xref: /illumos-gate/usr/src/cmd/bhyve/virtio.h (revision c94be9439c4f0773ef60e2cec21d548359cfea20)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2013  Chris Torek <torek @ torek net>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 #ifndef	_VIRTIO_H_
32 #define	_VIRTIO_H_
33 
34 #include <pthread_np.h>
35 #include <machine/atomic.h>
36 
37 /*
38  * These are derived from several virtio specifications.
39  *
40  * Some useful links:
41  *    https://github.com/rustyrussell/virtio-spec
42  *    http://people.redhat.com/pbonzini/virtio-spec.pdf
43  */
44 
45 /*
46  * A virtual device has zero or more "virtual queues" (virtqueue).
47  * Each virtqueue uses at least two 4096-byte pages, laid out thus:
48  *
49  *      +-----------------------------------------------+
50  *      |    "desc":  <N> descriptors, 16 bytes each    |
51  *      |   -----------------------------------------   |
52  *      |   "avail":   2 uint16; <N> uint16; 1 uint16   |
53  *      |   -----------------------------------------   |
54  *      |              pad to 4k boundary               |
55  *      +-----------------------------------------------+
56  *      |   "used": 2 x uint16; <N> elems; 1 uint16     |
57  *      |   -----------------------------------------   |
58  *      |              pad to 4k boundary               |
59  *      +-----------------------------------------------+
60  *
61  * The number <N> that appears here is always a power of two and is
62  * limited to no more than 32768 (as it must fit in a 16-bit field).
63  * If <N> is sufficiently large, the above will occupy more than
64  * two pages.  In any case, all pages must be physically contiguous
65  * within the guest's physical address space.
66  *
67  * The <N> 16-byte "desc" descriptors consist of a 64-bit guest
68  * physical address <addr>, a 32-bit length <len>, a 16-bit
69  * <flags>, and a 16-bit <next> field (all in guest byte order).
70  *
71  * There are three flags that may be set :
72  *	NEXT    descriptor is chained, so use its "next" field
73  *	WRITE   descriptor is for host to write into guest RAM
74  *		(else host is to read from guest RAM)
75  *	INDIRECT   descriptor address field is (guest physical)
76  *		address of a linear array of descriptors
77  *
78  * Unless INDIRECT is set, <len> is the number of bytes that may
79  * be read/written from guest physical address <addr>.  If
80  * INDIRECT is set, WRITE is ignored and <len> provides the length
81  * of the indirect descriptors (and <len> must be a multiple of
82  * 16).  Note that NEXT may still be set in the main descriptor
83  * pointing to the indirect, and should be set in each indirect
84  * descriptor that uses the next descriptor (these should generally
85  * be numbered sequentially).  However, INDIRECT must not be set
86  * in the indirect descriptors.  Upon reaching an indirect descriptor
87  * without a NEXT bit, control returns to the direct descriptors.
88  *
89  * Except inside an indirect, each <next> value must be in the
90  * range [0 .. N) (i.e., the half-open interval).  (Inside an
91  * indirect, each <next> must be in the range [0 .. <len>/16).)
92  *
93  * The "avail" data structures reside in the same pages as the
94  * "desc" structures since both together are used by the device to
95  * pass information to the hypervisor's virtual driver.  These
96  * begin with a 16-bit <flags> field and 16-bit index <idx>, then
97  * have <N> 16-bit <ring> values, followed by one final 16-bit
98  * field <used_event>.  The <N> <ring> entries are simply indices
99  * indices into the descriptor ring (and thus must meet the same
100  * constraints as each <next> value).  However, <idx> is counted
101  * up from 0 (initially) and simply wraps around after 65535; it
102  * is taken mod <N> to find the next available entry.
103  *
104  * The "used" ring occupies a separate page or pages, and contains
105  * values written from the virtual driver back to the guest OS.
106  * This begins with a 16-bit <flags> and 16-bit <idx>, then there
107  * are <N> "vring_used" elements, followed by a 16-bit <avail_event>.
108  * The <N> "vring_used" elements consist of a 32-bit <id> and a
109  * 32-bit <len> (vu_tlen below).  The <id> is simply the index of
110  * the head of a descriptor chain the guest made available
111  * earlier, and the <len> is the number of bytes actually written,
112  * e.g., in the case of a network driver that provided a large
113  * receive buffer but received only a small amount of data.
114  *
115  * The two event fields, <used_event> and <avail_event>, in the
116  * avail and used rings (respectively -- note the reversal!), are
117  * always provided, but are used only if the virtual device
118  * negotiates the VIRTIO_RING_F_EVENT_IDX feature during feature
119  * negotiation.  Similarly, both rings provide a flag --
120  * VRING_AVAIL_F_NO_INTERRUPT and VRING_USED_F_NO_NOTIFY -- in
121  * their <flags> field, indicating that the guest does not need an
122  * interrupt, or that the hypervisor driver does not need a
123  * notify, when descriptors are added to the corresponding ring.
124  * (These are provided only for interrupt optimization and need
125  * not be implemented.)
126  */
127 #define VRING_ALIGN	4096
128 
129 #define VRING_DESC_F_NEXT	(1 << 0)
130 #define VRING_DESC_F_WRITE	(1 << 1)
131 #define VRING_DESC_F_INDIRECT	(1 << 2)
132 
133 struct virtio_desc {			/* AKA vring_desc */
134 	uint64_t	vd_addr;	/* guest physical address */
135 	uint32_t	vd_len;		/* length of scatter/gather seg */
136 	uint16_t	vd_flags;	/* VRING_F_DESC_* */
137 	uint16_t	vd_next;	/* next desc if F_NEXT */
138 } __packed;
139 
140 struct virtio_used {			/* AKA vring_used_elem */
141 	uint32_t	vu_idx;		/* head of used descriptor chain */
142 	uint32_t	vu_tlen;	/* length written-to */
143 } __packed;
144 
145 #define VRING_AVAIL_F_NO_INTERRUPT   1
146 
147 struct vring_avail {
148 	uint16_t	va_flags;	/* VRING_AVAIL_F_* */
149 	uint16_t	va_idx;		/* counts to 65535, then cycles */
150 	uint16_t	va_ring[];	/* size N, reported in QNUM value */
151 /*	uint16_t	va_used_event;	-- after N ring entries */
152 } __packed;
153 
154 #define	VRING_USED_F_NO_NOTIFY		1
155 struct vring_used {
156 	uint16_t	vu_flags;	/* VRING_USED_F_* */
157 	uint16_t	vu_idx;		/* counts to 65535, then cycles */
158 	struct virtio_used vu_ring[];	/* size N */
159 /*	uint16_t	vu_avail_event;	-- after N ring entries */
160 } __packed;
161 
162 /*
163  * The address of any given virtual queue is determined by a single
164  * Page Frame Number register.  The guest writes the PFN into the
165  * PCI config space.  However, a device that has two or more
166  * virtqueues can have a different PFN, and size, for each queue.
167  * The number of queues is determinable via the PCI config space
168  * VTCFG_R_QSEL register.  Writes to QSEL select the queue: 0 means
169  * queue #0, 1 means queue#1, etc.  Once a queue is selected, the
170  * remaining PFN and QNUM registers refer to that queue.
171  *
172  * QNUM is a read-only register containing a nonzero power of two
173  * that indicates the (hypervisor's) queue size.  Or, if reading it
174  * produces zero, the hypervisor does not have a corresponding
175  * queue.  (The number of possible queues depends on the virtual
176  * device.  The block device has just one; the network device
177  * provides either two -- 0 = receive, 1 = transmit -- or three,
178  * with 2 = control.)
179  *
180  * PFN is a read/write register giving the physical page address of
181  * the virtqueue in guest memory (the guest must allocate enough space
182  * based on the hypervisor's provided QNUM).
183  *
184  * QNOTIFY is effectively write-only: when the guest writes a queue
185  * number to the register, the hypervisor should scan the specified
186  * virtqueue. (Reading QNOTIFY currently always gets 0).
187  */
188 
189 /*
190  * PFN register shift amount
191  */
192 #define	VRING_PFN		12
193 
194 /*
195  * Virtio device types
196  *
197  * XXX Should really be merged with <dev/virtio/virtio.h> defines
198  */
199 #define	VIRTIO_TYPE_NET		1
200 #define	VIRTIO_TYPE_BLOCK	2
201 #define	VIRTIO_TYPE_CONSOLE	3
202 #define	VIRTIO_TYPE_ENTROPY	4
203 #define	VIRTIO_TYPE_BALLOON	5
204 #define	VIRTIO_TYPE_IOMEMORY	6
205 #define	VIRTIO_TYPE_RPMSG	7
206 #define	VIRTIO_TYPE_SCSI	8
207 #define	VIRTIO_TYPE_9P		9
208 
209 /* experimental IDs start at 65535 and work down */
210 
211 /*
212  * PCI vendor/device IDs
213  */
214 #define	VIRTIO_VENDOR		0x1AF4
215 #define	VIRTIO_DEV_NET		0x1000
216 #define	VIRTIO_DEV_BLOCK	0x1001
217 #define	VIRTIO_DEV_CONSOLE	0x1003
218 #define	VIRTIO_DEV_RANDOM	0x1005
219 #define	VIRTIO_DEV_SCSI		0x1008
220 
221 /*
222  * PCI config space constants.
223  *
224  * If MSI-X is enabled, the ISR register is generally not used,
225  * and the configuration vector and queue vector appear at offsets
226  * 20 and 22 with the remaining configuration registers at 24.
227  * If MSI-X is not enabled, those two registers disappear and
228  * the remaining configuration registers start at offset 20.
229  */
230 #define	VTCFG_R_HOSTCAP		0
231 #define	VTCFG_R_GUESTCAP	4
232 #define	VTCFG_R_PFN		8
233 #define	VTCFG_R_QNUM		12
234 #define	VTCFG_R_QSEL		14
235 #define	VTCFG_R_QNOTIFY		16
236 #define	VTCFG_R_STATUS		18
237 #define	VTCFG_R_ISR		19
238 #define	VTCFG_R_CFGVEC		20
239 #define	VTCFG_R_QVEC		22
240 #define	VTCFG_R_CFG0		20	/* No MSI-X */
241 #define	VTCFG_R_CFG1		24	/* With MSI-X */
242 #define	VTCFG_R_MSIX		20
243 
244 /*
245  * Bits in VTCFG_R_STATUS.  Guests need not actually set any of these,
246  * but a guest writing 0 to this register means "please reset".
247  */
248 #define	VTCFG_STATUS_ACK	0x01	/* guest OS has acknowledged dev */
249 #define	VTCFG_STATUS_DRIVER	0x02	/* guest OS driver is loaded */
250 #define	VTCFG_STATUS_DRIVER_OK	0x04	/* guest OS driver ready */
251 #define	VTCFG_STATUS_FAILED	0x80	/* guest has given up on this dev */
252 
253 /*
254  * Bits in VTCFG_R_ISR.  These apply only if not using MSI-X.
255  *
256  * (We don't [yet?] ever use CONF_CHANGED.)
257  */
258 #define	VTCFG_ISR_QUEUES	0x01	/* re-scan queues */
259 #define	VTCFG_ISR_CONF_CHANGED	0x80	/* configuration changed */
260 
261 #define	VIRTIO_MSI_NO_VECTOR	0xFFFF
262 
263 /*
264  * Feature flags.
265  * Note: bits 0 through 23 are reserved to each device type.
266  */
267 #define	VIRTIO_F_NOTIFY_ON_EMPTY	(1 << 24)
268 #define	VIRTIO_RING_F_INDIRECT_DESC	(1 << 28)
269 #define	VIRTIO_RING_F_EVENT_IDX		(1 << 29)
270 
271 /* From section 2.3, "Virtqueue Configuration", of the virtio specification */
272 static inline size_t
273 vring_size(u_int qsz)
274 {
275 	size_t size;
276 
277 	/* constant 3 below = va_flags, va_idx, va_used_event */
278 	size = sizeof(struct virtio_desc) * qsz + sizeof(uint16_t) * (3 + qsz);
279 	size = roundup2(size, VRING_ALIGN);
280 
281 	/* constant 3 below = vu_flags, vu_idx, vu_avail_event */
282 	size += sizeof(uint16_t) * 3 + sizeof(struct virtio_used) * qsz;
283 	size = roundup2(size, VRING_ALIGN);
284 
285 	return (size);
286 }
287 
288 struct vmctx;
289 struct pci_devinst;
290 struct vqueue_info;
291 
292 /*
293  * A virtual device, with some number (possibly 0) of virtual
294  * queues and some size (possibly 0) of configuration-space
295  * registers private to the device.  The virtio_softc should come
296  * at the front of each "derived class", so that a pointer to the
297  * virtio_softc is also a pointer to the more specific, derived-
298  * from-virtio driver's softc.
299  *
300  * Note: inside each hypervisor virtio driver, changes to these
301  * data structures must be locked against other threads, if any.
302  * Except for PCI config space register read/write, we assume each
303  * driver does the required locking, but we need a pointer to the
304  * lock (if there is one) for PCI config space read/write ops.
305  *
306  * When the guest reads or writes the device's config space, the
307  * generic layer checks for operations on the special registers
308  * described above.  If the offset of the register(s) being read
309  * or written is past the CFG area (CFG0 or CFG1), the request is
310  * passed on to the virtual device, after subtracting off the
311  * generic-layer size.  (So, drivers can just use the offset as
312  * an offset into "struct config", for instance.)
313  *
314  * (The virtio layer also makes sure that the read or write is to/
315  * from a "good" config offset, hence vc_cfgsize, and on BAR #0.
316  * However, the driver must verify the read or write size and offset
317  * and that no one is writing a readonly register.)
318  *
319  * The BROKED flag ("this thing done gone and broked") is for future
320  * use.
321  */
322 #define	VIRTIO_USE_MSIX		0x01
323 #define	VIRTIO_EVENT_IDX	0x02	/* use the event-index values */
324 #define	VIRTIO_BROKED		0x08	/* ??? */
325 
326 struct virtio_softc {
327 	struct virtio_consts *vs_vc;	/* constants (see below) */
328 	int	vs_flags;		/* VIRTIO_* flags from above */
329 	pthread_mutex_t *vs_mtx;	/* POSIX mutex, if any */
330 	struct pci_devinst *vs_pi;	/* PCI device instance */
331 	uint32_t vs_negotiated_caps;	/* negotiated capabilities */
332 	struct vqueue_info *vs_queues;	/* one per vc_nvq */
333 	int	vs_curq;		/* current queue */
334 	uint8_t	vs_status;		/* value from last status write */
335 	uint8_t	vs_isr;			/* ISR flags, if not MSI-X */
336 	uint16_t vs_msix_cfg_idx;	/* MSI-X vector for config event */
337 };
338 
339 #define	VS_LOCK(vs)							\
340 do {									\
341 	if (vs->vs_mtx)							\
342 		pthread_mutex_lock(vs->vs_mtx);				\
343 } while (0)
344 
345 #define	VS_UNLOCK(vs)							\
346 do {									\
347 	if (vs->vs_mtx)							\
348 		pthread_mutex_unlock(vs->vs_mtx);			\
349 } while (0)
350 
351 struct virtio_consts {
352 	const char *vc_name;		/* name of driver (for diagnostics) */
353 	int	vc_nvq;			/* number of virtual queues */
354 	size_t	vc_cfgsize;		/* size of dev-specific config regs */
355 	void	(*vc_reset)(void *);	/* called on virtual device reset */
356 	void	(*vc_qnotify)(void *, struct vqueue_info *);
357 					/* called on QNOTIFY if no VQ notify */
358 	int	(*vc_cfgread)(void *, int, int, uint32_t *);
359 					/* called to read config regs */
360 	int	(*vc_cfgwrite)(void *, int, int, uint32_t);
361 					/* called to write config regs */
362 	void    (*vc_apply_features)(void *, uint64_t);
363 				/* called to apply negotiated features */
364 	uint64_t vc_hv_caps;		/* hypervisor-provided capabilities */
365 };
366 
367 /*
368  * Data structure allocated (statically) per virtual queue.
369  *
370  * Drivers may change vq_qsize after a reset.  When the guest OS
371  * requests a device reset, the hypervisor first calls
372  * vs->vs_vc->vc_reset(); then the data structure below is
373  * reinitialized (for each virtqueue: vs->vs_vc->vc_nvq).
374  *
375  * The remaining fields should only be fussed-with by the generic
376  * code.
377  *
378  * Note: the addresses of vq_desc, vq_avail, and vq_used are all
379  * computable from each other, but it's a lot simpler if we just
380  * keep a pointer to each one.  The event indices are similarly
381  * (but more easily) computable, and this time we'll compute them:
382  * they're just XX_ring[N].
383  */
384 #define	VQ_ALLOC	0x01	/* set once we have a pfn */
385 #define	VQ_BROKED	0x02	/* ??? */
386 struct vqueue_info {
387 	uint16_t vq_qsize;	/* size of this queue (a power of 2) */
388 	void	(*vq_notify)(void *, struct vqueue_info *);
389 				/* called instead of vc_notify, if not NULL */
390 
391 	struct virtio_softc *vq_vs;	/* backpointer to softc */
392 	uint16_t vq_num;	/* we're the num'th queue in the softc */
393 
394 	uint16_t vq_flags;	/* flags (see above) */
395 	uint16_t vq_last_avail;	/* a recent value of vq_avail->va_idx */
396 	uint16_t vq_next_used;	/* index of the next used slot to be filled */
397 	uint16_t vq_save_used;	/* saved vq_used->vu_idx; see vq_endchains */
398 	uint16_t vq_msix_idx;	/* MSI-X index, or VIRTIO_MSI_NO_VECTOR */
399 
400 	uint32_t vq_pfn;	/* PFN of virt queue (not shifted!) */
401 
402 	volatile struct virtio_desc *vq_desc;	/* descriptor array */
403 	volatile struct vring_avail *vq_avail;	/* the "avail" ring */
404 	volatile struct vring_used *vq_used;	/* the "used" ring */
405 
406 };
407 /* as noted above, these are sort of backwards, name-wise */
408 #define VQ_AVAIL_EVENT_IDX(vq) \
409 	(*(volatile uint16_t *)&(vq)->vq_used->vu_ring[(vq)->vq_qsize])
410 #define VQ_USED_EVENT_IDX(vq) \
411 	((vq)->vq_avail->va_ring[(vq)->vq_qsize])
412 
413 /*
414  * Is this ring ready for I/O?
415  */
416 static inline int
417 vq_ring_ready(struct vqueue_info *vq)
418 {
419 
420 	return (vq->vq_flags & VQ_ALLOC);
421 }
422 
423 /*
424  * Are there "available" descriptors?  (This does not count
425  * how many, just returns True if there are some.)
426  */
427 static inline int
428 vq_has_descs(struct vqueue_info *vq)
429 {
430 
431 	return (vq_ring_ready(vq) && vq->vq_last_avail !=
432 	    vq->vq_avail->va_idx);
433 }
434 
435 /*
436  * Deliver an interrupt to guest on the given virtual queue
437  * (if possible, or a generic MSI interrupt if not using MSI-X).
438  */
439 static inline void
440 vq_interrupt(struct virtio_softc *vs, struct vqueue_info *vq)
441 {
442 
443 	if (pci_msix_enabled(vs->vs_pi))
444 		pci_generate_msix(vs->vs_pi, vq->vq_msix_idx);
445 	else {
446 #ifndef __FreeBSD__
447 		boolean_t unlock = B_FALSE;
448 
449 		if (vs->vs_mtx && !pthread_mutex_isowned_np(vs->vs_mtx)) {
450 			unlock = B_TRUE;
451 			pthread_mutex_lock(vs->vs_mtx);
452 		}
453 #else
454 		VS_LOCK(vs);
455 #endif
456 		vs->vs_isr |= VTCFG_ISR_QUEUES;
457 		pci_generate_msi(vs->vs_pi, 0);
458 		pci_lintr_assert(vs->vs_pi);
459 #ifndef __FreeBSD__
460 		if (unlock)
461 			pthread_mutex_unlock(vs->vs_mtx);
462 #else
463 		VS_UNLOCK(vs);
464 #endif
465 	}
466 }
467 
468 static inline void
469 vq_kick_enable(struct vqueue_info *vq)
470 {
471 
472 	vq->vq_used->vu_flags &= ~VRING_USED_F_NO_NOTIFY;
473 	/*
474 	 * Full memory barrier to make sure the store to vu_flags
475 	 * happens before the load from va_idx, which results from
476 	 * a subsequent call to vq_has_descs().
477 	 */
478 	atomic_thread_fence_seq_cst();
479 }
480 
481 static inline void
482 vq_kick_disable(struct vqueue_info *vq)
483 {
484 
485 	vq->vq_used->vu_flags |= VRING_USED_F_NO_NOTIFY;
486 }
487 
488 struct iovec;
489 void	vi_softc_linkup(struct virtio_softc *vs, struct virtio_consts *vc,
490 			void *dev_softc, struct pci_devinst *pi,
491 			struct vqueue_info *queues);
492 int	vi_intr_init(struct virtio_softc *vs, int barnum, int use_msix);
493 void	vi_reset_dev(struct virtio_softc *);
494 void	vi_set_io_bar(struct virtio_softc *, int);
495 
496 int	vq_getchain(struct vqueue_info *vq, uint16_t *pidx,
497 		    struct iovec *iov, int n_iov, uint16_t *flags);
498 void	vq_retchains(struct vqueue_info *vq, uint16_t n_chains);
499 void	vq_relchain_prepare(struct vqueue_info *vq, uint16_t idx,
500 			    uint32_t iolen);
501 void	vq_relchain_publish(struct vqueue_info *vq);
502 void	vq_relchain(struct vqueue_info *vq, uint16_t idx, uint32_t iolen);
503 void	vq_endchains(struct vqueue_info *vq, int used_all_avail);
504 
505 uint64_t vi_pci_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi,
506 		     int baridx, uint64_t offset, int size);
507 void	vi_pci_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi,
508 		     int baridx, uint64_t offset, int size, uint64_t value);
509 #endif	/* _VIRTIO_H_ */
510