xref: /illumos-gate/usr/src/cmd/sgs/rtld/common/setup.c (revision b6805bf78d2bbbeeaea8909a05623587b42d58b3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  *	Copyright (c) 1988 AT&T
28  *	  All Rights Reserved
29  */
30 /*
31  * Copyright (c) 2012, Joyent, Inc.  All rights reserved.
32  */
33 
34 /*
35  * Run time linker common setup.
36  *
37  * Called from _setup to get the process going at startup.
38  */
39 
40 #include	<stdlib.h>
41 #include	<fcntl.h>
42 #include	<stdio.h>
43 #include	<sys/types.h>
44 #include	<sys/stat.h>
45 #include	<sys/mman.h>
46 #include	<string.h>
47 #include	<unistd.h>
48 #include	<dlfcn.h>
49 #include	<sys/sysconfig.h>
50 #include	<sys/auxv.h>
51 #include	<debug.h>
52 #include	<conv.h>
53 #include	"_rtld.h"
54 #include	"_audit.h"
55 #include	"_elf.h"
56 #include	"_a.out.h"
57 #include	"msg.h"
58 
59 
60 extern int	_end, _edata, _etext;
61 extern void	_init(void);
62 extern int	_brk_unlocked(void *);
63 
64 #ifndef	SGS_PRE_UNIFIED_PROCESS
65 /* needed for _brk_unlocked() */
66 void *_nd = &_end;
67 #endif
68 
69 /*
70  * Counters that are incremented every time an object is mapped/unmapped.
71  *
72  * Note that exec() will usually map 2 objects before we receive control,
73  * but this can be 1 if ld.so.1 is executed directly. We count one of these
74  * here, and add another as necessary in setup().
75  */
76 u_longlong_t	cnt_map = 1;
77 u_longlong_t	cnt_unmap = 0;
78 
79 
80 /*
81  * Define for the executable's interpreter.
82  * Usually it is ld.so.1, but for the first release of ICL binaries
83  * it is libc.so.1.  We keep this information so that we don't end
84  * up mapping libc twice if it is the interpreter.
85  */
86 static Interp _interp;
87 
88 /*
89  * LD_PRELOAD objects.
90  */
91 static int
92 preload(const char *str, Rt_map *mlmp, Rt_map **clmp)
93 {
94 	Alist		*palp = NULL;
95 	char		*objs, *ptr, *next;
96 	Word		lmflags = lml_main.lm_flags;
97 	int		lddstub;
98 
99 	DBG_CALL(Dbg_util_nl(&lml_main, DBG_NL_STD));
100 
101 	if ((objs = strdup(str)) == NULL)
102 		return (0);
103 
104 	/*
105 	 * Determine if we've been called from lddstub.
106 	 */
107 	lddstub = (lmflags & LML_FLG_TRC_ENABLE) &&
108 	    (FLAGS1(*clmp) & FL1_RT_LDDSTUB);
109 
110 
111 	for (ptr = strtok_r(objs, MSG_ORIG(MSG_STR_DELIMIT), &next);
112 	    ptr != NULL;
113 	    ptr = strtok_r(NULL, MSG_ORIG(MSG_STR_DELIMIT), &next)) {
114 		Rt_map	*nlmp = NULL;
115 		uint_t	flags;
116 
117 		DBG_CALL(Dbg_file_preload(&lml_main, ptr));
118 
119 		/*
120 		 * Establish the flags for loading each object.  If we're
121 		 * called via lddstub, then the first preloaded object is the
122 		 * object being inspected by ldd(1).  This object should not be
123 		 * marked as an interposer, as this object is intended to act
124 		 * as the target object of the process.
125 		 */
126 		if (lddstub)
127 			flags = FLG_RT_PRELOAD;
128 		else
129 			flags = (FLG_RT_PRELOAD | FLG_RT_OBJINTPO);
130 
131 		/*
132 		 * If this a secure application, then preload errors are
133 		 * reduced to warnings, as the errors are non-fatal.
134 		 */
135 		if (rtld_flags & RT_FL_SECURE)
136 			rtld_flags2 |= RT_FL2_FTL2WARN;
137 		if (expand_paths(*clmp, ptr, &palp, AL_CNT_NEEDED,
138 		    PD_FLG_EXTLOAD, 0) != 0)
139 			nlmp = load_one(&lml_main, ALIST_OFF_DATA, palp, *clmp,
140 			    MODE(mlmp), flags, 0, NULL);
141 		remove_alist(&palp, 0);
142 		if (rtld_flags & RT_FL_SECURE)
143 			rtld_flags2 &= ~RT_FL2_FTL2WARN;
144 		if (nlmp && (bind_one(*clmp, nlmp, BND_NEEDED) == 0))
145 			nlmp = NULL;
146 
147 		if (lddstub && nlmp) {
148 			lddstub = 0;
149 
150 			/*
151 			 * Fabricate a binding between the target shared object
152 			 * and lddstub so that the target object isn't called
153 			 * out from unused() processing.
154 			 */
155 			if (lmflags &
156 			    (LML_FLG_TRC_UNREF | LML_FLG_TRC_UNUSED)) {
157 				if (bind_one(*clmp, nlmp, BND_REFER) == 0)
158 					nlmp = NULL;
159 			}
160 
161 			/*
162 			 * By identifying lddstub as the caller, several
163 			 * confusing ldd() diagnostics get suppressed.  These
164 			 * diagnostics would reveal how the target shared object
165 			 * was found from lddstub.  Now that the real target is
166 			 * loaded, identify the target as the caller so that all
167 			 * ldd() diagnostics are enabled for subsequent objects.
168 			 */
169 			if (nlmp)
170 				*clmp = nlmp;
171 		}
172 
173 		/*
174 		 * If no error occurred with loading this object, indicate that
175 		 * this link-map list contains an interposer.
176 		 */
177 		if (nlmp == NULL) {
178 			if ((lmflags & LML_FLG_TRC_ENABLE) ||
179 			    (rtld_flags & RT_FL_SECURE))
180 				continue;
181 			else
182 				return (0);
183 		}
184 		if (flags & FLG_RT_OBJINTPO)
185 			lml_main.lm_flags |= LML_FLG_INTRPOSE;
186 
187 	}
188 
189 	free(palp);
190 	free(objs);
191 	return (1);
192 }
193 
194 Rt_map *
195 setup(char **envp, auxv_t *auxv, Word _flags, char *_platform, int _syspagsz,
196     char *_rtldname, ulong_t ld_base, ulong_t interp_base, int fd, Phdr *phdr,
197     char *execname, char **argv, uid_t uid, uid_t euid, gid_t gid, gid_t egid,
198     void *aoutdyn, int auxflags, uint_t *hwcap)
199 {
200 	Rt_map			*rlmp, *mlmp, *clmp, **tobj = NULL;
201 	Ehdr			*ehdr;
202 	rtld_stat_t		status;
203 	int			features = 0, ldsoexec = 0;
204 	size_t			eaddr, esize;
205 	char			*str, *argvname;
206 	Word			lmflags;
207 	mmapobj_result_t	*mpp;
208 	Fdesc			fdr = { 0 }, fdm = { 0 };
209 	Rej_desc		rej = { 0 };
210 	APlist			*ealp = NULL;
211 
212 	/*
213 	 * Now that ld.so has relocated itself, initialize our own 'environ' so
214 	 * as to establish an address suitable for any libc requirements.
215 	 */
216 	_environ = (char **)((ulong_t)auxv - sizeof (char *));
217 	_init();
218 	_environ = envp;
219 
220 	/*
221 	 * Establish a base time.  Total time diagnostics start from entering
222 	 * ld.so.1 here, however the base time is reset each time the ld.so.1
223 	 * is re-entered.  Note also, there will be a large time associated
224 	 * with the first diagnostic from ld.so.1, as bootstrapping ld.so.1
225 	 * and establishing the liblddbg infrastructure takes some time.
226 	 */
227 	(void) gettimeofday(&DBG_TOTALTIME, NULL);
228 	DBG_DELTATIME = DBG_TOTALTIME;
229 
230 	/*
231 	 * Determine how ld.so.1 has been executed.
232 	 */
233 	if ((fd == -1) && (phdr == NULL)) {
234 		/*
235 		 * If we received neither the AT_EXECFD nor the AT_PHDR aux
236 		 * vector, ld.so.1 must have been invoked directly from the
237 		 * command line.
238 		 */
239 		ldsoexec = 1;
240 
241 		/*
242 		 * AT_SUN_EXECNAME provides the most precise name, if it is
243 		 * available, otherwise fall back to argv[0].  At this time,
244 		 * there is no process name.
245 		 */
246 		if (execname)
247 			rtldname = execname;
248 		else if (argv[0])
249 			rtldname = argv[0];
250 		else
251 			rtldname = (char *)MSG_INTL(MSG_STR_UNKNOWN);
252 	} else {
253 		/*
254 		 * Otherwise, we have a standard process.  AT_SUN_EXECNAME
255 		 * provides the most precise name, if it is available,
256 		 * otherwise fall back to argv[0].  Provided the application
257 		 * is already mapped, the process is the application, so
258 		 * simplify the application name for use in any diagnostics.
259 		 */
260 		if (execname)
261 			argvname = execname;
262 		else if (argv[0])
263 			argvname = execname = argv[0];
264 		else
265 			argvname = execname = (char *)MSG_INTL(MSG_STR_UNKNOWN);
266 
267 		if (fd == -1) {
268 			if ((str = strrchr(argvname, '/')) != NULL)
269 				procname = ++str;
270 			else
271 				procname = argvname;
272 		}
273 
274 		/*
275 		 * At this point, we don't know the runtime linkers full path
276 		 * name.  The _rtldname passed to us is the SONAME of the
277 		 * runtime linker, which is typically /lib/ld.so.1 no matter
278 		 * what the full path is.   Use this for now, we'll reset the
279 		 * runtime linkers name once the application is analyzed.
280 		 */
281 		if (_rtldname) {
282 			if ((str = strrchr(_rtldname, '/')) != NULL)
283 				rtldname = ++str;
284 			else
285 				rtldname = _rtldname;
286 		} else
287 			rtldname = (char *)MSG_INTL(MSG_STR_UNKNOWN);
288 
289 		/* exec() brought in two objects for us. Count the second one */
290 		cnt_map++;
291 	}
292 
293 	/*
294 	 * Initialize any global variables.
295 	 */
296 	at_flags = _flags;
297 
298 	if ((org_scapset->sc_plat = _platform) != NULL)
299 		org_scapset->sc_platsz = strlen(_platform);
300 
301 	if (org_scapset->sc_plat == NULL)
302 		platform_name(org_scapset);
303 	if (org_scapset->sc_mach == NULL)
304 		machine_name(org_scapset);
305 
306 	/*
307 	 * If pagesize is unspecified find its value.
308 	 */
309 	if ((syspagsz = _syspagsz) == 0)
310 		syspagsz = _sysconfig(_CONFIG_PAGESIZE);
311 
312 	/*
313 	 * Add the unused portion of the last data page to the free space list.
314 	 * The page size must be set before doing this.  Here, _end refers to
315 	 * the end of the runtime linkers bss.  Note that we do not use the
316 	 * unused data pages from any included .so's to supplement this free
317 	 * space as badly behaved .os's may corrupt this data space, and in so
318 	 * doing ruin our data.
319 	 */
320 	eaddr = S_DROUND((size_t)&_end);
321 	esize = eaddr % syspagsz;
322 	if (esize) {
323 		esize = syspagsz - esize;
324 		addfree((void *)eaddr, esize);
325 	}
326 
327 	/*
328 	 * Establish initial link-map list flags, and link-map list alists.
329 	 */
330 	if (alist_append(&lml_main.lm_lists, NULL, sizeof (Lm_cntl),
331 	    AL_CNT_LMLISTS) == NULL)
332 		return (0);
333 	lml_main.lm_flags |= LML_FLG_BASELM;
334 	lml_main.lm_lmid = LM_ID_BASE;
335 	lml_main.lm_lmidstr = (char *)MSG_ORIG(MSG_LMID_BASE);
336 
337 	if (alist_append(&lml_rtld.lm_lists, NULL, sizeof (Lm_cntl),
338 	    AL_CNT_LMLISTS) == NULL)
339 		return (0);
340 	lml_rtld.lm_flags |= (LML_FLG_RTLDLM | LML_FLG_HOLDLOCK);
341 	lml_rtld.lm_tflags |= LML_TFLG_NOAUDIT;
342 	lml_rtld.lm_lmid = LM_ID_LDSO;
343 	lml_rtld.lm_lmidstr = (char *)MSG_ORIG(MSG_LMID_LDSO);
344 
345 	/*
346 	 * Determine whether we have a secure executable.
347 	 */
348 	security(uid, euid, gid, egid, auxflags);
349 
350 	/*
351 	 * Make an initial pass of environment variables to pick off those
352 	 * related to locale processing.  At the same time, collect and save
353 	 * any LD_XXXX variables for later processing.  Note that this later
354 	 * processing will be skipped if ld.so.1 is invoked from the command
355 	 * line with -e LD_NOENVIRON.
356 	 */
357 	if (envp && (readenv_user((const char **)envp, &ealp) == 1))
358 		return (0);
359 
360 	/*
361 	 * If ld.so.1 has been invoked directly, process its arguments.
362 	 */
363 	if (ldsoexec) {
364 		/*
365 		 * Process any arguments that are specific to ld.so.1, and
366 		 * reorganize the process stack to effectively remove ld.so.1
367 		 * from the stack.  Reinitialize the environment pointer, as
368 		 * this pointer may have been shifted after skipping ld.so.1's
369 		 * arguments.
370 		 */
371 		if (rtld_getopt(argv, &envp, &auxv, &(lml_main.lm_flags),
372 		    &(lml_main.lm_tflags), (aoutdyn != 0)) == 1) {
373 			eprintf(&lml_main, ERR_NONE, MSG_INTL(MSG_USG_BADOPT));
374 			return (0);
375 		}
376 		_environ = envp;
377 
378 		/*
379 		 * Open the object that ld.so.1 is to execute.
380 		 */
381 		argvname = execname = argv[0];
382 
383 		if ((fd = open(argvname, O_RDONLY)) == -1) {
384 			int	err = errno;
385 			eprintf(&lml_main, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN),
386 			    argvname, strerror(err));
387 			return (0);
388 		}
389 	}
390 
391 	/*
392 	 * Having processed any ld.so.1 command line options, return to process
393 	 * any LD_XXXX environment variables.
394 	 */
395 	if (ealp) {
396 		if (((rtld_flags & RT_FL_NOENVIRON) == 0) &&
397 		    (procenv_user(ealp, &(lml_main.lm_flags),
398 		    &(lml_main.lm_tflags), (aoutdyn != 0)) == 1))
399 			return (0);
400 		free(ealp);
401 	}
402 
403 	/*
404 	 * Initialize a hardware capability descriptor for use in comparing
405 	 * each loaded object.  The aux vector must provide AF_SUN_HWCAPVERIFY,
406 	 * as prior to this setting any hardware capabilities that were found
407 	 * could not be relied upon.
408 	 */
409 	if (auxflags & AF_SUN_HWCAPVERIFY) {
410 		rtld_flags2 |= RT_FL2_HWCAP;
411 		org_scapset->sc_hw_1 = (Xword)hwcap[0];
412 		org_scapset->sc_hw_2 = (Xword)hwcap[1];
413 	}
414 
415 	/*
416 	 * Create a mapping descriptor for ld.so.1.  We can determine our
417 	 * two segments information from known symbols.
418 	 */
419 	if ((mpp = calloc(2, sizeof (mmapobj_result_t))) == NULL)
420 		return (0);
421 	mpp[0].mr_addr = (caddr_t)M_PTRUNC(ld_base);
422 	mpp[0].mr_msize = (caddr_t)&_etext - mpp[0].mr_addr;
423 	mpp[0].mr_fsize = mpp[0].mr_msize;
424 	mpp[0].mr_prot = (PROT_READ | PROT_EXEC);
425 
426 	mpp[1].mr_addr = (caddr_t)M_PTRUNC((uintptr_t)&r_debug);
427 	mpp[1].mr_msize = (caddr_t)&_end - mpp[1].mr_addr;
428 	mpp[1].mr_fsize = (caddr_t)&_edata - mpp[1].mr_addr;
429 	mpp[1].mr_prot = (PROT_READ | PROT_WRITE | PROT_EXEC);
430 
431 	if ((fdr.fd_nname = stravl_insert(_rtldname, 0, 0, 0)) == NULL)
432 		return (0);
433 	if ((rlmp = elf_new_lmp(&lml_rtld, ALIST_OFF_DATA, &fdr,
434 	    (Addr)mpp->mr_addr, (size_t)((uintptr_t)eaddr - (uintptr_t)ld_base),
435 	    NULL, NULL, NULL)) == NULL)
436 		return (0);
437 
438 	MMAPS(rlmp) = mpp;
439 	MMAPCNT(rlmp) = 2;
440 	PADSTART(rlmp) = (ulong_t)mpp[0].mr_addr;
441 	PADIMLEN(rlmp) = (ulong_t)mpp[0].mr_addr + (ulong_t)mpp[1].mr_addr +
442 	    (ulong_t)mpp[1].mr_msize;
443 
444 	MODE(rlmp) |= (RTLD_LAZY | RTLD_NODELETE | RTLD_GLOBAL | RTLD_WORLD);
445 	FLAGS(rlmp) |= (FLG_RT_ANALYZED | FLG_RT_RELOCED | FLG_RT_INITDONE |
446 	    FLG_RT_INITCLCT | FLG_RT_FINICLCT | FLG_RT_MODESET);
447 
448 	/*
449 	 * Initialize the runtime linkers information.
450 	 */
451 	interp = &_interp;
452 	interp->i_name = (char *)rtldname;
453 	interp->i_faddr = (caddr_t)ADDR(rlmp);
454 	ldso_plt_init(rlmp);
455 
456 	/*
457 	 * Map in the file, if exec has not already done so, or if the file
458 	 * was passed as an argument to an explicit execution of ld.so.1 from
459 	 * the command line.
460 	 */
461 	if (fd != -1) {
462 		/*
463 		 * Map the file.  Once the object is mapped we no longer need
464 		 * the file descriptor.
465 		 */
466 		(void) rtld_fstat(fd, &status);
467 		fdm.fd_oname = argvname;
468 		fdm.fd_ftp = map_obj(&lml_main, &fdm, status.st_size, argvname,
469 		    fd, &rej);
470 		(void) close(fd);
471 
472 		if (fdm.fd_ftp == NULL) {
473 			Conv_reject_desc_buf_t rej_buf;
474 
475 			eprintf(&lml_main, ERR_FATAL,
476 			    MSG_INTL(err_reject[rej.rej_type]), argvname,
477 			    conv_reject_desc(&rej, &rej_buf, M_MACH));
478 			return (0);
479 		}
480 
481 		/*
482 		 * Finish processing the loading of the file.
483 		 */
484 		if ((fdm.fd_nname = stravl_insert(argvname, 0, 0, 0)) == NULL)
485 			return (0);
486 		fdm.fd_dev = status.st_dev;
487 		fdm.fd_ino = status.st_ino;
488 
489 		if ((mlmp = load_file(&lml_main, ALIST_OFF_DATA, NULL, &fdm,
490 		    NULL)) == NULL)
491 			return (0);
492 
493 		/*
494 		 * We now have a process name for error diagnostics.
495 		 */
496 		if ((str = strrchr(argvname, '/')) != NULL)
497 			procname = ++str;
498 		else
499 			procname = argvname;
500 
501 		if (ldsoexec) {
502 			mmapobj_result_t	*mpp = MMAPS(mlmp);
503 			uint_t			mnum, mapnum = MMAPCNT(mlmp);
504 			void			*brkbase = NULL;
505 
506 			/*
507 			 * Since ld.so.1 was the primary executed object - the
508 			 * brk() base has not yet been initialized, we need to
509 			 * initialize it.  For an executable, initialize it to
510 			 * the end of the object.  For a shared object (ET_DYN)
511 			 * initialize it to the first page in memory.
512 			 */
513 			for (mnum = 0; mnum < mapnum; mnum++, mpp++)
514 				brkbase = mpp->mr_addr + mpp->mr_msize;
515 
516 			if (brkbase == NULL)
517 				brkbase = (void *)syspagsz;
518 
519 			if (_brk_unlocked(brkbase) == -1) {
520 				int	err = errno;
521 
522 				eprintf(&lml_main, ERR_FATAL,
523 				    MSG_INTL(MSG_SYS_BRK), argvname,
524 				    strerror(err));
525 				return (0);
526 			}
527 		}
528 	} else {
529 		/*
530 		 * Set up function ptr and arguments according to the type
531 		 * of file class the executable is. (Currently only supported
532 		 * types are ELF and a.out format.)  Then create a link map
533 		 * for the executable.
534 		 */
535 		if (aoutdyn) {
536 #ifdef A_OUT
537 			mmapobj_result_t	*mpp;
538 
539 			/*
540 			 * Create a mapping structure sufficient to describe
541 			 * a single two segments.  The ADDR() of the a.out is
542 			 * established as 0, which is required but the AOUT
543 			 * relocation code.
544 			 */
545 			if ((mpp =
546 			    calloc(sizeof (mmapobj_result_t), 2)) == NULL)
547 				return (0);
548 
549 			if ((fdm.fd_nname =
550 			    stravl_insert(execname, 0, 0, 0)) == NULL)
551 				return (0);
552 			if ((mlmp = aout_new_lmp(&lml_main, ALIST_OFF_DATA,
553 			    &fdm, 0, 0, aoutdyn, NULL, NULL)) == NULL)
554 				return (0);
555 
556 			/*
557 			 * Establish the true mapping information for the a.out.
558 			 */
559 			if (aout_get_mmap(&lml_main, mpp)) {
560 				free(mpp);
561 				return (0);
562 			}
563 
564 			MSIZE(mlmp) =
565 			    (size_t)(mpp[1].mr_addr + mpp[1].mr_msize) -
566 			    S_ALIGN((size_t)mpp[0].mr_addr, syspagsz);
567 			MMAPS(mlmp) = mpp;
568 			MMAPCNT(mlmp) = 2;
569 			PADSTART(mlmp) = (ulong_t)mpp->mr_addr;
570 			PADIMLEN(mlmp) = mpp->mr_msize;
571 
572 			/*
573 			 * Disable any object configuration cache (BCP apps
574 			 * bring in sbcp which can benefit from any object
575 			 * cache, but both the app and sbcp can't use the same
576 			 * objects).
577 			 */
578 			rtld_flags |= RT_FL_NOOBJALT;
579 
580 			/*
581 			 * Make sure no-direct bindings are in effect.
582 			 */
583 			lml_main.lm_tflags |= LML_TFLG_NODIRECT;
584 #else
585 			eprintf(&lml_main, ERR_FATAL,
586 			    MSG_INTL(MSG_ERR_REJ_UNKFILE), argvname);
587 			return (0);
588 #endif
589 		} else if (phdr) {
590 			Phdr			*pptr;
591 			Off			i_offset = 0;
592 			Addr			base = 0;
593 			ulong_t			phsize;
594 			mmapobj_result_t	*mpp, *fmpp, *hmpp = NULL;
595 			uint_t			mapnum = 0;
596 			int			i;
597 			size_t			msize;
598 
599 			/*
600 			 * Using the executables phdr address determine the base
601 			 * address of the input file.  NOTE, this assumes the
602 			 * program headers and elf header are part of the same
603 			 * mapped segment.  Although this has held for many
604 			 * years now, it might be more flexible if the kernel
605 			 * gave use the ELF headers start address, rather than
606 			 * the Program headers.
607 			 *
608 			 * Determine from the ELF header if we're been called
609 			 * from a shared object or dynamic executable.  If the
610 			 * latter, then any addresses within the object are used
611 			 * as is.  Addresses within shared objects must be added
612 			 * to the process's base address.
613 			 */
614 			ehdr = (Ehdr *)((Addr)phdr - phdr->p_offset);
615 			phsize = ehdr->e_phentsize;
616 			if (ehdr->e_type == ET_DYN)
617 				base = (Addr)ehdr;
618 
619 			/*
620 			 * Allocate a mapping array to retain mapped segment
621 			 * information.
622 			 */
623 			if ((fmpp = mpp = calloc(ehdr->e_phnum,
624 			    sizeof (mmapobj_result_t))) == NULL)
625 				return (0);
626 
627 			/*
628 			 * Extract the needed information from the segment
629 			 * headers.
630 			 */
631 			for (i = 0, pptr = phdr; i < ehdr->e_phnum; i++) {
632 				if (pptr->p_type == PT_INTERP) {
633 					i_offset = pptr->p_offset;
634 					interp->i_faddr =
635 					    (caddr_t)interp_base;
636 				}
637 				if ((pptr->p_type == PT_LOAD) &&
638 				    (pptr->p_filesz || pptr->p_memsz)) {
639 					int	perm = (PROT_READ | PROT_EXEC);
640 					size_t	off;
641 
642 					if (i_offset && pptr->p_filesz &&
643 					    (i_offset >= pptr->p_offset) &&
644 					    (i_offset <=
645 					    (pptr->p_memsz + pptr->p_offset))) {
646 						interp->i_name = (char *)
647 						    pptr->p_vaddr + i_offset -
648 						    pptr->p_offset + base;
649 						i_offset = 0;
650 					}
651 
652 					if (pptr->p_flags & PF_W)
653 						perm |= PROT_WRITE;
654 
655 					/*
656 					 * Retain segments mapping info.  Round
657 					 * each segment to a page boundary, as
658 					 * this insures addresses are suitable
659 					 * for mprotect() if required.
660 					 */
661 					off = pptr->p_vaddr + base;
662 					if (hmpp == NULL) {
663 						hmpp = mpp;
664 						mpp->mr_addr = (caddr_t)ehdr;
665 					} else
666 						mpp->mr_addr = (caddr_t)off;
667 
668 					off -= (size_t)(uintptr_t)mpp->mr_addr;
669 					mpp->mr_msize = pptr->p_memsz + off;
670 					mpp->mr_fsize = pptr->p_filesz + off;
671 					mpp->mr_prot = perm;
672 
673 					mpp++, mapnum++;
674 				}
675 
676 				pptr = (Phdr *)((ulong_t)pptr + phsize);
677 			}
678 
679 			mpp--;
680 			msize = (size_t)(mpp->mr_addr + mpp->mr_msize) -
681 			    S_ALIGN((size_t)fmpp->mr_addr, syspagsz);
682 
683 			if ((fdm.fd_nname =
684 			    stravl_insert(execname, 0, 0, 0)) == NULL)
685 				return (0);
686 			if ((mlmp = elf_new_lmp(&lml_main, ALIST_OFF_DATA,
687 			    &fdm, (Addr)hmpp->mr_addr, msize,
688 			    NULL, NULL, NULL)) == NULL)
689 				return (0);
690 
691 			MMAPS(mlmp) = fmpp;
692 			MMAPCNT(mlmp) = mapnum;
693 			PADSTART(mlmp) = (ulong_t)fmpp->mr_addr;
694 			PADIMLEN(mlmp) = (ulong_t)fmpp->mr_addr +
695 			    (ulong_t)mpp->mr_addr + (ulong_t)mpp->mr_msize;
696 		}
697 	}
698 
699 	/*
700 	 * Establish the interpretors name as that defined within the initial
701 	 * object (executable).  This provides for ORIGIN processing of ld.so.1
702 	 * dependencies.  Note, the NAME() of the object remains that which was
703 	 * passed to us as the SONAME on execution.
704 	 */
705 	if (ldsoexec == 0) {
706 		size_t	len = strlen(interp->i_name);
707 
708 		if (expand(&interp->i_name, &len, 0, 0,
709 		    (PD_TKN_ISALIST | PD_TKN_CAP), rlmp) & PD_TKN_RESOLVED)
710 			fdr.fd_flags |= FLG_FD_RESOLVED;
711 	}
712 	fdr.fd_pname = interp->i_name;
713 	(void) fullpath(rlmp, &fdr);
714 
715 	/*
716 	 * The runtime linker acts as a filtee for various dl*() functions that
717 	 * are defined in libc (and libdl).  Make sure this standard name for
718 	 * the runtime linker is also registered in the FullPathNode AVL tree.
719 	 */
720 	(void) fpavl_insert(&lml_rtld, rlmp, _rtldname, 0);
721 
722 	/*
723 	 * Having established the true runtime linkers name, simplify the name
724 	 * for error diagnostics.
725 	 */
726 	if ((str = strrchr(PATHNAME(rlmp), '/')) != NULL)
727 		rtldname = ++str;
728 	else
729 		rtldname = PATHNAME(rlmp);
730 
731 	/*
732 	 * Expand the fullpath name of the application.  This typically occurs
733 	 * as a part of loading an object, but as the kernel probably mapped
734 	 * it in, complete this processing now.
735 	 */
736 	(void) fullpath(mlmp, 0);
737 
738 	/*
739 	 * Some troublesome programs will change the value of argv[0].  Dupping
740 	 * the process string protects us, and insures the string is left in
741 	 * any core files.
742 	 */
743 	if ((str = (char *)strdup(procname)) == NULL)
744 		return (0);
745 	procname = str;
746 
747 	FLAGS(mlmp) |= (FLG_RT_ISMAIN | FLG_RT_MODESET);
748 	FLAGS1(mlmp) |= FL1_RT_USED;
749 
750 	/*
751 	 * It's the responsibility of MAIN(crt0) to call it's _init and _fini
752 	 * section, therefore null out any INIT/FINI so that this object isn't
753 	 * collected during tsort processing.  And, if the application has no
754 	 * initarray or finiarray we can economize on establishing bindings.
755 	 */
756 	INIT(mlmp) = FINI(mlmp) = NULL;
757 	if ((INITARRAY(mlmp) == NULL) && (FINIARRAY(mlmp) == NULL))
758 		FLAGS1(mlmp) |= FL1_RT_NOINIFIN;
759 
760 	/*
761 	 * Identify lddstub if necessary.
762 	 */
763 	if (lml_main.lm_flags & LML_FLG_TRC_LDDSTUB)
764 		FLAGS1(mlmp) |= FL1_RT_LDDSTUB;
765 
766 	/*
767 	 * Retain our argument information for use in dlinfo.
768 	 */
769 	argsinfo.dla_argv = argv--;
770 	argsinfo.dla_argc = (long)*argv;
771 	argsinfo.dla_envp = envp;
772 	argsinfo.dla_auxv = auxv;
773 
774 	(void) enter(0);
775 
776 	/*
777 	 * Add our two main link-maps to the dynlm_list
778 	 */
779 	if (aplist_append(&dynlm_list, &lml_main, AL_CNT_DYNLIST) == NULL)
780 		return (0);
781 
782 	if (aplist_append(&dynlm_list, &lml_rtld, AL_CNT_DYNLIST) == NULL)
783 		return (0);
784 
785 	/*
786 	 * Reset the link-map counts for both lists.  The init count is used to
787 	 * track how many objects have pending init sections, this gets incre-
788 	 * mented each time an object is relocated.  Since ld.so.1 relocates
789 	 * itself, it's init count will remain zero.
790 	 * The object count is used to track how many objects have pending fini
791 	 * sections, as ld.so.1 handles its own fini we can zero its count.
792 	 */
793 	lml_main.lm_obj = 1;
794 	lml_rtld.lm_obj = 0;
795 
796 	/*
797 	 * Initialize debugger information structure.  Some parts of this
798 	 * structure were initialized statically.
799 	 */
800 	r_debug.rtd_rdebug.r_map = (Link_map *)lml_main.lm_head;
801 	r_debug.rtd_rdebug.r_ldsomap = (Link_map *)lml_rtld.lm_head;
802 	r_debug.rtd_rdebug.r_ldbase = r_debug.rtd_rdebug.r_ldsomap->l_addr;
803 	r_debug.rtd_dynlmlst = &dynlm_list;
804 
805 	/*
806 	 * Determine the dev/inode information for the executable to complete
807 	 * load_so() checking for those who might dlopen(a.out).
808 	 */
809 	if (rtld_stat(PATHNAME(mlmp), &status) == 0) {
810 		STDEV(mlmp) = status.st_dev;
811 		STINO(mlmp) = status.st_ino;
812 	}
813 
814 	/*
815 	 * Initialize any configuration information.
816 	 */
817 	if (!(rtld_flags & RT_FL_NOCFG)) {
818 		if ((features = elf_config(mlmp, (aoutdyn != 0))) == -1)
819 			return (0);
820 	}
821 
822 #if	defined(_ELF64)
823 	/*
824 	 * If this is a 64-bit process, determine whether this process has
825 	 * restricted the process address space to 32-bits.  Any dependencies
826 	 * that are restricted to a 32-bit address space can only be loaded if
827 	 * the executable has established this requirement.
828 	 */
829 	if (CAPSET(mlmp).sc_sf_1 & SF1_SUNW_ADDR32)
830 		rtld_flags2 |= RT_FL2_ADDR32;
831 #endif
832 	/*
833 	 * Establish any alternative capabilities, and validate this object
834 	 * if it defines it's own capabilities information.
835 	 */
836 	if (cap_alternative() == 0)
837 		return (0);
838 
839 	if (cap_check_lmp(mlmp, &rej) == 0) {
840 		if (lml_main.lm_flags & LML_FLG_TRC_ENABLE) {
841 			/* LINTED */
842 			(void) printf(MSG_INTL(ldd_warn[rej.rej_type]),
843 			    NAME(mlmp), rej.rej_str);
844 		} else {
845 			/* LINTED */
846 			eprintf(&lml_main, ERR_FATAL,
847 			    MSG_INTL(err_reject[rej.rej_type]),
848 			    NAME(mlmp), rej.rej_str);
849 			return (0);
850 		}
851 	}
852 
853 	/*
854 	 * Establish the modes of the initial object.  These modes are
855 	 * propagated to any preloaded objects and explicit shared library
856 	 * dependencies.
857 	 *
858 	 * If we're generating a configuration file using crle(1), remove
859 	 * any RTLD_NOW use, as we don't want to trigger any relocation proc-
860 	 * essing during crle(1)'s first past (this would just be unnecessary
861 	 * overhead).  Any filters are explicitly loaded, and thus RTLD_NOW is
862 	 * not required to trigger filter loading.
863 	 *
864 	 * Note, RTLD_NOW may have been established during analysis of the
865 	 * application had the application been built -z now.
866 	 */
867 	MODE(mlmp) |= (RTLD_NODELETE | RTLD_GLOBAL | RTLD_WORLD);
868 
869 	if (rtld_flags & RT_FL_CONFGEN) {
870 		MODE(mlmp) |= RTLD_CONFGEN;
871 		MODE(mlmp) &= ~RTLD_NOW;
872 		rtld_flags2 &= ~RT_FL2_BINDNOW;
873 	}
874 
875 	if ((MODE(mlmp) & RTLD_NOW) == 0) {
876 		if (rtld_flags2 & RT_FL2_BINDNOW)
877 			MODE(mlmp) |= RTLD_NOW;
878 		else
879 			MODE(mlmp) |= RTLD_LAZY;
880 	}
881 
882 	/*
883 	 * If debugging was requested initialize things now that any cache has
884 	 * been established.  A user can specify LD_DEBUG=help to discover the
885 	 * list of debugging tokens available without running the application.
886 	 * However, don't allow this setting from a configuration file.
887 	 *
888 	 * Note, to prevent recursion issues caused by loading and binding the
889 	 * debugging libraries themselves, a local debugging descriptor is
890 	 * initialized.  Once the debugging setup has completed, this local
891 	 * descriptor is copied to the global descriptor which effectively
892 	 * enables diagnostic output.
893 	 *
894 	 * Ignore any debugging request if we're being monitored by a process
895 	 * that expects the old getpid() initialization handshake.
896 	 */
897 	if ((rpl_debug || prm_debug) && ((rtld_flags & RT_FL_DEBUGGER) == 0)) {
898 		Dbg_desc	_dbg_desc = {0};
899 		struct timeval	total = DBG_TOTALTIME;
900 		struct timeval	delta = DBG_DELTATIME;
901 
902 		if (rpl_debug) {
903 			if (dbg_setup(rpl_debug, &_dbg_desc) == 0)
904 				return (0);
905 			if (_dbg_desc.d_extra & DBG_E_HELP_EXIT)
906 				rtldexit(&lml_main, 0);
907 		}
908 		if (prm_debug)
909 			(void) dbg_setup(prm_debug, &_dbg_desc);
910 
911 		*dbg_desc = _dbg_desc;
912 		DBG_TOTALTIME = total;
913 		DBG_DELTATIME = delta;
914 	}
915 
916 	/*
917 	 * Now that debugging is enabled generate any diagnostics from any
918 	 * previous events.
919 	 */
920 	if (DBG_ENABLED) {
921 		DBG_CALL(Dbg_cap_val(&lml_main, org_scapset, alt_scapset,
922 		    M_MACH));
923 		DBG_CALL(Dbg_file_config_dis(&lml_main, config->c_name,
924 		    features));
925 
926 		DBG_CALL(Dbg_file_ldso(rlmp, envp, auxv,
927 		    LIST(rlmp)->lm_lmidstr, ALIST_OFF_DATA));
928 
929 		if (THIS_IS_ELF(mlmp)) {
930 			DBG_CALL(Dbg_file_elf(&lml_main, PATHNAME(mlmp),
931 			    ADDR(mlmp), MSIZE(mlmp), LIST(mlmp)->lm_lmidstr,
932 			    ALIST_OFF_DATA));
933 		} else {
934 			DBG_CALL(Dbg_file_aout(&lml_main, PATHNAME(mlmp),
935 			    ADDR(mlmp), MSIZE(mlmp), LIST(mlmp)->lm_lmidstr,
936 			    ALIST_OFF_DATA));
937 		}
938 	}
939 
940 	/*
941 	 * Enable auditing.
942 	 */
943 	if (rpl_audit || prm_audit || profile_lib) {
944 		int		ndx;
945 		const char	*aud[3];
946 
947 		aud[0] = rpl_audit;
948 		aud[1] = prm_audit;
949 		aud[2] = profile_lib;
950 
951 		/*
952 		 * Any global auditing (set using LD_AUDIT or LD_PROFILE) that
953 		 * can't be established is non-fatal.
954 		 */
955 		if ((auditors = calloc(1, sizeof (Audit_desc))) == NULL)
956 			return (0);
957 
958 		for (ndx = 0; ndx < 3; ndx++) {
959 			if (aud[ndx]) {
960 				if ((auditors->ad_name =
961 				    strdup(aud[ndx])) == NULL)
962 					return (0);
963 				rtld_flags2 |= RT_FL2_FTL2WARN;
964 				(void) audit_setup(mlmp, auditors,
965 				    PD_FLG_EXTLOAD, NULL);
966 				rtld_flags2 &= ~RT_FL2_FTL2WARN;
967 			}
968 		}
969 		lml_main.lm_tflags |= auditors->ad_flags;
970 	}
971 	if (AUDITORS(mlmp)) {
972 		/*
973 		 * Any object required auditing (set with a DT_DEPAUDIT dynamic
974 		 * entry) that can't be established is fatal.
975 		 */
976 		if (FLAGS1(mlmp) & FL1_RT_GLOBAUD) {
977 			/*
978 			 * If this object requires global auditing, use the
979 			 * local auditing information to set the global
980 			 * auditing descriptor.  The effect is that a
981 			 * DT_DEPAUDIT act as an LD_AUDIT.
982 			 */
983 			if ((auditors == NULL) && ((auditors = calloc(1,
984 			    sizeof (Audit_desc))) == NULL))
985 				return (0);
986 
987 			auditors->ad_name = AUDITORS(mlmp)->ad_name;
988 			if (audit_setup(mlmp, auditors, 0, NULL) == 0)
989 				return (0);
990 			lml_main.lm_tflags |= auditors->ad_flags;
991 
992 			/*
993 			 * Clear the local auditor information.
994 			 */
995 			free((void *) AUDITORS(mlmp));
996 			AUDITORS(mlmp) = NULL;
997 
998 		} else {
999 			/*
1000 			 * Establish any local auditing.
1001 			 */
1002 			if (audit_setup(mlmp, AUDITORS(mlmp), 0, NULL) == 0)
1003 				return (0);
1004 
1005 			AFLAGS(mlmp) |= AUDITORS(mlmp)->ad_flags;
1006 			lml_main.lm_flags |= LML_FLG_LOCAUDIT;
1007 		}
1008 	}
1009 
1010 	/*
1011 	 * Explicitly add the initial object and ld.so.1 to those objects being
1012 	 * audited.  Note, although the ld.so.1 link-map isn't auditable,
1013 	 * establish a cookie for ld.so.1 as this may be bound to via the
1014 	 * dl*() family.
1015 	 */
1016 	if ((lml_main.lm_tflags | AFLAGS(mlmp)) & LML_TFLG_AUD_MASK) {
1017 		if (((audit_objopen(mlmp, mlmp) == 0) ||
1018 		    (audit_objopen(mlmp, rlmp) == 0)) &&
1019 		    (AFLAGS(mlmp) & LML_TFLG_AUD_MASK))
1020 			return (0);
1021 	}
1022 
1023 	/*
1024 	 * Map in any preloadable shared objects.  Establish the caller as the
1025 	 * head of the main link-map list.  In the case of being exercised from
1026 	 * lddstub, the caller gets reassigned to the first target shared object
1027 	 * so as to provide intuitive diagnostics from ldd().
1028 	 *
1029 	 * Note, it is valid to preload a 4.x shared object with a 5.0
1030 	 * executable (or visa-versa), as this functionality is required by
1031 	 * ldd(1).
1032 	 */
1033 	clmp = mlmp;
1034 	if (rpl_preload && (preload(rpl_preload, mlmp, &clmp) == 0))
1035 		return (0);
1036 	if (prm_preload && (preload(prm_preload, mlmp, &clmp) == 0))
1037 		return (0);
1038 
1039 	/*
1040 	 * Load all dependent (needed) objects.
1041 	 */
1042 	if (analyze_lmc(&lml_main, ALIST_OFF_DATA, mlmp, mlmp, NULL) == NULL)
1043 		return (0);
1044 
1045 	/*
1046 	 * Relocate all the dependencies we've just added.
1047 	 *
1048 	 * If this process has been established via crle(1), the environment
1049 	 * variable LD_CONFGEN will have been set.  crle(1) may create this
1050 	 * process twice.  The first time crle only needs to gather dependency
1051 	 * information.  The second time, is to dldump() the images.
1052 	 *
1053 	 * If we're only gathering dependencies, relocation is unnecessary.
1054 	 * As crle(1) may be building an arbitrary family of objects, they may
1055 	 * not fully relocate either.  Hence the relocation phase is not carried
1056 	 * out now, but will be called by crle(1) once all objects have been
1057 	 * loaded.
1058 	 */
1059 	if ((rtld_flags & RT_FL_CONFGEN) == 0) {
1060 
1061 		DBG_CALL(Dbg_util_nl(&lml_main, DBG_NL_STD));
1062 
1063 		if (relocate_lmc(&lml_main, ALIST_OFF_DATA, mlmp,
1064 		    mlmp, NULL) == 0)
1065 			return (0);
1066 
1067 		/*
1068 		 * Inform the debuggers that basic process initialization is
1069 		 * complete, and that the state of ld.so.1 (link-map lists,
1070 		 * etc.) is stable.  This handshake enables the debugger to
1071 		 * initialize themselves, and consequently allows the user to
1072 		 * set break points in .init code.
1073 		 *
1074 		 * Most new debuggers use librtld_db to monitor activity events.
1075 		 * Older debuggers indicated their presence by setting the
1076 		 * DT_DEBUG entry in the dynamic executable (see elf_new_lm()).
1077 		 * In this case, getpid() is called so that the debugger can
1078 		 * catch the system call.  This old mechanism has some
1079 		 * restrictions, as getpid() should not be called prior to
1080 		 * basic process initialization being completed.  This
1081 		 * restriction has become increasingly difficult to maintain,
1082 		 * as the use of auditors, LD_DEBUG, and the initialization
1083 		 * handshake with libc can result in "premature" getpid()
1084 		 * calls.  The use of this getpid() handshake is expected to
1085 		 * disappear at some point in the future, and there is intent
1086 		 * to work towards that goal.
1087 		 */
1088 		rd_event(&lml_main, RD_DLACTIVITY, RT_CONSISTENT);
1089 		rd_event(&lml_rtld, RD_DLACTIVITY, RT_CONSISTENT);
1090 
1091 		if (rtld_flags & RT_FL_DEBUGGER) {
1092 			r_debug.rtd_rdebug.r_flags |= RD_FL_ODBG;
1093 			(void) getpid();
1094 		}
1095 	}
1096 
1097 	/*
1098 	 * Indicate preinit activity, and call any auditing routines.  These
1099 	 * routines are called before initializing any threads via libc, or
1100 	 * before collecting the complete set of .inits on the primary link-map.
1101 	 * Although most libc interfaces are encapsulated in local routines
1102 	 * within libc, they have been known to escape (ie. call a .plt).  As
1103 	 * the appcert auditor uses preinit as a trigger to establish some
1104 	 * external interfaces to the main link-maps libc, we need to activate
1105 	 * this trigger before exercising any code within libc.  Additionally,
1106 	 * I wouldn't put it past an auditor to add additional objects to the
1107 	 * primary link-map.  Hence, we collect .inits after the audit call.
1108 	 */
1109 	rd_event(&lml_main, RD_PREINIT, 0);
1110 
1111 	if (aud_activity ||
1112 	    ((lml_main.lm_tflags | AFLAGS(mlmp)) & LML_TFLG_AUD_ACTIVITY))
1113 		audit_activity(mlmp, LA_ACT_CONSISTENT);
1114 	if (aud_preinit ||
1115 	    ((lml_main.lm_tflags | AFLAGS(mlmp)) & LML_TFLG_AUD_PREINIT))
1116 		audit_preinit(mlmp);
1117 
1118 	/*
1119 	 * If we're creating initial configuration information, we're done
1120 	 * now that the auditing step has been called.
1121 	 */
1122 	if (rtld_flags & RT_FL_CONFGEN) {
1123 		leave(LIST(mlmp), 0);
1124 		return (mlmp);
1125 	}
1126 
1127 	/*
1128 	 * Sort the .init sections of all objects we've added.  If we're
1129 	 * tracing we only need to execute this under ldd(1) with the -i or -u
1130 	 * options.
1131 	 */
1132 	lmflags = lml_main.lm_flags;
1133 	if (((lmflags & LML_FLG_TRC_ENABLE) == 0) ||
1134 	    (lmflags & (LML_FLG_TRC_INIT | LML_FLG_TRC_UNREF))) {
1135 		if ((tobj = tsort(mlmp, LIST(mlmp)->lm_init,
1136 		    RT_SORT_REV)) == (Rt_map **)S_ERROR)
1137 			return (0);
1138 	}
1139 
1140 	/*
1141 	 * If we are tracing we're done.  This is the one legitimate use of a
1142 	 * direct call to rtldexit() rather than return, as we don't want to
1143 	 * return and jump to the application.
1144 	 */
1145 	if (lmflags & LML_FLG_TRC_ENABLE) {
1146 		unused(&lml_main);
1147 		rtldexit(&lml_main, 0);
1148 	}
1149 
1150 	/*
1151 	 * Check if this instance of the linker should have a primary link
1152 	 * map.  This flag allows multiple copies of the -same- -version-
1153 	 * of the linker (and libc) to run in the same address space.
1154 	 *
1155 	 * Without this flag we only support one copy of the linker in a
1156 	 * process because by default the linker will always try to
1157 	 * initialize at one primary link map  The copy of libc which is
1158 	 * initialized on a primary link map will initialize global TLS
1159 	 * data which can be shared with other copies of libc in the
1160 	 * process.  The problem is that if there is more than one copy
1161 	 * of the linker, only one copy should link libc onto a primary
1162 	 * link map, otherwise libc will attempt to re-initialize global
1163 	 * TLS data.  So when a copy of the linker is loaded with this
1164 	 * flag set, it will not initialize any primary link maps since
1165 	 * presumably another copy of the linker will do this.
1166 	 *
1167 	 * Note that this flag only allows multiple copies of the -same-
1168 	 * -version- of the linker (and libc) to coexist.  This approach
1169 	 * will not work if we are trying to load different versions of
1170 	 * the linker and libc into the same process.  The reason for
1171 	 * this is that the format of the global TLS data may not be
1172 	 * the same for different versions of libc.  In this case each
1173 	 * different version of libc must have it's own primary link map
1174 	 * and be able to maintain it's own TLS data.  The only way this
1175 	 * can be done is by carefully managing TLS pointers on transitions
1176 	 * between code associated with each of the different linkers.
1177 	 * Note that this is actually what is done for processes in lx
1178 	 * branded zones.  Although in the lx branded zone case, the
1179 	 * other linker and libc are actually gld and glibc.  But the
1180 	 * same general TLS management mechanism used by the lx brand
1181 	 * would apply to any attempts to run multiple versions of the
1182 	 * solaris linker and libc in a single process.
1183 	 */
1184 	if (auxflags & AF_SUN_NOPLM)
1185 		rtld_flags2 |= RT_FL2_NOPLM;
1186 
1187 	/*
1188 	 * Establish any static TLS for this primary link-map.  Note, regardless
1189 	 * of whether TLS is available, an initial handshake occurs with libc to
1190 	 * indicate we're processing the primary link-map.  Having identified
1191 	 * the primary link-map, initialize threads.
1192 	 */
1193 	if (rt_get_extern(&lml_main, mlmp) == 0)
1194 		return (0);
1195 
1196 	if ((rtld_flags2 & RT_FL2_NOPLM) == 0) {
1197 		if (tls_statmod(&lml_main, mlmp) == 0)
1198 			return (0);
1199 		rt_thr_init(&lml_main);
1200 		rtld_flags2 |= RT_FL2_PLMSETUP;
1201 	} else {
1202 		rt_thr_init(&lml_main);
1203 	}
1204 
1205 	/*
1206 	 * Fire all dependencies .init sections.  Identify any unused
1207 	 * dependencies, and leave the runtime linker - effectively calling
1208 	 * the dynamic executables entry point.
1209 	 */
1210 	call_array(PREINITARRAY(mlmp), (uint_t)PREINITARRAYSZ(mlmp), mlmp,
1211 	    SHT_PREINIT_ARRAY);
1212 
1213 	if (tobj)
1214 		call_init(tobj, DBG_INIT_SORT);
1215 
1216 	rd_event(&lml_main, RD_POSTINIT, 0);
1217 
1218 	unused(&lml_main);
1219 
1220 	DBG_CALL(Dbg_util_call_main(mlmp));
1221 
1222 	rtld_flags |= (RT_FL_OPERATION | RT_FL_APPLIC);
1223 
1224 	leave(LIST(mlmp), 0);
1225 
1226 	return (mlmp);
1227 }
1228