xref: /illumos-gate/usr/src/cmd/ztest/ztest.c (revision 3c6b90be1d51de874ba4c1f05537c85375b6ab6e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2013 Steven Hartland. All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2017 Joyent, Inc.
28  */
29 
30 /*
31  * The objective of this program is to provide a DMU/ZAP/SPA stress test
32  * that runs entirely in userland, is easy to use, and easy to extend.
33  *
34  * The overall design of the ztest program is as follows:
35  *
36  * (1) For each major functional area (e.g. adding vdevs to a pool,
37  *     creating and destroying datasets, reading and writing objects, etc)
38  *     we have a simple routine to test that functionality.  These
39  *     individual routines do not have to do anything "stressful".
40  *
41  * (2) We turn these simple functionality tests into a stress test by
42  *     running them all in parallel, with as many threads as desired,
43  *     and spread across as many datasets, objects, and vdevs as desired.
44  *
45  * (3) While all this is happening, we inject faults into the pool to
46  *     verify that self-healing data really works.
47  *
48  * (4) Every time we open a dataset, we change its checksum and compression
49  *     functions.  Thus even individual objects vary from block to block
50  *     in which checksum they use and whether they're compressed.
51  *
52  * (5) To verify that we never lose on-disk consistency after a crash,
53  *     we run the entire test in a child of the main process.
54  *     At random times, the child self-immolates with a SIGKILL.
55  *     This is the software equivalent of pulling the power cord.
56  *     The parent then runs the test again, using the existing
57  *     storage pool, as many times as desired. If backwards compatibility
58  *     testing is enabled ztest will sometimes run the "older" version
59  *     of ztest after a SIGKILL.
60  *
61  * (6) To verify that we don't have future leaks or temporal incursions,
62  *     many of the functional tests record the transaction group number
63  *     as part of their data.  When reading old data, they verify that
64  *     the transaction group number is less than the current, open txg.
65  *     If you add a new test, please do this if applicable.
66  *
67  * When run with no arguments, ztest runs for about five minutes and
68  * produces no output if successful.  To get a little bit of information,
69  * specify -V.  To get more information, specify -VV, and so on.
70  *
71  * To turn this into an overnight stress test, use -T to specify run time.
72  *
73  * You can ask more more vdevs [-v], datasets [-d], or threads [-t]
74  * to increase the pool capacity, fanout, and overall stress level.
75  *
76  * Use the -k option to set the desired frequency of kills.
77  *
78  * When ztest invokes itself it passes all relevant information through a
79  * temporary file which is mmap-ed in the child process. This allows shared
80  * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
81  * stored at offset 0 of this file and contains information on the size and
82  * number of shared structures in the file. The information stored in this file
83  * must remain backwards compatible with older versions of ztest so that
84  * ztest can invoke them during backwards compatibility testing (-B).
85  */
86 
87 #include <sys/zfs_context.h>
88 #include <sys/spa.h>
89 #include <sys/dmu.h>
90 #include <sys/txg.h>
91 #include <sys/dbuf.h>
92 #include <sys/zap.h>
93 #include <sys/dmu_objset.h>
94 #include <sys/poll.h>
95 #include <sys/stat.h>
96 #include <sys/time.h>
97 #include <sys/wait.h>
98 #include <sys/mman.h>
99 #include <sys/resource.h>
100 #include <sys/zio.h>
101 #include <sys/zil.h>
102 #include <sys/zil_impl.h>
103 #include <sys/vdev_impl.h>
104 #include <sys/vdev_file.h>
105 #include <sys/spa_impl.h>
106 #include <sys/metaslab_impl.h>
107 #include <sys/dsl_prop.h>
108 #include <sys/dsl_dataset.h>
109 #include <sys/dsl_destroy.h>
110 #include <sys/dsl_scan.h>
111 #include <sys/zio_checksum.h>
112 #include <sys/refcount.h>
113 #include <sys/zfeature.h>
114 #include <sys/dsl_userhold.h>
115 #include <sys/abd.h>
116 #include <stdio.h>
117 #include <stdio_ext.h>
118 #include <stdlib.h>
119 #include <unistd.h>
120 #include <signal.h>
121 #include <umem.h>
122 #include <dlfcn.h>
123 #include <ctype.h>
124 #include <math.h>
125 #include <sys/fs/zfs.h>
126 #include <libnvpair.h>
127 #include <libcmdutils.h>
128 
129 static int ztest_fd_data = -1;
130 static int ztest_fd_rand = -1;
131 
132 typedef struct ztest_shared_hdr {
133 	uint64_t	zh_hdr_size;
134 	uint64_t	zh_opts_size;
135 	uint64_t	zh_size;
136 	uint64_t	zh_stats_size;
137 	uint64_t	zh_stats_count;
138 	uint64_t	zh_ds_size;
139 	uint64_t	zh_ds_count;
140 } ztest_shared_hdr_t;
141 
142 static ztest_shared_hdr_t *ztest_shared_hdr;
143 
144 typedef struct ztest_shared_opts {
145 	char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
146 	char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
147 	char zo_alt_ztest[MAXNAMELEN];
148 	char zo_alt_libpath[MAXNAMELEN];
149 	uint64_t zo_vdevs;
150 	uint64_t zo_vdevtime;
151 	size_t zo_vdev_size;
152 	int zo_ashift;
153 	int zo_mirrors;
154 	int zo_raidz;
155 	int zo_raidz_parity;
156 	int zo_datasets;
157 	int zo_threads;
158 	uint64_t zo_passtime;
159 	uint64_t zo_killrate;
160 	int zo_verbose;
161 	int zo_init;
162 	uint64_t zo_time;
163 	uint64_t zo_maxloops;
164 	uint64_t zo_metaslab_gang_bang;
165 } ztest_shared_opts_t;
166 
167 static const ztest_shared_opts_t ztest_opts_defaults = {
168 	.zo_pool = { 'z', 't', 'e', 's', 't', '\0' },
169 	.zo_dir = { '/', 't', 'm', 'p', '\0' },
170 	.zo_alt_ztest = { '\0' },
171 	.zo_alt_libpath = { '\0' },
172 	.zo_vdevs = 5,
173 	.zo_ashift = SPA_MINBLOCKSHIFT,
174 	.zo_mirrors = 2,
175 	.zo_raidz = 4,
176 	.zo_raidz_parity = 1,
177 	.zo_vdev_size = SPA_MINDEVSIZE * 4,	/* 256m default size */
178 	.zo_datasets = 7,
179 	.zo_threads = 23,
180 	.zo_passtime = 60,		/* 60 seconds */
181 	.zo_killrate = 70,		/* 70% kill rate */
182 	.zo_verbose = 0,
183 	.zo_init = 1,
184 	.zo_time = 300,			/* 5 minutes */
185 	.zo_maxloops = 50,		/* max loops during spa_freeze() */
186 	.zo_metaslab_gang_bang = 32 << 10
187 };
188 
189 extern uint64_t metaslab_gang_bang;
190 extern uint64_t metaslab_df_alloc_threshold;
191 extern uint64_t zfs_deadman_synctime_ms;
192 extern int metaslab_preload_limit;
193 extern boolean_t zfs_compressed_arc_enabled;
194 extern boolean_t zfs_abd_scatter_enabled;
195 
196 static ztest_shared_opts_t *ztest_shared_opts;
197 static ztest_shared_opts_t ztest_opts;
198 
199 typedef struct ztest_shared_ds {
200 	uint64_t	zd_seq;
201 } ztest_shared_ds_t;
202 
203 static ztest_shared_ds_t *ztest_shared_ds;
204 #define	ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
205 
206 #define	BT_MAGIC	0x123456789abcdefULL
207 #define	MAXFAULTS() \
208 	(MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1)
209 
210 enum ztest_io_type {
211 	ZTEST_IO_WRITE_TAG,
212 	ZTEST_IO_WRITE_PATTERN,
213 	ZTEST_IO_WRITE_ZEROES,
214 	ZTEST_IO_TRUNCATE,
215 	ZTEST_IO_SETATTR,
216 	ZTEST_IO_REWRITE,
217 	ZTEST_IO_TYPES
218 };
219 
220 typedef struct ztest_block_tag {
221 	uint64_t	bt_magic;
222 	uint64_t	bt_objset;
223 	uint64_t	bt_object;
224 	uint64_t	bt_offset;
225 	uint64_t	bt_gen;
226 	uint64_t	bt_txg;
227 	uint64_t	bt_crtxg;
228 } ztest_block_tag_t;
229 
230 typedef struct bufwad {
231 	uint64_t	bw_index;
232 	uint64_t	bw_txg;
233 	uint64_t	bw_data;
234 } bufwad_t;
235 
236 /*
237  * XXX -- fix zfs range locks to be generic so we can use them here.
238  */
239 typedef enum {
240 	RL_READER,
241 	RL_WRITER,
242 	RL_APPEND
243 } rl_type_t;
244 
245 typedef struct rll {
246 	void		*rll_writer;
247 	int		rll_readers;
248 	mutex_t		rll_lock;
249 	cond_t		rll_cv;
250 } rll_t;
251 
252 typedef struct rl {
253 	uint64_t	rl_object;
254 	uint64_t	rl_offset;
255 	uint64_t	rl_size;
256 	rll_t		*rl_lock;
257 } rl_t;
258 
259 #define	ZTEST_RANGE_LOCKS	64
260 #define	ZTEST_OBJECT_LOCKS	64
261 
262 /*
263  * Object descriptor.  Used as a template for object lookup/create/remove.
264  */
265 typedef struct ztest_od {
266 	uint64_t	od_dir;
267 	uint64_t	od_object;
268 	dmu_object_type_t od_type;
269 	dmu_object_type_t od_crtype;
270 	uint64_t	od_blocksize;
271 	uint64_t	od_crblocksize;
272 	uint64_t	od_gen;
273 	uint64_t	od_crgen;
274 	char		od_name[ZFS_MAX_DATASET_NAME_LEN];
275 } ztest_od_t;
276 
277 /*
278  * Per-dataset state.
279  */
280 typedef struct ztest_ds {
281 	ztest_shared_ds_t *zd_shared;
282 	objset_t	*zd_os;
283 	rwlock_t	zd_zilog_lock;
284 	zilog_t		*zd_zilog;
285 	ztest_od_t	*zd_od;		/* debugging aid */
286 	char		zd_name[ZFS_MAX_DATASET_NAME_LEN];
287 	mutex_t		zd_dirobj_lock;
288 	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
289 	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
290 } ztest_ds_t;
291 
292 /*
293  * Per-iteration state.
294  */
295 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
296 
297 typedef struct ztest_info {
298 	ztest_func_t	*zi_func;	/* test function */
299 	uint64_t	zi_iters;	/* iterations per execution */
300 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
301 } ztest_info_t;
302 
303 typedef struct ztest_shared_callstate {
304 	uint64_t	zc_count;	/* per-pass count */
305 	uint64_t	zc_time;	/* per-pass time */
306 	uint64_t	zc_next;	/* next time to call this function */
307 } ztest_shared_callstate_t;
308 
309 static ztest_shared_callstate_t *ztest_shared_callstate;
310 #define	ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
311 
312 /*
313  * Note: these aren't static because we want dladdr() to work.
314  */
315 ztest_func_t ztest_dmu_read_write;
316 ztest_func_t ztest_dmu_write_parallel;
317 ztest_func_t ztest_dmu_object_alloc_free;
318 ztest_func_t ztest_dmu_commit_callbacks;
319 ztest_func_t ztest_zap;
320 ztest_func_t ztest_zap_parallel;
321 ztest_func_t ztest_zil_commit;
322 ztest_func_t ztest_zil_remount;
323 ztest_func_t ztest_dmu_read_write_zcopy;
324 ztest_func_t ztest_dmu_objset_create_destroy;
325 ztest_func_t ztest_dmu_prealloc;
326 ztest_func_t ztest_fzap;
327 ztest_func_t ztest_dmu_snapshot_create_destroy;
328 ztest_func_t ztest_dsl_prop_get_set;
329 ztest_func_t ztest_spa_prop_get_set;
330 ztest_func_t ztest_spa_create_destroy;
331 ztest_func_t ztest_fault_inject;
332 ztest_func_t ztest_ddt_repair;
333 ztest_func_t ztest_dmu_snapshot_hold;
334 ztest_func_t ztest_spa_rename;
335 ztest_func_t ztest_scrub;
336 ztest_func_t ztest_dsl_dataset_promote_busy;
337 ztest_func_t ztest_vdev_attach_detach;
338 ztest_func_t ztest_vdev_LUN_growth;
339 ztest_func_t ztest_vdev_add_remove;
340 ztest_func_t ztest_vdev_aux_add_remove;
341 ztest_func_t ztest_split_pool;
342 ztest_func_t ztest_reguid;
343 ztest_func_t ztest_spa_upgrade;
344 
345 uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
346 uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
347 uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
348 uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
349 uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
350 
351 ztest_info_t ztest_info[] = {
352 	{ ztest_dmu_read_write,			1,	&zopt_always	},
353 	{ ztest_dmu_write_parallel,		10,	&zopt_always	},
354 	{ ztest_dmu_object_alloc_free,		1,	&zopt_always	},
355 	{ ztest_dmu_commit_callbacks,		1,	&zopt_always	},
356 	{ ztest_zap,				30,	&zopt_always	},
357 	{ ztest_zap_parallel,			100,	&zopt_always	},
358 	{ ztest_split_pool,			1,	&zopt_always	},
359 	{ ztest_zil_commit,			1,	&zopt_incessant	},
360 	{ ztest_zil_remount,			1,	&zopt_sometimes	},
361 	{ ztest_dmu_read_write_zcopy,		1,	&zopt_often	},
362 	{ ztest_dmu_objset_create_destroy,	1,	&zopt_often	},
363 	{ ztest_dsl_prop_get_set,		1,	&zopt_often	},
364 	{ ztest_spa_prop_get_set,		1,	&zopt_sometimes	},
365 #if 0
366 	{ ztest_dmu_prealloc,			1,	&zopt_sometimes	},
367 #endif
368 	{ ztest_fzap,				1,	&zopt_sometimes	},
369 	{ ztest_dmu_snapshot_create_destroy,	1,	&zopt_sometimes	},
370 	{ ztest_spa_create_destroy,		1,	&zopt_sometimes	},
371 	{ ztest_fault_inject,			1,	&zopt_sometimes	},
372 	{ ztest_ddt_repair,			1,	&zopt_sometimes	},
373 	{ ztest_dmu_snapshot_hold,		1,	&zopt_sometimes	},
374 	{ ztest_reguid,				1,	&zopt_rarely	},
375 	{ ztest_spa_rename,			1,	&zopt_rarely	},
376 	{ ztest_scrub,				1,	&zopt_rarely	},
377 	{ ztest_spa_upgrade,			1,	&zopt_rarely	},
378 	{ ztest_dsl_dataset_promote_busy,	1,	&zopt_rarely	},
379 	{ ztest_vdev_attach_detach,		1,	&zopt_sometimes	},
380 	{ ztest_vdev_LUN_growth,		1,	&zopt_rarely	},
381 	{ ztest_vdev_add_remove,		1,
382 	    &ztest_opts.zo_vdevtime				},
383 	{ ztest_vdev_aux_add_remove,		1,
384 	    &ztest_opts.zo_vdevtime				},
385 };
386 
387 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
388 
389 /*
390  * The following struct is used to hold a list of uncalled commit callbacks.
391  * The callbacks are ordered by txg number.
392  */
393 typedef struct ztest_cb_list {
394 	mutex_t	zcl_callbacks_lock;
395 	list_t	zcl_callbacks;
396 } ztest_cb_list_t;
397 
398 /*
399  * Stuff we need to share writably between parent and child.
400  */
401 typedef struct ztest_shared {
402 	boolean_t	zs_do_init;
403 	hrtime_t	zs_proc_start;
404 	hrtime_t	zs_proc_stop;
405 	hrtime_t	zs_thread_start;
406 	hrtime_t	zs_thread_stop;
407 	hrtime_t	zs_thread_kill;
408 	uint64_t	zs_enospc_count;
409 	uint64_t	zs_vdev_next_leaf;
410 	uint64_t	zs_vdev_aux;
411 	uint64_t	zs_alloc;
412 	uint64_t	zs_space;
413 	uint64_t	zs_splits;
414 	uint64_t	zs_mirrors;
415 	uint64_t	zs_metaslab_sz;
416 	uint64_t	zs_metaslab_df_alloc_threshold;
417 	uint64_t	zs_guid;
418 } ztest_shared_t;
419 
420 #define	ID_PARALLEL	-1ULL
421 
422 static char ztest_dev_template[] = "%s/%s.%llua";
423 static char ztest_aux_template[] = "%s/%s.%s.%llu";
424 ztest_shared_t *ztest_shared;
425 
426 static spa_t *ztest_spa = NULL;
427 static ztest_ds_t *ztest_ds;
428 
429 static mutex_t ztest_vdev_lock;
430 
431 /*
432  * The ztest_name_lock protects the pool and dataset namespace used by
433  * the individual tests. To modify the namespace, consumers must grab
434  * this lock as writer. Grabbing the lock as reader will ensure that the
435  * namespace does not change while the lock is held.
436  */
437 static rwlock_t ztest_name_lock;
438 
439 static boolean_t ztest_dump_core = B_TRUE;
440 static boolean_t ztest_exiting;
441 
442 /* Global commit callback list */
443 static ztest_cb_list_t zcl;
444 
445 enum ztest_object {
446 	ZTEST_META_DNODE = 0,
447 	ZTEST_DIROBJ,
448 	ZTEST_OBJECTS
449 };
450 
451 static void usage(boolean_t) __NORETURN;
452 
453 /*
454  * These libumem hooks provide a reasonable set of defaults for the allocator's
455  * debugging facilities.
456  */
457 const char *
458 _umem_debug_init()
459 {
460 	return ("default,verbose"); /* $UMEM_DEBUG setting */
461 }
462 
463 const char *
464 _umem_logging_init(void)
465 {
466 	return ("fail,contents"); /* $UMEM_LOGGING setting */
467 }
468 
469 #define	FATAL_MSG_SZ	1024
470 
471 char *fatal_msg;
472 
473 static void
474 fatal(int do_perror, char *message, ...)
475 {
476 	va_list args;
477 	int save_errno = errno;
478 	char buf[FATAL_MSG_SZ];
479 
480 	(void) fflush(stdout);
481 
482 	va_start(args, message);
483 	(void) sprintf(buf, "ztest: ");
484 	/* LINTED */
485 	(void) vsprintf(buf + strlen(buf), message, args);
486 	va_end(args);
487 	if (do_perror) {
488 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
489 		    ": %s", strerror(save_errno));
490 	}
491 	(void) fprintf(stderr, "%s\n", buf);
492 	fatal_msg = buf;			/* to ease debugging */
493 	if (ztest_dump_core)
494 		abort();
495 	exit(3);
496 }
497 
498 static int
499 str2shift(const char *buf)
500 {
501 	const char *ends = "BKMGTPEZ";
502 	int i;
503 
504 	if (buf[0] == '\0')
505 		return (0);
506 	for (i = 0; i < strlen(ends); i++) {
507 		if (toupper(buf[0]) == ends[i])
508 			break;
509 	}
510 	if (i == strlen(ends)) {
511 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
512 		    buf);
513 		usage(B_FALSE);
514 	}
515 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
516 		return (10*i);
517 	}
518 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
519 	usage(B_FALSE);
520 	/* NOTREACHED */
521 }
522 
523 static uint64_t
524 nicenumtoull(const char *buf)
525 {
526 	char *end;
527 	uint64_t val;
528 
529 	val = strtoull(buf, &end, 0);
530 	if (end == buf) {
531 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
532 		usage(B_FALSE);
533 	} else if (end[0] == '.') {
534 		double fval = strtod(buf, &end);
535 		fval *= pow(2, str2shift(end));
536 		if (fval > UINT64_MAX) {
537 			(void) fprintf(stderr, "ztest: value too large: %s\n",
538 			    buf);
539 			usage(B_FALSE);
540 		}
541 		val = (uint64_t)fval;
542 	} else {
543 		int shift = str2shift(end);
544 		if (shift >= 64 || (val << shift) >> shift != val) {
545 			(void) fprintf(stderr, "ztest: value too large: %s\n",
546 			    buf);
547 			usage(B_FALSE);
548 		}
549 		val <<= shift;
550 	}
551 	return (val);
552 }
553 
554 static void
555 usage(boolean_t requested)
556 {
557 	const ztest_shared_opts_t *zo = &ztest_opts_defaults;
558 
559 	char nice_vdev_size[NN_NUMBUF_SZ];
560 	char nice_gang_bang[NN_NUMBUF_SZ];
561 	FILE *fp = requested ? stdout : stderr;
562 
563 	nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size));
564 	nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang,
565 	    sizeof (nice_gang_bang));
566 
567 	(void) fprintf(fp, "Usage: %s\n"
568 	    "\t[-v vdevs (default: %llu)]\n"
569 	    "\t[-s size_of_each_vdev (default: %s)]\n"
570 	    "\t[-a alignment_shift (default: %d)] use 0 for random\n"
571 	    "\t[-m mirror_copies (default: %d)]\n"
572 	    "\t[-r raidz_disks (default: %d)]\n"
573 	    "\t[-R raidz_parity (default: %d)]\n"
574 	    "\t[-d datasets (default: %d)]\n"
575 	    "\t[-t threads (default: %d)]\n"
576 	    "\t[-g gang_block_threshold (default: %s)]\n"
577 	    "\t[-i init_count (default: %d)] initialize pool i times\n"
578 	    "\t[-k kill_percentage (default: %llu%%)]\n"
579 	    "\t[-p pool_name (default: %s)]\n"
580 	    "\t[-f dir (default: %s)] file directory for vdev files\n"
581 	    "\t[-V] verbose (use multiple times for ever more blather)\n"
582 	    "\t[-E] use existing pool instead of creating new one\n"
583 	    "\t[-T time (default: %llu sec)] total run time\n"
584 	    "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n"
585 	    "\t[-P passtime (default: %llu sec)] time per pass\n"
586 	    "\t[-B alt_ztest (default: <none>)] alternate ztest path\n"
587 	    "\t[-o variable=value] ... set global variable to an unsigned\n"
588 	    "\t    32-bit integer value\n"
589 	    "\t[-h] (print help)\n"
590 	    "",
591 	    zo->zo_pool,
592 	    (u_longlong_t)zo->zo_vdevs,			/* -v */
593 	    nice_vdev_size,				/* -s */
594 	    zo->zo_ashift,				/* -a */
595 	    zo->zo_mirrors,				/* -m */
596 	    zo->zo_raidz,				/* -r */
597 	    zo->zo_raidz_parity,			/* -R */
598 	    zo->zo_datasets,				/* -d */
599 	    zo->zo_threads,				/* -t */
600 	    nice_gang_bang,				/* -g */
601 	    zo->zo_init,				/* -i */
602 	    (u_longlong_t)zo->zo_killrate,		/* -k */
603 	    zo->zo_pool,				/* -p */
604 	    zo->zo_dir,					/* -f */
605 	    (u_longlong_t)zo->zo_time,			/* -T */
606 	    (u_longlong_t)zo->zo_maxloops,		/* -F */
607 	    (u_longlong_t)zo->zo_passtime);
608 	exit(requested ? 0 : 1);
609 }
610 
611 static void
612 process_options(int argc, char **argv)
613 {
614 	char *path;
615 	ztest_shared_opts_t *zo = &ztest_opts;
616 
617 	int opt;
618 	uint64_t value;
619 	char altdir[MAXNAMELEN] = { 0 };
620 
621 	bcopy(&ztest_opts_defaults, zo, sizeof (*zo));
622 
623 	while ((opt = getopt(argc, argv,
624 	    "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:o:")) != EOF) {
625 		value = 0;
626 		switch (opt) {
627 		case 'v':
628 		case 's':
629 		case 'a':
630 		case 'm':
631 		case 'r':
632 		case 'R':
633 		case 'd':
634 		case 't':
635 		case 'g':
636 		case 'i':
637 		case 'k':
638 		case 'T':
639 		case 'P':
640 		case 'F':
641 			value = nicenumtoull(optarg);
642 		}
643 		switch (opt) {
644 		case 'v':
645 			zo->zo_vdevs = value;
646 			break;
647 		case 's':
648 			zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
649 			break;
650 		case 'a':
651 			zo->zo_ashift = value;
652 			break;
653 		case 'm':
654 			zo->zo_mirrors = value;
655 			break;
656 		case 'r':
657 			zo->zo_raidz = MAX(1, value);
658 			break;
659 		case 'R':
660 			zo->zo_raidz_parity = MIN(MAX(value, 1), 3);
661 			break;
662 		case 'd':
663 			zo->zo_datasets = MAX(1, value);
664 			break;
665 		case 't':
666 			zo->zo_threads = MAX(1, value);
667 			break;
668 		case 'g':
669 			zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1,
670 			    value);
671 			break;
672 		case 'i':
673 			zo->zo_init = value;
674 			break;
675 		case 'k':
676 			zo->zo_killrate = value;
677 			break;
678 		case 'p':
679 			(void) strlcpy(zo->zo_pool, optarg,
680 			    sizeof (zo->zo_pool));
681 			break;
682 		case 'f':
683 			path = realpath(optarg, NULL);
684 			if (path == NULL) {
685 				(void) fprintf(stderr, "error: %s: %s\n",
686 				    optarg, strerror(errno));
687 				usage(B_FALSE);
688 			} else {
689 				(void) strlcpy(zo->zo_dir, path,
690 				    sizeof (zo->zo_dir));
691 			}
692 			break;
693 		case 'V':
694 			zo->zo_verbose++;
695 			break;
696 		case 'E':
697 			zo->zo_init = 0;
698 			break;
699 		case 'T':
700 			zo->zo_time = value;
701 			break;
702 		case 'P':
703 			zo->zo_passtime = MAX(1, value);
704 			break;
705 		case 'F':
706 			zo->zo_maxloops = MAX(1, value);
707 			break;
708 		case 'B':
709 			(void) strlcpy(altdir, optarg, sizeof (altdir));
710 			break;
711 		case 'o':
712 			if (set_global_var(optarg) != 0)
713 				usage(B_FALSE);
714 			break;
715 		case 'h':
716 			usage(B_TRUE);
717 			break;
718 		case '?':
719 		default:
720 			usage(B_FALSE);
721 			break;
722 		}
723 	}
724 
725 	zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1);
726 
727 	zo->zo_vdevtime =
728 	    (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
729 	    UINT64_MAX >> 2);
730 
731 	if (strlen(altdir) > 0) {
732 		char *cmd;
733 		char *realaltdir;
734 		char *bin;
735 		char *ztest;
736 		char *isa;
737 		int isalen;
738 
739 		cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
740 		realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
741 
742 		VERIFY(NULL != realpath(getexecname(), cmd));
743 		if (0 != access(altdir, F_OK)) {
744 			ztest_dump_core = B_FALSE;
745 			fatal(B_TRUE, "invalid alternate ztest path: %s",
746 			    altdir);
747 		}
748 		VERIFY(NULL != realpath(altdir, realaltdir));
749 
750 		/*
751 		 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest".
752 		 * We want to extract <isa> to determine if we should use
753 		 * 32 or 64 bit binaries.
754 		 */
755 		bin = strstr(cmd, "/usr/bin/");
756 		ztest = strstr(bin, "/ztest");
757 		isa = bin + 9;
758 		isalen = ztest - isa;
759 		(void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest),
760 		    "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa);
761 		(void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath),
762 		    "%s/usr/lib/%.*s", realaltdir, isalen, isa);
763 
764 		if (0 != access(zo->zo_alt_ztest, X_OK)) {
765 			ztest_dump_core = B_FALSE;
766 			fatal(B_TRUE, "invalid alternate ztest: %s",
767 			    zo->zo_alt_ztest);
768 		} else if (0 != access(zo->zo_alt_libpath, X_OK)) {
769 			ztest_dump_core = B_FALSE;
770 			fatal(B_TRUE, "invalid alternate lib directory %s",
771 			    zo->zo_alt_libpath);
772 		}
773 
774 		umem_free(cmd, MAXPATHLEN);
775 		umem_free(realaltdir, MAXPATHLEN);
776 	}
777 }
778 
779 static void
780 ztest_kill(ztest_shared_t *zs)
781 {
782 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
783 	zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
784 
785 	/*
786 	 * Before we kill off ztest, make sure that the config is updated.
787 	 * See comment above spa_config_sync().
788 	 */
789 	mutex_enter(&spa_namespace_lock);
790 	spa_config_sync(ztest_spa, B_FALSE, B_FALSE);
791 	mutex_exit(&spa_namespace_lock);
792 
793 	zfs_dbgmsg_print(FTAG);
794 	(void) kill(getpid(), SIGKILL);
795 }
796 
797 static uint64_t
798 ztest_random(uint64_t range)
799 {
800 	uint64_t r;
801 
802 	ASSERT3S(ztest_fd_rand, >=, 0);
803 
804 	if (range == 0)
805 		return (0);
806 
807 	if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
808 		fatal(1, "short read from /dev/urandom");
809 
810 	return (r % range);
811 }
812 
813 /* ARGSUSED */
814 static void
815 ztest_record_enospc(const char *s)
816 {
817 	ztest_shared->zs_enospc_count++;
818 }
819 
820 static uint64_t
821 ztest_get_ashift(void)
822 {
823 	if (ztest_opts.zo_ashift == 0)
824 		return (SPA_MINBLOCKSHIFT + ztest_random(5));
825 	return (ztest_opts.zo_ashift);
826 }
827 
828 static nvlist_t *
829 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift)
830 {
831 	char pathbuf[MAXPATHLEN];
832 	uint64_t vdev;
833 	nvlist_t *file;
834 
835 	if (ashift == 0)
836 		ashift = ztest_get_ashift();
837 
838 	if (path == NULL) {
839 		path = pathbuf;
840 
841 		if (aux != NULL) {
842 			vdev = ztest_shared->zs_vdev_aux;
843 			(void) snprintf(path, sizeof (pathbuf),
844 			    ztest_aux_template, ztest_opts.zo_dir,
845 			    pool == NULL ? ztest_opts.zo_pool : pool,
846 			    aux, vdev);
847 		} else {
848 			vdev = ztest_shared->zs_vdev_next_leaf++;
849 			(void) snprintf(path, sizeof (pathbuf),
850 			    ztest_dev_template, ztest_opts.zo_dir,
851 			    pool == NULL ? ztest_opts.zo_pool : pool, vdev);
852 		}
853 	}
854 
855 	if (size != 0) {
856 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
857 		if (fd == -1)
858 			fatal(1, "can't open %s", path);
859 		if (ftruncate(fd, size) != 0)
860 			fatal(1, "can't ftruncate %s", path);
861 		(void) close(fd);
862 	}
863 
864 	VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0);
865 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0);
866 	VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0);
867 	VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0);
868 
869 	return (file);
870 }
871 
872 static nvlist_t *
873 make_vdev_raidz(char *path, char *aux, char *pool, size_t size,
874     uint64_t ashift, int r)
875 {
876 	nvlist_t *raidz, **child;
877 	int c;
878 
879 	if (r < 2)
880 		return (make_vdev_file(path, aux, pool, size, ashift));
881 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
882 
883 	for (c = 0; c < r; c++)
884 		child[c] = make_vdev_file(path, aux, pool, size, ashift);
885 
886 	VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0);
887 	VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE,
888 	    VDEV_TYPE_RAIDZ) == 0);
889 	VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY,
890 	    ztest_opts.zo_raidz_parity) == 0);
891 	VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN,
892 	    child, r) == 0);
893 
894 	for (c = 0; c < r; c++)
895 		nvlist_free(child[c]);
896 
897 	umem_free(child, r * sizeof (nvlist_t *));
898 
899 	return (raidz);
900 }
901 
902 static nvlist_t *
903 make_vdev_mirror(char *path, char *aux, char *pool, size_t size,
904     uint64_t ashift, int r, int m)
905 {
906 	nvlist_t *mirror, **child;
907 	int c;
908 
909 	if (m < 1)
910 		return (make_vdev_raidz(path, aux, pool, size, ashift, r));
911 
912 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
913 
914 	for (c = 0; c < m; c++)
915 		child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r);
916 
917 	VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0);
918 	VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE,
919 	    VDEV_TYPE_MIRROR) == 0);
920 	VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
921 	    child, m) == 0);
922 
923 	for (c = 0; c < m; c++)
924 		nvlist_free(child[c]);
925 
926 	umem_free(child, m * sizeof (nvlist_t *));
927 
928 	return (mirror);
929 }
930 
931 static nvlist_t *
932 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift,
933     int log, int r, int m, int t)
934 {
935 	nvlist_t *root, **child;
936 	int c;
937 
938 	ASSERT(t > 0);
939 
940 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
941 
942 	for (c = 0; c < t; c++) {
943 		child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
944 		    r, m);
945 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
946 		    log) == 0);
947 	}
948 
949 	VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0);
950 	VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0);
951 	VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
952 	    child, t) == 0);
953 
954 	for (c = 0; c < t; c++)
955 		nvlist_free(child[c]);
956 
957 	umem_free(child, t * sizeof (nvlist_t *));
958 
959 	return (root);
960 }
961 
962 /*
963  * Find a random spa version. Returns back a random spa version in the
964  * range [initial_version, SPA_VERSION_FEATURES].
965  */
966 static uint64_t
967 ztest_random_spa_version(uint64_t initial_version)
968 {
969 	uint64_t version = initial_version;
970 
971 	if (version <= SPA_VERSION_BEFORE_FEATURES) {
972 		version = version +
973 		    ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
974 	}
975 
976 	if (version > SPA_VERSION_BEFORE_FEATURES)
977 		version = SPA_VERSION_FEATURES;
978 
979 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
980 	return (version);
981 }
982 
983 static int
984 ztest_random_blocksize(void)
985 {
986 	uint64_t block_shift;
987 	/*
988 	 * Choose a block size >= the ashift.
989 	 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
990 	 */
991 	int maxbs = SPA_OLD_MAXBLOCKSHIFT;
992 	if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
993 		maxbs = 20;
994 	block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
995 	return (1 << (SPA_MINBLOCKSHIFT + block_shift));
996 }
997 
998 static int
999 ztest_random_ibshift(void)
1000 {
1001 	return (DN_MIN_INDBLKSHIFT +
1002 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1003 }
1004 
1005 static uint64_t
1006 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1007 {
1008 	uint64_t top;
1009 	vdev_t *rvd = spa->spa_root_vdev;
1010 	vdev_t *tvd;
1011 
1012 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1013 
1014 	do {
1015 		top = ztest_random(rvd->vdev_children);
1016 		tvd = rvd->vdev_child[top];
1017 	} while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) ||
1018 	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1019 
1020 	return (top);
1021 }
1022 
1023 static uint64_t
1024 ztest_random_dsl_prop(zfs_prop_t prop)
1025 {
1026 	uint64_t value;
1027 
1028 	do {
1029 		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1030 	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1031 
1032 	return (value);
1033 }
1034 
1035 static int
1036 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1037     boolean_t inherit)
1038 {
1039 	const char *propname = zfs_prop_to_name(prop);
1040 	const char *valname;
1041 	char setpoint[MAXPATHLEN];
1042 	uint64_t curval;
1043 	int error;
1044 
1045 	error = dsl_prop_set_int(osname, propname,
1046 	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1047 
1048 	if (error == ENOSPC) {
1049 		ztest_record_enospc(FTAG);
1050 		return (error);
1051 	}
1052 	ASSERT0(error);
1053 
1054 	VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1055 
1056 	if (ztest_opts.zo_verbose >= 6) {
1057 		VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
1058 		(void) printf("%s %s = %s at '%s'\n",
1059 		    osname, propname, valname, setpoint);
1060 	}
1061 
1062 	return (error);
1063 }
1064 
1065 static int
1066 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1067 {
1068 	spa_t *spa = ztest_spa;
1069 	nvlist_t *props = NULL;
1070 	int error;
1071 
1072 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
1073 	VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);
1074 
1075 	error = spa_prop_set(spa, props);
1076 
1077 	nvlist_free(props);
1078 
1079 	if (error == ENOSPC) {
1080 		ztest_record_enospc(FTAG);
1081 		return (error);
1082 	}
1083 	ASSERT0(error);
1084 
1085 	return (error);
1086 }
1087 
1088 static void
1089 ztest_rll_init(rll_t *rll)
1090 {
1091 	rll->rll_writer = NULL;
1092 	rll->rll_readers = 0;
1093 	VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0);
1094 	VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0);
1095 }
1096 
1097 static void
1098 ztest_rll_destroy(rll_t *rll)
1099 {
1100 	ASSERT(rll->rll_writer == NULL);
1101 	ASSERT(rll->rll_readers == 0);
1102 	VERIFY(_mutex_destroy(&rll->rll_lock) == 0);
1103 	VERIFY(cond_destroy(&rll->rll_cv) == 0);
1104 }
1105 
1106 static void
1107 ztest_rll_lock(rll_t *rll, rl_type_t type)
1108 {
1109 	VERIFY(mutex_lock(&rll->rll_lock) == 0);
1110 
1111 	if (type == RL_READER) {
1112 		while (rll->rll_writer != NULL)
1113 			(void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1114 		rll->rll_readers++;
1115 	} else {
1116 		while (rll->rll_writer != NULL || rll->rll_readers)
1117 			(void) cond_wait(&rll->rll_cv, &rll->rll_lock);
1118 		rll->rll_writer = curthread;
1119 	}
1120 
1121 	VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1122 }
1123 
1124 static void
1125 ztest_rll_unlock(rll_t *rll)
1126 {
1127 	VERIFY(mutex_lock(&rll->rll_lock) == 0);
1128 
1129 	if (rll->rll_writer) {
1130 		ASSERT(rll->rll_readers == 0);
1131 		rll->rll_writer = NULL;
1132 	} else {
1133 		ASSERT(rll->rll_readers != 0);
1134 		ASSERT(rll->rll_writer == NULL);
1135 		rll->rll_readers--;
1136 	}
1137 
1138 	if (rll->rll_writer == NULL && rll->rll_readers == 0)
1139 		VERIFY(cond_broadcast(&rll->rll_cv) == 0);
1140 
1141 	VERIFY(mutex_unlock(&rll->rll_lock) == 0);
1142 }
1143 
1144 static void
1145 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1146 {
1147 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1148 
1149 	ztest_rll_lock(rll, type);
1150 }
1151 
1152 static void
1153 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1154 {
1155 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1156 
1157 	ztest_rll_unlock(rll);
1158 }
1159 
1160 static rl_t *
1161 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1162     uint64_t size, rl_type_t type)
1163 {
1164 	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1165 	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1166 	rl_t *rl;
1167 
1168 	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1169 	rl->rl_object = object;
1170 	rl->rl_offset = offset;
1171 	rl->rl_size = size;
1172 	rl->rl_lock = rll;
1173 
1174 	ztest_rll_lock(rll, type);
1175 
1176 	return (rl);
1177 }
1178 
1179 static void
1180 ztest_range_unlock(rl_t *rl)
1181 {
1182 	rll_t *rll = rl->rl_lock;
1183 
1184 	ztest_rll_unlock(rll);
1185 
1186 	umem_free(rl, sizeof (*rl));
1187 }
1188 
1189 static void
1190 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1191 {
1192 	zd->zd_os = os;
1193 	zd->zd_zilog = dmu_objset_zil(os);
1194 	zd->zd_shared = szd;
1195 	dmu_objset_name(os, zd->zd_name);
1196 
1197 	if (zd->zd_shared != NULL)
1198 		zd->zd_shared->zd_seq = 0;
1199 
1200 	VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0);
1201 	VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0);
1202 
1203 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1204 		ztest_rll_init(&zd->zd_object_lock[l]);
1205 
1206 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1207 		ztest_rll_init(&zd->zd_range_lock[l]);
1208 }
1209 
1210 static void
1211 ztest_zd_fini(ztest_ds_t *zd)
1212 {
1213 	VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0);
1214 
1215 	for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1216 		ztest_rll_destroy(&zd->zd_object_lock[l]);
1217 
1218 	for (int l = 0; l < ZTEST_RANGE_LOCKS; l++)
1219 		ztest_rll_destroy(&zd->zd_range_lock[l]);
1220 }
1221 
1222 #define	TXG_MIGHTWAIT	(ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1223 
1224 static uint64_t
1225 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1226 {
1227 	uint64_t txg;
1228 	int error;
1229 
1230 	/*
1231 	 * Attempt to assign tx to some transaction group.
1232 	 */
1233 	error = dmu_tx_assign(tx, txg_how);
1234 	if (error) {
1235 		if (error == ERESTART) {
1236 			ASSERT(txg_how == TXG_NOWAIT);
1237 			dmu_tx_wait(tx);
1238 		} else {
1239 			ASSERT3U(error, ==, ENOSPC);
1240 			ztest_record_enospc(tag);
1241 		}
1242 		dmu_tx_abort(tx);
1243 		return (0);
1244 	}
1245 	txg = dmu_tx_get_txg(tx);
1246 	ASSERT(txg != 0);
1247 	return (txg);
1248 }
1249 
1250 static void
1251 ztest_pattern_set(void *buf, uint64_t size, uint64_t value)
1252 {
1253 	uint64_t *ip = buf;
1254 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1255 
1256 	while (ip < ip_end)
1257 		*ip++ = value;
1258 }
1259 
1260 static boolean_t
1261 ztest_pattern_match(void *buf, uint64_t size, uint64_t value)
1262 {
1263 	uint64_t *ip = buf;
1264 	uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size);
1265 	uint64_t diff = 0;
1266 
1267 	while (ip < ip_end)
1268 		diff |= (value - *ip++);
1269 
1270 	return (diff == 0);
1271 }
1272 
1273 static void
1274 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1275     uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1276 {
1277 	bt->bt_magic = BT_MAGIC;
1278 	bt->bt_objset = dmu_objset_id(os);
1279 	bt->bt_object = object;
1280 	bt->bt_offset = offset;
1281 	bt->bt_gen = gen;
1282 	bt->bt_txg = txg;
1283 	bt->bt_crtxg = crtxg;
1284 }
1285 
1286 static void
1287 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1288     uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg)
1289 {
1290 	ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1291 	ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1292 	ASSERT3U(bt->bt_object, ==, object);
1293 	ASSERT3U(bt->bt_offset, ==, offset);
1294 	ASSERT3U(bt->bt_gen, <=, gen);
1295 	ASSERT3U(bt->bt_txg, <=, txg);
1296 	ASSERT3U(bt->bt_crtxg, ==, crtxg);
1297 }
1298 
1299 static ztest_block_tag_t *
1300 ztest_bt_bonus(dmu_buf_t *db)
1301 {
1302 	dmu_object_info_t doi;
1303 	ztest_block_tag_t *bt;
1304 
1305 	dmu_object_info_from_db(db, &doi);
1306 	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1307 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1308 	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1309 
1310 	return (bt);
1311 }
1312 
1313 /*
1314  * ZIL logging ops
1315  */
1316 
1317 #define	lrz_type	lr_mode
1318 #define	lrz_blocksize	lr_uid
1319 #define	lrz_ibshift	lr_gid
1320 #define	lrz_bonustype	lr_rdev
1321 #define	lrz_bonuslen	lr_crtime[1]
1322 
1323 static void
1324 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1325 {
1326 	char *name = (void *)(lr + 1);		/* name follows lr */
1327 	size_t namesize = strlen(name) + 1;
1328 	itx_t *itx;
1329 
1330 	if (zil_replaying(zd->zd_zilog, tx))
1331 		return;
1332 
1333 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1334 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1335 	    sizeof (*lr) + namesize - sizeof (lr_t));
1336 
1337 	zil_itx_assign(zd->zd_zilog, itx, tx);
1338 }
1339 
1340 static void
1341 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1342 {
1343 	char *name = (void *)(lr + 1);		/* name follows lr */
1344 	size_t namesize = strlen(name) + 1;
1345 	itx_t *itx;
1346 
1347 	if (zil_replaying(zd->zd_zilog, tx))
1348 		return;
1349 
1350 	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1351 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1352 	    sizeof (*lr) + namesize - sizeof (lr_t));
1353 
1354 	itx->itx_oid = object;
1355 	zil_itx_assign(zd->zd_zilog, itx, tx);
1356 }
1357 
1358 static void
1359 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1360 {
1361 	itx_t *itx;
1362 	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1363 
1364 	if (zil_replaying(zd->zd_zilog, tx))
1365 		return;
1366 
1367 	if (lr->lr_length > ZIL_MAX_LOG_DATA)
1368 		write_state = WR_INDIRECT;
1369 
1370 	itx = zil_itx_create(TX_WRITE,
1371 	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1372 
1373 	if (write_state == WR_COPIED &&
1374 	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1375 	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1376 		zil_itx_destroy(itx);
1377 		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1378 		write_state = WR_NEED_COPY;
1379 	}
1380 	itx->itx_private = zd;
1381 	itx->itx_wr_state = write_state;
1382 	itx->itx_sync = (ztest_random(8) == 0);
1383 
1384 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1385 	    sizeof (*lr) - sizeof (lr_t));
1386 
1387 	zil_itx_assign(zd->zd_zilog, itx, tx);
1388 }
1389 
1390 static void
1391 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1392 {
1393 	itx_t *itx;
1394 
1395 	if (zil_replaying(zd->zd_zilog, tx))
1396 		return;
1397 
1398 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1399 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1400 	    sizeof (*lr) - sizeof (lr_t));
1401 
1402 	itx->itx_sync = B_FALSE;
1403 	zil_itx_assign(zd->zd_zilog, itx, tx);
1404 }
1405 
1406 static void
1407 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1408 {
1409 	itx_t *itx;
1410 
1411 	if (zil_replaying(zd->zd_zilog, tx))
1412 		return;
1413 
1414 	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1415 	bcopy(&lr->lr_common + 1, &itx->itx_lr + 1,
1416 	    sizeof (*lr) - sizeof (lr_t));
1417 
1418 	itx->itx_sync = B_FALSE;
1419 	zil_itx_assign(zd->zd_zilog, itx, tx);
1420 }
1421 
1422 /*
1423  * ZIL replay ops
1424  */
1425 static int
1426 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
1427 {
1428 	ztest_ds_t *zd = arg1;
1429 	lr_create_t *lr = arg2;
1430 	char *name = (void *)(lr + 1);		/* name follows lr */
1431 	objset_t *os = zd->zd_os;
1432 	ztest_block_tag_t *bbt;
1433 	dmu_buf_t *db;
1434 	dmu_tx_t *tx;
1435 	uint64_t txg;
1436 	int error = 0;
1437 
1438 	if (byteswap)
1439 		byteswap_uint64_array(lr, sizeof (*lr));
1440 
1441 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1442 	ASSERT(name[0] != '\0');
1443 
1444 	tx = dmu_tx_create(os);
1445 
1446 	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1447 
1448 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1449 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1450 	} else {
1451 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1452 	}
1453 
1454 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1455 	if (txg == 0)
1456 		return (ENOSPC);
1457 
1458 	ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);
1459 
1460 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1461 		if (lr->lr_foid == 0) {
1462 			lr->lr_foid = zap_create(os,
1463 			    lr->lrz_type, lr->lrz_bonustype,
1464 			    lr->lrz_bonuslen, tx);
1465 		} else {
1466 			error = zap_create_claim(os, lr->lr_foid,
1467 			    lr->lrz_type, lr->lrz_bonustype,
1468 			    lr->lrz_bonuslen, tx);
1469 		}
1470 	} else {
1471 		if (lr->lr_foid == 0) {
1472 			lr->lr_foid = dmu_object_alloc(os,
1473 			    lr->lrz_type, 0, lr->lrz_bonustype,
1474 			    lr->lrz_bonuslen, tx);
1475 		} else {
1476 			error = dmu_object_claim(os, lr->lr_foid,
1477 			    lr->lrz_type, 0, lr->lrz_bonustype,
1478 			    lr->lrz_bonuslen, tx);
1479 		}
1480 	}
1481 
1482 	if (error) {
1483 		ASSERT3U(error, ==, EEXIST);
1484 		ASSERT(zd->zd_zilog->zl_replay);
1485 		dmu_tx_commit(tx);
1486 		return (error);
1487 	}
1488 
1489 	ASSERT(lr->lr_foid != 0);
1490 
1491 	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1492 		VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1493 		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
1494 
1495 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1496 	bbt = ztest_bt_bonus(db);
1497 	dmu_buf_will_dirty(db, tx);
1498 	ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1499 	dmu_buf_rele(db, FTAG);
1500 
1501 	VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1502 	    &lr->lr_foid, tx));
1503 
1504 	(void) ztest_log_create(zd, tx, lr);
1505 
1506 	dmu_tx_commit(tx);
1507 
1508 	return (0);
1509 }
1510 
1511 static int
1512 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
1513 {
1514 	ztest_ds_t *zd = arg1;
1515 	lr_remove_t *lr = arg2;
1516 	char *name = (void *)(lr + 1);		/* name follows lr */
1517 	objset_t *os = zd->zd_os;
1518 	dmu_object_info_t doi;
1519 	dmu_tx_t *tx;
1520 	uint64_t object, txg;
1521 
1522 	if (byteswap)
1523 		byteswap_uint64_array(lr, sizeof (*lr));
1524 
1525 	ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1526 	ASSERT(name[0] != '\0');
1527 
1528 	VERIFY3U(0, ==,
1529 	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1530 	ASSERT(object != 0);
1531 
1532 	ztest_object_lock(zd, object, RL_WRITER);
1533 
1534 	VERIFY3U(0, ==, dmu_object_info(os, object, &doi));
1535 
1536 	tx = dmu_tx_create(os);
1537 
1538 	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1539 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
1540 
1541 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1542 	if (txg == 0) {
1543 		ztest_object_unlock(zd, object);
1544 		return (ENOSPC);
1545 	}
1546 
1547 	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1548 		VERIFY3U(0, ==, zap_destroy(os, object, tx));
1549 	} else {
1550 		VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1551 	}
1552 
1553 	VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));
1554 
1555 	(void) ztest_log_remove(zd, tx, lr, object);
1556 
1557 	dmu_tx_commit(tx);
1558 
1559 	ztest_object_unlock(zd, object);
1560 
1561 	return (0);
1562 }
1563 
1564 static int
1565 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
1566 {
1567 	ztest_ds_t *zd = arg1;
1568 	lr_write_t *lr = arg2;
1569 	objset_t *os = zd->zd_os;
1570 	void *data = lr + 1;			/* data follows lr */
1571 	uint64_t offset, length;
1572 	ztest_block_tag_t *bt = data;
1573 	ztest_block_tag_t *bbt;
1574 	uint64_t gen, txg, lrtxg, crtxg;
1575 	dmu_object_info_t doi;
1576 	dmu_tx_t *tx;
1577 	dmu_buf_t *db;
1578 	arc_buf_t *abuf = NULL;
1579 	rl_t *rl;
1580 
1581 	if (byteswap)
1582 		byteswap_uint64_array(lr, sizeof (*lr));
1583 
1584 	offset = lr->lr_offset;
1585 	length = lr->lr_length;
1586 
1587 	/* If it's a dmu_sync() block, write the whole block */
1588 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1589 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1590 		if (length < blocksize) {
1591 			offset -= offset % blocksize;
1592 			length = blocksize;
1593 		}
1594 	}
1595 
1596 	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1597 		byteswap_uint64_array(bt, sizeof (*bt));
1598 
1599 	if (bt->bt_magic != BT_MAGIC)
1600 		bt = NULL;
1601 
1602 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1603 	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
1604 
1605 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1606 
1607 	dmu_object_info_from_db(db, &doi);
1608 
1609 	bbt = ztest_bt_bonus(db);
1610 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1611 	gen = bbt->bt_gen;
1612 	crtxg = bbt->bt_crtxg;
1613 	lrtxg = lr->lr_common.lrc_txg;
1614 
1615 	tx = dmu_tx_create(os);
1616 
1617 	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
1618 
1619 	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1620 	    P2PHASE(offset, length) == 0)
1621 		abuf = dmu_request_arcbuf(db, length);
1622 
1623 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1624 	if (txg == 0) {
1625 		if (abuf != NULL)
1626 			dmu_return_arcbuf(abuf);
1627 		dmu_buf_rele(db, FTAG);
1628 		ztest_range_unlock(rl);
1629 		ztest_object_unlock(zd, lr->lr_foid);
1630 		return (ENOSPC);
1631 	}
1632 
1633 	if (bt != NULL) {
1634 		/*
1635 		 * Usually, verify the old data before writing new data --
1636 		 * but not always, because we also want to verify correct
1637 		 * behavior when the data was not recently read into cache.
1638 		 */
1639 		ASSERT(offset % doi.doi_data_block_size == 0);
1640 		if (ztest_random(4) != 0) {
1641 			int prefetch = ztest_random(2) ?
1642 			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1643 			ztest_block_tag_t rbt;
1644 
1645 			VERIFY(dmu_read(os, lr->lr_foid, offset,
1646 			    sizeof (rbt), &rbt, prefetch) == 0);
1647 			if (rbt.bt_magic == BT_MAGIC) {
1648 				ztest_bt_verify(&rbt, os, lr->lr_foid,
1649 				    offset, gen, txg, crtxg);
1650 			}
1651 		}
1652 
1653 		/*
1654 		 * Writes can appear to be newer than the bonus buffer because
1655 		 * the ztest_get_data() callback does a dmu_read() of the
1656 		 * open-context data, which may be different than the data
1657 		 * as it was when the write was generated.
1658 		 */
1659 		if (zd->zd_zilog->zl_replay) {
1660 			ztest_bt_verify(bt, os, lr->lr_foid, offset,
1661 			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1662 			    bt->bt_crtxg);
1663 		}
1664 
1665 		/*
1666 		 * Set the bt's gen/txg to the bonus buffer's gen/txg
1667 		 * so that all of the usual ASSERTs will work.
1668 		 */
1669 		ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1670 	}
1671 
1672 	if (abuf == NULL) {
1673 		dmu_write(os, lr->lr_foid, offset, length, data, tx);
1674 	} else {
1675 		bcopy(data, abuf->b_data, length);
1676 		dmu_assign_arcbuf(db, offset, abuf, tx);
1677 	}
1678 
1679 	(void) ztest_log_write(zd, tx, lr);
1680 
1681 	dmu_buf_rele(db, FTAG);
1682 
1683 	dmu_tx_commit(tx);
1684 
1685 	ztest_range_unlock(rl);
1686 	ztest_object_unlock(zd, lr->lr_foid);
1687 
1688 	return (0);
1689 }
1690 
1691 static int
1692 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
1693 {
1694 	ztest_ds_t *zd = arg1;
1695 	lr_truncate_t *lr = arg2;
1696 	objset_t *os = zd->zd_os;
1697 	dmu_tx_t *tx;
1698 	uint64_t txg;
1699 	rl_t *rl;
1700 
1701 	if (byteswap)
1702 		byteswap_uint64_array(lr, sizeof (*lr));
1703 
1704 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
1705 	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
1706 	    RL_WRITER);
1707 
1708 	tx = dmu_tx_create(os);
1709 
1710 	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
1711 
1712 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1713 	if (txg == 0) {
1714 		ztest_range_unlock(rl);
1715 		ztest_object_unlock(zd, lr->lr_foid);
1716 		return (ENOSPC);
1717 	}
1718 
1719 	VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
1720 	    lr->lr_length, tx) == 0);
1721 
1722 	(void) ztest_log_truncate(zd, tx, lr);
1723 
1724 	dmu_tx_commit(tx);
1725 
1726 	ztest_range_unlock(rl);
1727 	ztest_object_unlock(zd, lr->lr_foid);
1728 
1729 	return (0);
1730 }
1731 
1732 static int
1733 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
1734 {
1735 	ztest_ds_t *zd = arg1;
1736 	lr_setattr_t *lr = arg2;
1737 	objset_t *os = zd->zd_os;
1738 	dmu_tx_t *tx;
1739 	dmu_buf_t *db;
1740 	ztest_block_tag_t *bbt;
1741 	uint64_t txg, lrtxg, crtxg;
1742 
1743 	if (byteswap)
1744 		byteswap_uint64_array(lr, sizeof (*lr));
1745 
1746 	ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
1747 
1748 	VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1749 
1750 	tx = dmu_tx_create(os);
1751 	dmu_tx_hold_bonus(tx, lr->lr_foid);
1752 
1753 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1754 	if (txg == 0) {
1755 		dmu_buf_rele(db, FTAG);
1756 		ztest_object_unlock(zd, lr->lr_foid);
1757 		return (ENOSPC);
1758 	}
1759 
1760 	bbt = ztest_bt_bonus(db);
1761 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1762 	crtxg = bbt->bt_crtxg;
1763 	lrtxg = lr->lr_common.lrc_txg;
1764 
1765 	if (zd->zd_zilog->zl_replay) {
1766 		ASSERT(lr->lr_size != 0);
1767 		ASSERT(lr->lr_mode != 0);
1768 		ASSERT(lrtxg != 0);
1769 	} else {
1770 		/*
1771 		 * Randomly change the size and increment the generation.
1772 		 */
1773 		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1774 		    sizeof (*bbt);
1775 		lr->lr_mode = bbt->bt_gen + 1;
1776 		ASSERT(lrtxg == 0);
1777 	}
1778 
1779 	/*
1780 	 * Verify that the current bonus buffer is not newer than our txg.
1781 	 */
1782 	ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1783 	    MAX(txg, lrtxg), crtxg);
1784 
1785 	dmu_buf_will_dirty(db, tx);
1786 
1787 	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1788 	ASSERT3U(lr->lr_size, <=, db->db_size);
1789 	VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
1790 	bbt = ztest_bt_bonus(db);
1791 
1792 	ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);
1793 
1794 	dmu_buf_rele(db, FTAG);
1795 
1796 	(void) ztest_log_setattr(zd, tx, lr);
1797 
1798 	dmu_tx_commit(tx);
1799 
1800 	ztest_object_unlock(zd, lr->lr_foid);
1801 
1802 	return (0);
1803 }
1804 
1805 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
1806 	NULL,			/* 0 no such transaction type */
1807 	ztest_replay_create,	/* TX_CREATE */
1808 	NULL,			/* TX_MKDIR */
1809 	NULL,			/* TX_MKXATTR */
1810 	NULL,			/* TX_SYMLINK */
1811 	ztest_replay_remove,	/* TX_REMOVE */
1812 	NULL,			/* TX_RMDIR */
1813 	NULL,			/* TX_LINK */
1814 	NULL,			/* TX_RENAME */
1815 	ztest_replay_write,	/* TX_WRITE */
1816 	ztest_replay_truncate,	/* TX_TRUNCATE */
1817 	ztest_replay_setattr,	/* TX_SETATTR */
1818 	NULL,			/* TX_ACL */
1819 	NULL,			/* TX_CREATE_ACL */
1820 	NULL,			/* TX_CREATE_ATTR */
1821 	NULL,			/* TX_CREATE_ACL_ATTR */
1822 	NULL,			/* TX_MKDIR_ACL */
1823 	NULL,			/* TX_MKDIR_ATTR */
1824 	NULL,			/* TX_MKDIR_ACL_ATTR */
1825 	NULL,			/* TX_WRITE2 */
1826 };
1827 
1828 /*
1829  * ZIL get_data callbacks
1830  */
1831 
1832 static void
1833 ztest_get_done(zgd_t *zgd, int error)
1834 {
1835 	ztest_ds_t *zd = zgd->zgd_private;
1836 	uint64_t object = zgd->zgd_rl->rl_object;
1837 
1838 	if (zgd->zgd_db)
1839 		dmu_buf_rele(zgd->zgd_db, zgd);
1840 
1841 	ztest_range_unlock(zgd->zgd_rl);
1842 	ztest_object_unlock(zd, object);
1843 
1844 	if (error == 0 && zgd->zgd_bp)
1845 		zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1846 
1847 	umem_free(zgd, sizeof (*zgd));
1848 }
1849 
1850 static int
1851 ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb,
1852     zio_t *zio)
1853 {
1854 	ztest_ds_t *zd = arg;
1855 	objset_t *os = zd->zd_os;
1856 	uint64_t object = lr->lr_foid;
1857 	uint64_t offset = lr->lr_offset;
1858 	uint64_t size = lr->lr_length;
1859 	uint64_t txg = lr->lr_common.lrc_txg;
1860 	uint64_t crtxg;
1861 	dmu_object_info_t doi;
1862 	dmu_buf_t *db;
1863 	zgd_t *zgd;
1864 	int error;
1865 
1866 	ASSERT3P(lwb, !=, NULL);
1867 	ASSERT3P(zio, !=, NULL);
1868 	ASSERT3U(size, !=, 0);
1869 
1870 	ztest_object_lock(zd, object, RL_READER);
1871 	error = dmu_bonus_hold(os, object, FTAG, &db);
1872 	if (error) {
1873 		ztest_object_unlock(zd, object);
1874 		return (error);
1875 	}
1876 
1877 	crtxg = ztest_bt_bonus(db)->bt_crtxg;
1878 
1879 	if (crtxg == 0 || crtxg > txg) {
1880 		dmu_buf_rele(db, FTAG);
1881 		ztest_object_unlock(zd, object);
1882 		return (ENOENT);
1883 	}
1884 
1885 	dmu_object_info_from_db(db, &doi);
1886 	dmu_buf_rele(db, FTAG);
1887 	db = NULL;
1888 
1889 	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
1890 	zgd->zgd_lwb = lwb;
1891 	zgd->zgd_private = zd;
1892 
1893 	if (buf != NULL) {	/* immediate write */
1894 		zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1895 		    RL_READER);
1896 
1897 		error = dmu_read(os, object, offset, size, buf,
1898 		    DMU_READ_NO_PREFETCH);
1899 		ASSERT(error == 0);
1900 	} else {
1901 		size = doi.doi_data_block_size;
1902 		if (ISP2(size)) {
1903 			offset = P2ALIGN(offset, size);
1904 		} else {
1905 			ASSERT(offset < size);
1906 			offset = 0;
1907 		}
1908 
1909 		zgd->zgd_rl = ztest_range_lock(zd, object, offset, size,
1910 		    RL_READER);
1911 
1912 		error = dmu_buf_hold(os, object, offset, zgd, &db,
1913 		    DMU_READ_NO_PREFETCH);
1914 
1915 		if (error == 0) {
1916 			blkptr_t *bp = &lr->lr_blkptr;
1917 
1918 			zgd->zgd_db = db;
1919 			zgd->zgd_bp = bp;
1920 
1921 			ASSERT(db->db_offset == offset);
1922 			ASSERT(db->db_size == size);
1923 
1924 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1925 			    ztest_get_done, zgd);
1926 
1927 			if (error == 0)
1928 				return (0);
1929 		}
1930 	}
1931 
1932 	ztest_get_done(zgd, error);
1933 
1934 	return (error);
1935 }
1936 
1937 static void *
1938 ztest_lr_alloc(size_t lrsize, char *name)
1939 {
1940 	char *lr;
1941 	size_t namesize = name ? strlen(name) + 1 : 0;
1942 
1943 	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
1944 
1945 	if (name)
1946 		bcopy(name, lr + lrsize, namesize);
1947 
1948 	return (lr);
1949 }
1950 
1951 void
1952 ztest_lr_free(void *lr, size_t lrsize, char *name)
1953 {
1954 	size_t namesize = name ? strlen(name) + 1 : 0;
1955 
1956 	umem_free(lr, lrsize + namesize);
1957 }
1958 
1959 /*
1960  * Lookup a bunch of objects.  Returns the number of objects not found.
1961  */
1962 static int
1963 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
1964 {
1965 	int missing = 0;
1966 	int error;
1967 
1968 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
1969 
1970 	for (int i = 0; i < count; i++, od++) {
1971 		od->od_object = 0;
1972 		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
1973 		    sizeof (uint64_t), 1, &od->od_object);
1974 		if (error) {
1975 			ASSERT(error == ENOENT);
1976 			ASSERT(od->od_object == 0);
1977 			missing++;
1978 		} else {
1979 			dmu_buf_t *db;
1980 			ztest_block_tag_t *bbt;
1981 			dmu_object_info_t doi;
1982 
1983 			ASSERT(od->od_object != 0);
1984 			ASSERT(missing == 0);	/* there should be no gaps */
1985 
1986 			ztest_object_lock(zd, od->od_object, RL_READER);
1987 			VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
1988 			    od->od_object, FTAG, &db));
1989 			dmu_object_info_from_db(db, &doi);
1990 			bbt = ztest_bt_bonus(db);
1991 			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1992 			od->od_type = doi.doi_type;
1993 			od->od_blocksize = doi.doi_data_block_size;
1994 			od->od_gen = bbt->bt_gen;
1995 			dmu_buf_rele(db, FTAG);
1996 			ztest_object_unlock(zd, od->od_object);
1997 		}
1998 	}
1999 
2000 	return (missing);
2001 }
2002 
2003 static int
2004 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2005 {
2006 	int missing = 0;
2007 
2008 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
2009 
2010 	for (int i = 0; i < count; i++, od++) {
2011 		if (missing) {
2012 			od->od_object = 0;
2013 			missing++;
2014 			continue;
2015 		}
2016 
2017 		lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2018 
2019 		lr->lr_doid = od->od_dir;
2020 		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
2021 		lr->lrz_type = od->od_crtype;
2022 		lr->lrz_blocksize = od->od_crblocksize;
2023 		lr->lrz_ibshift = ztest_random_ibshift();
2024 		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2025 		lr->lrz_bonuslen = dmu_bonus_max();
2026 		lr->lr_gen = od->od_crgen;
2027 		lr->lr_crtime[0] = time(NULL);
2028 
2029 		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2030 			ASSERT(missing == 0);
2031 			od->od_object = 0;
2032 			missing++;
2033 		} else {
2034 			od->od_object = lr->lr_foid;
2035 			od->od_type = od->od_crtype;
2036 			od->od_blocksize = od->od_crblocksize;
2037 			od->od_gen = od->od_crgen;
2038 			ASSERT(od->od_object != 0);
2039 		}
2040 
2041 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2042 	}
2043 
2044 	return (missing);
2045 }
2046 
2047 static int
2048 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2049 {
2050 	int missing = 0;
2051 	int error;
2052 
2053 	ASSERT(_mutex_held(&zd->zd_dirobj_lock));
2054 
2055 	od += count - 1;
2056 
2057 	for (int i = count - 1; i >= 0; i--, od--) {
2058 		if (missing) {
2059 			missing++;
2060 			continue;
2061 		}
2062 
2063 		/*
2064 		 * No object was found.
2065 		 */
2066 		if (od->od_object == 0)
2067 			continue;
2068 
2069 		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2070 
2071 		lr->lr_doid = od->od_dir;
2072 
2073 		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2074 			ASSERT3U(error, ==, ENOSPC);
2075 			missing++;
2076 		} else {
2077 			od->od_object = 0;
2078 		}
2079 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
2080 	}
2081 
2082 	return (missing);
2083 }
2084 
2085 static int
2086 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2087     void *data)
2088 {
2089 	lr_write_t *lr;
2090 	int error;
2091 
2092 	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2093 
2094 	lr->lr_foid = object;
2095 	lr->lr_offset = offset;
2096 	lr->lr_length = size;
2097 	lr->lr_blkoff = 0;
2098 	BP_ZERO(&lr->lr_blkptr);
2099 
2100 	bcopy(data, lr + 1, size);
2101 
2102 	error = ztest_replay_write(zd, lr, B_FALSE);
2103 
2104 	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2105 
2106 	return (error);
2107 }
2108 
2109 static int
2110 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2111 {
2112 	lr_truncate_t *lr;
2113 	int error;
2114 
2115 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2116 
2117 	lr->lr_foid = object;
2118 	lr->lr_offset = offset;
2119 	lr->lr_length = size;
2120 
2121 	error = ztest_replay_truncate(zd, lr, B_FALSE);
2122 
2123 	ztest_lr_free(lr, sizeof (*lr), NULL);
2124 
2125 	return (error);
2126 }
2127 
2128 static int
2129 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2130 {
2131 	lr_setattr_t *lr;
2132 	int error;
2133 
2134 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
2135 
2136 	lr->lr_foid = object;
2137 	lr->lr_size = 0;
2138 	lr->lr_mode = 0;
2139 
2140 	error = ztest_replay_setattr(zd, lr, B_FALSE);
2141 
2142 	ztest_lr_free(lr, sizeof (*lr), NULL);
2143 
2144 	return (error);
2145 }
2146 
2147 static void
2148 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2149 {
2150 	objset_t *os = zd->zd_os;
2151 	dmu_tx_t *tx;
2152 	uint64_t txg;
2153 	rl_t *rl;
2154 
2155 	txg_wait_synced(dmu_objset_pool(os), 0);
2156 
2157 	ztest_object_lock(zd, object, RL_READER);
2158 	rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2159 
2160 	tx = dmu_tx_create(os);
2161 
2162 	dmu_tx_hold_write(tx, object, offset, size);
2163 
2164 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2165 
2166 	if (txg != 0) {
2167 		dmu_prealloc(os, object, offset, size, tx);
2168 		dmu_tx_commit(tx);
2169 		txg_wait_synced(dmu_objset_pool(os), txg);
2170 	} else {
2171 		(void) dmu_free_long_range(os, object, offset, size);
2172 	}
2173 
2174 	ztest_range_unlock(rl);
2175 	ztest_object_unlock(zd, object);
2176 }
2177 
2178 static void
2179 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2180 {
2181 	int err;
2182 	ztest_block_tag_t wbt;
2183 	dmu_object_info_t doi;
2184 	enum ztest_io_type io_type;
2185 	uint64_t blocksize;
2186 	void *data;
2187 
2188 	VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0);
2189 	blocksize = doi.doi_data_block_size;
2190 	data = umem_alloc(blocksize, UMEM_NOFAIL);
2191 
2192 	/*
2193 	 * Pick an i/o type at random, biased toward writing block tags.
2194 	 */
2195 	io_type = ztest_random(ZTEST_IO_TYPES);
2196 	if (ztest_random(2) == 0)
2197 		io_type = ZTEST_IO_WRITE_TAG;
2198 
2199 	(void) rw_rdlock(&zd->zd_zilog_lock);
2200 
2201 	switch (io_type) {
2202 
2203 	case ZTEST_IO_WRITE_TAG:
2204 		ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0);
2205 		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2206 		break;
2207 
2208 	case ZTEST_IO_WRITE_PATTERN:
2209 		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
2210 		if (ztest_random(2) == 0) {
2211 			/*
2212 			 * Induce fletcher2 collisions to ensure that
2213 			 * zio_ddt_collision() detects and resolves them
2214 			 * when using fletcher2-verify for deduplication.
2215 			 */
2216 			((uint64_t *)data)[0] ^= 1ULL << 63;
2217 			((uint64_t *)data)[4] ^= 1ULL << 63;
2218 		}
2219 		(void) ztest_write(zd, object, offset, blocksize, data);
2220 		break;
2221 
2222 	case ZTEST_IO_WRITE_ZEROES:
2223 		bzero(data, blocksize);
2224 		(void) ztest_write(zd, object, offset, blocksize, data);
2225 		break;
2226 
2227 	case ZTEST_IO_TRUNCATE:
2228 		(void) ztest_truncate(zd, object, offset, blocksize);
2229 		break;
2230 
2231 	case ZTEST_IO_SETATTR:
2232 		(void) ztest_setattr(zd, object);
2233 		break;
2234 
2235 	case ZTEST_IO_REWRITE:
2236 		(void) rw_rdlock(&ztest_name_lock);
2237 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2238 		    ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2239 		    B_FALSE);
2240 		VERIFY(err == 0 || err == ENOSPC);
2241 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
2242 		    ZFS_PROP_COMPRESSION,
2243 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2244 		    B_FALSE);
2245 		VERIFY(err == 0 || err == ENOSPC);
2246 		(void) rw_unlock(&ztest_name_lock);
2247 
2248 		VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2249 		    DMU_READ_NO_PREFETCH));
2250 
2251 		(void) ztest_write(zd, object, offset, blocksize, data);
2252 		break;
2253 	}
2254 
2255 	(void) rw_unlock(&zd->zd_zilog_lock);
2256 
2257 	umem_free(data, blocksize);
2258 }
2259 
2260 /*
2261  * Initialize an object description template.
2262  */
2263 static void
2264 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index,
2265     dmu_object_type_t type, uint64_t blocksize, uint64_t gen)
2266 {
2267 	od->od_dir = ZTEST_DIROBJ;
2268 	od->od_object = 0;
2269 
2270 	od->od_crtype = type;
2271 	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2272 	od->od_crgen = gen;
2273 
2274 	od->od_type = DMU_OT_NONE;
2275 	od->od_blocksize = 0;
2276 	od->od_gen = 0;
2277 
2278 	(void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]",
2279 	    tag, (int64_t)id, index);
2280 }
2281 
2282 /*
2283  * Lookup or create the objects for a test using the od template.
2284  * If the objects do not all exist, or if 'remove' is specified,
2285  * remove any existing objects and create new ones.  Otherwise,
2286  * use the existing objects.
2287  */
2288 static int
2289 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2290 {
2291 	int count = size / sizeof (*od);
2292 	int rv = 0;
2293 
2294 	VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0);
2295 	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2296 	    (ztest_remove(zd, od, count) != 0 ||
2297 	    ztest_create(zd, od, count) != 0))
2298 		rv = -1;
2299 	zd->zd_od = od;
2300 	VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2301 
2302 	return (rv);
2303 }
2304 
2305 /* ARGSUSED */
2306 void
2307 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2308 {
2309 	zilog_t *zilog = zd->zd_zilog;
2310 
2311 	(void) rw_rdlock(&zd->zd_zilog_lock);
2312 
2313 	zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2314 
2315 	/*
2316 	 * Remember the committed values in zd, which is in parent/child
2317 	 * shared memory.  If we die, the next iteration of ztest_run()
2318 	 * will verify that the log really does contain this record.
2319 	 */
2320 	mutex_enter(&zilog->zl_lock);
2321 	ASSERT(zd->zd_shared != NULL);
2322 	ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2323 	zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2324 	mutex_exit(&zilog->zl_lock);
2325 
2326 	(void) rw_unlock(&zd->zd_zilog_lock);
2327 }
2328 
2329 /*
2330  * This function is designed to simulate the operations that occur during a
2331  * mount/unmount operation.  We hold the dataset across these operations in an
2332  * attempt to expose any implicit assumptions about ZIL management.
2333  */
2334 /* ARGSUSED */
2335 void
2336 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2337 {
2338 	objset_t *os = zd->zd_os;
2339 
2340 	/*
2341 	 * We grab the zd_dirobj_lock to ensure that no other thread is
2342 	 * updating the zil (i.e. adding in-memory log records) and the
2343 	 * zd_zilog_lock to block any I/O.
2344 	 */
2345 	VERIFY0(mutex_lock(&zd->zd_dirobj_lock));
2346 	(void) rw_wrlock(&zd->zd_zilog_lock);
2347 
2348 	/* zfsvfs_teardown() */
2349 	zil_close(zd->zd_zilog);
2350 
2351 	/* zfsvfs_setup() */
2352 	VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog);
2353 	zil_replay(os, zd, ztest_replay_vector);
2354 
2355 	(void) rw_unlock(&zd->zd_zilog_lock);
2356 	VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0);
2357 }
2358 
2359 /*
2360  * Verify that we can't destroy an active pool, create an existing pool,
2361  * or create a pool with a bad vdev spec.
2362  */
2363 /* ARGSUSED */
2364 void
2365 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2366 {
2367 	ztest_shared_opts_t *zo = &ztest_opts;
2368 	spa_t *spa;
2369 	nvlist_t *nvroot;
2370 
2371 	/*
2372 	 * Attempt to create using a bad file.
2373 	 */
2374 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2375 	VERIFY3U(ENOENT, ==,
2376 	    spa_create("ztest_bad_file", nvroot, NULL, NULL));
2377 	nvlist_free(nvroot);
2378 
2379 	/*
2380 	 * Attempt to create using a bad mirror.
2381 	 */
2382 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1);
2383 	VERIFY3U(ENOENT, ==,
2384 	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2385 	nvlist_free(nvroot);
2386 
2387 	/*
2388 	 * Attempt to create an existing pool.  It shouldn't matter
2389 	 * what's in the nvroot; we should fail with EEXIST.
2390 	 */
2391 	(void) rw_rdlock(&ztest_name_lock);
2392 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1);
2393 	VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2394 	nvlist_free(nvroot);
2395 	VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2396 	VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2397 	spa_close(spa, FTAG);
2398 
2399 	(void) rw_unlock(&ztest_name_lock);
2400 }
2401 
2402 /* ARGSUSED */
2403 void
2404 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
2405 {
2406 	spa_t *spa;
2407 	uint64_t initial_version = SPA_VERSION_INITIAL;
2408 	uint64_t version, newversion;
2409 	nvlist_t *nvroot, *props;
2410 	char *name;
2411 
2412 	VERIFY0(mutex_lock(&ztest_vdev_lock));
2413 	name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
2414 
2415 	/*
2416 	 * Clean up from previous runs.
2417 	 */
2418 	(void) spa_destroy(name);
2419 
2420 	nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
2421 	    0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1);
2422 
2423 	/*
2424 	 * If we're configuring a RAIDZ device then make sure that the
2425 	 * the initial version is capable of supporting that feature.
2426 	 */
2427 	switch (ztest_opts.zo_raidz_parity) {
2428 	case 0:
2429 	case 1:
2430 		initial_version = SPA_VERSION_INITIAL;
2431 		break;
2432 	case 2:
2433 		initial_version = SPA_VERSION_RAIDZ2;
2434 		break;
2435 	case 3:
2436 		initial_version = SPA_VERSION_RAIDZ3;
2437 		break;
2438 	}
2439 
2440 	/*
2441 	 * Create a pool with a spa version that can be upgraded. Pick
2442 	 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
2443 	 */
2444 	do {
2445 		version = ztest_random_spa_version(initial_version);
2446 	} while (version > SPA_VERSION_BEFORE_FEATURES);
2447 
2448 	props = fnvlist_alloc();
2449 	fnvlist_add_uint64(props,
2450 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
2451 	VERIFY0(spa_create(name, nvroot, props, NULL));
2452 	fnvlist_free(nvroot);
2453 	fnvlist_free(props);
2454 
2455 	VERIFY0(spa_open(name, &spa, FTAG));
2456 	VERIFY3U(spa_version(spa), ==, version);
2457 	newversion = ztest_random_spa_version(version + 1);
2458 
2459 	if (ztest_opts.zo_verbose >= 4) {
2460 		(void) printf("upgrading spa version from %llu to %llu\n",
2461 		    (u_longlong_t)version, (u_longlong_t)newversion);
2462 	}
2463 
2464 	spa_upgrade(spa, newversion);
2465 	VERIFY3U(spa_version(spa), >, version);
2466 	VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
2467 	    zpool_prop_to_name(ZPOOL_PROP_VERSION)));
2468 	spa_close(spa, FTAG);
2469 
2470 	strfree(name);
2471 	VERIFY0(mutex_unlock(&ztest_vdev_lock));
2472 }
2473 
2474 static vdev_t *
2475 vdev_lookup_by_path(vdev_t *vd, const char *path)
2476 {
2477 	vdev_t *mvd;
2478 
2479 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
2480 		return (vd);
2481 
2482 	for (int c = 0; c < vd->vdev_children; c++)
2483 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
2484 		    NULL)
2485 			return (mvd);
2486 
2487 	return (NULL);
2488 }
2489 
2490 /*
2491  * Find the first available hole which can be used as a top-level.
2492  */
2493 int
2494 find_vdev_hole(spa_t *spa)
2495 {
2496 	vdev_t *rvd = spa->spa_root_vdev;
2497 	int c;
2498 
2499 	ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV);
2500 
2501 	for (c = 0; c < rvd->vdev_children; c++) {
2502 		vdev_t *cvd = rvd->vdev_child[c];
2503 
2504 		if (cvd->vdev_ishole)
2505 			break;
2506 	}
2507 	return (c);
2508 }
2509 
2510 /*
2511  * Verify that vdev_add() works as expected.
2512  */
2513 /* ARGSUSED */
2514 void
2515 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
2516 {
2517 	ztest_shared_t *zs = ztest_shared;
2518 	spa_t *spa = ztest_spa;
2519 	uint64_t leaves;
2520 	uint64_t guid;
2521 	nvlist_t *nvroot;
2522 	int error;
2523 
2524 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2525 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz;
2526 
2527 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2528 
2529 	ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves;
2530 
2531 	/*
2532 	 * If we have slogs then remove them 1/4 of the time.
2533 	 */
2534 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
2535 		/*
2536 		 * Grab the guid from the head of the log class rotor.
2537 		 */
2538 		guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid;
2539 
2540 		spa_config_exit(spa, SCL_VDEV, FTAG);
2541 
2542 		/*
2543 		 * We have to grab the zs_name_lock as writer to
2544 		 * prevent a race between removing a slog (dmu_objset_find)
2545 		 * and destroying a dataset. Removing the slog will
2546 		 * grab a reference on the dataset which may cause
2547 		 * dmu_objset_destroy() to fail with EBUSY thus
2548 		 * leaving the dataset in an inconsistent state.
2549 		 */
2550 		VERIFY(rw_wrlock(&ztest_name_lock) == 0);
2551 		error = spa_vdev_remove(spa, guid, B_FALSE);
2552 		VERIFY(rw_unlock(&ztest_name_lock) == 0);
2553 
2554 		if (error && error != EEXIST)
2555 			fatal(0, "spa_vdev_remove() = %d", error);
2556 	} else {
2557 		spa_config_exit(spa, SCL_VDEV, FTAG);
2558 
2559 		/*
2560 		 * Make 1/4 of the devices be log devices.
2561 		 */
2562 		nvroot = make_vdev_root(NULL, NULL, NULL,
2563 		    ztest_opts.zo_vdev_size, 0,
2564 		    ztest_random(4) == 0, ztest_opts.zo_raidz,
2565 		    zs->zs_mirrors, 1);
2566 
2567 		error = spa_vdev_add(spa, nvroot);
2568 		nvlist_free(nvroot);
2569 
2570 		if (error == ENOSPC)
2571 			ztest_record_enospc("spa_vdev_add");
2572 		else if (error != 0)
2573 			fatal(0, "spa_vdev_add() = %d", error);
2574 	}
2575 
2576 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2577 }
2578 
2579 /*
2580  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
2581  */
2582 /* ARGSUSED */
2583 void
2584 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
2585 {
2586 	ztest_shared_t *zs = ztest_shared;
2587 	spa_t *spa = ztest_spa;
2588 	vdev_t *rvd = spa->spa_root_vdev;
2589 	spa_aux_vdev_t *sav;
2590 	char *aux;
2591 	uint64_t guid = 0;
2592 	int error;
2593 
2594 	if (ztest_random(2) == 0) {
2595 		sav = &spa->spa_spares;
2596 		aux = ZPOOL_CONFIG_SPARES;
2597 	} else {
2598 		sav = &spa->spa_l2cache;
2599 		aux = ZPOOL_CONFIG_L2CACHE;
2600 	}
2601 
2602 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2603 
2604 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2605 
2606 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
2607 		/*
2608 		 * Pick a random device to remove.
2609 		 */
2610 		guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid;
2611 	} else {
2612 		/*
2613 		 * Find an unused device we can add.
2614 		 */
2615 		zs->zs_vdev_aux = 0;
2616 		for (;;) {
2617 			char path[MAXPATHLEN];
2618 			int c;
2619 			(void) snprintf(path, sizeof (path), ztest_aux_template,
2620 			    ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
2621 			    zs->zs_vdev_aux);
2622 			for (c = 0; c < sav->sav_count; c++)
2623 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
2624 				    path) == 0)
2625 					break;
2626 			if (c == sav->sav_count &&
2627 			    vdev_lookup_by_path(rvd, path) == NULL)
2628 				break;
2629 			zs->zs_vdev_aux++;
2630 		}
2631 	}
2632 
2633 	spa_config_exit(spa, SCL_VDEV, FTAG);
2634 
2635 	if (guid == 0) {
2636 		/*
2637 		 * Add a new device.
2638 		 */
2639 		nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
2640 		    (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1);
2641 		error = spa_vdev_add(spa, nvroot);
2642 		if (error != 0)
2643 			fatal(0, "spa_vdev_add(%p) = %d", nvroot, error);
2644 		nvlist_free(nvroot);
2645 	} else {
2646 		/*
2647 		 * Remove an existing device.  Sometimes, dirty its
2648 		 * vdev state first to make sure we handle removal
2649 		 * of devices that have pending state changes.
2650 		 */
2651 		if (ztest_random(2) == 0)
2652 			(void) vdev_online(spa, guid, 0, NULL);
2653 
2654 		error = spa_vdev_remove(spa, guid, B_FALSE);
2655 		if (error != 0 && error != EBUSY)
2656 			fatal(0, "spa_vdev_remove(%llu) = %d", guid, error);
2657 	}
2658 
2659 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2660 }
2661 
2662 /*
2663  * split a pool if it has mirror tlvdevs
2664  */
2665 /* ARGSUSED */
2666 void
2667 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
2668 {
2669 	ztest_shared_t *zs = ztest_shared;
2670 	spa_t *spa = ztest_spa;
2671 	vdev_t *rvd = spa->spa_root_vdev;
2672 	nvlist_t *tree, **child, *config, *split, **schild;
2673 	uint_t c, children, schildren = 0, lastlogid = 0;
2674 	int error = 0;
2675 
2676 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2677 
2678 	/* ensure we have a useable config; mirrors of raidz aren't supported */
2679 	if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) {
2680 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2681 		return;
2682 	}
2683 
2684 	/* clean up the old pool, if any */
2685 	(void) spa_destroy("splitp");
2686 
2687 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2688 
2689 	/* generate a config from the existing config */
2690 	mutex_enter(&spa->spa_props_lock);
2691 	VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE,
2692 	    &tree) == 0);
2693 	mutex_exit(&spa->spa_props_lock);
2694 
2695 	VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child,
2696 	    &children) == 0);
2697 
2698 	schild = malloc(rvd->vdev_children * sizeof (nvlist_t *));
2699 	for (c = 0; c < children; c++) {
2700 		vdev_t *tvd = rvd->vdev_child[c];
2701 		nvlist_t **mchild;
2702 		uint_t mchildren;
2703 
2704 		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
2705 			VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME,
2706 			    0) == 0);
2707 			VERIFY(nvlist_add_string(schild[schildren],
2708 			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0);
2709 			VERIFY(nvlist_add_uint64(schild[schildren],
2710 			    ZPOOL_CONFIG_IS_HOLE, 1) == 0);
2711 			if (lastlogid == 0)
2712 				lastlogid = schildren;
2713 			++schildren;
2714 			continue;
2715 		}
2716 		lastlogid = 0;
2717 		VERIFY(nvlist_lookup_nvlist_array(child[c],
2718 		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0);
2719 		VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0);
2720 	}
2721 
2722 	/* OK, create a config that can be used to split */
2723 	VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0);
2724 	VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE,
2725 	    VDEV_TYPE_ROOT) == 0);
2726 	VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild,
2727 	    lastlogid != 0 ? lastlogid : schildren) == 0);
2728 
2729 	VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0);
2730 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0);
2731 
2732 	for (c = 0; c < schildren; c++)
2733 		nvlist_free(schild[c]);
2734 	free(schild);
2735 	nvlist_free(split);
2736 
2737 	spa_config_exit(spa, SCL_VDEV, FTAG);
2738 
2739 	(void) rw_wrlock(&ztest_name_lock);
2740 	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
2741 	(void) rw_unlock(&ztest_name_lock);
2742 
2743 	nvlist_free(config);
2744 
2745 	if (error == 0) {
2746 		(void) printf("successful split - results:\n");
2747 		mutex_enter(&spa_namespace_lock);
2748 		show_pool_stats(spa);
2749 		show_pool_stats(spa_lookup("splitp"));
2750 		mutex_exit(&spa_namespace_lock);
2751 		++zs->zs_splits;
2752 		--zs->zs_mirrors;
2753 	}
2754 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2755 
2756 }
2757 
2758 /*
2759  * Verify that we can attach and detach devices.
2760  */
2761 /* ARGSUSED */
2762 void
2763 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
2764 {
2765 	ztest_shared_t *zs = ztest_shared;
2766 	spa_t *spa = ztest_spa;
2767 	spa_aux_vdev_t *sav = &spa->spa_spares;
2768 	vdev_t *rvd = spa->spa_root_vdev;
2769 	vdev_t *oldvd, *newvd, *pvd;
2770 	nvlist_t *root;
2771 	uint64_t leaves;
2772 	uint64_t leaf, top;
2773 	uint64_t ashift = ztest_get_ashift();
2774 	uint64_t oldguid, pguid;
2775 	uint64_t oldsize, newsize;
2776 	char oldpath[MAXPATHLEN], newpath[MAXPATHLEN];
2777 	int replacing;
2778 	int oldvd_has_siblings = B_FALSE;
2779 	int newvd_is_spare = B_FALSE;
2780 	int oldvd_is_log;
2781 	int error, expected_error;
2782 
2783 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
2784 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
2785 
2786 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2787 
2788 	/*
2789 	 * Decide whether to do an attach or a replace.
2790 	 */
2791 	replacing = ztest_random(2);
2792 
2793 	/*
2794 	 * Pick a random top-level vdev.
2795 	 */
2796 	top = ztest_random_vdev_top(spa, B_TRUE);
2797 
2798 	/*
2799 	 * Pick a random leaf within it.
2800 	 */
2801 	leaf = ztest_random(leaves);
2802 
2803 	/*
2804 	 * Locate this vdev.
2805 	 */
2806 	oldvd = rvd->vdev_child[top];
2807 	if (zs->zs_mirrors >= 1) {
2808 		ASSERT(oldvd->vdev_ops == &vdev_mirror_ops);
2809 		ASSERT(oldvd->vdev_children >= zs->zs_mirrors);
2810 		oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz];
2811 	}
2812 	if (ztest_opts.zo_raidz > 1) {
2813 		ASSERT(oldvd->vdev_ops == &vdev_raidz_ops);
2814 		ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz);
2815 		oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz];
2816 	}
2817 
2818 	/*
2819 	 * If we're already doing an attach or replace, oldvd may be a
2820 	 * mirror vdev -- in which case, pick a random child.
2821 	 */
2822 	while (oldvd->vdev_children != 0) {
2823 		oldvd_has_siblings = B_TRUE;
2824 		ASSERT(oldvd->vdev_children >= 2);
2825 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
2826 	}
2827 
2828 	oldguid = oldvd->vdev_guid;
2829 	oldsize = vdev_get_min_asize(oldvd);
2830 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
2831 	(void) strcpy(oldpath, oldvd->vdev_path);
2832 	pvd = oldvd->vdev_parent;
2833 	pguid = pvd->vdev_guid;
2834 
2835 	/*
2836 	 * If oldvd has siblings, then half of the time, detach it.
2837 	 */
2838 	if (oldvd_has_siblings && ztest_random(2) == 0) {
2839 		spa_config_exit(spa, SCL_VDEV, FTAG);
2840 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
2841 		if (error != 0 && error != ENODEV && error != EBUSY &&
2842 		    error != ENOTSUP)
2843 			fatal(0, "detach (%s) returned %d", oldpath, error);
2844 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2845 		return;
2846 	}
2847 
2848 	/*
2849 	 * For the new vdev, choose with equal probability between the two
2850 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
2851 	 */
2852 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
2853 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
2854 		newvd_is_spare = B_TRUE;
2855 		(void) strcpy(newpath, newvd->vdev_path);
2856 	} else {
2857 		(void) snprintf(newpath, sizeof (newpath), ztest_dev_template,
2858 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
2859 		    top * leaves + leaf);
2860 		if (ztest_random(2) == 0)
2861 			newpath[strlen(newpath) - 1] = 'b';
2862 		newvd = vdev_lookup_by_path(rvd, newpath);
2863 	}
2864 
2865 	if (newvd) {
2866 		newsize = vdev_get_min_asize(newvd);
2867 	} else {
2868 		/*
2869 		 * Make newsize a little bigger or smaller than oldsize.
2870 		 * If it's smaller, the attach should fail.
2871 		 * If it's larger, and we're doing a replace,
2872 		 * we should get dynamic LUN growth when we're done.
2873 		 */
2874 		newsize = 10 * oldsize / (9 + ztest_random(3));
2875 	}
2876 
2877 	/*
2878 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
2879 	 * unless it's a replace; in that case any non-replacing parent is OK.
2880 	 *
2881 	 * If newvd is already part of the pool, it should fail with EBUSY.
2882 	 *
2883 	 * If newvd is too small, it should fail with EOVERFLOW.
2884 	 */
2885 	if (pvd->vdev_ops != &vdev_mirror_ops &&
2886 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
2887 	    pvd->vdev_ops == &vdev_replacing_ops ||
2888 	    pvd->vdev_ops == &vdev_spare_ops))
2889 		expected_error = ENOTSUP;
2890 	else if (newvd_is_spare && (!replacing || oldvd_is_log))
2891 		expected_error = ENOTSUP;
2892 	else if (newvd == oldvd)
2893 		expected_error = replacing ? 0 : EBUSY;
2894 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
2895 		expected_error = EBUSY;
2896 	else if (newsize < oldsize)
2897 		expected_error = EOVERFLOW;
2898 	else if (ashift > oldvd->vdev_top->vdev_ashift)
2899 		expected_error = EDOM;
2900 	else
2901 		expected_error = 0;
2902 
2903 	spa_config_exit(spa, SCL_VDEV, FTAG);
2904 
2905 	/*
2906 	 * Build the nvlist describing newpath.
2907 	 */
2908 	root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
2909 	    ashift, 0, 0, 0, 1);
2910 
2911 	error = spa_vdev_attach(spa, oldguid, root, replacing);
2912 
2913 	nvlist_free(root);
2914 
2915 	/*
2916 	 * If our parent was the replacing vdev, but the replace completed,
2917 	 * then instead of failing with ENOTSUP we may either succeed,
2918 	 * fail with ENODEV, or fail with EOVERFLOW.
2919 	 */
2920 	if (expected_error == ENOTSUP &&
2921 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
2922 		expected_error = error;
2923 
2924 	/*
2925 	 * If someone grew the LUN, the replacement may be too small.
2926 	 */
2927 	if (error == EOVERFLOW || error == EBUSY)
2928 		expected_error = error;
2929 
2930 	/* XXX workaround 6690467 */
2931 	if (error != expected_error && expected_error != EBUSY) {
2932 		fatal(0, "attach (%s %llu, %s %llu, %d) "
2933 		    "returned %d, expected %d",
2934 		    oldpath, oldsize, newpath,
2935 		    newsize, replacing, error, expected_error);
2936 	}
2937 
2938 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
2939 }
2940 
2941 /*
2942  * Callback function which expands the physical size of the vdev.
2943  */
2944 vdev_t *
2945 grow_vdev(vdev_t *vd, void *arg)
2946 {
2947 	spa_t *spa = vd->vdev_spa;
2948 	size_t *newsize = arg;
2949 	size_t fsize;
2950 	int fd;
2951 
2952 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2953 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2954 
2955 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
2956 		return (vd);
2957 
2958 	fsize = lseek(fd, 0, SEEK_END);
2959 	(void) ftruncate(fd, *newsize);
2960 
2961 	if (ztest_opts.zo_verbose >= 6) {
2962 		(void) printf("%s grew from %lu to %lu bytes\n",
2963 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
2964 	}
2965 	(void) close(fd);
2966 	return (NULL);
2967 }
2968 
2969 /*
2970  * Callback function which expands a given vdev by calling vdev_online().
2971  */
2972 /* ARGSUSED */
2973 vdev_t *
2974 online_vdev(vdev_t *vd, void *arg)
2975 {
2976 	spa_t *spa = vd->vdev_spa;
2977 	vdev_t *tvd = vd->vdev_top;
2978 	uint64_t guid = vd->vdev_guid;
2979 	uint64_t generation = spa->spa_config_generation + 1;
2980 	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
2981 	int error;
2982 
2983 	ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE);
2984 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2985 
2986 	/* Calling vdev_online will initialize the new metaslabs */
2987 	spa_config_exit(spa, SCL_STATE, spa);
2988 	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
2989 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
2990 
2991 	/*
2992 	 * If vdev_online returned an error or the underlying vdev_open
2993 	 * failed then we abort the expand. The only way to know that
2994 	 * vdev_open fails is by checking the returned newstate.
2995 	 */
2996 	if (error || newstate != VDEV_STATE_HEALTHY) {
2997 		if (ztest_opts.zo_verbose >= 5) {
2998 			(void) printf("Unable to expand vdev, state %llu, "
2999 			    "error %d\n", (u_longlong_t)newstate, error);
3000 		}
3001 		return (vd);
3002 	}
3003 	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3004 
3005 	/*
3006 	 * Since we dropped the lock we need to ensure that we're
3007 	 * still talking to the original vdev. It's possible this
3008 	 * vdev may have been detached/replaced while we were
3009 	 * trying to online it.
3010 	 */
3011 	if (generation != spa->spa_config_generation) {
3012 		if (ztest_opts.zo_verbose >= 5) {
3013 			(void) printf("vdev configuration has changed, "
3014 			    "guid %llu, state %llu, expected gen %llu, "
3015 			    "got gen %llu\n",
3016 			    (u_longlong_t)guid,
3017 			    (u_longlong_t)tvd->vdev_state,
3018 			    (u_longlong_t)generation,
3019 			    (u_longlong_t)spa->spa_config_generation);
3020 		}
3021 		return (vd);
3022 	}
3023 	return (NULL);
3024 }
3025 
3026 /*
3027  * Traverse the vdev tree calling the supplied function.
3028  * We continue to walk the tree until we either have walked all
3029  * children or we receive a non-NULL return from the callback.
3030  * If a NULL callback is passed, then we just return back the first
3031  * leaf vdev we encounter.
3032  */
3033 vdev_t *
3034 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3035 {
3036 	if (vd->vdev_ops->vdev_op_leaf) {
3037 		if (func == NULL)
3038 			return (vd);
3039 		else
3040 			return (func(vd, arg));
3041 	}
3042 
3043 	for (uint_t c = 0; c < vd->vdev_children; c++) {
3044 		vdev_t *cvd = vd->vdev_child[c];
3045 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3046 			return (cvd);
3047 	}
3048 	return (NULL);
3049 }
3050 
3051 /*
3052  * Verify that dynamic LUN growth works as expected.
3053  */
3054 /* ARGSUSED */
3055 void
3056 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
3057 {
3058 	spa_t *spa = ztest_spa;
3059 	vdev_t *vd, *tvd;
3060 	metaslab_class_t *mc;
3061 	metaslab_group_t *mg;
3062 	size_t psize, newsize;
3063 	uint64_t top;
3064 	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
3065 
3066 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
3067 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3068 
3069 	top = ztest_random_vdev_top(spa, B_TRUE);
3070 
3071 	tvd = spa->spa_root_vdev->vdev_child[top];
3072 	mg = tvd->vdev_mg;
3073 	mc = mg->mg_class;
3074 	old_ms_count = tvd->vdev_ms_count;
3075 	old_class_space = metaslab_class_get_space(mc);
3076 
3077 	/*
3078 	 * Determine the size of the first leaf vdev associated with
3079 	 * our top-level device.
3080 	 */
3081 	vd = vdev_walk_tree(tvd, NULL, NULL);
3082 	ASSERT3P(vd, !=, NULL);
3083 	ASSERT(vd->vdev_ops->vdev_op_leaf);
3084 
3085 	psize = vd->vdev_psize;
3086 
3087 	/*
3088 	 * We only try to expand the vdev if it's healthy, less than 4x its
3089 	 * original size, and it has a valid psize.
3090 	 */
3091 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
3092 	    psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
3093 		spa_config_exit(spa, SCL_STATE, spa);
3094 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3095 		return;
3096 	}
3097 	ASSERT(psize > 0);
3098 	newsize = psize + psize / 8;
3099 	ASSERT3U(newsize, >, psize);
3100 
3101 	if (ztest_opts.zo_verbose >= 6) {
3102 		(void) printf("Expanding LUN %s from %lu to %lu\n",
3103 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
3104 	}
3105 
3106 	/*
3107 	 * Growing the vdev is a two step process:
3108 	 *	1). expand the physical size (i.e. relabel)
3109 	 *	2). online the vdev to create the new metaslabs
3110 	 */
3111 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
3112 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
3113 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
3114 		if (ztest_opts.zo_verbose >= 5) {
3115 			(void) printf("Could not expand LUN because "
3116 			    "the vdev configuration changed.\n");
3117 		}
3118 		spa_config_exit(spa, SCL_STATE, spa);
3119 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3120 		return;
3121 	}
3122 
3123 	spa_config_exit(spa, SCL_STATE, spa);
3124 
3125 	/*
3126 	 * Expanding the LUN will update the config asynchronously,
3127 	 * thus we must wait for the async thread to complete any
3128 	 * pending tasks before proceeding.
3129 	 */
3130 	for (;;) {
3131 		boolean_t done;
3132 		mutex_enter(&spa->spa_async_lock);
3133 		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
3134 		mutex_exit(&spa->spa_async_lock);
3135 		if (done)
3136 			break;
3137 		txg_wait_synced(spa_get_dsl(spa), 0);
3138 		(void) poll(NULL, 0, 100);
3139 	}
3140 
3141 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3142 
3143 	tvd = spa->spa_root_vdev->vdev_child[top];
3144 	new_ms_count = tvd->vdev_ms_count;
3145 	new_class_space = metaslab_class_get_space(mc);
3146 
3147 	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
3148 		if (ztest_opts.zo_verbose >= 5) {
3149 			(void) printf("Could not verify LUN expansion due to "
3150 			    "intervening vdev offline or remove.\n");
3151 		}
3152 		spa_config_exit(spa, SCL_STATE, spa);
3153 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3154 		return;
3155 	}
3156 
3157 	/*
3158 	 * Make sure we were able to grow the vdev.
3159 	 */
3160 	if (new_ms_count <= old_ms_count)
3161 		fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n",
3162 		    old_ms_count, new_ms_count);
3163 
3164 	/*
3165 	 * Make sure we were able to grow the pool.
3166 	 */
3167 	if (new_class_space <= old_class_space)
3168 		fatal(0, "LUN expansion failed: class_space %llu <= %llu\n",
3169 		    old_class_space, new_class_space);
3170 
3171 	if (ztest_opts.zo_verbose >= 5) {
3172 		char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
3173 
3174 		nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
3175 		nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
3176 		(void) printf("%s grew from %s to %s\n",
3177 		    spa->spa_name, oldnumbuf, newnumbuf);
3178 	}
3179 
3180 	spa_config_exit(spa, SCL_STATE, spa);
3181 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
3182 }
3183 
3184 /*
3185  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
3186  */
3187 /* ARGSUSED */
3188 static void
3189 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
3190 {
3191 	/*
3192 	 * Create the objects common to all ztest datasets.
3193 	 */
3194 	VERIFY(zap_create_claim(os, ZTEST_DIROBJ,
3195 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0);
3196 }
3197 
3198 static int
3199 ztest_dataset_create(char *dsname)
3200 {
3201 	uint64_t zilset = ztest_random(100);
3202 	int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0,
3203 	    ztest_objset_create_cb, NULL);
3204 
3205 	if (err || zilset < 80)
3206 		return (err);
3207 
3208 	if (ztest_opts.zo_verbose >= 6)
3209 		(void) printf("Setting dataset %s to sync always\n", dsname);
3210 	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
3211 	    ZFS_SYNC_ALWAYS, B_FALSE));
3212 }
3213 
3214 /* ARGSUSED */
3215 static int
3216 ztest_objset_destroy_cb(const char *name, void *arg)
3217 {
3218 	objset_t *os;
3219 	dmu_object_info_t doi;
3220 	int error;
3221 
3222 	/*
3223 	 * Verify that the dataset contains a directory object.
3224 	 */
3225 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os));
3226 	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3227 	if (error != ENOENT) {
3228 		/* We could have crashed in the middle of destroying it */
3229 		ASSERT0(error);
3230 		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3231 		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3232 	}
3233 	dmu_objset_disown(os, FTAG);
3234 
3235 	/*
3236 	 * Destroy the dataset.
3237 	 */
3238 	if (strchr(name, '@') != NULL) {
3239 		VERIFY0(dsl_destroy_snapshot(name, B_TRUE));
3240 	} else {
3241 		error = dsl_destroy_head(name);
3242 		/* There could be a hold on this dataset */
3243 		if (error != EBUSY)
3244 			ASSERT0(error);
3245 	}
3246 	return (0);
3247 }
3248 
3249 static boolean_t
3250 ztest_snapshot_create(char *osname, uint64_t id)
3251 {
3252 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
3253 	int error;
3254 
3255 	(void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id);
3256 
3257 	error = dmu_objset_snapshot_one(osname, snapname);
3258 	if (error == ENOSPC) {
3259 		ztest_record_enospc(FTAG);
3260 		return (B_FALSE);
3261 	}
3262 	if (error != 0 && error != EEXIST) {
3263 		fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname,
3264 		    snapname, error);
3265 	}
3266 	return (B_TRUE);
3267 }
3268 
3269 static boolean_t
3270 ztest_snapshot_destroy(char *osname, uint64_t id)
3271 {
3272 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
3273 	int error;
3274 
3275 	(void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname,
3276 	    (u_longlong_t)id);
3277 
3278 	error = dsl_destroy_snapshot(snapname, B_FALSE);
3279 	if (error != 0 && error != ENOENT)
3280 		fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error);
3281 	return (B_TRUE);
3282 }
3283 
3284 /* ARGSUSED */
3285 void
3286 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3287 {
3288 	ztest_ds_t zdtmp;
3289 	int iters;
3290 	int error;
3291 	objset_t *os, *os2;
3292 	char name[ZFS_MAX_DATASET_NAME_LEN];
3293 	zilog_t *zilog;
3294 
3295 	(void) rw_rdlock(&ztest_name_lock);
3296 
3297 	(void) snprintf(name, sizeof (name), "%s/temp_%llu",
3298 	    ztest_opts.zo_pool, (u_longlong_t)id);
3299 
3300 	/*
3301 	 * If this dataset exists from a previous run, process its replay log
3302 	 * half of the time.  If we don't replay it, then dmu_objset_destroy()
3303 	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3304 	 */
3305 	if (ztest_random(2) == 0 &&
3306 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3307 		ztest_zd_init(&zdtmp, NULL, os);
3308 		zil_replay(os, &zdtmp, ztest_replay_vector);
3309 		ztest_zd_fini(&zdtmp);
3310 		dmu_objset_disown(os, FTAG);
3311 	}
3312 
3313 	/*
3314 	 * There may be an old instance of the dataset we're about to
3315 	 * create lying around from a previous run.  If so, destroy it
3316 	 * and all of its snapshots.
3317 	 */
3318 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3319 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
3320 
3321 	/*
3322 	 * Verify that the destroyed dataset is no longer in the namespace.
3323 	 */
3324 	VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
3325 	    FTAG, &os));
3326 
3327 	/*
3328 	 * Verify that we can create a new dataset.
3329 	 */
3330 	error = ztest_dataset_create(name);
3331 	if (error) {
3332 		if (error == ENOSPC) {
3333 			ztest_record_enospc(FTAG);
3334 			(void) rw_unlock(&ztest_name_lock);
3335 			return;
3336 		}
3337 		fatal(0, "dmu_objset_create(%s) = %d", name, error);
3338 	}
3339 
3340 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3341 
3342 	ztest_zd_init(&zdtmp, NULL, os);
3343 
3344 	/*
3345 	 * Open the intent log for it.
3346 	 */
3347 	zilog = zil_open(os, ztest_get_data);
3348 
3349 	/*
3350 	 * Put some objects in there, do a little I/O to them,
3351 	 * and randomly take a couple of snapshots along the way.
3352 	 */
3353 	iters = ztest_random(5);
3354 	for (int i = 0; i < iters; i++) {
3355 		ztest_dmu_object_alloc_free(&zdtmp, id);
3356 		if (ztest_random(iters) == 0)
3357 			(void) ztest_snapshot_create(name, i);
3358 	}
3359 
3360 	/*
3361 	 * Verify that we cannot create an existing dataset.
3362 	 */
3363 	VERIFY3U(EEXIST, ==,
3364 	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));
3365 
3366 	/*
3367 	 * Verify that we can hold an objset that is also owned.
3368 	 */
3369 	VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3370 	dmu_objset_rele(os2, FTAG);
3371 
3372 	/*
3373 	 * Verify that we cannot own an objset that is already owned.
3374 	 */
3375 	VERIFY3U(EBUSY, ==,
3376 	    dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));
3377 
3378 	zil_close(zilog);
3379 	dmu_objset_disown(os, FTAG);
3380 	ztest_zd_fini(&zdtmp);
3381 
3382 	(void) rw_unlock(&ztest_name_lock);
3383 }
3384 
3385 /*
3386  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
3387  */
3388 void
3389 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
3390 {
3391 	(void) rw_rdlock(&ztest_name_lock);
3392 	(void) ztest_snapshot_destroy(zd->zd_name, id);
3393 	(void) ztest_snapshot_create(zd->zd_name, id);
3394 	(void) rw_unlock(&ztest_name_lock);
3395 }
3396 
3397 /*
3398  * Cleanup non-standard snapshots and clones.
3399  */
3400 void
3401 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
3402 {
3403 	char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3404 	char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3405 	char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3406 	char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3407 	char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3408 	int error;
3409 
3410 	(void) snprintf(snap1name, sizeof (snap1name),
3411 	    "%s@s1_%llu", osname, id);
3412 	(void) snprintf(clone1name, sizeof (clone1name),
3413 	    "%s/c1_%llu", osname, id);
3414 	(void) snprintf(snap2name, sizeof (snap2name),
3415 	    "%s@s2_%llu", clone1name, id);
3416 	(void) snprintf(clone2name, sizeof (clone2name),
3417 	    "%s/c2_%llu", osname, id);
3418 	(void) snprintf(snap3name, sizeof (snap3name),
3419 	    "%s@s3_%llu", clone1name, id);
3420 
3421 	error = dsl_destroy_head(clone2name);
3422 	if (error && error != ENOENT)
3423 		fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error);
3424 	error = dsl_destroy_snapshot(snap3name, B_FALSE);
3425 	if (error && error != ENOENT)
3426 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error);
3427 	error = dsl_destroy_snapshot(snap2name, B_FALSE);
3428 	if (error && error != ENOENT)
3429 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error);
3430 	error = dsl_destroy_head(clone1name);
3431 	if (error && error != ENOENT)
3432 		fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error);
3433 	error = dsl_destroy_snapshot(snap1name, B_FALSE);
3434 	if (error && error != ENOENT)
3435 		fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error);
3436 }
3437 
3438 /*
3439  * Verify dsl_dataset_promote handles EBUSY
3440  */
3441 void
3442 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
3443 {
3444 	objset_t *os;
3445 	char snap1name[ZFS_MAX_DATASET_NAME_LEN];
3446 	char clone1name[ZFS_MAX_DATASET_NAME_LEN];
3447 	char snap2name[ZFS_MAX_DATASET_NAME_LEN];
3448 	char clone2name[ZFS_MAX_DATASET_NAME_LEN];
3449 	char snap3name[ZFS_MAX_DATASET_NAME_LEN];
3450 	char *osname = zd->zd_name;
3451 	int error;
3452 
3453 	(void) rw_rdlock(&ztest_name_lock);
3454 
3455 	ztest_dsl_dataset_cleanup(osname, id);
3456 
3457 	(void) snprintf(snap1name, sizeof (snap1name),
3458 	    "%s@s1_%llu", osname, id);
3459 	(void) snprintf(clone1name, sizeof (clone1name),
3460 	    "%s/c1_%llu", osname, id);
3461 	(void) snprintf(snap2name, sizeof (snap2name),
3462 	    "%s@s2_%llu", clone1name, id);
3463 	(void) snprintf(clone2name, sizeof (clone2name),
3464 	    "%s/c2_%llu", osname, id);
3465 	(void) snprintf(snap3name, sizeof (snap3name),
3466 	    "%s@s3_%llu", clone1name, id);
3467 
3468 	error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
3469 	if (error && error != EEXIST) {
3470 		if (error == ENOSPC) {
3471 			ztest_record_enospc(FTAG);
3472 			goto out;
3473 		}
3474 		fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error);
3475 	}
3476 
3477 	error = dmu_objset_clone(clone1name, snap1name);
3478 	if (error) {
3479 		if (error == ENOSPC) {
3480 			ztest_record_enospc(FTAG);
3481 			goto out;
3482 		}
3483 		fatal(0, "dmu_objset_create(%s) = %d", clone1name, error);
3484 	}
3485 
3486 	error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
3487 	if (error && error != EEXIST) {
3488 		if (error == ENOSPC) {
3489 			ztest_record_enospc(FTAG);
3490 			goto out;
3491 		}
3492 		fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error);
3493 	}
3494 
3495 	error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
3496 	if (error && error != EEXIST) {
3497 		if (error == ENOSPC) {
3498 			ztest_record_enospc(FTAG);
3499 			goto out;
3500 		}
3501 		fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error);
3502 	}
3503 
3504 	error = dmu_objset_clone(clone2name, snap3name);
3505 	if (error) {
3506 		if (error == ENOSPC) {
3507 			ztest_record_enospc(FTAG);
3508 			goto out;
3509 		}
3510 		fatal(0, "dmu_objset_create(%s) = %d", clone2name, error);
3511 	}
3512 
3513 	error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os);
3514 	if (error)
3515 		fatal(0, "dmu_objset_own(%s) = %d", snap2name, error);
3516 	error = dsl_dataset_promote(clone2name, NULL);
3517 	if (error == ENOSPC) {
3518 		dmu_objset_disown(os, FTAG);
3519 		ztest_record_enospc(FTAG);
3520 		goto out;
3521 	}
3522 	if (error != EBUSY)
3523 		fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name,
3524 		    error);
3525 	dmu_objset_disown(os, FTAG);
3526 
3527 out:
3528 	ztest_dsl_dataset_cleanup(osname, id);
3529 
3530 	(void) rw_unlock(&ztest_name_lock);
3531 }
3532 
3533 /*
3534  * Verify that dmu_object_{alloc,free} work as expected.
3535  */
3536 void
3537 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
3538 {
3539 	ztest_od_t od[4];
3540 	int batchsize = sizeof (od) / sizeof (od[0]);
3541 
3542 	for (int b = 0; b < batchsize; b++)
3543 		ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0);
3544 
3545 	/*
3546 	 * Destroy the previous batch of objects, create a new batch,
3547 	 * and do some I/O on the new objects.
3548 	 */
3549 	if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0)
3550 		return;
3551 
3552 	while (ztest_random(4 * batchsize) != 0)
3553 		ztest_io(zd, od[ztest_random(batchsize)].od_object,
3554 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
3555 }
3556 
3557 /*
3558  * Verify that dmu_{read,write} work as expected.
3559  */
3560 void
3561 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3562 {
3563 	objset_t *os = zd->zd_os;
3564 	ztest_od_t od[2];
3565 	dmu_tx_t *tx;
3566 	int i, freeit, error;
3567 	uint64_t n, s, txg;
3568 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3569 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3570 	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3571 	uint64_t regions = 997;
3572 	uint64_t stride = 123456789ULL;
3573 	uint64_t width = 40;
3574 	int free_percent = 5;
3575 
3576 	/*
3577 	 * This test uses two objects, packobj and bigobj, that are always
3578 	 * updated together (i.e. in the same tx) so that their contents are
3579 	 * in sync and can be compared.  Their contents relate to each other
3580 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
3581 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
3582 	 * for any index n, there are three bufwads that should be identical:
3583 	 *
3584 	 *	packobj, at offset n * sizeof (bufwad_t)
3585 	 *	bigobj, at the head of the nth chunk
3586 	 *	bigobj, at the tail of the nth chunk
3587 	 *
3588 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
3589 	 * and it doesn't have any relation to the object blocksize.
3590 	 * The only requirement is that it can hold at least two bufwads.
3591 	 *
3592 	 * Normally, we write the bufwad to each of these locations.
3593 	 * However, free_percent of the time we instead write zeroes to
3594 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
3595 	 * bigobj to packobj, we can verify that the DMU is correctly
3596 	 * tracking which parts of an object are allocated and free,
3597 	 * and that the contents of the allocated blocks are correct.
3598 	 */
3599 
3600 	/*
3601 	 * Read the directory info.  If it's the first time, set things up.
3602 	 */
3603 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3604 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3605 
3606 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3607 		return;
3608 
3609 	bigobj = od[0].od_object;
3610 	packobj = od[1].od_object;
3611 	chunksize = od[0].od_gen;
3612 	ASSERT(chunksize == od[1].od_gen);
3613 
3614 	/*
3615 	 * Prefetch a random chunk of the big object.
3616 	 * Our aim here is to get some async reads in flight
3617 	 * for blocks that we may free below; the DMU should
3618 	 * handle this race correctly.
3619 	 */
3620 	n = ztest_random(regions) * stride + ztest_random(width);
3621 	s = 1 + ztest_random(2 * width - 1);
3622 	dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
3623 	    ZIO_PRIORITY_SYNC_READ);
3624 
3625 	/*
3626 	 * Pick a random index and compute the offsets into packobj and bigobj.
3627 	 */
3628 	n = ztest_random(regions) * stride + ztest_random(width);
3629 	s = 1 + ztest_random(width - 1);
3630 
3631 	packoff = n * sizeof (bufwad_t);
3632 	packsize = s * sizeof (bufwad_t);
3633 
3634 	bigoff = n * chunksize;
3635 	bigsize = s * chunksize;
3636 
3637 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3638 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
3639 
3640 	/*
3641 	 * free_percent of the time, free a range of bigobj rather than
3642 	 * overwriting it.
3643 	 */
3644 	freeit = (ztest_random(100) < free_percent);
3645 
3646 	/*
3647 	 * Read the current contents of our objects.
3648 	 */
3649 	error = dmu_read(os, packobj, packoff, packsize, packbuf,
3650 	    DMU_READ_PREFETCH);
3651 	ASSERT0(error);
3652 	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3653 	    DMU_READ_PREFETCH);
3654 	ASSERT0(error);
3655 
3656 	/*
3657 	 * Get a tx for the mods to both packobj and bigobj.
3658 	 */
3659 	tx = dmu_tx_create(os);
3660 
3661 	dmu_tx_hold_write(tx, packobj, packoff, packsize);
3662 
3663 	if (freeit)
3664 		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3665 	else
3666 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3667 
3668 	/* This accounts for setting the checksum/compression. */
3669 	dmu_tx_hold_bonus(tx, bigobj);
3670 
3671 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3672 	if (txg == 0) {
3673 		umem_free(packbuf, packsize);
3674 		umem_free(bigbuf, bigsize);
3675 		return;
3676 	}
3677 
3678 	enum zio_checksum cksum;
3679 	do {
3680 		cksum = (enum zio_checksum)
3681 		    ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
3682 	} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
3683 	dmu_object_set_checksum(os, bigobj, cksum, tx);
3684 
3685 	enum zio_compress comp;
3686 	do {
3687 		comp = (enum zio_compress)
3688 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
3689 	} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
3690 	dmu_object_set_compress(os, bigobj, comp, tx);
3691 
3692 	/*
3693 	 * For each index from n to n + s, verify that the existing bufwad
3694 	 * in packobj matches the bufwads at the head and tail of the
3695 	 * corresponding chunk in bigobj.  Then update all three bufwads
3696 	 * with the new values we want to write out.
3697 	 */
3698 	for (i = 0; i < s; i++) {
3699 		/* LINTED */
3700 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3701 		/* LINTED */
3702 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3703 		/* LINTED */
3704 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3705 
3706 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3707 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3708 
3709 		if (pack->bw_txg > txg)
3710 			fatal(0, "future leak: got %llx, open txg is %llx",
3711 			    pack->bw_txg, txg);
3712 
3713 		if (pack->bw_data != 0 && pack->bw_index != n + i)
3714 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3715 			    pack->bw_index, n, i);
3716 
3717 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3718 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3719 
3720 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3721 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3722 
3723 		if (freeit) {
3724 			bzero(pack, sizeof (bufwad_t));
3725 		} else {
3726 			pack->bw_index = n + i;
3727 			pack->bw_txg = txg;
3728 			pack->bw_data = 1 + ztest_random(-2ULL);
3729 		}
3730 		*bigH = *pack;
3731 		*bigT = *pack;
3732 	}
3733 
3734 	/*
3735 	 * We've verified all the old bufwads, and made new ones.
3736 	 * Now write them out.
3737 	 */
3738 	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3739 
3740 	if (freeit) {
3741 		if (ztest_opts.zo_verbose >= 7) {
3742 			(void) printf("freeing offset %llx size %llx"
3743 			    " txg %llx\n",
3744 			    (u_longlong_t)bigoff,
3745 			    (u_longlong_t)bigsize,
3746 			    (u_longlong_t)txg);
3747 		}
3748 		VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3749 	} else {
3750 		if (ztest_opts.zo_verbose >= 7) {
3751 			(void) printf("writing offset %llx size %llx"
3752 			    " txg %llx\n",
3753 			    (u_longlong_t)bigoff,
3754 			    (u_longlong_t)bigsize,
3755 			    (u_longlong_t)txg);
3756 		}
3757 		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3758 	}
3759 
3760 	dmu_tx_commit(tx);
3761 
3762 	/*
3763 	 * Sanity check the stuff we just wrote.
3764 	 */
3765 	{
3766 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3767 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
3768 
3769 		VERIFY(0 == dmu_read(os, packobj, packoff,
3770 		    packsize, packcheck, DMU_READ_PREFETCH));
3771 		VERIFY(0 == dmu_read(os, bigobj, bigoff,
3772 		    bigsize, bigcheck, DMU_READ_PREFETCH));
3773 
3774 		ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3775 		ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
3776 
3777 		umem_free(packcheck, packsize);
3778 		umem_free(bigcheck, bigsize);
3779 	}
3780 
3781 	umem_free(packbuf, packsize);
3782 	umem_free(bigbuf, bigsize);
3783 }
3784 
3785 void
3786 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
3787     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
3788 {
3789 	uint64_t i;
3790 	bufwad_t *pack;
3791 	bufwad_t *bigH;
3792 	bufwad_t *bigT;
3793 
3794 	/*
3795 	 * For each index from n to n + s, verify that the existing bufwad
3796 	 * in packobj matches the bufwads at the head and tail of the
3797 	 * corresponding chunk in bigobj.  Then update all three bufwads
3798 	 * with the new values we want to write out.
3799 	 */
3800 	for (i = 0; i < s; i++) {
3801 		/* LINTED */
3802 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3803 		/* LINTED */
3804 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3805 		/* LINTED */
3806 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
3807 
3808 		ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3809 		ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);
3810 
3811 		if (pack->bw_txg > txg)
3812 			fatal(0, "future leak: got %llx, open txg is %llx",
3813 			    pack->bw_txg, txg);
3814 
3815 		if (pack->bw_data != 0 && pack->bw_index != n + i)
3816 			fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3817 			    pack->bw_index, n, i);
3818 
3819 		if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3820 			fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);
3821 
3822 		if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3823 			fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);
3824 
3825 		pack->bw_index = n + i;
3826 		pack->bw_txg = txg;
3827 		pack->bw_data = 1 + ztest_random(-2ULL);
3828 
3829 		*bigH = *pack;
3830 		*bigT = *pack;
3831 	}
3832 }
3833 
3834 void
3835 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
3836 {
3837 	objset_t *os = zd->zd_os;
3838 	ztest_od_t od[2];
3839 	dmu_tx_t *tx;
3840 	uint64_t i;
3841 	int error;
3842 	uint64_t n, s, txg;
3843 	bufwad_t *packbuf, *bigbuf;
3844 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3845 	uint64_t blocksize = ztest_random_blocksize();
3846 	uint64_t chunksize = blocksize;
3847 	uint64_t regions = 997;
3848 	uint64_t stride = 123456789ULL;
3849 	uint64_t width = 9;
3850 	dmu_buf_t *bonus_db;
3851 	arc_buf_t **bigbuf_arcbufs;
3852 	dmu_object_info_t doi;
3853 
3854 	/*
3855 	 * This test uses two objects, packobj and bigobj, that are always
3856 	 * updated together (i.e. in the same tx) so that their contents are
3857 	 * in sync and can be compared.  Their contents relate to each other
3858 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
3859 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
3860 	 * for any index n, there are three bufwads that should be identical:
3861 	 *
3862 	 *	packobj, at offset n * sizeof (bufwad_t)
3863 	 *	bigobj, at the head of the nth chunk
3864 	 *	bigobj, at the tail of the nth chunk
3865 	 *
3866 	 * The chunk size is set equal to bigobj block size so that
3867 	 * dmu_assign_arcbuf() can be tested for object updates.
3868 	 */
3869 
3870 	/*
3871 	 * Read the directory info.  If it's the first time, set things up.
3872 	 */
3873 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3874 	ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);
3875 
3876 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3877 		return;
3878 
3879 	bigobj = od[0].od_object;
3880 	packobj = od[1].od_object;
3881 	blocksize = od[0].od_blocksize;
3882 	chunksize = blocksize;
3883 	ASSERT(chunksize == od[1].od_gen);
3884 
3885 	VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
3886 	VERIFY(ISP2(doi.doi_data_block_size));
3887 	VERIFY(chunksize == doi.doi_data_block_size);
3888 	VERIFY(chunksize >= 2 * sizeof (bufwad_t));
3889 
3890 	/*
3891 	 * Pick a random index and compute the offsets into packobj and bigobj.
3892 	 */
3893 	n = ztest_random(regions) * stride + ztest_random(width);
3894 	s = 1 + ztest_random(width - 1);
3895 
3896 	packoff = n * sizeof (bufwad_t);
3897 	packsize = s * sizeof (bufwad_t);
3898 
3899 	bigoff = n * chunksize;
3900 	bigsize = s * chunksize;
3901 
3902 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
3903 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
3904 
3905 	VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
3906 
3907 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
3908 
3909 	/*
3910 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
3911 	 * Iteration 1 test zcopy to already referenced dbufs.
3912 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
3913 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
3914 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
3915 	 * Iteration 5 test zcopy when it can't be done.
3916 	 * Iteration 6 one more zcopy write.
3917 	 */
3918 	for (i = 0; i < 7; i++) {
3919 		uint64_t j;
3920 		uint64_t off;
3921 
3922 		/*
3923 		 * In iteration 5 (i == 5) use arcbufs
3924 		 * that don't match bigobj blksz to test
3925 		 * dmu_assign_arcbuf() when it can't directly
3926 		 * assign an arcbuf to a dbuf.
3927 		 */
3928 		for (j = 0; j < s; j++) {
3929 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
3930 				bigbuf_arcbufs[j] =
3931 				    dmu_request_arcbuf(bonus_db, chunksize);
3932 			} else {
3933 				bigbuf_arcbufs[2 * j] =
3934 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
3935 				bigbuf_arcbufs[2 * j + 1] =
3936 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
3937 			}
3938 		}
3939 
3940 		/*
3941 		 * Get a tx for the mods to both packobj and bigobj.
3942 		 */
3943 		tx = dmu_tx_create(os);
3944 
3945 		dmu_tx_hold_write(tx, packobj, packoff, packsize);
3946 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
3947 
3948 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3949 		if (txg == 0) {
3950 			umem_free(packbuf, packsize);
3951 			umem_free(bigbuf, bigsize);
3952 			for (j = 0; j < s; j++) {
3953 				if (i != 5 ||
3954 				    chunksize < (SPA_MINBLOCKSIZE * 2)) {
3955 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
3956 				} else {
3957 					dmu_return_arcbuf(
3958 					    bigbuf_arcbufs[2 * j]);
3959 					dmu_return_arcbuf(
3960 					    bigbuf_arcbufs[2 * j + 1]);
3961 				}
3962 			}
3963 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3964 			dmu_buf_rele(bonus_db, FTAG);
3965 			return;
3966 		}
3967 
3968 		/*
3969 		 * 50% of the time don't read objects in the 1st iteration to
3970 		 * test dmu_assign_arcbuf() for the case when there're no
3971 		 * existing dbufs for the specified offsets.
3972 		 */
3973 		if (i != 0 || ztest_random(2) != 0) {
3974 			error = dmu_read(os, packobj, packoff,
3975 			    packsize, packbuf, DMU_READ_PREFETCH);
3976 			ASSERT0(error);
3977 			error = dmu_read(os, bigobj, bigoff, bigsize,
3978 			    bigbuf, DMU_READ_PREFETCH);
3979 			ASSERT0(error);
3980 		}
3981 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
3982 		    n, chunksize, txg);
3983 
3984 		/*
3985 		 * We've verified all the old bufwads, and made new ones.
3986 		 * Now write them out.
3987 		 */
3988 		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3989 		if (ztest_opts.zo_verbose >= 7) {
3990 			(void) printf("writing offset %llx size %llx"
3991 			    " txg %llx\n",
3992 			    (u_longlong_t)bigoff,
3993 			    (u_longlong_t)bigsize,
3994 			    (u_longlong_t)txg);
3995 		}
3996 		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
3997 			dmu_buf_t *dbt;
3998 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
3999 				bcopy((caddr_t)bigbuf + (off - bigoff),
4000 				    bigbuf_arcbufs[j]->b_data, chunksize);
4001 			} else {
4002 				bcopy((caddr_t)bigbuf + (off - bigoff),
4003 				    bigbuf_arcbufs[2 * j]->b_data,
4004 				    chunksize / 2);
4005 				bcopy((caddr_t)bigbuf + (off - bigoff) +
4006 				    chunksize / 2,
4007 				    bigbuf_arcbufs[2 * j + 1]->b_data,
4008 				    chunksize / 2);
4009 			}
4010 
4011 			if (i == 1) {
4012 				VERIFY(dmu_buf_hold(os, bigobj, off,
4013 				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
4014 			}
4015 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
4016 				dmu_assign_arcbuf(bonus_db, off,
4017 				    bigbuf_arcbufs[j], tx);
4018 			} else {
4019 				dmu_assign_arcbuf(bonus_db, off,
4020 				    bigbuf_arcbufs[2 * j], tx);
4021 				dmu_assign_arcbuf(bonus_db,
4022 				    off + chunksize / 2,
4023 				    bigbuf_arcbufs[2 * j + 1], tx);
4024 			}
4025 			if (i == 1) {
4026 				dmu_buf_rele(dbt, FTAG);
4027 			}
4028 		}
4029 		dmu_tx_commit(tx);
4030 
4031 		/*
4032 		 * Sanity check the stuff we just wrote.
4033 		 */
4034 		{
4035 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4036 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4037 
4038 			VERIFY(0 == dmu_read(os, packobj, packoff,
4039 			    packsize, packcheck, DMU_READ_PREFETCH));
4040 			VERIFY(0 == dmu_read(os, bigobj, bigoff,
4041 			    bigsize, bigcheck, DMU_READ_PREFETCH));
4042 
4043 			ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
4044 			ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);
4045 
4046 			umem_free(packcheck, packsize);
4047 			umem_free(bigcheck, bigsize);
4048 		}
4049 		if (i == 2) {
4050 			txg_wait_open(dmu_objset_pool(os), 0);
4051 		} else if (i == 3) {
4052 			txg_wait_synced(dmu_objset_pool(os), 0);
4053 		}
4054 	}
4055 
4056 	dmu_buf_rele(bonus_db, FTAG);
4057 	umem_free(packbuf, packsize);
4058 	umem_free(bigbuf, bigsize);
4059 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
4060 }
4061 
4062 /* ARGSUSED */
4063 void
4064 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
4065 {
4066 	ztest_od_t od[1];
4067 	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
4068 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4069 
4070 	/*
4071 	 * Have multiple threads write to large offsets in an object
4072 	 * to verify that parallel writes to an object -- even to the
4073 	 * same blocks within the object -- doesn't cause any trouble.
4074 	 */
4075 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4076 
4077 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4078 		return;
4079 
4080 	while (ztest_random(10) != 0)
4081 		ztest_io(zd, od[0].od_object, offset);
4082 }
4083 
4084 void
4085 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
4086 {
4087 	ztest_od_t od[1];
4088 	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
4089 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4090 	uint64_t count = ztest_random(20) + 1;
4091 	uint64_t blocksize = ztest_random_blocksize();
4092 	void *data;
4093 
4094 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
4095 
4096 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4097 		return;
4098 
4099 	if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0)
4100 		return;
4101 
4102 	ztest_prealloc(zd, od[0].od_object, offset, count * blocksize);
4103 
4104 	data = umem_zalloc(blocksize, UMEM_NOFAIL);
4105 
4106 	while (ztest_random(count) != 0) {
4107 		uint64_t randoff = offset + (ztest_random(count) * blocksize);
4108 		if (ztest_write(zd, od[0].od_object, randoff, blocksize,
4109 		    data) != 0)
4110 			break;
4111 		while (ztest_random(4) != 0)
4112 			ztest_io(zd, od[0].od_object, randoff);
4113 	}
4114 
4115 	umem_free(data, blocksize);
4116 }
4117 
4118 /*
4119  * Verify that zap_{create,destroy,add,remove,update} work as expected.
4120  */
4121 #define	ZTEST_ZAP_MIN_INTS	1
4122 #define	ZTEST_ZAP_MAX_INTS	4
4123 #define	ZTEST_ZAP_MAX_PROPS	1000
4124 
4125 void
4126 ztest_zap(ztest_ds_t *zd, uint64_t id)
4127 {
4128 	objset_t *os = zd->zd_os;
4129 	ztest_od_t od[1];
4130 	uint64_t object;
4131 	uint64_t txg, last_txg;
4132 	uint64_t value[ZTEST_ZAP_MAX_INTS];
4133 	uint64_t zl_ints, zl_intsize, prop;
4134 	int i, ints;
4135 	dmu_tx_t *tx;
4136 	char propname[100], txgname[100];
4137 	int error;
4138 	char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
4139 
4140 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4141 
4142 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4143 		return;
4144 
4145 	object = od[0].od_object;
4146 
4147 	/*
4148 	 * Generate a known hash collision, and verify that
4149 	 * we can lookup and remove both entries.
4150 	 */
4151 	tx = dmu_tx_create(os);
4152 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4153 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4154 	if (txg == 0)
4155 		return;
4156 	for (i = 0; i < 2; i++) {
4157 		value[i] = i;
4158 		VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
4159 		    1, &value[i], tx));
4160 	}
4161 	for (i = 0; i < 2; i++) {
4162 		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
4163 		    sizeof (uint64_t), 1, &value[i], tx));
4164 		VERIFY3U(0, ==,
4165 		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
4166 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4167 		ASSERT3U(zl_ints, ==, 1);
4168 	}
4169 	for (i = 0; i < 2; i++) {
4170 		VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
4171 	}
4172 	dmu_tx_commit(tx);
4173 
4174 	/*
4175 	 * Generate a buch of random entries.
4176 	 */
4177 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
4178 
4179 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4180 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4181 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4182 	bzero(value, sizeof (value));
4183 	last_txg = 0;
4184 
4185 	/*
4186 	 * If these zap entries already exist, validate their contents.
4187 	 */
4188 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4189 	if (error == 0) {
4190 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4191 		ASSERT3U(zl_ints, ==, 1);
4192 
4193 		VERIFY(zap_lookup(os, object, txgname, zl_intsize,
4194 		    zl_ints, &last_txg) == 0);
4195 
4196 		VERIFY(zap_length(os, object, propname, &zl_intsize,
4197 		    &zl_ints) == 0);
4198 
4199 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
4200 		ASSERT3U(zl_ints, ==, ints);
4201 
4202 		VERIFY(zap_lookup(os, object, propname, zl_intsize,
4203 		    zl_ints, value) == 0);
4204 
4205 		for (i = 0; i < ints; i++) {
4206 			ASSERT3U(value[i], ==, last_txg + object + i);
4207 		}
4208 	} else {
4209 		ASSERT3U(error, ==, ENOENT);
4210 	}
4211 
4212 	/*
4213 	 * Atomically update two entries in our zap object.
4214 	 * The first is named txg_%llu, and contains the txg
4215 	 * in which the property was last updated.  The second
4216 	 * is named prop_%llu, and the nth element of its value
4217 	 * should be txg + object + n.
4218 	 */
4219 	tx = dmu_tx_create(os);
4220 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4221 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4222 	if (txg == 0)
4223 		return;
4224 
4225 	if (last_txg > txg)
4226 		fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);
4227 
4228 	for (i = 0; i < ints; i++)
4229 		value[i] = txg + object + i;
4230 
4231 	VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4232 	    1, &txg, tx));
4233 	VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4234 	    ints, value, tx));
4235 
4236 	dmu_tx_commit(tx);
4237 
4238 	/*
4239 	 * Remove a random pair of entries.
4240 	 */
4241 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4242 	(void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4243 	(void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
4244 
4245 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
4246 
4247 	if (error == ENOENT)
4248 		return;
4249 
4250 	ASSERT0(error);
4251 
4252 	tx = dmu_tx_create(os);
4253 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4254 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4255 	if (txg == 0)
4256 		return;
4257 	VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4258 	VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4259 	dmu_tx_commit(tx);
4260 }
4261 
4262 /*
4263  * Testcase to test the upgrading of a microzap to fatzap.
4264  */
4265 void
4266 ztest_fzap(ztest_ds_t *zd, uint64_t id)
4267 {
4268 	objset_t *os = zd->zd_os;
4269 	ztest_od_t od[1];
4270 	uint64_t object, txg;
4271 
4272 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);
4273 
4274 	if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
4275 		return;
4276 
4277 	object = od[0].od_object;
4278 
4279 	/*
4280 	 * Add entries to this ZAP and make sure it spills over
4281 	 * and gets upgraded to a fatzap. Also, since we are adding
4282 	 * 2050 entries we should see ptrtbl growth and leaf-block split.
4283 	 */
4284 	for (int i = 0; i < 2050; i++) {
4285 		char name[ZFS_MAX_DATASET_NAME_LEN];
4286 		uint64_t value = i;
4287 		dmu_tx_t *tx;
4288 		int error;
4289 
4290 		(void) snprintf(name, sizeof (name), "fzap-%llu-%llu",
4291 		    id, value);
4292 
4293 		tx = dmu_tx_create(os);
4294 		dmu_tx_hold_zap(tx, object, B_TRUE, name);
4295 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4296 		if (txg == 0)
4297 			return;
4298 		error = zap_add(os, object, name, sizeof (uint64_t), 1,
4299 		    &value, tx);
4300 		ASSERT(error == 0 || error == EEXIST);
4301 		dmu_tx_commit(tx);
4302 	}
4303 }
4304 
4305 /* ARGSUSED */
4306 void
4307 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
4308 {
4309 	objset_t *os = zd->zd_os;
4310 	ztest_od_t od[1];
4311 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
4312 	dmu_tx_t *tx;
4313 	int i, namelen, error;
4314 	int micro = ztest_random(2);
4315 	char name[20], string_value[20];
4316 	void *data;
4317 
4318 	ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0);
4319 
4320 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4321 		return;
4322 
4323 	object = od[0].od_object;
4324 
4325 	/*
4326 	 * Generate a random name of the form 'xxx.....' where each
4327 	 * x is a random printable character and the dots are dots.
4328 	 * There are 94 such characters, and the name length goes from
4329 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
4330 	 */
4331 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
4332 
4333 	for (i = 0; i < 3; i++)
4334 		name[i] = '!' + ztest_random('~' - '!' + 1);
4335 	for (; i < namelen - 1; i++)
4336 		name[i] = '.';
4337 	name[i] = '\0';
4338 
4339 	if ((namelen & 1) || micro) {
4340 		wsize = sizeof (txg);
4341 		wc = 1;
4342 		data = &txg;
4343 	} else {
4344 		wsize = 1;
4345 		wc = namelen;
4346 		data = string_value;
4347 	}
4348 
4349 	count = -1ULL;
4350 	VERIFY0(zap_count(os, object, &count));
4351 	ASSERT(count != -1ULL);
4352 
4353 	/*
4354 	 * Select an operation: length, lookup, add, update, remove.
4355 	 */
4356 	i = ztest_random(5);
4357 
4358 	if (i >= 2) {
4359 		tx = dmu_tx_create(os);
4360 		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4361 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4362 		if (txg == 0)
4363 			return;
4364 		bcopy(name, string_value, namelen);
4365 	} else {
4366 		tx = NULL;
4367 		txg = 0;
4368 		bzero(string_value, namelen);
4369 	}
4370 
4371 	switch (i) {
4372 
4373 	case 0:
4374 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
4375 		if (error == 0) {
4376 			ASSERT3U(wsize, ==, zl_wsize);
4377 			ASSERT3U(wc, ==, zl_wc);
4378 		} else {
4379 			ASSERT3U(error, ==, ENOENT);
4380 		}
4381 		break;
4382 
4383 	case 1:
4384 		error = zap_lookup(os, object, name, wsize, wc, data);
4385 		if (error == 0) {
4386 			if (data == string_value &&
4387 			    bcmp(name, data, namelen) != 0)
4388 				fatal(0, "name '%s' != val '%s' len %d",
4389 				    name, data, namelen);
4390 		} else {
4391 			ASSERT3U(error, ==, ENOENT);
4392 		}
4393 		break;
4394 
4395 	case 2:
4396 		error = zap_add(os, object, name, wsize, wc, data, tx);
4397 		ASSERT(error == 0 || error == EEXIST);
4398 		break;
4399 
4400 	case 3:
4401 		VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0);
4402 		break;
4403 
4404 	case 4:
4405 		error = zap_remove(os, object, name, tx);
4406 		ASSERT(error == 0 || error == ENOENT);
4407 		break;
4408 	}
4409 
4410 	if (tx != NULL)
4411 		dmu_tx_commit(tx);
4412 }
4413 
4414 /*
4415  * Commit callback data.
4416  */
4417 typedef struct ztest_cb_data {
4418 	list_node_t		zcd_node;
4419 	uint64_t		zcd_txg;
4420 	int			zcd_expected_err;
4421 	boolean_t		zcd_added;
4422 	boolean_t		zcd_called;
4423 	spa_t			*zcd_spa;
4424 } ztest_cb_data_t;
4425 
4426 /* This is the actual commit callback function */
4427 static void
4428 ztest_commit_callback(void *arg, int error)
4429 {
4430 	ztest_cb_data_t *data = arg;
4431 	uint64_t synced_txg;
4432 
4433 	VERIFY(data != NULL);
4434 	VERIFY3S(data->zcd_expected_err, ==, error);
4435 	VERIFY(!data->zcd_called);
4436 
4437 	synced_txg = spa_last_synced_txg(data->zcd_spa);
4438 	if (data->zcd_txg > synced_txg)
4439 		fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4440 		    ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4441 		    synced_txg);
4442 
4443 	data->zcd_called = B_TRUE;
4444 
4445 	if (error == ECANCELED) {
4446 		ASSERT0(data->zcd_txg);
4447 		ASSERT(!data->zcd_added);
4448 
4449 		/*
4450 		 * The private callback data should be destroyed here, but
4451 		 * since we are going to check the zcd_called field after
4452 		 * dmu_tx_abort(), we will destroy it there.
4453 		 */
4454 		return;
4455 	}
4456 
4457 	/* Was this callback added to the global callback list? */
4458 	if (!data->zcd_added)
4459 		goto out;
4460 
4461 	ASSERT3U(data->zcd_txg, !=, 0);
4462 
4463 	/* Remove our callback from the list */
4464 	(void) mutex_lock(&zcl.zcl_callbacks_lock);
4465 	list_remove(&zcl.zcl_callbacks, data);
4466 	(void) mutex_unlock(&zcl.zcl_callbacks_lock);
4467 
4468 out:
4469 	umem_free(data, sizeof (ztest_cb_data_t));
4470 }
4471 
4472 /* Allocate and initialize callback data structure */
4473 static ztest_cb_data_t *
4474 ztest_create_cb_data(objset_t *os, uint64_t txg)
4475 {
4476 	ztest_cb_data_t *cb_data;
4477 
4478 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
4479 
4480 	cb_data->zcd_txg = txg;
4481 	cb_data->zcd_spa = dmu_objset_spa(os);
4482 
4483 	return (cb_data);
4484 }
4485 
4486 /*
4487  * If a number of txgs equal to this threshold have been created after a commit
4488  * callback has been registered but not called, then we assume there is an
4489  * implementation bug.
4490  */
4491 #define	ZTEST_COMMIT_CALLBACK_THRESH	(TXG_CONCURRENT_STATES + 2)
4492 
4493 /*
4494  * Commit callback test.
4495  */
4496 void
4497 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
4498 {
4499 	objset_t *os = zd->zd_os;
4500 	ztest_od_t od[1];
4501 	dmu_tx_t *tx;
4502 	ztest_cb_data_t *cb_data[3], *tmp_cb;
4503 	uint64_t old_txg, txg;
4504 	int i, error;
4505 
4506 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
4507 
4508 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
4509 		return;
4510 
4511 	tx = dmu_tx_create(os);
4512 
4513 	cb_data[0] = ztest_create_cb_data(os, 0);
4514 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
4515 
4516 	dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t));
4517 
4518 	/* Every once in a while, abort the transaction on purpose */
4519 	if (ztest_random(100) == 0)
4520 		error = -1;
4521 
4522 	if (!error)
4523 		error = dmu_tx_assign(tx, TXG_NOWAIT);
4524 
4525 	txg = error ? 0 : dmu_tx_get_txg(tx);
4526 
4527 	cb_data[0]->zcd_txg = txg;
4528 	cb_data[1] = ztest_create_cb_data(os, txg);
4529 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
4530 
4531 	if (error) {
4532 		/*
4533 		 * It's not a strict requirement to call the registered
4534 		 * callbacks from inside dmu_tx_abort(), but that's what
4535 		 * it's supposed to happen in the current implementation
4536 		 * so we will check for that.
4537 		 */
4538 		for (i = 0; i < 2; i++) {
4539 			cb_data[i]->zcd_expected_err = ECANCELED;
4540 			VERIFY(!cb_data[i]->zcd_called);
4541 		}
4542 
4543 		dmu_tx_abort(tx);
4544 
4545 		for (i = 0; i < 2; i++) {
4546 			VERIFY(cb_data[i]->zcd_called);
4547 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
4548 		}
4549 
4550 		return;
4551 	}
4552 
4553 	cb_data[2] = ztest_create_cb_data(os, txg);
4554 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
4555 
4556 	/*
4557 	 * Read existing data to make sure there isn't a future leak.
4558 	 */
4559 	VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t),
4560 	    &old_txg, DMU_READ_PREFETCH));
4561 
4562 	if (old_txg > txg)
4563 		fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64,
4564 		    old_txg, txg);
4565 
4566 	dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx);
4567 
4568 	(void) mutex_lock(&zcl.zcl_callbacks_lock);
4569 
4570 	/*
4571 	 * Since commit callbacks don't have any ordering requirement and since
4572 	 * it is theoretically possible for a commit callback to be called
4573 	 * after an arbitrary amount of time has elapsed since its txg has been
4574 	 * synced, it is difficult to reliably determine whether a commit
4575 	 * callback hasn't been called due to high load or due to a flawed
4576 	 * implementation.
4577 	 *
4578 	 * In practice, we will assume that if after a certain number of txgs a
4579 	 * commit callback hasn't been called, then most likely there's an
4580 	 * implementation bug..
4581 	 */
4582 	tmp_cb = list_head(&zcl.zcl_callbacks);
4583 	if (tmp_cb != NULL &&
4584 	    (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) {
4585 		fatal(0, "Commit callback threshold exceeded, oldest txg: %"
4586 		    PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg);
4587 	}
4588 
4589 	/*
4590 	 * Let's find the place to insert our callbacks.
4591 	 *
4592 	 * Even though the list is ordered by txg, it is possible for the
4593 	 * insertion point to not be the end because our txg may already be
4594 	 * quiescing at this point and other callbacks in the open txg
4595 	 * (from other objsets) may have sneaked in.
4596 	 */
4597 	tmp_cb = list_tail(&zcl.zcl_callbacks);
4598 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
4599 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
4600 
4601 	/* Add the 3 callbacks to the list */
4602 	for (i = 0; i < 3; i++) {
4603 		if (tmp_cb == NULL)
4604 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
4605 		else
4606 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
4607 			    cb_data[i]);
4608 
4609 		cb_data[i]->zcd_added = B_TRUE;
4610 		VERIFY(!cb_data[i]->zcd_called);
4611 
4612 		tmp_cb = cb_data[i];
4613 	}
4614 
4615 	(void) mutex_unlock(&zcl.zcl_callbacks_lock);
4616 
4617 	dmu_tx_commit(tx);
4618 }
4619 
4620 /* ARGSUSED */
4621 void
4622 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
4623 {
4624 	zfs_prop_t proplist[] = {
4625 		ZFS_PROP_CHECKSUM,
4626 		ZFS_PROP_COMPRESSION,
4627 		ZFS_PROP_COPIES,
4628 		ZFS_PROP_DEDUP
4629 	};
4630 
4631 	(void) rw_rdlock(&ztest_name_lock);
4632 
4633 	for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
4634 		(void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
4635 		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
4636 
4637 	(void) rw_unlock(&ztest_name_lock);
4638 }
4639 
4640 /* ARGSUSED */
4641 void
4642 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4643 {
4644 	nvlist_t *props = NULL;
4645 
4646 	(void) rw_rdlock(&ztest_name_lock);
4647 
4648 	(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
4649 	    ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));
4650 
4651 	VERIFY0(spa_prop_get(ztest_spa, &props));
4652 
4653 	if (ztest_opts.zo_verbose >= 6)
4654 		dump_nvlist(props, 4);
4655 
4656 	nvlist_free(props);
4657 
4658 	(void) rw_unlock(&ztest_name_lock);
4659 }
4660 
4661 static int
4662 user_release_one(const char *snapname, const char *holdname)
4663 {
4664 	nvlist_t *snaps, *holds;
4665 	int error;
4666 
4667 	snaps = fnvlist_alloc();
4668 	holds = fnvlist_alloc();
4669 	fnvlist_add_boolean(holds, holdname);
4670 	fnvlist_add_nvlist(snaps, snapname, holds);
4671 	fnvlist_free(holds);
4672 	error = dsl_dataset_user_release(snaps, NULL);
4673 	fnvlist_free(snaps);
4674 	return (error);
4675 }
4676 
4677 /*
4678  * Test snapshot hold/release and deferred destroy.
4679  */
4680 void
4681 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
4682 {
4683 	int error;
4684 	objset_t *os = zd->zd_os;
4685 	objset_t *origin;
4686 	char snapname[100];
4687 	char fullname[100];
4688 	char clonename[100];
4689 	char tag[100];
4690 	char osname[ZFS_MAX_DATASET_NAME_LEN];
4691 	nvlist_t *holds;
4692 
4693 	(void) rw_rdlock(&ztest_name_lock);
4694 
4695 	dmu_objset_name(os, osname);
4696 
4697 	(void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id);
4698 	(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
4699 	(void) snprintf(clonename, sizeof (clonename),
4700 	    "%s/ch1_%llu", osname, id);
4701 	(void) snprintf(tag, sizeof (tag), "tag_%llu", id);
4702 
4703 	/*
4704 	 * Clean up from any previous run.
4705 	 */
4706 	error = dsl_destroy_head(clonename);
4707 	if (error != ENOENT)
4708 		ASSERT0(error);
4709 	error = user_release_one(fullname, tag);
4710 	if (error != ESRCH && error != ENOENT)
4711 		ASSERT0(error);
4712 	error = dsl_destroy_snapshot(fullname, B_FALSE);
4713 	if (error != ENOENT)
4714 		ASSERT0(error);
4715 
4716 	/*
4717 	 * Create snapshot, clone it, mark snap for deferred destroy,
4718 	 * destroy clone, verify snap was also destroyed.
4719 	 */
4720 	error = dmu_objset_snapshot_one(osname, snapname);
4721 	if (error) {
4722 		if (error == ENOSPC) {
4723 			ztest_record_enospc("dmu_objset_snapshot");
4724 			goto out;
4725 		}
4726 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4727 	}
4728 
4729 	error = dmu_objset_clone(clonename, fullname);
4730 	if (error) {
4731 		if (error == ENOSPC) {
4732 			ztest_record_enospc("dmu_objset_clone");
4733 			goto out;
4734 		}
4735 		fatal(0, "dmu_objset_clone(%s) = %d", clonename, error);
4736 	}
4737 
4738 	error = dsl_destroy_snapshot(fullname, B_TRUE);
4739 	if (error) {
4740 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4741 		    fullname, error);
4742 	}
4743 
4744 	error = dsl_destroy_head(clonename);
4745 	if (error)
4746 		fatal(0, "dsl_destroy_head(%s) = %d", clonename, error);
4747 
4748 	error = dmu_objset_hold(fullname, FTAG, &origin);
4749 	if (error != ENOENT)
4750 		fatal(0, "dmu_objset_hold(%s) = %d", fullname, error);
4751 
4752 	/*
4753 	 * Create snapshot, add temporary hold, verify that we can't
4754 	 * destroy a held snapshot, mark for deferred destroy,
4755 	 * release hold, verify snapshot was destroyed.
4756 	 */
4757 	error = dmu_objset_snapshot_one(osname, snapname);
4758 	if (error) {
4759 		if (error == ENOSPC) {
4760 			ztest_record_enospc("dmu_objset_snapshot");
4761 			goto out;
4762 		}
4763 		fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error);
4764 	}
4765 
4766 	holds = fnvlist_alloc();
4767 	fnvlist_add_string(holds, fullname, tag);
4768 	error = dsl_dataset_user_hold(holds, 0, NULL);
4769 	fnvlist_free(holds);
4770 
4771 	if (error == ENOSPC) {
4772 		ztest_record_enospc("dsl_dataset_user_hold");
4773 		goto out;
4774 	} else if (error) {
4775 		fatal(0, "dsl_dataset_user_hold(%s, %s) = %u",
4776 		    fullname, tag, error);
4777 	}
4778 
4779 	error = dsl_destroy_snapshot(fullname, B_FALSE);
4780 	if (error != EBUSY) {
4781 		fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
4782 		    fullname, error);
4783 	}
4784 
4785 	error = dsl_destroy_snapshot(fullname, B_TRUE);
4786 	if (error) {
4787 		fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
4788 		    fullname, error);
4789 	}
4790 
4791 	error = user_release_one(fullname, tag);
4792 	if (error)
4793 		fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error);
4794 
4795 	VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
4796 
4797 out:
4798 	(void) rw_unlock(&ztest_name_lock);
4799 }
4800 
4801 /*
4802  * Inject random faults into the on-disk data.
4803  */
4804 /* ARGSUSED */
4805 void
4806 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
4807 {
4808 	ztest_shared_t *zs = ztest_shared;
4809 	spa_t *spa = ztest_spa;
4810 	int fd;
4811 	uint64_t offset;
4812 	uint64_t leaves;
4813 	uint64_t bad = 0x1990c0ffeedecade;
4814 	uint64_t top, leaf;
4815 	char path0[MAXPATHLEN];
4816 	char pathrand[MAXPATHLEN];
4817 	size_t fsize;
4818 	int bshift = SPA_MAXBLOCKSHIFT + 2;
4819 	int iters = 1000;
4820 	int maxfaults;
4821 	int mirror_save;
4822 	vdev_t *vd0 = NULL;
4823 	uint64_t guid0 = 0;
4824 	boolean_t islog = B_FALSE;
4825 
4826 	VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4827 	maxfaults = MAXFAULTS();
4828 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz;
4829 	mirror_save = zs->zs_mirrors;
4830 	VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4831 
4832 	ASSERT(leaves >= 1);
4833 
4834 	/*
4835 	 * Grab the name lock as reader. There are some operations
4836 	 * which don't like to have their vdevs changed while
4837 	 * they are in progress (i.e. spa_change_guid). Those
4838 	 * operations will have grabbed the name lock as writer.
4839 	 */
4840 	(void) rw_rdlock(&ztest_name_lock);
4841 
4842 	/*
4843 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
4844 	 */
4845 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4846 
4847 	if (ztest_random(2) == 0) {
4848 		/*
4849 		 * Inject errors on a normal data device or slog device.
4850 		 */
4851 		top = ztest_random_vdev_top(spa, B_TRUE);
4852 		leaf = ztest_random(leaves) + zs->zs_splits;
4853 
4854 		/*
4855 		 * Generate paths to the first leaf in this top-level vdev,
4856 		 * and to the random leaf we selected.  We'll induce transient
4857 		 * write failures and random online/offline activity on leaf 0,
4858 		 * and we'll write random garbage to the randomly chosen leaf.
4859 		 */
4860 		(void) snprintf(path0, sizeof (path0), ztest_dev_template,
4861 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
4862 		    top * leaves + zs->zs_splits);
4863 		(void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template,
4864 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
4865 		    top * leaves + leaf);
4866 
4867 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
4868 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
4869 			islog = B_TRUE;
4870 
4871 		/*
4872 		 * If the top-level vdev needs to be resilvered
4873 		 * then we only allow faults on the device that is
4874 		 * resilvering.
4875 		 */
4876 		if (vd0 != NULL && maxfaults != 1 &&
4877 		    (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
4878 		    vd0->vdev_resilver_txg != 0)) {
4879 			/*
4880 			 * Make vd0 explicitly claim to be unreadable,
4881 			 * or unwriteable, or reach behind its back
4882 			 * and close the underlying fd.  We can do this if
4883 			 * maxfaults == 0 because we'll fail and reexecute,
4884 			 * and we can do it if maxfaults >= 2 because we'll
4885 			 * have enough redundancy.  If maxfaults == 1, the
4886 			 * combination of this with injection of random data
4887 			 * corruption below exceeds the pool's fault tolerance.
4888 			 */
4889 			vdev_file_t *vf = vd0->vdev_tsd;
4890 
4891 			if (vf != NULL && ztest_random(3) == 0) {
4892 				(void) close(vf->vf_vnode->v_fd);
4893 				vf->vf_vnode->v_fd = -1;
4894 			} else if (ztest_random(2) == 0) {
4895 				vd0->vdev_cant_read = B_TRUE;
4896 			} else {
4897 				vd0->vdev_cant_write = B_TRUE;
4898 			}
4899 			guid0 = vd0->vdev_guid;
4900 		}
4901 	} else {
4902 		/*
4903 		 * Inject errors on an l2cache device.
4904 		 */
4905 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
4906 
4907 		if (sav->sav_count == 0) {
4908 			spa_config_exit(spa, SCL_STATE, FTAG);
4909 			(void) rw_unlock(&ztest_name_lock);
4910 			return;
4911 		}
4912 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
4913 		guid0 = vd0->vdev_guid;
4914 		(void) strcpy(path0, vd0->vdev_path);
4915 		(void) strcpy(pathrand, vd0->vdev_path);
4916 
4917 		leaf = 0;
4918 		leaves = 1;
4919 		maxfaults = INT_MAX;	/* no limit on cache devices */
4920 	}
4921 
4922 	spa_config_exit(spa, SCL_STATE, FTAG);
4923 	(void) rw_unlock(&ztest_name_lock);
4924 
4925 	/*
4926 	 * If we can tolerate two or more faults, or we're dealing
4927 	 * with a slog, randomly online/offline vd0.
4928 	 */
4929 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
4930 		if (ztest_random(10) < 6) {
4931 			int flags = (ztest_random(2) == 0 ?
4932 			    ZFS_OFFLINE_TEMPORARY : 0);
4933 
4934 			/*
4935 			 * We have to grab the zs_name_lock as writer to
4936 			 * prevent a race between offlining a slog and
4937 			 * destroying a dataset. Offlining the slog will
4938 			 * grab a reference on the dataset which may cause
4939 			 * dmu_objset_destroy() to fail with EBUSY thus
4940 			 * leaving the dataset in an inconsistent state.
4941 			 */
4942 			if (islog)
4943 				(void) rw_wrlock(&ztest_name_lock);
4944 
4945 			VERIFY(vdev_offline(spa, guid0, flags) != EBUSY);
4946 
4947 			if (islog)
4948 				(void) rw_unlock(&ztest_name_lock);
4949 		} else {
4950 			/*
4951 			 * Ideally we would like to be able to randomly
4952 			 * call vdev_[on|off]line without holding locks
4953 			 * to force unpredictable failures but the side
4954 			 * effects of vdev_[on|off]line prevent us from
4955 			 * doing so. We grab the ztest_vdev_lock here to
4956 			 * prevent a race between injection testing and
4957 			 * aux_vdev removal.
4958 			 */
4959 			VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
4960 			(void) vdev_online(spa, guid0, 0, NULL);
4961 			VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
4962 		}
4963 	}
4964 
4965 	if (maxfaults == 0)
4966 		return;
4967 
4968 	/*
4969 	 * We have at least single-fault tolerance, so inject data corruption.
4970 	 */
4971 	fd = open(pathrand, O_RDWR);
4972 
4973 	if (fd == -1)	/* we hit a gap in the device namespace */
4974 		return;
4975 
4976 	fsize = lseek(fd, 0, SEEK_END);
4977 
4978 	while (--iters != 0) {
4979 		/*
4980 		 * The offset must be chosen carefully to ensure that
4981 		 * we do not inject a given logical block with errors
4982 		 * on two different leaf devices, because ZFS can not
4983 		 * tolerate that (if maxfaults==1).
4984 		 *
4985 		 * We divide each leaf into chunks of size
4986 		 * (# leaves * SPA_MAXBLOCKSIZE * 4).  Within each chunk
4987 		 * there is a series of ranges to which we can inject errors.
4988 		 * Each range can accept errors on only a single leaf vdev.
4989 		 * The error injection ranges are separated by ranges
4990 		 * which we will not inject errors on any device (DMZs).
4991 		 * Each DMZ must be large enough such that a single block
4992 		 * can not straddle it, so that a single block can not be
4993 		 * a target in two different injection ranges (on different
4994 		 * leaf vdevs).
4995 		 *
4996 		 * For example, with 3 leaves, each chunk looks like:
4997 		 *    0 to  32M: injection range for leaf 0
4998 		 *  32M to  64M: DMZ - no injection allowed
4999 		 *  64M to  96M: injection range for leaf 1
5000 		 *  96M to 128M: DMZ - no injection allowed
5001 		 * 128M to 160M: injection range for leaf 2
5002 		 * 160M to 192M: DMZ - no injection allowed
5003 		 */
5004 		offset = ztest_random(fsize / (leaves << bshift)) *
5005 		    (leaves << bshift) + (leaf << bshift) +
5006 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
5007 
5008 		/*
5009 		 * Only allow damage to the labels at one end of the vdev.
5010 		 *
5011 		 * If all labels are damaged, the device will be totally
5012 		 * inaccessible, which will result in loss of data,
5013 		 * because we also damage (parts of) the other side of
5014 		 * the mirror/raidz.
5015 		 *
5016 		 * Additionally, we will always have both an even and an
5017 		 * odd label, so that we can handle crashes in the
5018 		 * middle of vdev_config_sync().
5019 		 */
5020 		if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
5021 			continue;
5022 
5023 		/*
5024 		 * The two end labels are stored at the "end" of the disk, but
5025 		 * the end of the disk (vdev_psize) is aligned to
5026 		 * sizeof (vdev_label_t).
5027 		 */
5028 		uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
5029 		if ((leaf & 1) == 1 &&
5030 		    offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
5031 			continue;
5032 
5033 		VERIFY(mutex_lock(&ztest_vdev_lock) == 0);
5034 		if (mirror_save != zs->zs_mirrors) {
5035 			VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
5036 			(void) close(fd);
5037 			return;
5038 		}
5039 
5040 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
5041 			fatal(1, "can't inject bad word at 0x%llx in %s",
5042 			    offset, pathrand);
5043 
5044 		VERIFY(mutex_unlock(&ztest_vdev_lock) == 0);
5045 
5046 		if (ztest_opts.zo_verbose >= 7)
5047 			(void) printf("injected bad word into %s,"
5048 			    " offset 0x%llx\n", pathrand, (u_longlong_t)offset);
5049 	}
5050 
5051 	(void) close(fd);
5052 }
5053 
5054 /*
5055  * Verify that DDT repair works as expected.
5056  */
5057 void
5058 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id)
5059 {
5060 	ztest_shared_t *zs = ztest_shared;
5061 	spa_t *spa = ztest_spa;
5062 	objset_t *os = zd->zd_os;
5063 	ztest_od_t od[1];
5064 	uint64_t object, blocksize, txg, pattern, psize;
5065 	enum zio_checksum checksum = spa_dedup_checksum(spa);
5066 	dmu_buf_t *db;
5067 	dmu_tx_t *tx;
5068 	abd_t *abd;
5069 	blkptr_t blk;
5070 	int copies = 2 * ZIO_DEDUPDITTO_MIN;
5071 
5072 	blocksize = ztest_random_blocksize();
5073 	blocksize = MIN(blocksize, 2048);	/* because we write so many */
5074 
5075 	ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
5076 
5077 	if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
5078 		return;
5079 
5080 	/*
5081 	 * Take the name lock as writer to prevent anyone else from changing
5082 	 * the pool and dataset properies we need to maintain during this test.
5083 	 */
5084 	(void) rw_wrlock(&ztest_name_lock);
5085 
5086 	if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum,
5087 	    B_FALSE) != 0 ||
5088 	    ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1,
5089 	    B_FALSE) != 0) {
5090 		(void) rw_unlock(&ztest_name_lock);
5091 		return;
5092 	}
5093 
5094 	dmu_objset_stats_t dds;
5095 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5096 	dmu_objset_fast_stat(os, &dds);
5097 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5098 
5099 	object = od[0].od_object;
5100 	blocksize = od[0].od_blocksize;
5101 	pattern = zs->zs_guid ^ dds.dds_guid;
5102 
5103 	ASSERT(object != 0);
5104 
5105 	tx = dmu_tx_create(os);
5106 	dmu_tx_hold_write(tx, object, 0, copies * blocksize);
5107 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
5108 	if (txg == 0) {
5109 		(void) rw_unlock(&ztest_name_lock);
5110 		return;
5111 	}
5112 
5113 	/*
5114 	 * Write all the copies of our block.
5115 	 */
5116 	for (int i = 0; i < copies; i++) {
5117 		uint64_t offset = i * blocksize;
5118 		int error = dmu_buf_hold(os, object, offset, FTAG, &db,
5119 		    DMU_READ_NO_PREFETCH);
5120 		if (error != 0) {
5121 			fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u",
5122 			    os, (long long)object, (long long) offset, error);
5123 		}
5124 		ASSERT(db->db_offset == offset);
5125 		ASSERT(db->db_size == blocksize);
5126 		ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) ||
5127 		    ztest_pattern_match(db->db_data, db->db_size, 0ULL));
5128 		dmu_buf_will_fill(db, tx);
5129 		ztest_pattern_set(db->db_data, db->db_size, pattern);
5130 		dmu_buf_rele(db, FTAG);
5131 	}
5132 
5133 	dmu_tx_commit(tx);
5134 	txg_wait_synced(spa_get_dsl(spa), txg);
5135 
5136 	/*
5137 	 * Find out what block we got.
5138 	 */
5139 	VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db,
5140 	    DMU_READ_NO_PREFETCH));
5141 	blk = *((dmu_buf_impl_t *)db)->db_blkptr;
5142 	dmu_buf_rele(db, FTAG);
5143 
5144 	/*
5145 	 * Damage the block.  Dedup-ditto will save us when we read it later.
5146 	 */
5147 	psize = BP_GET_PSIZE(&blk);
5148 	abd = abd_alloc_linear(psize, B_TRUE);
5149 	ztest_pattern_set(abd_to_buf(abd), psize, ~pattern);
5150 
5151 	(void) zio_wait(zio_rewrite(NULL, spa, 0, &blk,
5152 	    abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE,
5153 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL));
5154 
5155 	abd_free(abd);
5156 
5157 	(void) rw_unlock(&ztest_name_lock);
5158 }
5159 
5160 /*
5161  * Scrub the pool.
5162  */
5163 /* ARGSUSED */
5164 void
5165 ztest_scrub(ztest_ds_t *zd, uint64_t id)
5166 {
5167 	spa_t *spa = ztest_spa;
5168 
5169 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
5170 	(void) poll(NULL, 0, 100); /* wait a moment, then force a restart */
5171 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
5172 }
5173 
5174 /*
5175  * Change the guid for the pool.
5176  */
5177 /* ARGSUSED */
5178 void
5179 ztest_reguid(ztest_ds_t *zd, uint64_t id)
5180 {
5181 	spa_t *spa = ztest_spa;
5182 	uint64_t orig, load;
5183 	int error;
5184 
5185 	orig = spa_guid(spa);
5186 	load = spa_load_guid(spa);
5187 
5188 	(void) rw_wrlock(&ztest_name_lock);
5189 	error = spa_change_guid(spa);
5190 	(void) rw_unlock(&ztest_name_lock);
5191 
5192 	if (error != 0)
5193 		return;
5194 
5195 	if (ztest_opts.zo_verbose >= 4) {
5196 		(void) printf("Changed guid old %llu -> %llu\n",
5197 		    (u_longlong_t)orig, (u_longlong_t)spa_guid(spa));
5198 	}
5199 
5200 	VERIFY3U(orig, !=, spa_guid(spa));
5201 	VERIFY3U(load, ==, spa_load_guid(spa));
5202 }
5203 
5204 /*
5205  * Rename the pool to a different name and then rename it back.
5206  */
5207 /* ARGSUSED */
5208 void
5209 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
5210 {
5211 	char *oldname, *newname;
5212 	spa_t *spa;
5213 
5214 	(void) rw_wrlock(&ztest_name_lock);
5215 
5216 	oldname = ztest_opts.zo_pool;
5217 	newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
5218 	(void) strcpy(newname, oldname);
5219 	(void) strcat(newname, "_tmp");
5220 
5221 	/*
5222 	 * Do the rename
5223 	 */
5224 	VERIFY3U(0, ==, spa_rename(oldname, newname));
5225 
5226 	/*
5227 	 * Try to open it under the old name, which shouldn't exist
5228 	 */
5229 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5230 
5231 	/*
5232 	 * Open it under the new name and make sure it's still the same spa_t.
5233 	 */
5234 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5235 
5236 	ASSERT(spa == ztest_spa);
5237 	spa_close(spa, FTAG);
5238 
5239 	/*
5240 	 * Rename it back to the original
5241 	 */
5242 	VERIFY3U(0, ==, spa_rename(newname, oldname));
5243 
5244 	/*
5245 	 * Make sure it can still be opened
5246 	 */
5247 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5248 
5249 	ASSERT(spa == ztest_spa);
5250 	spa_close(spa, FTAG);
5251 
5252 	umem_free(newname, strlen(newname) + 1);
5253 
5254 	(void) rw_unlock(&ztest_name_lock);
5255 }
5256 
5257 /*
5258  * Verify pool integrity by running zdb.
5259  */
5260 static void
5261 ztest_run_zdb(char *pool)
5262 {
5263 	int status;
5264 	char zdb[MAXPATHLEN + MAXNAMELEN + 20];
5265 	char zbuf[1024];
5266 	char *bin;
5267 	char *ztest;
5268 	char *isa;
5269 	int isalen;
5270 	FILE *fp;
5271 
5272 	(void) realpath(getexecname(), zdb);
5273 
5274 	/* zdb lives in /usr/sbin, while ztest lives in /usr/bin */
5275 	bin = strstr(zdb, "/usr/bin/");
5276 	ztest = strstr(bin, "/ztest");
5277 	isa = bin + 8;
5278 	isalen = ztest - isa;
5279 	isa = strdup(isa);
5280 	/* LINTED */
5281 	(void) sprintf(bin,
5282 	    "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s %s",
5283 	    isalen,
5284 	    isa,
5285 	    ztest_opts.zo_verbose >= 3 ? "s" : "",
5286 	    ztest_opts.zo_verbose >= 4 ? "v" : "",
5287 	    spa_config_path,
5288 	    pool);
5289 	free(isa);
5290 
5291 	if (ztest_opts.zo_verbose >= 5)
5292 		(void) printf("Executing %s\n", strstr(zdb, "zdb "));
5293 
5294 	fp = popen(zdb, "r");
5295 
5296 	while (fgets(zbuf, sizeof (zbuf), fp) != NULL)
5297 		if (ztest_opts.zo_verbose >= 3)
5298 			(void) printf("%s", zbuf);
5299 
5300 	status = pclose(fp);
5301 
5302 	if (status == 0)
5303 		return;
5304 
5305 	ztest_dump_core = 0;
5306 	if (WIFEXITED(status))
5307 		fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status));
5308 	else
5309 		fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status));
5310 }
5311 
5312 static void
5313 ztest_walk_pool_directory(char *header)
5314 {
5315 	spa_t *spa = NULL;
5316 
5317 	if (ztest_opts.zo_verbose >= 6)
5318 		(void) printf("%s\n", header);
5319 
5320 	mutex_enter(&spa_namespace_lock);
5321 	while ((spa = spa_next(spa)) != NULL)
5322 		if (ztest_opts.zo_verbose >= 6)
5323 			(void) printf("\t%s\n", spa_name(spa));
5324 	mutex_exit(&spa_namespace_lock);
5325 }
5326 
5327 static void
5328 ztest_spa_import_export(char *oldname, char *newname)
5329 {
5330 	nvlist_t *config, *newconfig;
5331 	uint64_t pool_guid;
5332 	spa_t *spa;
5333 	int error;
5334 
5335 	if (ztest_opts.zo_verbose >= 4) {
5336 		(void) printf("import/export: old = %s, new = %s\n",
5337 		    oldname, newname);
5338 	}
5339 
5340 	/*
5341 	 * Clean up from previous runs.
5342 	 */
5343 	(void) spa_destroy(newname);
5344 
5345 	/*
5346 	 * Get the pool's configuration and guid.
5347 	 */
5348 	VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));
5349 
5350 	/*
5351 	 * Kick off a scrub to tickle scrub/export races.
5352 	 */
5353 	if (ztest_random(2) == 0)
5354 		(void) spa_scan(spa, POOL_SCAN_SCRUB);
5355 
5356 	pool_guid = spa_guid(spa);
5357 	spa_close(spa, FTAG);
5358 
5359 	ztest_walk_pool_directory("pools before export");
5360 
5361 	/*
5362 	 * Export it.
5363 	 */
5364 	VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));
5365 
5366 	ztest_walk_pool_directory("pools after export");
5367 
5368 	/*
5369 	 * Try to import it.
5370 	 */
5371 	newconfig = spa_tryimport(config);
5372 	ASSERT(newconfig != NULL);
5373 	nvlist_free(newconfig);
5374 
5375 	/*
5376 	 * Import it under the new name.
5377 	 */
5378 	error = spa_import(newname, config, NULL, 0);
5379 	if (error != 0) {
5380 		dump_nvlist(config, 0);
5381 		fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
5382 		    oldname, newname, error);
5383 	}
5384 
5385 	ztest_walk_pool_directory("pools after import");
5386 
5387 	/*
5388 	 * Try to import it again -- should fail with EEXIST.
5389 	 */
5390 	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
5391 
5392 	/*
5393 	 * Try to import it under a different name -- should fail with EEXIST.
5394 	 */
5395 	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
5396 
5397 	/*
5398 	 * Verify that the pool is no longer visible under the old name.
5399 	 */
5400 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
5401 
5402 	/*
5403 	 * Verify that we can open and close the pool using the new name.
5404 	 */
5405 	VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5406 	ASSERT(pool_guid == spa_guid(spa));
5407 	spa_close(spa, FTAG);
5408 
5409 	nvlist_free(config);
5410 }
5411 
5412 static void
5413 ztest_resume(spa_t *spa)
5414 {
5415 	if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
5416 		(void) printf("resuming from suspended state\n");
5417 	spa_vdev_state_enter(spa, SCL_NONE);
5418 	vdev_clear(spa, NULL);
5419 	(void) spa_vdev_state_exit(spa, NULL, 0);
5420 	(void) zio_resume(spa);
5421 }
5422 
5423 static void *
5424 ztest_resume_thread(void *arg)
5425 {
5426 	spa_t *spa = arg;
5427 
5428 	while (!ztest_exiting) {
5429 		if (spa_suspended(spa))
5430 			ztest_resume(spa);
5431 		(void) poll(NULL, 0, 100);
5432 
5433 		/*
5434 		 * Periodically change the zfs_compressed_arc_enabled setting.
5435 		 */
5436 		if (ztest_random(10) == 0)
5437 			zfs_compressed_arc_enabled = ztest_random(2);
5438 
5439 		/*
5440 		 * Periodically change the zfs_abd_scatter_enabled setting.
5441 		 */
5442 		if (ztest_random(10) == 0)
5443 			zfs_abd_scatter_enabled = ztest_random(2);
5444 	}
5445 	return (NULL);
5446 }
5447 
5448 static void *
5449 ztest_deadman_thread(void *arg)
5450 {
5451 	ztest_shared_t *zs = arg;
5452 	spa_t *spa = ztest_spa;
5453 	hrtime_t delta, total = 0;
5454 
5455 	for (;;) {
5456 		delta = zs->zs_thread_stop - zs->zs_thread_start +
5457 		    MSEC2NSEC(zfs_deadman_synctime_ms);
5458 
5459 		(void) poll(NULL, 0, (int)NSEC2MSEC(delta));
5460 
5461 		/*
5462 		 * If the pool is suspended then fail immediately. Otherwise,
5463 		 * check to see if the pool is making any progress. If
5464 		 * vdev_deadman() discovers that there hasn't been any recent
5465 		 * I/Os then it will end up aborting the tests.
5466 		 */
5467 		if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
5468 			fatal(0, "aborting test after %llu seconds because "
5469 			    "pool has transitioned to a suspended state.",
5470 			    zfs_deadman_synctime_ms / 1000);
5471 			return (NULL);
5472 		}
5473 		vdev_deadman(spa->spa_root_vdev);
5474 
5475 		total += zfs_deadman_synctime_ms/1000;
5476 		(void) printf("ztest has been running for %lld seconds\n",
5477 		    total);
5478 	}
5479 }
5480 
5481 static void
5482 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
5483 {
5484 	ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
5485 	ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
5486 	hrtime_t functime = gethrtime();
5487 
5488 	for (int i = 0; i < zi->zi_iters; i++)
5489 		zi->zi_func(zd, id);
5490 
5491 	functime = gethrtime() - functime;
5492 
5493 	atomic_add_64(&zc->zc_count, 1);
5494 	atomic_add_64(&zc->zc_time, functime);
5495 
5496 	if (ztest_opts.zo_verbose >= 4) {
5497 		Dl_info dli;
5498 		(void) dladdr((void *)zi->zi_func, &dli);
5499 		(void) printf("%6.2f sec in %s\n",
5500 		    (double)functime / NANOSEC, dli.dli_sname);
5501 	}
5502 }
5503 
5504 static void *
5505 ztest_thread(void *arg)
5506 {
5507 	int rand;
5508 	uint64_t id = (uintptr_t)arg;
5509 	ztest_shared_t *zs = ztest_shared;
5510 	uint64_t call_next;
5511 	hrtime_t now;
5512 	ztest_info_t *zi;
5513 	ztest_shared_callstate_t *zc;
5514 
5515 	while ((now = gethrtime()) < zs->zs_thread_stop) {
5516 		/*
5517 		 * See if it's time to force a crash.
5518 		 */
5519 		if (now > zs->zs_thread_kill)
5520 			ztest_kill(zs);
5521 
5522 		/*
5523 		 * If we're getting ENOSPC with some regularity, stop.
5524 		 */
5525 		if (zs->zs_enospc_count > 10)
5526 			break;
5527 
5528 		/*
5529 		 * Pick a random function to execute.
5530 		 */
5531 		rand = ztest_random(ZTEST_FUNCS);
5532 		zi = &ztest_info[rand];
5533 		zc = ZTEST_GET_SHARED_CALLSTATE(rand);
5534 		call_next = zc->zc_next;
5535 
5536 		if (now >= call_next &&
5537 		    atomic_cas_64(&zc->zc_next, call_next, call_next +
5538 		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
5539 			ztest_execute(rand, zi, id);
5540 		}
5541 	}
5542 
5543 	return (NULL);
5544 }
5545 
5546 static void
5547 ztest_dataset_name(char *dsname, char *pool, int d)
5548 {
5549 	(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
5550 }
5551 
5552 static void
5553 ztest_dataset_destroy(int d)
5554 {
5555 	char name[ZFS_MAX_DATASET_NAME_LEN];
5556 
5557 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
5558 
5559 	if (ztest_opts.zo_verbose >= 3)
5560 		(void) printf("Destroying %s to free up space\n", name);
5561 
5562 	/*
5563 	 * Cleanup any non-standard clones and snapshots.  In general,
5564 	 * ztest thread t operates on dataset (t % zopt_datasets),
5565 	 * so there may be more than one thing to clean up.
5566 	 */
5567 	for (int t = d; t < ztest_opts.zo_threads;
5568 	    t += ztest_opts.zo_datasets) {
5569 		ztest_dsl_dataset_cleanup(name, t);
5570 	}
5571 
5572 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
5573 	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
5574 }
5575 
5576 static void
5577 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5578 {
5579 	uint64_t usedobjs, dirobjs, scratch;
5580 
5581 	/*
5582 	 * ZTEST_DIROBJ is the object directory for the entire dataset.
5583 	 * Therefore, the number of objects in use should equal the
5584 	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5585 	 * If not, we have an object leak.
5586 	 *
5587 	 * Note that we can only check this in ztest_dataset_open(),
5588 	 * when the open-context and syncing-context values agree.
5589 	 * That's because zap_count() returns the open-context value,
5590 	 * while dmu_objset_space() returns the rootbp fill count.
5591 	 */
5592 	VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5593 	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5594 	ASSERT3U(dirobjs + 1, ==, usedobjs);
5595 }
5596 
5597 static int
5598 ztest_dataset_open(int d)
5599 {
5600 	ztest_ds_t *zd = &ztest_ds[d];
5601 	uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
5602 	objset_t *os;
5603 	zilog_t *zilog;
5604 	char name[ZFS_MAX_DATASET_NAME_LEN];
5605 	int error;
5606 
5607 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
5608 
5609 	(void) rw_rdlock(&ztest_name_lock);
5610 
5611 	error = ztest_dataset_create(name);
5612 	if (error == ENOSPC) {
5613 		(void) rw_unlock(&ztest_name_lock);
5614 		ztest_record_enospc(FTAG);
5615 		return (error);
5616 	}
5617 	ASSERT(error == 0 || error == EEXIST);
5618 
5619 	VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os));
5620 	(void) rw_unlock(&ztest_name_lock);
5621 
5622 	ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
5623 
5624 	zilog = zd->zd_zilog;
5625 
5626 	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5627 	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
5628 		fatal(0, "missing log records: claimed %llu < committed %llu",
5629 		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
5630 
5631 	ztest_dataset_dirobj_verify(zd);
5632 
5633 	zil_replay(os, zd, ztest_replay_vector);
5634 
5635 	ztest_dataset_dirobj_verify(zd);
5636 
5637 	if (ztest_opts.zo_verbose >= 6)
5638 		(void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5639 		    zd->zd_name,
5640 		    (u_longlong_t)zilog->zl_parse_blk_count,
5641 		    (u_longlong_t)zilog->zl_parse_lr_count,
5642 		    (u_longlong_t)zilog->zl_replaying_seq);
5643 
5644 	zilog = zil_open(os, ztest_get_data);
5645 
5646 	if (zilog->zl_replaying_seq != 0 &&
5647 	    zilog->zl_replaying_seq < committed_seq)
5648 		fatal(0, "missing log records: replayed %llu < committed %llu",
5649 		    zilog->zl_replaying_seq, committed_seq);
5650 
5651 	return (0);
5652 }
5653 
5654 static void
5655 ztest_dataset_close(int d)
5656 {
5657 	ztest_ds_t *zd = &ztest_ds[d];
5658 
5659 	zil_close(zd->zd_zilog);
5660 	dmu_objset_disown(zd->zd_os, zd);
5661 
5662 	ztest_zd_fini(zd);
5663 }
5664 
5665 /*
5666  * Kick off threads to run tests on all datasets in parallel.
5667  */
5668 static void
5669 ztest_run(ztest_shared_t *zs)
5670 {
5671 	thread_t *tid;
5672 	spa_t *spa;
5673 	objset_t *os;
5674 	thread_t resume_tid;
5675 	int error;
5676 
5677 	ztest_exiting = B_FALSE;
5678 
5679 	/*
5680 	 * Initialize parent/child shared state.
5681 	 */
5682 	VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5683 	VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5684 
5685 	zs->zs_thread_start = gethrtime();
5686 	zs->zs_thread_stop =
5687 	    zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
5688 	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5689 	zs->zs_thread_kill = zs->zs_thread_stop;
5690 	if (ztest_random(100) < ztest_opts.zo_killrate) {
5691 		zs->zs_thread_kill -=
5692 		    ztest_random(ztest_opts.zo_passtime * NANOSEC);
5693 	}
5694 
5695 	(void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL);
5696 
5697 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5698 	    offsetof(ztest_cb_data_t, zcd_node));
5699 
5700 	/*
5701 	 * Open our pool.
5702 	 */
5703 	kernel_init(FREAD | FWRITE);
5704 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5705 	spa->spa_debug = B_TRUE;
5706 	metaslab_preload_limit = ztest_random(20) + 1;
5707 	ztest_spa = spa;
5708 
5709 	dmu_objset_stats_t dds;
5710 	VERIFY0(dmu_objset_own(ztest_opts.zo_pool,
5711 	    DMU_OST_ANY, B_TRUE, FTAG, &os));
5712 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
5713 	dmu_objset_fast_stat(os, &dds);
5714 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
5715 	zs->zs_guid = dds.dds_guid;
5716 	dmu_objset_disown(os, FTAG);
5717 
5718 	spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;
5719 
5720 	/*
5721 	 * We don't expect the pool to suspend unless maxfaults == 0,
5722 	 * in which case ztest_fault_inject() temporarily takes away
5723 	 * the only valid replica.
5724 	 */
5725 	if (MAXFAULTS() == 0)
5726 		spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5727 	else
5728 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
5729 
5730 	/*
5731 	 * Create a thread to periodically resume suspended I/O.
5732 	 */
5733 	VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
5734 	    &resume_tid) == 0);
5735 
5736 	/*
5737 	 * Create a deadman thread to abort() if we hang.
5738 	 */
5739 	VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND,
5740 	    NULL) == 0);
5741 
5742 	/*
5743 	 * Verify that we can safely inquire about about any object,
5744 	 * whether it's allocated or not.  To make it interesting,
5745 	 * we probe a 5-wide window around each power of two.
5746 	 * This hits all edge cases, including zero and the max.
5747 	 */
5748 	for (int t = 0; t < 64; t++) {
5749 		for (int d = -5; d <= 5; d++) {
5750 			error = dmu_object_info(spa->spa_meta_objset,
5751 			    (1ULL << t) + d, NULL);
5752 			ASSERT(error == 0 || error == ENOENT ||
5753 			    error == EINVAL);
5754 		}
5755 	}
5756 
5757 	/*
5758 	 * If we got any ENOSPC errors on the previous run, destroy something.
5759 	 */
5760 	if (zs->zs_enospc_count != 0) {
5761 		int d = ztest_random(ztest_opts.zo_datasets);
5762 		ztest_dataset_destroy(d);
5763 	}
5764 	zs->zs_enospc_count = 0;
5765 
5766 	tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t),
5767 	    UMEM_NOFAIL);
5768 
5769 	if (ztest_opts.zo_verbose >= 4)
5770 		(void) printf("starting main threads...\n");
5771 
5772 	/*
5773 	 * Kick off all the tests that run in parallel.
5774 	 */
5775 	for (int t = 0; t < ztest_opts.zo_threads; t++) {
5776 		if (t < ztest_opts.zo_datasets &&
5777 		    ztest_dataset_open(t) != 0)
5778 			return;
5779 		VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t,
5780 		    THR_BOUND, &tid[t]) == 0);
5781 	}
5782 
5783 	/*
5784 	 * Wait for all of the tests to complete.  We go in reverse order
5785 	 * so we don't close datasets while threads are still using them.
5786 	 */
5787 	for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) {
5788 		VERIFY(thr_join(tid[t], NULL, NULL) == 0);
5789 		if (t < ztest_opts.zo_datasets)
5790 			ztest_dataset_close(t);
5791 	}
5792 
5793 	txg_wait_synced(spa_get_dsl(spa), 0);
5794 
5795 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
5796 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
5797 	zfs_dbgmsg_print(FTAG);
5798 
5799 	umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t));
5800 
5801 	/* Kill the resume thread */
5802 	ztest_exiting = B_TRUE;
5803 	VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
5804 	ztest_resume(spa);
5805 
5806 	/*
5807 	 * Right before closing the pool, kick off a bunch of async I/O;
5808 	 * spa_close() should wait for it to complete.
5809 	 */
5810 	for (uint64_t object = 1; object < 50; object++) {
5811 		dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
5812 		    ZIO_PRIORITY_SYNC_READ);
5813 	}
5814 
5815 	spa_close(spa, FTAG);
5816 
5817 	/*
5818 	 * Verify that we can loop over all pools.
5819 	 */
5820 	mutex_enter(&spa_namespace_lock);
5821 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
5822 		if (ztest_opts.zo_verbose > 3)
5823 			(void) printf("spa_next: found %s\n", spa_name(spa));
5824 	mutex_exit(&spa_namespace_lock);
5825 
5826 	/*
5827 	 * Verify that we can export the pool and reimport it under a
5828 	 * different name.
5829 	 */
5830 	if (ztest_random(2) == 0) {
5831 		char name[ZFS_MAX_DATASET_NAME_LEN];
5832 		(void) snprintf(name, sizeof (name), "%s_import",
5833 		    ztest_opts.zo_pool);
5834 		ztest_spa_import_export(ztest_opts.zo_pool, name);
5835 		ztest_spa_import_export(name, ztest_opts.zo_pool);
5836 	}
5837 
5838 	kernel_fini();
5839 
5840 	list_destroy(&zcl.zcl_callbacks);
5841 
5842 	(void) _mutex_destroy(&zcl.zcl_callbacks_lock);
5843 
5844 	(void) rwlock_destroy(&ztest_name_lock);
5845 	(void) _mutex_destroy(&ztest_vdev_lock);
5846 }
5847 
5848 static void
5849 ztest_freeze(void)
5850 {
5851 	ztest_ds_t *zd = &ztest_ds[0];
5852 	spa_t *spa;
5853 	int numloops = 0;
5854 
5855 	if (ztest_opts.zo_verbose >= 3)
5856 		(void) printf("testing spa_freeze()...\n");
5857 
5858 	kernel_init(FREAD | FWRITE);
5859 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5860 	VERIFY3U(0, ==, ztest_dataset_open(0));
5861 	spa->spa_debug = B_TRUE;
5862 	ztest_spa = spa;
5863 
5864 	/*
5865 	 * Force the first log block to be transactionally allocated.
5866 	 * We have to do this before we freeze the pool -- otherwise
5867 	 * the log chain won't be anchored.
5868 	 */
5869 	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
5870 		ztest_dmu_object_alloc_free(zd, 0);
5871 		zil_commit(zd->zd_zilog, 0);
5872 	}
5873 
5874 	txg_wait_synced(spa_get_dsl(spa), 0);
5875 
5876 	/*
5877 	 * Freeze the pool.  This stops spa_sync() from doing anything,
5878 	 * so that the only way to record changes from now on is the ZIL.
5879 	 */
5880 	spa_freeze(spa);
5881 
5882 	/*
5883 	 * Because it is hard to predict how much space a write will actually
5884 	 * require beforehand, we leave ourselves some fudge space to write over
5885 	 * capacity.
5886 	 */
5887 	uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
5888 
5889 	/*
5890 	 * Run tests that generate log records but don't alter the pool config
5891 	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5892 	 * We do a txg_wait_synced() after each iteration to force the txg
5893 	 * to increase well beyond the last synced value in the uberblock.
5894 	 * The ZIL should be OK with that.
5895 	 *
5896 	 * Run a random number of times less than zo_maxloops and ensure we do
5897 	 * not run out of space on the pool.
5898 	 */
5899 	while (ztest_random(10) != 0 &&
5900 	    numloops++ < ztest_opts.zo_maxloops &&
5901 	    metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
5902 		ztest_od_t od;
5903 		ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0);
5904 		VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
5905 		ztest_io(zd, od.od_object,
5906 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5907 		txg_wait_synced(spa_get_dsl(spa), 0);
5908 	}
5909 
5910 	/*
5911 	 * Commit all of the changes we just generated.
5912 	 */
5913 	zil_commit(zd->zd_zilog, 0);
5914 	txg_wait_synced(spa_get_dsl(spa), 0);
5915 
5916 	/*
5917 	 * Close our dataset and close the pool.
5918 	 */
5919 	ztest_dataset_close(0);
5920 	spa_close(spa, FTAG);
5921 	kernel_fini();
5922 
5923 	/*
5924 	 * Open and close the pool and dataset to induce log replay.
5925 	 */
5926 	kernel_init(FREAD | FWRITE);
5927 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5928 	ASSERT(spa_freeze_txg(spa) == UINT64_MAX);
5929 	VERIFY3U(0, ==, ztest_dataset_open(0));
5930 	ztest_dataset_close(0);
5931 
5932 	spa->spa_debug = B_TRUE;
5933 	ztest_spa = spa;
5934 	txg_wait_synced(spa_get_dsl(spa), 0);
5935 	ztest_reguid(NULL, 0);
5936 
5937 	spa_close(spa, FTAG);
5938 	kernel_fini();
5939 }
5940 
5941 void
5942 print_time(hrtime_t t, char *timebuf)
5943 {
5944 	hrtime_t s = t / NANOSEC;
5945 	hrtime_t m = s / 60;
5946 	hrtime_t h = m / 60;
5947 	hrtime_t d = h / 24;
5948 
5949 	s -= m * 60;
5950 	m -= h * 60;
5951 	h -= d * 24;
5952 
5953 	timebuf[0] = '\0';
5954 
5955 	if (d)
5956 		(void) sprintf(timebuf,
5957 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
5958 	else if (h)
5959 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
5960 	else if (m)
5961 		(void) sprintf(timebuf, "%llum%02llus", m, s);
5962 	else
5963 		(void) sprintf(timebuf, "%llus", s);
5964 }
5965 
5966 static nvlist_t *
5967 make_random_props()
5968 {
5969 	nvlist_t *props;
5970 
5971 	VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
5972 	if (ztest_random(2) == 0)
5973 		return (props);
5974 	VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0);
5975 
5976 	return (props);
5977 }
5978 
5979 /*
5980  * Create a storage pool with the given name and initial vdev size.
5981  * Then test spa_freeze() functionality.
5982  */
5983 static void
5984 ztest_init(ztest_shared_t *zs)
5985 {
5986 	spa_t *spa;
5987 	nvlist_t *nvroot, *props;
5988 
5989 	VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5990 	VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);
5991 
5992 	kernel_init(FREAD | FWRITE);
5993 
5994 	/*
5995 	 * Create the storage pool.
5996 	 */
5997 	(void) spa_destroy(ztest_opts.zo_pool);
5998 	ztest_shared->zs_vdev_next_leaf = 0;
5999 	zs->zs_splits = 0;
6000 	zs->zs_mirrors = ztest_opts.zo_mirrors;
6001 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
6002 	    0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
6003 	props = make_random_props();
6004 	for (int i = 0; i < SPA_FEATURES; i++) {
6005 		char buf[1024];
6006 		(void) snprintf(buf, sizeof (buf), "feature@%s",
6007 		    spa_feature_table[i].fi_uname);
6008 		VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
6009 	}
6010 	VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
6011 	nvlist_free(nvroot);
6012 	nvlist_free(props);
6013 
6014 	VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
6015 	zs->zs_metaslab_sz =
6016 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
6017 
6018 	spa_close(spa, FTAG);
6019 
6020 	kernel_fini();
6021 
6022 	ztest_run_zdb(ztest_opts.zo_pool);
6023 
6024 	ztest_freeze();
6025 
6026 	ztest_run_zdb(ztest_opts.zo_pool);
6027 
6028 	(void) rwlock_destroy(&ztest_name_lock);
6029 	(void) _mutex_destroy(&ztest_vdev_lock);
6030 }
6031 
6032 static void
6033 setup_data_fd(void)
6034 {
6035 	static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
6036 
6037 	ztest_fd_data = mkstemp(ztest_name_data);
6038 	ASSERT3S(ztest_fd_data, >=, 0);
6039 	(void) unlink(ztest_name_data);
6040 }
6041 
6042 
6043 static int
6044 shared_data_size(ztest_shared_hdr_t *hdr)
6045 {
6046 	int size;
6047 
6048 	size = hdr->zh_hdr_size;
6049 	size += hdr->zh_opts_size;
6050 	size += hdr->zh_size;
6051 	size += hdr->zh_stats_size * hdr->zh_stats_count;
6052 	size += hdr->zh_ds_size * hdr->zh_ds_count;
6053 
6054 	return (size);
6055 }
6056 
6057 static void
6058 setup_hdr(void)
6059 {
6060 	int size;
6061 	ztest_shared_hdr_t *hdr;
6062 
6063 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6064 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6065 	ASSERT(hdr != MAP_FAILED);
6066 
6067 	VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
6068 
6069 	hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
6070 	hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
6071 	hdr->zh_size = sizeof (ztest_shared_t);
6072 	hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
6073 	hdr->zh_stats_count = ZTEST_FUNCS;
6074 	hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
6075 	hdr->zh_ds_count = ztest_opts.zo_datasets;
6076 
6077 	size = shared_data_size(hdr);
6078 	VERIFY3U(0, ==, ftruncate(ztest_fd_data, size));
6079 
6080 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6081 }
6082 
6083 static void
6084 setup_data(void)
6085 {
6086 	int size, offset;
6087 	ztest_shared_hdr_t *hdr;
6088 	uint8_t *buf;
6089 
6090 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
6091 	    PROT_READ, MAP_SHARED, ztest_fd_data, 0);
6092 	ASSERT(hdr != MAP_FAILED);
6093 
6094 	size = shared_data_size(hdr);
6095 
6096 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
6097 	hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
6098 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
6099 	ASSERT(hdr != MAP_FAILED);
6100 	buf = (uint8_t *)hdr;
6101 
6102 	offset = hdr->zh_hdr_size;
6103 	ztest_shared_opts = (void *)&buf[offset];
6104 	offset += hdr->zh_opts_size;
6105 	ztest_shared = (void *)&buf[offset];
6106 	offset += hdr->zh_size;
6107 	ztest_shared_callstate = (void *)&buf[offset];
6108 	offset += hdr->zh_stats_size * hdr->zh_stats_count;
6109 	ztest_shared_ds = (void *)&buf[offset];
6110 }
6111 
6112 static boolean_t
6113 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
6114 {
6115 	pid_t pid;
6116 	int status;
6117 	char *cmdbuf = NULL;
6118 
6119 	pid = fork();
6120 
6121 	if (cmd == NULL) {
6122 		cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6123 		(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
6124 		cmd = cmdbuf;
6125 	}
6126 
6127 	if (pid == -1)
6128 		fatal(1, "fork failed");
6129 
6130 	if (pid == 0) {	/* child */
6131 		char *emptyargv[2] = { cmd, NULL };
6132 		char fd_data_str[12];
6133 
6134 		struct rlimit rl = { 1024, 1024 };
6135 		(void) setrlimit(RLIMIT_NOFILE, &rl);
6136 
6137 		(void) close(ztest_fd_rand);
6138 		VERIFY3U(11, >=,
6139 		    snprintf(fd_data_str, 12, "%d", ztest_fd_data));
6140 		VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
6141 
6142 		(void) enable_extended_FILE_stdio(-1, -1);
6143 		if (libpath != NULL)
6144 			VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1));
6145 		(void) execv(cmd, emptyargv);
6146 		ztest_dump_core = B_FALSE;
6147 		fatal(B_TRUE, "exec failed: %s", cmd);
6148 	}
6149 
6150 	if (cmdbuf != NULL) {
6151 		umem_free(cmdbuf, MAXPATHLEN);
6152 		cmd = NULL;
6153 	}
6154 
6155 	while (waitpid(pid, &status, 0) != pid)
6156 		continue;
6157 	if (statusp != NULL)
6158 		*statusp = status;
6159 
6160 	if (WIFEXITED(status)) {
6161 		if (WEXITSTATUS(status) != 0) {
6162 			(void) fprintf(stderr, "child exited with code %d\n",
6163 			    WEXITSTATUS(status));
6164 			exit(2);
6165 		}
6166 		return (B_FALSE);
6167 	} else if (WIFSIGNALED(status)) {
6168 		if (!ignorekill || WTERMSIG(status) != SIGKILL) {
6169 			(void) fprintf(stderr, "child died with signal %d\n",
6170 			    WTERMSIG(status));
6171 			exit(3);
6172 		}
6173 		return (B_TRUE);
6174 	} else {
6175 		(void) fprintf(stderr, "something strange happened to child\n");
6176 		exit(4);
6177 		/* NOTREACHED */
6178 	}
6179 }
6180 
6181 static void
6182 ztest_run_init(void)
6183 {
6184 	ztest_shared_t *zs = ztest_shared;
6185 
6186 	ASSERT(ztest_opts.zo_init != 0);
6187 
6188 	/*
6189 	 * Blow away any existing copy of zpool.cache
6190 	 */
6191 	(void) remove(spa_config_path);
6192 
6193 	/*
6194 	 * Create and initialize our storage pool.
6195 	 */
6196 	for (int i = 1; i <= ztest_opts.zo_init; i++) {
6197 		bzero(zs, sizeof (ztest_shared_t));
6198 		if (ztest_opts.zo_verbose >= 3 &&
6199 		    ztest_opts.zo_init != 1) {
6200 			(void) printf("ztest_init(), pass %d\n", i);
6201 		}
6202 		ztest_init(zs);
6203 	}
6204 }
6205 
6206 int
6207 main(int argc, char **argv)
6208 {
6209 	int kills = 0;
6210 	int iters = 0;
6211 	int older = 0;
6212 	int newer = 0;
6213 	ztest_shared_t *zs;
6214 	ztest_info_t *zi;
6215 	ztest_shared_callstate_t *zc;
6216 	char timebuf[100];
6217 	char numbuf[NN_NUMBUF_SZ];
6218 	spa_t *spa;
6219 	char *cmd;
6220 	boolean_t hasalt;
6221 	char *fd_data_str = getenv("ZTEST_FD_DATA");
6222 
6223 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
6224 
6225 	dprintf_setup(&argc, argv);
6226 	zfs_deadman_synctime_ms = 300000;
6227 
6228 	ztest_fd_rand = open("/dev/urandom", O_RDONLY);
6229 	ASSERT3S(ztest_fd_rand, >=, 0);
6230 
6231 	if (!fd_data_str) {
6232 		process_options(argc, argv);
6233 
6234 		setup_data_fd();
6235 		setup_hdr();
6236 		setup_data();
6237 		bcopy(&ztest_opts, ztest_shared_opts,
6238 		    sizeof (*ztest_shared_opts));
6239 	} else {
6240 		ztest_fd_data = atoi(fd_data_str);
6241 		setup_data();
6242 		bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts));
6243 	}
6244 	ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
6245 
6246 	/* Override location of zpool.cache */
6247 	VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache",
6248 	    ztest_opts.zo_dir), !=, -1);
6249 
6250 	ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
6251 	    UMEM_NOFAIL);
6252 	zs = ztest_shared;
6253 
6254 	if (fd_data_str) {
6255 		metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang;
6256 		metaslab_df_alloc_threshold =
6257 		    zs->zs_metaslab_df_alloc_threshold;
6258 
6259 		if (zs->zs_do_init)
6260 			ztest_run_init();
6261 		else
6262 			ztest_run(zs);
6263 		exit(0);
6264 	}
6265 
6266 	hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
6267 
6268 	if (ztest_opts.zo_verbose >= 1) {
6269 		(void) printf("%llu vdevs, %d datasets, %d threads,"
6270 		    " %llu seconds...\n",
6271 		    (u_longlong_t)ztest_opts.zo_vdevs,
6272 		    ztest_opts.zo_datasets,
6273 		    ztest_opts.zo_threads,
6274 		    (u_longlong_t)ztest_opts.zo_time);
6275 	}
6276 
6277 	cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
6278 	(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
6279 
6280 	zs->zs_do_init = B_TRUE;
6281 	if (strlen(ztest_opts.zo_alt_ztest) != 0) {
6282 		if (ztest_opts.zo_verbose >= 1) {
6283 			(void) printf("Executing older ztest for "
6284 			    "initialization: %s\n", ztest_opts.zo_alt_ztest);
6285 		}
6286 		VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
6287 		    ztest_opts.zo_alt_libpath, B_FALSE, NULL));
6288 	} else {
6289 		VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
6290 	}
6291 	zs->zs_do_init = B_FALSE;
6292 
6293 	zs->zs_proc_start = gethrtime();
6294 	zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
6295 
6296 	for (int f = 0; f < ZTEST_FUNCS; f++) {
6297 		zi = &ztest_info[f];
6298 		zc = ZTEST_GET_SHARED_CALLSTATE(f);
6299 		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
6300 			zc->zc_next = UINT64_MAX;
6301 		else
6302 			zc->zc_next = zs->zs_proc_start +
6303 			    ztest_random(2 * zi->zi_interval[0] + 1);
6304 	}
6305 
6306 	/*
6307 	 * Run the tests in a loop.  These tests include fault injection
6308 	 * to verify that self-healing data works, and forced crashes
6309 	 * to verify that we never lose on-disk consistency.
6310 	 */
6311 	while (gethrtime() < zs->zs_proc_stop) {
6312 		int status;
6313 		boolean_t killed;
6314 
6315 		/*
6316 		 * Initialize the workload counters for each function.
6317 		 */
6318 		for (int f = 0; f < ZTEST_FUNCS; f++) {
6319 			zc = ZTEST_GET_SHARED_CALLSTATE(f);
6320 			zc->zc_count = 0;
6321 			zc->zc_time = 0;
6322 		}
6323 
6324 		/* Set the allocation switch size */
6325 		zs->zs_metaslab_df_alloc_threshold =
6326 		    ztest_random(zs->zs_metaslab_sz / 4) + 1;
6327 
6328 		if (!hasalt || ztest_random(2) == 0) {
6329 			if (hasalt && ztest_opts.zo_verbose >= 1) {
6330 				(void) printf("Executing newer ztest: %s\n",
6331 				    cmd);
6332 			}
6333 			newer++;
6334 			killed = exec_child(cmd, NULL, B_TRUE, &status);
6335 		} else {
6336 			if (hasalt && ztest_opts.zo_verbose >= 1) {
6337 				(void) printf("Executing older ztest: %s\n",
6338 				    ztest_opts.zo_alt_ztest);
6339 			}
6340 			older++;
6341 			killed = exec_child(ztest_opts.zo_alt_ztest,
6342 			    ztest_opts.zo_alt_libpath, B_TRUE, &status);
6343 		}
6344 
6345 		if (killed)
6346 			kills++;
6347 		iters++;
6348 
6349 		if (ztest_opts.zo_verbose >= 1) {
6350 			hrtime_t now = gethrtime();
6351 
6352 			now = MIN(now, zs->zs_proc_stop);
6353 			print_time(zs->zs_proc_stop - now, timebuf);
6354 			nicenum(zs->zs_space, numbuf, sizeof (numbuf));
6355 
6356 			(void) printf("Pass %3d, %8s, %3llu ENOSPC, "
6357 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
6358 			    iters,
6359 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
6360 			    (u_longlong_t)zs->zs_enospc_count,
6361 			    100.0 * zs->zs_alloc / zs->zs_space,
6362 			    numbuf,
6363 			    100.0 * (now - zs->zs_proc_start) /
6364 			    (ztest_opts.zo_time * NANOSEC), timebuf);
6365 		}
6366 
6367 		if (ztest_opts.zo_verbose >= 2) {
6368 			(void) printf("\nWorkload summary:\n\n");
6369 			(void) printf("%7s %9s   %s\n",
6370 			    "Calls", "Time", "Function");
6371 			(void) printf("%7s %9s   %s\n",
6372 			    "-----", "----", "--------");
6373 			for (int f = 0; f < ZTEST_FUNCS; f++) {
6374 				Dl_info dli;
6375 
6376 				zi = &ztest_info[f];
6377 				zc = ZTEST_GET_SHARED_CALLSTATE(f);
6378 				print_time(zc->zc_time, timebuf);
6379 				(void) dladdr((void *)zi->zi_func, &dli);
6380 				(void) printf("%7llu %9s   %s\n",
6381 				    (u_longlong_t)zc->zc_count, timebuf,
6382 				    dli.dli_sname);
6383 			}
6384 			(void) printf("\n");
6385 		}
6386 
6387 		/*
6388 		 * It's possible that we killed a child during a rename test,
6389 		 * in which case we'll have a 'ztest_tmp' pool lying around
6390 		 * instead of 'ztest'.  Do a blind rename in case this happened.
6391 		 */
6392 		kernel_init(FREAD);
6393 		if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) {
6394 			spa_close(spa, FTAG);
6395 		} else {
6396 			char tmpname[ZFS_MAX_DATASET_NAME_LEN];
6397 			kernel_fini();
6398 			kernel_init(FREAD | FWRITE);
6399 			(void) snprintf(tmpname, sizeof (tmpname), "%s_tmp",
6400 			    ztest_opts.zo_pool);
6401 			(void) spa_rename(tmpname, ztest_opts.zo_pool);
6402 		}
6403 		kernel_fini();
6404 
6405 		ztest_run_zdb(ztest_opts.zo_pool);
6406 	}
6407 
6408 	if (ztest_opts.zo_verbose >= 1) {
6409 		if (hasalt) {
6410 			(void) printf("%d runs of older ztest: %s\n", older,
6411 			    ztest_opts.zo_alt_ztest);
6412 			(void) printf("%d runs of newer ztest: %s\n", newer,
6413 			    cmd);
6414 		}
6415 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
6416 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
6417 	}
6418 
6419 	umem_free(cmd, MAXNAMELEN);
6420 
6421 	return (0);
6422 }
6423