	    sizeof (psinfo->pr_fname));
492 	(void) memcpy(psinfo->pr_psargs, p64->pr_psargs,
493 	    sizeof (psinfo->pr_psargs));
494 }
495 
496 static int
497 note_linux_psinfo(struct ps_prochandle *P, size_t nbytes)
498 {
499 	core_info_t *core = P->data;
500 	lx_prpsinfo32_t p32;
501 	lx_prpsinfo64_t p64;
502 
503 	if (core->core_dmodel == PR_MODEL_ILP32) {
504 		if (nbytes < sizeof (p32) ||
505 		    read(P->asfd, &p32, sizeof (p32)) != sizeof (p32))
506 			goto err;
507 
508 		lx_prpsinfo32_to_psinfo(&p32, &P->psinfo);
509 	} else {
510 		if (nbytes < sizeof (p64) ||
511 		    read(P->asfd, &p64, sizeof (p64)) != sizeof (p64))
512 			goto err;
513 
514 		lx_prpsinfo64_to_psinfo(&p64, &P->psinfo);
515 	}
516 
517 
518 	P->status.pr_pid = P->psinfo.pr_pid;
519 	P->status.pr_ppid = P->psinfo.pr_ppid;
520 	P->status.pr_pgid = P->psinfo.pr_pgid;
521 	P->status.pr_sid = P->psinfo.pr_sid;
522 
523 	P->psinfo.pr_nlwp = 0;
524 	P->status.pr_nlwp = 0;
525 
526 	return (0);
527 err:
528 	dprintf("Pgrab_core: failed to read NT_PSINFO\n");
529 	return (-1);
530 }
531 
532 static void
533 lx_prstatus64_to_lwp(lx_prstatus64_t *prs64, lwp_info_t *lwp)
534 {
535 	LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs64->pr_utime);
536 	LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs64->pr_stime);
537 
538 	lwp->lwp_status.pr_reg[REG_R15] = prs64->pr_reg.lxr_r15;
539 	lwp->lwp_status.pr_reg[REG_R14] = prs64->pr_reg.lxr_r14;
540 	lwp->lwp_status.pr_reg[REG_R13] = prs64->pr_reg.lxr_r13;
541 	lwp->lwp_status.pr_reg[REG_R12] = prs64->pr_reg.lxr_r12;
542 	lwp->lwp_status.pr_reg[REG_R11] = prs64->pr_reg.lxr_r11;
543 	lwp->lwp_status.pr_reg[REG_R10] = prs64->pr_reg.lxr_r10;
544 	lwp->lwp_status.pr_reg[REG_R9] = prs64->pr_reg.lxr_r9;
545 	lwp->lwp_status.pr_reg[REG_R8] = prs64->pr_reg.lxr_r8;
546 
547 	lwp->lwp_status.pr_reg[REG_RDI] = prs64->pr_reg.lxr_rdi;
548 	lwp->lwp_status.pr_reg[REG_RSI] = prs64->pr_reg.lxr_rsi;
549 	lwp->lwp_status.pr_reg[REG_RBP] = prs64->pr_reg.lxr_rbp;
550 	lwp->lwp_status.pr_reg[REG_RBX] = prs64->pr_reg.lxr_rbx;
551 	lwp->lwp_status.pr_reg[REG_RDX] = prs64->pr_reg.lxr_rdx;
552 	lwp->lwp_status.pr_reg[REG_RCX] = prs64->pr_reg.lxr_rcx;
553 	lwp->lwp_status.pr_reg[REG_RAX] = prs64->pr_reg.lxr_rax;
554 
555 	lwp->lwp_status.pr_reg[REG_RIP] = prs64->pr_reg.lxr_rip;
556 	lwp->lwp_status.pr_reg[REG_CS] = prs64->pr_reg.lxr_cs;
557 	lwp->lwp_status.pr_reg[REG_RSP] = prs64->pr_reg.lxr_rsp;
558 	lwp->lwp_status.pr_reg[REG_FS] = prs64->pr_reg.lxr_fs;
559 	lwp->lwp_status.pr_reg[REG_SS] = prs64->pr_reg.lxr_ss;
560 	lwp->lwp_status.pr_reg[REG_GS] = prs64->pr_reg.lxr_gs;
561 	lwp->lwp_status.pr_reg[REG_ES] = prs64->pr_reg.lxr_es;
562 	lwp->lwp_status.pr_reg[REG_DS] = prs64->pr_reg.lxr_ds;
563 
564 	lwp->lwp_status.pr_reg[REG_GSBASE] = prs64->pr_reg.lxr_gs_base;
565 	lwp->lwp_status.pr_reg[REG_FSBASE] = prs64->pr_reg.lxr_fs_base;
566 }
567 
568 static void
569 lx_prstatus32_to_lwp(lx_prstatus32_t *prs32, lwp_info_t *lwp)
570 {
571 	LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs32->pr_utime);
572 	LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs32->pr_stime);
573 
574 #ifdef __amd64
575 	lwp->lwp_status.pr_reg[REG_GS] = prs32->pr_reg.lxr_gs;
576 	lwp->lwp_status.pr_reg[REG_FS] = prs32->pr_reg.lxr_fs;
577 	lwp->lwp_status.pr_reg[REG_DS] = prs32->pr_reg.lxr_ds;
578 	lwp->lwp_status.pr_reg[REG_ES] = prs32->pr_reg.lxr_es;
579 	lwp->lwp_status.pr_reg[REG_RDI] = prs32->pr_reg.lxr_di;
580 	lwp->lwp_status.pr_reg[REG_RSI] = prs32->pr_reg.lxr_si;
581 	lwp->lwp_status.pr_reg[REG_RBP] = prs32->pr_reg.lxr_bp;
582 	lwp->lwp_status.pr_reg[REG_RBX] = prs32->pr_reg.lxr_bx;
583 	lwp->lwp_status.pr_reg[REG_RDX] = prs32->pr_reg.lxr_dx;
584 	lwp->lwp_status.pr_reg[REG_RCX] = prs32->pr_reg.lxr_cx;
585 	lwp->lwp_status.pr_reg[REG_RAX] = prs32->pr_reg.lxr_ax;
586 	lwp->lwp_status.pr_reg[REG_RIP] = prs32->pr_reg.lxr_ip;
587 	lwp->lwp_status.pr_reg[REG_CS] = prs32->pr_reg.lxr_cs;
588 	lwp->lwp_status.pr_reg[REG_RFL] = prs32->pr_reg.lxr_flags;
589 	lwp->lwp_status.pr_reg[REG_RSP] = prs32->pr_reg.lxr_sp;
590 	lwp->lwp_status.pr_reg[REG_SS] = prs32->pr_reg.lxr_ss;
591 #else /* __amd64 */
592 	lwp->lwp_status.pr_reg[EBX] = prs32->pr_reg.lxr_bx;
593 	lwp->lwp_status.pr_reg[ECX] = prs32->pr_reg.lxr_cx;
594 	lwp->lwp_status.pr_reg[EDX] = prs32->pr_reg.lxr_dx;
595 	lwp->lwp_status.pr_reg[ESI] = prs32->pr_reg.lxr_si;
596 	lwp->lwp_status.pr_reg[EDI] = prs32->pr_reg.lxr_di;
597 	lwp->lwp_status.pr_reg[EBP] = prs32->pr_reg.lxr_bp;
598 	lwp->lwp_status.pr_reg[EAX] = prs32->pr_reg.lxr_ax;
599 	lwp->lwp_status.pr_reg[EIP] = prs32->pr_reg.lxr_ip;
600 	lwp->lwp_status.pr_reg[UESP] = prs32->pr_reg.lxr_sp;
601 
602 	lwp->lwp_status.pr_reg[DS] = prs32->pr_reg.lxr_ds;
603 	lwp->lwp_status.pr_reg[ES] = prs32->pr_reg.lxr_es;
604 	lwp->lwp_status.pr_reg[FS] = prs32->pr_reg.lxr_fs;
605 	lwp->lwp_status.pr_reg[GS] = prs32->pr_reg.lxr_gs;
606 	lwp->lwp_status.pr_reg[CS] = prs32->pr_reg.lxr_cs;
607 	lwp->lwp_status.pr_reg[SS] = prs32->pr_reg.lxr_ss;
608 
609 	lwp->lwp_status.pr_reg[EFL] = prs32->pr_reg.lxr_flags;
610 #endif	/* !__amd64 */
611 }
612 
613 static int
614 note_linux_prstatus(struct ps_prochandle *P, size_t nbytes)
615 {
616 	core_info_t *core = P->data;
617 
618 	lx_prstatus64_t prs64;
619 	lx_prstatus32_t prs32;
620 	lwp_info_t *lwp;
621 	lwpid_t tid;
622 
623 	dprintf("looking for model %d, %ld/%ld\n", core->core_dmodel,
624 	    (ulong_t)nbytes, (ulong_t)sizeof (prs32));
625 	if (core->core_dmodel == PR_MODEL_ILP32) {
626 		if (nbytes < sizeof (prs32) ||
627 		    read(P->asfd, &prs32, sizeof (prs32)) != nbytes)
628 			goto err;
629 		tid = prs32.pr_pid;
630 	} else {
631 		if (nbytes < sizeof (prs64) ||
632 		    read(P->asfd, &prs64, sizeof (prs64)) != nbytes)
633 			goto err;
634 		tid = prs64.pr_pid;
635 	}
636 
637 	if ((lwp = lwpid2info(P, tid)) == NULL) {
638 		dprintf("Pgrab_core: failed to add lwpid2info "
639 		    "linux_prstatus\n");
640 		return (-1);
641 	}
642 
643 	P->psinfo.pr_nlwp++;
644 	P->status.pr_nlwp++;
645 
646 	lwp->lwp_status.pr_lwpid = tid;
647 
648 	if (core->core_dmodel == PR_MODEL_ILP32)
649 		lx_prstatus32_to_lwp(&prs32, lwp);
650 	else
651 		lx_prstatus64_to_lwp(&prs64, lwp);
652 
653 	return (0);
654 err:
655 	dprintf("Pgrab_core: failed to read NT_PRSTATUS\n");
656 	return (-1);
657 }
658 
659 #endif /* __x86 */
660 
661 static int
662 note_psinfo(struct ps_prochandle *P, size_t nbytes)
663 {
664 #ifdef _LP64
665 	core_info_t *core = P->data;
666 
667 	if (core->core_dmodel == PR_MODEL_ILP32) {
668 		psinfo32_t ps32;
669 
670 		if (nbytes < sizeof (psinfo32_t) ||
671 		    read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
672 			goto err;
673 
674 		psinfo_32_to_n(&ps32, &P->psinfo);
675 	} else
676 #endif
677 	if (nbytes < sizeof (psinfo_t) ||
678 	    read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
679 		goto err;
680 
681 	dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
682 	dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
683 	dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
684 
685 	return (0);
686 
687 err:
688 	dprintf("Pgrab_core: failed to read NT_PSINFO\n");
689 	return (-1);
690 }
691 
692 static int
693 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes)
694 {
695 	lwp_info_t *lwp;
696 	lwpsinfo_t lps;
697 
698 #ifdef _LP64
699 	core_info_t *core = P->data;
700 
701 	if (core->core_dmodel == PR_MODEL_ILP32) {
702 		lwpsinfo32_t l32;
703 
704 		if (nbytes < sizeof (lwpsinfo32_t) ||
705 		    read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
706 			goto err;
707 
708 		lwpsinfo_32_to_n(&l32, &lps);
709 	} else
710 #endif
711 	if (nbytes < sizeof (lwpsinfo_t) ||
712 	    read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
713 		goto err;
714 
715 	if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
716 		dprintf("Pgrab_core: failed to add NT_LWPSINFO\n");
717 		return (-1);
718 	}
719 
720 	(void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps));
721 	return (0);
722 
723 err:
724 	dprintf("Pgrab_core: failed to read NT_LWPSINFO\n");
725 	return (-1);
726 }
727 
728 static int
729 note_fdinfo(struct ps_prochandle *P, size_t nbytes)
730 {
731 	prfdinfo_t prfd;
732 	fd_info_t *fip;
733 
734 	if ((nbytes < sizeof (prfd)) ||
735 	    (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) {
736 		dprintf("Pgrab_core: failed to read NT_FDINFO\n");
737 		return (-1);
738 	}
739 
740 	if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) {
741 		dprintf("Pgrab_core: failed to add NT_FDINFO\n");
742 		return (-1);
743 	}
744 	(void) memcpy(&fip->fd_info, &prfd, sizeof (prfd));
745 	return (0);
746 }
747 
748 static int
749 note_platform(struct ps_prochandle *P, size_t nbytes)
750 {
751 	core_info_t *core = P->data;
752 	char *plat;
753 
754 	if (core->core_platform != NULL)
755 		return (0);	/* Already seen */
756 
757 	if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) {
758 		if (read(P->asfd, plat, nbytes) != nbytes) {
759 			dprintf("Pgrab_core: failed to read NT_PLATFORM\n");
760 			free(plat);
761 			return (-1);
762 		}
763 		plat[nbytes - 1] = '\0';
764 		core->core_platform = plat;
765 	}
766 
767 	return (0);
768 }
769 
770 static int
771 note_secflags(struct ps_prochandle *P, size_t nbytes)
772 {
773 	core_info_t *core = P->data;
774 	prsecflags_t *psf;
775 
776 	if (core->core_secflags != NULL)
777 		return (0);	/* Already seen */
778 
779 	if (sizeof (*psf) != nbytes) {
780 		dprintf("Pgrab_core: NT_SECFLAGS changed size."
781 		    "  Need to handle a version change?\n");
782 		return (-1);
783 	}
784 
785 	if (nbytes != 0 && ((psf = malloc(nbytes)) != NULL)) {
786 		if (read(P->asfd, psf, nbytes) != nbytes) {
787 			dprintf("Pgrab_core: failed to read NT_SECFLAGS\n");
788 			free(psf);
789 			return (-1);
790 		}
791 
792 		core->core_secflags = psf;
793 	}
794 
795 	return (0);
796 }
797 
798 static int
799 note_utsname(struct ps_prochandle *P, size_t nbytes)
800 {
801 	core_info_t *core = P->data;
802 	size_t ubytes = sizeof (struct utsname);
803 	struct utsname *utsp;
804 
805 	if (core->core_uts != NULL || nbytes < ubytes)
806 		return (0);	/* Already seen or bad size */
807 
808 	if ((utsp = malloc(ubytes)) == NULL)
809 		return (-1);
810 
811 	if (read(P->asfd, utsp, ubytes) != ubytes) {
812 		dprintf("Pgrab_core: failed to read NT_UTSNAME\n");
813 		free(utsp);
814 		return (-1);
815 	}
816 
817 	if (_libproc_debug) {
818 		dprintf("uts.sysname = \"%s\"\n", utsp->sysname);
819 		dprintf("uts.nodename = \"%s\"\n", utsp->nodename);
820 		dprintf("uts.release = \"%s\"\n", utsp->release);
821 		dprintf("uts.version = \"%s\"\n", utsp->version);
822 		dprintf("uts.machine = \"%s\"\n", utsp->machine);
823 	}
824 
825 	core->core_uts = utsp;
826 	return (0);
827 }
828 
829 static int
830 note_content(struct ps_prochandle *P, size_t nbytes)
831 {
832 	core_info_t *core = P->data;
833 	core_content_t content;
834 
835 	if (sizeof (core->core_content) != nbytes)
836 		return (-1);
837 
838 	if (read(P->asfd, &content, sizeof (content)) != sizeof (content))
839 		return (-1);
840 
841 	core->core_content = content;
842 
843 	dprintf("core content = %llx\n", content);
844 
845 	return (0);
846 }
847 
848 static int
849 note_cred(struct ps_prochandle *P, size_t nbytes)
850 {
851 	core_info_t *core = P->data;
852 	prcred_t *pcrp;
853 	int ngroups;
854 	const size_t min_size = sizeof (prcred_t) - sizeof (gid_t);
855 
856 	/*
857 	 * We allow for prcred_t notes that are actually smaller than a
858 	 * prcred_t since the last member isn't essential if there are
859 	 * no group memberships. This allows for more flexibility when it
860 	 * comes to slightly malformed -- but still valid -- notes.
861 	 */
862 	if (core->core_cred != NULL || nbytes < min_size)
863 		return (0);	/* Already seen or bad size */
864 
865 	ngroups = (nbytes - min_size) / sizeof (gid_t);
866 	nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t);
867 
868 	if ((pcrp = malloc(nbytes)) == NULL)
869 		return (-1);
870 
871 	if (read(P->asfd, pcrp, nbytes) != nbytes) {
872 		dprintf("Pgrab_core: failed to read NT_PRCRED\n");
873 		free(pcrp);
874 		return (-1);
875 	}
876 
877 	if (pcrp->pr_ngroups > ngroups) {
878 		dprintf("pr_ngroups = %d; resetting to %d based on note size\n",
879 		    pcrp->pr_ngroups, ngroups);
880 		pcrp->pr_ngroups = ngroups;
881 	}
882 
883 	core->core_cred = pcrp;
884 	return (0);
885 }
886 
887 #ifdef __x86
888 static int
889 note_ldt(struct ps_prochandle *P, size_t nbytes)
890 {
891 	core_info_t *core = P->data;
892 	struct ssd *pldt;
893 	uint_t nldt;
894 
895 	if (core->core_ldt != NULL || nbytes < sizeof (struct ssd))
896 		return (0);	/* Already seen or bad size */
897 
898 	nldt = nbytes / sizeof (struct ssd);
899 	nbytes = nldt * sizeof (struct ssd);
900 
901 	if ((pldt = malloc(nbytes)) == NULL)
902 		return (-1);
903 
904 	if (read(P->asfd, pldt, nbytes) != nbytes) {
905 		dprintf("Pgrab_core: failed to read NT_LDT\n");
906 		free(pldt);
907 		return (-1);
908 	}
909 
910 	core->core_ldt = pldt;
911 	core->core_nldt = nldt;
912 	return (0);
913 }
914 #endif	/* __i386 */
915 
916 static int
917 note_priv(struct ps_prochandle *P, size_t nbytes)
918 {
919 	core_info_t *core = P->data;
920 	prpriv_t *pprvp;
921 
922 	if (core->core_priv != NULL || nbytes < sizeof (prpriv_t))
923 		return (0);	/* Already seen or bad size */
924 
925 	if ((pprvp = malloc(nbytes)) == NULL)
926 		return (-1);
927 
928 	if (read(P->asfd, pprvp, nbytes) != nbytes) {
929 		dprintf("Pgrab_core: failed to read NT_PRPRIV\n");
930 		free(pprvp);
931 		return (-1);
932 	}
933 
934 	core->core_priv = pprvp;
935 	core->core_priv_size = nbytes;
936 	return (0);
937 }
938 
939 static int
940 note_priv_info(struct ps_prochandle *P, size_t nbytes)
941 {
942 	core_info_t *core = P->data;
943 	extern void *__priv_parse_info();
944 	priv_impl_info_t *ppii;
945 
946 	if (core->core_privinfo != NULL ||
947 	    nbytes < sizeof (priv_impl_info_t))
948 		return (0);	/* Already seen or bad size */
949 
950 	if ((ppii = malloc(nbytes)) == NULL)
951 		return (-1);
952 
953 	if (read(P->asfd, ppii, nbytes) != nbytes ||
954 	    PRIV_IMPL_INFO_SIZE(ppii) != nbytes) {
955 		dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n");
956 		free(ppii);
957 		return (-1);
958 	}
959 
960 	core->core_privinfo = __priv_parse_info(ppii);
961 	core->core_ppii = ppii;
962 	return (0);
963 }
964 
965 static int
966 note_zonename(struct ps_prochandle *P, size_t nbytes)
967 {
968 	core_info_t *core = P->data;
969 	char *zonename;
970 
971 	if (core->core_zonename != NULL)
972 		return (0);	/* Already seen */
973 
974 	if (nbytes != 0) {
975 		if ((zonename = malloc(nbytes)) == NULL)
976 			return (-1);
977 		if (read(P->asfd, zonename, nbytes) != nbytes) {
978 			dprintf("Pgrab_core: failed to read NT_ZONENAME\n");
979 			free(zonename);
980 			return (-1);
981 		}
982 		zonename[nbytes - 1] = '\0';
983 		core->core_zonename = zonename;
984 	}
985 
986 	return (0);
987 }
988 
989 static int
990 note_auxv(struct ps_prochandle *P, size_t nbytes)
991 {
992 	size_t n, i;
993 
994 #ifdef _LP64
995 	core_info_t *core = P->data;
996 
997 	if (core->core_dmodel == PR_MODEL_ILP32) {
998 		auxv32_t *a32;
999 
1000 		n = nbytes / sizeof (auxv32_t);
1001 		nbytes = n * sizeof (auxv32_t);
1002 		a32 = alloca(nbytes);
1003 
1004 		if (read(P->asfd, a32, nbytes) != nbytes) {
1005 			dprintf("Pgrab_core: failed to read NT_AUXV\n");
1006 			return (-1);
1007 		}
1008 
1009 		if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL)
1010 			return (-1);
1011 
1012 		for (i = 0; i < n; i++)
1013 			auxv_32_to_n(&a32[i], &P->auxv[i]);
1014 
1015 	} else {
1016 #endif
1017 		n = nbytes / sizeof (auxv_t);
1018 		nbytes = n * sizeof (auxv_t);
1019 
1020 		if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL)
1021 			return (-1);
1022 
1023 		if (read(P->asfd, P->auxv, nbytes) != nbytes) {
1024 			free(P->auxv);
1025 			P->auxv = NULL;
1026 			return (-1);
1027 		}
1028 #ifdef _LP64
1029 	}
1030 #endif
1031 
1032 	if (_libproc_debug) {
1033 		for (i = 0; i < n; i++) {
1034 			dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i,
1035 			    P->auxv[i].a_type, P->auxv[i].a_un.a_val);
1036 		}
1037 	}
1038 
1039 	/*
1040 	 * Defensive coding for loops which depend upon the auxv array being
1041 	 * terminated by an AT_NULL element; in each case, we've allocated
1042 	 * P->auxv to have an additional element which we force to be AT_NULL.
1043 	 */
1044 	P->auxv[n].a_type = AT_NULL;
1045 	P->auxv[n].a_un.a_val = 0L;
1046 	P->nauxv = (int)n;
1047 
1048 	return (0);
1049 }
1050 
1051 #ifdef __sparc
1052 static int
1053 note_xreg(struct ps_prochandle *P, size_t nbytes)
1054 {
1055 	core_info_t *core = P->data;
1056 	lwp_info_t *lwp = core->core_lwp;
1057 	size_t xbytes = sizeof (prxregset_t);
1058 	prxregset_t *xregs;
1059 
1060 	if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes)
1061 		return (0);	/* No lwp yet, already seen, or bad size */
1062 
1063 	if ((xregs = malloc(xbytes)) == NULL)
1064 		return (-1);
1065 
1066 	if (read(P->asfd, xregs, xbytes) != xbytes) {
1067 		dprintf("Pgrab_core: failed to read NT_PRXREG\n");
1068 		free(xregs);
1069 		return (-1);
1070 	}
1071 
1072 	lwp->lwp_xregs = xregs;
1073 	return (0);
1074 }
1075 
1076 static int
1077 note_gwindows(struct ps_prochandle *P, size_t nbytes)
1078 {
1079 	core_info_t *core = P->data;
1080 	lwp_info_t *lwp = core->core_lwp;
1081 
1082 	if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
1083 		return (0);	/* No lwp yet or already seen or no data */
1084 
1085 	if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
1086 		return (-1);
1087 
1088 	/*
1089 	 * Since the amount of gwindows data varies with how many windows were
1090 	 * actually saved, we just read up to the minimum of the note size
1091 	 * and the size of the gwindows_t type.  It doesn't matter if the read
1092 	 * fails since we have to zero out gwindows first anyway.
1093 	 */
1094 #ifdef _LP64
1095 	if (core->core_dmodel == PR_MODEL_ILP32) {
1096 		gwindows32_t g32;
1097 
1098 		(void) memset(&g32, 0, sizeof (g32));
1099 		(void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
1100 		gwindows_32_to_n(&g32, lwp->lwp_gwins);
1101 
1102 	} else {
1103 #endif
1104 		(void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));
1105 		(void) read(P->asfd, lwp->lwp_gwins,
1106 		    MIN(nbytes, sizeof (gwindows_t)));
1107 #ifdef _LP64
1108 	}
1109 #endif
1110 	return (0);
1111 }
1112 
1113 #ifdef __sparcv9
1114 static int
1115 note_asrs(struct ps_prochandle *P, size_t nbytes)
1116 {
1117 	core_info_t *core = P->data;
1118 	lwp_info_t *lwp = core->core_lwp;
1119 	int64_t *asrs;
1120 
1121 	if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
1122 		return (0);	/* No lwp yet, already seen, or bad size */
1123 
1124 	if ((asrs = malloc(sizeof (asrset_t))) == NULL)
1125 		return (-1);
1126 
1127 	if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
1128 		dprintf("Pgrab_core: failed to read NT_ASRS\n");
1129 		free(asrs);
1130 		return (-1);
1131 	}
1132 
1133 	lwp->lwp_asrs = asrs;
1134 	return (0);
1135 }
1136 #endif	/* __sparcv9 */
1137 #endif	/* __sparc */
1138 
1139 static int
1140 note_spymaster(struct ps_prochandle *P, size_t nbytes)
1141 {
1142 #ifdef _LP64
1143 	core_info_t *core = P->data;
1144 
1145 	if (core->core_dmodel == PR_MODEL_ILP32) {
1146 		psinfo32_t ps32;
1147 
1148 		if (nbytes < sizeof (psinfo32_t) ||
1149 		    read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
1150 			goto err;
1151 
1152 		psinfo_32_to_n(&ps32, &P->spymaster);
1153 	} else
1154 #endif
1155 	if (nbytes < sizeof (psinfo_t) || read(P->asfd,
1156 	    &P->spymaster, sizeof (psinfo_t)) != sizeof (psinfo_t))
1157 		goto err;
1158 
1159 	dprintf("spymaster pr_fname = <%s>\n", P->psinfo.pr_fname);
1160 	dprintf("spymaster pr_psargs = <%s>\n", P->psinfo.pr_psargs);
1161 	dprintf("spymaster pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
1162 
1163 	return (0);
1164 
1165 err:
1166 	dprintf("Pgrab_core: failed to read NT_SPYMASTER\n");
1167 	return (-1);
1168 }
1169 
1170 /*ARGSUSED*/
1171 static int
1172 note_notsup(struct ps_prochandle *P, size_t nbytes)
1173 {
1174 	dprintf("skipping unsupported note type of size %ld bytes\n",
1175 	    (ulong_t)nbytes);
1176 	return (0);
1177 }
1178 
1179 /*
1180  * Populate a table of function pointers indexed by Note type with our
1181  * functions to process each type of core file note:
1182  */
1183 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = {
1184 	note_notsup,		/*  0	unassigned		*/
1185 #ifdef __x86
1186 	note_linux_prstatus,		/*  1	NT_PRSTATUS (old)	*/
1187 #else
1188 	note_notsup,		/*  1	NT_PRSTATUS (old)	*/
1189 #endif
1190 	note_notsup,		/*  2	NT_PRFPREG (old)	*/
1191 #ifdef __x86
1192 	note_linux_psinfo,		/*  3	NT_PRPSINFO (old)	*/
1193 #else
1194 	note_notsup,		/*  3	NT_PRPSINFO (old)	*/
1195 #endif
1196 #ifdef __sparc
1197 	note_xreg,		/*  4	NT_PRXREG		*/
1198 #else
1199 	note_notsup,		/*  4	NT_PRXREG		*/
1200 #endif
1201 	note_platform,		/*  5	NT_PLATFORM		*/
1202 	note_auxv,		/*  6	NT_AUXV			*/
1203 #ifdef __sparc
1204 	note_gwindows,		/*  7	NT_GWINDOWS		*/
1205 #ifdef __sparcv9
1206 	note_asrs,		/*  8	NT_ASRS			*/
1207 #else
1208 	note_notsup,		/*  8	NT_ASRS			*/
1209 #endif
1210 #else
1211 	note_notsup,		/*  7	NT_GWINDOWS		*/
1212 	note_notsup,		/*  8	NT_ASRS			*/
1213 #endif
1214 #ifdef __x86
1215 	note_ldt,		/*  9	NT_LDT			*/
1216 #else
1217 	note_notsup,		/*  9	NT_LDT			*/
1218 #endif
1219 	note_pstatus,		/* 10	NT_PSTATUS		*/
1220 	note_notsup,		/* 11	unassigned		*/
1221 	note_notsup,		/* 12	unassigned		*/
1222 	note_psinfo,		/* 13	NT_PSINFO		*/
1223 	note_cred,		/* 14	NT_PRCRED		*/
1224 	note_utsname,		/* 15	NT_UTSNAME		*/
1225 	note_lwpstatus,		/* 16	NT_LWPSTATUS		*/
1226 	note_lwpsinfo,		/* 17	NT_LWPSINFO		*/
1227 	note_priv,		/* 18	NT_PRPRIV		*/
1228 	note_priv_info,		/* 19	NT_PRPRIVINFO		*/
1229 	note_content,		/* 20	NT_CONTENT		*/
1230 	note_zonename,		/* 21	NT_ZONENAME		*/
1231 	note_fdinfo,		/* 22	NT_FDINFO		*/
1232 	note_spymaster,		/* 23	NT_SPYMASTER		*/
1233 	note_secflags,		/* 24	NT_SECFLAGS		*/
1234 };
1235 
1236 static void
1237 core_report_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1238 {
1239 	prkillinfo_t killinfo;
1240 	siginfo_t *si = &killinfo.prk_info;
1241 	char signame[SIG2STR_MAX], sig[64], info[64];
1242 	void *addr = (void *)(uintptr_t)php->p_vaddr;
1243 
1244 	const char *errfmt = "core file data for mapping at %p not saved: %s\n";
1245 	const char *incfmt = "core file incomplete due to %s%s\n";
1246 	const char *msgfmt = "mappings at and above %p are missing\n";
1247 
1248 	if (!(php->p_flags & PF_SUNW_KILLED)) {
1249 		int err = 0;
1250 
1251 		(void) pread64(P->asfd, &err,
1252 		    sizeof (err), (off64_t)php->p_offset);
1253 
1254 		Perror_printf(P, errfmt, addr, strerror(err));
1255 		dprintf(errfmt, addr, strerror(err));
1256 		return;
1257 	}
1258 
1259 	if (!(php->p_flags & PF_SUNW_SIGINFO))
1260 		return;
1261 
1262 	(void) memset(&killinfo, 0, sizeof (killinfo));
1263 
1264 	(void) pread64(P->asfd, &killinfo,
1265 	    sizeof (killinfo), (off64_t)php->p_offset);
1266 
1267 	/*
1268 	 * While there is (or at least should be) only one segment that has
1269 	 * PF_SUNW_SIGINFO set, the signal information there is globally
1270 	 * useful (even if only to those debugging libproc consumers); we hang
1271 	 * the signal information gleaned here off of the ps_prochandle.
1272 	 */
1273 	P->map_missing = php->p_vaddr;
1274 	P->killinfo = killinfo.prk_info;
1275 
1276 	if (sig2str(si->si_signo, signame) == -1) {
1277 		(void) snprintf(sig, sizeof (sig),
1278 		    "<Unknown signal: 0x%x>, ", si->si_signo);
1279 	} else {
1280 		(void) snprintf(sig, sizeof (sig), "SIG%s, ", signame);
1281 	}
1282 
1283 	if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1284 		(void) snprintf(info, sizeof (info),
1285 		    "pid=%d uid=%d zone=%d ctid=%d",
1286 		    si->si_pid, si->si_uid, si->si_zoneid, si->si_ctid);
1287 	} else {
1288 		(void) snprintf(info, sizeof (info),
1289 		    "code=%d", si->si_code);
1290 	}
1291 
1292 	Perror_printf(P, incfmt, sig, info);
1293 	Perror_printf(P, msgfmt, addr);
1294 
1295 	dprintf(incfmt, sig, info);
1296 	dprintf(msgfmt, addr);
1297 }
1298 
1299 /*
1300  * Add information on the address space mapping described by the given
1301  * PT_LOAD program header.  We fill in more information on the mapping later.
1302  */
1303 static int
1304 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1305 {
1306 	core_info_t *core = P->data;
1307 	prmap_t pmap;
1308 
1309 	dprintf("mapping base %llx filesz %llx memsz %llx offset %llx\n",
1310 	    (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz,
1311 	    (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset);
1312 
1313 	pmap.pr_vaddr = (uintptr_t)php->p_vaddr;
1314 	pmap.pr_size = php->p_memsz;
1315 
1316 	/*
1317 	 * If Pgcore() or elfcore() fail to write a mapping, they will set
1318 	 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us.
1319 	 */
1320 	if (php->p_flags & PF_SUNW_FAILURE) {
1321 		core_report_mapping(P, php);
1322 	} else if (php->p_filesz != 0 && php->p_offset >= core->core_size) {
1323 		Perror_printf(P, "core file may be corrupt -- data for mapping "
1324 		    "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1325 		dprintf("core file may be corrupt -- data for mapping "
1326 		    "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1327 	}
1328 
1329 	/*
1330 	 * The mapping name and offset will hopefully be filled in
1331 	 * by the librtld_db agent.  Unfortunately, if it isn't a
1332 	 * shared library mapping, this information is gone forever.
1333 	 */
1334 	pmap.pr_mapname[0] = '\0';
1335 	pmap.pr_offset = 0;
1336 
1337 	pmap.pr_mflags = 0;
1338 	if (php->p_flags & PF_R)
1339 		pmap.pr_mflags |= MA_READ;
1340 	if (php->p_flags & PF_W)
1341 		pmap.pr_mflags |= MA_WRITE;
1342 	if (php->p_flags & PF_X)
1343 		pmap.pr_mflags |= MA_EXEC;
1344 
1345 	if (php->p_filesz == 0)
1346 		pmap.pr_mflags |= MA_RESERVED1;
1347 
1348 	/*
1349 	 * At the time of adding this mapping, we just zero the pagesize.
1350 	 * Once we've processed more of the core file, we'll have the
1351 	 * pagesize from the auxv's AT_PAGESZ element and we can fill this in.
1352 	 */
1353 	pmap.pr_pagesize = 0;
1354 
1355 	/*
1356 	 * Unfortunately whether or not the mapping was a System V
1357 	 * shared memory segment is lost.  We use -1 to mark it as not shm.
1358 	 */
1359 	pmap.pr_shmid = -1;
1360 
1361 	return (Padd_mapping(P, php->p_offset, NULL, &pmap));
1362 }
1363 
1364 /*
1365  * Given a virtual address, name the mapping at that address using the
1366  * specified name, and return the map_info_t pointer.
1367  */
1368 static map_info_t *
1369 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name)
1370 {
1371 	map_info_t *mp = Paddr2mptr(P, addr);
1372 
1373 	if (mp != NULL) {
1374 		(void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ);
1375 		mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1376 	}
1377 
1378 	return (mp);
1379 }
1380 
1381 /*
1382  * libproc uses libelf for all of its symbol table manipulation. This function
1383  * takes a symbol table and string table from a core file and places them
1384  * in a memory backed elf file.
1385  */
1386 static void
1387 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr,
1388     GElf_Shdr *symtab, GElf_Shdr *strtab)
1389 {
1390 	size_t size;
1391 	off64_t off, base;
1392 	map_info_t *mp;
1393 	file_info_t *fp;
1394 	Elf_Scn *scn;
1395 	Elf_Data *data;
1396 
1397 	if (symtab->sh_addr == 0 ||
1398 	    (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL ||
1399 	    (fp = mp->map_file) == NULL) {
1400 		dprintf("fake_up_symtab: invalid section\n");
1401 		return;
1402 	}
1403 
1404 	if (fp->file_symtab.sym_data_pri != NULL) {
1405 		dprintf("Symbol table already loaded (sh_addr 0x%lx)\n",
1406 		    (long)symtab->sh_addr);
1407 		return;
1408 	}
1409 
1410 	if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1411 		struct {
1412 			Elf32_Ehdr ehdr;
1413 			Elf32_Shdr shdr[3];
1414 			char data[1];
1415 		} *b;
1416 
1417 		base = sizeof (b->ehdr) + sizeof (b->shdr);
1418 		size = base + symtab->sh_size + strtab->sh_size;
1419 
1420 		if ((b = calloc(1, size)) == NULL)
1421 			return;
1422 
1423 		(void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1424 		    sizeof (ehdr->e_ident));
1425 		b->ehdr.e_type = ehdr->e_type;
1426 		b->ehdr.e_machine = ehdr->e_machine;
1427 		b->ehdr.e_version = ehdr->e_version;
1428 		b->ehdr.e_flags = ehdr->e_flags;
1429 		b->ehdr.e_ehsize = sizeof (b->ehdr);
1430 		b->ehdr.e_shoff = sizeof (b->ehdr);
1431 		b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1432 		b->ehdr.e_shnum = 3;
1433 		off = 0;
1434 
1435 		b->shdr[1].sh_size = symtab->sh_size;
1436 		b->shdr[1].sh_type = SHT_SYMTAB;
1437 		b->shdr[1].sh_offset = off + base;
1438 		b->shdr[1].sh_entsize = sizeof (Elf32_Sym);
1439 		b->shdr[1].sh_link = 2;
1440 		b->shdr[1].sh_info =  symtab->sh_info;
1441 		b->shdr[1].sh_addralign = symtab->sh_addralign;
1442 
1443 		if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1444 		    symtab->sh_offset) != b->shdr[1].sh_size) {
1445 			dprintf("fake_up_symtab: pread of symtab[1] failed\n");
1446 			free(b);
1447 			return;
1448 		}
1449 
1450 		off += b->shdr[1].sh_size;
1451 
1452 		b->shdr[2].sh_flags = SHF_STRINGS;
1453 		b->shdr[2].sh_size = strtab->sh_size;
1454 		b->shdr[2].sh_type = SHT_STRTAB;
1455 		b->shdr[2].sh_offset = off + base;
1456 		b->shdr[2].sh_info =  strtab->sh_info;
1457 		b->shdr[2].sh_addralign = 1;
1458 
1459 		if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1460 		    strtab->sh_offset) != b->shdr[2].sh_size) {
1461 			dprintf("fake_up_symtab: pread of symtab[2] failed\n");
1462 			free(b);
1463 			return;
1464 		}
1465 
1466 		off += b->shdr[2].sh_size;
1467 
1468 		fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1469 		if (fp->file_symtab.sym_elf == NULL) {
1470 			free(b);
1471 			return;
1472 		}
1473 
1474 		fp->file_symtab.sym_elfmem = b;
1475 #ifdef _LP64
1476 	} else {
1477 		struct {
1478 			Elf64_Ehdr ehdr;
1479 			Elf64_Shdr shdr[3];
1480 			char data[1];
1481 		} *b;
1482 
1483 		base = sizeof (b->ehdr) + sizeof (b->shdr);
1484 		size = base + symtab->sh_size + strtab->sh_size;
1485 
1486 		if ((b = calloc(1, size)) == NULL)
1487 			return;
1488 
1489 		(void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1490 		    sizeof (ehdr->e_ident));
1491 		b->ehdr.e_type = ehdr->e_type;
1492 		b->ehdr.e_machine = ehdr->e_machine;
1493 		b->ehdr.e_version = ehdr->e_version;
1494 		b->ehdr.e_flags = ehdr->e_flags;
1495 		b->ehdr.e_ehsize = sizeof (b->ehdr);
1496 		b->ehdr.e_shoff = sizeof (b->ehdr);
1497 		b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1498 		b->ehdr.e_shnum = 3;
1499 		off = 0;
1500 
1501 		b->shdr[1].sh_size = symtab->sh_size;
1502 		b->shdr[1].sh_type = SHT_SYMTAB;
1503 		b->shdr[1].sh_offset = off + base;
1504 		b->shdr[1].sh_entsize = sizeof (Elf64_Sym);
1505 		b->shdr[1].sh_link = 2;
1506 		b->shdr[1].sh_info =  symtab->sh_info;
1507 		b->shdr[1].sh_addralign = symtab->sh_addralign;
1508 
1509 		if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1510 		    symtab->sh_offset) != b->shdr[1].sh_size) {
1511 			free(b);
1512 			return;
1513 		}
1514 
1515 		off += b->shdr[1].sh_size;
1516 
1517 		b->shdr[2].sh_flags = SHF_STRINGS;
1518 		b->shdr[2].sh_size = strtab->sh_size;
1519 		b->shdr[2].sh_type = SHT_STRTAB;
1520 		b->shdr[2].sh_offset = off + base;
1521 		b->shdr[2].sh_info =  strtab->sh_info;
1522 		b->shdr[2].sh_addralign = 1;
1523 
1524 		if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1525 		    strtab->sh_offset) != b->shdr[2].sh_size) {
1526 			free(b);
1527 			return;
1528 		}
1529 
1530 		off += b->shdr[2].sh_size;
1531 
1532 		fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1533 		if (fp->file_symtab.sym_elf == NULL) {
1534 			free(b);
1535 			return;
1536 		}
1537 
1538 		fp->file_symtab.sym_elfmem = b;
1539 #endif
1540 	}
1541 
1542 	if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL ||
1543 	    (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL ||
1544 	    (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL ||
1545 	    (data = elf_getdata(scn, NULL)) == NULL) {
1546 		dprintf("fake_up_symtab: failed to get section data at %p\n",
1547 		    (void *)scn);
1548 		goto err;
1549 	}
1550 
1551 	fp->file_symtab.sym_strs = data->d_buf;
1552 	fp->file_symtab.sym_strsz = data->d_size;
1553 	fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize;
1554 	fp->file_symtab.sym_hdr_pri = *symtab;
1555 	fp->file_symtab.sym_strhdr = *strtab;
1556 
1557 	optimize_symtab(&fp->file_symtab);
1558 
1559 	return;
1560 err:
1561 	(void) elf_end(fp->file_symtab.sym_elf);
1562 	free(fp->file_symtab.sym_elfmem);
1563 	fp->file_symtab.sym_elf = NULL;
1564 	fp->file_symtab.sym_elfmem = NULL;
1565 }
1566 
1567 static void
1568 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst)
1569 {
1570 	dst->p_type = src->p_type;
1571 	dst->p_flags = src->p_flags;
1572 	dst->p_offset = (Elf64_Off)src->p_offset;
1573 	dst->p_vaddr = (Elf64_Addr)src->p_vaddr;
1574 	dst->p_paddr = (Elf64_Addr)src->p_paddr;
1575 	dst->p_filesz = (Elf64_Xword)src->p_filesz;
1576 	dst->p_memsz = (Elf64_Xword)src->p_memsz;
1577 	dst->p_align = (Elf64_Xword)src->p_align;
1578 }
1579 
1580 static void
1581 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
1582 {
1583 	dst->sh_name = src->sh_name;
1584 	dst->sh_type = src->sh_type;
1585 	dst->sh_flags = (Elf64_Xword)src->sh_flags;
1586 	dst->sh_addr = (Elf64_Addr)src->sh_addr;
1587 	dst->sh_offset = (Elf64_Off)src->sh_offset;
1588 	dst->sh_size = (Elf64_Xword)src->sh_size;
1589 	dst->sh_link = src->sh_link;
1590 	dst->sh_info = src->sh_info;
1591 	dst->sh_addralign = (Elf64_Xword)src->sh_addralign;
1592 	dst->sh_entsize = (Elf64_Xword)src->sh_entsize;
1593 }
1594 
1595 /*
1596  * Perform elf_begin on efp->e_fd and verify the ELF file's type and class.
1597  */
1598 static int
1599 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr)
1600 {
1601 #ifdef _BIG_ENDIAN
1602 	uchar_t order = ELFDATA2MSB;
1603 #else
1604 	uchar_t order = ELFDATA2LSB;
1605 #endif
1606 	Elf32_Ehdr e32;
1607 	int is_noelf = -1;
1608 	int isa_err = 0;
1609 
1610 	/*
1611 	 * Because 32-bit libelf cannot deal with large files, we need to read,
1612 	 * check, and convert the file header manually in case type == ET_CORE.
1613 	 */
1614 	if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) {
1615 		if (perr != NULL)
1616 			*perr = G_FORMAT;
1617 		goto err;
1618 	}
1619 	if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 ||
1620 	    e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) ||
1621 	    e32.e_version != EV_CURRENT) {
1622 		if (perr != NULL) {
1623 			if (is_noelf == 0 && isa_err) {
1624 				*perr = G_ISAINVAL;
1625 			} else {
1626 				*perr = G_FORMAT;
1627 			}
1628 		}
1629 		goto err;
1630 	}
1631 
1632 	/*
1633 	 * If the file is 64-bit and we are 32-bit, fail with G_LP64.  If the
1634 	 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr,
1635 	 * and convert it to a elf_file_header_t.  Otherwise, the file is
1636 	 * 32-bit, so convert e32 to a elf_file_header_t.
1637 	 */
1638 	if (e32.e_ident[EI_CLASS] == ELFCLASS64) {
1639 #ifdef _LP64
1640 		Elf64_Ehdr e64;
1641 
1642 		if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) {
1643 			if (perr != NULL)
1644 				*perr = G_FORMAT;
1645 			goto err;
1646 		}
1647 
1648 		(void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT);
1649 		efp->e_hdr.e_type = e64.e_type;
1650 		efp->e_hdr.e_machine = e64.e_machine;
1651 		efp->e_hdr.e_version = e64.e_version;
1652 		efp->e_hdr.e_entry = e64.e_entry;
1653 		efp->e_hdr.e_phoff = e64.e_phoff;
1654 		efp->e_hdr.e_shoff = e64.e_shoff;
1655 		efp->e_hdr.e_flags = e64.e_flags;
1656 		efp->e_hdr.e_ehsize = e64.e_ehsize;
1657 		efp->e_hdr.e_phentsize = e64.e_phentsize;
1658 		efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum;
1659 		efp->e_hdr.e_shentsize = e64.e_shentsize;
1660 		efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum;
1661 		efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx;
1662 #else	/* _LP64 */
1663 		if (perr != NULL)
1664 			*perr = G_LP64;
1665 		goto err;
1666 #endif	/* _LP64 */
1667 	} else {
1668 		(void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT);
1669 		efp->e_hdr.e_type = e32.e_type;
1670 		efp->e_hdr.e_machine = e32.e_machine;
1671 		efp->e_hdr.e_version = e32.e_version;
1672 		efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry;
1673 		efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff;
1674 		efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff;
1675 		efp->e_hdr.e_flags = e32.e_flags;
1676 		efp->e_hdr.e_ehsize = e32.e_ehsize;
1677 		efp->e_hdr.e_phentsize = e32.e_phentsize;
1678 		efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum;
1679 		efp->e_hdr.e_shentsize = e32.e_shentsize;
1680 		efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum;
1681 		efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx;
1682 	}
1683 
1684 	/*
1685 	 * If the number of section headers or program headers or the section
1686 	 * header string table index would overflow their respective fields
1687 	 * in the ELF header, they're stored in the section header at index
1688 	 * zero. To simplify use elsewhere, we look for those sentinel values
1689 	 * here.
1690 	 */
1691 	if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) ||
1692 	    efp->e_hdr.e_shstrndx == SHN_XINDEX ||
1693 	    efp->e_hdr.e_phnum == PN_XNUM) {
1694 		GElf_Shdr shdr;
1695 
1696 		dprintf("extended ELF header\n");
1697 
1698 		if (efp->e_hdr.e_shoff == 0) {
1699 			if (perr != NULL)
1700 				*perr = G_FORMAT;
1701 			goto err;
1702 		}
1703 
1704 		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1705 			Elf32_Shdr shdr32;
1706 
1707 			if (pread64(efp->e_fd, &shdr32, sizeof (shdr32),
1708 			    efp->e_hdr.e_shoff) != sizeof (shdr32)) {
1709 				if (perr != NULL)
1710 					*perr = G_FORMAT;
1711 				goto err;
1712 			}
1713 
1714 			core_shdr_to_gelf(&shdr32, &shdr);
1715 		} else {
1716 			if (pread64(efp->e_fd, &shdr, sizeof (shdr),
1717 			    efp->e_hdr.e_shoff) != sizeof (shdr)) {
1718 				if (perr != NULL)
1719 					*perr = G_FORMAT;
1720 				goto err;
1721 			}
1722 		}
1723 
1724 		if (efp->e_hdr.e_shnum == 0) {
1725 			efp->e_hdr.e_shnum = shdr.sh_size;
1726 			dprintf("section header count %lu\n",
1727 			    (ulong_t)shdr.sh_size);
1728 		}
1729 
1730 		if (efp->e_hdr.e_shstrndx == SHN_XINDEX) {
1731 			efp->e_hdr.e_shstrndx = shdr.sh_link;
1732 			dprintf("section string index %u\n", shdr.sh_link);
1733 		}
1734 
1735 		if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) {
1736 			efp->e_hdr.e_phnum = shdr.sh_info;
1737 			dprintf("program header count %u\n", shdr.sh_info);
1738 		}
1739 
1740 	} else if (efp->e_hdr.e_phoff != 0) {
1741 		GElf_Phdr phdr;
1742 		uint64_t phnum;
1743 
1744 		/*
1745 		 * It's possible this core file came from a system that
1746 		 * accidentally truncated the e_phnum field without correctly
1747 		 * using the extended format in the section header at index
1748 		 * zero. We try to detect and correct that specific type of
1749 		 * corruption by using the knowledge that the core dump
1750 		 * routines usually place the data referenced by the first
1751 		 * program header immediately after the last header element.
1752 		 */
1753 		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1754 			Elf32_Phdr phdr32;
1755 
1756 			if (pread64(efp->e_fd, &phdr32, sizeof (phdr32),
1757 			    efp->e_hdr.e_phoff) != sizeof (phdr32)) {
1758 				if (perr != NULL)
1759 					*perr = G_FORMAT;
1760 				goto err;
1761 			}
1762 
1763 			core_phdr_to_gelf(&phdr32, &phdr);
1764 		} else {
1765 			if (pread64(efp->e_fd, &phdr, sizeof (phdr),
1766 			    efp->e_hdr.e_phoff) != sizeof (phdr)) {
1767 				if (perr != NULL)
1768 					*perr = G_FORMAT;
1769 				goto err;
1770 			}
1771 		}
1772 
1773 		phnum = phdr.p_offset - efp->e_hdr.e_ehsize -
1774 		    (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1775 		phnum /= efp->e_hdr.e_phentsize;
1776 
1777 		if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) {
1778 			dprintf("suspicious program header count %u %u\n",
1779 			    (uint_t)phnum, efp->e_hdr.e_phnum);
1780 
1781 			/*
1782 			 * If the new program header count we computed doesn't
1783 			 * jive with count in the ELF header, we'll use the
1784 			 * data that's there and hope for the best.
1785 			 *
1786 			 * If it does, it's also possible that the section
1787 			 * header offset is incorrect; we'll check that and
1788 			 * possibly try to fix it.
1789 			 */
1790 			if (phnum <= INT_MAX &&
1791 			    (uint16_t)phnum == efp->e_hdr.e_phnum) {
1792 
1793 				if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff +
1794 				    efp->e_hdr.e_phentsize *
1795 				    (uint_t)efp->e_hdr.e_phnum) {
1796 					efp->e_hdr.e_shoff =
1797 					    efp->e_hdr.e_phoff +
1798 					    efp->e_hdr.e_phentsize * phnum;
1799 				}
1800 
1801 				efp->e_hdr.e_phnum = (Elf64_Word)phnum;
1802 				dprintf("using new program header count\n");
1803 			} else {
1804 				dprintf("inconsistent program header count\n");
1805 			}
1806 		}
1807 	}
1808 
1809 	/*
1810 	 * The libelf implementation was never ported to be large-file aware.
1811 	 * This is typically not a problem for your average executable or
1812 	 * shared library, but a large 32-bit core file can exceed 2GB in size.
1813 	 * So if type is ET_CORE, we don't bother doing elf_begin; the code
1814 	 * in Pfgrab_core() below will do its own i/o and struct conversion.
1815 	 */
1816 
1817 	if (type == ET_CORE) {
1818 		efp->e_elf = NULL;
1819 		return (0);
1820 	}
1821 
1822 	if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) {
1823 		if (perr != NULL)
1824 			*perr = G_ELF;
1825 		goto err;
1826 	}
1827 
1828 	return (0);
1829 
1830 err:
1831 	efp->e_elf = NULL;
1832 	return (-1);
1833 }
1834 
1835 /*
1836  * Open the specified file and then do a core_elf_fdopen on it.
1837  */
1838 static int
1839 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr)
1840 {
1841 	(void) memset(efp, 0, sizeof (elf_file_t));
1842 
1843 	if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) {
1844 		if (core_elf_fdopen(efp, type, perr) == 0)
1845 			return (0);
1846 
1847 		(void) close(efp->e_fd);
1848 		efp->e_fd = -1;
1849 	}
1850 
1851 	return (-1);
1852 }
1853 
1854 /*
1855  * Close the ELF handle and file descriptor.
1856  */
1857 static void
1858 core_elf_close(elf_file_t *efp)
1859 {
1860 	if (efp->e_elf != NULL) {
1861 		(void) elf_end(efp->e_elf);
1862 		efp->e_elf = NULL;
1863 	}
1864 
1865 	if (efp->e_fd != -1) {
1866 		(void) close(efp->e_fd);
1867 		efp->e_fd = -1;
1868 	}
1869 }
1870 
1871 /*
1872  * Given an ELF file for a statically linked executable, locate the likely
1873  * primary text section and fill in rl_base with its virtual address.
1874  */
1875 static map_info_t *
1876 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1877 {
1878 	GElf_Phdr phdr;
1879 	uint_t i;
1880 	size_t nphdrs;
1881 
1882 	if (elf_getphdrnum(elf, &nphdrs) == -1)
1883 		return (NULL);
1884 
1885 	for (i = 0; i < nphdrs; i++) {
1886 		if (gelf_getphdr(elf, i, &phdr) != NULL &&
1887 		    phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
1888 			rlp->rl_base = phdr.p_vaddr;
1889 			return (Paddr2mptr(P, rlp->rl_base));
1890 		}
1891 	}
1892 
1893 	return (NULL);
1894 }
1895 
1896 /*
1897  * Given an ELF file and the librtld_db structure corresponding to its primary
1898  * text mapping, deduce where its data segment was loaded and fill in
1899  * rl_data_base and prmap_t.pr_offset accordingly.
1900  */
1901 static map_info_t *
1902 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1903 {
1904 	GElf_Ehdr ehdr;
1905 	GElf_Phdr phdr;
1906 	map_info_t *mp;
1907 	uint_t i, pagemask;
1908 	size_t nphdrs;
1909 
1910 	rlp->rl_data_base = NULL;
1911 
1912 	/*
1913 	 * Find the first loadable, writeable Phdr and compute rl_data_base
1914 	 * as the virtual address at which is was loaded.
1915 	 */
1916 	if (gelf_getehdr(elf, &ehdr) == NULL ||
1917 	    elf_getphdrnum(elf, &nphdrs) == -1)
1918 		return (NULL);
1919 
1920 	for (i = 0; i < nphdrs; i++) {
1921 		if (gelf_getphdr(elf, i, &phdr) != NULL &&
1922 		    phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) {
1923 			rlp->rl_data_base = phdr.p_vaddr;
1924 			if (ehdr.e_type == ET_DYN)
1925 				rlp->rl_data_base += rlp->rl_base;
1926 			break;
1927 		}
1928 	}
1929 
1930 	/*
1931 	 * If we didn't find an appropriate phdr or if the address we
1932 	 * computed has no mapping, return NULL.
1933 	 */
1934 	if (rlp->rl_data_base == NULL ||
1935 	    (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL)
1936 		return (NULL);
1937 
1938 	/*
1939 	 * It wouldn't be procfs-related code if we didn't make use of
1940 	 * unclean knowledge of segvn, even in userland ... the prmap_t's
1941 	 * pr_offset field will be the segvn offset from mmap(2)ing the
1942 	 * data section, which will be the file offset & PAGEMASK.
1943 	 */
1944 	pagemask = ~(mp->map_pmap.pr_pagesize - 1);
1945 	mp->map_pmap.pr_offset = phdr.p_offset & pagemask;
1946 
1947 	return (mp);
1948 }
1949 
1950 /*
1951  * Librtld_db agent callback for iterating over load object mappings.
1952  * For each load object, we allocate a new file_info_t, perform naming,
1953  * and attempt to construct a symbol table for the load object.
1954  */
1955 static int
1956 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P)
1957 {
1958 	core_info_t *core = P->data;
1959 	char lname[PATH_MAX], buf[PATH_MAX];
1960 	file_info_t *fp;
1961 	map_info_t *mp;
1962 
1963 	if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) {
1964 		dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr);
1965 		return (1); /* Keep going; forget this if we can't get a name */
1966 	}
1967 
1968 	dprintf("rd_loadobj name = \"%s\" rl_base = %p\n",
1969 	    lname, (void *)rlp->rl_base);
1970 
1971 	if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) {
1972 		dprintf("no mapping for %p\n", (void *)rlp->rl_base);
1973 		return (1); /* No mapping; advance to next mapping */
1974 	}
1975 
1976 	/*
1977 	 * Create a new file_info_t for this mapping, and therefore for
1978 	 * this load object.
1979 	 *
1980 	 * If there's an ELF header at the beginning of this mapping,
1981 	 * file_info_new() will try to use its section headers to
1982 	 * identify any other mappings that belong to this load object.
1983 	 */
1984 	if ((fp = mp->map_file) == NULL &&
1985 	    (fp = file_info_new(P, mp)) == NULL) {
1986 		core->core_errno = errno;
1987 		dprintf("failed to malloc mapping data\n");
1988 		return (0); /* Abort */
1989 	}
1990 	fp->file_map = mp;
1991 
1992 	/* Create a local copy of the load object representation */
1993 	if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) {
1994 		core->core_errno = errno;
1995 		dprintf("failed to malloc mapping data\n");
1996 		return (0); /* Abort */
1997 	}
1998 	*fp->file_lo = *rlp;
1999 
2000 	if (lname[0] != '\0') {
2001 		/*
2002 		 * Naming dance part 1: if we got a name from librtld_db, then
2003 		 * copy this name to the prmap_t if it is unnamed.  If the
2004 		 * file_info_t is unnamed, name it after the lname.
2005 		 */
2006 		if (mp->map_pmap.pr_mapname[0] == '\0') {
2007 			(void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ);
2008 			mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2009 		}
2010 
2011 		if (fp->file_lname == NULL)
2012 			fp->file_lname = strdup(lname);
2013 
2014 	} else if (fp->file_lname == NULL &&
2015 	    mp->map_pmap.pr_mapname[0] != '\0') {
2016 		/*
2017 		 * Naming dance part 2: if the mapping is named and the
2018 		 * file_info_t is not, name the file after the mapping.
2019 		 */
2020 		fp->file_lname = strdup(mp->map_pmap.pr_mapname);
2021 	}
2022 
2023 	if ((fp->file_rname == NULL) &&
2024 	    (Pfindmap(P, mp, buf, sizeof (buf)) != NULL))
2025 		fp->file_rname = strdup(buf);
2026 
2027 	if (fp->file_lname != NULL)
2028 		fp->file_lbase = basename(fp->file_lname);
2029 	if (fp->file_rname != NULL)
2030 		fp->file_rbase = basename(fp->file_rname);
2031 
2032 	/* Associate the file and the mapping. */
2033 	(void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ);
2034 	fp->file_pname[PRMAPSZ - 1] = '\0';
2035 
2036 	/*
2037 	 * If no section headers were available then we'll have to
2038 	 * identify this load object's other mappings with what we've
2039 	 * got: the start and end of the object's corresponding
2040 	 * address space.
2041 	 */
2042 	if (fp->file_saddrs == NULL) {
2043 		for (mp = fp->file_map + 1; mp < P->mappings + P->map_count &&
2044 		    mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) {
2045 
2046 			if (mp->map_file == NULL) {
2047 				dprintf("core_iter_mapping %s: associating "
2048 				    "segment at %p\n",
2049 				    fp->file_pname,
2050 				    (void *)mp->map_pmap.pr_vaddr);
2051 				mp->map_file = fp;
2052 				fp->file_ref++;
2053 			} else {
2054 				dprintf("core_iter_mapping %s: segment at "
2055 				    "%p already associated with %s\n",
2056 				    fp->file_pname,
2057 				    (void *)mp->map_pmap.pr_vaddr,
2058 				    (mp == fp->file_map ? "this file" :
2059 				    mp->map_file->file_pname));
2060 			}
2061 		}
2062 	}
2063 
2064 	/* Ensure that all this file's mappings are named. */
2065 	for (mp = fp->file_map; mp < P->mappings + P->map_count &&
2066 	    mp->map_file == fp; mp++) {
2067 		if (mp->map_pmap.pr_mapname[0] == '\0' &&
2068 		    !(mp->map_pmap.pr_mflags & MA_BREAK)) {
2069 			(void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname,
2070 			    PRMAPSZ);
2071 			mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2072 		}
2073 	}
2074 
2075 	/* Attempt to build a symbol table for this file. */
2076 	Pbuild_file_symtab(P, fp);
2077 	if (fp->file_elf == NULL)
2078 		dprintf("core_iter_mapping: no symtab for %s\n",
2079 		    fp->file_pname);
2080 
2081 	/* Locate the start of a data segment associated with this file. */
2082 	if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) {
2083 		dprintf("found data for %s at %p (pr_offset 0x%llx)\n",
2084 		    fp->file_pname, (void *)fp->file_lo->rl_data_base,
2085 		    mp->map_pmap.pr_offset);
2086 	} else {
2087 		dprintf("core_iter_mapping: no data found for %s\n",
2088 		    fp->file_pname);
2089 	}
2090 
2091 	return (1); /* Advance to next mapping */
2092 }
2093 
2094 /*
2095  * Callback function for Pfindexec().  In order to confirm a given pathname,
2096  * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN.
2097  */
2098 static int
2099 core_exec_open(const char *path, void *efp)
2100 {
2101 	if (core_elf_open(efp, path, ET_EXEC, NULL) == 0)
2102 		return (1);
2103 	if (core_elf_open(efp, path, ET_DYN, NULL) == 0)
2104 		return (1);
2105 	return (0);
2106 }
2107 
2108 /*
2109  * Attempt to load any section headers found in the core file.  If present,
2110  * this will refer to non-loadable data added to the core file by the kernel
2111  * based on coreadm(1M) settings, including CTF data and the symbol table.
2112  */
2113 static void
2114 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp)
2115 {
2116 	GElf_Shdr *shp, *shdrs = NULL;
2117 	char *shstrtab = NULL;
2118 	ulong_t shstrtabsz;
2119 	const char *name;
2120 	map_info_t *mp;
2121 
2122 	size_t nbytes;
2123 	void *buf;
2124 	int i;
2125 
2126 	if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) {
2127 		dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n",
2128 		    efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum);
2129 		return;
2130 	}
2131 
2132 	/*
2133 	 * Read the section header table from the core file and then iterate
2134 	 * over the section headers, converting each to a GElf_Shdr.
2135 	 */
2136 	if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) {
2137 		dprintf("failed to malloc %u section headers: %s\n",
2138 		    (uint_t)efp->e_hdr.e_shnum, strerror(errno));
2139 		return;
2140 	}
2141 
2142 	nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
2143 	if ((buf = malloc(nbytes)) == NULL) {
2144 		dprintf("failed to malloc %d bytes: %s\n", (int)nbytes,
2145 		    strerror(errno));
2146 		free(shdrs);
2147 		goto out;
2148 	}
2149 
2150 	if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) {
2151 		dprintf("failed to read section headers at off %lld: %s\n",
2152 		    (longlong_t)efp->e_hdr.e_shoff, strerror(errno));
2153 		free(buf);
2154 		goto out;
2155 	}
2156 
2157 	for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2158 		void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i;
2159 
2160 		if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32)
2161 			core_shdr_to_gelf(p, &shdrs[i]);
2162 		else
2163 			(void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr));
2164 	}
2165 
2166 	free(buf);
2167 	buf = NULL;
2168 
2169 	/*
2170 	 * Read the .shstrtab section from the core file, terminating it with
2171 	 * an extra \0 so that a corrupt section will not cause us to die.
2172 	 */
2173 	shp = &shdrs[efp->e_hdr.e_shstrndx];
2174 	shstrtabsz = shp->sh_size;
2175 
2176 	if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) {
2177 		dprintf("failed to allocate %lu bytes for shstrtab\n",
2178 		    (ulong_t)shstrtabsz);
2179 		goto out;
2180 	}
2181 
2182 	if (pread64(efp->e_fd, shstrtab, shstrtabsz,
2183 	    shp->sh_offset) != shstrtabsz) {
2184 		dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n",
2185 		    shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno));
2186 		goto out;
2187 	}
2188 
2189 	shstrtab[shstrtabsz] = '\0';
2190 
2191 	/*
2192 	 * Now iterate over each section in the section header table, locating
2193 	 * sections of interest and initializing more of the ps_prochandle.
2194 	 */
2195 	for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2196 		shp = &shdrs[i];
2197 		name = shstrtab + shp->sh_name;
2198 
2199 		if (shp->sh_name >= shstrtabsz) {
2200 			dprintf("skipping section [%d]: corrupt sh_name\n", i);
2201 			continue;
2202 		}
2203 
2204 		if (shp->sh_link >= efp->e_hdr.e_shnum) {
2205 			dprintf("skipping section [%d]: corrupt sh_link\n", i);
2206 			continue;
2207 		}
2208 
2209 		dprintf("found section header %s (sh_addr 0x%llx)\n",
2210 		    name, (u_longlong_t)shp->sh_addr);
2211 
2212 		if (strcmp(name, ".SUNW_ctf") == 0) {
2213 			if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) {
2214 				dprintf("no map at addr 0x%llx for %s [%d]\n",
2215 				    (u_longlong_t)shp->sh_addr, name, i);
2216 				continue;
2217 			}
2218 
2219 			if (mp->map_file == NULL ||
2220 			    mp->map_file->file_ctf_buf != NULL) {
2221 				dprintf("no mapping file or duplicate buffer "
2222 				    "for %s [%d]\n", name, i);
2223 				continue;
2224 			}
2225 
2226 			if ((buf = malloc(shp->sh_size)) == NULL ||
2227 			    pread64(efp->e_fd, buf, shp->sh_size,
2228 			    shp->sh_offset) != shp->sh_size) {
2229 				dprintf("skipping section %s [%d]: %s\n",
2230 				    name, i, strerror(errno));
2231 				free(buf);
2232 				continue;
2233 			}
2234 
2235 			mp->map_file->file_ctf_size = shp->sh_size;
2236 			mp->map_file->file_ctf_buf = buf;
2237 
2238 			if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM)
2239 				mp->map_file->file_ctf_dyn = 1;
2240 
2241 		} else if (strcmp(name, ".symtab") == 0) {
2242 			fake_up_symtab(P, &efp->e_hdr,
2243 			    shp, &shdrs[shp->sh_link]);
2244 		}
2245 	}
2246 out:
2247 	free(shstrtab);
2248 	free(shdrs);
2249 }
2250 
2251 /*
2252  * Main engine for core file initialization: given an fd for the core file
2253  * and an optional pathname, construct the ps_prochandle.  The aout_path can
2254  * either be a suggested executable pathname, or a suggested directory to
2255  * use as a possible current working directory.
2256  */
2257 struct ps_prochandle *
2258 Pfgrab_core(int core_fd, const char *aout_path, int *perr)
2259 {
2260 	struct ps_prochandle *P;
2261 	core_info_t *core_info;
2262 	map_info_t *stk_mp, *brk_mp;
2263 	const char *execname;
2264 	char *interp;
2265 	int i, notes, pagesize;
2266 	uintptr_t addr, base_addr;
2267 	struct stat64 stbuf;
2268 	void *phbuf, *php;
2269 	size_t nbytes;
2270 #ifdef __x86
2271 	boolean_t from_linux = B_FALSE;
2272 #endif
2273 
2274 	elf_file_t aout;
2275 	elf_file_t core;
2276 
2277 	Elf_Scn *scn, *intp_scn = NULL;
2278 	Elf_Data *dp;
2279 
2280 	GElf_Phdr phdr, note_phdr;
2281 	GElf_Shdr shdr;
2282 	GElf_Xword nleft;
2283 
2284 	if (elf_version(EV_CURRENT) == EV_NONE) {
2285 		dprintf("libproc ELF version is more recent than libelf\n");
2286 		*perr = G_ELF;
2287 		return (NULL);
2288 	}
2289 
2290 	aout.e_elf = NULL;
2291 	aout.e_fd = -1;
2292 
2293 	core.e_elf = NULL;
2294 	core.e_fd = core_fd;
2295 
2296 	/*
2297 	 * Allocate and initialize a ps_prochandle structure for the core.
2298 	 * There are several key pieces of initialization here:
2299 	 *
2300 	 * 1. The PS_DEAD state flag marks this prochandle as a core file.
2301 	 *    PS_DEAD also thus prevents all operations which require state
2302 	 *    to be PS_STOP from operating on this handle.
2303 	 *
2304 	 * 2. We keep the core file fd in P->asfd since the core file contains
2305 	 *    the remnants of the process address space.
2306 	 *
2307 	 * 3. We set the P->info_valid bit because all information about the
2308 	 *    core is determined by the end of this function; there is no need
2309 	 *    for proc_update_maps() to reload mappings at any later point.
2310 	 *
2311 	 * 4. The read/write ops vector uses our core_rw() function defined
2312 	 *    above to handle i/o requests.
2313 	 */
2314 	if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
2315 		*perr = G_STRANGE;
2316 		return (NULL);
2317 	}
2318 
2319 	(void) memset(P, 0, sizeof (struct ps_prochandle));
2320 	(void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
2321 	P->state = PS_DEAD;
2322 	P->pid = (pid_t)-1;
2323 	P->asfd = core.e_fd;
2324 	P->ctlfd = -1;
2325 	P->statfd = -1;
2326 	P->agentctlfd = -1;
2327 	P->agentstatfd = -1;
2328 	P->zoneroot = NULL;
2329 	P->info_valid = 1;
2330 	Pinit_ops(&P->ops, &P_core_ops);
2331 
2332 	Pinitsym(P);
2333 
2334 	/*
2335 	 * Fstat and open the core file and make sure it is a valid ELF core.
2336 	 */
2337 	if (fstat64(P->asfd, &stbuf) == -1) {
2338 		*perr = G_STRANGE;
2339 		goto err;
2340 	}
2341 
2342 	if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
2343 		goto err;
2344 
2345 	/*
2346 	 * Allocate and initialize a core_info_t to hang off the ps_prochandle
2347 	 * structure.  We keep all core-specific information in this structure.
2348 	 */
2349 	if ((core_info = calloc(1, sizeof (core_info_t))) == NULL) {
2350 		*perr = G_STRANGE;
2351 		goto err;
2352 	}
2353 
2354 	P->data = core_info;
2355 	list_link(&core_info->core_lwp_head, NULL);
2356 	core_info->core_size = stbuf.st_size;
2357 	/*
2358 	 * In the days before adjustable core file content, this was the
2359 	 * default core file content. For new core files, this value will
2360 	 * be overwritten by the NT_CONTENT note section.
2361 	 */
2362 	core_info->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
2363 	    CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
2364 	    CC_CONTENT_SHANON;
2365 
2366 	switch (core.e_hdr.e_ident[EI_CLASS]) {
2367 	case ELFCLASS32:
2368 		core_info->core_dmodel = PR_MODEL_ILP32;
2369 		break;
2370 	case ELFCLASS64:
2371 		core_info->core_dmodel = PR_MODEL_LP64;
2372 		break;
2373 	default:
2374 		*perr = G_FORMAT;
2375 		goto err;
2376 	}
2377 	core_info->core_osabi = core.e_hdr.e_ident[EI_OSABI];
2378 
2379 	/*
2380 	 * Because the core file may be a large file, we can't use libelf to
2381 	 * read the Phdrs.  We use e_phnum and e_phentsize to simplify things.
2382 	 */
2383 	nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;
2384 
2385 	if ((phbuf = malloc(nbytes)) == NULL) {
2386 		*perr = G_STRANGE;
2387 		goto err;
2388 	}
2389 
2390 	if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
2391 		*perr = G_STRANGE;
2392 		free(phbuf);
2393 		goto err;
2394 	}
2395 
2396 	/*
2397 	 * Iterate through the program headers in the core file.
2398 	 * We're interested in two types of Phdrs: PT_NOTE (which
2399 	 * contains a set of saved /proc structures), and PT_LOAD (which
2400 	 * represents a memory mapping from the process's address space).
2401 	 * In the case of PT_NOTE, we're interested in the last PT_NOTE
2402 	 * in the core file; currently the first PT_NOTE (if present)
2403 	 * contains /proc structs in the pre-2.6 unstructured /proc format.
2404 	 */
2405 	for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
2406 		if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
2407 			(void) memcpy(&phdr, php, sizeof (GElf_Phdr));
2408 		else
2409 			core_phdr_to_gelf(php, &phdr);
2410 
2411 		switch (phdr.p_type) {
2412 		case PT_NOTE:
2413 			note_phdr = phdr;
2414 			notes++;
2415 			break;
2416 
2417 		case PT_LOAD:
2418 			if (core_add_mapping(P, &phdr) == -1) {
2419 				*perr = G_STRANGE;
2420 				free(phbuf);
2421 				goto err;
2422 			}
2423 			break;
2424 		default:
2425 			dprintf("Pgrab_core: unknown phdr %d\n", phdr.p_type);
2426 			break;
2427 		}
2428 
2429 		php = (char *)php + core.e_hdr.e_phentsize;
2430 	}
2431 
2432 	free(phbuf);
2433 
2434 	Psort_mappings(P);
2435 
2436 	/*
2437 	 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE
2438 	 * was present, abort.  The core file is either corrupt or too old.
2439 	 */
2440 	if (notes == 0 || (notes == 1 && core_info->core_osabi ==
2441 	    ELFOSABI_SOLARIS)) {
2442 		*perr = G_NOTE;
2443 		goto err;
2444 	}
2445 
2446 	/*
2447 	 * Advance the seek pointer to the start of the PT_NOTE data
2448 	 */
2449 	if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
2450 		dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
2451 		*perr = G_STRANGE;
2452 		goto err;
2453 	}
2454 
2455 	/*
2456 	 * Now process the PT_NOTE structures.  Each one is preceded by
2457 	 * an Elf{32/64}_Nhdr structure describing its type and size.
2458 	 *
2459 	 *  +--------+
2460 	 *  | header |
2461 	 *  +--------+
2462 	 *  | name   |
2463 	 *  | ...    |
2464 	 *  +--------+
2465 	 *  | desc   |
2466 	 *  | ...    |
2467 	 *  +--------+
2468 	 */
2469 	for (nleft = note_phdr.p_filesz; nleft > 0; ) {
2470 		Elf64_Nhdr nhdr;
2471 		off64_t off, namesz, descsz;
2472 
2473 		/*
2474 		 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
2475 		 * as different types, they are both of the same content and
2476 		 * size, so we don't need to worry about 32/64 conversion here.
2477 		 */
2478 		if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
2479 			dprintf("Pgrab_core: failed to read ELF note header\n");
2480 			*perr = G_NOTE;
2481 			goto err;
2482 		}
2483 
2484 		/*
2485 		 * According to the System V ABI, the amount of padding
2486 		 * following the name field should align the description
2487 		 * field on a 4 byte boundary for 32-bit binaries or on an 8
2488 		 * byte boundary for 64-bit binaries. However, this change
2489 		 * was not made correctly during the 64-bit port so all
2490 		 * descriptions can assume only 4-byte alignment. We ignore
2491 		 * the name field and the padding to 4-byte alignment.
2492 		 */
2493 		namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);
2494 
2495 		if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
2496 			dprintf("failed to seek past name and padding\n");
2497 			*perr = G_STRANGE;
2498 			goto err;
2499 		}
2500 
2501 		dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
2502 		    nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);
2503 
2504 		off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);
2505 
2506 		/*
2507 		 * Invoke the note handler function from our table
2508 		 */
2509 		if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) {
2510 			if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
2511 				dprintf("handler for type %d returned < 0",
2512 				    nhdr.n_type);
2513 				*perr = G_NOTE;
2514 				goto err;
2515 			}
2516 			/*
2517 			 * The presence of either of these notes indicates that
2518 			 * the dump was generated on Linux.
2519 			 */
2520 #ifdef __x86
2521 			if (nhdr.n_type == NT_PRSTATUS ||
2522 			    nhdr.n_type == NT_PRPSINFO)
2523 				from_linux = B_TRUE;
2524 #endif
2525 		} else {
2526 			(void) note_notsup(P, nhdr.n_descsz);
2527 		}
2528 
2529 		/*
2530 		 * Seek past the current note data to the next Elf_Nhdr
2531 		 */
2532 		descsz = P2ROUNDUP((off64_t)nhdr.n_descsz, (off64_t)4);
2533 		if (lseek64(P->asfd, off + descsz, SEEK_SET) == (off64_t)-1) {
2534 			dprintf("Pgrab_core: failed to seek to next nhdr\n");
2535 			*perr = G_STRANGE;
2536 			goto err;
2537 		}
2538 
2539 		/*
2540 		 * Subtract the size of the header and its data from what
2541 		 * we have left to process.
2542 		 */
2543 		nleft -= sizeof (nhdr) + namesz + descsz;
2544 	}
2545 
2546 #ifdef __x86
2547 	if (from_linux) {
2548 		size_t tcount, pid;
2549 		lwp_info_t *lwp;
2550 
2551 		P->status.pr_dmodel = core_info->core_dmodel;
2552 
2553 		lwp = list_next(&core_info->core_lwp_head);
2554 
2555 		pid = P->status.pr_pid;
2556 
2557 		for (tcount = 0; tcount < core_info->core_nlwp;
2558 		    tcount++, lwp = list_next(lwp)) {
2559 			dprintf("Linux thread with id %d\n", lwp->lwp_id);
2560 
2561 			/*
2562 			 * In the case we don't have a valid psinfo (i.e. pid is
2563 			 * 0, probably because of gdb creating the core) assume
2564 			 * lowest pid count is the first thread (what if the
2565 			 * next thread wraps the pid around?)
2566 			 */
2567 			if (P->status.pr_pid == 0 &&
2568 			    ((pid == 0 && lwp->lwp_id > 0) ||
2569 			    (lwp->lwp_id < pid))) {
2570 				pid = lwp->lwp_id;
2571 			}
2572 		}
2573 
2574 		if (P->status.pr_pid != pid) {
2575 			dprintf("No valid pid, setting to %ld\n", (ulong_t)pid);
2576 			P->status.pr_pid = pid;
2577 			P->psinfo.pr_pid = pid;
2578 		}
2579 
2580 		/*
2581 		 * Consumers like mdb expect the first thread to actually have
2582 		 * an id of 1, on linux that is actually the pid. Find the the
2583 		 * thread with our process id, and set the id to 1
2584 		 */
2585 		if ((lwp = lwpid2info(P, pid)) == NULL) {
2586 			dprintf("Couldn't find first thread\n");
2587 			*perr = G_STRANGE;
2588 			goto err;
2589 		}
2590 
2591 		dprintf("setting representative thread: %d\n", lwp->lwp_id);
2592 
2593 		lwp->lwp_id = 1;
2594 		lwp->lwp_status.pr_lwpid = 1;
2595 
2596 		/* set representative thread */
2597 		(void) memcpy(&P->status.pr_lwp, &lwp->lwp_status,
2598 		    sizeof (P->status.pr_lwp));
2599 	}
2600 #endif /* __x86 */
2601 
2602 	if (nleft != 0) {
2603 		dprintf("Pgrab_core: note section malformed\n");
2604 		*perr = G_STRANGE;
2605 		goto err;
2606 	}
2607 
2608 	if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
2609 		pagesize = getpagesize();
2610 		dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
2611 	}
2612 
2613 	/*
2614 	 * Locate and label the mappings corresponding to the end of the
2615 	 * heap (MA_BREAK) and the base of the stack (MA_STACK).
2616 	 */
2617 	if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
2618 	    (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
2619 	    P->status.pr_brksize - 1)) != NULL)
2620 		brk_mp->map_pmap.pr_mflags |= MA_BREAK;
2621 	else
2622 		brk_mp = NULL;
2623 
2624 	if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
2625 		stk_mp->map_pmap.pr_mflags |= MA_STACK;
2626 
2627 	/*
2628 	 * At this point, we have enough information to look for the
2629 	 * executable and open it: we have access to the auxv, a psinfo_t,
2630 	 * and the ability to read from mappings provided by the core file.
2631 	 */
2632 	(void) Pfindexec(P, aout_path, core_exec_open, &aout);
2633 	dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
2634 	execname = P->execname ? P->execname : "a.out";
2635 
2636 	/*
2637 	 * Iterate through the sections, looking for the .dynamic and .interp
2638 	 * sections.  If we encounter them, remember their section pointers.
2639 	 */
2640 	for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) {
2641 		char *sname;
2642 
2643 		if ((gelf_getshdr(scn, &shdr) == NULL) ||
2644 		    (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
2645 		    (size_t)shdr.sh_name)) == NULL)
2646 			continue;
2647 
2648 		if (strcmp(sname, ".interp") == 0)
2649 			intp_scn = scn;
2650 	}
2651 
2652 	/*
2653 	 * Get the AT_BASE auxv element.  If this is missing (-1), then
2654 	 * we assume this is a statically-linked executable.
2655 	 */
2656 	base_addr = Pgetauxval(P, AT_BASE);
2657 
2658 	/*
2659 	 * In order to get librtld_db initialized, we'll need to identify
2660 	 * and name the mapping corresponding to the run-time linker.  The
2661 	 * AT_BASE auxv element tells us the address where it was mapped,
2662 	 * and the .interp section of the executable tells us its path.
2663 	 * If for some reason that doesn't pan out, just use ld.so.1.
2664 	 */
2665 	if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2666 	    dp->d_size != 0) {
2667 		dprintf(".interp = <%s>\n", (char *)dp->d_buf);
2668 		interp = dp->d_buf;
2669 
2670 	} else if (base_addr != (uintptr_t)-1L) {
2671 		if (core_info->core_dmodel == PR_MODEL_LP64)
2672 			interp = "/usr/lib/64/ld.so.1";
2673 		else
2674 			interp = "/usr/lib/ld.so.1";
2675 
2676 		dprintf(".interp section is missing or could not be read; "
2677 		    "defaulting to %s\n", interp);
2678 	} else
2679 		dprintf("detected statically linked executable\n");
2680 
2681 	/*
2682 	 * If we have an AT_BASE element, name the mapping at that address
2683 	 * using the interpreter pathname.  Name the corresponding data
2684 	 * mapping after the interpreter as well.
2685 	 */
2686 	if (base_addr != (uintptr_t)-1L) {
2687 		elf_file_t intf;
2688 
2689 		P->map_ldso = core_name_mapping(P, base_addr, interp);
2690 
2691 		if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2692 			rd_loadobj_t rl;
2693 			map_info_t *dmp;
2694 
2695 			rl.rl_base = base_addr;
2696 			dmp = core_find_data(P, intf.e_elf, &rl);
2697 
2698 			if (dmp != NULL) {
2699 				dprintf("renamed data at %p to %s\n",
2700 				    (void *)rl.rl_data_base, interp);
2701 				(void) strncpy(dmp->map_pmap.pr_mapname,
2702 				    interp, PRMAPSZ);
2703 				dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2704 			}
2705 		}
2706 
2707 		core_elf_close(&intf);
2708 	}
2709 
2710 	/*
2711 	 * If we have an AT_ENTRY element, name the mapping at that address
2712 	 * using the special name "a.out" just like /proc does.
2713 	 */
2714 	if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2715 		P->map_exec = core_name_mapping(P, addr, "a.out");
2716 
2717 	/*
2718 	 * If we're a statically linked executable (or we're on x86 and looking
2719 	 * at a Linux core dump), then just locate the executable's text and
2720 	 * data and name them after the executable.
2721 	 */
2722 #ifndef __x86
2723 	if (base_addr == (uintptr_t)-1L) {
2724 #else
2725 	if (base_addr == (uintptr_t)-1L || from_linux) {
2726 #endif
2727 		dprintf("looking for text and data: %s\n", execname);
2728 		map_info_t *tmp, *dmp;
2729 		file_info_t *fp;
2730 		rd_loadobj_t rl;
2731 
2732 		if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2733 		    (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2734 			(void) strncpy(tmp->map_pmap.pr_mapname,
2735 			    execname, PRMAPSZ);
2736 			tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2737 			(void) strncpy(dmp->map_pmap.pr_mapname,
2738 			    execname, PRMAPSZ);
2739 			dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2740 		}
2741 
2742 		if ((P->map_exec = tmp) != NULL &&
2743 		    (fp = malloc(sizeof (file_info_t))) != NULL) {
2744 
2745 			(void) memset(fp, 0, sizeof (file_info_t));
2746 
2747 			list_link(fp, &P->file_head);
2748 			tmp->map_file = fp;
2749 			P->num_files++;
2750 
2751 			fp->file_ref = 1;
2752 			fp->file_fd = -1;
2753 
2754 			fp->file_lo = malloc(sizeof (rd_loadobj_t));
2755 			fp->file_lname = strdup(execname);
2756 
2757 			if (fp->file_lo)
2758 				*fp->file_lo = rl;
2759 			if (fp->file_lname)
2760 				fp->file_lbase = basename(fp->file_lname);
2761 			if (fp->file_rname)
2762 				fp->file_rbase = basename(fp->file_rname);
2763 
2764 			(void) strcpy(fp->file_pname,
2765 			    P->mappings[0].map_pmap.pr_mapname);
2766 			fp->file_map = tmp;
2767 
2768 			Pbuild_file_symtab(P, fp);
2769 
2770 			if (dmp != NULL) {
2771 				dmp->map_file = fp;
2772 				fp->file_ref++;
2773 			}
2774 		}
2775 	}
2776 
2777 	core_elf_close(&aout);
2778 
2779 	/*
2780 	 * We now have enough information to initialize librtld_db.
2781 	 * After it warms up, we can iterate through the load object chain
2782 	 * in the core, which will allow us to construct the file info
2783 	 * we need to provide symbol information for the other shared
2784 	 * libraries, and also to fill in the missing mapping names.
2785 	 */
2786 	rd_log(_libproc_debug);
2787 
2788 	if ((P->rap = rd_new(P)) != NULL) {
2789 		(void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2790 		    core_iter_mapping, P);
2791 
2792 		if (core_info->core_errno != 0) {
2793 			errno = core_info->core_errno;
2794 			*perr = G_STRANGE;
2795 			goto err;
2796 		}
2797 	} else
2798 		dprintf("failed to initialize rtld_db agent\n");
2799 
2800 	/*
2801 	 * If there are sections, load them and process the data from any
2802 	 * sections that we can use to annotate the file_info_t's.
2803 	 */
2804 	core_load_shdrs(P, &core);
2805 
2806 	/*
2807 	 * If we previously located a stack or break mapping, and they are
2808 	 * still anonymous, we now assume that they were MAP_ANON mappings.
2809 	 * If brk_mp turns out to now have a name, then the heap is still
2810 	 * sitting at the end of the executable's data+bss mapping: remove
2811 	 * the previous MA_BREAK setting to be consistent with /proc.
2812 	 */
2813 	if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0')
2814 		stk_mp->map_pmap.pr_mflags |= MA_ANON;
2815 	if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0')
2816 		brk_mp->map_pmap.pr_mflags |= MA_ANON;
2817 	else if (brk_mp != NULL)
2818 		brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;
2819 
2820 	*perr = 0;
2821 	return (P);
2822 
2823 err:
2824 	Pfree(P);
2825 	core_elf_close(&aout);
2826 	return (NULL);
2827 }
2828 
2829 /*
2830  * Grab a core file using a pathname.  We just open it and call Pfgrab_core().
2831  */
2832 struct ps_prochandle *
2833 Pgrab_core(const char *core, const char *aout, int gflag, int *perr)
2834 {
2835 	int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
2836 
2837 	if ((fd = open64(core, oflag)) >= 0)
2838 		return (Pfgrab_core(fd, aout, perr));
2839 
2840 	if (errno != ENOENT)
2841 		*perr = G_STRANGE;
2842 	else
2843 		*perr = G_NOCORE;
2844 
2845 	return (NULL);
2846 }
2847