xref: /illumos-gate/usr/src/grub/grub-0.97/stage2/fsys_zfs.c (revision 45818ee124adeaaf947698996b4f4c722afc6d1f)
1 /*
2  *  GRUB  --  GRand Unified Bootloader
3  *  Copyright (C) 1999,2000,2001,2002,2003,2004  Free Software Foundation, Inc.
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  This program is distributed in the hope that it will be useful,
11  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *  GNU General Public License for more details.
14  *
15  *  You should have received a copy of the GNU General Public License
16  *  along with this program; if not, write to the Free Software
17  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 /*
21  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
22  * Use is subject to license terms.
23  */
24 
25 /*
26  * Copyright (c) 2013 by Delphix. All rights reserved.
27  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
28  */
29 
30 /*
31  * The zfs plug-in routines for GRUB are:
32  *
33  * zfs_mount() - locates a valid uberblock of the root pool and reads
34  *		in its MOS at the memory address MOS.
35  *
36  * zfs_open() - locates a plain file object by following the MOS
37  *		and places its dnode at the memory address DNODE.
38  *
39  * zfs_read() - read in the data blocks pointed by the DNODE.
40  *
41  * ZFS_SCRATCH is used as a working area.
42  *
43  * (memory addr)   MOS      DNODE	ZFS_SCRATCH
44  *		    |         |          |
45  *	    +-------V---------V----------V---------------+
46  *   memory |       | dnode   | dnode    |  scratch      |
47  *	    |       | 512B    | 512B     |  area         |
48  *	    +--------------------------------------------+
49  */
50 
51 #ifdef	FSYS_ZFS
52 
53 #include "shared.h"
54 #include "filesys.h"
55 #include "fsys_zfs.h"
56 
57 /* cache for a file block of the currently zfs_open()-ed file */
58 static void *file_buf = NULL;
59 static uint64_t file_start = 0;
60 static uint64_t file_end = 0;
61 
62 /* cache for a dnode block */
63 static dnode_phys_t *dnode_buf = NULL;
64 static dnode_phys_t *dnode_mdn = NULL;
65 static uint64_t dnode_start = 0;
66 static uint64_t dnode_end = 0;
67 
68 static uint64_t pool_guid = 0;
69 static uberblock_t current_uberblock;
70 static char *stackbase;
71 
72 decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] =
73 {
74 	{"inherit", 0},			/* ZIO_COMPRESS_INHERIT */
75 	{"on", lzjb_decompress}, 	/* ZIO_COMPRESS_ON */
76 	{"off", 0},			/* ZIO_COMPRESS_OFF */
77 	{"lzjb", lzjb_decompress},	/* ZIO_COMPRESS_LZJB */
78 	{"empty", 0},			/* ZIO_COMPRESS_EMPTY */
79 	{"gzip-1", 0},			/* ZIO_COMPRESS_GZIP_1 */
80 	{"gzip-2", 0},			/* ZIO_COMPRESS_GZIP_2 */
81 	{"gzip-3", 0},			/* ZIO_COMPRESS_GZIP_3 */
82 	{"gzip-4", 0},			/* ZIO_COMPRESS_GZIP_4 */
83 	{"gzip-5", 0},			/* ZIO_COMPRESS_GZIP_5 */
84 	{"gzip-6", 0},			/* ZIO_COMPRESS_GZIP_6 */
85 	{"gzip-7", 0},			/* ZIO_COMPRESS_GZIP_7 */
86 	{"gzip-8", 0},			/* ZIO_COMPRESS_GZIP_8 */
87 	{"gzip-9", 0},			/* ZIO_COMPRESS_GZIP_9 */
88 	{"zle", 0},			/* ZIO_COMPRESS_ZLE */
89 	{"lz4", lz4_decompress}		/* ZIO_COMPRESS_LZ4 */
90 };
91 
92 static int zio_read_data(blkptr_t *bp, void *buf, char *stack);
93 
94 /*
95  * Our own version of bcmp().
96  */
97 static int
98 zfs_bcmp(const void *s1, const void *s2, size_t n)
99 {
100 	const uchar_t *ps1 = s1;
101 	const uchar_t *ps2 = s2;
102 
103 	if (s1 != s2 && n != 0) {
104 		do {
105 			if (*ps1++ != *ps2++)
106 				return (1);
107 		} while (--n != 0);
108 	}
109 
110 	return (0);
111 }
112 
113 /*
114  * Our own version of log2().  Same thing as highbit()-1.
115  */
116 static int
117 zfs_log2(uint64_t num)
118 {
119 	int i = 0;
120 
121 	while (num > 1) {
122 		i++;
123 		num = num >> 1;
124 	}
125 
126 	return (i);
127 }
128 
129 /* Checksum Functions */
130 static void
131 zio_checksum_off(const void *buf, uint64_t size, zio_cksum_t *zcp)
132 {
133 	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
134 }
135 
136 /* Checksum Table and Values */
137 zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
138 	{{NULL,			NULL},			0, 0,	"inherit"},
139 	{{NULL,			NULL},			0, 0,	"on"},
140 	{{zio_checksum_off,	zio_checksum_off},	0, 0,	"off"},
141 	{{zio_checksum_SHA256,	zio_checksum_SHA256},	1, 1,	"label"},
142 	{{zio_checksum_SHA256,	zio_checksum_SHA256},	1, 1,	"gang_header"},
143 	{{NULL,			NULL},			0, 0,	"zilog"},
144 	{{fletcher_2_native,	fletcher_2_byteswap},	0, 0,	"fletcher2"},
145 	{{fletcher_4_native,	fletcher_4_byteswap},	1, 0,	"fletcher4"},
146 	{{zio_checksum_SHA256,	zio_checksum_SHA256},	1, 0,	"SHA256"},
147 	{{NULL,			NULL},			0, 0,	"zilog2"},
148 	{{zio_checksum_off,	zio_checksum_off},	0, 0,	"noparity"},
149 	{{zio_checksum_SHA512,	NULL},			0, 0,	"SHA512"}
150 };
151 
152 /*
153  * zio_checksum_verify: Provides support for checksum verification.
154  *
155  * Fletcher2, Fletcher4, SHA-256 and SHA-512/256 are supported.
156  *
157  * Return:
158  * 	-1 = Failure
159  *	 0 = Success
160  */
161 static int
162 zio_checksum_verify(blkptr_t *bp, char *data, int size)
163 {
164 	zio_cksum_t zc = bp->blk_cksum;
165 	uint32_t checksum = BP_GET_CHECKSUM(bp);
166 	int byteswap = BP_SHOULD_BYTESWAP(bp);
167 	zio_eck_t *zec = (zio_eck_t *)(data + size) - 1;
168 	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
169 	zio_cksum_t actual_cksum, expected_cksum;
170 
171 	if (byteswap) {
172 		grub_printf("byteswap not supported\n");
173 		return (-1);
174 	}
175 
176 	if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func[0] == NULL) {
177 		grub_printf("checksum algorithm %u not supported\n", checksum);
178 		return (-1);
179 	}
180 
181 	if (ci->ci_eck) {
182 		expected_cksum = zec->zec_cksum;
183 		zec->zec_cksum = zc;
184 		ci->ci_func[0](data, size, &actual_cksum);
185 		zec->zec_cksum = expected_cksum;
186 		zc = expected_cksum;
187 	} else {
188 		ci->ci_func[byteswap](data, size, &actual_cksum);
189 	}
190 
191 	if ((actual_cksum.zc_word[0] - zc.zc_word[0]) |
192 	    (actual_cksum.zc_word[1] - zc.zc_word[1]) |
193 	    (actual_cksum.zc_word[2] - zc.zc_word[2]) |
194 	    (actual_cksum.zc_word[3] - zc.zc_word[3]))
195 		return (-1);
196 
197 	return (0);
198 }
199 
200 /*
201  * vdev_label_start returns the physical disk offset (in bytes) of
202  * label "l".
203  */
204 static uint64_t
205 vdev_label_start(uint64_t psize, int l)
206 {
207 	return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
208 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
209 }
210 
211 /*
212  * vdev_uberblock_compare takes two uberblock structures and returns an integer
213  * indicating the more recent of the two.
214  * 	Return Value = 1 if ub2 is more recent
215  * 	Return Value = -1 if ub1 is more recent
216  * The most recent uberblock is determined using its transaction number and
217  * timestamp.  The uberblock with the highest transaction number is
218  * considered "newer".  If the transaction numbers of the two blocks match, the
219  * timestamps are compared to determine the "newer" of the two.
220  */
221 static int
222 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
223 {
224 	if (ub1->ub_txg < ub2->ub_txg)
225 		return (-1);
226 	if (ub1->ub_txg > ub2->ub_txg)
227 		return (1);
228 
229 	if (ub1->ub_timestamp < ub2->ub_timestamp)
230 		return (-1);
231 	if (ub1->ub_timestamp > ub2->ub_timestamp)
232 		return (1);
233 
234 	return (0);
235 }
236 
237 /*
238  * Three pieces of information are needed to verify an uberblock: the magic
239  * number, the version number, and the checksum.
240  *
241  * Return:
242  *     0 - Success
243  *    -1 - Failure
244  */
245 static int
246 uberblock_verify(uberblock_t *uber, uint64_t ub_size, uint64_t offset)
247 {
248 	blkptr_t bp;
249 
250 	BP_ZERO(&bp);
251 	BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
252 	BP_SET_BYTEORDER(&bp, ZFS_HOST_BYTEORDER);
253 	ZIO_SET_CHECKSUM(&bp.blk_cksum, offset, 0, 0, 0);
254 
255 	if (zio_checksum_verify(&bp, (char *)uber, ub_size) != 0)
256 		return (-1);
257 
258 	if (uber->ub_magic == UBERBLOCK_MAGIC &&
259 	    SPA_VERSION_IS_SUPPORTED(uber->ub_version))
260 		return (0);
261 
262 	return (-1);
263 }
264 
265 /*
266  * Find the best uberblock.
267  * Return:
268  *    Success - Pointer to the best uberblock.
269  *    Failure - NULL
270  */
271 static uberblock_t *
272 find_bestub(char *ub_array, uint64_t ashift, uint64_t sector)
273 {
274 	uberblock_t *ubbest = NULL;
275 	uberblock_t *ubnext;
276 	uint64_t offset, ub_size;
277 	int i;
278 
279 	ub_size = VDEV_UBERBLOCK_SIZE(ashift);
280 
281 	for (i = 0; i < VDEV_UBERBLOCK_COUNT(ashift); i++) {
282 		ubnext = (uberblock_t *)ub_array;
283 		ub_array += ub_size;
284 		offset = (sector << SPA_MINBLOCKSHIFT) +
285 		    VDEV_UBERBLOCK_OFFSET(ashift, i);
286 
287 		if (uberblock_verify(ubnext, ub_size, offset) != 0)
288 			continue;
289 
290 		if (ubbest == NULL ||
291 		    vdev_uberblock_compare(ubnext, ubbest) > 0)
292 			ubbest = ubnext;
293 	}
294 
295 	return (ubbest);
296 }
297 
298 /*
299  * Read a block of data based on the gang block address dva,
300  * and put its data in buf.
301  *
302  * Return:
303  *	0 - success
304  *	1 - failure
305  */
306 static int
307 zio_read_gang(blkptr_t *bp, dva_t *dva, void *buf, char *stack)
308 {
309 	zio_gbh_phys_t *zio_gb;
310 	uint64_t offset, sector;
311 	blkptr_t tmpbp;
312 	int i;
313 
314 	zio_gb = (zio_gbh_phys_t *)stack;
315 	stack += SPA_GANGBLOCKSIZE;
316 	offset = DVA_GET_OFFSET(dva);
317 	sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
318 
319 	/* read in the gang block header */
320 	if (devread(sector, 0, SPA_GANGBLOCKSIZE, (char *)zio_gb) == 0) {
321 		grub_printf("failed to read in a gang block header\n");
322 		return (1);
323 	}
324 
325 	/* self checksuming the gang block header */
326 	BP_ZERO(&tmpbp);
327 	BP_SET_CHECKSUM(&tmpbp, ZIO_CHECKSUM_GANG_HEADER);
328 	BP_SET_BYTEORDER(&tmpbp, ZFS_HOST_BYTEORDER);
329 	ZIO_SET_CHECKSUM(&tmpbp.blk_cksum, DVA_GET_VDEV(dva),
330 	    DVA_GET_OFFSET(dva), bp->blk_birth, 0);
331 	if (zio_checksum_verify(&tmpbp, (char *)zio_gb, SPA_GANGBLOCKSIZE)) {
332 		grub_printf("failed to checksum a gang block header\n");
333 		return (1);
334 	}
335 
336 	for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
337 		if (BP_IS_HOLE(&zio_gb->zg_blkptr[i]))
338 			continue;
339 
340 		if (zio_read_data(&zio_gb->zg_blkptr[i], buf, stack))
341 			return (1);
342 		buf += BP_GET_PSIZE(&zio_gb->zg_blkptr[i]);
343 	}
344 
345 	return (0);
346 }
347 
348 /*
349  * Read in a block of raw data to buf.
350  *
351  * Return:
352  *	0 - success
353  *	1 - failure
354  */
355 static int
356 zio_read_data(blkptr_t *bp, void *buf, char *stack)
357 {
358 	int i, psize;
359 
360 	psize = BP_GET_PSIZE(bp);
361 
362 	/* pick a good dva from the block pointer */
363 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
364 		uint64_t offset, sector;
365 
366 		if (bp->blk_dva[i].dva_word[0] == 0 &&
367 		    bp->blk_dva[i].dva_word[1] == 0)
368 			continue;
369 
370 		if (DVA_GET_GANG(&bp->blk_dva[i])) {
371 			if (zio_read_gang(bp, &bp->blk_dva[i], buf, stack) == 0)
372 				return (0);
373 		} else {
374 			/* read in a data block */
375 			offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
376 			sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
377 			if (devread(sector, 0, psize, buf) != 0)
378 				return (0);
379 		}
380 	}
381 
382 	return (1);
383 }
384 
385 /*
386  * buf must be at least BPE_GET_PSIZE(bp) bytes long (which will never be
387  * more than BPE_PAYLOAD_SIZE bytes).
388  */
389 static void
390 decode_embedded_bp_compressed(const blkptr_t *bp, void *buf)
391 {
392 	int psize, i;
393 	uint8_t *buf8 = buf;
394 	uint64_t w = 0;
395 	const uint64_t *bp64 = (const uint64_t *)bp;
396 
397 	psize = BPE_GET_PSIZE(bp);
398 
399 	/*
400 	 * Decode the words of the block pointer into the byte array.
401 	 * Low bits of first word are the first byte (little endian).
402 	 */
403 	for (i = 0; i < psize; i++) {
404 		if (i % sizeof (w) == 0) {
405 			/* beginning of a word */
406 			w = *bp64;
407 			bp64++;
408 			if (!BPE_IS_PAYLOADWORD(bp, bp64))
409 				bp64++;
410 		}
411 		buf8[i] = BF64_GET(w, (i % sizeof (w)) * NBBY, NBBY);
412 	}
413 }
414 
415 /*
416  * Fill in the buffer with the (decompressed) payload of the embedded
417  * blkptr_t.  Takes into account compression and byteorder (the payload is
418  * treated as a stream of bytes).
419  * Return 0 on success, or ENOSPC if it won't fit in the buffer.
420  */
421 static int
422 decode_embedded_bp(const blkptr_t *bp, void *buf)
423 {
424 	int comp;
425 	int lsize, psize;
426 	uint8_t *dst = buf;
427 	uint64_t w = 0;
428 
429 	lsize = BPE_GET_LSIZE(bp);
430 	psize = BPE_GET_PSIZE(bp);
431 	comp = BP_GET_COMPRESS(bp);
432 
433 	if (comp != ZIO_COMPRESS_OFF) {
434 		uint8_t dstbuf[BPE_PAYLOAD_SIZE];
435 
436 		if ((unsigned int)comp >= ZIO_COMPRESS_FUNCTIONS ||
437 		    decomp_table[comp].decomp_func == NULL) {
438 			grub_printf("compression algorithm not supported\n");
439 			return (ERR_FSYS_CORRUPT);
440 		}
441 
442 		decode_embedded_bp_compressed(bp, dstbuf);
443 		decomp_table[comp].decomp_func(dstbuf, buf, psize, lsize);
444 	} else {
445 		decode_embedded_bp_compressed(bp, buf);
446 	}
447 
448 	return (0);
449 }
450 
451 /*
452  * Read in a block of data, verify its checksum, decompress if needed,
453  * and put the uncompressed data in buf.
454  *
455  * Return:
456  *	0 - success
457  *	errnum - failure
458  */
459 static int
460 zio_read(blkptr_t *bp, void *buf, char *stack)
461 {
462 	int lsize, psize, comp;
463 	char *retbuf;
464 
465 	if (BP_IS_EMBEDDED(bp)) {
466 		if (BPE_GET_ETYPE(bp) != BP_EMBEDDED_TYPE_DATA) {
467 			grub_printf("unsupported embedded BP (type=%u)\n",
468 			    (int)BPE_GET_ETYPE(bp));
469 			return (ERR_FSYS_CORRUPT);
470 		}
471 		return (decode_embedded_bp(bp, buf));
472 	}
473 
474 	comp = BP_GET_COMPRESS(bp);
475 	lsize = BP_GET_LSIZE(bp);
476 	psize = BP_GET_PSIZE(bp);
477 
478 	if ((unsigned int)comp >= ZIO_COMPRESS_FUNCTIONS ||
479 	    (comp != ZIO_COMPRESS_OFF &&
480 	    decomp_table[comp].decomp_func == NULL)) {
481 		grub_printf("compression algorithm not supported\n");
482 		return (ERR_FSYS_CORRUPT);
483 	}
484 
485 	if ((char *)buf < stack && ((char *)buf) + lsize > stack) {
486 		grub_printf("not enough memory to fit %u bytes on stack\n",
487 		    lsize);
488 		return (ERR_WONT_FIT);
489 	}
490 
491 	retbuf = buf;
492 	if (comp != ZIO_COMPRESS_OFF) {
493 		buf = stack;
494 		stack += psize;
495 	}
496 
497 	if (zio_read_data(bp, buf, stack) != 0) {
498 		grub_printf("zio_read_data failed\n");
499 		return (ERR_FSYS_CORRUPT);
500 	}
501 
502 	if (zio_checksum_verify(bp, buf, psize) != 0) {
503 		grub_printf("checksum verification failed\n");
504 		return (ERR_FSYS_CORRUPT);
505 	}
506 
507 	if (comp != ZIO_COMPRESS_OFF) {
508 		if (decomp_table[comp].decomp_func(buf, retbuf, psize,
509 		    lsize) != 0) {
510 			grub_printf("zio_read decompression failed\n");
511 			return (ERR_FSYS_CORRUPT);
512 		}
513 	}
514 
515 	return (0);
516 }
517 
518 /*
519  * Get the block from a block id.
520  * push the block onto the stack.
521  *
522  * Return:
523  * 	0 - success
524  * 	errnum - failure
525  */
526 static int
527 dmu_read(dnode_phys_t *dn, uint64_t blkid, void *buf, char *stack)
528 {
529 	int idx, level;
530 	blkptr_t *bp_array = dn->dn_blkptr;
531 	int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
532 	blkptr_t *bp, *tmpbuf;
533 
534 	bp = (blkptr_t *)stack;
535 	stack += sizeof (blkptr_t);
536 
537 	tmpbuf = (blkptr_t *)stack;
538 	stack += 1<<dn->dn_indblkshift;
539 
540 	for (level = dn->dn_nlevels - 1; level >= 0; level--) {
541 		idx = (blkid >> (epbs * level)) & ((1<<epbs)-1);
542 		*bp = bp_array[idx];
543 		if (level == 0)
544 			tmpbuf = buf;
545 		if (BP_IS_HOLE(bp)) {
546 			grub_memset(buf, 0,
547 			    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
548 			break;
549 		} else if (errnum = zio_read(bp, tmpbuf, stack)) {
550 			return (errnum);
551 		}
552 
553 		bp_array = tmpbuf;
554 	}
555 
556 	return (0);
557 }
558 
559 /*
560  * mzap_lookup: Looks up property described by "name" and returns the value
561  * in "value".
562  *
563  * Return:
564  *	0 - success
565  *	errnum - failure
566  */
567 static int
568 mzap_lookup(mzap_phys_t *zapobj, int objsize, const char *name,
569 	uint64_t *value)
570 {
571 	int i, chunks;
572 	mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
573 
574 	chunks = objsize / MZAP_ENT_LEN - 1;
575 	for (i = 0; i < chunks; i++) {
576 		if (grub_strcmp(mzap_ent[i].mze_name, name) == 0) {
577 			*value = mzap_ent[i].mze_value;
578 			return (0);
579 		}
580 	}
581 
582 	return (ERR_FSYS_CORRUPT);
583 }
584 
585 static uint64_t
586 zap_hash(uint64_t salt, const char *name)
587 {
588 	static uint64_t table[256];
589 	const uint8_t *cp;
590 	uint8_t c;
591 	uint64_t crc = salt;
592 
593 	if (table[128] == 0) {
594 		uint64_t *ct;
595 		int i, j;
596 		for (i = 0; i < 256; i++) {
597 			for (ct = table + i, *ct = i, j = 8; j > 0; j--)
598 				*ct = (*ct >> 1) ^ (-(*ct & 1) &
599 				    ZFS_CRC64_POLY);
600 		}
601 	}
602 
603 	if (crc == 0 || table[128] != ZFS_CRC64_POLY) {
604 		errnum = ERR_FSYS_CORRUPT;
605 		return (0);
606 	}
607 
608 	for (cp = (const uint8_t *)name; (c = *cp) != '\0'; cp++)
609 		crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF];
610 
611 	/*
612 	 * Only use 28 bits, since we need 4 bits in the cookie for the
613 	 * collision differentiator.  We MUST use the high bits, since
614 	 * those are the ones that we first pay attention to when
615 	 * choosing the bucket.
616 	 */
617 	crc &= ~((1ULL << (64 - 28)) - 1);
618 
619 	return (crc);
620 }
621 
622 /*
623  * Only to be used on 8-bit arrays.
624  * array_len is actual len in bytes (not encoded le_value_length).
625  * buf is null-terminated.
626  */
627 static int
628 zap_leaf_array_equal(zap_leaf_phys_t *l, int blksft, int chunk,
629     int array_len, const char *buf)
630 {
631 	int bseen = 0;
632 
633 	while (bseen < array_len) {
634 		struct zap_leaf_array *la =
635 		    &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
636 		int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
637 
638 		if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
639 			return (0);
640 
641 		if (zfs_bcmp(la->la_array, buf + bseen, toread) != 0)
642 			break;
643 		chunk = la->la_next;
644 		bseen += toread;
645 	}
646 	return (bseen == array_len);
647 }
648 
649 /*
650  * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the
651  * value for the property "name".
652  *
653  * Return:
654  *	0 - success
655  *	errnum - failure
656  */
657 static int
658 zap_leaf_lookup(zap_leaf_phys_t *l, int blksft, uint64_t h,
659     const char *name, uint64_t *value)
660 {
661 	uint16_t chunk;
662 	struct zap_leaf_entry *le;
663 
664 	/* Verify if this is a valid leaf block */
665 	if (l->l_hdr.lh_block_type != ZBT_LEAF)
666 		return (ERR_FSYS_CORRUPT);
667 	if (l->l_hdr.lh_magic != ZAP_LEAF_MAGIC)
668 		return (ERR_FSYS_CORRUPT);
669 
670 	for (chunk = l->l_hash[LEAF_HASH(blksft, h)];
671 	    chunk != CHAIN_END; chunk = le->le_next) {
672 
673 		if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
674 			return (ERR_FSYS_CORRUPT);
675 
676 		le = ZAP_LEAF_ENTRY(l, blksft, chunk);
677 
678 		/* Verify the chunk entry */
679 		if (le->le_type != ZAP_CHUNK_ENTRY)
680 			return (ERR_FSYS_CORRUPT);
681 
682 		if (le->le_hash != h)
683 			continue;
684 
685 		if (zap_leaf_array_equal(l, blksft, le->le_name_chunk,
686 		    le->le_name_length, name)) {
687 
688 			struct zap_leaf_array *la;
689 			uint8_t *ip;
690 
691 			if (le->le_int_size != 8 || le->le_value_length != 1)
692 				return (ERR_FSYS_CORRUPT);
693 
694 			/* get the uint64_t property value */
695 			la = &ZAP_LEAF_CHUNK(l, blksft,
696 			    le->le_value_chunk).l_array;
697 			ip = la->la_array;
698 
699 			*value = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
700 			    (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
701 			    (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
702 			    (uint64_t)ip[6] << 8 | (uint64_t)ip[7];
703 
704 			return (0);
705 		}
706 	}
707 
708 	return (ERR_FSYS_CORRUPT);
709 }
710 
711 /*
712  * Fat ZAP lookup
713  *
714  * Return:
715  *	0 - success
716  *	errnum - failure
717  */
718 static int
719 fzap_lookup(dnode_phys_t *zap_dnode, zap_phys_t *zap,
720     const char *name, uint64_t *value, char *stack)
721 {
722 	zap_leaf_phys_t *l;
723 	uint64_t hash, idx, blkid;
724 	int blksft = zfs_log2(zap_dnode->dn_datablkszsec << DNODE_SHIFT);
725 
726 	/* Verify if this is a fat zap header block */
727 	if (zap->zap_magic != (uint64_t)ZAP_MAGIC ||
728 	    zap->zap_flags != 0)
729 		return (ERR_FSYS_CORRUPT);
730 
731 	hash = zap_hash(zap->zap_salt, name);
732 	if (errnum)
733 		return (errnum);
734 
735 	/* get block id from index */
736 	if (zap->zap_ptrtbl.zt_numblks != 0) {
737 		/* external pointer tables not supported */
738 		return (ERR_FSYS_CORRUPT);
739 	}
740 	idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift);
741 	blkid = ((uint64_t *)zap)[idx + (1<<(blksft-3-1))];
742 
743 	/* Get the leaf block */
744 	l = (zap_leaf_phys_t *)stack;
745 	stack += 1<<blksft;
746 	if ((1<<blksft) < sizeof (zap_leaf_phys_t))
747 		return (ERR_FSYS_CORRUPT);
748 	if (errnum = dmu_read(zap_dnode, blkid, l, stack))
749 		return (errnum);
750 
751 	return (zap_leaf_lookup(l, blksft, hash, name, value));
752 }
753 
754 /*
755  * Read in the data of a zap object and find the value for a matching
756  * property name.
757  *
758  * Return:
759  *	0 - success
760  *	errnum - failure
761  */
762 static int
763 zap_lookup(dnode_phys_t *zap_dnode, const char *name, uint64_t *val,
764     char *stack)
765 {
766 	uint64_t block_type;
767 	int size;
768 	void *zapbuf;
769 
770 	/* Read in the first block of the zap object data. */
771 	zapbuf = stack;
772 	size = zap_dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
773 	stack += size;
774 
775 	if ((errnum = dmu_read(zap_dnode, 0, zapbuf, stack)) != 0)
776 		return (errnum);
777 
778 	block_type = *((uint64_t *)zapbuf);
779 
780 	if (block_type == ZBT_MICRO) {
781 		return (mzap_lookup(zapbuf, size, name, val));
782 	} else if (block_type == ZBT_HEADER) {
783 		/* this is a fat zap */
784 		return (fzap_lookup(zap_dnode, zapbuf, name,
785 		    val, stack));
786 	}
787 
788 	return (ERR_FSYS_CORRUPT);
789 }
790 
791 typedef struct zap_attribute {
792 	int za_integer_length;
793 	uint64_t za_num_integers;
794 	uint64_t za_first_integer;
795 	char *za_name;
796 } zap_attribute_t;
797 
798 typedef int (zap_cb_t)(zap_attribute_t *za, void *arg, char *stack);
799 
800 static int
801 zap_iterate(dnode_phys_t *zap_dnode, zap_cb_t *cb, void *arg, char *stack)
802 {
803 	uint32_t size = zap_dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
804 	zap_attribute_t za;
805 	int i;
806 	mzap_phys_t *mzp = (mzap_phys_t *)stack;
807 	stack += size;
808 
809 	if ((errnum = dmu_read(zap_dnode, 0, mzp, stack)) != 0)
810 		return (errnum);
811 
812 	/*
813 	 * Iteration over fatzap objects has not yet been implemented.
814 	 * If we encounter a pool in which there are more features for
815 	 * read than can fit inside a microzap (i.e., more than 2048
816 	 * features for read), we can add support for fatzap iteration.
817 	 * For now, fail.
818 	 */
819 	if (mzp->mz_block_type != ZBT_MICRO) {
820 		grub_printf("feature information stored in fatzap, pool "
821 		    "version not supported\n");
822 		return (1);
823 	}
824 
825 	za.za_integer_length = 8;
826 	za.za_num_integers = 1;
827 	for (i = 0; i < size / MZAP_ENT_LEN - 1; i++) {
828 		mzap_ent_phys_t *mzep = &mzp->mz_chunk[i];
829 		int err;
830 
831 		za.za_first_integer = mzep->mze_value;
832 		za.za_name = mzep->mze_name;
833 		err = cb(&za, arg, stack);
834 		if (err != 0)
835 			return (err);
836 	}
837 
838 	return (0);
839 }
840 
841 /*
842  * Get the dnode of an object number from the metadnode of an object set.
843  *
844  * Input
845  *	mdn - metadnode to get the object dnode
846  *	objnum - object number for the object dnode
847  *	type - if nonzero, object must be of this type
848  *	buf - data buffer that holds the returning dnode
849  *	stack - scratch area
850  *
851  * Return:
852  *	0 - success
853  *	errnum - failure
854  */
855 static int
856 dnode_get(dnode_phys_t *mdn, uint64_t objnum, uint8_t type, dnode_phys_t *buf,
857 	char *stack)
858 {
859 	uint64_t blkid, blksz; /* the block id this object dnode is in */
860 	int epbs; /* shift of number of dnodes in a block */
861 	int idx; /* index within a block */
862 	dnode_phys_t *dnbuf;
863 
864 	blksz = mdn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
865 	epbs = zfs_log2(blksz) - DNODE_SHIFT;
866 	blkid = objnum >> epbs;
867 	idx = objnum & ((1<<epbs)-1);
868 
869 	if (dnode_buf != NULL && dnode_mdn == mdn &&
870 	    objnum >= dnode_start && objnum < dnode_end) {
871 		grub_memmove(buf, &dnode_buf[idx], DNODE_SIZE);
872 		VERIFY_DN_TYPE(buf, type);
873 		return (0);
874 	}
875 
876 	if (dnode_buf && blksz == 1<<DNODE_BLOCK_SHIFT) {
877 		dnbuf = dnode_buf;
878 		dnode_mdn = mdn;
879 		dnode_start = blkid << epbs;
880 		dnode_end = (blkid + 1) << epbs;
881 	} else {
882 		dnbuf = (dnode_phys_t *)stack;
883 		stack += blksz;
884 	}
885 
886 	if (errnum = dmu_read(mdn, blkid, (char *)dnbuf, stack))
887 		return (errnum);
888 
889 	grub_memmove(buf, &dnbuf[idx], DNODE_SIZE);
890 	VERIFY_DN_TYPE(buf, type);
891 
892 	return (0);
893 }
894 
895 /*
896  * Check if this is a special file that resides at the top
897  * dataset of the pool. Currently this is the GRUB menu,
898  * boot signature and boot signature backup.
899  * str starts with '/'.
900  */
901 static int
902 is_top_dataset_file(char *str)
903 {
904 	char *tptr;
905 
906 	if ((tptr = grub_strstr(str, "menu.lst")) &&
907 	    (tptr[8] == '\0' || tptr[8] == ' ') &&
908 	    *(tptr-1) == '/')
909 		return (1);
910 
911 	if (grub_strncmp(str, BOOTSIGN_DIR"/",
912 	    grub_strlen(BOOTSIGN_DIR) + 1) == 0)
913 		return (1);
914 
915 	if (grub_strcmp(str, BOOTSIGN_BACKUP) == 0)
916 		return (1);
917 
918 	return (0);
919 }
920 
921 static int
922 check_feature(zap_attribute_t *za, void *arg, char *stack)
923 {
924 	const char **names = arg;
925 	int i;
926 
927 	if (za->za_first_integer == 0)
928 		return (0);
929 
930 	for (i = 0; names[i] != NULL; i++) {
931 		if (grub_strcmp(za->za_name, names[i]) == 0) {
932 			return (0);
933 		}
934 	}
935 	grub_printf("missing feature for read '%s'\n", za->za_name);
936 	return (ERR_NEWER_VERSION);
937 }
938 
939 /*
940  * Get the file dnode for a given file name where mdn is the meta dnode
941  * for this ZFS object set. When found, place the file dnode in dn.
942  * The 'path' argument will be mangled.
943  *
944  * Return:
945  *	0 - success
946  *	errnum - failure
947  */
948 static int
949 dnode_get_path(dnode_phys_t *mdn, char *path, dnode_phys_t *dn,
950     char *stack)
951 {
952 	uint64_t objnum, version;
953 	char *cname, ch;
954 
955 	if (errnum = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
956 	    dn, stack))
957 		return (errnum);
958 
959 	if (errnum = zap_lookup(dn, ZPL_VERSION_STR, &version, stack))
960 		return (errnum);
961 	if (version > ZPL_VERSION)
962 		return (-1);
963 
964 	if (errnum = zap_lookup(dn, ZFS_ROOT_OBJ, &objnum, stack))
965 		return (errnum);
966 
967 	if (errnum = dnode_get(mdn, objnum, DMU_OT_DIRECTORY_CONTENTS,
968 	    dn, stack))
969 		return (errnum);
970 
971 	/* skip leading slashes */
972 	while (*path == '/')
973 		path++;
974 
975 	while (*path && !grub_isspace(*path)) {
976 
977 		/* get the next component name */
978 		cname = path;
979 		while (*path && !grub_isspace(*path) && *path != '/')
980 			path++;
981 		ch = *path;
982 		*path = 0;   /* ensure null termination */
983 
984 		if (errnum = zap_lookup(dn, cname, &objnum, stack))
985 			return (errnum);
986 
987 		objnum = ZFS_DIRENT_OBJ(objnum);
988 		if (errnum = dnode_get(mdn, objnum, 0, dn, stack))
989 			return (errnum);
990 
991 		*path = ch;
992 		while (*path == '/')
993 			path++;
994 	}
995 
996 	/* We found the dnode for this file. Verify if it is a plain file. */
997 	VERIFY_DN_TYPE(dn, DMU_OT_PLAIN_FILE_CONTENTS);
998 
999 	return (0);
1000 }
1001 
1002 /*
1003  * Get the default 'bootfs' property value from the rootpool.
1004  *
1005  * Return:
1006  *	0 - success
1007  *	errnum -failure
1008  */
1009 static int
1010 get_default_bootfsobj(dnode_phys_t *mosmdn, uint64_t *obj, char *stack)
1011 {
1012 	uint64_t objnum = 0;
1013 	dnode_phys_t *dn = (dnode_phys_t *)stack;
1014 	stack += DNODE_SIZE;
1015 
1016 	if (errnum = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
1017 	    DMU_OT_OBJECT_DIRECTORY, dn, stack))
1018 		return (errnum);
1019 
1020 	/*
1021 	 * find the object number for 'pool_props', and get the dnode
1022 	 * of the 'pool_props'.
1023 	 */
1024 	if (zap_lookup(dn, DMU_POOL_PROPS, &objnum, stack))
1025 		return (ERR_FILESYSTEM_NOT_FOUND);
1026 
1027 	if (errnum = dnode_get(mosmdn, objnum, DMU_OT_POOL_PROPS, dn, stack))
1028 		return (errnum);
1029 
1030 	if (zap_lookup(dn, ZPOOL_PROP_BOOTFS, &objnum, stack))
1031 		return (ERR_FILESYSTEM_NOT_FOUND);
1032 
1033 	if (!objnum)
1034 		return (ERR_FILESYSTEM_NOT_FOUND);
1035 
1036 	*obj = objnum;
1037 	return (0);
1038 }
1039 
1040 /*
1041  * List of pool features that the grub implementation of ZFS supports for
1042  * read. Note that features that are only required for write do not need
1043  * to be listed here since grub opens pools in read-only mode.
1044  *
1045  * When this list is updated the version number in usr/src/grub/capability
1046  * must be incremented to ensure the new grub gets installed.
1047  */
1048 static const char *spa_feature_names[] = {
1049 	"org.illumos:lz4_compress",
1050 	"com.delphix:hole_birth",
1051 	"com.delphix:extensible_dataset",
1052 	"com.delphix:embedded_data",
1053 	"org.open-zfs:large_blocks",
1054 	"org.illumos:sha512",
1055 	NULL
1056 };
1057 
1058 /*
1059  * Checks whether the MOS features that are active are supported by this
1060  * (GRUB's) implementation of ZFS.
1061  *
1062  * Return:
1063  *	0: Success.
1064  *	errnum: Failure.
1065  */
1066 static int
1067 check_mos_features(dnode_phys_t *mosmdn, char *stack)
1068 {
1069 	uint64_t objnum;
1070 	dnode_phys_t *dn;
1071 	uint8_t error = 0;
1072 
1073 	dn = (dnode_phys_t *)stack;
1074 	stack += DNODE_SIZE;
1075 
1076 	if ((errnum = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
1077 	    DMU_OT_OBJECT_DIRECTORY, dn, stack)) != 0)
1078 		return (errnum);
1079 
1080 	/*
1081 	 * Find the object number for 'features_for_read' and retrieve its
1082 	 * corresponding dnode. Note that we don't check features_for_write
1083 	 * because GRUB is not opening the pool for write.
1084 	 */
1085 	if ((errnum = zap_lookup(dn, DMU_POOL_FEATURES_FOR_READ, &objnum,
1086 	    stack)) != 0)
1087 		return (errnum);
1088 
1089 	if ((errnum = dnode_get(mosmdn, objnum, DMU_OTN_ZAP_METADATA,
1090 	    dn, stack)) != 0)
1091 		return (errnum);
1092 
1093 	return (zap_iterate(dn, check_feature, spa_feature_names, stack));
1094 }
1095 
1096 /*
1097  * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname),
1098  * e.g. pool/rootfs, or a given object number (obj), e.g. the object number
1099  * of pool/rootfs.
1100  *
1101  * If no fsname and no obj are given, return the DSL_DIR metadnode.
1102  * If fsname is given, return its metadnode and its matching object number.
1103  * If only obj is given, return the metadnode for this object number.
1104  *
1105  * Return:
1106  *	0 - success
1107  *	errnum - failure
1108  */
1109 static int
1110 get_objset_mdn(dnode_phys_t *mosmdn, char *fsname, uint64_t *obj,
1111     dnode_phys_t *mdn, char *stack)
1112 {
1113 	uint64_t objnum, headobj;
1114 	char *cname, ch;
1115 	blkptr_t *bp;
1116 	objset_phys_t *osp;
1117 	int issnapshot = 0;
1118 	char *snapname;
1119 
1120 	if (fsname == NULL && obj) {
1121 		headobj = *obj;
1122 		goto skip;
1123 	}
1124 
1125 	if (errnum = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
1126 	    DMU_OT_OBJECT_DIRECTORY, mdn, stack))
1127 		return (errnum);
1128 
1129 	if (errnum = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum,
1130 	    stack))
1131 		return (errnum);
1132 
1133 	if (errnum = dnode_get(mosmdn, objnum, 0, mdn, stack))
1134 		return (errnum);
1135 
1136 	if (fsname == NULL) {
1137 		headobj =
1138 		    ((dsl_dir_phys_t *)DN_BONUS(mdn))->dd_head_dataset_obj;
1139 		goto skip;
1140 	}
1141 
1142 	/* take out the pool name */
1143 	while (*fsname && !grub_isspace(*fsname) && *fsname != '/')
1144 		fsname++;
1145 
1146 	while (*fsname && !grub_isspace(*fsname)) {
1147 		uint64_t childobj;
1148 
1149 		while (*fsname == '/')
1150 			fsname++;
1151 
1152 		cname = fsname;
1153 		while (*fsname && !grub_isspace(*fsname) && *fsname != '/')
1154 			fsname++;
1155 		ch = *fsname;
1156 		*fsname = 0;
1157 
1158 		snapname = cname;
1159 		while (*snapname && !grub_isspace(*snapname) && *snapname !=
1160 		    '@')
1161 			snapname++;
1162 		if (*snapname == '@') {
1163 			issnapshot = 1;
1164 			*snapname = 0;
1165 		}
1166 		childobj =
1167 		    ((dsl_dir_phys_t *)DN_BONUS(mdn))->dd_child_dir_zapobj;
1168 		if (errnum = dnode_get(mosmdn, childobj,
1169 		    DMU_OT_DSL_DIR_CHILD_MAP, mdn, stack))
1170 			return (errnum);
1171 
1172 		if (zap_lookup(mdn, cname, &objnum, stack))
1173 			return (ERR_FILESYSTEM_NOT_FOUND);
1174 
1175 		if (errnum = dnode_get(mosmdn, objnum, 0,
1176 		    mdn, stack))
1177 			return (errnum);
1178 
1179 		*fsname = ch;
1180 		if (issnapshot)
1181 			*snapname = '@';
1182 	}
1183 	headobj = ((dsl_dir_phys_t *)DN_BONUS(mdn))->dd_head_dataset_obj;
1184 	if (obj)
1185 		*obj = headobj;
1186 
1187 skip:
1188 	if (errnum = dnode_get(mosmdn, headobj, 0, mdn, stack))
1189 		return (errnum);
1190 	if (issnapshot) {
1191 		uint64_t snapobj;
1192 
1193 		snapobj = ((dsl_dataset_phys_t *)DN_BONUS(mdn))->
1194 		    ds_snapnames_zapobj;
1195 
1196 		if (errnum = dnode_get(mosmdn, snapobj,
1197 		    DMU_OT_DSL_DS_SNAP_MAP, mdn, stack))
1198 			return (errnum);
1199 		if (zap_lookup(mdn, snapname + 1, &headobj, stack))
1200 			return (ERR_FILESYSTEM_NOT_FOUND);
1201 		if (errnum = dnode_get(mosmdn, headobj, 0, mdn, stack))
1202 			return (errnum);
1203 		if (obj)
1204 			*obj = headobj;
1205 	}
1206 
1207 	bp = &((dsl_dataset_phys_t *)DN_BONUS(mdn))->ds_bp;
1208 	osp = (objset_phys_t *)stack;
1209 	stack += sizeof (objset_phys_t);
1210 	if (errnum = zio_read(bp, osp, stack))
1211 		return (errnum);
1212 
1213 	grub_memmove((char *)mdn, (char *)&osp->os_meta_dnode, DNODE_SIZE);
1214 
1215 	return (0);
1216 }
1217 
1218 /*
1219  * For a given XDR packed nvlist, verify the first 4 bytes and move on.
1220  *
1221  * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) :
1222  *
1223  *      encoding method/host endian     (4 bytes)
1224  *      nvl_version                     (4 bytes)
1225  *      nvl_nvflag                      (4 bytes)
1226  *	encoded nvpairs:
1227  *		encoded size of the nvpair      (4 bytes)
1228  *		decoded size of the nvpair      (4 bytes)
1229  *		name string size                (4 bytes)
1230  *		name string data                (sizeof(NV_ALIGN4(string))
1231  *		data type                       (4 bytes)
1232  *		# of elements in the nvpair     (4 bytes)
1233  *		data
1234  *      2 zero's for the last nvpair
1235  *		(end of the entire list)	(8 bytes)
1236  *
1237  * Return:
1238  *	0 - success
1239  *	1 - failure
1240  */
1241 static int
1242 nvlist_unpack(char *nvlist, char **out)
1243 {
1244 	/* Verify if the 1st and 2nd byte in the nvlist are valid. */
1245 	if (nvlist[0] != NV_ENCODE_XDR || nvlist[1] != HOST_ENDIAN)
1246 		return (1);
1247 
1248 	*out = nvlist + 4;
1249 	return (0);
1250 }
1251 
1252 static char *
1253 nvlist_array(char *nvlist, int index)
1254 {
1255 	int i, encode_size;
1256 
1257 	for (i = 0; i < index; i++) {
1258 		/* skip the header, nvl_version, and nvl_nvflag */
1259 		nvlist = nvlist + 4 * 2;
1260 
1261 		while (encode_size = BSWAP_32(*(uint32_t *)nvlist))
1262 			nvlist += encode_size; /* goto the next nvpair */
1263 
1264 		nvlist = nvlist + 4 * 2; /* skip the ending 2 zeros - 8 bytes */
1265 	}
1266 
1267 	return (nvlist);
1268 }
1269 
1270 /*
1271  * The nvlist_next_nvpair() function returns a handle to the next nvpair in the
1272  * list following nvpair. If nvpair is NULL, the first pair is returned. If
1273  * nvpair is the last pair in the nvlist, NULL is returned.
1274  */
1275 static char *
1276 nvlist_next_nvpair(char *nvl, char *nvpair)
1277 {
1278 	char *cur, *prev;
1279 	int encode_size;
1280 
1281 	if (nvl == NULL)
1282 		return (NULL);
1283 
1284 	if (nvpair == NULL) {
1285 		/* skip over nvl_version and nvl_nvflag */
1286 		nvpair = nvl + 4 * 2;
1287 	} else {
1288 		/* skip to the next nvpair */
1289 		encode_size = BSWAP_32(*(uint32_t *)nvpair);
1290 		nvpair += encode_size;
1291 	}
1292 
1293 	/* 8 bytes of 0 marks the end of the list */
1294 	if (*(uint64_t *)nvpair == 0)
1295 		return (NULL);
1296 
1297 	return (nvpair);
1298 }
1299 
1300 /*
1301  * This function returns 0 on success and 1 on failure. On success, a string
1302  * containing the name of nvpair is saved in buf.
1303  */
1304 static int
1305 nvpair_name(char *nvp, char *buf, int buflen)
1306 {
1307 	int len;
1308 
1309 	/* skip over encode/decode size */
1310 	nvp += 4 * 2;
1311 
1312 	len = BSWAP_32(*(uint32_t *)nvp);
1313 	if (buflen < len + 1)
1314 		return (1);
1315 
1316 	grub_memmove(buf, nvp + 4, len);
1317 	buf[len] = '\0';
1318 
1319 	return (0);
1320 }
1321 
1322 /*
1323  * This function retrieves the value of the nvpair in the form of enumerated
1324  * type data_type_t. This is used to determine the appropriate type to pass to
1325  * nvpair_value().
1326  */
1327 static int
1328 nvpair_type(char *nvp)
1329 {
1330 	int name_len, type;
1331 
1332 	/* skip over encode/decode size */
1333 	nvp += 4 * 2;
1334 
1335 	/* skip over name_len */
1336 	name_len = BSWAP_32(*(uint32_t *)nvp);
1337 	nvp += 4;
1338 
1339 	/* skip over name */
1340 	nvp = nvp + ((name_len + 3) & ~3); /* align */
1341 
1342 	type = BSWAP_32(*(uint32_t *)nvp);
1343 
1344 	return (type);
1345 }
1346 
1347 static int
1348 nvpair_value(char *nvp, void *val, int valtype, int *nelmp)
1349 {
1350 	int name_len, type, slen;
1351 	char *strval = val;
1352 	uint64_t *intval = val;
1353 
1354 	/* skip over encode/decode size */
1355 	nvp += 4 * 2;
1356 
1357 	/* skip over name_len */
1358 	name_len = BSWAP_32(*(uint32_t *)nvp);
1359 	nvp += 4;
1360 
1361 	/* skip over name */
1362 	nvp = nvp + ((name_len + 3) & ~3); /* align */
1363 
1364 	/* skip over type */
1365 	type = BSWAP_32(*(uint32_t *)nvp);
1366 	nvp += 4;
1367 
1368 	if (type == valtype) {
1369 		int nelm;
1370 
1371 		nelm = BSWAP_32(*(uint32_t *)nvp);
1372 		if (valtype != DATA_TYPE_BOOLEAN && nelm < 1)
1373 			return (1);
1374 		nvp += 4;
1375 
1376 		switch (valtype) {
1377 		case DATA_TYPE_BOOLEAN:
1378 			return (0);
1379 
1380 		case DATA_TYPE_STRING:
1381 			slen = BSWAP_32(*(uint32_t *)nvp);
1382 			nvp += 4;
1383 			grub_memmove(strval, nvp, slen);
1384 			strval[slen] = '\0';
1385 			return (0);
1386 
1387 		case DATA_TYPE_UINT64:
1388 			*intval = BSWAP_64(*(uint64_t *)nvp);
1389 			return (0);
1390 
1391 		case DATA_TYPE_NVLIST:
1392 			*(void **)val = (void *)nvp;
1393 			return (0);
1394 
1395 		case DATA_TYPE_NVLIST_ARRAY:
1396 			*(void **)val = (void *)nvp;
1397 			if (nelmp)
1398 				*nelmp = nelm;
1399 			return (0);
1400 		}
1401 	}
1402 
1403 	return (1);
1404 }
1405 
1406 static int
1407 nvlist_lookup_value(char *nvlist, char *name, void *val, int valtype,
1408     int *nelmp)
1409 {
1410 	char *nvpair;
1411 
1412 	for (nvpair = nvlist_next_nvpair(nvlist, NULL);
1413 	    nvpair != NULL;
1414 	    nvpair = nvlist_next_nvpair(nvlist, nvpair)) {
1415 		int name_len = BSWAP_32(*(uint32_t *)(nvpair + 4 * 2));
1416 		char *nvp_name = nvpair + 4 * 3;
1417 
1418 		if ((grub_strncmp(nvp_name, name, name_len) == 0) &&
1419 		    nvpair_type(nvpair) == valtype) {
1420 			return (nvpair_value(nvpair, val, valtype, nelmp));
1421 		}
1422 	}
1423 	return (1);
1424 }
1425 
1426 /*
1427  * Check if this vdev is online and is in a good state.
1428  */
1429 static int
1430 vdev_validate(char *nv)
1431 {
1432 	uint64_t ival;
1433 
1434 	if (nvlist_lookup_value(nv, ZPOOL_CONFIG_OFFLINE, &ival,
1435 	    DATA_TYPE_UINT64, NULL) == 0 ||
1436 	    nvlist_lookup_value(nv, ZPOOL_CONFIG_FAULTED, &ival,
1437 	    DATA_TYPE_UINT64, NULL) == 0 ||
1438 	    nvlist_lookup_value(nv, ZPOOL_CONFIG_REMOVED, &ival,
1439 	    DATA_TYPE_UINT64, NULL) == 0)
1440 		return (ERR_DEV_VALUES);
1441 
1442 	return (0);
1443 }
1444 
1445 /*
1446  * Get a valid vdev pathname/devid from the boot device.
1447  * The caller should already allocate MAXPATHLEN memory for bootpath and devid.
1448  */
1449 static int
1450 vdev_get_bootpath(char *nv, uint64_t inguid, char *devid, char *bootpath,
1451     int is_spare)
1452 {
1453 	char type[16];
1454 
1455 	if (nvlist_lookup_value(nv, ZPOOL_CONFIG_TYPE, &type, DATA_TYPE_STRING,
1456 	    NULL))
1457 		return (ERR_FSYS_CORRUPT);
1458 
1459 	if (grub_strcmp(type, VDEV_TYPE_DISK) == 0) {
1460 		uint64_t guid;
1461 
1462 		if (vdev_validate(nv) != 0)
1463 			return (ERR_NO_BOOTPATH);
1464 
1465 		if (nvlist_lookup_value(nv, ZPOOL_CONFIG_GUID,
1466 		    &guid, DATA_TYPE_UINT64, NULL) != 0)
1467 			return (ERR_NO_BOOTPATH);
1468 
1469 		if (guid != inguid)
1470 			return (ERR_NO_BOOTPATH);
1471 
1472 		/* for a spare vdev, pick the disk labeled with "is_spare" */
1473 		if (is_spare) {
1474 			uint64_t spare = 0;
1475 			(void) nvlist_lookup_value(nv, ZPOOL_CONFIG_IS_SPARE,
1476 			    &spare, DATA_TYPE_UINT64, NULL);
1477 			if (!spare)
1478 				return (ERR_NO_BOOTPATH);
1479 		}
1480 
1481 		if (nvlist_lookup_value(nv, ZPOOL_CONFIG_PHYS_PATH,
1482 		    bootpath, DATA_TYPE_STRING, NULL) != 0)
1483 			bootpath[0] = '\0';
1484 
1485 		if (nvlist_lookup_value(nv, ZPOOL_CONFIG_DEVID,
1486 		    devid, DATA_TYPE_STRING, NULL) != 0)
1487 			devid[0] = '\0';
1488 
1489 		if (grub_strlen(bootpath) >= MAXPATHLEN ||
1490 		    grub_strlen(devid) >= MAXPATHLEN)
1491 			return (ERR_WONT_FIT);
1492 
1493 		return (0);
1494 
1495 	} else if (grub_strcmp(type, VDEV_TYPE_MIRROR) == 0 ||
1496 	    grub_strcmp(type, VDEV_TYPE_REPLACING) == 0 ||
1497 	    (is_spare = (grub_strcmp(type, VDEV_TYPE_SPARE) == 0))) {
1498 		int nelm, i;
1499 		char *child;
1500 
1501 		if (nvlist_lookup_value(nv, ZPOOL_CONFIG_CHILDREN, &child,
1502 		    DATA_TYPE_NVLIST_ARRAY, &nelm))
1503 			return (ERR_FSYS_CORRUPT);
1504 
1505 		for (i = 0; i < nelm; i++) {
1506 			char *child_i;
1507 
1508 			child_i = nvlist_array(child, i);
1509 			if (vdev_get_bootpath(child_i, inguid, devid,
1510 			    bootpath, is_spare) == 0)
1511 				return (0);
1512 		}
1513 	}
1514 
1515 	return (ERR_NO_BOOTPATH);
1516 }
1517 
1518 /*
1519  * Check the disk label information and retrieve needed vdev name-value pairs.
1520  *
1521  * Return:
1522  *	0 - success
1523  *	ERR_* - failure
1524  */
1525 static int
1526 check_pool_label(uint64_t sector, char *stack, char *outdevid,
1527     char *outpath, uint64_t *outguid, uint64_t *outashift, uint64_t *outversion)
1528 {
1529 	vdev_phys_t *vdev;
1530 	uint64_t pool_state, txg = 0;
1531 	char *nvlist, *nv, *features;
1532 	uint64_t diskguid;
1533 
1534 	sector += (VDEV_SKIP_SIZE >> SPA_MINBLOCKSHIFT);
1535 
1536 	/* Read in the vdev name-value pair list (112K). */
1537 	if (devread(sector, 0, VDEV_PHYS_SIZE, stack) == 0)
1538 		return (ERR_READ);
1539 
1540 	vdev = (vdev_phys_t *)stack;
1541 	stack += sizeof (vdev_phys_t);
1542 
1543 	if (nvlist_unpack(vdev->vp_nvlist, &nvlist))
1544 		return (ERR_FSYS_CORRUPT);
1545 
1546 	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_POOL_STATE, &pool_state,
1547 	    DATA_TYPE_UINT64, NULL))
1548 		return (ERR_FSYS_CORRUPT);
1549 
1550 	if (pool_state == POOL_STATE_DESTROYED)
1551 		return (ERR_FILESYSTEM_NOT_FOUND);
1552 
1553 	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_POOL_NAME,
1554 	    current_rootpool, DATA_TYPE_STRING, NULL))
1555 		return (ERR_FSYS_CORRUPT);
1556 
1557 	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_POOL_TXG, &txg,
1558 	    DATA_TYPE_UINT64, NULL))
1559 		return (ERR_FSYS_CORRUPT);
1560 
1561 	/* not an active device */
1562 	if (txg == 0)
1563 		return (ERR_NO_BOOTPATH);
1564 
1565 	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_VERSION, outversion,
1566 	    DATA_TYPE_UINT64, NULL))
1567 		return (ERR_FSYS_CORRUPT);
1568 	if (!SPA_VERSION_IS_SUPPORTED(*outversion))
1569 		return (ERR_NEWER_VERSION);
1570 	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_VDEV_TREE, &nv,
1571 	    DATA_TYPE_NVLIST, NULL))
1572 		return (ERR_FSYS_CORRUPT);
1573 	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_GUID, &diskguid,
1574 	    DATA_TYPE_UINT64, NULL))
1575 		return (ERR_FSYS_CORRUPT);
1576 	if (nvlist_lookup_value(nv, ZPOOL_CONFIG_ASHIFT, outashift,
1577 	    DATA_TYPE_UINT64, NULL) != 0)
1578 		return (ERR_FSYS_CORRUPT);
1579 	if (vdev_get_bootpath(nv, diskguid, outdevid, outpath, 0))
1580 		return (ERR_NO_BOOTPATH);
1581 	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_POOL_GUID, outguid,
1582 	    DATA_TYPE_UINT64, NULL))
1583 		return (ERR_FSYS_CORRUPT);
1584 
1585 	if (nvlist_lookup_value(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ,
1586 	    &features, DATA_TYPE_NVLIST, NULL) == 0) {
1587 		char *nvp;
1588 		char *name = stack;
1589 		stack += MAXNAMELEN;
1590 
1591 		for (nvp = nvlist_next_nvpair(features, NULL);
1592 		    nvp != NULL;
1593 		    nvp = nvlist_next_nvpair(features, nvp)) {
1594 			zap_attribute_t za;
1595 
1596 			if (nvpair_name(nvp, name, MAXNAMELEN) != 0)
1597 				return (ERR_FSYS_CORRUPT);
1598 
1599 			za.za_integer_length = 8;
1600 			za.za_num_integers = 1;
1601 			za.za_first_integer = 1;
1602 			za.za_name = name;
1603 			if (check_feature(&za, spa_feature_names, stack) != 0)
1604 				return (ERR_NEWER_VERSION);
1605 		}
1606 	}
1607 
1608 	return (0);
1609 }
1610 
1611 /*
1612  * zfs_mount() locates a valid uberblock of the root pool and read in its MOS
1613  * to the memory address MOS.
1614  *
1615  * Return:
1616  *	1 - success
1617  *	0 - failure
1618  */
1619 int
1620 zfs_mount(void)
1621 {
1622 	char *stack, *ub_array;
1623 	int label = 0;
1624 	uberblock_t *ubbest;
1625 	objset_phys_t *osp;
1626 	char tmp_bootpath[MAXNAMELEN];
1627 	char tmp_devid[MAXNAMELEN];
1628 	uint64_t tmp_guid, ashift, version;
1629 	uint64_t adjpl = (uint64_t)part_length << SPA_MINBLOCKSHIFT;
1630 	int err = errnum; /* preserve previous errnum state */
1631 
1632 	/* if it's our first time here, zero the best uberblock out */
1633 	if (best_drive == 0 && best_part == 0 && find_best_root) {
1634 		grub_memset(&current_uberblock, 0, sizeof (uberblock_t));
1635 		pool_guid = 0;
1636 	}
1637 
1638 	stackbase = ZFS_SCRATCH;
1639 	stack = stackbase;
1640 	ub_array = stack;
1641 	stack += VDEV_UBERBLOCK_RING;
1642 
1643 	osp = (objset_phys_t *)stack;
1644 	stack += sizeof (objset_phys_t);
1645 	adjpl = P2ALIGN(adjpl, (uint64_t)sizeof (vdev_label_t));
1646 
1647 	for (label = 0; label < VDEV_LABELS; label++) {
1648 
1649 		/*
1650 		 * some eltorito stacks don't give us a size and
1651 		 * we end up setting the size to MAXUINT, further
1652 		 * some of these devices stop working once a single
1653 		 * read past the end has been issued. Checking
1654 		 * for a maximum part_length and skipping the backup
1655 		 * labels at the end of the slice/partition/device
1656 		 * avoids breaking down on such devices.
1657 		 */
1658 		if (part_length == MAXUINT && label == 2)
1659 			break;
1660 
1661 		uint64_t sector = vdev_label_start(adjpl,
1662 		    label) >> SPA_MINBLOCKSHIFT;
1663 
1664 		/* Read in the uberblock ring (128K). */
1665 		if (devread(sector  +
1666 		    ((VDEV_SKIP_SIZE + VDEV_PHYS_SIZE) >> SPA_MINBLOCKSHIFT),
1667 		    0, VDEV_UBERBLOCK_RING, ub_array) == 0)
1668 			continue;
1669 
1670 		if (check_pool_label(sector, stack, tmp_devid,
1671 		    tmp_bootpath, &tmp_guid, &ashift, &version))
1672 			continue;
1673 
1674 		if (pool_guid == 0)
1675 			pool_guid = tmp_guid;
1676 
1677 		if ((ubbest = find_bestub(ub_array, ashift, sector)) == NULL ||
1678 		    zio_read(&ubbest->ub_rootbp, osp, stack) != 0)
1679 			continue;
1680 
1681 		VERIFY_OS_TYPE(osp, DMU_OST_META);
1682 
1683 		if (version >= SPA_VERSION_FEATURES &&
1684 		    check_mos_features(&osp->os_meta_dnode, stack) != 0)
1685 			continue;
1686 
1687 		if (find_best_root && ((pool_guid != tmp_guid) ||
1688 		    vdev_uberblock_compare(ubbest, &(current_uberblock)) <= 0))
1689 			continue;
1690 
1691 		/* Got the MOS. Save it at the memory addr MOS. */
1692 		grub_memmove(MOS, &osp->os_meta_dnode, DNODE_SIZE);
1693 		grub_memmove(&current_uberblock, ubbest, sizeof (uberblock_t));
1694 		grub_memmove(current_bootpath, tmp_bootpath, MAXNAMELEN);
1695 		grub_memmove(current_devid, tmp_devid, grub_strlen(tmp_devid));
1696 		is_zfs_mount = 1;
1697 		return (1);
1698 	}
1699 
1700 	/*
1701 	 * While some fs impls. (tftp) rely on setting and keeping
1702 	 * global errnums set, others won't reset it and will break
1703 	 * when issuing rawreads. The goal here is to simply not
1704 	 * have zfs mount attempts impact the previous state.
1705 	 */
1706 	errnum = err;
1707 	return (0);
1708 }
1709 
1710 /*
1711  * zfs_open() locates a file in the rootpool by following the
1712  * MOS and places the dnode of the file in the memory address DNODE.
1713  *
1714  * Return:
1715  *	1 - success
1716  *	0 - failure
1717  */
1718 int
1719 zfs_open(char *filename)
1720 {
1721 	char *stack;
1722 	dnode_phys_t *mdn;
1723 
1724 	file_buf = NULL;
1725 	stackbase = ZFS_SCRATCH;
1726 	stack = stackbase;
1727 
1728 	mdn = (dnode_phys_t *)stack;
1729 	stack += sizeof (dnode_phys_t);
1730 
1731 	dnode_mdn = NULL;
1732 	dnode_buf = (dnode_phys_t *)stack;
1733 	stack += 1<<DNODE_BLOCK_SHIFT;
1734 
1735 	/*
1736 	 * menu.lst is placed at the root pool filesystem level,
1737 	 * do not goto 'current_bootfs'.
1738 	 */
1739 	if (is_top_dataset_file(filename)) {
1740 		if (errnum = get_objset_mdn(MOS, NULL, NULL, mdn, stack))
1741 			return (0);
1742 
1743 		current_bootfs_obj = 0;
1744 	} else {
1745 		if (current_bootfs[0] == '\0') {
1746 			/* Get the default root filesystem object number */
1747 			if (errnum = get_default_bootfsobj(MOS,
1748 			    &current_bootfs_obj, stack))
1749 				return (0);
1750 
1751 			if (errnum = get_objset_mdn(MOS, NULL,
1752 			    &current_bootfs_obj, mdn, stack))
1753 				return (0);
1754 		} else {
1755 			if (errnum = get_objset_mdn(MOS, current_bootfs,
1756 			    &current_bootfs_obj, mdn, stack)) {
1757 				grub_memset(current_bootfs, 0, MAXNAMELEN);
1758 				return (0);
1759 			}
1760 		}
1761 	}
1762 
1763 	if (dnode_get_path(mdn, filename, DNODE, stack)) {
1764 		errnum = ERR_FILE_NOT_FOUND;
1765 		return (0);
1766 	}
1767 
1768 	/* get the file size and set the file position to 0 */
1769 
1770 	/*
1771 	 * For DMU_OT_SA we will need to locate the SIZE attribute
1772 	 * attribute, which could be either in the bonus buffer
1773 	 * or the "spill" block.
1774 	 */
1775 	if (DNODE->dn_bonustype == DMU_OT_SA) {
1776 		sa_hdr_phys_t *sahdrp;
1777 		int hdrsize;
1778 
1779 		if (DNODE->dn_bonuslen != 0) {
1780 			sahdrp = (sa_hdr_phys_t *)DN_BONUS(DNODE);
1781 		} else {
1782 			if (DNODE->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1783 				blkptr_t *bp = &DNODE->dn_spill;
1784 				void *buf;
1785 
1786 				buf = (void *)stack;
1787 				stack += BP_GET_LSIZE(bp);
1788 
1789 				/* reset errnum to rawread() failure */
1790 				errnum = 0;
1791 				if (zio_read(bp, buf, stack) != 0) {
1792 					return (0);
1793 				}
1794 				sahdrp = buf;
1795 			} else {
1796 				errnum = ERR_FSYS_CORRUPT;
1797 				return (0);
1798 			}
1799 		}
1800 		hdrsize = SA_HDR_SIZE(sahdrp);
1801 		filemax = *(uint64_t *)((char *)sahdrp + hdrsize +
1802 		    SA_SIZE_OFFSET);
1803 	} else {
1804 		filemax = ((znode_phys_t *)DN_BONUS(DNODE))->zp_size;
1805 	}
1806 	filepos = 0;
1807 
1808 	dnode_buf = NULL;
1809 	return (1);
1810 }
1811 
1812 /*
1813  * zfs_read reads in the data blocks pointed by the DNODE.
1814  *
1815  * Return:
1816  *	len - the length successfully read in to the buffer
1817  *	0   - failure
1818  */
1819 int
1820 zfs_read(char *buf, int len)
1821 {
1822 	char *stack;
1823 	int blksz, length, movesize;
1824 
1825 	if (file_buf == NULL) {
1826 		file_buf = stackbase;
1827 		stackbase += SPA_MAXBLOCKSIZE;
1828 		file_start = file_end = 0;
1829 	}
1830 	stack = stackbase;
1831 
1832 	/*
1833 	 * If offset is in memory, move it into the buffer provided and return.
1834 	 */
1835 	if (filepos >= file_start && filepos+len <= file_end) {
1836 		grub_memmove(buf, file_buf + filepos - file_start, len);
1837 		filepos += len;
1838 		return (len);
1839 	}
1840 
1841 	blksz = DNODE->dn_datablkszsec << SPA_MINBLOCKSHIFT;
1842 
1843 	/*
1844 	 * Note: for GRUB, SPA_MAXBLOCKSIZE is 128KB.  There is not enough
1845 	 * memory to allocate the new max blocksize (16MB), so while
1846 	 * GRUB understands the large_blocks on-disk feature, it can't
1847 	 * actually read large blocks.
1848 	 */
1849 	if (blksz > SPA_MAXBLOCKSIZE) {
1850 		grub_printf("blocks larger than 128K are not supported\n");
1851 		return (0);
1852 	}
1853 
1854 	/*
1855 	 * Entire Dnode is too big to fit into the space available.  We
1856 	 * will need to read it in chunks.  This could be optimized to
1857 	 * read in as large a chunk as there is space available, but for
1858 	 * now, this only reads in one data block at a time.
1859 	 */
1860 	length = len;
1861 	while (length) {
1862 		/*
1863 		 * Find requested blkid and the offset within that block.
1864 		 */
1865 		uint64_t blkid = filepos / blksz;
1866 
1867 		if (errnum = dmu_read(DNODE, blkid, file_buf, stack))
1868 			return (0);
1869 
1870 		file_start = blkid * blksz;
1871 		file_end = file_start + blksz;
1872 
1873 		movesize = MIN(length, file_end - filepos);
1874 
1875 		grub_memmove(buf, file_buf + filepos - file_start,
1876 		    movesize);
1877 		buf += movesize;
1878 		length -= movesize;
1879 		filepos += movesize;
1880 	}
1881 
1882 	return (len);
1883 }
1884 
1885 /*
1886  * No-Op
1887  */
1888 int
1889 zfs_embed(int *start_sector, int needed_sectors)
1890 {
1891 	return (1);
1892 }
1893 
1894 #endif /* FSYS_ZFS */
1895