xref: /illumos-gate/usr/src/cmd/bhyve/virtio.h (revision 1a065e93eee983124652c3eb0cfdcb4776cd89ab)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2013  Chris Torek <torek @ torek net>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 #ifndef	_BHYVE_VIRTIO_H_
32 #define	_BHYVE_VIRTIO_H_
33 
34 #include <pthread_np.h>
35 #include <machine/atomic.h>
36 
37 #include <dev/virtio/virtio.h>
38 #ifdef __FreeBSD__
39 #include <dev/virtio/virtio_ring.h>
40 #include <dev/virtio/pci/virtio_pci_var.h>
41 #endif
42 
43 /*
44  * These are derived from several virtio specifications.
45  *
46  * Some useful links:
47  *    https://github.com/rustyrussell/virtio-spec
48  *    http://people.redhat.com/pbonzini/virtio-spec.pdf
49  */
50 
51 /*
52  * A virtual device has zero or more "virtual queues" (virtqueue).
53  * Each virtqueue uses at least two 4096-byte pages, laid out thus:
54  *
55  *      +-----------------------------------------------+
56  *      |    "desc":  <N> descriptors, 16 bytes each    |
57  *      |   -----------------------------------------   |
58  *      |   "avail":   2 uint16; <N> uint16; 1 uint16   |
59  *      |   -----------------------------------------   |
60  *      |              pad to 4k boundary               |
61  *      +-----------------------------------------------+
62  *      |   "used": 2 x uint16; <N> elems; 1 uint16     |
63  *      |   -----------------------------------------   |
64  *      |              pad to 4k boundary               |
65  *      +-----------------------------------------------+
66  *
67  * The number <N> that appears here is always a power of two and is
68  * limited to no more than 32768 (as it must fit in a 16-bit field).
69  * If <N> is sufficiently large, the above will occupy more than
70  * two pages.  In any case, all pages must be physically contiguous
71  * within the guest's physical address space.
72  *
73  * The <N> 16-byte "desc" descriptors consist of a 64-bit guest
74  * physical address <addr>, a 32-bit length <len>, a 16-bit
75  * <flags>, and a 16-bit <next> field (all in guest byte order).
76  *
77  * There are three flags that may be set :
78  *	NEXT    descriptor is chained, so use its "next" field
79  *	WRITE   descriptor is for host to write into guest RAM
80  *		(else host is to read from guest RAM)
81  *	INDIRECT   descriptor address field is (guest physical)
82  *		address of a linear array of descriptors
83  *
84  * Unless INDIRECT is set, <len> is the number of bytes that may
85  * be read/written from guest physical address <addr>.  If
86  * INDIRECT is set, WRITE is ignored and <len> provides the length
87  * of the indirect descriptors (and <len> must be a multiple of
88  * 16).  Note that NEXT may still be set in the main descriptor
89  * pointing to the indirect, and should be set in each indirect
90  * descriptor that uses the next descriptor (these should generally
91  * be numbered sequentially).  However, INDIRECT must not be set
92  * in the indirect descriptors.  Upon reaching an indirect descriptor
93  * without a NEXT bit, control returns to the direct descriptors.
94  *
95  * Except inside an indirect, each <next> value must be in the
96  * range [0 .. N) (i.e., the half-open interval).  (Inside an
97  * indirect, each <next> must be in the range [0 .. <len>/16).)
98  *
99  * The "avail" data structures reside in the same pages as the
100  * "desc" structures since both together are used by the device to
101  * pass information to the hypervisor's virtual driver.  These
102  * begin with a 16-bit <flags> field and 16-bit index <idx>, then
103  * have <N> 16-bit <ring> values, followed by one final 16-bit
104  * field <used_event>.  The <N> <ring> entries are simply indices
105  * indices into the descriptor ring (and thus must meet the same
106  * constraints as each <next> value).  However, <idx> is counted
107  * up from 0 (initially) and simply wraps around after 65535; it
108  * is taken mod <N> to find the next available entry.
109  *
110  * The "used" ring occupies a separate page or pages, and contains
111  * values written from the virtual driver back to the guest OS.
112  * This begins with a 16-bit <flags> and 16-bit <idx>, then there
113  * are <N> "vring_used" elements, followed by a 16-bit <avail_event>.
114  * The <N> "vring_used" elements consist of a 32-bit <id> and a
115  * 32-bit <len> (vu_tlen below).  The <id> is simply the index of
116  * the head of a descriptor chain the guest made available
117  * earlier, and the <len> is the number of bytes actually written,
118  * e.g., in the case of a network driver that provided a large
119  * receive buffer but received only a small amount of data.
120  *
121  * The two event fields, <used_event> and <avail_event>, in the
122  * avail and used rings (respectively -- note the reversal!), are
123  * always provided, but are used only if the virtual device
124  * negotiates the VIRTIO_RING_F_EVENT_IDX feature during feature
125  * negotiation.  Similarly, both rings provide a flag --
126  * VRING_AVAIL_F_NO_INTERRUPT and VRING_USED_F_NO_NOTIFY -- in
127  * their <flags> field, indicating that the guest does not need an
128  * interrupt, or that the hypervisor driver does not need a
129  * notify, when descriptors are added to the corresponding ring.
130  * (These are provided only for interrupt optimization and need
131  * not be implemented.)
132  */
133 #define VRING_ALIGN	4096
134 
135 /*
136  * The address of any given virtual queue is determined by a single
137  * Page Frame Number register.  The guest writes the PFN into the
138  * PCI config space.  However, a device that has two or more
139  * virtqueues can have a different PFN, and size, for each queue.
140  * The number of queues is determinable via the PCI config space
141  * VTCFG_R_QSEL register.  Writes to QSEL select the queue: 0 means
142  * queue #0, 1 means queue#1, etc.  Once a queue is selected, the
143  * remaining PFN and QNUM registers refer to that queue.
144  *
145  * QNUM is a read-only register containing a nonzero power of two
146  * that indicates the (hypervisor's) queue size.  Or, if reading it
147  * produces zero, the hypervisor does not have a corresponding
148  * queue.  (The number of possible queues depends on the virtual
149  * device.  The block device has just one; the network device
150  * provides either two -- 0 = receive, 1 = transmit -- or three,
151  * with 2 = control.)
152  *
153  * PFN is a read/write register giving the physical page address of
154  * the virtqueue in guest memory (the guest must allocate enough space
155  * based on the hypervisor's provided QNUM).
156  *
157  * QNOTIFY is effectively write-only: when the guest writes a queue
158  * number to the register, the hypervisor should scan the specified
159  * virtqueue. (Reading QNOTIFY currently always gets 0).
160  */
161 
162 /*
163  * PFN register shift amount
164  */
165 #define	VRING_PFN		12
166 
167 /*
168  * PCI vendor/device IDs
169  */
170 #define	VIRTIO_VENDOR		0x1AF4
171 #define	VIRTIO_DEV_NET		0x1000
172 #define	VIRTIO_DEV_BLOCK	0x1001
173 #define	VIRTIO_DEV_CONSOLE	0x1003
174 #define	VIRTIO_DEV_RANDOM	0x1005
175 #define	VIRTIO_DEV_SCSI		0x1008
176 #define	VIRTIO_DEV_9P		0x1009
177 
178 /* From section 2.3, "Virtqueue Configuration", of the virtio specification */
179 static inline int
180 vring_size_aligned(u_int qsz)
181 {
182 	return (roundup2(vring_size(qsz, VRING_ALIGN), VRING_ALIGN));
183 }
184 
185 struct vmctx;
186 struct pci_devinst;
187 struct vqueue_info;
188 
189 /*
190  * A virtual device, with some number (possibly 0) of virtual
191  * queues and some size (possibly 0) of configuration-space
192  * registers private to the device.  The virtio_softc should come
193  * at the front of each "derived class", so that a pointer to the
194  * virtio_softc is also a pointer to the more specific, derived-
195  * from-virtio driver's softc.
196  *
197  * Note: inside each hypervisor virtio driver, changes to these
198  * data structures must be locked against other threads, if any.
199  * Except for PCI config space register read/write, we assume each
200  * driver does the required locking, but we need a pointer to the
201  * lock (if there is one) for PCI config space read/write ops.
202  *
203  * When the guest reads or writes the device's config space, the
204  * generic layer checks for operations on the special registers
205  * described above.  If the offset of the register(s) being read
206  * or written is past the CFG area (CFG0 or CFG1), the request is
207  * passed on to the virtual device, after subtracting off the
208  * generic-layer size.  (So, drivers can just use the offset as
209  * an offset into "struct config", for instance.)
210  *
211  * (The virtio layer also makes sure that the read or write is to/
212  * from a "good" config offset, hence vc_cfgsize, and on BAR #0.
213  * However, the driver must verify the read or write size and offset
214  * and that no one is writing a readonly register.)
215  *
216  * The BROKED flag ("this thing done gone and broked") is for future
217  * use.
218  */
219 #define	VIRTIO_USE_MSIX		0x01
220 #define	VIRTIO_EVENT_IDX	0x02	/* use the event-index values */
221 #define	VIRTIO_BROKED		0x08	/* ??? */
222 
223 struct virtio_softc {
224 	struct virtio_consts *vs_vc;	/* constants (see below) */
225 	int	vs_flags;		/* VIRTIO_* flags from above */
226 	pthread_mutex_t *vs_mtx;	/* POSIX mutex, if any */
227 	struct pci_devinst *vs_pi;	/* PCI device instance */
228 	uint32_t vs_negotiated_caps;	/* negotiated capabilities */
229 	struct vqueue_info *vs_queues;	/* one per vc_nvq */
230 	int	vs_curq;		/* current queue */
231 	uint8_t	vs_status;		/* value from last status write */
232 	uint8_t	vs_isr;			/* ISR flags, if not MSI-X */
233 	uint16_t vs_msix_cfg_idx;	/* MSI-X vector for config event */
234 };
235 
236 #define	VS_LOCK(vs)							\
237 do {									\
238 	if (vs->vs_mtx)							\
239 		pthread_mutex_lock(vs->vs_mtx);				\
240 } while (0)
241 
242 #define	VS_UNLOCK(vs)							\
243 do {									\
244 	if (vs->vs_mtx)							\
245 		pthread_mutex_unlock(vs->vs_mtx);			\
246 } while (0)
247 
248 struct virtio_consts {
249 	const char *vc_name;		/* name of driver (for diagnostics) */
250 	int	vc_nvq;			/* number of virtual queues */
251 	size_t	vc_cfgsize;		/* size of dev-specific config regs */
252 	void	(*vc_reset)(void *);	/* called on virtual device reset */
253 	void	(*vc_qnotify)(void *, struct vqueue_info *);
254 					/* called on QNOTIFY if no VQ notify */
255 	int	(*vc_cfgread)(void *, int, int, uint32_t *);
256 					/* called to read config regs */
257 	int	(*vc_cfgwrite)(void *, int, int, uint32_t);
258 					/* called to write config regs */
259 	void    (*vc_apply_features)(void *, uint64_t);
260 				/* called to apply negotiated features */
261 	uint64_t vc_hv_caps;		/* hypervisor-provided capabilities */
262 };
263 
264 /*
265  * Data structure allocated (statically) per virtual queue.
266  *
267  * Drivers may change vq_qsize after a reset.  When the guest OS
268  * requests a device reset, the hypervisor first calls
269  * vs->vs_vc->vc_reset(); then the data structure below is
270  * reinitialized (for each virtqueue: vs->vs_vc->vc_nvq).
271  *
272  * The remaining fields should only be fussed-with by the generic
273  * code.
274  *
275  * Note: the addresses of vq_desc, vq_avail, and vq_used are all
276  * computable from each other, but it's a lot simpler if we just
277  * keep a pointer to each one.  The event indices are similarly
278  * (but more easily) computable, and this time we'll compute them:
279  * they're just XX_ring[N].
280  */
281 #define	VQ_ALLOC	0x01	/* set once we have a pfn */
282 #define	VQ_BROKED	0x02	/* ??? */
283 struct vqueue_info {
284 	uint16_t vq_qsize;	/* size of this queue (a power of 2) */
285 	void	(*vq_notify)(void *, struct vqueue_info *);
286 				/* called instead of vc_notify, if not NULL */
287 
288 	struct virtio_softc *vq_vs;	/* backpointer to softc */
289 	uint16_t vq_num;	/* we're the num'th queue in the softc */
290 
291 	uint16_t vq_flags;	/* flags (see above) */
292 	uint16_t vq_last_avail;	/* a recent value of vq_avail->idx */
293 	uint16_t vq_next_used;	/* index of the next used slot to be filled */
294 	uint16_t vq_save_used;	/* saved vq_used->idx; see vq_endchains */
295 	uint16_t vq_msix_idx;	/* MSI-X index, or VIRTIO_MSI_NO_VECTOR */
296 
297 	uint32_t vq_pfn;	/* PFN of virt queue (not shifted!) */
298 
299 	volatile struct vring_desc *vq_desc;	/* descriptor array */
300 	volatile struct vring_avail *vq_avail;	/* the "avail" ring */
301 	volatile struct vring_used *vq_used;	/* the "used" ring */
302 
303 };
304 /* as noted above, these are sort of backwards, name-wise */
305 #define VQ_AVAIL_EVENT_IDX(vq) \
306 	(*(volatile uint16_t *)&(vq)->vq_used->ring[(vq)->vq_qsize])
307 #define VQ_USED_EVENT_IDX(vq) \
308 	((vq)->vq_avail->ring[(vq)->vq_qsize])
309 
310 /*
311  * Is this ring ready for I/O?
312  */
313 static inline int
314 vq_ring_ready(struct vqueue_info *vq)
315 {
316 
317 	return (vq->vq_flags & VQ_ALLOC);
318 }
319 
320 /*
321  * Are there "available" descriptors?  (This does not count
322  * how many, just returns True if there are some.)
323  */
324 static inline int
325 vq_has_descs(struct vqueue_info *vq)
326 {
327 
328 	return (vq_ring_ready(vq) && vq->vq_last_avail !=
329 	    vq->vq_avail->idx);
330 }
331 
332 /*
333  * Deliver an interrupt to guest on the given virtual queue
334  * (if possible, or a generic MSI interrupt if not using MSI-X).
335  */
336 static inline void
337 vq_interrupt(struct virtio_softc *vs, struct vqueue_info *vq)
338 {
339 
340 	if (pci_msix_enabled(vs->vs_pi))
341 		pci_generate_msix(vs->vs_pi, vq->vq_msix_idx);
342 	else {
343 #ifndef __FreeBSD__
344 		boolean_t unlock = B_FALSE;
345 
346 		if (vs->vs_mtx && !pthread_mutex_isowned_np(vs->vs_mtx)) {
347 			unlock = B_TRUE;
348 			pthread_mutex_lock(vs->vs_mtx);
349 		}
350 #else
351 		VS_LOCK(vs);
352 #endif
353 		vs->vs_isr |= VTCFG_ISR_QUEUES;
354 		pci_generate_msi(vs->vs_pi, 0);
355 		pci_lintr_assert(vs->vs_pi);
356 #ifndef __FreeBSD__
357 		if (unlock)
358 			pthread_mutex_unlock(vs->vs_mtx);
359 #else
360 		VS_UNLOCK(vs);
361 #endif
362 	}
363 }
364 
365 static inline void
366 vq_kick_enable(struct vqueue_info *vq)
367 {
368 
369 	vq->vq_used->flags &= ~VRING_USED_F_NO_NOTIFY;
370 	/*
371 	 * Full memory barrier to make sure the store to vq_used->flags
372 	 * happens before the load from vq_avail->idx, which results from a
373 	 * subsequent call to vq_has_descs().
374 	 */
375 	atomic_thread_fence_seq_cst();
376 }
377 
378 static inline void
379 vq_kick_disable(struct vqueue_info *vq)
380 {
381 
382 	vq->vq_used->flags |= VRING_USED_F_NO_NOTIFY;
383 }
384 
385 struct iovec;
386 void	vi_softc_linkup(struct virtio_softc *vs, struct virtio_consts *vc,
387 			void *dev_softc, struct pci_devinst *pi,
388 			struct vqueue_info *queues);
389 int	vi_intr_init(struct virtio_softc *vs, int barnum, int use_msix);
390 void	vi_reset_dev(struct virtio_softc *);
391 void	vi_set_io_bar(struct virtio_softc *, int);
392 
393 int	vq_getchain(struct vqueue_info *vq, uint16_t *pidx,
394 		    struct iovec *iov, int n_iov, uint16_t *flags);
395 void	vq_retchains(struct vqueue_info *vq, uint16_t n_chains);
396 void	vq_relchain_prepare(struct vqueue_info *vq, uint16_t idx,
397 			    uint32_t iolen);
398 void	vq_relchain_publish(struct vqueue_info *vq);
399 void	vq_relchain(struct vqueue_info *vq, uint16_t idx, uint32_t iolen);
400 void	vq_endchains(struct vqueue_info *vq, int used_all_avail);
401 
402 uint64_t vi_pci_read(struct vmctx *ctx, int vcpu, struct pci_devinst *pi,
403 		     int baridx, uint64_t offset, int size);
404 void	vi_pci_write(struct vmctx *ctx, int vcpu, struct pci_devinst *pi,
405 		     int baridx, uint64_t offset, int size, uint64_t value);
406 #endif	/* _BHYVE_VIRTIO_H_ */
407