xref: /illumos-gate/usr/src/lib/libc/sparc/fp/_D_cplx_div_ix.c (revision 55fea89dcaa64928bed4327112404dcb3e07b79f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2003 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * _D_cplx_div_ix(b, w) returns (I * b) / w with infinities handled
29  * according to C99.
30  *
31  * If b and w are both finite and w is nonzero, _D_cplx_div_ix(b, w)
32  * delivers the complex quotient q according to the usual formula:
33  * let c = Re(w), and d = Im(w); then q = x + I * y where x = (b * d)
34  * / r and y = (b * c) / r with r = c * c + d * d.  This implementa-
35  * tion scales to avoid premature underflow or overflow.
36  *
37  * If b is neither NaN nor zero and w is zero, or if b is infinite
38  * and w is finite and nonzero, _D_cplx_div_ix delivers an infinite
39  * result.  If b is finite and w is infinite, _D_cplx_div_ix delivers
40  * a zero result.
41  *
42  * If b and w are both zero or both infinite, or if either b or w is
43  * NaN, _D_cplx_div_ix delivers NaN + I * NaN.  C99 doesn't specify
44  * these cases.
45  *
46  * This implementation can raise spurious underflow, overflow, in-
47  * valid operation, inexact, and division-by-zero exceptions.  C99
48  * allows this.
49  *
50  * Warning: Do not attempt to "optimize" this code by removing multi-
51  * plications by zero.
52  */
53 
54 #if !defined(sparc) && !defined(__sparc)
55 #error This code is for SPARC only
56 #endif
57 
58 /*
59  * scl[i].d = 2^(250*(4-i)) for i = 0, ..., 9
60  */
61 static const union {
62 	int	i[2];
63 	double	d;
64 } scl[9] = {
65 	{ 0x7e700000, 0 },
66 	{ 0x6ed00000, 0 },
67 	{ 0x5f300000, 0 },
68 	{ 0x4f900000, 0 },
69 	{ 0x3ff00000, 0 },
70 	{ 0x30500000, 0 },
71 	{ 0x20b00000, 0 },
72 	{ 0x11100000, 0 },
73 	{ 0x01700000, 0 }
74 };
75 
76 /*
77  * Return +1 if x is +Inf, -1 if x is -Inf, and 0 otherwise
78  */
79 static int
80 testinf(double x)
81 {
82 	union {
83 		int	i[2];
84 		double	d;
85 	} xx;
86 
87 	xx.d = x;
88 	return (((((xx.i[0] << 1) - 0xffe00000) | xx.i[1]) == 0)?
89 		(1 | (xx.i[0] >> 31)) : 0);
90 }
91 
92 double _Complex
93 _D_cplx_div_ix(double b, double _Complex w)
94 {
95 	double _Complex	v;
96 	union {
97 		int	i[2];
98 		double	d;
99 	} bb, cc, dd;
100 	double		c, d, sc, sd, r;
101 	int		hb, hc, hd, hw, i, j;
102 
103 	/*
104 	 * The following is equivalent to
105 	 *
106 	 *  c = creal(w); d = cimag(w);
107 	 */
108 	c = ((double *)&w)[0];
109 	d = ((double *)&w)[1];
110 
111 	/* extract high-order words to estimate |b| and |w| */
112 	bb.d = b;
113 	hb = bb.i[0] & ~0x80000000;
114 
115 	cc.d = c;
116 	dd.d = d;
117 	hc = cc.i[0] & ~0x80000000;
118 	hd = dd.i[0] & ~0x80000000;
119 	hw = (hc > hd)? hc : hd;
120 
121 	/* check for special cases */
122 	if (hw >= 0x7ff00000) { /* w is inf or nan */
123 		i = testinf(c);
124 		j = testinf(d);
125 		if (i | j) { /* w is infinite */
126 			c = (cc.i[0] < 0)? -0.0 : 0.0;
127 			d = (dd.i[0] < 0)? -0.0 : 0.0;
128 		} else /* w is nan */
129 			b *= c * d;
130 		((double *)&v)[0] = b * d;
131 		((double *)&v)[1] = b * c;
132 		return (v);
133 	}
134 
135 	if (hw < 0x00100000) {
136 		/*
137 		 * This nonsense is needed to work around some SPARC
138 		 * implementations of nonstandard mode; if both parts
139 		 * of w are subnormal, multiply them by one to force
140 		 * them to be flushed to zero when nonstandard mode
141 		 * is enabled.  Sheesh.
142 		 */
143 		cc.d = c = c * 1.0;
144 		dd.d = d = d * 1.0;
145 		hc = cc.i[0] & ~0x80000000;
146 		hd = dd.i[0] & ~0x80000000;
147 		hw = (hc > hd)? hc : hd;
148 	}
149 
150 	if (hw == 0 && (cc.i[1] | dd.i[1]) == 0) {
151 		/* w is zero; multiply b by 1/Re(w) - I * Im(w) */
152 		c = 1.0 / c;
153 		j = testinf(b);
154 		if (j) { /* b is infinite */
155 			b = j;
156 		}
157 		((double *)&v)[0] = (b == 0.0)? b * c : b * d;
158 		((double *)&v)[1] = b * c;
159 		return (v);
160 	}
161 
162 	if (hb >= 0x7ff00000) { /* a is inf or nan */
163 		((double *)&v)[0] = b * d;
164 		((double *)&v)[1] = b * c;
165 		return (v);
166 	}
167 
168 	/*
169 	 * Compute the real and imaginary parts of the quotient,
170 	 * scaling to avoid overflow or underflow.
171 	 */
172 	hw = (hw - 0x38000000) >> 28;
173 	sc = c * scl[hw + 4].d;
174 	sd = d * scl[hw + 4].d;
175 	r = sc * sc + sd * sd;
176 
177 	hb = (hb - 0x38000000) >> 28;
178 	b = (b * scl[hb + 4].d) / r;
179 	hb -= (hw + hw);
180 
181 	hc = (hc - 0x38000000) >> 28;
182 	c = (c * scl[hc + 4].d) * b;
183 	hc += hb;
184 
185 	hd = (hd - 0x38000000) >> 28;
186 	d = (d * scl[hd + 4].d) * b;
187 	hd += hb;
188 
189 	/* compensate for scaling */
190 	sc = scl[3].d; /* 2^250 */
191 	if (hc < 0) {
192 		hc = -hc;
193 		sc = scl[5].d; /* 2^-250 */
194 	}
195 	while (hc--)
196 		c *= sc;
197 
198 	sd = scl[3].d;
199 	if (hd < 0) {
200 		hd = -hd;
201 		sd = scl[5].d;
202 	}
203 	while (hd--)
204 		d *= sd;
205 
206 	((double *)&v)[0] = d;
207 	((double *)&v)[1] = c;
208 	return (v);
209 }
210