xref: /illumos-gate/usr/src/cmd/mdb/intel/mdb/mdb_ia32util.c (revision b6805bf78d2bbbeeaea8909a05623587b42d58b3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2012, Joyent, Inc.  All rights reserved.
27  */
28 
29 #include <sys/types.h>
30 #include <sys/reg.h>
31 #include <sys/privregs.h>
32 #include <sys/stack.h>
33 #include <sys/frame.h>
34 
35 #include <mdb/mdb_ia32util.h>
36 #include <mdb/mdb_target_impl.h>
37 #include <mdb/mdb_kreg_impl.h>
38 #include <mdb/mdb_debug.h>
39 #include <mdb/mdb_modapi.h>
40 #include <mdb/mdb_err.h>
41 #include <mdb/mdb.h>
42 
43 /*
44  * We also define an array of register names and their corresponding
45  * array indices.  This is used by the getareg and putareg entry points,
46  * and also by our register variable discipline.
47  */
48 const mdb_tgt_regdesc_t mdb_ia32_kregs[] = {
49 	{ "savfp", KREG_SAVFP, MDB_TGT_R_EXPORT },
50 	{ "savpc", KREG_SAVPC, MDB_TGT_R_EXPORT },
51 	{ "eax", KREG_EAX, MDB_TGT_R_EXPORT },
52 	{ "ax", KREG_EAX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
53 	{ "ah", KREG_EAX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
54 	{ "al", KREG_EAX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
55 	{ "ebx", KREG_EBX, MDB_TGT_R_EXPORT },
56 	{ "bx", KREG_EBX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
57 	{ "bh", KREG_EBX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
58 	{ "bl", KREG_EBX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
59 	{ "ecx", KREG_ECX, MDB_TGT_R_EXPORT },
60 	{ "cx", KREG_ECX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
61 	{ "ch", KREG_ECX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
62 	{ "cl", KREG_ECX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
63 	{ "edx", KREG_EDX, MDB_TGT_R_EXPORT },
64 	{ "dx", KREG_EDX, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
65 	{ "dh", KREG_EDX, MDB_TGT_R_EXPORT | MDB_TGT_R_8H },
66 	{ "dl", KREG_EDX, MDB_TGT_R_EXPORT | MDB_TGT_R_8L },
67 	{ "esi", KREG_ESI, MDB_TGT_R_EXPORT },
68 	{ "si", KREG_ESI, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
69 	{ "edi", KREG_EDI, MDB_TGT_R_EXPORT },
70 	{ "di",	EDI, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
71 	{ "ebp", KREG_EBP, MDB_TGT_R_EXPORT },
72 	{ "bp", KREG_EBP, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
73 	{ "esp", KREG_ESP, MDB_TGT_R_EXPORT },
74 	{ "sp", KREG_ESP, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
75 	{ "cs", KREG_CS, MDB_TGT_R_EXPORT },
76 	{ "ds", KREG_DS, MDB_TGT_R_EXPORT },
77 	{ "ss", KREG_SS, MDB_TGT_R_EXPORT },
78 	{ "es", KREG_ES, MDB_TGT_R_EXPORT },
79 	{ "fs", KREG_FS, MDB_TGT_R_EXPORT },
80 	{ "gs", KREG_GS, MDB_TGT_R_EXPORT },
81 	{ "eflags", KREG_EFLAGS, MDB_TGT_R_EXPORT },
82 	{ "eip", KREG_EIP, MDB_TGT_R_EXPORT },
83 	{ "uesp", KREG_UESP, MDB_TGT_R_EXPORT | MDB_TGT_R_PRIV },
84 	{ "usp", KREG_UESP, MDB_TGT_R_EXPORT | MDB_TGT_R_16 },
85 	{ "trapno", KREG_TRAPNO, MDB_TGT_R_EXPORT | MDB_TGT_R_PRIV },
86 	{ "err", KREG_ERR, MDB_TGT_R_EXPORT | MDB_TGT_R_PRIV },
87 	{ NULL, 0, 0 }
88 };
89 
90 void
91 mdb_ia32_printregs(const mdb_tgt_gregset_t *gregs)
92 {
93 	const kreg_t *kregs = &gregs->kregs[0];
94 	kreg_t eflags = kregs[KREG_EFLAGS];
95 
96 	mdb_printf("%%cs = 0x%04x\t\t%%eax = 0x%0?p %A\n",
97 	    kregs[KREG_CS], kregs[KREG_EAX], kregs[KREG_EAX]);
98 
99 	mdb_printf("%%ds = 0x%04x\t\t%%ebx = 0x%0?p %A\n",
100 	    kregs[KREG_DS], kregs[KREG_EBX], kregs[KREG_EBX]);
101 
102 	mdb_printf("%%ss = 0x%04x\t\t%%ecx = 0x%0?p %A\n",
103 	    kregs[KREG_SS], kregs[KREG_ECX], kregs[KREG_ECX]);
104 
105 	mdb_printf("%%es = 0x%04x\t\t%%edx = 0x%0?p %A\n",
106 	    kregs[KREG_ES], kregs[KREG_EDX], kregs[KREG_EDX]);
107 
108 	mdb_printf("%%fs = 0x%04x\t\t%%esi = 0x%0?p %A\n",
109 	    kregs[KREG_FS], kregs[KREG_ESI], kregs[KREG_ESI]);
110 
111 	mdb_printf("%%gs = 0x%04x\t\t%%edi = 0x%0?p %A\n\n",
112 	    kregs[KREG_GS], kregs[KREG_EDI], kregs[KREG_EDI]);
113 
114 	mdb_printf("%%eip = 0x%0?p %A\n", kregs[KREG_EIP], kregs[KREG_EIP]);
115 	mdb_printf("%%ebp = 0x%0?p\n", kregs[KREG_EBP]);
116 	mdb_printf("%%esp = 0x%0?p\n\n", kregs[KREG_ESP]);
117 	mdb_printf("%%eflags = 0x%08x\n", eflags);
118 
119 	mdb_printf("  id=%u vip=%u vif=%u ac=%u vm=%u rf=%u nt=%u iopl=0x%x\n",
120 	    (eflags & KREG_EFLAGS_ID_MASK) >> KREG_EFLAGS_ID_SHIFT,
121 	    (eflags & KREG_EFLAGS_VIP_MASK) >> KREG_EFLAGS_VIP_SHIFT,
122 	    (eflags & KREG_EFLAGS_VIF_MASK) >> KREG_EFLAGS_VIF_SHIFT,
123 	    (eflags & KREG_EFLAGS_AC_MASK) >> KREG_EFLAGS_AC_SHIFT,
124 	    (eflags & KREG_EFLAGS_VM_MASK) >> KREG_EFLAGS_VM_SHIFT,
125 	    (eflags & KREG_EFLAGS_RF_MASK) >> KREG_EFLAGS_RF_SHIFT,
126 	    (eflags & KREG_EFLAGS_NT_MASK) >> KREG_EFLAGS_NT_SHIFT,
127 	    (eflags & KREG_EFLAGS_IOPL_MASK) >> KREG_EFLAGS_IOPL_SHIFT);
128 
129 	mdb_printf("  status=<%s,%s,%s,%s,%s,%s,%s,%s,%s>\n\n",
130 	    (eflags & KREG_EFLAGS_OF_MASK) ? "OF" : "of",
131 	    (eflags & KREG_EFLAGS_DF_MASK) ? "DF" : "df",
132 	    (eflags & KREG_EFLAGS_IF_MASK) ? "IF" : "if",
133 	    (eflags & KREG_EFLAGS_TF_MASK) ? "TF" : "tf",
134 	    (eflags & KREG_EFLAGS_SF_MASK) ? "SF" : "sf",
135 	    (eflags & KREG_EFLAGS_ZF_MASK) ? "ZF" : "zf",
136 	    (eflags & KREG_EFLAGS_AF_MASK) ? "AF" : "af",
137 	    (eflags & KREG_EFLAGS_PF_MASK) ? "PF" : "pf",
138 	    (eflags & KREG_EFLAGS_CF_MASK) ? "CF" : "cf");
139 
140 #ifndef _KMDB
141 	mdb_printf("  %%uesp = 0x%0?x\n", kregs[KREG_UESP]);
142 #endif
143 	mdb_printf("%%trapno = 0x%x\n", kregs[KREG_TRAPNO]);
144 	mdb_printf("   %%err = 0x%x\n", kregs[KREG_ERR]);
145 }
146 
147 /*
148  * Given a return address (%eip), determine the likely number of arguments
149  * that were pushed on the stack prior to its execution.  We do this by
150  * expecting that a typical call sequence consists of pushing arguments on
151  * the stack, executing a call instruction, and then performing an add
152  * on %esp to restore it to the value prior to pushing the arguments for
153  * the call.  We attempt to detect such an add, and divide the addend
154  * by the size of a word to determine the number of pushed arguments.
155  */
156 static uint_t
157 kvm_argcount(mdb_tgt_t *t, uintptr_t eip, ssize_t size)
158 {
159 	uint8_t ins[6];
160 	ulong_t n;
161 
162 	enum {
163 		M_MODRM_ESP = 0xc4,	/* Mod/RM byte indicates %esp */
164 		M_ADD_IMM32 = 0x81,	/* ADD imm32 to r/m32 */
165 		M_ADD_IMM8  = 0x83	/* ADD imm8 to r/m32 */
166 	};
167 
168 	if (mdb_tgt_vread(t, ins, sizeof (ins), eip) != sizeof (ins))
169 		return (0);
170 
171 	if (ins[1] != M_MODRM_ESP)
172 		return (0);
173 
174 	switch (ins[0]) {
175 	case M_ADD_IMM32:
176 		n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24);
177 		break;
178 
179 	case M_ADD_IMM8:
180 		n = ins[2];
181 		break;
182 
183 	default:
184 		n = 0;
185 	}
186 
187 	return (MIN((ssize_t)n, size) / sizeof (long));
188 }
189 
190 int
191 mdb_ia32_kvm_stack_iter(mdb_tgt_t *t, const mdb_tgt_gregset_t *gsp,
192     mdb_tgt_stack_f *func, void *arg)
193 {
194 	mdb_tgt_gregset_t gregs;
195 	kreg_t *kregs = &gregs.kregs[0];
196 	int got_pc = (gsp->kregs[KREG_EIP] != 0);
197 
198 	struct {
199 		uintptr_t fr_savfp;
200 		uintptr_t fr_savpc;
201 		long fr_argv[32];
202 	} fr;
203 
204 	uintptr_t fp = gsp->kregs[KREG_EBP];
205 	uintptr_t pc = gsp->kregs[KREG_EIP];
206 	uintptr_t lastfp;
207 
208 	ssize_t size;
209 	uint_t argc;
210 	int detect_exception_frames = 0;
211 #ifndef	_KMDB
212 	int xp;
213 
214 	if ((mdb_readsym(&xp, sizeof (xp), "xpv_panicking") != -1) && (xp > 0))
215 		detect_exception_frames = 1;
216 #endif
217 
218 	bcopy(gsp, &gregs, sizeof (gregs));
219 
220 	while (fp != 0) {
221 
222 		if (fp & (STACK_ALIGN - 1))
223 			return (set_errno(EMDB_STKALIGN));
224 
225 		if ((size = mdb_tgt_vread(t, &fr, sizeof (fr), fp)) >=
226 		    (ssize_t)(2 * sizeof (uintptr_t))) {
227 			size -= (ssize_t)(2 * sizeof (uintptr_t));
228 			argc = kvm_argcount(t, fr.fr_savpc, size);
229 		} else {
230 			bzero(&fr, sizeof (fr));
231 			argc = 0;
232 		}
233 
234 		if (got_pc && func(arg, pc, argc, fr.fr_argv, &gregs) != 0)
235 			break;
236 
237 		kregs[KREG_ESP] = kregs[KREG_EBP];
238 
239 		lastfp = fp;
240 		fp = fr.fr_savfp;
241 		/*
242 		 * The Xen hypervisor marks a stack frame as belonging to
243 		 * an exception by inverting the bits of the pointer to
244 		 * that frame.  We attempt to identify these frames by
245 		 * inverting the pointer and seeing if it is within 0xfff
246 		 * bytes of the last frame.
247 		 */
248 		if (detect_exception_frames)
249 			if ((fp != 0) && (fp < lastfp) &&
250 			    ((lastfp ^ ~fp) < 0xfff))
251 				fp = ~fp;
252 
253 		kregs[KREG_EBP] = fp;
254 		kregs[KREG_EIP] = pc = fr.fr_savpc;
255 
256 		got_pc = (pc != 0);
257 	}
258 
259 	return (0);
260 }
261 
262 /*
263  * Determine the return address for the current frame.  Typically this is the
264  * fr_savpc value from the current frame, but we also perform some special
265  * handling to see if we are stopped on one of the first two instructions of a
266  * typical function prologue, in which case %ebp will not be set up yet.
267  */
268 int
269 mdb_ia32_step_out(mdb_tgt_t *t, uintptr_t *p, kreg_t pc, kreg_t fp, kreg_t sp,
270     mdb_instr_t curinstr)
271 {
272 	struct frame fr;
273 	GElf_Sym s;
274 	char buf[1];
275 
276 	enum {
277 		M_PUSHL_EBP	= 0x55, /* pushl %ebp */
278 		M_MOVL_EBP	= 0x8b  /* movl %esp, %ebp */
279 	};
280 
281 	if (mdb_tgt_lookup_by_addr(t, pc, MDB_TGT_SYM_FUZZY,
282 	    buf, 0, &s, NULL) == 0) {
283 		if (pc == s.st_value && curinstr == M_PUSHL_EBP)
284 			fp = sp - 4;
285 		else if (pc == s.st_value + 1 && curinstr == M_MOVL_EBP)
286 			fp = sp;
287 	}
288 
289 	if (mdb_tgt_vread(t, &fr, sizeof (fr), fp) == sizeof (fr)) {
290 		*p = fr.fr_savpc;
291 		return (0);
292 	}
293 
294 	return (-1); /* errno is set for us */
295 }
296 
297 /*
298  * Return the address of the next instruction following a call, or return -1
299  * and set errno to EAGAIN if the target should just single-step.  We perform
300  * a bit of disassembly on the current instruction in order to determine if it
301  * is a call and how many bytes should be skipped, depending on the exact form
302  * of the call instruction that is being used.
303  */
304 int
305 mdb_ia32_next(mdb_tgt_t *t, uintptr_t *p, kreg_t pc, mdb_instr_t curinstr)
306 {
307 	uint8_t m;
308 
309 	enum {
310 		M_CALL_REL = 0xe8, /* call near with relative displacement */
311 		M_CALL_REG = 0xff, /* call near indirect or call far register */
312 
313 		M_MODRM_MD = 0xc0, /* mask for Mod/RM byte Mod field */
314 		M_MODRM_OP = 0x38, /* mask for Mod/RM byte opcode field */
315 		M_MODRM_RM = 0x07, /* mask for Mod/RM byte R/M field */
316 
317 		M_MD_IND   = 0x00, /* Mod code for [REG] */
318 		M_MD_DSP8  = 0x40, /* Mod code for disp8[REG] */
319 		M_MD_DSP32 = 0x80, /* Mod code for disp32[REG] */
320 		M_MD_REG   = 0xc0, /* Mod code for REG */
321 
322 		M_OP_IND   = 0x10, /* Opcode for call near indirect */
323 		M_RM_DSP32 = 0x05  /* R/M code for disp32 */
324 	};
325 
326 	/*
327 	 * If the opcode is a near call with relative displacement, assume the
328 	 * displacement is a rel32 from the next instruction.
329 	 */
330 	if (curinstr == M_CALL_REL) {
331 		*p = pc + sizeof (mdb_instr_t) + sizeof (uint32_t);
332 		return (0);
333 	}
334 
335 	/*
336 	 * If the opcode is a call near indirect or call far register opcode,
337 	 * read the subsequent Mod/RM byte to perform additional decoding.
338 	 */
339 	if (curinstr == M_CALL_REG) {
340 		if (mdb_tgt_vread(t, &m, sizeof (m), pc + 1) != sizeof (m))
341 			return (-1); /* errno is set for us */
342 
343 		/*
344 		 * If the Mod/RM opcode extension indicates a near indirect
345 		 * call, then skip the appropriate number of additional
346 		 * bytes depending on the addressing form that is used.
347 		 */
348 		if ((m & M_MODRM_OP) == M_OP_IND) {
349 			switch (m & M_MODRM_MD) {
350 			case M_MD_DSP8:
351 				*p = pc + 3; /* skip pr_instr, m, disp8 */
352 				break;
353 			case M_MD_DSP32:
354 				*p = pc + 6; /* skip pr_instr, m, disp32 */
355 				break;
356 			case M_MD_IND:
357 				if ((m & M_MODRM_RM) == M_RM_DSP32) {
358 					*p = pc + 6;
359 					break; /* skip pr_instr, m, disp32 */
360 				}
361 				/* FALLTHRU */
362 			case M_MD_REG:
363 				*p = pc + 2; /* skip pr_instr, m */
364 				break;
365 			}
366 			return (0);
367 		}
368 	}
369 
370 	return (set_errno(EAGAIN));
371 }
372 
373 /*ARGSUSED*/
374 int
375 mdb_ia32_kvm_frame(void *arglim, uintptr_t pc, uint_t argc, const long *argv,
376     const mdb_tgt_gregset_t *gregs)
377 {
378 	argc = MIN(argc, (uint_t)arglim);
379 	mdb_printf("%a(", pc);
380 
381 	if (argc != 0) {
382 		mdb_printf("%lr", *argv++);
383 		for (argc--; argc != 0; argc--)
384 			mdb_printf(", %lr", *argv++);
385 	}
386 
387 	mdb_printf(")\n");
388 	return (0);
389 }
390 
391 int
392 mdb_ia32_kvm_framev(void *arglim, uintptr_t pc, uint_t argc, const long *argv,
393     const mdb_tgt_gregset_t *gregs)
394 {
395 	argc = MIN(argc, (uint_t)arglim);
396 	mdb_printf("%0?lr %a(", gregs->kregs[KREG_EBP], pc);
397 
398 	if (argc != 0) {
399 		mdb_printf("%lr", *argv++);
400 		for (argc--; argc != 0; argc--)
401 			mdb_printf(", %lr", *argv++);
402 	}
403 
404 	mdb_printf(")\n");
405 	return (0);
406 }
407