xref: /illumos-gate/usr/src/lib/libc/i386/fp/_D_cplx_div_ix.c (revision 581cede61ac9c14d8d4ea452562a567189eead78)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * _D_cplx_div_ix(b, w) returns (I * b) / w with infinities handled
31  * according to C99.
32  *
33  * If b and w are both finite and w is nonzero, _D_cplx_div_ix(b, w)
34  * delivers the complex quotient q according to the usual formula:
35  * let c = Re(w), and d = Im(w); then q = x + I * y where x = (b * d)
36  * / r and y = (b * c) / r with r = c * c + d * d.  This implementa-
37  * tion computes intermediate results in extended precision to avoid
38  * premature underflow or overflow.
39  *
40  * If b is neither NaN nor zero and w is zero, or if b is infinite
41  * and w is finite and nonzero, _D_cplx_div_ix delivers an infinite
42  * result.  If b is finite and w is infinite, _D_cplx_div_ix delivers
43  * a zero result.
44  *
45  * If b and w are both zero or both infinite, or if either b or w is
46  * NaN, _D_cplx_div_ix delivers NaN + I * NaN.  C99 doesn't specify
47  * these cases.
48  *
49  * This implementation can raise spurious invalid operation, inexact,
50  * and division-by-zero exceptions.  C99 allows this.
51  *
52  * Warning: Do not attempt to "optimize" this code by removing multi-
53  * plications by zero.
54  */
55 
56 #if !defined(i386) && !defined(__i386) && !defined(__amd64)
57 #error This code is for x86 only
58 #endif
59 
60 /*
61  * Return +1 if x is +Inf, -1 if x is -Inf, and 0 otherwise
62  */
63 static int
64 testinf(double x)
65 {
66 	union {
67 		int	i[2];
68 		double	d;
69 	} xx;
70 
71 	xx.d = x;
72 	return (((((xx.i[1] << 1) - 0xffe00000) | xx.i[0]) == 0)?
73 		(1 | (xx.i[1] >> 31)) : 0);
74 }
75 
76 double _Complex
77 _D_cplx_div_ix(double b, double _Complex w)
78 {
79 	double _Complex	v;
80 	union {
81 		int	i[2];
82 		double	d;
83 	} cc, dd;
84 	double		c, d;
85 	long double	r, x, y;
86 	int		i, j;
87 
88 	/*
89 	 * The following is equivalent to
90 	 *
91 	 *  c = creal(w); d = cimag(w);
92 	 */
93 	/* LINTED alignment */
94 	c = ((double *)&w)[0];
95 	/* LINTED alignment */
96 	d = ((double *)&w)[1];
97 
98 	r = (long double)c * c + (long double)d * d;
99 
100 	if (r == 0.0f) {
101 		/* w is zero; multiply b by 1/Re(w) - I * Im(w) */
102 		c = 1.0f / c;
103 		j = testinf(b);
104 		if (j) { /* b is infinite */
105 			b = j;
106 		}
107 		/* LINTED alignment */
108 		((double *)&v)[0] = (b == 0.0f)? b * c : b * d;
109 		/* LINTED alignment */
110 		((double *)&v)[1] = b * c;
111 		return (v);
112 	}
113 
114 	r = (long double)b / r;
115 	x = (long double)d * r;
116 	y = (long double)c * r;
117 
118 	if (x != x || y != y) {
119 		/*
120 		 * x or y is NaN, so b and w can't both be finite and
121 		 * nonzero.  Since we handled the case w = 0 above, the
122 		 * only case to check here is when w is infinite.
123 		 */
124 		i = testinf(c);
125 		j = testinf(d);
126 		if (i | j) { /* w is infinite */
127 			cc.d = c;
128 			dd.d = d;
129 			c = (cc.i[1] < 0)? -0.0f : 0.0f;
130 			d = (dd.i[1] < 0)? -0.0f : 0.0f;
131 			x = (long double)d * b;
132 			y = (long double)c * b;
133 		}
134 	}
135 
136 	/*
137 	 * The following is equivalent to
138 	 *
139 	 *  return x + I * y;
140 	 */
141 	/* LINTED alignment */
142 	((double *)&v)[0] = (double)x;
143 	/* LINTED alignment */
144 	((double *)&v)[1] = (double)y;
145 	return (v);
146 }
147