xref: /illumos-gate/usr/src/common/zfs/zfs_fletcher_superscalar.c (revision 0886dcadf4b2cd677c3b944167f0d16ccb243616)
1 /*
2  * Implement fast Fletcher4 using superscalar pipelines.
3  *
4  * Use regular C code to compute
5  * Fletcher4 in two incremental 64-bit parallel accumulator streams,
6  * and then combine the streams to form the final four checksum words.
7  * This implementation is a derivative of the AVX SIMD implementation by
8  * James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c).
9  *
10  * Copyright (C) 2016 Romain Dolbeau.
11  *
12  * Authors:
13  *	Romain Dolbeau <romain.dolbeau@atos.net>
14  *
15  * This software is available to you under a choice of one of two
16  * licenses.  You may choose to be licensed under the terms of the GNU
17  * General Public License (GPL) Version 2, available from the file
18  * COPYING in the main directory of this source tree, or the
19  * OpenIB.org BSD license below:
20  *
21  *     Redistribution and use in source and binary forms, with or
22  *     without modification, are permitted provided that the following
23  *     conditions are met:
24  *
25  *	- Redistributions of source code must retain the above
26  *	  copyright notice, this list of conditions and the following
27  *	  disclaimer.
28  *
29  *	- Redistributions in binary form must reproduce the above
30  *	  copyright notice, this list of conditions and the following
31  *	  disclaimer in the documentation and/or other materials
32  *	  provided with the distribution.
33  *
34  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
35  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
36  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
37  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
38  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
39  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
40  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
41  * SOFTWARE.
42  */
43 
44 #include <sys/types.h>
45 #include <sys/sunddi.h>
46 #include <sys/byteorder.h>
47 #include <sys/simd.h>
48 #include <sys/spa_checksum.h>
49 #include <zfs_fletcher.h>
50 #ifndef _KERNEL
51 #include <strings.h>
52 #endif
53 
54 static void
fletcher_4_superscalar_init(fletcher_4_ctx_t * ctx)55 fletcher_4_superscalar_init(fletcher_4_ctx_t *ctx)
56 {
57 	bzero(ctx->superscalar, 4 * sizeof (zfs_fletcher_superscalar_t));
58 }
59 
60 static void
fletcher_4_superscalar_fini(fletcher_4_ctx_t * ctx,zio_cksum_t * zcp)61 fletcher_4_superscalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp)
62 {
63 	uint64_t A, B, C, D;
64 	A = ctx->superscalar[0].v[0] + ctx->superscalar[0].v[1];
65 	B = 2 * ctx->superscalar[1].v[0] + 2 * ctx->superscalar[1].v[1] -
66 	    ctx->superscalar[0].v[1];
67 	C = 4 * ctx->superscalar[2].v[0] - ctx->superscalar[1].v[0] +
68 	    4 * ctx->superscalar[2].v[1] - 3 * ctx->superscalar[1].v[1];
69 	D = 8 * ctx->superscalar[3].v[0] - 4 * ctx->superscalar[2].v[0] +
70 	    8 * ctx->superscalar[3].v[1] - 8 * ctx->superscalar[2].v[1] +
71 	    ctx->superscalar[1].v[1];
72 	ZIO_SET_CHECKSUM(zcp, A, B, C, D);
73 }
74 
75 static void
fletcher_4_superscalar_native(fletcher_4_ctx_t * ctx,const void * buf,size_t size)76 fletcher_4_superscalar_native(fletcher_4_ctx_t *ctx,
77     const void *buf, size_t size)
78 {
79 	const uint32_t *ip = buf;
80 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
81 	uint64_t a, b, c, d;
82 	uint64_t a2, b2, c2, d2;
83 
84 	a = ctx->superscalar[0].v[0];
85 	b = ctx->superscalar[1].v[0];
86 	c = ctx->superscalar[2].v[0];
87 	d = ctx->superscalar[3].v[0];
88 	a2 = ctx->superscalar[0].v[1];
89 	b2 = ctx->superscalar[1].v[1];
90 	c2 = ctx->superscalar[2].v[1];
91 	d2 = ctx->superscalar[3].v[1];
92 
93 	do {
94 		a += ip[0];
95 		a2 += ip[1];
96 		b += a;
97 		b2 += a2;
98 		c += b;
99 		c2 += b2;
100 		d += c;
101 		d2 += c2;
102 	} while ((ip += 2) < ipend);
103 
104 	ctx->superscalar[0].v[0] = a;
105 	ctx->superscalar[1].v[0] = b;
106 	ctx->superscalar[2].v[0] = c;
107 	ctx->superscalar[3].v[0] = d;
108 	ctx->superscalar[0].v[1] = a2;
109 	ctx->superscalar[1].v[1] = b2;
110 	ctx->superscalar[2].v[1] = c2;
111 	ctx->superscalar[3].v[1] = d2;
112 }
113 
114 static void
fletcher_4_superscalar_byteswap(fletcher_4_ctx_t * ctx,const void * buf,size_t size)115 fletcher_4_superscalar_byteswap(fletcher_4_ctx_t *ctx,
116     const void *buf, size_t size)
117 {
118 	const uint32_t *ip = buf;
119 	const uint32_t *ipend = ip + (size / sizeof (uint32_t));
120 	uint64_t a, b, c, d;
121 	uint64_t a2, b2, c2, d2;
122 
123 	a = ctx->superscalar[0].v[0];
124 	b = ctx->superscalar[1].v[0];
125 	c = ctx->superscalar[2].v[0];
126 	d = ctx->superscalar[3].v[0];
127 	a2 = ctx->superscalar[0].v[1];
128 	b2 = ctx->superscalar[1].v[1];
129 	c2 = ctx->superscalar[2].v[1];
130 	d2 = ctx->superscalar[3].v[1];
131 
132 	do {
133 		a += BSWAP_32(ip[0]);
134 		a2 += BSWAP_32(ip[1]);
135 		b += a;
136 		b2 += a2;
137 		c += b;
138 		c2 += b2;
139 		d += c;
140 		d2 += c2;
141 	} while ((ip += 2) < ipend);
142 
143 	ctx->superscalar[0].v[0] = a;
144 	ctx->superscalar[1].v[0] = b;
145 	ctx->superscalar[2].v[0] = c;
146 	ctx->superscalar[3].v[0] = d;
147 	ctx->superscalar[0].v[1] = a2;
148 	ctx->superscalar[1].v[1] = b2;
149 	ctx->superscalar[2].v[1] = c2;
150 	ctx->superscalar[3].v[1] = d2;
151 }
152 
153 static boolean_t
fletcher_4_superscalar_valid(void)154 fletcher_4_superscalar_valid(void)
155 {
156 	return (B_TRUE);
157 }
158 
159 const fletcher_4_ops_t fletcher_4_superscalar_ops = {
160 	.init_native = fletcher_4_superscalar_init,
161 	.compute_native = fletcher_4_superscalar_native,
162 	.fini_native = fletcher_4_superscalar_fini,
163 	.init_byteswap = fletcher_4_superscalar_init,
164 	.compute_byteswap = fletcher_4_superscalar_byteswap,
165 	.fini_byteswap = fletcher_4_superscalar_fini,
166 	.valid = fletcher_4_superscalar_valid,
167 	.uses_fpu_native = B_FALSE,
168 	.uses_fpu_byteswap = B_FALSE,
169 	.name = "superscalar"
170 };
171